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1 Introduction

Symmetries provide a valuable organizing principle for developing effective field theories.
A particularly successful example of this line of thinking is the Landau paradigm, which
classifies phases of matter according to which global symmetries remain intact and which
are spontaneously broken in the ground state. The advent of higher-form, or more generally
categorical symmetries [1, 2], has dramatically broadened the scope of this paradigm, since it
can incorporate theories with spatially extended conserved observables. While point particles
are charged under an ordinary 0-form symmetry, the conserved objects charged under a
q-form symmetry are q-dimensional branes/defects with (q + 1)-dimensional worldvolume.
The simplest example of this comes from electromagnetism, where the absence of magnetic
monopoles implies that magnetic field lines cannot terminate and can be interpreted as
1-dimensional conserved strings associated with 1-form symmetry [2–7]. Just like 0-form
symmetries, a q-form symmetry may also be spontaneously broken [8, 9]. In fact, free
electromagnetism without charged matter is understood as the spontaneously broken phase of
the aforementioned 1-form symmetry, with the photon identified as the associated Goldstone
boson. More examples include various topological phases of matter, see for instance [10]
and references therein, including phases with emergent [11] and/or approximate higher-form
symmetry [12]. In this paper we seek for an extension of the Landau paradigm to include
non-trivial combinations of higher-form symmetries, namely higher-group symmetries [13–16].
As a byproduct, this will allow us to propose a prescription for characterizing D/M-brane
actions in 10d and 11d supergravities.

A continuous q-form symmetry may be represented by a continuous (q + 1)-form current
Jq+1 and, to probe the symmetry, consider its topological coupling with the background
field Aq+1. The existence of symmetry is materialized in the conservation of the current,
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d⋆Jq+1 = 0, which is implemented at the level of the effective action via requiring its
invariance under the background gauge transformation δAq+1 = dΛq. If another higher-form
symmetry is present, represented by the current J2q+2 and background field B2q+2, the
above conservation law can be modified to include a source term involving J2q+2. This
entanglement of the two higher-form symmetries can be implemented through the background
transformation δB2q+2 = dΛ2q+1 − κ dΛq ∧Aq+1 characterized by the higher-group structure
constant κ. In general, there can be more than two higher-form symmetries participating
in the higher-group structure, and we will briefly encounter such examples towards the end
of this paper. Specializing to the case for which only two Abelian higher-form symmetries
are present, the most general higher-group (modified) conservation laws featuring a scalar
structure constant κ take the form

d⋆Jq+1 = 2κGq+2 ∧ ⋆J2q+2 ,

d⋆J2q+2 = 0 , (1.1)

where Gq+2 = dAq+1. This is a (2q + 2)-group U(1)(q) ×κ U(1)(2q+1). The factor of 2 above
results by appropriately choosing the background coupling of J2q+2 to ensure its gauge-
invariance, as we explain in section 2.1 where we review higher-groups in more detail. It
has been shown that theories enjoying higher-group symmetries arise in many contexts in
quantum field theory [13, 14]. The prototypical examples are 2-group symmetries, q = 0,
that arise in a field theory with U(1)(0) × U(1)(0) direct product 0-form symmetry exhibiting
a mixed ’t Hooft anomaly, when one of the constituent 0-form symmetries is gauged [13]. A
useful analogy can be made with the Green-Schwartz mechanism [17] for anomaly cancellation
that features similar transformation rules for dynamical gauge fields, though one should bear
in mind that here Aq+1 and B2q+2 are non-dynamical background fields.

This mixing of higher-form symmetries appears also in supergravities, in the low-energy
effective description of branes. In particular, when one couples a supergravity theory to
higher-form currents that can be carried by a probe brane, one obtains via Bianchi identities
a set of conservation laws, whose complexity varies depending on the supergravity theory
under consideration [18]. As an example, for the case of the bosonic field content of 11d
supergravity coupled to M2 and M5 brane sources with associated higher-form currents
J3 and J6, these equations are

d⋆J3 = −G4 ∧ ⋆J6 ,

d⋆J6 = 0 , (1.2)

where G4 = dA3 is the 4-form invariant field strength of M-theory, which can be viewed as a
fixed background field in the probe limit [18]. The source term in eq. (1.2) has its origins in
the Chern-Simons coupling

∫
A3 ∧G4 ∧G4 contained in the 11d supergravity action. We note

here that eq. (1.2) can precisely be identified as a 6-group structure U(1)(2) ×κ U(1)(5) with
the structure constant κ = −1/2. The M2 and M5 branes are charged objects under U(1)(2)

and U(1)(5) parts of the 6-group symmetry, respectively. The 6-group structure indicates
that M2 branes are sourced by M5 branes when coupled to a supergravity background with
nonzero G4 field strength. This physical application will be our primary driver in this work,
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but similar considerations also apply to D-branes in type IIA/B 10d supergravity theories,
which we discuss in section 5. An important consequence is that the Goldstone modes
associated with spontaneously broken higher-group symmetries must be given a supergravity
interpretation. One might guess, correctly, that these Goldstone modes are none other than
the usual vector and tensor modes appearing in brane (super)-multiplets.

In general, the spontaneous breaking of higher-group symmetries is characterized by
the spontaneous breaking of the constituent higher-form symmetries to viable symmetry
subgroups that may be respected by the ground state. At zero temperature, for higher-group
symmetries involving two higher-form symmetries, i.e. U(1)(q) ×κ U(1)(2q+1), there is only
one interesting phase where both the constituent higher-form symmetries are spontaneously
broken, which we discuss in detail in section 2. In principle, there can also be phases where
the symmetry is spontaneously broken to the subgroup U(1)(2q+1), and another where it
is unbroken. However, these are not very interesting from the low-energy point of view,
because the latter has no low-energy degrees of freedom and the low-energy description of
the former is identical to that of a U(1)(q) superfluid. Note that there is no phase where
the residual symmetry of the ground state is U(1)(q) because it is not a proper subgroup
of the U(1)(q) ×κ U(1)(2q+1) higher-group.1

The phase space is comparatively richer at finite temperature, because the thermal frame
of reference breaks the Lorentz symmetry and enlarges the set of potential subgroups that the
ground state can be invariant under. This is a consequence of the qualitatively distinct feature
of higher-form symmetries that they can partially spontaneously break in the time direction,
while remaining unbroken in the spatial directions, called temporal spontaneous symmetry
breaking [6, 7, 12]. There are generically three phases of systems with U(1)(q) ×κ U(1)(2q+1)

higher-group symmetry that have interesting low-energy dynamics: a T-T phase where both
the higher-form symmetries are temporally spontaneously broken, a C-C phase where both
are completely spontaneously broken, and a mixed C-T phase where the U(1)(q) symmetry
is completely spontaneously broken but the U(1)(2q+1) symmetry is only temporally sponta-
neously broken. The converse symmetry breaking pattern, in which U(1)(2q+1) is completely
spontaneously broken and U(1)(q) is only temporally spontaneously broken, is not allowed by
the higher-group structure. We discuss these finite temperature phases in detail in section 3.

The higher-form analogue of the Mermin-Wagner theorem forbids the spontaneous
breaking of a (2q+1)-form symmetry in d = 2q+2, 2q+3 spacetime dimensions [8]. In critical
dimensions d = 2q + 3, the classical effective field theory description is still qualitatively
the same, except that the aspirant-Goldstones are massless fields that mediate quasi-long-
range order with infinite correlation length instead of true long-range order characteristic of
spontaneous symmetry breaking. In “sub-critical” dimensions d = 2q+ 2, however, there is no
such order at all and the aspirant-Goldstones are mere Stueckelberg fields with no dynamics.
Consequently, there are only two finite-temperature phases in sub-critical dimensions: a T-U
phase and a C-U phase, based on whether the U(1)(q) symmetry is temporally or completely
spontaneously broken. The (2q + 2)-group symmetry structure is also quite trivial in this
case because the current J2q+2, being a conserved top-form, is just proportional to the
volume form ⋆1. An interesting physical scenario that circumvents this triviality is when the

1The reader may find an associated discussion for 2-groups in [13].
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theory under consideration is living on a dynamical defect itself propagating in an ambient
higher-dimensional spacetime. In this case, the higher-group structure leaves imprints in the
transverse dynamics and elastic fluctuations of the defect.

Supergravity provides a characteristic example of a higher-dimensional theory furnishing
a higher-group symmetry on embedded geometries, as we further explain in the core of
this paper. Returning to the M5 brane example for clarity, the theory on the worldvolume
of this brane is an interacting theory of the N = (2, 0) massless super-Poincare multiplet.
With respect to the bosonic field content, the existence of the brane itself spontaneously
breaks translations in the 5 transverse directions giving rise to 5 scalar Goldstones. The
remaining three bosonic degrees of freedom, required in order to have a match with those
in the fermionic sector, come in form of a 2-form on the worldvolume with self-dual field
strength. From a symmetry perspective, this 2-form is identified as the Goldstone mode
associated with the spontaneously broken U(1)(2) part of the 6-group global symmetry (1.2).
Note that the U(1)(5) part of the 6-group symmetry cannot be spontaneously broken on the
6-dimensional M5 worldvolume because of the Mermin-Wagner theorem, and thus cannot
give rise to Goldstone modes. Interestingly, in this interpretation, all bosonic fields on the
M5 worldvolume can be understood as Goldstone modes of spontaneously broken global
symmetries. It is our expectation that the worldvolume fermions can be treated on an equal
footing using a combination of bosonic and fermionic higher-group symmetries.

At zero temperature, we proceed to construct a 6-group invariant effective action for
the bosonic M5 brane, taking into account the self-duality of the 3-form field strength on its
worldvolume. This is achieved by externally imposing the self-duality relation derived in [19]
as a requirement of κ-invariance. We would like to emphasize that we do not write down
a self-dual action, but rather an action consistent with self-duality, in the spirit of [19, 20].
Unlike [19], however, our effective action does not require a dynamical tension. Somewhat
surprisingly, at finite temperature, it is possible to construct an equilibrium effective action
that inherently implements the self-duality condition. In particular, we find that the bosonic
M5 brane at finite temperature is described by a 6-group invariant theory in the T-U phase,
where the constituent 2-form symmetry is temporally spontaneously broken but the 5-form
symmetry is unbroken.

The plan for the rest of this paper is as follows. We begin our discussion with a lightening
review of higher-group symmetries in section 2.1. We then focus on the (2q + 2)-group
U(1)(q) ×κ U(1)(2q+1) and formulate a (2q + 2)-group-invariant zero-temperature effective
action in a phase where the symmetry is spontaneously broken in section 2.2. Along the way,
we clarify subtleties with regards to the Mermin-Wagner theorem and when the theory is
embedded in higher-dimensions. In section 2.3 we study the specific application to M5 brane
in 11d supergravity. Section 3 is devoted to higher-group symmetries at finite temperature.
We set up the essentials of thermal partition functions in section 3.1, followed by a detailed
exposition of the various finite temperature phases in section 3.2, and application to M5
brane in section 3.3. In section 4, we briefly outline a dual formulation for the spontaneously
broken phase, in terms of an anomalous higher-group symmetry involving four higher-form
symmetries. Finally in section 5, we close with potential extensions of our results and discuss
research avenues for future exploration.
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2 (2q+2)-group symmetry at zero temperature

In this section, we introduce the essentials of continuous Abelian higher-group symmetries
that will be used throughout this paper. More details can be found in [13, 21]. We primarily
specialize to a (2q + 2)-group, comprised of a q-form and a (2q + 1)-form symmetry, and
construct the effective action for a theory respecting this symmetry structure. We show that
the worldvolume action of the bosonic M5 brane is a special case of a 6-group invariant action.

2.1 Higher-group essentials

A higher-group is defined as a collection of pI -form symmetries which mix in a non-trivial
manner. This mixing is encoded in the background gauge transformations of the corresponding
background fields AI

pI+1.2 In addition to the usual transformation

δAI
pI+1 = dΛI

pI
, (2.1)

associated with a higher-form symmetry, a higher-group is characterized by the existence
of at least one background gauge field which transforms as

δAI
pI+1 = dΛI

pI
+
∑

J

ΛJ
pJ

∧ FpI+1−pJ (A) + non-linear , (2.2)

where the (pI + 1 − pJ)-form FpI+1−pJ is a function of (the products of) the background
fields AK

pK+1, and their derivatives, with pK < pI . The transformation (2.2) implies that the
background field AI

pI+1 transforms under the transformation of the other lower-rank fields in
the collection, in a way that couples the latter with a lower-rank gauge parameter. In general
there can also be non-linear terms in the gauge parameters inside the transformation (2.2).
Consequently, the associated field strength F I

pI+2 is no longer a closed form, but instead
it is given by

GI
pI+2 = dAI

pI+1 + RI
pI+2(A) , (2.3)

where RpI+2 is another function of the background fields AK
pK+1. Invariant field strengths

given by equations of the form (2.3) are the signatures of a higher-group symmetry. It is
common in the literature to name a higher-group after the rank of the highest-rank background
gauge field that transforms non-trivially under the higher-group gauge transformations. For
instance, an interesting class of higher-groups is the Abelian (n + 1)-group with a single
background field, which we denote with Bn+1, transforming non-trivially, namely

H(n+1) =

∏
j

U(1)(pj)

×κ U(1)(n) , (2.4)

where the higher-group product ×κ is characterized by a single kind of structure constants
collectively denoted by κ which in general form a higher-dimensional symmetric matrix.
Inside the product in eq. (2.4), we have an ordinary direct-product structure of independent

2In this paper we discuss higher-groups through the corresponding collection of background fields, and do
not treat the group structure itself.
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symmetries. As an explicit example of the structure in eq. (2.4), consider the following
2-group gauge transformations

δB2 = dΛ1 + 1
2π
∑
I,J

κIJ ΛI
0 dAJ

1 ,

δAI
1 = dΛI

0 , (2.5)

with structure constants forming a symmetric matrix κIJ . This structure arises by gauging a
flavor symmetry U(1)(0)

C in a parent theory with mixed U(1)(0)
I × U(1)(0)

J × U(1)(0)
C t’ Hooft

anomaly [13]. In this paper, we are mainly interested in a particular (n + 1)-group which
mixes two higher-form symmetries, but in section 5 we will discuss a higher-group embedded
in type IIB supergravity with multiple higher-form symmetries intertwining, whose structure
is in fact more complicated than the one in eq. (2.4).

In general, a continuous pI -form symmetry can be represented by a (pI + 1)-form current
jI

pI+1. Thus a continuous higher-group symmetry comes with a collection of currents jI
pI+1

and its local structure is completely determined by a set of (modified) conservation laws that
these currents obey. At the same time, we can think of the field theory partition function
Z(A) as the functional integral

∫
Dϕ exp(−iS(ϕ,A)) labeled by the background fields AI

pI+1,
where ϕ denotes collectively the dynamical fields of the theory. Typically, the currents may
be coupled to background fields in the effective action S(ϕ,A) via δS ∼

∫
δAI

pI+1 ∧ ⋆jI
pI+1.

However, for a higher-group, this coupling does not lead always to a gauge-invariant current.
We can remedy this situation by allowing the coupling of each current with the background to
include variations of other potentials in the collection, as we do below in an explicit example.

Let us now turn our attention to the Abelian (2q + 2)-group, q ∈ N , comprised of a
q-form and a (2q + 1)-form symmetry, with a single scalar3 structure constant κ, i.e.

H(2q+2) = U(1)(q) ×κ U(1)(2q+1) . (2.6)

The background transformations are

δAq+1 = dΛq .

δB2q+2 = dΛ2q+1 − κ dΛq ∧Aq+1 . (2.7)

Here we have used a different, though equivalent, parametrization of the B2q+2 background
gauge transformation in comparison with eq. (2.5), by moving the exterior derivative onto
the gauge parameter in the κ-term. This amounts to a redefinition of the (2q+ 1)-form gauge
parameter as Λ2q+1 → Λ2q+1−κΛq∧Aq+1. The advantage of using eq. (2.7) will be made clear
in section 3 where we introduce temperature. In addition to the (q + 2)-form invariant field
strength Gq+2 = dAq+1, we can readily write down the (2q + 3)-form invariant field strength

G2q+3 = dB2q+2 + (−1)q+1κAq+1 ∧Gq+2 . (2.8)

Note that dG2q+3 = (−1)q+1κGq+2 ∧Gq+2, so that the non-closedness of G2q+3 is present only
when q is even and, moreover, the non-closedness is proportional to the higher-group structure

3One might consider other more exotic cases where the structure constant itself is a fixed differential form
but these are not relevant for our purposes here.
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constant κ, as expected. This further implies that the (2q + 2)-group gets trivialized for odd
values of q, and we can simply redefine B2q+2 → B2q+2 − κ/2Aq+1 ∧ Aq+1 to decouple the
two higher-form symmetries. Given this, we consider q to be even for the rest of this paper.

Assigning to the U(1)(q) symmetry the current Jq+1 and to U(1)(2q+1) the current J2q+2,
we may couple these symmetries to the classical sources Aq+1 and B2q+2 respectively, through

δS ∼
∫
δAq+1 ∧ ⋆Jq+1 +

(
δB2q+2 + κAq+1 ∧ δAq+1

)
∧ ⋆J2q+2 . (2.9)

Using this modified coupling for the higher-rank current J2q+2, we can define manifestly
gauge-invariant currents via varying the effective action. It is visible from here as well that for
odd values of q we are led to 2 independent higher-form symmetries. Demanding invariance
of the effective action under the (2q + 2)-group gauge transformations (2.7) then produces
the (modified) conservation laws

d⋆Jq+1 = 2κGq+2 ∧ ⋆J2q+2 ,

d⋆J2q+2 = 0 . (2.10)

The higher-rank current J2q+2 still obeys a conventional conservation law while the conserva-
tion law of the lower-rank current Jq+1 is modified by a coupling of the current J2q+2 with the
(closed) field strength Fq+2. Once we turn off the background fields, we recover two decoupled
higher-form symmetries. Note that the factor of 2 on the right-hand side of Jq+1 conservation
law in eq. (2.10) is due to the gauge-invariant coupling in eq. (2.9), as was also observed in [15].

2.2 (2q+2)-group invariant effective action

Higher-form symmetries and their fusion into higher-groups arise in a plethora of gauge
theories and (topological) field theories. They have been used to classify novel phases of
matter and study phase transitions, extract constrains on symmetry-breaking energy scales,
and shed new light on a broad spectrum of field theories; see e.g. [2, 10, 13, 22, 23] and
references therein. The simplest theories realizing higher-form or more generally higher-group
symmetries are those for which one or more of the constituent higher-form symmetries are
spontaneously broken. A reasonable first step is to build an effective field theory of dynamical
higher-form Goldstone fields in the presence of higher-group invariance. In this section, we
consider this effective theory for the (2q+ 2)-group U(1)(q) ×κ U(1)(2q+1), at zero temperature.

2.2.1 Spontaneous symmetry breaking

A continuous p-form symmetry that is spontaneously broken in the ground state implies
the existence of a massless Goldstone p-form field ϕp dominating the IR dynamics. The
Goldstone fields typically transform with a phase, but for a higher-group this transformation
rule might also need to include additional terms proportional to the structure constant κ.
In our case, we can spontaneously break the U(1)(q) part of the (2q + 2)-group, giving rise
to a q-form Goldstone field ϕq which transforms under eq. (2.7) as

δϕq = −cϕΛq . (2.11)
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The parameter cϕ here counts the q-form charge of ϕq, which we may always normalize to 1
but we keep it unnormalized for now for clarity. We can then write the following (q+ 1)-form
that involves the exterior derivative of ϕq, namely

Fq+1 = dϕq + cϕAq+1 , (2.12)

and is invariant under eqs. (2.7) and (2.11). Since ϕq is a dynamical field and all its
dependence can only arise via the invariant Fq+1, the theory has an enhanced invariance
under δϕq = dλq−1, which is a true gauge symmetry. In that sense, Fq+1 is the invariant field
strength associated to ϕq. This reflects the fact that a U(1)(q−1)

local gauge theory is dual to a
U(1)(q) superfluid. A well-explored example of this is U(1)(0)

local gauge theory, i.e. Maxwell’s
electromagnetism, which is dual to a U(1)(1) superfluid [2, 7]. The field strength Fq+1 satisfies
the Bianchi identity

dFq+1 = cϕGq+2 . (2.13)

We now consider a phase where the U(1)(2q+1) part of the (2q+2)-group is spontaneously
broken. The low-energy description then admits a (2q + 1)-form Goldstone field Φ2q+1, with
associated Goldstone charge cΦ. If one tries to construct a field strength associated to Φ2q+1
that is invariant under eq. (2.7), one discovers the necessity of a q-form field that transforms
by a shift of Λq. This is indeed the transformation law (2.11) of the q-form Goldstone ϕq. To
wit, we postulate the following transformation law for the (2q + 1)-form Goldstone

δΦ2q+1 = −cΦΛ2q+1 − κ
cΦ
cϕ

dϕq ∧ Λq . (2.14)

As before, we may now write down the invariant field strength

F2q+2 = dΦ2q+1 + cΦB2q+2 + κ
cΦ
cϕ
Aq+1 ∧ dϕq , (2.15)

which enjoys an additional invariance under a 2q-form gauge symmetry δΦ2q+1 = dλ2q. The
Bianchi identity associated with F2q+2 is given as

dF2q+2 = cΦG2q+3 + κ
cΦ
cϕ
Gq+2 ∧ Fq+1 . (2.16)

This construction implies that, generically, when the higher-rank symmetry of a (2q+2)-group
is spontaneously broken, then the lower-rank symmetry must also be spontaneously broken.
The same conclusion for a 2-group U(1)(0) ×κ U(1)(1) was obtained in [13], where it was
argued that the U(1)(0) part of the 2-group is not a proper subgroup and thus cannot be a
residual symmetry of the ground state after U(1)(1) is spontaneously broken.

Manifest invariance under eqs. (2.7), (2.11) and (2.14) requires the effective action for
Goldstone fields to take the general form

S =
∫

M
⋆L(Fq+1,F2q+2) . (2.17)

Here M is a d-dimensional (curved) Lorentzian manifold. Depending on the particular
theory under consideration, the Lagrangian density L can be constrained to take a particular
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form, for instance by imposing more symmetries. As an example, we can write down the
quadratic action

S = −
∫

M
g(q)Fq+1 ∧ ⋆Fq+1 + g(2q+1)F2q+2 ∧ ⋆F2q+2 , (2.18)

with arbitrary coupling constants g(q) and g(2q+1). Strictly speaking, these effective actions
are only valid in d > 2q + 3 spacetime dimensions because the higher-form analogue of the
Mermin-Wagner theorem forbids the U(1)(2q+1) part of the symmetry to be spontaneously
broken in d = 2q + 3, 2q + 2 dimensions, while there exists no higher-group of rank m in
spacetime dimensions d < m. Formally though, we can still make sense of this description,
but with the Stueckelberg field Φ2q+1 not being interpreted as a Goldstone associated with
any long-range order. In critical dimensions d = 2q + 3, Φ2q+1 mediates the so-called “quasi-
long-range order”, while in “sub-critical dimensions” d = 2q + 2, it is a mere auxiliary field
with no dynamics and can be integrated out from the description. We discuss these scenarios
in more detail in section 2.2.2.

As a consistency check of the effective Goldstone action (2.17), we must verify that
the equations of motion of the two Goldstone fields are equivalent to the (2q + 2)-group
conservation laws. The equations of motion of ϕq and Φ2q+1 respectively read4

d
(
δ⋆L
δFq+1

)
= κ

cΦ
cϕ
Gq+2 ∧

δ⋆L
δF2q+2

,

d
(

δ⋆L
δF2q+2

)
= 0 . (2.19)

Note that the equation of motion for ϕq receives a contribution due to the higher-group
structure constant κ. The conserved currents can be computed by varying the action (2.17)
with respect to the background gauge fields. Using the coupling structure in eq. (2.9), we
can read out

⋆Jq+1 = cϕ
δ⋆L
δFq+1

+ κ
cΦ
cϕ
Fq+1 ∧

δ⋆L
δF2q+2

,

⋆J2q+2 = cΦ
δ⋆L

δF2q+2
. (2.20)

Given these expressions for the conserved currents, the equivalence between the Goldstone
equations of motion (2.19) and the (2q+2)-group conservation laws (2.10) follows immediately.
Demanding the diffeomorphism-invariance of the action (2.17), we are led to a modified
conservation law for the energy momentum tensor Tµν , i.e.

∇µT
µν = 1

(q + 1)!G
νµ1...µq+1
q+2 Jq+1,µ1...µq+1 + 1

(2q + 2)!G
νµ1...µ2q+2
2q+3 J2q+2,µ1...µ2q+2 . (2.21)

Schematically, these equations take the same form as for two decoupled higher-form symme-
tries, except for the non-trivial higher-group structure implicit in the definition of G2q+3.

4We use the following definition for derivatives in the configuration space of p-forms: δA(B) = δB ∧
δA/δB + d(. . .) for arbitrary differential forms A and B.
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2.2.2 Mermin-Wagner theorem and (sub-)critical dimensions

The ability of a charged operator to condense and spontaneously break a symmetry depends
on the dimensionality d of spacetime. For ordinary 0-form symmetries, the Mermin-Wagner
theorem forbids spontaneous symmetry breaking in d = 1, 2. The statement can be generalized
to higher p-form symmetries, which cannot be spontaneously broken in d = p + 1, p + 2
(while they do not exist in d ≤ p) [2, 8]. In d = p+ 2, called critical dimensions, the theory
can still admit a massless field ϕp but its fluctuations are so large that they destroy any
long-range order, thereby restoring the symmetry in the ground state. This phenomenon is
termed quasi-long-range order. While the quasi-long-range order cannot be distinguished
based on whether the U(1)(p) symmetry is spontaneously broken or not, it actually features
a dual U(1)(d−2−p) symmetry associated with the Bianchi identity d⋆J̃d−1−p = 0, where
J̃d−1−p = ⋆dϕp (in the absence of background fields), that is absent in the absence of long-
range order. These phases are interpolated by a Berezinskii–Kosterlitz–Thouless (BKT)
phase transition [24–28], mediated by topological defects in the configuration of ϕp that
explicitly break the U(1)(d−2−p) symmetry [12].

The Mermin-Wagner theorem still holds for each constituent p-form symmetry of a
higher-group, and the (2q + 2)-group structure imposes further constrains on the possible
symmetry breaking patterns. Consequently, our discussion so far only strictly applies in
d > 2q+ 3. In the critical dimension d = 2q+ 3 the massless field Φ2q+1 does not qualify as a
Goldstone field because of the absence of any long-range order, but is nonetheless a dynamical
field of the theory. Thus the action (2.17) can still be used for the critical dimension as
well, but in this case the invariant field strength F2q+2 has no longer the interpretation
of a Goldstone field strength.

In sub-critical dimensions d = 2q+2, there cannot be a notion of a massless Φ2q+1 field at
all. Note that the associated field strength F2q+2 is a top-form, hence all the gauge-invariant
(physical) information in Φ2q+1 can be encoded into a single unconstrained scalar field
X = ⋆F2q+2. The action S of the theory generically admits a term F2q+2 ∧ ⋆F2q+2 = −⋆1X2,
which acts as a mass term for X gapping it out from the low-energy spectrum. The resultant
action takes a generic form

S =
∫

M
⋆L̂(Fq+1) +Q(2q+1)

∫
M

F2q+2 , (2.22)

for a constant U(1)(2q+1) charge Q(2q+1). Note that the occurrence of Φ2q+1 within F2q+2 is
purely a boundary term that drops out from the theory provided that the manifold M is
unbounded. It has no dynamics and its only role here is to make the Lagrangian manifestly
gauge-invariant. Note that the associated U(1)(2q+1) current is given by ⋆J2q+2 = Q(2q+1),
which trivially satisfies the conservation equation d⋆J2q+2 = dQ(2q+1) = 0. The U(1)(q)

current, on the other hand, is given as

⋆Jq+1 = cϕ
δ⋆L̂
δFq+1

+Q(2q+1)
κ

cϕ
Fq+1 , (2.23)

which satisfies the (non-)conservation equation derived from eq. (2.10), i.e.

d⋆Jq+1 = 2κQ(2q+1)Gq+2 . (2.24)
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Interestingly, the source term in this equation due to the U(1)(q) ×κ U(1)(2q+1) higher-group
structure can effectively be seen as a U(1)(q)-invariant theory with a ’t Hooft anomaly κQ(2q+1).
This can be made more precise in the context of the anomaly inflow mechanism, by coupling
the theory to a (d+ 1)-dimensional bulk manifold carrying a q-form Chern-Simons theory

Sbulk = −Q(2q+1)

∫
G2q+3

=
∫

bulk
κQ(2q+1)Aq+1 ∧ dAq+1 −Q(2q+1)dB2q+2 . (2.25)

Since this action only depends on the background fields, it does not change the dynamics of the
original theory. The dependence on B2q+2 identically cancels between S and Sbulk, and thus
the total theory described by S +Sbulk is U(1)(q)-invariant without invoking the higher-group
structure, but with an anomaly inflow from Sbulk. The higher-group structure in sub-critical
dimensions is non-trivial if the theory is defined on a (2q + 2)-dimensional brane/defect
propagating in a higher-dimensional spacetime. We will discuss this scenario in section 2.2.3.

As we argued above, the auxiliary Stueckelberg field Φ2q+1 can always be integrated out
from the low-energy description. Nevertheless, it is convenient to keep it in the formulation of
the effective theory and work with the action (2.17) even in sub-critical dimensions d = 2q+2.
Of course, this field has no low-energy dynamics but it allows us to write down Lagrangians
that are manifestly gauge-invariant, as opposed to invariant up to boundary terms. It also
keeps the discussion manifestly analogous to higher dimensions d > 2q+ 2. An incarnation of
Φ2q+1, for q = 2, also appeared in the supergravity literature in the context of an M5 brane
action [19]; we will discuss this in more detail in section 2.3.

(Anti-)self-dual theories. Another qualitatively distinct feature of (2q+ 2)-group-invariant
theories in sub-critical dimensions d = 2q + 2 is that the U(1)(q) Goldstone ϕq can be
constrained to be (anti-)self-dual. Linearly, this constraint is

⋆Fq+1 = ±Fq+1 + . . . . (2.26)

Recalling that ϕq realizes a U(1)(q−1)
local gauge symmetry, this is the familiar (anti-)self-duality

constraint of (q − 1)-form gauge theories in 2q + 2 dimensions. Taking another Hodge-dual
of this equation, one can verify that this constraint can only be satisfied for Fq+1 ̸= 0
provided that q is even, as is the case for us. To understand the meaning of (anti-)self-
duality constraint non-linearly, note that such a constraint will generically make the system
of dynamical equations over-constrained unless the q-form conservation equations (2.24)
were identical to the Bianchi identities (2.13). This allows us to straightaway read out the
non-linear (anti-)self-duality relation as

⋆Fq+1 = cϕ

2κQ(2q+1)
Jq+1 . (2.27)

However, not every sub-critical (2q + 2)-group theory described by the effective action (2.22)
is compatible with this (anti-)self-duality constraint. Consider, for example, ⋆L̂ = 1

2fFq+1 ∧
⋆Fq+1, where f is a constant. It immediately follows that

Jq+1 = cϕfFq+1 +Q(2q+1)
κ

cϕ
⋆Fq+1

self-duality=⇒ ⋆Fq+1 =
c2

ϕf

κQ(2q+1)
Fq+1 , (2.28)
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which can only be satisfied for Fq+1 ̸= 0 provided that f = ±κQ(2q+1)/c
2
ϕ. In other words,

to define non-trivial (anti-)self-dual theories, we must also require that the Hodge-dual of
eq. (2.27) is identically satisfied upon reusing eq. (2.27) to eliminate ⋆Fq+1. In detail, we
must demand that

Fq+1 = cϕ

2κQ(2q+1)
⋆Jq+1

∣∣∣∣
⋆Fq+1→

cϕ
2κQ(2q+1)

Jq+1 recursively
, (2.29)

holds as an identity. One can check that this applies to our simple example above. We
will see a more non-trivial example of a consistent self-dual theory in section 2.3 during
our discussion of M5 branes in supergravity.

2.2.3 Embedded geometries

In this subsection, we consider a higher-group-invariant field theory as being embedded in a
higher-dimensional background theory, which furnishes the higher-group symmetry. To be
concrete consider a brane, or more generally a defect, with embedding functions Xµ(σ) in
the ambient background spacetime with metric gµν , where σa are taken to be coordinates
on the worldvolume M . We impose diffeomorphism invariance among the σa coordinates
on M , leaving D − d independent degrees of freedom in Xµ(σ) parametrising the elastic
fluctuations of the brane in the transverse directions. One can define an induced metric
γab = ∂aX

µ∂bX
νgµν as the pullback of the background metric gµν . More details on calculus

of embedded geometries can be found in [29, 30].
Our attention shall be restricted to a U(1)(q)×κ U(1)(2q+1) global symmetry, acting across

the whole spacetime. The corresponding background fields Ăq+1, B̆2q+2 and currents J̆q+1,
J̆2q+2 are defined on the fixed background spacetime M̆ , with pullbacks onto the dynamical
worldsheet M denoted by Aq+1, B2q+2 and Jq+1, J2q+2 respectively. Here, we use the “breve”
accent to denote quantities living on M̆ and the regular versions for those living on M .
In particular, note that the Aq+1, B2q+2 are not purely background fields in this setting
and contain the dynamical fields Xµ as well through pullback maps. We emphasize again
that there is only a single higher-group symmetry that acts on all of M̆ . The higher-group
structure on M is inherited from M̆ through pullback maps.

Then, the low-energy description of the defect is an interacting theory of the Goldstone
fields associated with spontaneously broken translations as well as spontaneously broken
higher-form symmetries. The former are identified with the D − d scalar degrees of freedom
contained within the transverse sector of Xµ(σ). In general, the (2q + 2)-group symmetry
may be spontaneously broken in all of spacetime M̆ , giving rise to the Goldstone fields ϕq

and Φ2q+1 having legs on directions tangential as well as perpendicular to M . We further
restrict the analysis to a simpler physical scenario where the source of spontaneous symmetry
breaking is confined to the worldvolume of the defect, forcing the Goldstones to have only
tangential indices. Their transformation rules are still given by eqs. (2.11) and (2.14), but
with background gauge fields and higher-form symmetry parameters pulled back onto M .

The invariant coupling of the defect theory with the background spacetime is provided
by the invariant field strengths defined in eqs. (2.12) and (2.15), where the background fields
are understood as being pulled-back on M . As a result, the effective action for the defect
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is parameterized as in eq. (2.17), but with the dynamical embedding fields Xµ appearing
implicitly within the invariants Fq+1, F2q+2 and in the volume-form vold used to define the
integrals and Hodge-duality operation on M . The conserved currents Jq+1, J2q+2 on the
defect can be obtained by varying the action with respect to pullback gauge fields Aq+1,
B2q+1, and take the same form as in eq. (2.20). Since all dependence on the spacetime
background fields Ăq+1, B̆2q+1 arise implicitly via Aq+1, B2q+1 in the action, the associated
conserved currents J̆q+1, J̆2q+2 are simply given by pushforward of worldvolume currents
onto M̆ , multiplied with delta functions localized on M . The spacetime currents J̆q+1, J̆2q+2
satisfy the (2q+2)-group conservation equations analogous to eq. (2.10), with the (q+2)-form
field strength Ğq+2. The components of these conservation equations transverse to M are
identically satisfied because the respective conserved currents themselves do not carry any
nonzero transverse components. On the other hand, the projection of these equations onto
M lead to the conservation equations for Jq+1, J2q+2, taking the same form as eq. (2.10).
However, note that the occurrence of Gq+2 in these equations contains the dynamical fields
Xµ(σ) within its definition.

An intriguing case to consider is when the defect is (2q + 2)-dimensional, i.e. it is
sub-critical with respect to the (2q + 2)-group structure. Naively, following our discussion
in section 2.2.2, one might expect that the (2q + 2)-group structure in this case may also
be effectively interpreted as a U(1)(q) invariant theory with a ’t Hooft anomaly κQ2q+1.
After all, a defining property of the higher-group is the existence of at least one non-closed
background field strength, in our case G2q+3, and such a differential form identically vanishes
in d = 2q+2 dimensions. Nevertheless, G2q+3 appears explicitly in the total energy-momentum
conservation equation for the defect. This equation is identical to eq. (2.21), where all indices
are understood as spacetime, rather than worldvolume. While the projection of this equation
along the directions tangential to the worldvolume, dictating the intrinsic dynamics of the
defect, has no sign of G2q+3, the projection transverse to the defect directions leads to

T abK I
ab = 1

(q + 1)!G
Ia...
q+2 Jq+1,a... + 1

(2q + 2)!G
Ia...
2q+3 J2q+2,a... , (2.30)

which determines the extrinsic dynamics of the defect in the ambient spacetime. In writing
this equation, we have introduced the set of normal vectors nI

µ transverse to M , satisfying
the relations nI

µt
µ
a = 0 and nI

µn
J
ν g

µν = δIJ , where tµa = ∂aX
µ are the tangent vectors on M .

Using these, we have further defined the mixed components of the higher-form background
field strengths GIa...

q+2 = nI
λt

a
µ . . . Ğ

λµ...
q+2 and GIa...

2q+3 = nI
λt

a
µ . . . Ğ

λµ...
3q+3, together with the second

fundamental (or extrinsic curvature) tensor K I
ab = nI

µ∇at
µ
b . Therefore, we observe that the

non-closed field strength affects the extrinsic dynamics of the defect.
This points towards the fact that, in this case, the (2q + 2)-group structure is non-

trivialized by the propagating nature of the defect in higher dimensions. Indeed, the source
term in eq. (2.24) for an embedded defect cannot be interpreted as an anomaly because it
contains the dynamical fields Xµ(σ) implicitly within the definition of the background field
strengths. If we were to try and setup an anomaly inflow mechanism, the (d+ 1)-dimensional
bulk action in eq. (2.25) would also contain the dynamical fields Xµ(σ), thereby modifying
the dynamics of the theory. We infer that the non-trivial higher-group structure is inherited
from the higher-dimensional theory via the elastic fluctuations of the defect.
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2.3 M5 brane action

The framework developed in the previous subsections can naturally accommodate the classical
low-energy dynamics of string theory solitons. D- and M-branes are half-BPS objects and
as such carry a supersymmetric field theory on their worldvolume. The low-energy field
content should then correspond to a massless super-Poincare multiplet. Working in the
supergravity approximation, the effective action of M-theory and type II string theories is
effectively approximated by S = Ssugra +Sbrane. Constraining ourselves to the dynamics of the
brane embedded in an on-shell background, it is reasonable to expect that the supergravity
origin of these massless modes is associated to spontaneously broken symmetries of the
background. In other words, there is a Goldstone mechanism in action. It was understood
a long time ago that the scalars contained in each brane multiplet must be identified with
the Goldstone modes arising from the spontaneous breaking of translational invariance in
directions transverse to the brane [31, 32]. The 8 propagating fermionic degrees of freedom
should then be understood as Goldstone modes of spontaneously broken supersymmetries. At
the same time, understanding the Goldstone nature of the vector and antisymmetric tensor
modes has received comparatively less attention.5

If we consider the background gauge fields of 11d supergravity and type IIA/B 10d
supergravities that are coupled to M- and D-branes respectively, then from their transformation
properties we infer for each of these cases a higher-group global symmetry whose charged
objects are M- and D-branes respectively. Equivalently, this can be derived by inspection of
the corresponding conservation laws. We thus propose that the vector and tensor modes on a
brane can be understood as the Goldstone fields coming from the spontaneous breaking of
higher-group symmetries. To make these ideas concrete below we apply them to the M5 brane
of 11d supergravity. We discuss the higher-group perspective for other branes in section 5.

There are 5 transverse directions to the M5 brane, giving rise to 5 scalar degrees of
freedom. Supersymmetry implies that we need 3 more propagating bosonic degrees of freedom
in order to match with the 8 fermionic ones. Not surprisingly, there exists a unique tensor
multiplet in d = 6 dimensions involving 5 scalars, and in addition it contains a 2-form V2
with self-dual field strength, which provides exactly the 3 required bosonic degrees of freedom.
Thus the theory on the M5 brane must be an interacting theory of the N = (2, 0) multiplet.
In this work we are mainly interested on an action principle for the bosonic field content,
though we believe that the worldvolume fermions can be treated on an equal footing using
a combination of bosonic and fermionic higher-form symmetries. Focusing on the bosonic
field content, the coupling of the M-theory equations of motion to the brane sources leads to
the conservation laws in eq. (1.2). These are immediately identified with the (2q + 2)-group
conservation laws (2.10) where q = 2 and κ = −1/2. We shall refer to this symmetry as the
6-group of 11d supergravity, given by U(1)(2) ×κ U(1)(5). The corresponding background
fields A3 and B6 are the potentials for the M-theory spacetime invariant field strengths G4

5At least for the vector modes comprising the D-brane vector supermultiplets, the fact that each Dp-brane
is T-dual to each other implies that they can be related to Goldstones of broken translations. More accurately,
T-duality implies a duality web of conservation laws and as a result of higher-group symmetries, arising in
type IIA/B supergravities. We plan to elaborate on this observation in a future publication.
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and G7, respectively.6 The 5-form topological symmetry U(1)(5), whose charged operators
are M5 branes, says that the 5-brane charge is conserved, while the U(1)(2) symmetry is a
topological symmetry with M2 branes acting as the charged operators. The latter is assigned
a modified conservation law arising from the underlying 6-group structure, which, from
the perspective of the M5 worldvolume, dictates the distribution of the M2 brane charge
within (or diluted in) the M5 brane.

Irrespective of the glaring issue of self-duality, if one now tries to couple the bosonic
M5 brane to the (pulled-back) M-theory background A3, B6, then one finds that the 2-form
must transform as

δV2 = −Λ2 , (2.31)

when δA3 = dΛ2 and δB6 = dΛ5 + 1/2 dΛ2 ∧A3. This is precisely the transformation law of
a 2-form Goldstone in eq. (2.11), implying that we must identify V2 = ϕ2 (normalized with
unit charge cϕ = 1), i.e. the 2-form on the M5 worldvolume is the Goldstone field arising
from the spontaneous breaking of the U(1)(2) part of the 6-group U(1)(2) ×κ U(1)(5). This
already tells us that the action of the bosonic M5 brane in a fixed background should be
understood as a 6-group invariant effective action for the propagating Goldstone mode ϕ2.

To manifest the 5-form part of the 6-group symmetry, it will also be convenient to
introduce the 5-form Stueckelberg field Φ5 on the worldvolume that transforms as δΦ5 =
−Λ5 + 1

2dϕ2 ∧ Λ2, with cΦ = 1. As we discussed in section 2.2.2, this field has no dynamical
degrees of freedom on a 6-dimensional worldvolume. The fact that Φ5 is redundant and
can be removed completely from the description fits nicely with the field content of the
N = (2, 0) multiplet, where no such field exists. The introduction of this non-dynamical field
in the M5 brane action first appeared in [19], motivated by the proposal of [33]. From our
perspective, at low energies, each dynamical worldvolume field on the brane is associated
to the spontaneous breaking of a higher-form global symmetry.

Given the results in the previous subsections, the invariant coupling of the brane to
the background is provided through the field strengths F3 and F6 defined in eqs. (2.12)
and (2.15) respectively. We emphasize that this 6-group symmetry is non-trivial, despite of
the M5 worldvolume being 6-dimensional, because of its ability to move and bend inside the
11-dimensional background spacetime and thus should be used as an organizing principle
for the theory on the bosonic M5 brane.

The self-dual nature of the field strength F3 on the worldvolume of the M5 brane raises
obstructions in the formulation of an action principle. The root of the problem is traced back
to the simple fact that at the linearized level the kinetic term F3 ∧ ⋆F3 vanishes. Nevertheless,
one can still search for an action which produces the self-duality constraint on-shell. There
are a few approaches in the literature to achieve this (see for instance [34] and references
therein), of which we highlight [35] that singles out a spatial direction thus losing manifest
worldvolume covariance, as well as [36] where the worldvolume covariance is restored at the
expense of introducing a single auxiliary field, furnishing an extra gauge symmetry. Another
route was proposed in [20], according to which one writes an action that is consistent with
self-duality, without directly yielding it. The self-duality constraint is then implemented at

6The 11d supergravity solution further forces G7 = ⋆11G4.
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the level of the path integral. This approach was extended classically at the fully non-linear
level in [19] using a dynamical brane tension. We view this last approach as the most suitable
when the theory on the brane is formulated as an effective theory of spontaneously broken
global higher-form symmetries.

As mentioned earlier, in order to retain manifest invariance under the 6-group transfor-
mations of the background gauge fields, the action must depend solely on the invariants F3
and F6. The action for the bosonic Abelian M5 brane takes the form

S = −Q(5)

∫
M
⋆
√

1 + Y(F3) +Q(5)

∫
M

F6 , (2.32)

where Q(5) is the M5 brane charge, proportional to the tension TM5 of the brane, and Y(F3)
is a scalar function of F3. The dependence of this action on the transverse scalars is inherited
through the induced metric γab on the worldvolume M of the M5 brane. Here and for the
rest of this section the Hodge dual operator ⋆ is taken with respect to the induced metric γab.
It is important to stress that at this point ϕ2 is an unconstrained 2-form, the reasoning being
that we embed the chiral (self-dual) theory into a non-chiral theory. At the classical level,
the chiral sector is extracted by demanding the equations of motion of ϕ2, i.e.

d⋆
(

1√
1 + Y(F3)

δY(F3)
δF3

)
= G4 , (2.33)

to be equivalent to the Bianchi identity dF3 = G4, thereby determining the self-duality condi-
tion. See our discussion around eq. (2.26). Using the equations of motion it is straightforward
to see that the self-duality relation reads

⋆F3 = 1√
1 + Y(F3)

δY(F3)
δF3

, (2.34)

where the right-hand side is understood as a function of F3. We point out that invariance
under 6-group symmetry is not enough to further constrain Y(F3), so as to give rise to a
consistent self-dual theory. Supersymmetry is responsible for the matching between bosonic
and fermionic degrees of freedom, and one way to proceed is to derive the explicit form of
the self-duality relation by requiring the supersymmetric extension of the action (2.32) to be
κ-invariant. Indeed, it was shown in [19] that in order for the brane configuration to retain
supersymmetry, a relation that expresses ⋆F3 as a non-linear function of F3 must hold. In
what follows, we obtain an effective action for the bosonic M5 brane that will be proven to
be consistent with the aforementioned self-duality relation.

Starting from the form of the action (2.32), the specific scalar function Y(F3) in (2.32)
compatible with self-duality is given by

Y(F3) = 1
12FabcF

abc + 1
288(FabcF

abc)2 − 1
96
(
FabcF

hbcFhdeF
ade
)
. (2.35)

Using this into eq. (2.34), the self-duality condition takes the form7

⋆Fabc = 1√
1 + Y(F3)

(
Fabc + 1

12FdehF
dehFabc −

1
4Fde[aFbc]hF

hde
)
. (2.36)

7The square brackets denote antisymmetrization over indices, i.e. X[a1...an] =
1
n! (Xa1...an + signed permutations).
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This is exactly the self-duality condition obtained in [19] as a requirement of κ-invariance.
This completes the construction of the action of the bosonic M5 brane as a Goldstone effective
action invariant under the 6-group U(1)(2) ×κ U(1)(6), which is consistent with the self-duality
property of the 2-form ϕ2.

Before closing this section, we should emphasize that eq. (2.32) is not a self-dual action,
i.e. the self-duality relation does not arise as an equation of motion. At the level of bosonic
degrees of freedom, self-duality is an extra input that we essentially impose by hand. We
point out, however, that this relation should be extractable as a requirement of an enhanced
global symmetry once one takes into account the worldvolume fermions. The action (2.32) is
consistent with (non-linear) self-duality, since imposing the latter forces the 2-form equation
of motion to be merely an identity, as explained in [19, 20]. Nonetheless, this is enough to
predict the full non-linear interactions in the Lagrangian.

3 (2q+2)-group symmetry at finite temperature

The purpose of this section is to study field theories with (2q + 2)-group symmetry at finite
temperature, and classify equilibrium phases with different spontaneous symmetry breaking
patterns depending on the continuous subgroups of U(1)(q) ×κ U(1)(2q+1) respected by the
equilibrium state. The configuration equations and constitutive relations are derived for
all the allowed equilibrium phases. In particular, we identify the M5 brane phase at finite
temperature based on 6-group symmetry and self-duality.

3.1 Thermal partition function

In this work we restrict the analysis to the description of phases with (2q+2)-group symmetry
in thermal equilibrium. At finite temperature, the Lorentz symmetry of the theory is broken
by the existence of the thermal observer βµ = δµ

t /T0, with T0 being the constant equilibrium
temperature. The background fields are taken to be time-invariant with respect to the
thermal observer, i.e.

£βAq+1 = £βB2q+2 = £βgµν = 0 , (3.1)

where £β denotes the Lie derivative with respect to βµ. In other words, βµ is a Killing vector
for the spacetime background. We can express the d-dimensional (sub-)manifold on which
the theory resides as M = R× Σ, where R denotes the direction of time along βµ and Σ
denotes a (d− 1)-dimensional spatial Cauchy slice transverse to βµ. The fundamental object
of interest at finite temperature is the thermal partition function Z, defined as a path integral
over time-independent configurations of the dynamical fields collectively denoted as ϕ, namely

Z[Aq+1, B2q+1, gµν ] =
∫

Dϕ e−SE(ϕ;Aq+1,B2q+1,gµν) , (3.2)

with
£βϕ = 0 , (3.3)

where SE is the Euclidean effective action, defined as an integral over Σ. Note that Z is a
functional of the time-independent configurations of the background fields Aq+1, B2q+2, and
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gµν . The thermal expectation values and correlation functions of the higher-form currents
and the energy-momentum tensor are obtained as usual by varying Z with respect to these
background fields.

The precise composition of the dynamical fields ϕ depends on the equilibrium phase
under consideration and will generically contain different space- and time-components of the
Goldstone fields ϕq and Φ2q+1. From the point of view of hydrodynamics, we are essentially
describing different phases of a (2q + 2)-group superfluid in thermal equilibrium. These are
connected to the fact that the class of continuous subgroups of a higher-group that can be
respected by the ground state is enlarged when killing vectors are available. We will discuss
these in more detail in section 3.2. Furthermore, when the theory under consideration is
embedded on a brane in a higher-dimensional spacetime, as in section 2.2.3, the collection ϕ

also involves the embedding functions Xµ(σ) modded by diffeomorphisms on the brane.
Our guiding principle will be the invariance of the partition function (3.2) under time-

independent background gauge transformations (2.7), satisfying

£βΛq = £βΛ2q+1 = 0 . (3.4)

Borrowing the philosophy from hydrodynamics, the effective action can be arranged in a
derivative expansion and, as usual, we take the Goldstone fields to be of order O(∂−1) in
derivatives. Once we specify the general form of the equilibrium action, we will proceed
to derive the equilibrium constitutive relations. In particular, we find the equilibrium
expressions for the higher-form currents and energy-momentum tensor in terms of the
appropriate thermodynamic variables, at ideal order in derivatives.

In thermal equilibrium, the fluid velocity can always be aligned with a timelike Killing
vector, and we can express it as uµ = Tβµ = δµ

t /
√
−gtt, normalised as uµuµ = −1, where

T = T0/
√
−gtt is the local redshifted temperature. This can be used to decompose an

arbitrary p-form ξ into time and purely spatial components, namely

ξ = −u ∧ iuξ + ξΣ , (3.5)

where iu denotes the interior product with respect to uµ. It it also useful to note the
identity ∗ξ = ⋆(u ∧ ξ), where ∗ is the spatial Hodge duality operation defined with respect
to the (induced) metric on the Cauchy slice Σ. The spatial integrals can be defined as∫

ΣX = −
∫

M u ∧ X for some (d − 1)-rank differential form X. Taking X = ∗f for some
scalar f , we have

∫
Σ ∗f =

∫
M ⋆f .

3.2 Equilibrium phases

In this subsection, we consider different equilibrium phases of systems with (2q + 2)-group
symmetry, featuring different patterns of spontaneous symmetry breaking. Systems with
ordinary 0-form symmetries typically exhibit two phases at finite temperature: spontaneously
unbroken and spontaneously broken. On the other hand, the symmetry parameter of a p-form
symmetry carries spacetime indices and, therefore, can also exhibit an intermediate “temporal
spontaneous symmetry breaking” pattern where the p-form symmetry is only spontaneously
broken in the time direction [6, 7]. This gives rise to a (p− 1)-form gapless mode in the low
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energy description, regarded as a temporal Goldstone field. The temporal Goldstone is just
the time-component of the full p-form Goldstone, when the latter is available.

We find that a system with U(1)(q) ×κ U(1)(2q+1) symmetry in d > 2q + 2 spacetime
dimensions can admit 3 non-trivial equilibrium phases at finite temperature, given by the
table below

(d > 2q + 2) U(1)(q)-temporally broken U(1)(q)-completely broken

U(1)(2q+1)-temporally broken T-T C-T

U(1)(2q+1)-completely broken C-C

Analogously to our discussion in section 2.2.2, the U(1)(2q+1) part of the higher-group
exhibits quasi-long-range temporal/complete order in d = 2q + 3 dimensions instead of true
spontaneous symmetry breaking. In the remainder of this section, quasi-long-range order
is understood where applicable. Note that there are no phases in the bottom-left corner
of this table because when the U(1)(2q+1) part of the symmetry is temporally/completely
spontaneously broken, the (2q+2)-group structure also forces the U(1)(q) part of the symmetry
to be temporally/completely spontaneously broken. Phases with spontaneously unbroken
U(1)(2q+1) symmetry in d > 2q + 3, or without quasi-long-range order in d = 2q + 3, while
allowed by symmetries, do not carry a non-zero thermodynamic (2q + 1)-form density. Hence
we do not consider these in this work. See [7] for related discussion for 1-form symmetries.

This situation is qualitatively different in sub-critical dimensions d = 2q + 2, where there
is no spontaneous symmetry breaking or quasi-long-range order in the U(1)(2q+1) sector. In
this case, we only have 2 phases

(d = 2q + 2) U(1)(q)-temporally broken U(1)(q)-completely broken

U(1)(2q+1)-unbroken T-U C-U

with constant U(1)(2q+1) current ⋆J2q+2 = Q(2q+1). As we discussed in section 2.2.3, these
phases are particularly interesting when the theory is embedded on a dynamical worldvolume
in a higher-dimensional spacetime.

In the following, we will consider all these phases individually from the least to most
spontaneously broken symmetries. We will derive the constitutive relations for higher-form
currents and energy-momentum tensor in each of the phases, together with the configuration
equations for the associated (temporal) Goldstone fields.

3.2.1 T-U phase (sub-critical dimensions)

We start with the T-U phase by considering the spontaneous breaking of the temporal part
of U(1)(q) symmetry, leaving the rest of the symmetries intact. To this end, we introduce
a temporal Goldstone field φq−1, satisfying iβφq−1 = 0, with transformation

δφq−1 = −iβΛq . (3.6)

It follows that we can define the invariant chemical potential as
µq

T
= −dφq−1 + iβAq+1 , (3.7)
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which obeys the Bianchi identity

d
(
µq

T

)
= −iβGq+2 , (3.8)

and the spatiality condition iβµq = 0. In order for this phase to possess a non-trivial
(2q + 1)-form sector, we need an invariant that contains B2q+2, so that the action is capable
of reproducing a J2q+2 current. Unfortunately, without introducing spontaneous symmetry
breaking in the U(1)(2q+1) sector, the best we can do is work in sub-critical dimensions
d = 2q + 2, where we can construct an expression that is invariant up to a total derivative.
The action takes the generic form

SE =
∫

Σ
∗P̂ (T, µq) +Q(2q+1)

∫
Σ
ψ2q+1 , (3.9)

where P̂ is a function of T and µq. For instance, we can write down a quadratic term in
the effective action via ∗P̂ = 1

2χµq ∧ ∗µq, where χ is the U(1)(q) susceptibility. Above, we
have also defined the spatial top-form

1
T
ψ2q+1 = iβB2q+2 +2κ dφq−1∧Aq+1,Σ−κ iβAq+1∧Aq+1,Σ−κ d(Tu)∧φq−1∧dφq−1 , (3.10)

where we have used the notation (3.5) for the spatial part of differential forms. The trans-
formation of ψ2q+1 is

1
T
δψ2q+1 = iβdΛ2q+1 + 2κ dφq−1 ∧ dΛq + κ d(Tu ∧ iβΛq) ∧ dφq−1 + κ d(Tu ∧ φq−1) ∧ diβΛq

= d
(
− iβΛ2q+1 + κφq−1 ∧ (dΛq)Σ + κΛq,Σ ∧ dφq−1

)
, (3.11)

resulting in a boundary term in the action.8

Drawing inspiration from the zero temperature case, we may introduce a non-dynamical
Stueckelberg field φ2q transforming in the same way as the term inside the differential in
eq. (3.11), allowing us to replace ψ2q+1 with an exact invariant µ2q+1 = ψ2q+1 − Tdφ2q. In
fact, in higher dimensions, φ2q and µ2q+1 are precisely the higher-rank temporal Goldstone
field and chemical potential respectively, that we will encounter in section 3.2.3. We can
then recast the action eq. (3.9) as

SE =
∫

Σ
∗P (T, µq, µ2q+1) , (3.12)

where P = P̂ + Q(2q+1)∗µ2q+1. Note that the dependence on φ2q is a total-derivative and
identically drops out form the integral. In what follows, we compute the configuration
equations and constitutive relations arising from the action in (3.12) in d = 2q + 2 spacetime
dimensions, with a strictly linear coupling of µ2q+1, while the dependence on µq is left arbitrary.

8Note that
∫

Σ T dX = −
∫

M
T u∧ dX =

∫
M

d(T u∧X)−
∫

M
d(T u)∧X for any (d− 2)-rank form X. Given

that X is purely spatial, the last term vanishes in equilibrium because d(T u) ∧ X = −T u ∧ iβd(T u) ∧ X =
−T u ∧ £β(T u) ∧ X = 0 when βµ is a Killing vector.
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The function P in the action (3.12) can be identified as the thermodynamic pressure of
the fluid. Its variation with respect to the thermodynamic variables can be used to define
other thermodynamic quantities as9

δP = s δT + nq · δµq + n2q+1 · δµ2q+1 −
1
2r

µνδgµν ,

ϵ = Ts+ µq · nq + µ2q+1 · n2q+1 − P , (3.13)

where n2q+1 = Q(2q+1)∗1. Here s is the entropy density, nq the q-form density, n2q+1 the
(2q + 1)-form density, rµν the anisotropic stress tensor, and ϵ the energy density. The rµν

contribution is required because P is a scalar, and is fixed by local Lorentz invariance to be

rµν = 1
(q − 1)!(nq)µ

ρ...(µq)νρ... + 1
(2q)! (n2q+1)µ

ρ...(µ2q+1)νρ... , (3.14)

together with the constraint r[µν] = 0. Varying the equilibrium effective action with respect
to the higher-form background gauge fields, we find the higher-form currents

Jq+1 = u ∧ nq − (−)d2κ ∗(µq ∧ ∗n2q+1) ,
J2q+2 = u ∧ n2q+1 . (3.15)

The second term in Jq+1 is a purely higher-group effect, stemming directly from the (2q + 2)-
group conservation laws where the q-form charge is sourced by the (2q + 1)-form charge.
At non-zero q-form chemical potential and (2q + 1)-form density, this term survives even
when the background fields vanish. The same effect was observed in [15] for the 2-group. In
sub-critical dimensions, it is simply −2κQ(2q+2)∗µq, but the more general form will be helpful
later in section 3.2.3. In the context of supergravity, such purely higher-group contributions
are typically visible in the asymptotic expansion of the higher-form currents computed from
a given brane solution, whenever the associated higher-group structure is non-trivial. As an
explicit example, for q = 2, the second term in J3 is identified as a magnetic contribution
originating from the fluxes of the M2-M5 bound state, see section 3.3.

The energy-momentum tensor for this phase reads

Tµν = (ϵ+ P )uµuν + Pgµν − rµν + 2υ(µuν) , (3.16)

where we have identified the 1-form heat-flux contribution

∗υ = −κµq ∧ µq ∧ ∗n2q+1 , (3.17)

which is also characteristic of the higher-group structure in thermal equilibrium. This
contribution is also responsible for violating the Landau frame condition at ideal order, i.e.
Tµνuν ̸= −ϵ uµ, where we recall that the fluid velocity is aligned along the equilibrium thermal
vector βµ = δµ

t /T0. Finally, the temporal Goldstone φq obeys the configuration equation

d∗nq = 2κ
(
Gq+2,Σ + d(Tu) ∧ µq

T

)
∧ ∗n2q+1 . (3.18)

It is straightforward to check that the above configuration equation combined with the
constitutive relations reproduces the (2q + 2)-group conservation laws.

9We use the “dot-product” notation for two p-forms A and B as A · B = 1
p! A

µ...Bµ....
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3.2.2 C-U phase (sub-critical dimensions)

We now consider the C-U phase where the U(1)(q) symmetry is completely spontaneously
broken, while the U(1)(2q+1) symmetry still remains unbroken. This means that we have
access to the full Goldstone ϕq with transformation δϕq = −Λq. We have set the Goldstone
charge cϕ = 1 for simplicity. The temporal Goldstone φq−1 is related to ϕq via φq−1 = iβϕq.
We can use this to define the chemical potential µq which is the same as in eq. (3.7). Note
the simple relation between q-form chemical potential and (q + 1)-form field strength

ιβFq+1 = µq

T
. (3.19)

For the record, let us also write down the spatial components of the respective Bianchi identity

d∗ñp = (−)dd(Tu) ∧ µq

T
+ (−)dGq+2,Σ , (3.20)

where p = d − 2 − q and we have defined ñp = ∗Fq+1. Together with eq. (3.8), this gives
rise to the full Bianchi identity (2.13). The introduction of the invariant thermodynamic
variable ñp is motivated from the fact that the Bianchi identities can themselves be interpreted
as emergent higher-form conservation laws. From this perspective, which is elaborated in
section 4, ñp becomes a conserved p-form density in its own right. As in section 3.2.1, the
only quantity at our disposal on which the action can depend containing the background
field B2q+2 is ψ2q+1 defined in eq. (3.10). However, ψ2q+1 is only symmetry-invariant up to a
total-derivative term, forcing us to sub-critical dimensions d = 2q + 2 and a linear to ψ2q+1
analogous to eq. (3.9). What distinguishes this phase from its T-U counterpart is the fact
that the equilibrium action can now also depend on the spatial components of Fq+1. For
example, we may write down a term in the equilibrium action −

∫
Σ

1
2fFq+1 ∧ ∗Fq+1. More

generally, the equilibrium effective action for this phase takes the form

SE =
∫

Σ
∗P̂ (T, µq, ñp) +Q(2q+2)

∫
Σ
ψ2q+1 . (3.21)

Following our discussion in section 3.2.1, we can make our life simpler by introducing a
non-dynamical Stueckelberg field φ2q used to define the invariant chemical potential µ2q+1,
enabling us to recast the action as

SE =
∫

Σ
∗P (T, µq, µ2q+1, ñp) , (3.22)

where the thermodynamic pressure is defined as P = P̂ +Q(2q+1)∗µ2q+1. The thermodynamic
relations in this phase are given as

δP = s δT + nq · δµq + n2q+1 · δµ2q+1 − ∗µ̃p · δ∗ñp −
1
2r

µνδgµν ,

ϵ = Ts+ µq · nq + µ2q+1 · n2q+1 − P , (3.23)

where n2q+1 = Q(2q+1)∗1 and the anisotropic stress tensor is given by

rµν = 1
(q − 1)!(nq)µ

ρ...(µq)νρ... + 1
(2q)! (n2q+1)µ

ρ...(µ2q+1)νρ...

− 1
q! (∗np)µ

ρ...(∗µp)νρ... . (3.24)
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This variation introduces a new thermodynamic quantity ∗µ̃p which can be identified as
the dissipationless equilibrium U(1)(q) superflow. To wit, varying the general equilibrium
action, we obtain the higher-form currents

Jq+1 = u ∧ nq − (−)d∗µ̃p − (−)d2κ ∗(µq ∧ ∗n2q+1) ,
J2q+2 = u ∧ n2q+1 . (3.25)

The energy-momentum tensor takes the same form as eq. (3.16), except that the presence
of ñp results in a new term inside the heat-flux contribution, namely

∗υ = −µq ∧ µ̃p − κµq ∧ µq ∧ ∗n2q+1 . (3.26)

The configuration equations for the temporal and spatial components of the Goldstone
field ϕq are given as

d∗nq = d(Tu) ∧ µ̃p

T
+ 2κ

(
Gq+2,Σ + d(Tu) ∧ µq

T

)
∧ ∗n2q+1 ,

d µ̃p

T
= 0 . (3.27)

Note that the configuration equation for the temporal Goldstone has changed compared to
eq. (3.18) in the T-U phase because of µ̃p.

3.2.3 T-T phase

We now turn to the T-T phase for which the temporal part of the U(1)(2q+1) symmetry
is spontaneously broken in d > 2q + 2 dimensions. To this end, we introduce a (2q)-form
temporal Goldstone field φ2q, satisfying iβφ2q = 0, with transformation law

δφ2q = −iβΛ2q+1 + κφq−1 ∧ (dΛq)Σ + κΛq,Σ ∧ dφq−1 , (3.28)

where the right-hand side is precisely the quantity inside the differential in eq. (3.11). Observe
that, due to the higher-group structure, this transformation rule contains additional terms
compared to the simple transformation rule of φq−1 in eq. (3.6).10 Using (3.28), we can
define the invariant (2q + 1)-form chemical potential

µ2q+1
T

= iβB2q+2 − dφ2q

+ 2κ dφq−1 ∧Aq+1,Σ − κ iβAq+1 ∧Aq+1,Σ − κ d(Tu) ∧ φq−1 ∧ dφq−1 , (3.30)

satisfying the Bianchi identity

d
(
µ2q+1
T

)
= −iβG2q+3 − κ

(
2Gq+2,Σ + d(Tu) ∧ µq

T

)
∧ µq

T
, (3.31)

10Had we used the background gauge transformations in the form of eq. (2.5), with the higher-rank gauge
parameter Λ̃2q+1 = Λ2q+1 + κ Λq ∧Aq+1 we would instead define the temporal-Goldstone φ̃2q = φ2q −κ φq−1 ∧
Aq+1,Σ with the following transformation law

δφ̃2q = −iβΛ̃2q+1 − κ Λq,Σ ∧ µq

T
. (3.29)

This is the (2q + 2)-group analogue of the transformation introduced in [15] for a 2-group. However, note that
this transformation depends on the background field Aq+1 implicitly via µq.
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and the spatiality condition iβµ2q+1 = 0. In parallel to the zero temperature (and in principle
time-dependent) case, we observe the necessity of introducing the U(1)(q) temporal Goldstone
φq−1 in order to define the invariant U(1)(2q+1) chemical potential µ2q+1. This points towards
the fact that in order to spontaneously break the temporal part of the U(1)(2q+1) symmetry,
we need to spontaneously break the temporal part of the U(1)(q) symmetry as well.

The effective action for the T-T phase is written in the same way as in eq. (3.12), but
with arbitrary non-linear dependence on the higher-rank chemical potential µ2q+1. As an
example, at quadratic level, we may write down ∗P = 1

2χµq ∧ ∗µq + 1
2χ

′µ2q+1 ∧ ∗µ2q+1. The
remainder of the discussion for constitutive relations is exactly the same as in the T-U phase
following eq. (3.13), but with general higher-rank density n2q+1. The configuration equation
for the temporal Goldstone φ2q is simply

d∗n2q+1 = 0 , (3.32)

which used to be trivial in the T-U phase, while the configuration equation for the temporal-
Goldstone φq−1 is still given by eq. (3.18).

3.2.4 C-T phase

The C-T phase features complete spontaneous breaking in the U(1)(q) sector and temporal
spontaneous breaking in the U(1)(2q+1) sector in dimensions d > 2q + 2, introducing the
full Goldstone ϕq and the temporal Goldstone φ2q. Reversing this logic, namely temporally
spontaneously breaking the U(1)(q) symmetry and completely spontaneously breaking the
U(1)(2q+1) symmetry, is forbidden by the higher-group structure because the residual symmetry
generators do not form a proper subgroup of the (2q + 2)-group. The general effective action
for the C-T phase is still given by eq. (3.21), but with a general, not necessarily linear
dependence on µ2q+1. For example, one can write down the action

∗P = χ

2µq ∧ ∗µq −
f

2Fq+1 ∧ ∗Fq+1 + χ′

2 µ2q+1 ∧ ∗µ2q+1 . (3.33)

The remainder of the discussion for constitutive relations is exactly the same as in the C-U
phase following eq. (3.23), but with general higher-rank density n2q+1. The configuration
equations for the temporal and spatial components of ϕq are still given by eq. (3.27), while
that for the temporal-Goldstone φ2q is simply given by eq. (3.32).

3.2.5 C-C phase

We now turn to the final phase for which the U(1)(2q+1) symmetry is completely-spontaneously
broken in dimensions d > 2q + 2, meaning that we bring in the full Goldstone Φ2q+1 with
transformation laws (2.14). We choose also here the normalization cΦ = 1. In order to
write an invariant field strength for this field, as we already witnessed in our analysis at
zero temperature, we need to completely spontaneously break the U(1)(q) symmetry as well.
Since complete spontaneous breaking by definition includes partial spontaneous breaking,
this phase features the most general symmetry breaking pattern that we will encounter in
this paper. The temporal Goldstone φ2q can be obtained in terms of Φ2q+1 as

φ2q = iβΦ2q+1 − κφq−1 ∧ (dϕq)Σ , (3.34)
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defined to be purely spatial, transforming as eq. (3.28). In this phase we have at our disposal
the full field strength F2q+2 defined eq. (2.15), which satisfies the relation

iβF2q+2 = µ2q+1
T

+ κ
µq

T
∧ Fq+1,Σ . (3.35)

The spatial components of the associated Bianchi identity is given as

d∗ñp−q−1 = −G2q+3,Σ − d(Tu) ∧ µ2q+1
T

− (−)dκ

(
Gq+2,Σ + d(Tu) ∧ µq

T

)
∧ ∗ñp , (3.36)

where ñp−q−1 = −∗F2q+2. This together with eq. (3.31) gives rise to the full Bianchi
identity (2.16). To be explicit, we can write down for instance the following quadratic
action in the C-C phase

SE =
∫

Σd−1

χ

2µq ∧ ∗µq −
f

2Fq+1 ∧ ∗Fq+1 + χ′

2 µ2q+1 ∧ ∗µ2q+1 −
f ′

2 F2q+2 ∧ ∗F2q+2 . (3.37)

In particular, the effective action can now depend on the additional quantity ñp−q−1 =
−∗F2q+2. More generally, however, the effective action takes the form

SE =
∫

Σ
∗P (µq, µ2q+1, ñp, ñp−q−1) . (3.38)

We should emphasize that there is no equivalent of this phase in sub-critical dimensions
d = 2q + 2, simply because F2q+2 is a spacetime top-form and its spatial Hodge-dual ∗F2q+2
is identically zero.

The thermodynamics in the C-C phase takes the general form

δP = s δT + nq · δµq + n2q+1 · δµ2q+1 − ∗µ̃p · δ∗ñp − ∗µ̃p−q−1 · δ∗ñp−q−1 −
1
2r

µνδgµν ,

ϵ = Ts+ µq · nq + µ2q+1 · n2q+1 − P , (3.39)

where the anisotropic stress tensor reads

rµν = 1
(q − 1)!(nq)µ

ρ...(µq)νρ... + 1
(2q)! (n2q+1)µ

ρ...(µ2q+1)νρ...

− 1
q! (∗np)µ

ρ...(∗µp)νρ... − 1
(2q + 1)!(∗ñp−q−1)µ

ρ...(∗µ̃p−q−1)νρ... . (3.40)

Varying the effective action, we are led to the higher-form currents

Jq+1 = u ∧ nq − (−1)d∗µ̃p − (−1)d2κ ∗(µq ∧ ∗n2q+1) + κ ∗(∗ñp ∧ µ̃p−q−1) ,
J2q+2 = u ∧ n2q+1 + ∗µ̃p−q−1 . (3.41)

The energy-momentum tensor still takes the same form as eq. (3.16), except that the full
heat-flux contribution is given as

∗υ = −µq ∧ µ̃p − κµq ∧ µq ∧ ∗n2q+1 + µ2q+1 ∧ µ̃p−q−1 + κ(−1)dµq ∧ ∗ñp ∧ µ̃p−q−1 . (3.42)
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The configuration equations for the temporal and spatial parts of the Goldstone fields ϕq

and Φ2q+1 are given as

d∗nq = d(Tu)∧ µ̃p

T
+2κ

(
Gq+2,Σ +d(Tu)∧ µq

T

)
∧∗n2q+1−κ(−1)dd(Tu)∧∗ñp∧

µ̃p−q−1
T

,

d µ̃p

T
=−κ

(
Gq+2,Σ +d(Tu)∧ µq

T

)
∧ µ̃p−q−1

T
,

d∗n2q+1 = d(Tu)∧ µ̃p−q−1
T

,

d µ̃p−q−1
T

= 0 . (3.43)

One can verify that the constitutive relations along with the configurations equations are
consistent with the (2q + 2)-group conservation laws for this phase as well.

3.3 Self-dual limit and the thermal M5 brane

Given the exposition of phases with (2q + 2)-group symmetry at finite temperature in
section 3.2, we now analyze the M5 brane at finite temperature, from the perspective of the
underlying 6-group symmetry. As we have discussed at length in section 2.3, the U(1)(2)

part of the 6-group symmetry on the M5 brane is spontaneously broken at zero temperature,
giving rise to the 2-form field ϕ2 living on its worldvolume, while the dimensionality of the
brane is sub-critical with respect to the U(1)(5) part and thus it cannot be spontaneously
broken. The only subtlety is that the field strength F3 associated with the Goldstone ϕ2
is required to be self-dual on account of supersymmetry. While we were able to construct
a zero-temperature effective action for the bosonic M5 brane consistent with self-duality
in section 2.3, we were unable to provide a symmetry perspective that may directly yield
the self-duality constraint either offshell or onshell. Interestingly, this situation is not as
complicated at finite temperature.

Let us start with the C-U in phase in sub-critical dimensions discussed in section 3.2.2,
where the U(1)(q) symmetry is completely-spontaneously broken and the U(1)(2q+1) symmetry
is unbroken, giving rise to the q-form Goldstone ϕq with the temporal-Goldstone φq−1 = iβϕq.
Naively, this is the phase that applies to the M5 brane for q = 2, with the added self-duality
constraint. The non-linear self-duality condition is given in eq. (2.27). Plugging in the C-U
phase constitutive relations from eq. (3.25) in sub-critical dimensions d = 2q + 2, i.e. p = q,
the time and space components of this equation are given as

ñp = 1
2κQ(2q+1)

nq =⇒ ñp = 1
2κQ(2q+1)

δSE

δµq

∣∣∣∣
T,ñp,µ2q+1

, (3.44a)

µ̃p = 0 =⇒ 0 = δSE

δñp

∣∣∣∣
T,µq ,µ2q+1

. (3.44b)

In particular, note that by switching off the dependence on ñp, the C-U phase equilibrium
action in eq. (3.22) reduces to that of the T-U phase in eq. (3.12). In other words, the (2q+2)-
group C-U phase with self-duality is effectively described by the T-U at finite temperature,
where the U(1)(q) part of the (2q + 2)-group symmetry is only spontaneously broken along
the time-direction. For our case of interest, this means that the bosonic M5 brane at finite
temperature is actually described by the T-U phase.
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The temporal spontaneous symmetry breaking patter in the T-U phase automatically
takes care of the self-duality constraint. Using the action (3.9) in the non-trivial part of
the self-duality condition eq. (3.44a), we can find

∗Fq+1 = 1
2κQ(2q+1)

∗
(
δ∗P̂ (T, µq)

δµq

)
, ιuFq+1 = µq . (3.45)

Since the right-hand side of the first equation only depends on the “electric components”
iuFq+1 and not on the “magnetic components” ∗Fq+1, this equation can effectively be seen
as defining the magnetic components of Fq+1 in terms of the electric components. Every
T-U phase effective action of the form in eq. (3.9) describes a self-dual theory, without
the need for imposing additional constraints. The reason for this conceptual simplification
can be traced back to the broken Lorentz invariance at finite temperature. The primary
complication while writing down self-dual effective actions at zero temperature arises from
simultaneously requiring manifest Lorentz-invariance. This fact was exploited in [35], where
the authors constructed a zero temperature effective action for the bosonic M5 brane by
giving up manifest Lorentz-invariance. Nonetheless, the authors illustrated that the equations
of motion arising from this effective action were indeed Lorentz invariant. By contrast,
Lorentz invariance at finite temperature is broken by the thermal frame of reference or the
fluid velocity, circumventing the entire issue.

To summarize, the bosonic M5 brane at finite temperature is described by the T-U phase
6-group invariant equilibrium effective action

SE =
∫

Σ
∗P̂ (T, µ2) +Q(5)

∫
Σ
µ5 , (3.46)

obtained from eq. (3.9) by setting q = 2. For completeness, let us write also here the
definitions of the chemical potentials µ2 and µ5, i.e.

µ2
T

= −dφ1 + iβA3 ,

µ5
T

= −dφ4 + iβB6 − dφ1 ∧A3,Σ + 1
2 iβA3 ∧A3,Σ + 1

2d(Tu) ∧ φ1 ∧ dφ1 , (3.47)

where we have set κ = −1/2 specific to the M5 brane. Note that the definition of µ5 contains
a contribution from the Stueckelberg field φ4 to make it manifestly gauge-invariant, but
it trivially drops out from the effective action as a boundary term. The full field strength
Fq+1 is defined in terms of these as

∗F3 = −1
Q(5)

∗
(
δ∗P̂ (T, µ2)

δµ2

)
, ιuF3 = µ2 , (3.48)

which identically gives rise the self-duality condition that fixes the magnetic components
∗F3 in terms of the electric components ιuF3. In particular, neither the finite temperature
effective action (3.46) nor the associated self-duality relation (3.48) are Lorentz-invariant.
We also record the constitutive relations specific to the thermal M5 brane, i.e.

J3 = u ∧ n2 +Q(5)∗µ2 ,

J6 = Q(5)u ∧ ∗1 ,

Tµν = (ϵ+ P̂ )uµuν + P̂ gµν − n2
µ
ρ µ

νρ
2 +Q(5)∗(µ2 ∧ µ2)(µuν) , (3.49)
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taken directly from section 3.2.1 for q = 2. The thermodynamic relations are given as

δP̂ = s δT + 1
2n

µν
2 δµ2µν − 1

2n2
µ
ρ µ

νρ
2 δgµν ,

ϵ = Ts+ 1
2µ2µνn

µν
2 − P̂ . (3.50)

These results can be compared with the work of [37], where the authors derived the
equation of state for thermal M5 branes arising from 11d supergravity.11 The authors focused
on M2 brane configurations for which the 2-form chemical potential is parametrized as

µ2 = Φ(2)∗(v ∧ w ∧ z) , (3.51)

where Φ(2) is a scalar (not to be confused with our Goldstone field) and vµ, wµ, zµ are
mutually orthogonal normalized spatial vectors. This immediately identifies the purely higher-
group contribution in (3.15) as the magnetic part of the 3-form (asymptotic) current that the
M2-M5 bound state possesses, which is due to the integrated 4-form flux of the solution over
an S7 enclosing the directions of the worldvolume transverse to the M2 brane charge. Note,
however, that this parametrisation of µ2 is non-generic; in particular, it implies µ2 ∧ µ2 = 0
and tr(µ2n

2 ) = 21−n tr(µ2
2)n. This sets the Q(5)-dependent vector heat-flux contribution in

the energy-momentum tensor in eq. (3.49) to zero. Another simplification that happens
because of this is that the equation of state P̂ (T, µ2) = p̂(T,Φ(2)) only depends on Φ(2) and
not on the full µ2, implying that n2 = Q(2)∗(v ∧ w ∧ z) where Q(2) = ∂p̂/∂Φ(2). With these
identifications in place, one can verify that the constitutive relations (3.49) exactly match
with those derived in [37], with the equation of state given as

p̂(T,Φ(2)) = −1
3Q(5)

1 + 3(tanh2 α− Φ2
(2)) cosh2 α

cosh2 α
√

tanh2 α− Φ2
(2)

, (3.52)

where the parameter α is determined via

Q(5) coshα√
tanh2 α− Φ2

(2)

= 3Ω4
16πGN

( 3
4πT

)3
, (3.53)

with Ω4 = 4π2/3 denoting the volume of a unit 4-sphere and GN the 11d Newton’s constant.
Note that because of the simple parametrisation of µ2, the analysis in [37] cannot account
for more general dependence of the equation of state on non-linear scalars of the kind
tr(µ2n

2 ) − 21−n tr(µ2
2)n for n ≥ 2, which would require one to find 11d supergravity solutions

with more non-trivial configurations of M2-M5 branes. This would be an interesting avenue
to explore in the future.

4 Dual formulation and anomalous higher-group symmetries

Many physical systems with spontaneously broken continuous global symmetries admit dual
descriptions in terms of higher-form symmetries, where the Bianchi identities associated

11See also [38–41] for earlier work on thermal M5 branes.
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with the Goldstone fields are interpreted as higher-form conservation laws in their own
right. The best explored examples of these dualities are: viscoelastic hydrodynamics with
spontaneously broken translation symmetry recast in terms of (d − 1)-copies of U(1)(d−1)

symmetries [42, 43]; q-form superfluids with spontaneously broken U(1)(q) global symmetry
in terms of U(1)(q) × U(1)(d−1−q) anomalous symmetry [7, 12, 44]; and free U(1)(q) gauge
theory, including free electromagnetism for q = 0, in terms of U(1)(q+1) × U(1)(d−2−q)

anomalous symmetry [2]; magnetohydrodynamics in terms of U(1)(1) symmetry [3, 6, 45].
The dual formulation makes all the global symmetries of the system transparent in a model-
independent manner and allow us to construct an effective field theories without the knowledge
of the underlying field content, such as Goldstone fields and dynamical gauge fields in the
examples above.

In the context of this work, a system with spontaneously broken U(1)(q) ×κ U(1)(2q+1)

global symmetry admits a dual description in terms of an anomalous extended higher-
group symmetry involving four higher-form symmetries. In detail, we can identify the dual
higher-form currents

J̃p+1 = ⋆Fq+1 ,

J̃p−q = ⋆

(
F2q+2 −

κ̃

cϕ
Fq+1 ∧ Fq+1

)
, (4.1)

where p = d− 2 − q and κ̃ = 1
2κcΦ/cϕ. In terms of these, the Bianchi identities associated

with the Goldstones ϕq and Φ2q+1 are recast into higher-form conservation laws

d⋆J̃p+1 = (−)pcϕGq+2 ,

d⋆J̃p−q = −cΦG2q+3 − (−)p2κ̃ Gq+2 ∧ ⋆J̃p+1 , (4.2)

that, together with the original higher-group conservation laws in eq. (2.10), give rise to
an extended higher-group structure((

U(1)(q) ×κ U(1)(2q+1)
)
× Ũ(1)(p−q−1)

)
×κ̃ Ũ(1)(p) . (4.3)

This is a (2q + 2)-group in d ≤ 3q + 3 and (p + 1)-group in d ≥ 3q + 3. We have used
the “tilde” notation to distinguish the higher-form symmetries in the dual sector. In this
formulation, the Goldstone charges cϕ and cΦ appear as coefficients of mixed ’t Hooft
anomalies in U(1)(q) × Ũ(1)(p) and U(1)(2q+1) × Ũ(1)(p−q−1) sectors of the extended higher-
group respectively.

To make the extended higher-group and anomaly structure of the dual formulation
manifest, let us introduce new background gauge fields Ãp+1 and B̃p−q coupled to the
currents J̃p+1 and J̃p−q via the coupling terms in the action

S ∼
∫ (

Ãp+1 + κ̃ Aq+1 ∧ B̃p−q

)
∧ ⋆J̃p+1 + B̃p−q ∧ ⋆J̃p−q

∼
∫

(−)p
(
Ãp+1 + κ̃ Aq+1 ∧ B̃p−q

)
∧ Fq+1

− B̃p−q ∧
(
F2q+2 −

κ̃

cϕ
Fq+1 ∧ Fq+1

)
. (4.4)
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The action is invariant under an extended higher-group symmetry

δAq+1 = dΛq ,

δB2q+2 = dΛ2q+1 − κ dΛq ∧Aq+1 ,

δÃp+1 = dΛ̃p + (−)pκ̃ dΛ̃p−q−1 ∧Aq+1 − κ̃ dΛq ∧ B̃p−q ,

δB̃p−q = dΛ̃p−q−1 , (4.5)

up to the residual anomaly terms

δΛS = −
∫

(−)qcϕGq+2 ∧ Λ̃p − cΦG2q+3 ∧ Λ̃p−q−1 + 2(−)pcϕκ̃ Λ̃p−q−1 ∧Aq+1 ∧Gq+2 . (4.6)

For later use, we identify the background field strengths in the dual sector

G̃p+2 = dÃp+1 − κ̃ B̃p−q ∧ Fq+2 − κ̃ Aq+1 ∧ G̃p−q+1 ,

G̃p−q+1 = dB̃p−q . (4.7)

The anomaly obtained above can be countered using the anomaly inflow mechanism by
putting the theory on the boundary of a (d + 1)-dimensional bulk spacetime, carrying a
higher-group Chern-Simons theory with action12

Sbulk =
∫

bulk
cϕGq+2 ∧ Ãp+1 + cΦ

(
G2q+3 + 1

2κAq+1 ∧Gq+2

)
∧ B̃p−q . (4.8)

We can explicitly check that the total action Stot = S + Sbulk is invariant under the complete
extended higher-group symmetry.

To identify the anomalous conservation laws associated with the extended higher-group
symmetry, let us parametrise the variation of the total action Stot as

δStot =
∫
δAq+1 ∧ ⋆Jq+1 + (δB2q+2 + κAq+1 ∧ δAq+1) ∧ ⋆J2q+2

+
(
δÃp+1 + κ̃ Aq+1 ∧ δB̃p−q − κ̃ δAq+1 ∧ B̃p−q

)
∧ ⋆J̃p+1 + δB̃p−q ∧ ⋆J̃p−q

+
∫

bulk
δAq+1 ∧ cϕG̃p+2 − (δB2q+2 + κAq+1 ∧ δAq+1) ∧ cΦG̃p−q+1

+
(
δÃp+1 + κ̃ Aq+1 ∧ δB̃p−q − κ̃ δAq+1 ∧ B̃p−q

)
∧ cϕGq+2

+ δB̃p−q ∧ (−)pcΦG2q+3 , (4.9)

where the associated conserved currents have been defined to be gauge-invariant. A con-
sequence of gauge-invariance is that the original higher-form currents Jq+1 and J2q+2 get
improved compared to their original definitions with terms involving the “tilde” background
fields, i.e.

⋆Jq+1 ∼ cϕÃp+1 + 1
2cΦκAq+1 ∧ B̃p−q + Ωκ̃ B̃p−q ∧ ⋆J̃p+1 ,

⋆J2q+2 ∼ cΦB̃p−q . (4.10)

12The associated anomaly polynomial is simply P = cϕGq+2 ∧ G̃p+2 − cΦG2q+3 ∧ G̃p−q+1.
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The last term in the first line arises from the variation of the background coupling terms in
eq. (4.4), while the remaining terms arise from the boundary variation of the bulk action
in eq. (2.25). The currents follow a set of anomalous conservation laws

d⋆Jq+1 = cϕG̃p+2 + 2κGq+2 ∧ ⋆J2q+2 + 2κ̃ G̃p−q+1 ∧ ⋆J̃p+1 ,

d⋆J2q+2 = cΦG̃p−q+1 ,

d⋆J̃p+1 = (−)pcϕGq+2 ,

d⋆J̃p−q = −cΦG2q+3 − (−)p2κ̃ Gq+2 ∧ ⋆J̃p+1 , (4.11)

manifesting the extended higher-group structure (4.3), with mixed anomalies cϕ in U(1)(q) ×
Ũ(1)(p) and cΦ in U(1)(2q+1) × Ũ(1)(p−q−1) sectors.

Dual formulation in sub-critical dimensions. The situation is qualitatively different in
d = 2q + 2 dimensions. As we discussed in section 2.2.2, the higher-form analogue of Mermin-
Wagner theorem forbids spontaneous breaking of U(1)(2q+1) symmetry in d = 2q + 2, 2q + 3
dimensions. Nonetheless, there can be quasi-long-range order in critical dimensions d = 2q+ 3
mediated by a massless quasi-Goldstone field ϕ2q+1, which allows one to set up the dual
description as described above with p = q + 1. However, this description is not valid for
sub-critical dimensions d = 2q + 2 or p = q. The invariant field strength F2q+2 associated
with Φ2q+1 is a top-form and thus the respective Bianchi identity does not give rise to a
non-trivial higher-form symmetry to set up a dual description.13

We can set up a dual description for a theory with U(1)(q) ×κ U(1)(2q+1) symmetry in
sub-critical dimensions in a phase where the U(1)(q) part of the symmetry is spontaneously
broken. As we discussed in section 2.3, for q = 2 this is the relevant framework for the
effective description of a bosonic M5 brane is supergravity. In this case, we only get a Ũ(1)(q)

symmetry in the dual sector arising from the Bianchi identity associated with ϕq. To probe
the extended higher-group structure, let us modify the action in eq. (2.22) by coupling it
to the dual gauge field Ãq+1 as

S = Ŝ[Fq+1] +Q(2q+1)

∫
B2q+2 + κ

cϕ
Aq+1 ∧ Fq+1 +

∫
Ãq+1 ∧ Fq+1 , (4.12)

and couple it to a (d+ 1)-dimensional bulk anomaly inflow action featuring pure and mixed
anomalies

Sbulk =
∫

bulk
C Aq+1 ∧Gq+2 +

(
cϕ − κ×Q(2q+1)

)
Ãq+1 ∧Gq+2 .

Here we have introduced two new free parameters C and κ× whose relevance will be clear
momentarily. The action is designed so as to be invariant under a generic (2q + 2)-group
symmetry structure involving two q-form symmetries and a (2q + 1)-form symmetry i.e.

δAq+1 = dΛq ,

δÃq+1 = dΛ̃q ,

δB2q+2 = dΛ2q+1 −
(
κ− C

Q(2q+1)

)
dΛq ∧Aq+1 − κ× dΛ̃q ∧Aq+1 , (4.13)

13The respective dual current J̃0 defined via eq. (4.1) would be a 0-form and might be interpreted as
associated with a “(−1)-form symmetry”; see e.g. [46–48]. However, we do not investigate this perspective in
this work.
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with the structure constants κ and κ×. In principle, we could also introduce a structure
constant analogous to κ in the Ũ(1)(q) sector by including a term proportional to dΛ̃q ∧ Ãq+1
in the transformation rule of B2q+2. However, we can always linearly redefine the U(1)(q)

and Ũ(1)(q) symmetries to remove this. Similarly, a term like dΛq ∧ Ãq+1 − dΛ̃q ∧Aq+1 can
be removed by redefining B2q+2 with a term proportional to Aq+1 ∧ Ãq+1. The variation
of the total action Stot = S + Sbulk can be parameterized as

δStot =
∫
δAq+1 ∧ ⋆Jq+1 + δÃq+1 ∧ ⋆J̃q+1

+
(
δB2q+2 +

(
κ− C

Q(2q+1)

)
Aq+1 ∧ δAq+1 + κ×Ãq+1 ∧ δAq+1

)
∧ ⋆J2q+2

+
∫

bulk
δAq+1 ∧

(
2C Fq+2 + C×F̃q+2

)
+ δÃq+1 ∧ C×Gq+2 , (4.14)

defined in a way that all the currents are gauge-invariant. The associated anomalous
conservation equations are given as

d⋆Jq+1 = cϕG̃q+2 + 2κQ(2q+1)Gq+2 ,

d⋆J̃q+1 = cϕGq+2 , (4.15)

together with a trivial conservation equation d⋆J2q+2 = 0 due to ⋆J2q+2 = Q(2q+1).
As we highlighted in section 2.2.2, the U(1)(q) ×κ U(1)(2q+1) higher-group structure is

quite trivial in sub-critical dimensions and can effectively be viewed as an anomaly in the
U(1)(q) symmetry. The same applies in the dual description as well. Note that the free
parameters C and κ× do not appear in the conservation equations and can be tuned freely
to arrive at different interpretations. By choosing C = κQ(2q+1) and κ× = 0, the theory
can be viewed as admitting a pure U(1)(q) anomaly κQ(2q+1) and a mixed U(1)(q) × Ũ(1)(q)

anomaly cϕ without any higher-group structure. On the other hand, by tuning C = 0 and
κ× = cϕ/Q(2q+1), the theory can be viewed as realizing a non-anomalous (2q + 2)-group
symmetry with structure constants κ and cϕ/Q(2q+1). This latter perspective is sensible in
an embedding scenario, as is the case for an M5 brane, when the theory under consideration
lives on a (2q+ 2)-dimensional worldsheet propagating in higher dimensions. More discussion
along these lines is presented in section 2.2.3.

Inspecting eq. (4.15), we also note that we can describe a Goldstone ϕq with (anti-)self-
dual field strength by simply aligning the two currents, i.e.

J̃q+1 = cϕ

2κQ(2q+1)
Jq+1 . (4.16)

This causes the two conservation equations in eq. (4.15) to coincide when the dual background
field strength G̃q+2 is turned off. Recall our previous discussion of (anti-)self-dual limit
around eq. (2.27). In some ways, the dual description is more natural to talk about (anti-
)self-duality because it treats the Bianchi identity and the higher-form conservation equation
democratically from the get-go. To this end, one might guess that there is a formulation of
self-dual field theories where we impose a (q + 1)-form diagonal-shift symmetry between the
two background gauge fields δAq+1 = Λq+1, δÃq+1 = −2κQ(2q+1)/cϕ Λq+1, causing the two
operators Jq+1 and J̃q+1 to align. We will leave this thought with the reader to ponder over.
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As a final comment, we note that the notations for “tilde” quantities ñp, ñp−q−1 and
µ̃p, µ̃p−q−1 in section 3.2 are motivated from the dual formulation, and are nothing but the
thermodynamic densities and the associated chemical potentials respectively corresponding to
the dual symmetries Ũ(1)(p), Ũ(1)(p−q−1). This is made evident by the Bianchi identities in
eqs. (3.8), (3.20), (3.31) and (3.36) that take a similar form as the configuration equations (3.43)
arising from the conservation laws. In fact, the equilibrium effective actions written in
section 3.2 are in the grand-canonical ensemble with respect to the symmetries U(1)(q),
U(1)(2q+1), but canonical ensemble with respect to the dual symmetries Ũ(1)(p), Ũ(1)(p−q−1).
By appropriately introducing the dual background gauge fields Ãp+1, B̃p−q in section 3.2,
we can also write down dual equilibrium effective actions that are in the grand-canonical
ensemble with respect to all the symmetries, though one needs to be careful about the mixed
anomalies. The analogous discussion for anomalous higher-form symmetries appears in [12];
the extension to higher-group symmetries is straightforward and is left for the future.

5 Outlook

In this work we have considered effective field theories invariant under a (2q + 2)-group
symmetry, involving a q-form symmetry U(1)(q) and a (2q + 1)-form symmetry U(1)(2q+1),
emphasizing on their application to supergravity. We have studied different spontaneous
symmetry breaking patterns that these theories can exhibit at zero and finite temperature,
incorporating temporal and complete spontaneous breaking of higher-form symmetries at
finite temperature. In particular, we have explored the idea that the bosonic field content on
the M5 brane can be understood as arising from spontaneous breaking of global translations
and 6-group symmetries. This resulted in a formulation of the theory defined on the M5
worldvolume as a 6-group invariant theory, opening the door for a complete interpretation
of the M5 brane action purely in terms of global symmetries.

The treatment of the M5 brane that was presented here is a first step towards under-
standing the bosonic sector of the theories on other string theory solitons as particular cases
of Goldstone theories invariant under some higher-group symmetry. For instance, in order to
broaden the analysis presented here as to include the D1 string, D3, D5/NS5 and D7 branes
of type IIB supergravity, and all permitted bound states formed by them, the starting point
is a close inspection of the type IIB modified conservation laws

d⋆j2 = 0 ,
d⋆J2 = −H3 ∧ ⋆J4 − F̃5 ∧ ⋆j6 ,
d⋆J4 = F3 ∧ ⋆j6 −H3 ∧ ⋆J6 ,

d⋆j6 = 0 ,
d⋆J6 = H3 ∧ ⋆J8 ,

d⋆J8 = 0 . (5.1)

Here, the electric current j2 sources the NS-NS field strength H3, while J2, J4 are electric
currents sourcing the R-R field strengths F3, F̃5. Moreover, the magnetic currents j6,J6,J8
modify the Bianchi identities for the field strengths H3, F3, F̃5, respectively.14 When viewed

14For more details, see [18].
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as a whole, the above equations form a rather intriguing 8-group with multiple structure
constants. To each non-trivial type IIB D/NS-brane theory there is an associated subset of
the equations in (5.1), which essentially defines the continuous higher-group for each such
theory. A similar analysis can be performed for type IIA supergravity. The experience
with the M5 brane leaves us optimistic that this line of thinking can be extended to the
fully supersymmetric case as well by appropriately generalizing the notion of a higher-group
to include fermionic symmetries. We leave the exploration of this important research line
for the future.

The self-duality of the 2-form Goldstone ϕ2, as mentioned in section 2.3, raises obstructions
to the formulation of the M5 brane action. Proposals to deal with this problem require
abandoning the manifest worldvolume covariance [35] or introducing additional auxiliary
fields [36]. In this paper, by invoking the 6-group symmetry, and then following an approach
in the spirit of [20], we formulated an effective action for the M5 brane that is compatible with
a nonlinear self-duality constraint. However, the approach presented in this paper does not
provide a symmetry-based perspective to construct actions consistent with self-duality directly.
In particular, the self-duality constraint implies that the 2-form conservation equation and
the Bianchi identity are equivalent, leading to a single 2-form conservation law without an
associated Bianchi identity. Correspondingly, the electric and magnetic components of the
3-form field strength F3 become interdependent, giving rise to a single 2-form dynamical
density. At finite temperature this setup precisely gives rise to the T-U phase, allowing
us to write down an equilibrium effective action that is by construction consistent with
the self-duality requirement. But it is currently unclear how to extend this understanding
to the zero temperature effective action. Another possible avenue of exploration in this
direction is based on the dual formulation discussed in section 4, which treats the 2-form
conservation equation and the associated Bianchi identity, which can also be recast as a
2-form conservation, on the same footing. In this context, one could imagine imposing a
diagonal 3-form global shift symmetry between the associated background gauge fields A3
and Ã3, forcing the associated operators J3 and J̃3 = ⋆F3 to align. It would be interesting
to explore these ideas in more detail.

From the point of view of the low-energy description, the work carried out in this
paper is an important step towards a complete classification of theories belonging to the
hydrodynamic sector of supergravities. In this work, we have restricted ourselves to various
higher-group phases in thermal equilibrium. An immediate step forward will be to formulate
theories of higher-group hydrodynamics applicable to these phases, allowing us to describe
non-equilibrium fluctuations. One may go beyond the ideal order analysis presented here and
consider higher-derivative corrections, including dissipative corrections, to the higher-group
constitutive relations. Returning to supergravity, such developments can be useful to better
understand the dynamics and stability of thermal states and their dual (extremal) black
brane configurations that break a certain number of supersymmetries [37, 49, 50]. One
may also hope to be able to construct effective actions for thermal brane configurations in
supergravity using the framework of Schwinger-Keldysh effective field theory [51–60] that
inherently implement the self-duality requirement similar to the equilibrium thermal effective
actions presented in this work. We plan to return to these ideas in a future publication.
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