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1 Introduction and notation

In the Standard Model of particle physics, the mixing of neutral B mesons is a loop-induced
process which, at leading-order, is mediated by two box Feynman diagram where quark
lines exchange two virtual W bosons. The time evolution is governed by a 2 × 2 matrix
which contains the mass and decay matrices M q and Γq with q = s, d being the flavour
of the spectator quark.

The quantities which are measured by experiment are the mass and width differences
of the lighter and heavier eigenstates,

∆Mq = M q
H − M q

L ,

∆Γq = Γq
L − Γq

H , (1.1)

and the charge-parity (CP) asymmetry in flavour-specific decays, aq
fs. They are related to

the matrix elements of the decay matrix via (see, e.g., ref. [1] for more details)

∆Mq = 2|M q
12|+O(|Γ12|2/|M12|2) ,

∆Γq

∆Mq
= −Re Γq

12
M q

12
,

aq
fs = Im Γq

12
M q

12
, (1.2)

where M q
12 and Γq

12 are obtained from the dispersive and absorptive parts of the Bq → Bq

transition amplitude, respectively. In this work we concentrate on the computation of Γq
12.
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The theoretical framework for the computation of Γq
12 is given by a tower of effective

theories. Using the Standard Model as starting point, one first integrates out the top quark
mass, Higgs boson and electroweak gauge bosons and obtains the so-called |∆B| = 1 effective
theory (cf. e.g. ref. [2] for more details). Within this theory one considers the correlator of
two ∆B = 1 operators which mediates the B − B transition.1 Subsequently, one performs a
heavy mass expansion which leads to (see again ref. [1] for a detailed derivation)

Γq
12 = −(λq

c)2Γcc
12 − 2λq

cλq
uΓuc

12 − (λq
u)2Γuu

12

= −(λq
t )2
[
Γcc

12 + 2λq
u

λq
t

(Γcc
12 − Γuc

12) +
(

λq
u

λq
t

)2
(Γuu

12 + Γcc
12 − 2Γuc

12)
]

, (1.3)

where λq
a = V ∗

aqVab and Γab
12 follow from the absorptive part of a bi-local matrix element

containing a time-ordered product of two |∆B| = 1 effective Hamiltonians. This yields

Γab
12 = G2

F m2
b

24πMBs

[
Hab(z)⟨Bs|Q|B̄s⟩+ H̃ab

S (z)⟨Bq|Q̃S |B̄q⟩
]
+O(ΛQCD/mb) , (1.4)

where terms suppressed by the inverse bottom quark mass are not shown. The precise
definition of the operators Q and Q̃S can be found in appendix B. ⟨Bs|Q|B̄s⟩ and ⟨Bq|Q̃S |B̄q⟩
are non-perturbative matrix elements, which are computed using lattice gauge theory [3] or
QCD sum rules [4, 5]. The perturbative matching coefficients Hab(z) and H̃ab

S (z) are the
main focus of this paper. They depend on the mass ratio

z = m2
c

m2
b

. (1.5)

NLO QCD corrections to the matching coefficients with current-current operators have been
known for quite some time [1, 6–8]. The complete set of penguin operators has only been
added recently [9, 10], where terms of order z0 and z1 have been computed in an expansion for
z → 0. Fermionic NNLO corrections have been considered in refs. [11–13] and the complete
NNLO contribution from current-current operators is known from ref. [14], however, only in
an expansion for small charm quark masses up to (including) O(z). The current experimental
and theoretical uncertainties (see ref. [14] for a recent compilation) are such, that a complete
NNLO calculation involving all penguin contributions for Hab(z) and H̃ab

S (z) is necessary.
There exist several challenges that make this endeavour non-trivial:

1. Large number of contributing Feynman diagrams.

2. Traces involving a large number of γ matrices.

3. High-rank tensor integrals.

4. Integration-by-parts reduction to master integrals.

5. Computation of the master integrals.

6. Proper inclusion of evanescent operators.
1See appendix B for a list of all relevant operators.
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In this paper we address the points 2, 3 and 5. The large number of diagrams is not a
fundamental issue, since it is always possible to split the problem into smaller pieces during
the generation of the Feynman amplitudes with qgraf [15]. For the integration-by-parts
reduction we use Kira [16–18] which requires at most a few days for general gauge parameter.
Thus, this is not a limiting factor of our calculation. The last point concerning the evanescent
operators is a purely field-theoretical problem. It will be addressed in detail in ref. [19].

The remainder of the paper is organized as follows: in the next section we describe in
detail the construction of efficient projectors and section 3 deals with the complementary
approach based on high-rank tensor integrals. In section 4 we discuss our methods to compute
the master integrals. A sample result where the methods of sections 2, 3 and 4 have been
applied is shown in section 5. We conclude in section 6. In appendix A the complete list
of basis elements relevant for our calculation is shown and appendix B contains a complete
list of relevant operators of the ∆B = 1 and ∆B = 2 theory.

2 Projector methodology

2.1 Problem statement

We wish to apply a set of projectors to our amplitude in order to decompose the tensor
integrals into products of scalar integrals, colour structures and spinor structures which
are free of loop momenta. The colour part of our diagrams can be treated separately
and is straightforward to handle with projectors as there are only two tensor structures
corresponding to the two possible colour contractions of the external quarks. The spinor
structures encountered in diagrams before applying projectors consist of two matrices in
Dirac spinor space connecting a pair of external quarks each. While these objects have a
simple structure in spinor space, they possess a more complicated tensor structure in Lorentz
space since they are composed of a product of Dirac γ matrices, which we will call spin lines
or Dirac chains. The Lorentz indices are contracted either across the two spin lines or with
a propagator momentum. For example, the term

PR γµ
/p1 γν ⊗ PR γν /p2 γµ (2.1)

corresponds to the spinor part of the diagram shown in figure 1. Here, p1 and p2 are linear
combinations of loop and external momenta. Note that the chirality projector PR = (1+γ5)/2
can always be commuted to the end of a spin line since we are using the basis of ref. [20]. Thus,
in our calculation, γ5 never appears in closed fermion loops and we can use anti-commuting γ5.

The maximum number of γ matrices in our diagrams is eleven on each of the two spin
lines, which includes at least one slashed momentum per spin line. Such terms appear,
e.g., in the following diagrams:

• To one-loop order, we have diagrams with two evanescent operators of the first generation
which have up to five γ matrices for the penguin operators, see figure 2(a). The
amplitudes with the most γ matrices have ten γ matrices with open Lorentz indices as
well as one slashed momentum per spin line. We will call γ matrices which do not have
their Lorentz index contracted with a propagator momentum pure.
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Qu
1 Qu

1
b

Figure 1. A simple one-loop example for the operator combination Qu
1 × Qu

1 .

E(1)[Q5,6] E(1)[Q5,6]b

s

s

b

(a)

E(1)[Q5,6] Q5,6b

s

s

b

(b)

Q5,6 Q5,6b

s

s

b

(c)

Figure 2. Sample diagrams at one-loop (a), two-loop (b) and three-loop (c) order which will give
rise to the largest number of γ matrices in our amplitude: eleven.

• To two-loop order, we have diagrams with one first generation evanescent operator and
one penguin operator with an additional gluon. The penguin operators have up to three
γ matrices while the evanescent operator yields at most five γ matrices. The longest
chain of γ matrices consists of nine pure γ matrices and two slashed momenta per spin
line with a gluon connecting the two spin lines, see figure 2(b).

• To three-loop order, we have diagrams with two penguin insertions and two gluons. The
longest spin lines result from gluons connecting across the two as shown in figure 2(c),
so we have at most eight pure γ matrices and three slashed momenta per spin line.

We will proceed with some details on the underlying mathematics, describing the occurring
structures and defining a proper set of projectors. An efficient algorithm for loop calculations
based on those considerations can be found in section 2.5.

2.2 Vector spaces spanned by γ matrices

2.2.1 Vector spaces from pure γ matrices

Focusing on pure γ matrices first, we encounter spinor structures in the amplitude which
consist of the tensor product of two spin lines,

Ξ = Γµ1,...,µn ⊗ Γµσ(1),...,µσ(n) , (2.2)

where σ(x) is a particular permutation of the n indices. Any index contractions on the same
spin line have been taken care of already by commuting the γ matrices together. We can
commute the γ matrices in accordance with the Clifford algebra,

{γµ, γν} = 2gµν , (2.3)

where we have chosen the naive dimensional regularisation scheme. This means that we simply
treat metric tensor to be in d dimensions and work with an anticommuting γ5. Although
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the spinor index on the γ matrices becomes formally infinite-dimensional, the trace of the
unit matrix can still be chosen to be equal to four. At the fundamental level, the spinor
structures are elements of

Clp,q(C)⊗ Clp,q(C), (2.4)

where the spacetime is Rp,q with p = 1 time and q = d−1 space dimensions. Since the Clifford
algebra is not closed in d dimensions, we would like to further narrow down the structures
that we consider and the vector space that they live in. In the following we will take a
bottom-up approach by only considering the spinor structures that appear in our amplitude.

A single diagram generates Dirac chains of different lengths, and we note that the
elements with different lengths of γ matrices are components of an n-tuple

x =
(

c(0)1⊗ 1, c(1)γµ ⊗ γµ,
∑

i

c
(2)
i Γ(2)

i ⊗ Γ(2)
i , . . .

)
, (2.5)

where Γ(k)
i refers to a string of k γ matrices for a particular permutation of the indices.

Note that the first spin line can always be canonically labelled with indices µ1, . . . , µn; the
permutation refers to indices on the second spin line. Each diagram then involves one such
n-tuple which lives in the vector space Ṽn formed by the direct sum of the k-dimensional
vector spaces Ṽ (k) of unordered γ matrices of length k, up to a maximum length n,

Ṽn ≡ Ṽ (0) ⊕ Ṽ (1) ⊕ · · · ⊕ Ṽ (n). (2.6)

However, there is some redundancy in this description as we can use the Clifford algebra
from eq. (2.3) to commute the γ matrices into a canonical order. This provides a linear map
ϕCliff : Ṽn → Vn, where Vn is the vector space of ordered spin lines

Vn = spanC ({1⊗ 1, γµ ⊗ γµ, . . . , γµ1 . . . γµn ⊗ γµn . . . γµ1}) . (2.7)

Here, we have chosen one particular ordering of the γ matrices for every possible length of
the spin lines and spanned a vector space by allowing each basis element to have arbitrary
complex coefficients. The elements above are linearly independent in d dimensions because
we cannot use four-dimensional identities of the Dirac algebra like the Chisholm identities
to reduce the number of γ matrices on a spin line. Note that we can rewrite our vector
space Vn as the direct sum of the one-dimensional vector spaces V (k) of ordered γ matrices
of length k, up to a maximum length n,

Vn ≡ V (0) ⊕ V (1) ⊕ · · · ⊕ V (n), (2.8)

which is isomorphic to Cn+1 due to the isomorphism of the vector spaces V (k) ∼= C. The
set of vectors spanning Vn as defined in eq. (2.7) constitutes a basis since they are linearly
independent. Furthermore, we have Ṽ (r) ⊂ Ṽ (s) ∀ r < s and Vn ⊂ Ṽn. For Dirac chains of
pure γ matrices, the task we are faced with, is to resolve the map ϕCliff in an efficient manner.
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2.2.2 Including slashed momenta

As a reordering of the γ matrices in a spin line is always possible using eq. (2.3), we will
consider ordered structures of the form

Ξ = /p1 . . . /pm
γµ1 . . . γµn ⊗ /pm+1 . . . /pk

γµn . . . γµ1 , (2.9)

where we have assumed that the map between Ṽn and Vn described in section 2.2.1 has been
resolved and the momenta have been commuted to one end of the spin lines already. As will
be explained in section 2.5, this will turn out to be an efficient way of tackling the problem.
Note that the number of momenta k that can maximally occur has an upper bound from
the number of propagators in the diagram.

Formally, the structures in eq. (2.9) are elements of the vector space

Ξ ∈ Cd ⊕ · · · ⊕ Cd ⊕ Vn
∼=
(
Cd
)k

⊕ Vn
∼=
(
Cd
)k

⊕ Cn+1 ≡ U ′
n,k, (2.10)

where the dimension of the Lorentz index is d = 4 − 2ϵ and ∼= denotes an isomorphism.
However, we know that the final result of carrying out the loop integral can only give a
limited number of tensor structures in Lorentz space because the only available tensors are
qµ, the external momentum, and gµν , the metric tensor. Therefore, we are interested in
finding a projector which maps onto the smaller vector space

Un,k ≡ spanC

(
{1⊗ 1, /eq ⊗ 1,1⊗ /eq, /eq ⊗ /eq, γµ ⊗ γµ, . . . , γµ1 . . . γµn/eq ⊗ γµn . . . γµ1/eq}

)
,

(2.11)
which is simply isomorphic to C4(n+1). We have defined

/eq ≡ /q√
q2 (2.12)

for ease of notation.
For completeness, we also define the vector space

W̃n,k ≡
(
Cd
)k

⊕ Ṽn, (2.13)

whose elements are of the form

x =
(
c(0)

/p1 . . . /pm
⊗ /pm+1 . . . /pk

, c(1)
/p1 . . . /pm

γµ ⊗ /pm+1 . . . /pk
γµ,∑

i

c
(2)
i /p1 . . . /pm

Γ(2)
i ⊗ /pm+1 . . . /pk

Γ(2)
i , . . .

)
,

(2.14)

in analogy with eq. (2.5).

2.3 Construction of projectors

2.3.1 General projectors

The standard way of defining a set of projectors {Pi} is to make use of an inner product
⟨· , ·⟩ defined on the corresponding vector space. The projection of x onto a subspace of
the vector space is

P (x) =
∑

i

eiPi(x) =
∑
i,j

eiλij⟨ej , x⟩, (2.15)

– 6 –
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where the basis elements of the subspace are denoted by ei. The coefficient matrix λij of
the projectors can be determined from demanding that the projector maps basis elements
onto themselves,

Pi(ek) =
∑

j

λij⟨ej , ek⟩ =
∑

j

λijGjk
!= δik, (2.16)

where we have defined the Gram matrix Gij ≡ ⟨ei, ej⟩. The coefficient matrix is simply
given by its inverse,

λij = G−1
ij . (2.17)

The Gram matrix is invertible if and only if the set of vectors is linearly independent, which
is trivially satisfied if we have chosen a proper basis.

We are thus left with finding an appropriate inner product ⟨· , ·⟩ : V × V → C which
has the following properties:

(i) Conjugation symmetry: ⟨x, y⟩ = ⟨y, x⟩

(ii) Linearity: ⟨ax + by, z⟩ = a⟨x, z⟩+ b⟨y, z⟩ ∀ a, b ∈ C

(iii) Positive-definiteness: ⟨x, x⟩ > 0

Note that a projector constructed from an inner product is guaranteed to yield the expected
results, but we can (and will) sacrifice property (iii) as long as we explicitly check that
the Gram matrix is invertible.

2.3.2 The standard approach

To illustrate the above, consider the standard choice for an inner product (see, e.g., refs. [21,
22]) on the vector space Wn,k. For x, y ∈ Wn,k, each consisting of a single term, this is

⟨x, y⟩ ≡ Tr
[ (

/p1 . . . /pmx
γµ1 . . . γµnx

)†
/p1 . . . /pmy

γν1 . . . γνny

]
×

Tr
[(

/pmx+1 . . . /pkx
γµσ(1) . . . γµσ(nx)

)†
/pmy+1 . . . /pky

γνσ′(1) . . . γ
νσ′(ny)

]
,

(2.18)

where the indices µi and νi stem from x and y respectively. For property (i) we can choose
complex conjugation or pick the interchange of the two spin lines as our conjugation property.
In the case of complex conjugation, this property is fulfilled by eq. (2.18), but there is no
reason why we would need this particular symmetry. The more relevant symmetry is the
conjugation where the spin lines are interchanged, which is obeyed by basically anything
we would write down intuitively.

Property (ii) is tricky when the elements have more than one term, e.g. for x = γµ ⊗
γµ + γµγν ⊗ γµγν we would naively get the inner product

⟨x, y⟩ = Tr
[
(γµ + γµγν)† . . .

]
× Tr

[
(γµ + γµγν)† . . .

]
, (2.19)

– 7 –
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which is obviously inconsistent as the Lorentz indices are not contracted on all terms. The
correct way to handle this is to introduce the scalar product to act on each component of
the vector element defined in eq. (2.14):

⟨· , ·⟩ :
(
(x0,x1, . . . ,xn) , (y0,y1, . . . ,yn)

)
7→ϕ(x0,y0)+ϕ(x1,y1)+· · ·+ϕ(xn,yn), (2.20)

where the vector index refers to the number of pure γ matrices. The map that one might
sloppily call the inner product in the definition from eq. (2.18) is a special case of the
scalar map ϕ,

ϕt : (Cd)m ⊕ Ṽ (k) × (Cd)m ⊕ Ṽ (k) → C

(x1 ⊗ x2, y1 ⊗ y2) 7→ Tr
[
x†

1y1
]
× Tr

[
x†

2y2
] (2.21)

Note, however, that any ϕ alone does not obey linearity and hence does not constitute an
inner product. The conjugation property (i) of the inner product is inherited from ϕ while
linearity is explicitly enforced for different lengths of spin lines. For every spin line length, ϕ

still needs to be linear for (ii) to be fulfilled, but this is something that we can now make
sense of and which works for eq. (2.21). Therefore it is important to differentiate between
the scalar map ϕ which takes elements from Ṽ (k) × Ṽ (k) (or (Cd)m ⊕ Ṽ (k) × (Cd)m ⊕ Ṽ (k)

when considering slashed momenta) and the inner product ⟨· , ·⟩ which takes elements from
Ṽn × Ṽn (or W̃m,n × W̃m,n when considering slashed momenta).

Finally, with the traditional map ϕt, the inner product also obeys property (iii), but
as we will see in section 2.3.3, this is less important.

2.3.3 An alternative path

One less appealing aspect of the standard map ϕt, which is used to build up the inner product,
is that all Lorentz indices are contracted across the two spin lines. In automated computations
this means that the intermediate expressions may become quite large once we start taking one
of the traces. Moreover, there is no obvious way of parallelising such a calculation. A trace
calculation arising in the projection of 9 or more γ matrices on either spin line runs multiple
days on a single core even with a highly optimised programming language like FORM [23]. A
possible solution is to choose a different map ϕ. For this purpose we define

ϕa : (Cd)m ⊕ Ṽ (k) × (Cd)m ⊕ Ṽ (k) → C
(x1 ⊗ x2, y1 ⊗ y2) 7→ Tr [x1y1x2y2]

(2.22)

This effectively glues together the two spin lines, which has the nice feature that all Lorentz
indices are contracted on the same spin line. This allows for two γ matrices to be commuted
together and eliminated from the spin line, thereby generating many terms which have,
however, two γ matrices less per index contraction that has been carried out. As a consequence,
evaluating the inner product and carrying out the trace can easily be parallelised.

It is instructive to check the properties for the inner product (i), (ii) and (iii) in this
case too. We can see that linearity is obeyed and, with the interchange of the two spin
lines as our conjugation of choice, property (ii) also holds. However, this map does not

– 8 –
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obey positive-definiteness (e.g. for x = γµ ⊗ γµ). This can become a problem when inverting
the Gram matrix.

Focusing on the subspace of pure γ matrices only for ease of notation, positive-definiteness
over Vn (but not necessarily Ṽn) ensures that the Gram matrix is invertible as long as the
set of vectors considered is a basis, i.e. linearly independent.

⟨x, x⟩ > 0 ∀ x ∈ Vn : x ̸= 0 ⇐⇒ v†Gv > 0 ∀ v ∈ Cn ∼= Vn : v ̸= 0, (2.23)

where v represents an element in Vn, containing just the coefficients in front of the Dirac
structures in the n-tupel. If the inner product is not positive definite, we can have eigenvectors
with zero eigenvalue, making the matrix non-invertible:

⟨x, x⟩ > 0 =⇒ ∀v ̸= 0 : Gv ̸= 0, (2.24)
∃v ̸= 0 : Gv = 0 ⇐⇒ G non-invertible. (2.25)

It turns out that this is not a problem for the vector space of just γ matrices, but if we include
insertions of the external momentum /q as well, the Gram matrix becomes non-invertible
in some cases.

We will describe the construction of our basis and how we can avoid non-invertibility
of the Gram matrix in the following. When projecting the Dirac structures occurring in
the amplitude, we count the number n of γ matrices on the shorter spin line and include
projectors up to that number of pure γ matrices and at most one more slashed momentum,
which corresponds to the most complicated structure that can occur. If the longer of the
two spin lines has more than n + 1 γ matrices, there must be index contractions on that
spin line, reducing the number of γ matrices down to at most n + 1. If n is even, the Gram
matrix constructed in this way is non-invertible. This can be alleviated by either extending
the basis to include one more γ matrix on each spin line or by excluding the basis element
with n + n pure γ matrices and an additional slashed momentum on the spin line which has
only n γ matrices in the amplitude. We choose the latter option which makes the Gram
matrix invertible and is the computationally most efficient approach.

The case where both spin lines have the same length of eleven γ matrices can be considered
separately in our case because these diagrams have ten pure γ matrices and one slashed
momentum per spin line. Since extending the basis to twelve γ matrices is computationally
expensive, we instead choose a different basis as the one described above. For this specific
symmetric case, the basis includes all basis elements with up to eleven γ matrices on each
spin line (including slashed momenta). However, to make the Gram matrix invertible we
need to exclude one asymmetric basis element which has ten γ matrices on both spin lines
and a slashed momentum on one of the two. For more details, see appendix A.

2.4 An efficient treatment of pure γ matrices

For spin lines which consist only of pure γ matrices, the problem is reduced to finding the maps

fk : Sk → Rk+1, (2.26)

where Sk is the group of permutations of k elements. The function fk take a permutation σ

of Lorentz indices, e.g. of the second spin line if the first has been labelled canonically, and

– 9 –
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returns the coefficients a of the ordered spinor structures. For later convenience we choose
a1 to correspond to the coefficient of the longest Dirac chain, whereas the coefficient ak+1
for each fk corresponds to the coefficient of the identity. Hence, the function fk resolves the
mapping onto the vector space defined in eq. (2.7). The first few mappings can be written
down by commuting the γ matrices on the second spin line into canonical order:

f1 : S1 → R2, (1) → (1, 0) (2.27)

f2 : S2 → R3,

(12) 7→ (1, 0, 0)
(21) 7→ (−1, 0, 2d)

(2.28)

f3 : S3 → R4,



(123) 7→ (1, 0, 0)
(132) 7→ (−1, 0, 2d, 0)
(231) 7→ (1, 0, 4− 4d, 0)

...

(2.29)

The permutation notation (. . . ) can be read as the numbering of the Lorentz indices µi on
the second spin line from back to front. The unpermuted elements are the basis vectors
which span the vector space in eq. (2.7). For example, the non-trivial permutation in
eq. (2.28) translates to

γµ1γµ2 ⊗ γµ1γµ2 = −γµ1γµ2 ⊗ γµ2γµ1 + 2d(1⊗ 1). (2.30)

From the above we can already see a pattern emerge. For example, the first coefficient, which
corresponds to the contribution from the ordered spin line of the same length k, is always
the sign of the permutation, i.e. a0 = sgn(σ). Moreover, the odd coefficients a2n+1 always
vanish; this is the case since any index contraction can only reduce the number of γ matrices
by two on each spin line. Closed formulae for the above expressions are tricky to obtain,
but generating a lookup table for all permutations of up to a number k = 10 of γ matrices
is feasible and took O(106) single core CPU minutes.

This treatment of the pure γ matrices implements the mapping of pure gamma matrices
onto a minimal basis described as in section 2.2.1 and considerably reduces the effort needed
to project the encountered spinor structures in our amplitude. This is because we only
need to project a limited number of momentum insertions paired with a certain number
of pure γ matrices.

2.5 Implemented algorithm

With the general background outlined in the preceding sections, we are ready to outline the
algorithm chosen to deal with the γ matrices in our amplitude. The goal is to map each
diagram onto a sum of operator matrix elements in the |∆B| = 2 theory. This is done in
two steps; first, the γ matrices are ordered canonically and then the projectors are applied.
The full procedure is given below and for illustration purposes we will refer to the structures
appearing at each step of the calculation of the diagram shown in figure 3.
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Q6

b

Figure 3. The spinor structure of the diagram shown here will be used as an example to illustrate how
our algorithm works on the most complicated diagrams. Note that the Lorentz indices corresponding
to the effective operators Q6 are labelled as µi and νi while the gluons carry Lorentz indices αi.

(i) Project onto left-handed and right-handed spinor structures. It is sufficient to just
multiply with PR/L = (1±γ5)/2 and then drop all remaining terms containing γ5. None
of these can contribute to the amplitude because the left/right projectors can always
be commuted through all the way to the end of a spin line and no γ5 should appear as
an overall factor. For the sample diagram, we have

γµ1γµ2γµ3 /k1γα1 /k2γα2 /k3γν1γν2γν3⊗γα2 /k4γµ1γµ2γµ3 /k5γν1γν2γν3 /k6γα1+3 terms ,

(2.31)
where the ki are line momenta of the Feynman diagram in figure 3.

(ii) Express all line momenta in terms of loop momenta and the external momentum,
which reduces the number of slashed γ matrices which may appear, e.g. for the sample
diagram:

γµ1γµ2γµ3/p3γα1/p3γα2/p2γν1γν2γν3⊗γα2/p3γµ1γµ2γµ3/p1γν1γν2γν3/p2γα1+95 terms .

(2.32)

(iii) Reorder the momenta on both spin lines:

(a) Convert duplicate momenta on the same spin line to scalar products. This generates
at most a factor of ten more terms, and in the example considered here, we obtain
419 terms after this step.

(b) Commute all slashed momenta to the left of the spin lines. This generates at most
a factor of 1000 more terms.

(c) All occurrences of the external momentum are put to the very left, followed
by the loop momenta. Putting the external momentum to the left of the spin
lines is advantageous since some of the basis elements contain a slashed external
momentum which is always on the right. Applying such a projector immediately
gives a scalar product, thereby reducing the length of the trace. In the sample
diagram we have 318808 terms after this step.

– 11 –



J
H
E
P
0
8
(
2
0
2
4
)
0
0
2

(d) Choose one particular permutation of the loop momenta.

After reordering all momenta, the sample diagram has the following spinor structure:

/p3/p2/p1γµ2γµ3γα2γν1γν2γν3 ⊗ /p3γα2γµ2γµ3γν1γν2γν3 + 181510 terms (2.33)

(iv) Contract duplicate Lorentz indices on the same spin line after commuting the respective
γ matrices together.

(v) Bring all pure γ matrices into a canonical order. We use a lookup table which resolves
the permutation of pure γ matrices, see section 2.4. This table contains all the mappings
of permutations of up to ten γ matrices on both spin lines onto linear combinations of
canonically ordered γ matrices. To generate less terms when using the map ϕa from
eq. (2.22) to carry out the projection, it will be useful to choose a canonical ordering
where the γ matrices on the two spin lines are inverted with respect to each other.
This way the largest number of necessary commutations is given by the length of the
projector element which is sandwiched between the spin lines. For our example case,
this leads to

/p3/p2/p1γρ1γρ2γρ3γρ4γρ5γρ6 ⊗ /p3γρ6γρ5γρ4γρ3γρ2γρ1 + 40134 terms. (2.34)

(vi) Map the terms with ordered pure γ matrices and split-off slashed momenta directly onto
basis elements which are given in appendix A. This is done by using another lookup table
which has been calculated using projectors on the ordered gamma structures. Note that
the process is symmetric under interchange of the spin lines; hence, it is only necessary
to calculate one of the two possibilities whenever the loop momenta distribution is
asymmetric with respect to interchange of the spin lines. When calculating the lookup
table, we can also choose to use different projectors, i.e. different scalar products,
depending on the spinor structure which needs to be resolved. For most structures, we
choose to project using the bilinear map ϕa defined in eq. (2.22). For the projection of
the spinor structure with eleven γ matrices and slashed momenta on both spin lines,
the aforementioned linear map is no longer efficient since the slashed momenta are
essentially open Lorentz indices inside the trace. Thus we use the linear map ϕt which
takes the traces over both spin lines separately as defined in eq. (2.18). To optimise
this calculation, the terms are split into separate files in bunches of 105 terms after
taking the first trace. The parallelisation of the second trace makes this calculation
tractable, although the size of the intermediate files generated is also a challenge. In
the end, our sample diagram results in

(p1 · p3)2p2
2

d3 − 6d2 + 11d − 6 × B45 + 104335 terms, (2.35)

where d = 4− 2ϵ is the spacetime dimension, and B45 is defined in appendix A.

(vii) Map basis elements onto operator matrix elements, e.g. ⟨Bs|Q|B̄s⟩, ⟨Bs|Q̃S |B̄s⟩,
⟨Bs|E(1)

1 |B̄s⟩, etc. This can be done using a lookup table.
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The algorithm described above is well suited for an efficient calculation since it circumvents
a few bottlenecks such as:

• No redundant calculation of long traces. Each trace combination is only taken once.

• Applying the projectors by multiplying the amplitude with them inflates the number
of terms by one or two orders of magnitude if the different chirality combinations are
taken into account. This is avoided by using a lookup table and mapping directly onto
the result.

• The number of spinor structures which need to be projected is massively reduced by
the hybrid approach of sorting the γ matrices first.

3 Tensor integrals

Tensor reduction represents an alternative approach to the calculation of amplitudes on
both sides of the matching equation. In comparison to the projector technique it does not
require any assumptions on the Dirac and colour structures that may appear in the resulting
expressions. Furthermore, when using this method, evanescent operators containing large
numbers of γ matrices do not lead to any performance bottlenecks.

However, tensor reduction formulas tend to become very large with the increasing tensor
rank (number of open Lorentz indices), number of loop momenta (more ways to permute the
indices) and the number of external momenta (more complicated tensor structures). In our
calculation we need to consider three-loop tensors up to rank 11 with one external momentum.

The traditional way of deriving tensor reduction formulas consists of writing down
the most general ansatz containing all tensor structures allowed by the symmetries. For
example, in the case of a rank-three two-loop integral with one external momentum q, one
can naively write∫

p1,p2
pµ

1 pν
2pρ

2f(p1,p2, q)=
∫

p1,p2
(gµνqρc1+gµρqνc2+gνρqµc3+qµqνqρc4)f(p1,p2, q), (3.1)

where f(p1, p2, q) is some function containing propagator denominators and possibly scalar
products appearing in the numerator of this loop integral. Its precise form is irrelevant for
the actual tensor reduction. The coefficients ci are made of scalar products containing both
loop and external momenta multiplied by rational functions that depend on the dimension d.

The next step would be to contract eq. (3.1) with each of the tensor structures multiplying
ci, which leads to a symbolic system of linear equations. Solving this system we can determine
the ci, thus deriving the final form of the tensor reduction formula for this integral.

In practical applications one quickly arrives at very large systems of equations that
are barely solvable in a reasonable amount of time without special codes. The complexity
of such equations can be greatly reduced by observing that not all ci are independent of
each other. A very simple and efficient algorithm for finding such symmetries is described
in ref. [24]. It is enough to contract the left-hand side of eq. (3.1) with each of the tensor
structures multiplying ci and compare the resulting expressions with each other. Identical
expressions mean that the corresponding ci are the same so that there are symmetry relations
that reduce the size of the system.
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The whole procedure of deriving reduction formulas for arbitrary tensor integrals can
be automatized using software tools. In particular, one can use the routine Tdec available
in FeynCalc 10 [25–28], which already implements the symmetry finding algorithm from
ref. [24]. In order to speed up the process of solving the linear system, it is also recommended
to install the development version of the FeynHelpers2 add-on [29]. This code provides an
interface to the computer algebra system Fermat [30] that features a very efficient linear
equation solver. To make use of this, one needs to set the option Solve of Tdec to FerSolve.

The full Mathematica code for deriving the reduction formula for the integral from
eq. (3.1) reads as follows

$LoadAddOns = {"FeynHelpers"};
<< FeynCalc‘
Tdec[{{p1, mu}, {p2, nu}, {p2, rho}}, {q}, Solve -> FerSolve,
List -> False, FCE->True]

This produces the following output

(FVD[q, rho]*MTD[mu, nu]*SPD[p2, q]*(-(SPD[p1, q]*SPD[p2, q]) +
SPD[p1, p2]*SPD[q, q]))/((-1 + D)*SPD[q, q]^2) +
(FVD[q, nu]*MTD[mu, rho]*SPD[p2, q]*(-(SPD[p1, q]*SPD[p2, q]) +
SPD[p1, p2]*SPD[q, q]))/((-1 + D)*SPD[q, q]^2) +
(FVD[q, mu]*MTD[nu, rho]*SPD[p1, q]*(-SPD[p2, q]^2 +
SPD[p2, p2]*SPD[q, q]))/ ((-1 + D)*SPD[q, q]^2) +
(FVD[q, mu]*FVD[q, nu]*FVD[q, rho]*(2*SPD[p1, q]*SPD[p2, q]^2 +
D*SPD[p1, q]*SPD[p2, q]^2 - SPD[p1, q]*SPD[p2, p2]*SPD[q, q]
- 2*SPD[p1, p2]*SPD[p2, q]*SPD[q, q]))/((-1 + D)*SPD[q, q]^3)

where SPD denotes d-dimensional scalar products of four-momenta, MTD stands for the metric
tensor and FVD describes four-vectors. Using string replacements such expressions can be
easily converted into FORM id-statements and thus used outside of Mathematica.

The insertion of such id-statements into amplitudes can significantly increase the number
of intermediate terms, so that putting .sort commands in right places of the FORM
code becomes mandatory. However, the derivation of such formulas using FeynCalc
and FERMAT was never a performance bottleneck for us. For example, to derive tensor
reduction for ∫

p1,p2,p3
pµ1

1 pµ2
1 pµ3

1 pµ4
1 pµ5

1 pµ6
2 pµ7

2 pµ8
2 pµ9

2 pµ10
2 pµ11

2 f(p1, p2, p3, q) (3.2)

we needed only 3 minutes on a modern laptop, while the resulting id-statement saved as
a text file had the size of 2.8 MB.

4 Master integrals

In this section we describe our approach for the computation of the master integrals.
To obtain results published in refs. [10, 14] it was sufficient to perform a naive Taylor

expansion of the |∆B| = 1 amplitudes in z up to O(z). Therefore, we were only concerned
with the calculation of master integrals in the z → 0 limit. Analytic results for one- and

2https://github.com/FeynCalc/feynhelpers.
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two-loop integrals can be readily found in the literature [31, 32] but most of the three-loop
integrals had to be calculated from scratch. We start with the description of these analytic
calculations in section 4.1.

After the publication of refs. [10, 14] we were able to extend our two-loop results to
higher orders in z by keeping the full z-dependence during the evaluation of the amplitudes
and expanding the resulting master integrals in z asymptotically. The technicalities behind
this method are described in section 4.2.

Afterwards, in section 4.3 we describe a semi-numerical method we use to obtain results
to very high orders in z for all relevant integrals at two and three loops. In particular, it
was important to cover the physical range for all possible numerical values of the quark
masses. Depending on the renormalization scheme, the charm and bottom quark masses
typically take values between 1−1.8GeV and 4.2−5.0GeV, respectively. Allowing for different
renormalization schemes of the quark masses, this leads to values for

√
z between 0.20 and 0.43.

4.1 Analytic calculation for z → 0

In the z → 0 limit, the final three-loop master integrals can be calculated using the direct
integration of their Feynman parametric representations. In the following we will describe
how these calculations can be streamlined using the Mathematica package FeynCalc
and the Maple package HyperInt [33].

The first step is to derive the Feynman parametric representation for each of the integrals,
where we set mb to 1 as it can be recovered later using dimensional analysis. Here we
make use of the routine FCFeynmanParametrize that is available in FeynCalc 10 and can
automatically generate such parametrizations for a wide range of multiloop integrals.

Given an integrand int in the propagator representation, e.g.

int = FAD[p1]*FAD[p2]*FAD[p1 - p2 - p3]*FAD[p1 + q]*FAD[p3 + q]*
FAD[p2 + p3 + q]*FAD[{p1 - p2, mb}]*FAD[{p3, mb}];

it is sufficient to evaluate3

FCFeynmanParametrize[int, {p1, p2, p3}, Names -> x,
Indexed -> True, FCReplaceD -> {D -> 4 - 2 ep}, Simplify -> True,
Assumptions -> {ep > 0}, FinalSubstitutions ->
{SPD[q] -> 1, mb^2 -> 1}]

which returns a list of three entries. These are the integrand itself, its prefactor independent
of the integration variables (the piece mostly made of Γ-functions) and the list of the Feynman
parameters xi. As we will also need the Symanzik polynomials U and F separately, we
need to run4

3The options Names and Indexed specify that the Feynman parameters should be of the form x[i], while
Simplify and Assumptions allow for some simplifications of the resulting integrand. With FCReplaceD we
can replace the number of dimensions d in favor of 4 − 2ϵ, while FinalSubstitutions is used to replace the
occurring kinematic invariants with explicit values. More information on this and other FeynCalc functions
can be found in the official PDF manual available at https://github.com/FeynCalc/feyncalc-manual/releases
/tag/dev-manual.

4HyperInt examples and documentation commonly use ψ and ϕ to denote the Symanzik polynomials U
and F respectively.
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{psi, phi} =
FCFeynmanPrepare[int, {p1, p2, p3}, Names -> x, Indexed -> True,

FinalSubstitutions -> {SPD[q] -> 1, mb^2 -> 1}][[1 ;; 2]]

Even though we are working with single-scale integrals, they involve up to 8 integrations in
Feynman parameters and, furthermore, can be divergent. Therefore, trying to solve such
integrals analytically using Mathematica alone is not feasible. To deal with these issues we
make use of HyperInt, a Maple package that was developed with such calculations in mind.

When evaluating an integral with HyperInt, one usually makes use of the Cheng-Wu
theorem [34] which implies that the given integral must be projective. The projectivity
property of a Feynman parametric integral means that the integrand must remain invariant
under the rescaling

xi → λxi, dxi → λdxi, (4.1)

so that λ must explicitly cancel out. In FeynCalc the projectivity can be checked using
the routine FCFeynmanProjectiveQ.

The practical application of Cheng-Wu comes from the statement that if we have a
projective integral, then the Dirac delta in its definition can be replaced with

δ

(∑
i∈σ

xi − 1
)

(4.2)

without changing the result, where σ is an arbitrary subset of the edges. Although the
choice of σ can be highly nontrivial, in practice one often opts for setting a single Feynman
parameter, say xk, to unity. The remaining Feynman parameters xi with i ̸= k are then
integrated from 0 to ∞.

When using HyperInt, a Feynman parametric integral is calculated order by order in ϵ.
Expanding a divergent integral in the regulator will introduce divergences in the integrations
over Feynman parameters, which one normally would like to avoid. To this end, HyperInt
implements the method of analytic regularization [33, 35, 36] where the unexpanded integrand
is modified in such a way, that all divergences will show up as explicit ϵ-poles, while the
integrations over xi become manifestly finite. The corresponding HyperInt routines are
called findDivergences and dimregPartial, while their FeynCalc counterparts (using
the same algorithm as in HyperInt) go under the names of FCFeynmanFindDivergences
and FCFeynmanRegularizeDivergence.

Unfortunately, this technique also tends to increase the complexity of the integrand,
especially if it contains a lot of divergences that need to be regularized. This is why in
practice people often choose a different method called quasi-finite basis [37]. However, for the
integrals at hand, this was not a major issue and with the exception of one 5-edge integral
we kept the original basis and naively used analytic regularization.

When trying to integrate the regularized integrals using HyperInt’s hyperInt function,
we found that in most cases the process could not be finished due to the appearance
of spurious divergences and nonlinear polynomials at intermediate stages. Following the
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advice of the package developer5 we were able to resolve these issues by setting the options
_hyper_abort_on_divergence and _hyper_ignore_nonlinear_polynomials to false for
all but the very last integration in xi. In the case of the last integration these options must
be set to true, while the option _hyper_splitting_field must be e.g. set to

{RootOf(_Z^2 + 3*_Z + 1),RootOf(_Z^2 + _Z + 1),RootOf(_Z^2 + 1)};

to allow for factorizing nonlinear polynomials using complex numbers.
Upon combining the results obtained at each order in ϵ, we still need to face two issues.

First of all, in some cases HyperInt has to integrate over the branch cut and cannot
automatically determine the sign of the imaginary part. Such terms contain a δxi which can,
in principle, be +1 or −1. Consequently, a δ2

xi
can be readily set to unity. An easy way to

fix these signs consists of evaluating the same integral numerically using pySecDec [38–41]
or FIESTA [42, 43] at several points and comparing the outcome to the analytic result,
where everything apart from the δxi ’s is numerical as well. For the cases at hand we had
no difficulties fixing those signs unambiguously.

Second, the analytic results obtained by HyperInt upon using the routine hyperInt
are usually not written in the most compact way. The standard procedure of simplifying
them with the aid of the function fibrationBasis fails for most of our integrals. This
is because they depend on Goncharov Polylogarithms (GPLs) [44] containing 6th root of
unity, a class of functions that is, as of now, not included in the simplification tables shipped
with HyperInt. Following the advice of the HyperInt developer we used the package
HyperLogProcedures [45] In most cases the command Convert(expr,f23)6 was sufficient
to achieve the required simplifications. Some challenges that we faced when using the code
were resolved with the kind of help of the package developer.7

Owing to the nature of our problem, where we only need the imaginary parts of the loop
integrals but end up calculating the full result, the separation between real and imaginary
parts required some additional work. To that aim we loaded the output of HyperLog-
Procedures into Mathematica and performed the final simplifications with the aid of
PolyLogTools [47].

4.2 Asymptotic expansion around z = 0

As far as the two-loop integrals are concerned, analytic results for the expansion around
z = 0 can be easily obtained using the method of regions [48]. These results were relevant for
extending our theoretical predictions from [10] beyond O(z). Here we would like to explain
how the technique of asymptotic expansions can be applied in a highly automatized fashion
using publicly available software tools including FeynCalc 10.

The danger of overlooking a contributing region by having an inappropriate routing of
the external momentum can be avoided by using the program asy [49, 50]. This code can
reliably identify all regions relevant for the given scaling hierarchy, but its output is not always
straightforward to interpret. While asy assumes that the expansion will be carried out on the

5Private communication with Erik Panzer.
6In HyperLogProcedures f23 denotes a particular alphabet related to Multiple Deligne values that were

studied in ref. [46].
7Private communication with Oliver Schnetz.
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level of Feynman parametric integrals, in practice one would rather like to expand in masses
and momenta. The latter approach allows us to use integration-by-parts (IBP) reduction so
that a calculation to any order in z can be always reduced to the same set of master integrals.

Let us remark that such an expansion is not always possible for any kind of loop integral.
For example, in Soft-Collinear Effective theory (SCET) [51–54] we need to deal with integrals,
where different components of four-momenta decomposed along the light-cone vectors n and
n̄ scale in a different way. In that case it is clearly not possible to expand the integral in the
original four-momenta. However, in the case at hand such complications do not occur.

To be more specific, let us discuss the analysis of the following two-loop integral with
external momentum q2 = m2

b using asy∫
p1,p2

1
−p2

1

1
m2

c − (p1 + q)2
1

−p2
2

1
−(p1 + p2 + q)2 , (4.3)

where we want to expand in the limit mc ≪ mb.
Using the code

Get["asy21.m"]
SetOptions[QHull, Executable -> "/usr/bin/qhull"];
props = {-p1^2, mc^2 - (p1 + q)^2, -p2^2, -(p1 + p2 + q)^2}
res = AlphaRepExpand[{p1, p2},

props, {q^2 -> mb^2}, {mb -> x^0, mc -> x^1}, Verbose -> False]

we get the output

(0,−2,−2,−2),
(0, 0, 0, 0). (4.4)

Notice that switching the first two propagators as in

props = {mc^2 - (p1 + q)^2, -p1^2, -p2^2, -(p1 + p2 + q)^2}

will produce

(0, 0, 0, 0),
(0, 2, 0, 0), (4.5)

which is in fact equivalent to eq. (4.4).
The row vectors returned by asy denote the scalings of propagators in each contributing

region, while their number gives us the number of regions. The scalings in each row vector
are always relative with respect to each other, which allows us to “normalize” such a vector
by adding the same integer to each of its entries. Applying this procedure to the first vector
in eq. (4.4) leads to the second vector in eq. (4.5).

To understand the meaning of those scalings, it is convenient to think of the row vectors
as of lists of powers of a quantity Λ that describes the scaling of each inverse propagator.
Then, the first output corresponds to

(0,−2,−2,−2) ⇔ (Λ0,Λ−2,Λ−2,Λ−2),
(0, 0, 0, 0) ⇔ (Λ0,Λ0,Λ0,Λ0), (4.6)
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meaning that in the first region the contribution of [−p2
1] is much larger than that of the

other three inverse propagators. The second output given by

(0, 0, 0, 0) ⇔ (Λ0,Λ0,Λ0,Λ0),
(0, 2, 0, 0) ⇔ (Λ0,Λ2,Λ0,Λ0), (4.7)

which essentially tells us the same thing. This explains why we are allowed to normalize
these row vectors. Multiplying each entry by some power of Λ obviously will not change
the relative scalings between the propagators.

The output

(2, 0, 0, 0) (4.8)
(0, 0, 0, 0), (4.9)

tells us that the asymptotic expansion of our integral in the limit mc ≪ mb receives con-
tributions from two regions.

In the first region the inverse propagators scale as

[−p2
1] ∼ m2

b , [m2
c − (p1 + q)2] ∼ [−p2

2] ∼ [−(p1 + p2 + q)2] ∼ m2
c . (4.10)

Here it is convenient to perform the shift p1 → p1 − q, as momentum shifts do not alter
the scalings of the line momenta. With

[−(p1 − q)2] ∼ m2
b , [m2

c − p2
1] ∼ [−p2

2] ∼ [−(p1 + p2)2] ∼ m2
c , (4.11)

we can easily deduce that p1 ∼ p2 ∼ mc. The corresponding integral that needs to be
expanded according to p1 ∼ p2 ∼ mc ≪ mb is then∫

p1,p2

1
[−(p1 − q)2]

1
[m2

c − p2
1]

1
[−p2

2]
1

[−(p1 + p2)2]

= 1
[−m2

b ]

∫
p1,p2

1
[m2

c − p2
1]

1
[−p2

2]
1

[−(p1 + p2)2] +O(m2
c). (4.12)

In the second region the inverse propagators scale as

[−p2
1] ∼ [m2

c − (p1 + q)2] ∼ [−p2
3] ∼ [−(p1 + p3 + q)2] ∼ m2

b . (4.13)

Without doing any shifts we immediately find that mc ≪ p1 ∼ p2 ∼ mb so that∫
p1,p2

1
[−p2

1]
1

[m2
c − (p1 + q)2]

1
[−p2

2]
1

[−(p1 + p2 + q)2]

=
∫

p1,p2

1
[−p2

1]
1

[−(p1 + q)2]
1

[−p2
2]

1
[−(p1 + p2 + q)2] +O(m2

c) (4.14)

Once it is understood how the integral should be expanded in each region, we can
proceed to the actual calculation. Instead of doing the corresponding expansions manually,
this procedure can be automated by making use of the functionality present in FeynCalc
and FeynHelpers.
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We need to define a separate FCTopology8 object for each region, where the propagators
stem from the original integral modulo shifts needed to make the expansion in momenta or
masses well defined. Then we introduce a scaling variable λ that will be used for expanding the
propagators and doing the power counting. Each four-momentum or mass appearing in the
integral must be assigned a definite counting by multiplying them with a proper power of λ.

This can be automated using a routine called FCLoopAddScalingParameter, where the
first argument takes the topology and the second one contains a list of scaling rules. All
quantities that have not been assigned a scaling rule will be assumed to scale as λ0. We
also need to declare λ as FCVariable to help the code distinguishing between variables and
names of momenta inside relevant FeynCalc symbols

DataType[la,FCVariable]=True;
topoScaledR1=FCLoopAddScalingParameter[topoR1,la,
{p1->la^1 p1,p2->la^1 p2,q->la^0 q,mb->la^0 mb, mc->la^1 mc}];

topoScaledR2=FCLoopAddScalingParameter[topoR2,la,
{p1->la^0 p1,p2->la^0 p2,q->la^0 q,mb->la^0 mb, mc->la^1 mc}];

After that we can perform an expansion in λ up to the required power with the aid of
FCLoopGLIExpand. While the original integral is written as GLI9 symbol, e.g.
GLI[prop2L,1,1,1,1], the expansion in λ will create a linear combination of GLI’s with
different integer powers of propagators multiplied by scalar products involving loop momenta.

To process this output further, we first apply FCLoopFromGLI, thus converting everything
into propagator representation. Then we handle propagators appearing in the expansion
such as −2p1 · q + m2

b and alike. Although FeynCalc can represent pretty arbitrary
propagator denominators using GFAD (generic FeynAmpDenominator) containers, most loop-
related routines still expect the input to be made of quadratic or linear propagators only
which are written as SFADs (standard FeynAmpDenominator). The conversion of suitable
GFADs into SFADs can be automatized using the routine FromGFAD, where the user may also
add custom rules for cases where the algorithm fails to find a suitable mapping.

After that, the resulting expression can be processed via the standard FeynCalc
toolchain for converting a loop amplitude in the propagator representation into a linear
combination of GLIs with the corresponding list of FCTopology symbols. To that end we apply
FCLoopFindTopologies (naive topology identification), FCLoopBasisFindCompletion and
FCLoopCreateRuleGLIToGLI (handling incomplete propagator bases), FCLoopFindTopology-
Mappings (topology minimization using the algorithm of ref. [24]), FCLoopTensorReduce
(tensor reduction) and finally FCLoopApplyTopologyMappings (elimination of explicit loop
momenta an introduction of GLIs). The resulting amplitude can be readily IBP-reduced
with any suitable software, where for the sake of convenience we choose FIRE [55–57]. The
FeynHelpers interface to FIRE allows us to carry out the reduction without leaving the
Mathematica notebook, so upon running FIREPrepareStartFile, FIRECreateConfigFile,
FIRECreateIntegralFile, FIRECreateLiteRedFiles, FIRECreateStartFile and finally
FIRERunReduction, we can directly import the reduction tables using FIREImportResults.

8In FeynCalc FCTopology describes the given integral family and contains information about its name,
propagators, loop and external momenta as well as kinematic constraints.

9In FeynCalc a GLI denotes a generic loop integral characterized by its name (which must match that of
a suitable FCTopology) and the powers of propagators.
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Lastly we need to add up contributions from both regions, identify the appearing master
integrals and substitute the corresponding analytic expressions. As long as the masters are
sufficiently simple to be calculated analytically, this procedure allows us to obtain analytic
results for the asymptotic expansion of any suitable integral up to any order. The results
can be then checked with the aid of FIESTA and pySecDec.

The runtime of this calculation essentially depends on two main ingredients: the complex-
ity of the IBP reduction and the complexity of the involved tensor integrals. For example, for
the integral discussed above the asymptotic expansion up to O(λ4) requires about 18 seconds
on a modern laptop. Going up to O(λ12) increases the runtime to 98 seconds, which mainly
comes from the more complicated tensor integrals that need to be reduced on the fly, while
the IBP reduction itself remains very fast. By caching the tensor reduction results one could,
therefore, achieve much better performance despite of high λ powers involved.

Sample Mathematica code which illustrates the approach discussed in this subsection
is included in the supplementary material to this paper.

4.3 Precise semi-analytic result for physical charm quark masses

In this subsection we present an efficient algorithm which can be used to compute the master
integrals which appear in the |∆B| = 1 theory. For convenience we introduce the linear
mass ratio and define

x =
√

z . (4.15)

To cover the physically interesting region we apply the “expand and match” approach [58–
61]. In the following we describe the implementation for the problem at hand. The starting
point is the list of master integrals and the corresponding differential equation in x. Note
that we are only interested in the absorptive part of the three-loop amplitude. Thus, we
eliminate those master integrals from the system which have no imaginary part. This reduces
the system by about 30% and leaves us with 342 master integrals.

The basic idea of “expand and match” is to construct expansions around properly chosen
values xE with the help of the differential equations. In order to determine all expansion
coefficients, the expansions have to be matched to (numerical or analytical) results for the
master integrals at a point xM which is sufficiently close to xE such that the series expansion
converges. If xE is a regular point, i.e., the master integrals have no threshold for x = xE ,
it is possible to choose xM = xE .

The physical amplitude for B meson mixing has cuts through 0, 1, 2, 3 and 4 charm
quarks and thus we expect thresholds for x ∈ {0, 1/4, 1/3, 1/2, 1}. In fact, we observe poles in
the differential equations for these values of x. Since our results cover the range 0 ≤ x ≲ 0.4
we only have to take care of first three entries in this list. We observe a good coverage of the
x range in case we add a further expansion point at xE = 1/10 such that we have

xE ∈ {0, 1/10, 1/4, 1/3} . (4.16)

Depending on the nature of the expansion point a different ansatz has to be chosen. For our
application the most general ansatz for a master integral can be written as

Mi(x, ϵ) =
ϵmax∑
j=−2

j+2∑
m

nmax∑
n

ci,j,m,nϵj (x − xE)n/2 logm (x − xE) , (4.17)
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Numerical check Upper bound on relative difference

At x = 1/20 10−43 with x = 0 expansion
10−21 with x = 1/10 expansion

At x = 1/5 10−11 with x = 0 expansion
10−6 with x = 1/10 expansion
10−35 with x = 1/4 expansion

At x = 3/10 10−2 with x = 1/4 expansion
10−30 with x = 1/3 expansion

Table 1. Relative differences of the series expansions of the integral shown in figure 4 with numerical
evaluations in AMFlow away from the expansion points.

Figure 4. A sample master integral which appears at three-loop with two Q1,2 insertions. The
dashed, single and double lines denote m = 0, m = mc and m = mb respectively.

where we have used that in the imaginary part of three-loop two-point functions one has at
most 1/ϵ2 poles. ϵmax is determined by the spurious pole in front of the respective master
integral. We have ϵmax = 0 if they are absent. Furthermore, we allow for logarithmic terms
with an increase in the power by one unit for each ϵ order. These terms are important for
the expansions around xE = 0, 1/4 and 1/3. Finally, n can either take only even values or
can have both even and odd numerical value. The latter is important for the expansion
around xM = 1/4 since there are square roots in the expansion around cuts involving and
even number of massive particles [62–64]. For xM = 0, 1/10, 1/3 only the terms with even n

have a non-zero coefficient ci,j,m,n. As upper limit of the summation of n we typically have
nmax = 100. The construction of the expansions takes of the order of an hour of CPU time.

For each expansion point we have a dedicated AMFlow [65] run for the computation
of all master integrals with a precision of 100 digits. We find it convenient to choose
xM ∈ {1/100, 1/10, 6/25, 29/100}.

In table 1 we show for three values of x the relative difference of the expansions around the
values given in eq. (4.16) for the master integral shown in figure 4. We only consider results
for the ϵ0 term of this master integral which enters the finite term of the physical amplitude.
One observes that for each value there is at least one expansion which shows an agreement
of 20 digits or more. It is expected that the precision gets even better in case x is chosen
closer to the expansion point. We note the precision of the expansion could be improved by
increasing the precision of the boundary integrals or by performing a deeper expansion.
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As a further check for the precision of our result we can compare the coefficients of the z0

and z1 terms of the matching coefficients Hab and H̃ab
S introduced in eq. (1.4). Our numerical

expressions agree with the analytic results from ref. [14] at the level of 10−40 or better.
To illustrate the structure of our results we provide explicit results for all 342 master

integrals needed for the computation of the two-point functions involving current-current
operators in an expansion for x → 0. The computer-readable expressions can be downloaded
from the website [66]. After the inclusion of penguin operators it might be that there are
additional master integrals. However, they can also be computed following the approach
described in this subsection.

5 Sample result

In the following we briefly illustrate the methods described in this paper and give the non-
fermionic (i.e. nf = 0) NNLO contribution of two Q1 insertions to the matching coefficient
Hcc(x). The expansion for x → 0 up to x10 reads:

Hcc,(2)(x) =
(
61.49166 + (334.9196− 1227.224 log x + 88.00000 log2 x)x2 − 11.69731x3

+ (−4522.778 + 1030.276 log x + 376.7253 log2 x)x4 + 199.3985x5

+ (−5312.014 + 6117.164 log x + 1408.251 log2 x)x6 + 500.4536x7

+ (−1386.574 + 13388.09 log x − 773.9628 log2 x)x8 + 1591.938x9

+ (−82.72167 + 27995.10 log x − 1593.620 log2 x)x10 +O(x11)
)

C2
1 . (5.1)

Here we have set the renormalisation scale µ = mb and the quark masses are renormalised in
the pole scheme. Note that the ∆B = 2 evanescent operators were defined as described in
ref. [11]. All other O(ϵ) contributions of physical operators to evanescent operators that were
not previously defined have been set to zero. The coefficients of x0 and x2 are in agreement
with the results obtained in ref. [14].

6 Conclusions

In this work we address several technical challenges which occur in the calculation of the
parameters necessary to describe the mixing of neutral B and D mesons. Practical solutions
have been presented for the construction of projectors to scalar functions and for computing
traces with more than 20 γ matrices. Furthermore, the computation of high-rank tensor
integrals and the semi-analytic computation of three-loop master integrals with a dependence
on the ratio of the charm and bottom quark masses has been presented. Our algorithms can
also be applied to other processes, as, e.g., the computation of decay rates of B and D mesons.
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A Basis elements for spinor structures

When applying the projectors described in section 2, we use a subset of the basis elements
shown below. As explained previously, we distinguish the following cases:

(i) Spin line one is longer and spin line two has length n. Choose basis with elements up
to n γ matrices on each spin line as well as the structure with a slashed momentum on
spin line one in addition to the n pure γ matrices, i.e. up to and including B4(n+1)−2.

(ii) Spin line two is longer or of the same length and spin line one has length n. Choose
basis with elements up to n γ matrices on each spin line as well as the structure with a
slashed momentum on spin line two in addition to the n pure γ matrices, i.e. up to and
including B4(n+1)−1 but excluding B4(n+1)−2.

(iii) Both spin lines have length eleven and include at least one slashed momentum. This is
the longest structure we need to resolve, and we choose a special basis so as not to take
unnecessarily long traces. We include all elements up to and including B45 (B4(n+1)+1
in the notation where n is the number of pure γ matrices) but drop B43 (B4(n+1)−1 in
the general case). We do not need B42 (B4(n+1)−2 in the general case) to project onto,
but it is required to make the Gram matrix invertible. This inconvenience arises from
the bilinear map ϕ defined in section 2.3.3 not being positive-definite.

The basis elements are:

B1 = 1⊗ 1

B2 = /eq ⊗ 1

B3 = 1⊗ /eq

B4 = /eq ⊗ /eq

B5 = γµ1 ⊗ γµ1

B6 = γµ1/eq ⊗ γµ1

B7 = γµ1 ⊗ γµ1/eq

B8 = γµ1/eq ⊗ γµ1/eq

B9 = γµ1γµ2 ⊗ γµ2γµ1

B10 = γµ1γµ2/eq ⊗ γµ2γµ1

B11 = γµ1γµ2 ⊗ γµ2γµ1/eq

B12 = γµ1γµ2/eq ⊗ γµ2γµ1/eq

B13 = γµ1 . . . γµ3 ⊗ γµ3γµ2γµ1

B14 = γµ1 . . . γµ3/eq ⊗ γµ3γµ2γµ1

B15 = γµ1 . . . γµ3 ⊗ γµ3γµ2γµ1/eq

B16 = γµ1 . . . γµ3/eq ⊗ γµ3γµ2γµ1/eq
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B17 = γµ1 . . . γµ4 ⊗ γµ4 . . . γµ1

B18 = γµ1 . . . γµ4/eq ⊗ γµ4 . . . γµ1

B19 = γµ1 . . . γµ4 ⊗ γµ4 . . . γµ1/eq

B20 = γµ1 . . . γµ4/eq ⊗ γµ4 . . . γµ1/eq

B21 = γµ1 . . . γµ5 ⊗ γµ5 . . . γµ1

B22 = γµ1 . . . γµ5/eq ⊗ γµ5 . . . γµ1

B23 = γµ1 . . . γµ5 ⊗ γµ5 . . . γµ1/eq

B24 = γµ1 . . . γµ5/eq ⊗ γµ5 . . . γµ1/eq

B25 = γµ1 . . . γµ6 ⊗ γµ6 . . . γµ1

B26 = γµ1 . . . γµ6/eq ⊗ γµ6 . . . γµ1

B27 = γµ1 . . . γµ6 ⊗ γµ6 . . . γµ1/eq

B28 = γµ1 . . . γµ6/eq ⊗ γµ6 . . . γµ1/eq

B29 = γµ1 . . . γµ7 ⊗ γµ7 . . . γµ1

B30 = γµ1 . . . γµ7/eq ⊗ γµ7 . . . γµ1

B31 = γµ1 . . . γµ7 ⊗ γµ7 . . . γµ1/eq

B32 = γµ1 . . . γµ7/eq ⊗ γµ7 . . . γµ1/eq

B33 = γµ1 . . . γµ8 ⊗ γµ8 . . . γµ1

B34 = γµ1 . . . γµ8/eq ⊗ γµ8 . . . γµ1

B35 = γµ1 . . . γµ8 ⊗ γµ8 . . . γµ1/eq

B36 = γµ1 . . . γµ8/eq ⊗ γµ8 . . . γµ1/eq

B37 = γµ1 . . . γµ9 ⊗ γµ9 . . . γµ1

B38 = γµ1 . . . γµ9/eq ⊗ γµ9 . . . γµ1

B39 = γµ1 . . . γµ9 ⊗ γµ9 . . . γµ1/eq

B40 = γµ1 . . . γµ9/eq ⊗ γµ9 . . . γµ1/eq

B41 = γµ1 . . . γµ10 ⊗ γµ10 . . . γµ1

B42 = γµ1 . . . γµ10/eq ⊗ γµ10 . . . γµ1

B43 = γµ1 . . . γµ10 ⊗ γµ10 . . . γµ1/eq

B44 = γµ1 . . . γµ10/eq ⊗ γµ10 . . . γµ1/eq

B45 = γµ1 . . . γµ11 ⊗ γµ11 . . . γµ1 (A.1)

Here, we defined

/eq ≡ /q√
q2 , (A.2)
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B Effective operators

For completeness we provide in this appendix all relevant operators for the |∆B| = 1 and
|∆B| = 2 theories.

On the |∆B| = 1 side we work with the operator basis first introduced in ref. [20]

H|∆B|=1
eff = 4GF√

2

[
−λs

t

( 6∑
i=1

CiQi + C8Q8
)
− λs

u

2∑
i=1

Ci(Qi − Qu
i )

+V ∗
usVcb

2∑
i=1

CiQ
cu
i + V ∗

csVub

2∑
i=1

CiQ
uc
i

]
+ h.c. , (B.1)

with
λs

a = V ∗
asVab , (B.2)

where a = u, c, t and λt = −λc − λu. GF stands for the Fermi constant. The physical
operators read

Q1 = s̄LγµT acL c̄LγµT abL ,

Q2 = s̄LγµcL c̄LγµbL ,

Q3 = s̄LγµbL

∑
q

q̄γµq ,

Q4 = s̄LγµT abL

∑
q

q̄γµT aq ,

Q5 = s̄Lγµ1γµ2γµ3bL

∑
q

q̄γµ1γµ2γµ3q ,

Q6 = s̄Lγµ1γµ2γµ3T abL

∑
q

q̄γµ1γµ2γµ3T aq ,

Q8 = gs

16π2 mb s̄LσµνT abR Ga
µν ,

Qu
1 = s̄LγµT auL ūLγµT abL ,

Qu
2 = s̄LγµuL ūLγµbL ,

Qcu
1 = s̄LγµT auL c̄LγµT abL ,

Qcu
2 = s̄LγµuL c̄LγµbL ,

Quc
1 = s̄LγµT acL ūLγµT abL ,

Quc
2 = s̄LγµcL ūLγµbL . (B.3)

Here we introduced the left-chiral projector PL = (1 − γ5)/2 so that qL = PLq. We have
current-current operators Qi, Qu

i , Quc
i and Qcu

i (i = 1, 2), four-quark penguin operators
Q3, . . . , Q6 and the chromomagnetic penguin operator Q8 featuring the gluon field strength
Ga

µν , the strong coupling gs and σµν = i[γµ, γν ]/2. In the definitions of four-quark penguin
operators the sum over q is understood to run over all five flavors u, d, s, c and b.

– 26 –



J
H
E
P
0
8
(
2
0
2
4
)
0
0
2

The LO evanescent operators required at NLO accuracy and beyond read

E1[Q1] = s̄Lγµ1γµ2γµ3T ac c̄γµ1γµ2γµ3T abL − 16Q1 ,

E1[Q2] = s̄Lγµ1γµ2γµ3ci c̄jγµ1γµ2γµ3bL − 16Q2 ,

E1[Q5] = s̄Lγµ1γµ2γµ3γµ4γµ5bL

∑
q

q̄γµ1γµ2γµ3γµ4γµ5qj − 20Q5 + 64Q3 ,

E1[Q6] = s̄Lγµ1γµ2γµ3γµ4γµ5T abL

∑
q

q̄γµ1γµ2γµ3γµ4γµ5T aq − 20Q6 + 64Q4 . (B.4)

Similar evanescent operators are needed for Qu
i , Quc

i and Qcu
i with i = 1, 2; they are obtained

by replacing one or both c fields with u fields in eq. (B.4).
At NNLO one has to introduce the so-called NLO evanescent operators which are

given by [67]

E2[Q1] = s̄Lγµ1γµ2γµ3γµ4γµ5T ac c̄γµ1γµ2γµ3γµ4γµ5T abL − 20E1[Q2]− 256Q1 ,

E2[Q2] = s̄Lγµ1γµ2γµ3γµ4γµ5ci c̄jγµ1γµ2γµ3γµ4γµ5bL − 20E1[Q2]− 256Q2 ,

E2[Q5] = s̄Lγµ1γµ2γµ3γµ4γµ5γµ6γµ7bL

∑
q

q̄γµ1γµ2γµ3γµ4γµ5γµ6γµ7qj − 336Q5 + 1280Q3 ,

E2[Q6] = s̄Lγµ1γµ2γµ3γµ4γµ5γµ6γµ7T abL

∑
q

q̄γµ1γµ2γµ3γµ4γµ5γµ6γµ7T aq

− 336Q6 + 1280Q4 . (B.5)

In the |∆B| = 2 theory there two physical operators which we choose as

Q = s̄iγ
µ (1− γ5) bi s̄jγµ (1− γ5) bj ,

Q̃S = s̄i (1 + γ5) bj s̄j (1 + γ5) bi , (B.6)

where i, j are the colour indices attached to quark fields.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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