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1 Introduction

As a strong-weak duality, holography has proven an invaluable tool in the exploration
of both strongly coupled quantum field theories and quantum gravity. We will use the
remarkable progress made in computing exact answers for observables in strongly coupled
quantum field theories, to learn about gravity beyond the classical limit. One of the
main tools that allowed for such progress on the QFT side is supersymmetric localization,
which was originally used in its modern form by Pestun to prove a conjectured form of
the expectation value of 1

2 -BPS Wilson loop in N = 4 supersymmetric Yang-Mills theory
in four dimensions [1–3]. Since then, supersymmetric localization has been utilized in a
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variety of situations for theories with different amount of supersymmetry and other global
symmetries to a great success (see [4] for a review).

These direct QFT results have permitted numerous precision tests of holography, which
maps the strong coupling regime of the QFT to the semi-classical regime of string or
M-theory. Going beyond leading order in the expansion parameter, L/ℓs ≫ 1 where L is a
characteristic length scale of the ten-dimensional geometry and ℓs is the higher dimensional
Planck length,1 has turned out to be a challenge since higher orders in the expansion require
the precise knowledge of higher derivative corrections to the gravitational theory which are
generally out of reach.

In principle, the method for determining the higher derivative corrections to ten- or
eleven-dimensional gravity is straight-forward. First, (super)symmetry is used to restrict the
form of the higher derivative terms at a given order to a manageable number. The coupling
constants of these supersymmetric invariants are at this stage still undetermined and have
to be fixed through physical observables, e.g. graviton scattering or beta functions on the
worldsheet. In practice, however, especially the first step is technically rather unfeasible
already at the first α′ correction, let alone at higher orders.

We propose an alternative strategy to make a direct contact between string theory
and quantum field theory. Rather than using string theory to compute higher derivative
corrections to the supergravity theory, we will consider quantizing string theory in a given
curved background. Of course the well-known difficulties of quantizing string theory in RR
backgrounds are still persistent, nevertheless we argue this to be a worthwhile endeavor
due to the by now many impressive quantum field theory results, which can be used as a
secure holographic anchor to hold on to.

In this paper we will focus on one instance where string theory can be analyzed
perturbatively in a curved background with RR fluxes turned on. Explicitly, we will consider
worldsheet instanton contributions to the type IIA string partition function in a variety of
backgrounds. These contributions are non-perturbative in L/ℓs but at leading order in the
string genus expansion. To this end we will use the Green-Schwarz (GS) formulation of
string theory which has proven useful in similar contexts in past holographic studies.

Worldsheet instantons in string theory, in the context of holography, have been analyzed
in the past at the leading order, i.e. the classical string action has been computed for a
stable configuration of the string. However, to the best of our knowledge, a computation of
the one-loop fluctuations around a string configuration in this context has not been carried
out before. The main reason is that dealing with various Jacobi and measure factors in the
Green-Schwarz formulation has proven challenging. As emphasized in [5, 6], these measure
factors are universal but depend on regularization scheme in such a way that the one-loop
partition function of the string is well defined and scheme independent. This is where
holography can help us, namely, we fix these measure factor ambiguities by comparing with
exact results from field theory. Once this has been done in one background, the same value
of this measure factor can be used in other contexts and should not have to be adjusted
as long as the regularization scheme and topology of the worldsheet remain the same. We

1The higher dimensional Planck length is identified with the string length (and thus α′) in ten dimensions.
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verify this expectation by comparing a string theory computation to a field theory prediction
in a few non-trivial examples.

The first example studied in this paper is five-dimensional supersymmetric Yang-Mills
theory on S5. This theory was localized in [7] and the partition function could be computed
explicitly including Yang-Mills instanton effects [8]. We will focus on the large N limit of
this theory where the field theory answer for the S5 partition function takes a particularly
simple form. Specifically, the answer has three terms that are perturbative in the coupling
constant as well as infinitely many non-perturbative terms. The holographic dual geometry
is a dimensional reduction of AdS7 × S4 to type IIA supergravity [9], where the coupling
constant of the field theory is mapped to a length scale of the ten-dimensional geometry.
As previously mentioned, our focus is the series of non-perturbative terms in L/ℓs, given
by worldsheet instantons, which on the field theory side is mapped to a series of non-
perturbative terms in the coupling constant. By carefully studying the first term in the
series, we fix the measure factor ambiguity in the string partition function in such a way that
an exact match is obtained. We then also consider higher instanton terms corresponding
to the remaining non-perturbative corrections to the S5 partition function. On the string
theory side, this culminates in evaluating the partition function of a multi-wound string, i.e.
the string is specified by a degree n map from the worldsheet S2 to the target-space S2

it wraps. A very similar setup has been studied extensively in the context of higher rank
Wilson loop holography, but all attempts at a match have so far failed. We argue that the
multi-wound partition function of a string is related to the singly wound partition function
times a contribution associated to the orbifold singularities on the worldsheet. This allows
us to conjecture that the multi-wound partition function is simply a rescaling of the single
string partition function by a multiplicative factor due to each orbifold point. We fix this
multiplicative factor by revisiting the multi-wound string in AdS5 × S5 which is dual to
higher rank Wilson loop in N = 4 SYM. With this conjecture at hand and the explicit
multiplicative factor, we can reproduce the entire series of non-perturbative terms in the
supersymmetric partition function of maximal SYM on S5.

The second example we study is the ABJM theory and its various extensions. Now, all
the measure factors have been fixed in our previous computation and so this example serves
as an important validation of our procedure. After a brief review of the computation of
instanton corrections to the S3 partition function on the field theory side, we indeed verify
that our string theory computation reproduces the expected answer. The structure of the
computation is, however, completely different compared to our first example, and turns out
to be much more intricate. First, in contradiction to naïve expectation, we find that both
strings and anti-strings contribute to the supersymmetric partition function. This is allowed
since the AdS4 × CP 3 geometry dual to ABJM theory does not have the three-form field
strength turned on, which would affect the stability of either the string or the anti-string.
Second, we find twelve fermionic and twelve bosonic zero-modes in the one-loop spectrum
of the string. In fact, the zero-modes had been observed in previous work [10]. Naively,
one would expect that the fermionic zero-modes would render the string partition function
trivial, and only observables for which the zero-modes have been soaked up by operators
would be non-trivial. However, since we know that the field theory answer for the instanton
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partition function is finite [11], we argue that this is not the case and instead that the
bosonic and fermionic zero-modes conspire to result in a finite valued string partition
function. To evaluate the finite answer, we lift the zero-modes through a supersymmetric
deformation of the background. The most important feature of our computation is that the
string finds not one stable configuration once the zero-modes are lifted, but two. Hence,
the string (and the anti-string) contributes twice the expected answer. This is reminiscent
of supersymmetric localization of quantum field theories, and indeed we expect a careful
argument could be made to demonstrate the localization of the string. As mentioned,
combining all terms we again find exact agreement with the field theory. For the higher
instantons we again apply the conjectured form of the multi-wound worldsheet instanton
partition functions and find that it correctly reproduces a tower of higher instantons known
in the QFT. Not all known QFT instantons are reproduced, however, due to the fact that
we neglect D2-brane instantons and worldsheet instantons wrapping more complicated
cycles in the CP 3 background.

The deformation used to lift the zero-modes is interesting in its own right. It is a
supersymmetric mass deformation of the ABJM theory studied in [12, 13]. Supersymmetric
localization has been utilized to give the perturbative answer for the free energy, but as far
as we are aware, instanton corrections in the type IIA limit have not been studied before.2

Using our results, we give a prediction for a tower of instanton corrections to the mass
deformed ABJM theory and its ABJ cousin.

The final example we study is an orbifold of the ABJM theory in the IIA limit [15].
The orbifold acts on the CP 3 in a non-trivial way such that orbifold singular points are
visible to the worldsheet instantons. Given our conjecture for orbifold points, we are able
to derive the first instanton contribution to the free energy of this theory and we find an
exact match with field theory predictions [16].

The paper is organized as follows. In section 2, we review and discuss the Green-Schwarz
formulation of string theory and describe how the string partition function is related to
the free energy of the dual QFT. We discuss the spectrum of string fluctuations for a
spherical worldsheet and how to compute the corresponding one-loop partition function.
We also discuss in general terms, how higher instantons contribute and our expectation
for their partition function based on the analogy with multi-wound strings in AdS5 × S5.
In section 3, we discuss five-dimensional super Yang-Mills on S5. We review results from
localization before studying string theory in the dual geometry. After computing the string
partition function for the single string, we use the localization result to fix our measure
factor ambiguity (denoted by C(2) in this paper). We then discuss higher worldsheet
instantons, i.e. multi-wound strings, in this geometry and predict their partition functions
using our conjecture from section 2. This allows us to compute from the string theory
perspective the entire series of instanton corrections to the field theory free energy and
match with the localization prediction. In section 4 we discuss a similar computation for
the ABJ(M) theory. On the string theory side we note the presence of zero-modes and

2From the QFT point of view instantons were studied in the small k expansion for a specific mass-deformed
ABJM theory in [14].
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anticipate the finite zero-mode partition function (which we compute explicitly in section 5)
that we can use to fully determine a tower of worldsheet instanton partition functions
and match with field theory. In section 5, we discuss mass deformations of the ABJM
theory that can be used to evaluate the zero-mode partition function in the undeformed
theory, and additionally we study the orbifolded ABJM theory. We can then also give a
prediction for the instanton corrections to the free energy of these two ABJM variants.
Finally, in section 6 we summarize our results and discuss future work. We also include
three appendices. In appendix A we include a general discussion of measure factors in string
theory. In appendix B we review the spectrum and eigenfunctions of the fermionic operators
encountered in this paper. In appendix C we give the eleven-dimensional geometry dual to
N = 4 mass deformation of ABJM, and also another type IIA solution that is dual to the
SU(3)-deformation of ABJM theory which is an uplift of a solution from [13].

2 Worldsheet instantons in the Green-Schwarz formulation

As discussed in the introduction, in this paper we compute worldsheet instanton corrections
to the string partition function. The string partition function can be evaluated in the long
wavelength approximation where it is dominated by saddle points

Zstring ≈
∑

saddles
e−SclZ1-loop , (2.1)

where Scl is the string action evaluated on the saddle point surface M and simply equals
its dimensionless area A plus the integral of the Kalb-Ramond two-form B2,

Scl = A + i

2πℓ2s

∫
B2 , A = 1

2πℓ2s

∫
M

volγ . (2.2)

Here γij denotes the pull-back of the ten-dimensional metric to the worldsheet M . The
factor of i in the two-form term is due to the fact that we consider Euclidean worldsheets.

In the saddle point expansion (2.1), the leading saddle is given by a ‘point-like’ string,
i.e. where the string embedding is trivial in spacetime. The classical action in this case
is zero and the entire contribution comes from the one-loop action. Due to the trivial
embedding, the one-loop theory has ten bosonic zero-modes corresponding to the collective
motion of the string in the ten-dimensional ambient space. These zero-modes must be
integrated over with the correct measure factor which is determined by the ten-dimensional
target space metric. The remaining contribution to the one-loop partition function was
shown to give minus the ten-dimensional Lagrangian [17–19] of supergravity3 and so we
can write (2.1) as

Zstring ≈ −Ssugra +
∑

instantons
e−SclZ1-loop , (2.3)

where the instanton sum runs over non-trivial saddles, i.e. ones with finite classical action.
In holography, the suitably regularized on-shell supergravity action should reproduce the

3Strictly speaking the supergravity Lagrangian is not directly related to the string partition function of
the trivial saddle at genus zero, but instead is related to its derivative with respect to a UV cutoff [20–22]
(see also [23]). We expect this subtlety will only affect the relative coefficient between the two terms in the
expression (2.3) which in this paper will be fixed using holography as explained below. We thank Arkady
Tseytlin for a discussion on this point.
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free energy of the dual QFT. Including worldsheet instantons, the string partition function
should therefore reproduce minus the free energy of the dual QFT. In the saddle point
expansion, this implies the holographic relation

FQFT ≈ Ssugra −
∑

instantons
e−SclZ1-loop . (2.4)

In this equation we are working to leading order in the string coupling constant gs, and to
leading order in L/ℓs around each saddle. For the rest of the paper we will not consider the
leading order contribution from the supergravity action, but instead discuss the sum over
worldsheet instantons. To avoid confusion we emphasize that throughout the paper we will
compare QFT free energies (F ) to string partition functions (Z).

The one-loop partition function, Z1-loop, receives contributions from three parts.
The first contribution comes from the classical evaluation of the Fradkin-Tseytlin (FT)
action [17, 19]

SFT = 1
4π

∫
M

ΦRγvolγ . (2.5)

The FT term contributes at one-loop due to the fact that it scales like (L/ℓs)0 where L
is the length scale of the geometry in question. This should be contrasted to the classical
action which scales as (L/ℓs)2. The second contribution is the actual one-loop partition
function of the two-dimensional CFT living on the worldsheet. For the GS string this
consists of ten non-interacting scalars and eight non-interacting fermions. Next, we have
the contribution of string ghosts, which cancel the longitudinal fluctuations of the string
reducing the physical scalar modes from ten to eight. The cancellation leaves a remainder
which is expected to be universal (in the sense that we are going to explain below) and to
only depend on the Euler characteristic χ of the worldsheet (see [5, 6] for more discussion).
We denote this term by C(χ). Collecting all the terms we can write

Z1-loop = e−SFTC(χ)(Sdet′K)−1/2Zzero-modes , (2.6)

where K collectively denotes the one-loop operators for the eight physical scalar and
eight fermionic modes. When evaluating the partition function, zero-modes need to be
treated separately, and their contribution is collected in Zzero-modes, whereas the prime on
Sdet indicates that we exclude zero-modes when evaluating the functional determinants
(see appendix A).

The one-loop determinant (Sdet′K)−1/2 diverges but the coefficient of the divergence is
expected to be universal and to be controlled by the Euler characteristic [5, 6]. The specific
value of the finite term in (Sdet′K)−1/2 depends of course on the regularization scheme used.
Therefore, the precise numerical factors in the universal term C(χ) similarly depend on the
regularization scheme, but in such a way that the product in (2.6) is scheme independent.
In this paper, we exclusively use ζ-function regularization as explained in more detail in
the next subsection. It is convenient to compute the determinants of rescaled operators for
which the dependence on the length scale of the geometry L has been eliminated. These
are the operators on M for which the radius has been set to one. This length scale has to
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be reintroduced at the level of the universal factor C(χ).4 For this reason we expect5

C(χ) ∼ Aχ/2 , (2.7)

but fixing the numerical factor requires a careful analysis of all measure factors in the GS
string path integral and assigning a finite value to some possible diverging factors. Just as
in [6], we will not take this route, but instead use holography to fix the numerical factor.
For a disk partition function, the constant was fixed in [6] by comparison to the 1/2-BPS
Wilson loop in N = 4 SYM to be6

C(1) =
√
−A
2π . (2.8)

This was then also shown to be consistent with the evaluation of the vev of the 1/2-BPS
Wilson loop operator in the ABJM theory. In this paper we focus on sphere partition
functions and therefore we need the value C(2). In section 3 we use exact results for the
5D SYM partition function which include terms non-perturbative in the coupling to fix the
coefficient C(2) by evaluating the worldsheet instanton directly in the string dual. In this
way we fix C(2) to be

C(2) = A
8π2 . (2.9)

In section 4 we compute worldsheet instanton corrections to the S3 partition function of the
ABJM theory and find a match with a matrix model computation, thus finding a non-trivial
confirmation of the value (2.9).

2.1 The one-loop action

When evaluating the one-loop partition function for the worldsheet instanton string we have
to accurately determine the kinetic operators for the small fluctuations around the classical
solution. This is done by expanding the Green-Schwarz action [27, 28] to second order in
the fields, i.e. the eight transverse scalar modes as well as the eight fermion directions. We
refer the reader to [5, 29, 30] for a detailed discussion.

For the instantons encountered here, the worldsheet is spherical and equipped with the
round metric,

ds2 = L2dΩ2
2 = L2

(
dθ2 + sin2 θdφ2

)
, (2.10)

where L is some length scale set by the parent geometry. Due to the symmetry preserved
by the instantons in these cases, the kinetic operators for the scalar and fermionic modes
are restricted to be particularly simple. We can write them as follows7

K = −D2 +M2
b , for scalars ,

D = i /D +m1σ3 +m2 , for fermions .
(2.11)

4For comparison, we note that in [24–26] a different regularization scheme was used, hence the value of
C(1) there cannot be directly compared to the value reported here in (2.8).

5For unrescaled operators, the partition function scales as − 1
2 log Sdet′K ∼ χ log L ∼ χ

2 logA.
6In [6] the constant was given as

√
T/2π where T is the ‘effective tension’ of the string in the geometry

and is related to the dimensionless area by A = −2πT .
7In our conventions /∂ = σ1∂θ + σ2∂φ where σ1,2,3 are the standard Pauli matrices.
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Here Dµ = ∇µ − iqAµ where Aµ is a monopole gauge field on S2 such that the field strength
F = dA is normalized to have unit flux,

1
2π

∫
S2
F = 1 , (2.12)

and q is the integer charge of the field in question. Explicitly, the monopole gauge field
takes the form

A = 1
2(1 − cos θ) dφ , F = 1

2 sin θ dθ ∧ dφ . (2.13)

The monopole field can arise as a result of a non-trivial B2 field in the ten-dimensional
geometry or if the normal bundle is non-trivially fibered over the worldsheet.8 We will
encounter charged operators for the ABJM example studied in section 4. In that case we will
have equally many fields with positive and negative charge such that charge conjugations is
a symmetry of our theory. Reflection around the ‘time’ circle φ is similarly a symmetry and
so, if we let C be the charge conjugation operator and T the φ-reflection operator, then we
can define D̃ = −σ2TCDσ2 and

D̃D = −D2 + R

4 +M2
f + iq /F , (2.14)

where M2
f = m2

1 − m2
2 and R is the worldsheet Ricci scalar. As we will see, when the

fields are uncharged with respect to the monopole, the one-loop determinants only depend
on the square masses M2

b and M2
f . In case the fields do interact with the monopole, the

fermionic spectrum is determined by not only M2
f but also by the sum and difference of m1

and m2, as we review in more detail in appendix B. An important consistency condition
on our operators, which ensures the cancellation of the conformal anomaly, are the sum
rules [5, 24, 30]

Tr (−1)FM2L2 = Tr M2
b L

2 − Tr M2
fL

2 = RL2 = 2 ,
Tr (−1)F q2 = Tr q2

b − Tr q2
f = 0 ,

(2.15)

where the trace runs over all modes in the theory.
Equipped with the eight bosonic and eight fermionic operators (2.11), the one-loop

partition function of the non-interacting QFT living on the worldsheet can be written as

Sdet′K =
∏

b(det′ L2K)∏
f (det′ LD) , (2.16)

where the product runs over all scalars and fermions in the theory and our conventions are
summarised in appendix A. The primes indicate that zero-modes should be excluded from
the determinants. As mentioned above, we have rescaled the operators K and D before
computing their determinant to remove the dependence of the scale L. This dependence is
then reinstated at the level of C(χ) in the final answer.

The spectral problem for our operators has been studied extensively in the past and we
will simply borrow earlier results. Detailed analysis of the eigenfunctions and their properties

8Semi-classical string quantization around a classical solution in the presence of a B-field is reviewed
in [29].
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can be found in [31–36]. For our purpose we only need the eigenvalues of the operators and
the corresponding degeneracies. For the bosonic operator L2K the eigenvalues are

λb = l(l + 1) − q2

4 +M2
b L

2 , l − |q|
2 ∈ N0 , (2.17)

and the corresponding degeneracies are dλ = 2l + 1. Therefore the logarithmic of the
functional determinant can be written as

log detL2K =
∞∑

j=(|q|+1)/2
(2j) log

(
j2 − 1

4 − q2

4 +M2
b L

2
)
, (2.18)

where we have reindexed the sum l = j − 1/2. For the fermions, we do not have eigen-
functions of the Dirac operator LD in the usual sense as the eigenvalues turn out to be
‘eigenmatrices’ [36]. Nevertheless, the logarithm of the fermionic functional determinant can
be written down in a similar manner as for the bosons. The spectrum, however, depends
on the charge of the fermions with respect to the monopole such that (see appendix B for
the details)9

log detLD =
∞∑

l=|q|/2
(2l) log

(
l2 − q2

4 +M2
fL

2
)
− |q| logL(m1 − sgn(q)m2) . (2.19)

Note that when q → 0 the spectrum indeed only depends on M2
f , and not the individual

values of m1 and m2, as mentioned above.
The infinite sums in (2.18) and (2.19) diverge and must be regularized. In order to

treat both fermionic and bosonic sums simultaneously, we bring them in the form

sp(µ) =
∞∑

l=p
l2 ̸=µ

(2l) log
(
l2 − µ

)
, (2.20)

by identifying the starting value p of each sum

p = (|q| + 1)/2 , for scalars ,
p = |q|/2 , for fermions ,

(2.21)

and defining the µ parameters as follows

µ = 1
4 + q2

4 −M2L2 , for scalars ,

µ = q2

4 −M2L2 , for fermions .
(2.22)

The full logarithm of the partition function can therefore be expressed as a sum of functions
sp(µ) for some given values of µ and p plus the fermionic contributions linear in m1 and m2.
Before evaluating the sum, we remark that the argument of the log in (2.20) is positive. By

9We thank Matteo Beccaria for pointing out an error in the first version.
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hand we removed the zero-modes given by the states for which l2 = µ (with multiplicity 2l),
which have to be treated separately.

As mentioned above, sp diverges, but a regularized version can be defined as follows

sreg
p (µ) =

∞∑
l=p

l2 ̸=µ

[
(2l) log

(
l2 − µ

)
− (4l) log l + 2µ

l

]
, (2.23)

where the two last terms have been introduced to render the sum absolutely convergent.
The middle term can be regularized by itself using the Hurwitz ζ-functions

∞∑
l=p

(4l) log l = −4ζ ′(−1, p) , (2.24)

whereas the last term is divergent and it is formally given by
∞∑

l=p

2µ
l

= −2µψ(p) + 2µ lim
s→1

1
s− 1 , (2.25)

where ψ is the polygamma function. This is however not of immediate concern; when
evaluating the complete string partition functions we will sum over all scalar and fermionic
modes in the theory with relevant signs, and upon doing so the divergent pieces cancel.
This cancellation is a non-trivial consequence of the sum rules (2.15) satisfied by our modes,

Tr (−1)Fµ = 2 − Tr (−1)FM2L2 + 1
4Tr (−1)F q2 = 0 . (2.26)

With this in mind we can write

s̄p(µ) = sreg
p (µ) − 4ζ ′(−1, p) + 2µψ(p) , (2.27)

where we dropped the divergent piece in (2.25) (indicated with the bar on s̄p(µ)) which
will cancel in string partition functions as explained.

The regulated sum sreg
p (µ) can be evaluated by standard manipulations, in particular

we note that sreg
p (0) = (sreg

p )′(0) = 0, where the prime denotes the derivative with respect
to µ. We can readily evaluate the second derivative of sreg

p :

(sreg
p )′′(µ) = 1

2√µ
(
ψ′(p+ √

µ) − ψ′(p−√
µ)
)
. (2.28)

Integrating once, and using that (sreg
p )′(0) = 0, we have

(sreg
p )′(µ) = ψ(p+ √

µ) + ψ(p−√
µ) − 2ψ(p) . (2.29)

To obtain a final value for sreg
p we integrate (2.29) once again to obtain,

sreg
p (µ) = −2µψ(p) +

∫ µ

0

(
ψ(p+

√
x) + ψ(p−

√
x)
)
dx . (2.30)

With this we end with our final result which we will use below to evaluate our string
partition functions

s̄p(µ) = −4ζ ′(−1, p) +
∫ µ

0

(
ψ(p+

√
x) + ψ(p−

√
x)
)
dx . (2.31)

This is the expression we will utilize when we evaluate the string partition function in the
following sections.
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2.2 Higher instantons and orbifold partition function

As previously discussed, in the saddle point expansion of the string partition function, we
must sum over all non-trivial saddles of the string and quantize its fluctuations around
the classical solution. The resulting series contains infinitely many terms since we can
always wrap the string multiple times around the same cycle in the target manifold. The
classical action for such a multiply wound string is simply n times the classical action of a
single string, where n is the winding number of the string around the cycle in question. In
this case, we can view the worldsheet as a sphere, where the north and south poles have
an angular excess of 2π(n − 1). In the fermionic and bosonic operators controlling the
one-loop fluctuations of the multi-wound string, the same masses appear as in the case n = 1.
However, the partition function of the multi-wound string is different because the spectrum
of the operators depends on the underlying two-dimensional manifold. We propose that
the one-loop partition function for a multi-wound string is given by the one-loop partition
function for the single string times contributions attributable to the poles of the sphere.
The intuition here is that we can recover the single string partition function by cutting
out the poles of the sphere and replacing them with a smooth cap. However, at each pole,
this replacement yields an error given by the difference between a partition function for
a smooth disk and one for a disk with a conical singularity (in particular here with an
angular excess). Our conjecture is therefore that the multi-wound sphere partition function
is given by

Z(n) = e−nSclZ1-loop z
2
n , (2.32)

where Z1-loop is the single string one-loop partition function in eq. (2.6) and zn is the local
factor received from each pole, as explained.

In order to determine the factor zn, we revisit the computation of the disk partition
function in AdS5 × S5 dual to the 1/2-BPS Wilson loop in N = 4 SYM. The multi-wound
string computation has been studied extensively in [37–40], but a match with the answer
obtained by supersymmetric localization has not yet been obtained. We will not be able
to give a first principle derivation of the partition function of the multi-wound string, but
instead we will use the exact evaluation of the Wilson loop expectation value from the field
theory [3] to fix the value of zn.

Recall that the 1/2-BPS Wilson loop in N = 4 SYM is dual to an open string that
attaches to the boundary of AdS5. If we use spherical coordinates on AdS5

ds2
AdS5 = dρ2 + sinh2 ρ dΩ2

4 , (2.33)

the string in question sits on the equator of the four-sphere and wraps the ρ direction.
On S5 the string sits at any fixed location which can be taken to be the north pole of
S5. The string partition function for the single string has been analyzed in [5, 37, 41] and
nicely summarized recently in [6]. The classical action of the string is simply the area of
AdS2 which, after regularization, takes the value A = −

√
λ where λ is the N = 4 ’t Hooft

coupling constant related to the radius of AdS5 by L2 = ℓ2s
√
λ. The string coupling constant

gs is related to λ and the rank of the gauge group N via

gs = λ

4πN , (2.34)
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and the Fradkin-Tseytlin contribution to the string partition function is g−1
s . The one-loop

partition function of the string modes themselves is given by [37, 38]10

(SdetK)−1/2 = 1√
2π

, (2.35)

and so the single-string partition function can now be assembled according to (2.1) and (2.6)
using eq. (2.8)

Zstring = N

λ3/4

√
2
π

e
√

λ , (2.36)

which matches the prediction of the QFT for the Wilson loop expectation value [1–3]. Now
we consider the n-wound string, dual to the n wound Wilson loop operator whose vacuum
expectation value is [3, 42]

⟨W⟩ = N

n3/2λ3/4

√
2
π

en
√

λ . (2.37)

Following our previous logic for the sphere partition function, now we should be able to
obtain the multi-wound partition function by modifying only the classical action and adding
the multiplicative factor zn. In this case we only have one power of zn since there is only
one orbifold point on the worldsheet which must be counted. Comparing the field theory
prediction (2.37) with our conjecture, we conclude that11

zn = 1
n3/2 . (2.38)

This means that for spherical worldsheets, the partition function for the multi-wound string
is divided by a factor of n3 as compared to the single string (modulo the classical action). It
is interesting to note that such a contribution has indeed been observed for the topological
string where a contribution of a multi-wound rational curve in a Calabi-Yau threefold is
assigned exactly a cube factor [43].

We conclude by noting that for a multi-wound string we encounter orbifold points on
the worldsheet with conical excess angles. In other situations we may encounter orbifold
points with a conical deficit. In this case we expect that the only difference is the appearance
of the factor n3/2 in the numerator rather than in the denominator as in (2.38).

3 Instanton corrections to 5D free energy

In this section we will discuss non-perturbative terms in the S5 partition function of
maximally supersymmetric Yang-Mills theory in five dimensions. At large N the partition
function takes a particularly simple form (see (3.3)) and as we will see, all non-perturbative
terms in the expression are due to worldsheet instantons. We will also discuss the relation
to the giant graviton expansion of the six-dimensional (2,0) theory.

10There are no zero-modes in this case.
11It would be interesting to confirm a similar behavior for Wilson loops in the ABJM theory. To this end

it is important to identify the correct representation of the relevant Wilson loop in the U(N)k × U(N)−k

gauge group that is dual to the multi-wound fundamental string.
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3.1 Field theory

When placed on a round five-sphere, Euclidean supersymmetric Yang-Mills theory in five
dimensions can be localized to a matrix model [7]. Remarkably the matrix model encountered
is exactly the same as the one for Chern-Simons (CS) theory in three dimensions which has
been studied extensively in the past, notably in [44]. In the context of five-dimensional SYM,
the matrix model depends on the two microscopic parameters of the underlying theory,
i.e. the rank of the gauge group N (we work with gauge group U(N)) and a dimensionless
combination of the Yang-Mills coupling constant g2

YM and the five-sphere radius R. We
find it useful to express our formulae in terms of a dimensionless ’t Hooft coupling constant
ξ which is defined as

ξ = g2
YMN

2πR . (3.1)

In what follows we will study the partition function of the five-dimensional theory in the
large N limit while keeping ξ finite. As we will recall in greater detail below, five-dimensional
SYM at strong coupling is related to the six-dimensional (2,0) theory where the size of the
sixth dimension is related to the coupling constant of the 5D theory. The five-dimensional
supersymmetric partition function on S5 equals an unrefined superconformal index of the
six-dimensional theory on S5 × S1

β , where the periodicity of the β-cycle is directly related
to the gauge coupling through ξ = Nβ [7, 8, 45–49]. When expanding the five-dimensional
partition function around small e−β one finds integer coefficients, giving evidence that the
S5 partition function can be viewed as the index of the (2,0) theory. In this paper we will
study the partition function in an expansion around large N and ξ, effectively taking a
Cardy-like limit of the six-dimensional index.

On the holographic side, the six-dimensional (2, 0) theory is described by M-theory on
AdS7 × S4, and the high temperature limit corresponds to a circle reduction to type IIA
string theory. Using this IIA limit, in section 3.2, we will be able to compute exponentially
suppressed contributions to the partition function coming from worldsheet instantons in the
internal geometry. To corroborate our results for the string theory instanton contributions
to the partition function we will compare to known field theory results, which we will
now summarize.

The S5 free energy F = − logZ of SYM computed by supersymmetric localization is a
sum of the perturbative partition function Fpert and an instanton contribution collected in
Finst. Explicitly these terms take the form [7]

Fpert = − log
[(

iβ

2π

)N/2
e

N(N2−1)
6 β

N−1∏
m=1

(1 − e−βm)N−m
]
,

Finst =N log η
(2πi
β

)
,

(3.2)

where η(z) is the Dedekind-η function. After substituting β = ξ/N and taking the large N
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limit we find that the perturbative free energy reduces to12

Fpert = −N2
(
ξ

6 − π2

6ξ + ζ(3)
ξ2 − Li3(e−ξ)

ξ2

)
+ O(N logN) , (3.3)

and contributes at order N2 as expected for a gauge theory. On the other hand, we can
explicitly verify that instantons do not contribute at leading order since the Dedekind-η
function has an exponential suppression at large N , allowing us to disregard it at leading
order N2. At weak coupling the free energy can be expanded

Fpert
N2 = 3

4 − 1
2 log ξ − ξ

12 − ξ2

288 + ξ4

86400 + O(ξ6) , (3.4)

and contains infinitely many terms in its series. On the other hand, the full expression (3.3)
is exact in ξ and its strong coupling expansion is finite, containing only three terms. This is
a remarkable property of the five-dimensional partition function and is most easily explained
by its close relation to the index of the six-dimensional theory. In addition to the strong
coupling perturbative series being simple, the non-perturbative terms in ξ

N2

ξ2 Li3(e−ξ) = N2

ξ2

∞∑
n=1

e−nξ

n3 , (3.5)

are also noteworthy in that they are all of the same type and, as we will now explicitly
verify, represent worldsheet instantons on the string side.

3.2 String theory

The holographic dual to five-dimensional SYM on S5 was constructed in [9] and describes
the back-reaction of spherical D4 branes in ten-dimensional type IIA supergravity. This
background is most easily recovered by dimensional reduction of the AdS7 × S4 solution of
eleven-dimensional supergravity. In order to recover the spherical brane background, one
must write AdS7 in global coordinates, analytically continue the time direction which is
then reduced over. Direct dimensional reduction over Euclidean time breaks supersymmetry
but 16 real supercharges can be preserved by a reduction over the diagonal combination of
the Euclidean time and an S1 inside S4. We refer to [9, 26] for more details. Since we will
work exclusively in the type IIA limit (given that we are interested in quantizing strings in
the ten-dimensional background) we will only write the ten-dimensional reduction. The
metric is given by

ds2 = L2
√
Q

[
4
(
dρ2 + sinh2 ρ dΩ2

5
)

+ dθ2 + cos2 θ dΩ2
2 +Q cosh2 ρ sin2 θ dϕ2

]
, (3.6)

where ρ plays the role of a holographic direction and for large ρ we recover the metric for
the near-horizon region of D4 branes in flat space. The angular variables θ and ϕ together

12Taking the large N limit of the expressions (3.42) in both [7] and [8] is subtle and one has to first use
the modularity property of the Dedekind-η function stating that η(−1/z) =

√
−iz η(z). This result can also

be deduced from the saddle point analysis of the five-dimensional matrix model which admits an analytic
solution. We refer to [50] where the equivalent matrix model for three-dimensional CS theory was solved in
this limit.
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with the two-sphere dΩ2
2 form a topological four-sphere which is squashed by the presence

of the function Q which is

Q = 4
4 cosh2 ρ− sin2 θ

. (3.7)

The background length scale can be mapped to the field theory ’t Hooft coupling using the
string length [51]

L2 = ℓ2sξ , (3.8)

and strong coupling ξ ≫ 1 implies that L≫ ℓs, such that the string saddle point approxi-
mation is valid. The dilaton and form fields are given by

e2Φ = ξ3

N2π2
1

Q3/2 ,

B2 = i
L2

2 cos3 θ volS2 ,

C1 = i
πNL

2ξ3/2Q sin2 θ dϕ ,

C3 = πNL3

ξ3/2 cos3 θ dϕ ∧ volS2 .

(3.9)

Using this solution, the leading order free energy can be computed by evaluating the on-shell
supergravity action. This is done by considering the dimensional reduction of type IIA to
six-dimensional supergravity where the solution can be readily embedded. After cancelling
divergences and adjusting finite counterterms the on-shell action is found [51]

Ssugra = −N2 ξ

6 , (3.10)

which matches the leading order term in the QFT answer (3.3). It would be interesting to
extend this match to higher order by evaluating the one-shell action of type IIA supergravity
including higher derivative terms. In similar spirit, the vacuum expectation value of 1/2-
BPS Wilson loop was reproduced by evaluating a string theory on-shell action in this
background [51]. In [26] this match was extended to next-to-leading order by quantizing
the fluctuations of the string and computing its one-loop partition function.

We are interested in supersymmetric configurations for a spherical string in this geometry
with finite classical action. This will give rise to a non-perturbative correction to the free
energy as explained in section 2. Since there are no two-cycles in our geometry, one is
tempted to conclude that there are no stable configurations for such a string. However,
due to the presence of an NSNS B2 field, there is a supersymmetric configuration for the
string which is supported by the 2-form. This supersymmetric embedding is for a string
that wraps the S2 threaded by the B2 field, and sits at13

ρ = 0 = θ . (3.11)

At this point, the remaining S5 and S1 collapse to zero size and the worldsheet metric
takes the form of a round sphere as (2.10) with L2 = ℓ2sξ. The solution therefore preserves
SO(3) × SO(6) × SO(2) symmetry where the first SO(3) represents the rotation symmetry
of the worldsheet itself.

13Supersymmetry of the embedding can be explicitly verified using the calibration form in [52].
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Field Degeneracy M2L2 q µ p

scalars 6 1
4 0 0 1

2

2 −3
4 0 1 1

2

fermions 8 −1
4 0 1

4 1

Table 1. The spectrum of fluctuations of string modes around the classical instanton solution in
the geometry (3.6). The quantities µ and p are defined in section 2.1.

The classical action (2.2) is now easily evaluated for our string configuration. In
particular we find

A = 2ξ , and i

2πℓ2s

∫
B2 = −ξ , (3.12)

such that Scl = ξ. Wrapping n fundamental strings around this calibrated cycle, the classical
action is simply multiplied by the total number of strings and we find Scl = nξ. This
shows that using the holographic relation (2.4), the classical action correctly reproduces
the exponentially behaviour of the subleading terms (3.5) in the sphere free energy.

For the one-loop partition function we will now focus on the single instanton case.
Higher rank instantons will be discussed in section 3.3. As explained in section 2, we need
to compute the FT term and the determinant of the kinetic operators for the modes on the
string. Since the dilaton is constant on the worldsheet, the former is rather simple for our
solution and equals

e−SFT = N2π2

ξ3 . (3.13)

This correctly reproduces the N2 behaviour of the prefactor in (3.5) as expected from
considering spherical worldsheets. For the one-loop determinant we follow the procedure
outlined in section 2.1. Expanding the Green-Schwarz action as discussed in section 2.1 we
obtain operators of the form (2.11) for the eight fermions and eight bosonic modes. Since
the worldsheet is embedded trivially in the ambient geometry we do not encounter any
monopole field meaning that all 16 modes are uncharged, q = 0. Explicitly we find the
masses and degeneracies as listed in table 1. Using this spectrum, we can use the general
discussion in section 2 to compute the regularized one-loop partition function

−1
2 log(Sdet′K) = 4s1(1/4) − 3s1/2(0) − s1/2(1) = log(−4) , (3.14)

and we conclude that
(Sdet′K)−1/2 = −4 . (3.15)

Putting everything together we find that the single instanton partition function is given by

Z
(1)
inst = −C(2)4N2π2

ξ3 e−ξ . (3.16)
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As mentioned in section 2 the only remaining task is to explicitly determine C(2), which
we can do by comparing to the field theory result, out of which we find that

C(2) = A
8π2 . (3.17)

By using (3.12), this gives for the string partition function

Z
(1)
inst = −N

2

ξ2 e−ξ . (3.18)

Note that in C(2) there is a factor −2 difference when comparing to C(1)2. Equipped with
its value (2.9), we can use this procedure to compute sphere partition functions in much
the same way in other holographic geometries.

3.3 Higher instantons

Let us now discuss higher instantons. These are represented by a stack of multiple strings that
wrap the same 2-sphere supported by B2. The fact that this is the only BPS configuration
at each higher instanton level is clear in the IIA limit. However, from an eleven-dimensional
perspective this may not be obvious since presumably there are two different cycles that
M2 branes can wrap in S4. This point will be discussed in more detail in section 3.4.
To determine the contributions of higher order instantons we have to compute the string
partition function on the 2-sphere with angular excess at both poles. As we have argued in
section 2.2, the partition function of the multi-wound string is a product of the single string
partition function times the contribution from the two orbifold points. In other words,
we have

Z
(n)
inst = C(2)(Sdet′K)−1/2z2

ne−SFTe−nξ = − N2

ξ2n3 e−nξ . (3.19)

These contributions can be summed to correctly match the field theory answer (3.5), yielding

∞∑
n=1

Z
(n)
inst = −N

2

ξ2 Li3(e−ξ) . (3.20)

Notice in particular that the sign of the instanton contribution is correctly reproduced by
our computation where, on the string theory side, the minus originates from the one-loop
partition function (3.14).

In this section we have utilized the precise knowledge of the QFT partition function
to fix the coefficient C(2) and to test our conjecture for higher instantons, leading us to
a complete holographic match with the non-perturbative instanton contributions to the
field theory partition function in the large N limit. In the sections below we will utilize
these results to compute worldsheet instanton contributions in type IIA backgrounds dual
to three-dimensional CS theories. Before doing so, we will relate our results of this section
to the giant graviton expansion of M2-branes in eleven dimensions.
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3.4 Giant gravitons in M-theory

As discussed above, the type IIA solution of interest can be uplifted to eleven dimensions, for
the details of this uplift we refer to [9, 26]. The eleven-dimensional solution is topologically
AdS7 × S4, with an S5 × S1

β boundary in the AdS space, on which the dual six-dimensional
(2, 0) theory resides. This M-theory uplift clarifies the connection between the S5 partition
function of maximal SYM, and the superconformal index of the (2, 0) theory discussed
in section 3.1. As described in [7], the S5 partition function only captures an unrefined
superconformal index of the (2, 0) theory. This will have a direct consequence on the dual
M-theory (and string theory) observables that we will discuss in this section.

In [53] it was argued that the superconformal index of the (2, 0) theory with gauge
group U(N) can be reproduced in the M-theory description by the Kaluza-Klein index
times finite N -corrections coming from supersymmetric M2-brane excitations in eleven
dimensions, also known as giant gravitons [54].14 Explicitly, the superconformal index was
conjectured to take the form

IU(N) = IU(∞)
(

1 +
∑
C

IM2
C

)
, (3.21)

where IU(∞) is the index in the strict supergravity limit, determined by the Kaluza-Klein
modes in the M-theory background, and IM2

C are finite N corrections due to giant gravitons
for which the sum runs over all possible supersymmetric configurations of the M2-branes.
There are two distinct supersymmetric M2-brane embeddings wrapping S2 × S1

β, where
the S2 resides in S4 [58]. These corrections were argued to be computed by localizing the
ABJM theory living on the supersymmetric M2-branes. We are interested in a Schur-like
limit of this index, where the M2-branes are only allowed to wrap one of the two-cycles in
S4, producing an unrefined index as in the field theory analysis of [7]. Upon a reduction to
type IIA string theory, described in section 3.2, these M2-brane giant gravitons reduce to
the worldsheet instantons computed in equation (3.20). The giant graviton expansion has
been computed up to finite order of M2-branes in [59]. It will be very interesting to extend
this computation to arbitrary order of the number of giant gravitons, in the unrefined limit,
to reproduce and extend our result in section 3.3.

Finally, we would like to note that the M2-brane picture, employing supersymmetric
localization, also provides an explanation for the simple and exact functional form of our
answer in equation (3.20), coming from a one-loop computation of the worldsheet instanton.

4 Instanton corrections to the ABJ(M) S3 free energy

The second example we will study is the AdS4 × CP 3 background in type IIA string theory.
Its holographic dual is the ABJ(M) theory, at large N and large CS level k. We will keep
our discussion general to include also the ABJ theory in addition to ABJM. This difference
is usually not visible in the supergravity limit, but it is visible to worldsheet instantons as

14A similar claim was initially made for the superconformal index of N = 4 SYM in four dimensions [55, 56],
and for the related S-fold theories in [57].
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we will see. In the following section we will briefly review the ABJ(M) theories, focusing
on known results for its S3 supersymmetric partition function, both from the QFT and
string theory sides. In section 4.2 we will turn to the string theory side and compute
worldsheet instanton contributions to the string partition function in the AdS4 × CP 3

background and show that the string theory computation matches known results from the
QFT. Finally, in section 4.3 we discuss the higher level instantons from the QFT and the
string theory perspective.

4.1 Field theory and known holographic results

The ABJM theory [60] is a three-dimensional N = 6 superconformal field theory with two
gauge groups and opposite CS level U(N)k×U(N)−k. In N = 2 language the theory consists
of four chiral multiplets (Xi=1,2, Yi=1,2) that transform in the bifundamental representation
of the gauge nodes and have U(1)R-charges which are all equal to R[Xi] = R[Yi] = 1/2. In
section 5 we will also discuss more general R-symmetry assignment which is consistent with
supersymmetry. These can be viewed as mass deformations of the ABJM theory.

In [61] a different extension of the ABJM theory was considered which is called the
ABJ theory after the original authors. In this case the CS level of both gauge nodes are
equal but their rank is not U(N + l)k × U(N)−k. This extension will be helpful for our
analysis of worldsheet instantons in the dual geometry and so we will adjust our discussion
to include also this case.

The ABJ(M) S3 partition function was originally localized in [62], reducing the path
integral to a matrix model. To solve this matrix model analytically is still a daunting task.
However, it was found in [63] that at large rank the matrix model is dual to the topological
string on F0 = P1 × P1, which can be solved in an 1/N expansion. Further analyses of the
matrix model were carried out in [11, 64] which ultimately led [65, 66] (and later [67, 68] in
the case of ABJ) to evaluate the topological string perturbation series into an Airy function
of the form

Fpert = − log
[
C−1/3eAAi

(
C−1/3(N −B)

)]
, (4.1)

where

A=Cζ(3)
(

1− k3

16

)
− k2

π2

∞∫
0

dxx log(1−e−2x)
1−ekx

, B= k

24 + 1
3k+ l2

2k−
l

2 , C = 2
π2k

.

(4.2)
The holographic dual to the ABJ(M) theory is provided by the AdS4×S7/Zk background of
eleven-dimensional supergravity [60, 61]. The freely acting Zk orbifolding acts on the Hopf
fiber of S7 and in the large k limit the holographic dual is more accurately given in terms of
the AdS4 × CP 3 solution of type IIA supergravity. The difference in the rank of the gauge
groups, l, is translated in the holographic dual to a B2 period on CP 1 ⊂ CP 3 [61, 69].
Reproducing the full perturbative answer (4.1) with a purely gravity computation is still out
of reach. The reason is that the subleading corrections in the large N -expansion arise from
higher derivative corrections to the type IIA/11d supergravity action, which are currently
unknown. In [70] a different approach was taken, namely supersymmetric localization in
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the supergravity bulk theory was employed to argue for the Airy function behavior of
the partition function. More recently, in [71, 72] the problem was reduced from eleven
dimensions to a four-dimensional one, in which the leading higher derivative corrections to
the action could be constrained by the structure of the four-dimensional theory to a number
of unknown constants which were then fixed by comparison to the QFT. This resulted in a
holographic match of the free energy in the large N expansion to order N1/2.

The perturbative answer in (4.1) are known to have non-perturbative corrections, which
are the main focus of our work. The study of these non-perturbative corrections was already
initiated in the original papers [11, 64]. Shortly after, in a series of papers [66, 73–78], the
analysis of instanton corrections was extended by using the Fermi gas formulation of the
matrix model resulting in a conjectured exact answer as function of λ = N/k and N , for
every instanton level. Generically, these instanton contributions to the free energy take
the form

Finst =
∑
m,n

cm,n(N, l, λ)e−
√

2π(nN/
√

λ+2m
√

λ) , (4.3)

where (m,n) are non-negative integers with (m,n) ̸= (0, 0). Using the F0 topological
string picture, the coefficients cm,0 and c0,n could be systematically computed. The generic
coefficients cm,n were predicted to be completely fixed by cm,0 and c0,n [74].

The two integers n and m in (4.3) enumerate two different instanton effects. On the
type IIA string theory side, these count D2 branes wrapping RP 3 ⊂ CP 3 and fundamental
strings wrapping CP 1 ⊂ CP 3 respectively. In the eleven-dimensional description, the D2
brane and the strings both uplift to M2 branes wrapping different 3-cycles in S7/Zk. We
are interested in the type IIA limit, N ≫ 1 and λ≫ 1, in which the worldsheet instantons
coming from strings wrapping CP 1 ⊂ CP 3 dominate over the D2 brane instantons. Our aim
will be to use string theory directly to compute the leading worldsheet instanton corrections
to the ABJ(M) free energy. Specifically, in this limit, the first non-perturbative worldsheet
instanton correction to the free energy is [11]15

N2

(2πλ)2 cos
(2πl
k

)
e−2π

√
2λ (4.4)

Below, in section 4.2, we will apply the techniques described in section 2 to reproduce
this expression directly from string theory by computing the one-loop partition function of
strings wrapping CP 1 ⊂ CP 3. In section 4.3 we discuss the higher rank instantons briefly
reviewing the field theory prediction in [11, 73–75]. We will then use string theory to partly
recover these results.

4.2 String theory

We start by summarizing the type IIA supergravity background dual to the ABJ(M) theory
on S3. The supergravity background metric is

ds2 = L2
(
ds2

AdS4 + 4ds2
CP 3

)
, (4.5)

15There is a minus sign discrepancy with [11] where the convention is used that Fthere = + log Z.
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where AdS4 has an S3 boundary such that

ds2
AdS4 = dρ2 + sinh2 ρ dΩ2

3 , (4.6)

with dΩ2
3 the round metric on S3. The string length scales and coupling are related to the

coupling constant λ and the rank of the gauge group through

L2 = πℓ2s
√

2λ , e2Φ = g2
s = π(2λ)5/2

N2 . (4.7)

The form fields take the form

C1 = 2Nℓs
λ

ω ,

B2 =
(1

2 − l

k

)
4πℓ2sJ ,

C3 = −3iπNℓ3s√
2λ

UvolS3 ,

(4.8)

where volS3 is the volume form on the (unit radius) S3 and

U = 1
12(−9 cosh ρ+ cosh 3ρ) , (4.9)

such that ∂ρU = sinh3 ρ and we get the proper volume form on AdS4 appearing in dC3. In
the above form fields we also introduced the Kähler form J = dω on CP 3 and its integral
ω. We have normalized our Kähler form in the standard way, such that the volume form on
the unit radius CP 3 is given by J3/6 and the volume itself is π3/6. Notice that we have
added a period to the B2 gauge potential along J . The three-form H3 = dB2 vanishes for
this gauge potential but it plays a role when distinguishing the ABJM theory with two
equal gauge groups U(N)k × U(N)−k from the ABJ theory with different gauge groups
U(N + l)k × U(N)−k where 0 ≤ l < k [61]. The rank mismatch l can be observed from the
quantized D4 brane charge16

1
(2πℓs)3

∫
CP 2

(F4 +H ∧ C1) = l − k

2 . (4.10)

Even though the difference between the different ABJ theories with l = 1, 2, · · · and the
ABJM theory with l = 0 is subleading for most observables in the IIA limit, the difference
is visible to worldsheet instantons as was originally noted in [61] and as we will see. It is
straightforward to verify that the D2 brane charge is N and the D6 brane charge is N/λ = k

as required.
Let us now turn to supersymmetric string configurations in this background which

have finite classical action. Unlike the five-dimensional example explored in section 3.2,
where the string is dynamically stabilized by the presence of a two-form flux, here instead
the string must wrap a topologically non-trivial cycle. The first Betti number of CP 3 is

16The shift with k/2 was explained in [69] to be a direct consequence of quantization conditions in
the background.
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Field Degeneracy M2L2 q µ p

scalars 4 0 0 1
4

1
2

2 −1
2 1 1 1

2 −1
2 −1 1 1

fermions 4 −1 0 1 0
2 0 1 1

4
1
2

2 0 −1 1
4

1
2

Table 2. The spectrum of fluctuations of string modes around the classical instanton solution in
the geometry (4.5).

one and so there is only one possible cycle CP 1 ⊂ CP 3 that the string can wrap. This
embedding was previously studied in [10] where it was shown to be supersymmetric and
some of its properties were analyzed.

Remarkably, the position of the string both in the AdS4 directions, as well as in the
CP 3 directions transverse to CP 1 is completely unfixed. As we will see momentarily and
was already discussed in [10], this freedom for the classical string to move gives rise to
zero-modes in the spectrum of the one-loop theory. The metric on the worldsheet is found
to be (2.10) with L2 = πℓ2s

√
2λ. The classical worldsheet action is therefore easily evaluated

A = 2π
√

2λ , and i

2πℓ2s

∫
B2 = −2πil

k
+ iπ . (4.11)

When including the B2-field, it is clear that there are in fact two possible string solutions
for the two possible signs of the B2-field coupling of the string, these are the string and
anti-string solutions respectively

Scl = 2π
√

2λ±
(2πil

k
− iπ

)
. (4.12)

This matches precisely the field theory prediction (4.4). Higher instantons can be generated
by wrapping multiple strings and/or anti-strings around curves in CP 3 in a similar fashion
and we can convince ourselves that higher instanton terms will scale with e−2πn

√
2λ. The

possible wrappings of strings and anti-strings in CP 3 gets quite complicated to enumerate
as we include higher and higher instantons and so we will start by focusing on the single
instanton level in this subsection. We will comment further on higher instanton terms in
the next subsection.

Our remaining goal is to determine the one-loop partition function (2.6) for the pair
of single string instantons and compare with the field theory prediction. The first factor,
namely the Fradkin-Tseytlin term is easily evaluated

e−SFT = N2

π(2λ)5/2 . (4.13)

Next, we need to compute the masses of the scalar and fermion fluctuations on the worldsheet.
Due to the non-trivial embedding of the string worldsheet inside CP 3, the normal bundle
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is twisted on top of the worldsheet leading to a natural monopole field configuration (2.13)
with respect to which some of the fields are charged. The complete spectrum of one-
loop fluctuations is independent of the B2 charge of the string and is listed in table 2
for both possible worldsheet instantons.17 As anticipated, we have four massless scalars
corresponding to the movement of the string in the AdS4 direction leading to four obvious
bosonic zero-modes. Furthermore we also find a pair of zero-modes for each of the charged
scalar mode. In total we therefore have twelve bosonic zero-modes. The spectrum similarly
reveals twelve fermionic zero-modes. These were already discussed in [10]. Before analyzing
the zero-mode partition function, let us first evaluate the contribution of all other modes.
To this end we can simply use the results of section 2.1 which boils down to

−1
2 log(Sdet′K) = 2s1(1) + 2s1/2(1/4) − 2s1/2(1/4) − 2s1(1) = 0 , (4.14)

where the fermion partition function exactly cancels the bosonic partition function. For the
uncharged fermions in table 2, the starting value in the sum (2.20) is p = 0 but with zero
multiplicity, hence the first non-trivial contribution to the sum is from l = 1, which is why
we write s1(1) in the equation above.

Let us now turn to the contribution of the zero-modes. Usually when we encounter
fermionic zero-modes, the partition function itself is not a good observable and we have
to consider insertions of (fermionic) operators that soak up the zero-modes. However, in
our case each fermionic zero-mode is paired with a bosonic zero-mode. A similar situation
was encountered in [79] in the study of the extremal AdS2 × S2 ‘attractor’ black hole in
IIA string theory where it was emphasized that the combination of bosonic and fermionic
zero-mode can indeed yield a finite result. In order to work out the finite contribution of the
zero-modes, the string worldsheet theory was deformed by a Q-exact term which localized
the worldsheet to the center of AdS2 and the two poles of S2. As a result the zero-modes
are lifted and the partition function can be evaluated.

We expect that also in our case such a localization should be possible and moreover,
it should be similar in spirit to the AdS2 × S2 case. Namely, we expect the worldsheet
to localize to the center of AdS4 and two points on CP 3. In this paper we will not
perform the explicit localization computation to verify this expectation, but instead, we
will deform the background geometry in such a way that all the zero-modes are lifted. The
deformation will ‘localize’ the worldsheet instanton to the center of AdS4 and two possible
string configurations will be allowed for the string and the anti-string, corresponding to
two fixed locations in the internal space, leaving no zero-modes. Furthermore, the partition
function can now be re-evaluated with all zero-modes lifted, and we find that there is
an exact cancellation between the bosonic and fermionic fluctuations. However, due to
the presence of two localization saddles, we effectively find that the zero-mode partition
function is

Zzero-modes = 2 . (4.15)
17Due to the monopole we have to also include the fermionic eigenvalues linear in m1 and m2 (see

eq. (2.19)), instead of solely on M2L2. These modes are, however, zero-modes and thus will have to be dealt
with on their own entirely.
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In the section 5 we will derive this result but for now, we will simply use it to complete the
computation of the string and anti-string partition function.

Combining all ingredients we find the single instanton contribution to the partition
function is (cf. (2.4) and (2.6))

Z
(1)
inst = − A

8π2
N2

π(2λ)5/2 2e−A 2 cos 2πl
k

= − N2

(2πλ)2 e−2π
√

2λ cos 2πl
k
, (4.16)

in perfect agreement with the field theory answer in equation (4.4). Note that crucial
factors of 2 come from (1) the zero-mode partition function, (2) rewriting the contribution
of string and anti-string in terms of a cosine, and (3) the measure factor C(2) which we
fixed already in section 3. The match we find here is therefore a highly non-trivial check of
our value for C(2) in (2.9).

4.3 Higher instantons

In this section we study the higher instanton corrections in the ABJ(M) theory. As we
argued in section 2.2, and confirmed in section 3.3 for the IIA theory dual to 5d SYM, higher
instanton corrections coming from n worldsheets overlapping on the same cycle simply get
an additional factor n−3 compared to the single instanton contribution. Combining both
the strings and anti-strings we find that the higher level instantons coming from worldsheets
wrapping the same cycle in our current background are given by

Z
(n)
inst = (−1)n N2

(2πλ)2n3 e−2πn
√

2λ cos 2πnl
k

, (4.17)

making the full sum of these instantons results in
∞∑

n=1
Z

(n)
inst = N2

2(2πλ)2

(
Li3(−e−2πil/k−2π

√
2λ) + Li3(−e2πil/k−2π

√
2λ)
)
. (4.18)

Comparing to field theory results, however, we find that this answer does not include all
contributions of higher level instantons. In [67, 68, 80, 81] it was found that the higher
instanton corrections in the ABJ(M) theory are determined by Gopakumar-Vafa (GV)
invariants on F0. Explicitly, using the conventions of [80], it is easy to write out the
contributions of higher level instantons in the type IIA limit (at large N and k)

Finst = N2

(4πλ)2

∑
dm=n

∑
d1+d2=d

(−1)n

n3 nd1,d2
0 β

d2−d1
d

ne−2πn
√

2λ , (4.19)

where the coefficients ni,j
0 are the GV invariants on F0, and β = e−2πil/k. Focusing on the

tower of instantons for which d1 + d2 = 1 we find the following contributions

N2

2(2πλ)2

∑
n

(−1)nn1,0
0

n3 cos 2πnl
k

e−2πn
√

2λ =

− N2

2(2πλ)2

(
Li3(−e−2πil/k−2π

√
2λ) + Li3(−e2πil/k−2π

√
2λ)
)
,

(4.20)
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confirming our string theory result in (4.18). The additional contributions from d1 + d2 > 1
are presumably contributions from BPS stacks of (anti-)strings wrapping more complicated
cycles in CP 3.18 For instance, at level two we find that the instanton partition function
contains a contribution from two (anti-)strings wrapping CP 1 ⊂ CP 3, captured by the
n1,0

0 -term, but also there seems to be a contribution coming from a combination of a string
and an anti-string wrapping CP 1 × CP 1 ⊂ CP 3, coming from the n1,1

0 -term. Determining
the set of all allowed supersymmetric two-cycles that the (anti-)strings can wrap requires
computing the analog of Gopakumar-Vafa invariants of CP 3, which of course is not a
Calabi-Yau manifold. We are unaware of the study of such invariants in the literature, but
to determine them a full supersymmetry analysis of multiple (anti-)strings in projective
spaces will be necessary.

5 Instanton corrections in 3d N = 2 and N = 4 CS theories

In this section we will study worldsheet instanton corrections in two additional classes
of three-dimensional supersymmetric CS theories, generalizing the results related to the
ABJ(M) theory presented in the previous section. The first class arises from a one parameter
mass deformation of the ABJ(M) theory [13, 82], which we will refer to as mABJ(M). The
second class arises from M2 branes probing C4/(Zr×Zr)/Zk. These CS theories are circular
quivers consisting of r copies of the ABJM quiver U(N)k × U(N)−k [83–85], which we will
denote as ABJM/r.

5.1 Mass deformed ABJ(M) theory

In this section we will discuss a supersymmetric deformation of ABJ(M) theory on the
round S3. This will lift the zero-modes encountered in section 4 and allow us to compute the
string partition function in a straightforward manner. We start with a brief discussion of the
field theory, we will closely follow the conventions of [13] where the mass deformed ABJM
theory was studied from a holographic perspective. The mass deformation of ABJ(M) we
are interested in can be implemented by allowing the bifundamental chiral multiplets to
posses generic U(1)R symmetry charge

R[X1] = 1
2 + δ1 + δ2 + δ3 , R[X2] = 1

2 + δ1 − δ2 − δ3 ,

R[Y1] = 1
2 − δ1 + δ2 − δ3 , R[Y2] = 1

2 − δ1 − δ2 + δ3 ,
(5.1)

such that the 3D superpotential still has R-charge equal to 2. This particular choice of
R-charges deforms the ABJM Lagrangian with the terms19

LmABJM = LABJM +
3∑

i=1

(δi − 2
∏
j ̸=i

δj)Oi
B + δiOi

F − δ2
i OS

 , (5.2)

18Note that for the higher instantons described in section 3.3 we did not find such complications because
we computed the partition function in a limit for which only strings wrapping the same two-cycle contributed.

19The radius of the three-sphere has been put to one in this equation and can be reinstated through
dimensional analysis if needed.
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where Oi
B and OS are scalar bilinear operators, while Oi

F are fermionic bilinears. Explicit
form of the operators in terms of the chiral fields can be found in [13]. This deformation
preserves N = 2 supersymmetry and U(1)4 of the original R-symmetry in the ABJM theory.
To leading order in N the free energy of the deformed theory is given by [12]

FmABJM = 4
√

2πk1/2N3/2

3

√
R[X1]R[X2]R[Y1]R[Y2] . (5.3)

Apart from the leading order answer, much less is known about the supersymmetric partition
function of this theory on S3, compared to the conformal ABJM theory. In [14] it was
shown that, when one of the deformation parameters vanishes, δ3 = 0, the 1/N perturbative
contributions to the partition function still sum to an Airy function. Additionally, the
author of [14] was able to compute the first non-perturbative contributions to the partition
function in a small k expansion. Partly inspired by this result, it was conjectured in [86–88]
that for generic k and mass parameters, i.e. δ3 ̸= 0, the 1/N perturbative contributions
to the partition function are still of Airy-type. However, the instanton corrections to the
partition function are generically not known for arbitrary deformation parameters.

As before, our interest will lie in the non-perturbative corrections to the supersymmetric
S3 free energy. Using string theory, we will give a prediction for the leading order worldsheet
instanton correction to the partition function and discuss the possible structure of the higher
instantons. We will perform our analysis in simplifying limits of the general deformation
in (5.1). Two notable limits are of interest to us since their holographic duals are easier
to construct in ten and eleven dimensions. The first limit is where all three deformation
parameters are equal:

δ ≡ δ1 = δ2 = δ3 . (5.4)

This deformation preserves an SU(3) × U(1) symmetry20 from the original R-symmetry in
the ABJM theory. The ten and eleven-dimensional holographic duals can be constructed
starting from the four-dimensional solution in [13] and uplifting them using formulae in [89].
We present these backgrounds in appendix C but they do not turn out to be useful for lifting
the zero-modes discussed in section 4.2. Instead, we focus on an even simpler deformation
where only one of the three δ’s is non-trivial;

δ ≡ δ1 , δ2 = δ3 = 0 . (5.5)

In this case, the symmetry is enhanced to SO(4) × U(1).21 In the next subsection we will
present the ten-dimensional geometry dual to this deformation and consider worldsheet
instantons in that background. We will find that the zero-modes of the string can be lifted in
such a way that a finite value (4.15) can be assigned to the zero-mode partition function by
taking the δ → 0 limit. Furthermore, we can give a prediction for the worldsheet instanton
contribution to the partition function for generic values of δ.

A subtle point we would like to emphasize before describing the ten-dimensional uplifts
of the mass deformations is that all deformations coming from (5.1) come in pairs of

20For k = 1, 2 the symmetry is enhanced to SU(3) × U(1) × U(1).
21For k = 1, 2 the symmetry is enhanced to SO(4) × SO(4).
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two branches. The difference between the two branches is given by the choice of Killing-
spinor [13], and fixes how the S3 isometry group SO(4) = SU(2)ℓ × SU(2)r is embedded
in the full preserved supergroup. In particular, one branch preserves SU(2)ℓ × OSp(2|2)r,
while the other preserves OSp(2|2)ℓ × SU(2)r. From now one we will label these branches
mABJ(M)+ and mABJ(M)− respectively.

5.2 Single mass deformation of ABJ(M)

In this section we will uplift the SO(4) × SO(4) invariant solution of [13]. In their language
this is the solution for which c2 = c3 = 0, but c1 ≡ c ̸= 0. This choice of parameters
exactly corresponds to the R-charge deformation (5.5) and in this case c = δ/2 [13]. The
eleven-dimensional solution is a straight-forward application of the uplift formulae in [90]
and can be found in appendix C (see also [91] where the uplift was performed for a similar
application). Once the eleven-dimensional solution is found, we can perform a direct
dimensional reduction to ten dimensions. It turns out that the only difference between the
two branches of mass deformations mABJ(M)± is encoded in the form fields, as we will
see shortly. The metric is a direct product of the round metric on AdS4 and a squashed
metric on CP 3 where the squashing depends on the radial variable in AdS4. We will write
the explicit metric on AdS4 as before in (4.6). Using this we find the squashed metric on
CP 3 is

ds2
6 = dθ2+ cos2 θ

4Y1
(dθ2

1 +sin2 θ1dϕ2
1)+ sin2 θ

4Y2
(dθ2

2 +sin2 θ2dϕ2
2)+sin2 θ cos2 θΣ2 (5.6)

where
Σ = dφ+ 1

2 cos θ1 dϕ1 −
1
2 cos θ2 dϕ2 . (5.7)

The two functions Y1 and Y2 implement the squashing of the internal space and take the form

Y1 = 1 + c
cos2 θ

cosh2(ρ/2)
, Y2 = 1 − c

sin2 θ

cosh2(ρ/2)
, (5.8)

where the parameter c controls the squashing. Notice that the squashing functions depend
on the radial variable of AdS4. This means that, even though, naively the four-dimensional
metric exhibits an SO(5, 1) isometry, the full ten-dimensional metric does not. The ten-
dimensional metric preserves an SO(4) isometry generated by the rotations of the three-
sphere in AdS4, an SU(2) × SU(2) generated by rotations of the two 2-spheres, and a U(1)
generated by a shift of the angle φ. The metric (5.6) on CP 3 is slightly non-standard, and
so we recall some quantities of the undeformed metric (c → 0) in our coordinates. The
Kähler form of the undeformed metric can be found as J = dω where

ω = 1
4(cos(2θ)dφ+ cos2 θ cos θ1dϕ1 + sin2 θ cos θ2dϕ2) . (5.9)

It is easy to verify that the volume form on the undeformed space is J3/3!, using the fact
that φ is 2π-periodic and 0 < θ < π/2 we obtain that∫

J3

3! = π3

3! , (5.10)
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as required. The ten-dimensional metric and dilaton can now be written as

ds2
10 = L2(ds2

AdS4 + 4ds2
6) ,

e2Φ = π(2λ)5/2

N2Y1Y2
,

(5.11)

while the form fields are

C1 = Nℓs
λ

(
2ω − c sin2 θ cos2 θ

cosh2(ρ/2)
Σ
)
,

B2 = ± iπcℓ2s
√

2λ
cosh2(ρ/2)

(
− cos4 θ

Y1
volS2

1
+ sin4 θ

Y2
volS2

2

)
+
(1

2 − l

k

)
4πℓ2sJ ,

C3 = Niπℓ3s√
2λ

(
− 3UvolS3 ±

c

cosh2(ρ/2)
dφ ∧

(cos4 θ

Y1
volS2

1
+ sin4 θ

Y2
volS2

2

))
,

(5.12)

where the choice of signs depends on the mABJ(M)± branch of mass deformation chosen.
In this expression we have introduced the volume forms of the unit-radius spheres. The
volume form on the S3 slices of AdS4 is denoted by volS3 , the volume form on S2

1 spanned
by coordinates (θ1, ϕ1) is denoted by volS2

1
, and the volume form on S2

2 spanned by the
coordinates (θ2, ϕ2) is denoted by volS2

2
. Furthermore, the function U is given by

U = 1
12
(
− 9 cosh ρ+ cosh(3ρ) + 16c cos(2θ) sinh4(ρ/2)

)
, (5.13)

and it reduces to (4.9) in the c → 0 limit. Notice that we have added a term to the B2
form field along J to incorporate the ABJ theory as before. All quantized fluxes are the
same as for the undeformed metric which means that our ten-dimensional solution describes
the holographic dual to U(N + l)k × U(N)−k ABJ theory deformed by a mass parameter
related to c.

We can use the standard formula to compute the leading order contribution to the
on-shell supergravity action, by relating the effective four-dimensional Newton constant
G(4) to the ten-dimensional Newton constant times the volume (weighted by the dilaton) of
the six-dimensional space

Ssugra = πL2

2G(4)
= 16π3L2

(2πℓs)8

∫
e−2Φ√g6 = 2πN2

3
√

2λ
. (5.14)

This expression is independent of the deformation parameter c in agreement with [13].
However, the free energy of mass deformed ABJ(M) does depend on the parameter c in a
non-trivial manner, even at leading order. The discrepancy comes from the fact that we still
have to Legendre transform the on-shell action to account for the fact that the deformation
parameter c is really a source for a scalar that is subject to alternative quantization. This
procedure was performed in [13] resulting in the leading order free energy

F = 2πN2

3
√

2λ
(1 − c2) , (5.15)

matching the field theory prediction [12] after identifying δ with 2c.
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Branch string charge Scl # zero-modes

±1 2π
√

2λ∓ 2πi( l
k − 1

2) 12
mABJ(M)± ∓1 2π

√
2λ1+c

1−c ± 2πi( l
k − 1

2) 0
∓1 2π

√
2λ1−c

1+c ± 2πi( l
k − 1

2) 0

Table 3. The possible string and anti-string solutions in the mass-deformed ABJ(M) geometry
together with their classical action. For each branch mABJ(M)± we find a pair of stabilized
(anti-)strings and an unfixed (anti-)string. The unstabilized string behaves exactly as in the
undeformed ABJ(M) geometry discussed in section 4.2, namely the spectrum and number of zero-
modes is unchanged.

We will now analyze worldsheet instantons in the two backgrounds described above. In
all cases, the string (or anti-string) wraps a diagonal combination of the two 2-spheres S2

1
and S2

2 . It is easy to compute the classical area and B-field contribution to the string (and
anti-string) action to be22

A = 2π
√

2λ(Y1Y2)−1 , and B = i

2πℓ2s

∫
B2 = ±2π

√
2λ
(
1 − (Y1Y2)−1)− 2πil

k
+ iπ ,

(5.16)
where again the sign is determined by the choice of mass deformation. For the moment
focussing on the mABJ(M)+ branch we see that for the string, that is when we add the
terms A and B, the two c-dependent contributions cancel and we recover the classical action
we obtained for the undeformed geometry. In this case the classical position of the string is
also not fixed since all ρ-dependence and dependence on the remaining CP 3 coordinates
drops out. When analysing the spectrum we recover exactly the same spectrum as for the
undeformed theory, cf. table 2, which is again plagued by zero-modes. On the other hand
for the anti-string, the two c-dependent terms add up and we must extremize the resulting
function. We find two extrema, the first one at

ρ = 0 and θ = π/2 , (5.17)

and the second one at
ρ = 0 and θ = 0 . (5.18)

A similar analysis can also be done for the mABJ(M)− branch. In this case the situation is
exactly reversed, namely here we find that the string is stabilized to two fixed positions
((5.17) and (5.18)), whereas the anti-string is left unfixed with its associated zero-modes. We
summarize the classical on-shell action of the (anti-)strings, and their number of zero-modes,
for both mABJM± branches in table 3.

By using the two branches in tandem we can now compute both the string and anti-
string partition functions: we are going to use the mABJ(M)− branch in order to lift

22This classical contribution to the partition function is consistent with the prediction on the QFT side
in [14], when the identification ξ = η ≡ c is made in that paper. We are thankful to Tomoki Nosaka for
pointing this out.
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Field Degeneracy M2L2 q µ p

scalars 4 ±c
(1±c)2 0 1

4 − ±c
(1±c)2

1
2

2 1
2 − 1

(1±c)2 1 1
(1±c)2 1

2 1
2 − 1

(1±c)2 −1 1
(1±c)2 1

fermions 4 − 1
(1±c)2 0 1

(1±c)2 0
2 ±c

(1±c)2 1 1
4 − ±c

(1±c)2
1
2

2 ±c
(1±c)2 −1 1

4 − ±c
(1±c)2

1
2

Table 4. The spectrum of fluctuations of string modes around the classical instanton solution in
the single mass deformed ABJ geometry. The spectra shown correspond to the (anti-)strings with
classical action equals to 2π

√
2λ 1∓c

1±c .

the string zero-modes present in the undeformed ABJ(M) theory, while we are going to
utilize the mABJ(M)+ branch to eliminate the anti-string zero modes of the undeformed
case. Since there are no zero-modes for the anti-string in the mABJ(M)+ branch and
the string in the mABJ(M)− branch, we are able to compute the partition functions in a
straightforward manner. In order to obtain the partition functions of strings and anti-strings
with zero-modes, we simply tune our deformation parameter c back to zero, where all the
zero-modes re-emerge. By assuming that this limit is smooth, we can safely assign a value
to the zero-mode partition function for the string and anti-string. As a by-product, this
also allows us to give a prediction for the instanton contributions to the partition function
of the mass-deformed ABJ(M) theory.

Let us then go ahead and compute the partition function for the string and anti-string
in the mABJ(M)− and mABJ(M)+ branches respectively. We start by noticing that the
combination of the measure factor C(2) and the dilaton contribution is the same for all
cases, and it is independent of c:

C(2)e−SFT = A
8π2 e−2Φ = N2

16π2λ2 . (5.19)

The entire c-dependence of the string partition function therefore comes from the fluctuations
of the string modes.

Our next task is to compute the spectrum of the deformed (anti-)strings. As explained
above, the classical action of the string or anti-string is not affected by the deformation
parameter c, depending on the sign choice in mABJ(M)±, hence the corresponding fluctu-
ations for these strings have exactly the same spectrum as in the undeformed geometry,
i.e. we recover exactly table 2. For the other string, however, the spectra are modified.
In table 4, we report the spectrum corresponding to string fluctuations around the clas-
sical solution (5.18), where the upper sign in all entries is associated to the anti-strings
in the mABJ(M)+ deformation, while the lower signs are associated to strings in the
mABJ(M)− deformation.
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The remarkable feature of the spectrum in table 4 is that the degeneracies are exactly
as for the undeformed ABJ(M) instantons. Moreover, the deformation respects the splitting
among the different modes as it was for the undeformed case, in such a way that the shifted
masses µ for uncharged (charged) fermions and charged (uncharged) bosons are equal. Since
we do not have any zero-modes for generic non-zero values of c,23 this means that, except
for the lowest level fermionic states that give contributions that depend linearly on m1 and
m2, there is an exact cancellation between fermions and bosons as we found for the non
zero-modes in the undeformed theory (4.14). The eigenvalues of the lowest weight states
are given by

m1L = 1
2sgn(q) , m2L = 1 ∓ c

2(1 ± c) (5.20)

where the ± signs are correlated exactly as in table 4. Here sgn(q) refers to the sign of the
charge of the relevant fermion which can also be read from table 4. The contributions of the
quantum fluctuations for each one of the deformed and stabilized (anti-)strings is therefore

−1
2 log(SdetK) = 2s1

( 1
(1 ± c)2

)
+ 2s1/2

(
1/4 − ±c

(1 ± c)2

)
− 2s1/2

(
1/4 − ±c

(1 ± c)2

)
− 2s1

( 1
(1 ± c)2

)
+ log(1 ± c)2 = log(1 ± c)2 ,

(5.21)

where the final contribution purely arises from the lowest weight states, as given in equa-
tion (2.19) and appendix B. The conclusion is thus that the anti-string partition function of
the mABJ(M)+ branch and the string partition function of the mABJ(M)− branch consists
each of two saddles. These two saddles contribute in a similar manner to the partition
function, differing by the sign of c, and when c is taken to vanish their contribution is simply
1. Hence, we can safely conclude that the zero-mode partition function we encountered in
the undeformed theory simply counts how many saddles the string (or anti-string) has in
the deformed theory. Our computation shows that for either the string or the anti-string
there are two saddles when they are deformed and so we conclude that

Zzero-modes = 2 . (5.22)

Armed with this result, we can now also give a prediction for the first instanton
correction of the single mass deformed ABJ(M) theory for the two branches:

mABJ(M)± : Z
(1)
inst = − N2

(4πλ)2

(
2e−2π

√
2λ± 2πil

k + (1 − c)2e−2π
√

2λ 1+c
1−c

∓ 2πil
k

+ (1 + c)2e−2π
√

2λ 1−c
1+c

∓ 2πil
k

)
.

(5.23)

Applying our results for the wrapping of multiple strings in section 2.2, we predict the
existence of a tower of higher level worldsheet instantons in the mass deformed theories

23We are interested in small non-zero values of c around the value c = 0. Each of two extrema (5.17)
and (5.18) impose symmetric (in c → −c) restrictions on the interval of the mass deformation parameter in
order to avoid zero-modes. As a result, we can safely consider − 1

2 < c < 1
2 and c ̸= 0.
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that can be resummed into

N2

(4πλ)2

(
2 Li3

[
−e−2π

√
2λ± 2πil

k

]
+ (1 − c)2Li3

[
−e−2π

√
2λ 1+c

1−c
∓ 2πil

k

]

+ (1 + c)2Li3
[
−e−2π

√
2λ 1−c

1+c
∓ 2πil

k

])
.

(5.24)

At this stage we note that in order to give a definite prediction for the first instanton
correction to the free energy of the mass deformed ABJ(M) we may have to perform the
Legendre transform to account for alternative quantization (see [13, 92] for the relevant
computation in our context). It is not clear how to proceed with it using our approach,
since we should vary the instanton partition function with respect to the naïve source as
an intermediate step. Performing this variation is however not practical since it implies
varying the quantum effective action of the string. A more appropriate approach would
be to compute the instanton correction to 4D supergravity and phrase the computation
entirely in that language. It would be interesting to either explicitly work out the instanton
corrected 4D supergravity theory in order to facilitate the comparison to field theory or to
perform a direct field theory computation of the instanton effects for finite mass parameter.

5.3 Orbifolds of the ABJM theory

As mentioned at the beginning of this section, the second class of examples we will study are
N = 4 circular quivers constructed from r copies of the ABJM theory with finite CS level k.
In the large k limit, these are realized in type IIA string theory as the theory of D2 branes
probing the orbifold (C4/Zr × Zr)/Zk, where the orbifold action is realized as followed [84]

(z1, z2, z3, z4) →
(
e

2πi
r z1, e−

2πi
r z2, z3, z4

)
,

(z1, z2, z3, z4) →
(
z1, z2, e

2πi
r z3, e−

2πi
r z4

)
,

(z1, z2, z3, z4) →
(
e

2πi
kr z1, e−

2πi
kr z2, e

2πi
kr z3, e−

2πi
kr z4

)
.

(5.25)

The perturbative contribution to the supersymmetric partition function of this theory was
found to be an Airy function [15] in a similar fashion as the ABJM theory. At large N ,
the free energy of the orbifolded theory is the same as the free energy of the ABJM theory
rescaled by the orbifold number r [84]:

F pert
ABJM/r = rF pert

ABJM . (5.26)

This can be demonstrated explicitly from the holographic dual. In type IIA string theory
the dual to the orbifolded theory is expressed as

ds2
10 = L2

(
ds2

AdS4 + 4ds2
CP 3/Zr

)
,

e2Φ = g2
s = π(2λ)5/2

N2r2 ,
(5.27)
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where the length scale L is related to the ’t Hooft coupling as usual L2 = πℓ2s
√

2λ. Using
this, the holographic free energy is easily computed to be

Ssugra = πL2

2G(4)
= 16π3L2

(2πℓs)8
1
g2

s

vol6 = 2πN2r

3
√

2λ
, (5.28)

which indeed is the rescaled ABJM free energy by a factor r.
Due to the orbifold, the worldsheet instanton now wraps CP 1/Zr in the string theory

background. The contribution of the level one worldsheet instantons to the partition
function was argued to be [15, 16]

N2r4

(2πλ)2 e−
2π
r

√
2λ . (5.29)

This result can be understood from string theory using our results. Comparing with the
original ABJM computation, the orbifolding now acts on the worldsheet. Therefore the
classical area is scaled down by a factor r. This can be observed from the exponential
behaviour of the instanton contribution. This is reminiscent of our earlier discussion of
higher instantons where the multiple winding of the string rescales the effective area. Notice
however, that this rescaling of the area is slightly different from what we have seen in
previous examples for higher instantons. For higher instantons the effective area of the
worldsheet is multiplied by an integer whereas now, the CP 1 is acted upon by an orbifolding
of the background geometry and so its area is correspondingly scaled down A = 2π

√
λ/r.

Just as for higher instantons, the orbifolding of the worldsheet renders it mildly singular,
namely the poles of the spheres are replaced by orbifolds with associated deficit angles.
Due to the two orbifold points on the worldsheet, we must include the factors z2

1/r just as
we did for higher instantons. Additionally, in this case we must also use the rescaled area
in the prefactor C(2), this is different to the case of higher instantons where the string
fluctuations are always measured with respect to the area of the single string worldsheet.
Besides these modifications, the rest of the computation proceeds effectively identically to
what we saw for the ABJM geometry. In particular the (dimensionless) spectrum of string
fluctuations is identical to the original ABJM spectrum. Combining the factors we find

Z
(1)
inst = 2 A

8π2 z
2
1/r g

−2
s (Sdet′K)−1/2Zzero-modese−A+πi

= − N2r4

(2πλ)2 e−
2π
r

√
2λ ,

(5.30)

where the first factor of 2 is due to the string and anti-string both contributing to the
answer. In order to evaluate the second line, we used our result for the zero-mode partition
function (5.22) and the non-zero mode contribution (4.14) to find a precise match with the
field theory result (5.29). Following similar steps as in 4.3 we find that there is a series of
higher instanton contributions which can be summed into

N2r4

(2πλ)2 Li3
(
−e−

2π
r

√
2λ
)
. (5.31)
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These instantons arise from worldsheets wrapping the same sphere multiple times. We
know, however, that there are more complicated cycles that the worldsheets can wrap,
which are not incorporated in this answer. Working out the contributions of such higher
instantons to the string partition function is left for future work.

6 Summary and future prospects

In this paper we computed worldsheet instanton contributions to the string partition
function in the low energy limit in a number of holographic type IIA backgrounds. Since
the string partition function is sensitive to unknown measure factors, we employ holography
and exact results on the QFT side obtained by supersymmetric localization, to fix all
contributions to the level one genus zero worldsheet instanton at one-loop. To summarize,
we find that for genus zero

Z
(1)
inst = A

8π2 e−SFT(Sdet′K)−1/2Zzero-modes e−Scl , (6.1)

where A is the area of the worldsheet, SFT is the Fradkin-Tseytlin term, and the superde-
terminant takes all kinetic operators of the CFT living on the worldsheet into account,
excluding the zero-modes, which have to be analyzed separately and are collected in
Zzero-modes. Finally, Scl captures the classical contribution of the string on-shell action. Two
highly non-trivial checks for the validity of this formula are the explicit matches with known
QFT results in maximal SYM on S5 with gauge group U(N), and the ABJ(M) theory on
S3 with gauge group U(N + l)k × U(N)−k. Specifically we find at large N that

5d SYM : Z
(1)
inst = −N

2

ξ2 e−ξ ,

ABJ(M) : Z
(1)
inst = − N2

(2πλ)2 e−2π
√

2λ cos 2πl
k
,

(6.2)

matching field theory results [7, 11] in the type IIA limit. Furthermore, for a multi-wound
string on a sphere we conjecture that its one-loop contribution is given by that of a single
worldsheet instanton times a correction factor z2

n solely depending on an angular excess
of 2π(n− 1) on the poles, due to the multiple windings. To determine the correction we
studied multi-wound strings wrapping a disk in AdS5 × S5, dual to 1/2-BPS Wilson loops
in four-dimensional N = 4 SYM. Comparing to localization results in the QFT [3] we
find that zn = n−3/2. Since a multi-wound string wrapping on a sphere contains two poles
with excess angles, compared to a single pole when wrapping a disk, we conclude that the
corresponding n-th level worldsheet instanton is given by

Z
(n)
inst = A

8π2n3 e−SFT(Sdet′K)−1/2Zzero-modese−nScl . (6.3)

Indeed, when applying this formula to the five-dimensional SYM theory we find that

5d SYM :
∞∑

n=1
Z

(n)
inst = −N

2

ξ2 Li3(e−ξ) , (6.4)

– 34 –



J
H
E
P
0
8
(
2
0
2
3
)
2
1
8

matching the field theory result in (3.3) on the nose. For the ABJ(M) theory the result of
summing these multi-wound strings is

ABJ(M) :
∞∑

n=1
Z

(n)
inst = N2

2(2πλ)2

(
Li3(−e−2πil/k−2π

√
2λ) + Li3(−e2πil/k−2π

√
2λ)
)
. (6.5)

Comparing to the field theory [11, 67, 73] we find that this answer only partially matches.
The reason is that the worldsheet instantons can wrap more complicated curves in the CP 3

background, where our formula only covers the strings wrapping CP 1 ⊂ CP 3 multiple times.
Determining all possible embeddings of the worldsheet instantons requires a careful analysis
of the BPS conditions for multiple strings. This is an interesting mathematical problem
as it requires the knowledge of Gopakumar-Vafa-like invariants for the non-Calabi-Yau
manifold CP 3.

As an application of our results we predict the worldsheet instanton corrections in
two deformations of the ABJ(M) theory, for which the contributions to the dual QFT free
energy is not known in the literature. The first example we discuss is the mass-deformed
ABJ(M) theory preserving an SO(4) × U(1) internal symmetry. As discussed in [13], there
are two such branches of massive deformations, with mass parameter c, which we called
mABJM±. For both these branches we have computed a tower of instanton contributions
that sum to

mABJM± :
∞∑

n=1
Z

(n)
inst = N2

(4πλ)2

(
2Li3

[
−e−2π

√
2λ± 2πil

k

]
+(1−c)2Li3

[
−e−2π

√
2λ 1+c

1−c
∓ 2πil

k

]
+(1+c)2Li3

[
−e−2π

√
2λ 1−c

1+c
∓ 2πil

k

])
,

(6.6)
where the ± signs are determined by the choice for the branch of the deformation. This
may not be compared directly with the free energy of the dual QFT as we may have to
Legendre transform our answer to account for alternative quantization of the scalar that is
turned on in the four-dimensional supergravity solution and is controlled by the parameter
c. Since we do not have the instanton correction to the four-dimensional supergravity (in
particular the Kähler potential) it is not clear how to carry out this Legendre transform.

The second example is an orbifold of the ABJM theory, preserving N = 4 supersymme-
try, constructed from r copies of the ABJM theory. The type IIA description arises from a
stack of D2 branes probing the orbifold (C4/Z2

r)/Zk. The worldsheet instantons coming
from strings wrapping CP 1/Zr multiple times in the background sum to give

ABJM/r :
∞∑

n=1
Z

(n)
inst = N2r4

(2πλ)2 Li3
(
−e−

2π
r

√
2λ
)
. (6.7)

A non-trivial consistency check for this result is that the first level instanton matches
the QFT computation in [16]. It is important to remember that the expressions in (6.6)
and (6.7) are not the complete answers for n > 1, cf. discussions in sections 4.3 and 5.3.

As a byproduct of our holographic study of mass-deformed ABJ(M) theory we present
in appendix C novel eleven-dimensional and type IIA supergravity backgrounds, which are
dual to mass deformations of the ABJ(M) theory preserving SU(3)×U(1)2 and SU(2)2×U(1)
internal symmetries respectively.
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All of our results are directly obtained in type IIA string theory, it will be interesting
to uplift this analysis to eleven dimensions. Recently, a similar study as we have presented
in this paper was applied to compute the one-loop partition function of an M2-brane dual
to a Wilson loop [93]. Computing the one-loop partition function of M2-brane instantons
in a similar fashion will allow us to generalize our results away from the large ’t Hooft
coupling limit. Specifically, the instanton correction to 5D SYM computed in this paper
is particularly suited for this approach when uplifted to M2-branes eleven dimensions.
These branes wrap an S2 × S1

β in the AdS7 × S4 M-theory background, and so is a product
space just as it happened in [93]. Here S1

β ⊂ AdS7 and S2 ⊂ S4. The contributions of
such M2-branes to the supersymmetric partition function of the (2, 0) theory living on
the S5 × S1

β boundary of AdS7 was computed before using the so called giant graviton
expansion [53]. The partition function of these branes was computed by localizing the
ABJM theory living on the M2-branes in the curved background. It will be interesting
to make a direct comparison between the giant graviton expansion and our exact result
in (6.4). Utilizing such a direct comparison, we may derive C(χ = 2n) in a similar spirit to
how C(χ = 2n+ 1) was derived in [93].

The worldsheet instantons in the ABJ(M) theory on the other hand uplift to M2-branes
wrapping Lens-spaces in the eleven-dimensional AdS4 × S7/Zk background. It was argued
in the field theory that the contributions of these instantons can be summed into an Airy
function [73]. Inspired by this result, and the giant graviton expansion, one can wonder if
there exists a giant instanton expansion of M2-branes encompassing the non-perturbative
corrections to the ABJ(M) S3 supersymmetric partition function, which can be computed
by localizing the ABJM theory living on the M2-branes wrapping Lens-spaces in the curved
internal geometry. Such a computation would generalize our result to any value of k in the
field theory, and additionally the analysis would also include the D2-brane instantons in the
ABJ(M) matrix model, which we have neglected in our analysis since they are subleading
in N in the IIA limit.

A final prospective application of our results lays in the context of black holes and the
quantum corrections to its Bekenstein-Hawking entropy. Studying these corrections directly
in string theory remains a hard task. One way to circumvent computing the string partition
function in a black hole background is to reduce to a lower dimensional supergravity theory
and apply a supersymmetric localization procedure in the near horizon region of the black
hole [94–96]. This has led to impressive progress and a large body of literature computing
exact results for the black hole entropy, see for example [97–99] for recent discussions on the
topic. However, a full understanding of these corrections is still missing due to the fact that
the underlying string path integral is unknown and thus measure factors in the localized
supergravity path integral remain free parameters. These types of measure factors similarly
played a key role in this paper, and are captured in what we call C(χ), we fixed C(2) using
holography. It will therefore be of particular interest to apply our results to worldsheet
instanton corrections of the type IIA partition function in four-dimensional black hole
backgrounds.24 Especially for asymptotically AdS black holes where localization procedures
have also been attempted [103], but are so far not as well understood. On the other hand,

24In [100] worldsheet instantons were studied in AdS2 × S2 × CY3 backgrounds of type IIA string theory
providing an explicit realization of the OSV conjecture [101, 102].
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these AdS black holes and their entropy have a direct holographic interpretation in the
dual three-dimensional field theory as supersymmetric indices which can be computed using
supersymmetric localization. Our approach should be directly applicable to determining
the non-perturbative contributions to these indices coming from worldsheet instantons and
is a subject of future work.

Lastly, we mention that the type IIA limit of the S5 partition function in (3.3) poses
an interesting holographic challenge. The three perturbative terms in the strong coupling
expansion should be reproduced by evaluating the supergravity action including higher
derivative terms. The leading order term was found by a careful analysis of the holographic
renormalization of the two-derivative action in [51]. It would be very interesting to study
higher-derivative corrections to eleven-dimensional or seven-dimensional supergravity in
order to reproduce the subleading terms in the field theory expression. Together with our
results for the series of non-perturbative terms in section 3, this would constitute a truly
remarkable precision test of holography, at leading order in N , but exact in α′.
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A Measure factors and determinants

When we compute the one-loop partition function of the string, we start by expanding the
action to quadratic order around a given classical configuration. The result is

Sstring ≃ Scl + SFT + SK , (A.1)

where Scl is the classical action of the string and SFT is its Fradkin-Tseytlin action. The
action of quadratic fluctuations is collected in SK, which can be denoted by

SK = 1
4πℓ2s

(
⟨ζa,Kabζb⟩ + ⟨θ̄a,Dabθb⟩

)
, (A.2)

where
⟨ζ, ζ ′⟩ =

∫
volγζζ ′ . (A.3)

In the action (A.2), the eight physical bosonic modes of the string are denoted by ζa, and
the eight fermionic modes are denoted by θa. The bosonic operators Kab and Dab can
in principle mix the various string fluctuations. In particular when there is a non-trivial
connection, such a mixing occurs. The measure is defined such that∫

[Dζ] e
− 1

4πℓ2
s
⟨ζ,ζ⟩

=
∫

[Dθ] e
− 1

4πℓ2
s
⟨θ̄,θ⟩

= 1 . (A.4)
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This means that the path integral over the one-loop action (A.2) reduces to∫
[Dζ][Dθ] e−SK = (SdetK)−1/2 ≡ (detDab)1/2

(detKab)1/2 . (A.5)

When we have zero-modes of either the bosonic operators or fermionic ones, the one-loop
action vanishes for those modes, and they have to be treated differently. Usually, we have
to carry out an integral over the zero-mode collective coordinates over their target space.
For bosonic zero-modes, this gives the volume of the zero-mode target space, whereas for
fermionic zero-modes, the integral vanishes, which reduces the entire partition function to
zero. In this paper, we encounter a combination of bosonic zero-modes with a non-compact
target space (therefore giving infinite volume factors), together with fermionic zero-modes.
Regulating these zero-modes in a consistent way gives a finite answer for the combined
zero-mode partition function, even though individually they would make the partition
function diverge or vanish. The conclusion is that whenever we encounter zero-modes, we
must treat them separately from the non-zero-modes, and so we more accurately write∫

[Dζ][Dθ] e−SK = (Sdet′K)−1/2Zzero-modes , (A.6)

where the partition function of the zero-modes has been separated out, leaving only a
determinant over the non-zero-modes indicated with a prime on the Sdet.

In this discussion, we have not considered additional measure factors that arise in string
theory. These factors are not as well-understood as the field theory contribution discussed
here, and are difficult to calculate precisely. However, we can account for these factors by
collecting them into a single quantity, denoted as C(χ). To determine C(χ), we compare
the string theory calculation to the corresponding calculation in the dual field theory, which
allows us to fix its value.

B Eigenspinors and the spectrum of fermionic operators

In this appendix we compute the determinant of the kinetic operators encountered for
the fermions

D = i /D +m1σ3 +m2 , (B.1)

where /D = /∇ − iq /A, /∂ = σ1∂θ + σ2∂φ and σ1,2,3 are the standard Pauli matrices. This
appendix relies heavily on the results of [31, 32, 104] but we refer also to more recent
papers [33–36] where a similar problem was analyzed. In order to match to the conventions
used in e.g. [104], we change a gauge for the magnetic potential A such that it reads

A = −1
2 cos θ dφ . (B.2)

The fermionic operators act on two-component spin-1/2 fermions and are defined in terms
of the curved metric on S2 with length scale L

ds2
2 = L2(dθ2 + sin2 θ dφ2) . (B.3)
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In order to eliminate the dependence on the length scale L we compute det(LD). Further-
more, in order to obtain a positive spectrum for D we always compute the determinant of
σ3 times D in what follows.

In order to determine the spectrum of our operators we first introduce the spin-weighted
spherical harmonics or monopole spherical harmonics (see [104]). These are generalizations
of the standard spherical harmonics to functions that transform as f 7→ eisφf under rotations
around the poles. Here the (half)-integer s is the spin weight of the function f . Define the
two operators

ð(s)f = − sins θ [∂θ − i csc θ ∂φ] (sin−s θ f) ,

ð̄(s)f = − sin−s θ [∂θ + i csc θ ∂φ] (sins θ f) ,
(B.4)

which act on the spin weighted function. We will often omit writing the explicit spin weight
where it can be inferred from the context. First, note that the ð operators satisfy the
commutation relation

ð̄(s+1)ð(s) − ð(s−1)ð̄(s) = sRL2 = 2s , (B.5)

where R = 2/L2 is the Ricci scalar on S2. The commutation relation (B.5) implies that
the operators ð and ð̄ act as raising and lowering operators on the spin weight s. The
spin-weighted spherical harmonics sYlm (for integer s) are obtained by raising and lowering
the spin weight of the standard spherical harmonics 0Ylm ≡ Ylm using

ð sYlm =
√

(l − s)(l + s+ 1) s+1Ylm ,

ð̄ sYlm = −
√

(l + s)(l − s+ 1) s−1Ylm .
(B.6)

The spin weighted spherical harmonics are simultaneous eigenfunctions of ðð̄, ð̄ð, L2, and
Lz which all commute.25 The eigenvalues are given by

ðð̄ sYlm = (l + s)(l − s+ 1) sYlm ,

ð̄ð sYlm = (l − s)(l + s+ 1) sYlm ,

L2
sYlm = l(l + 1) sYlm ,

Lz sYlm = m sYlm .

(B.7)

By construction l ≥ 0 and −l ≤ m ≤ l. However the spin weight s puts a further restriction
on l since ð lYlm = ð̄−lYlm = 0 which indicates that l ≥ |s|. The spin weighted spherical
harmonics form a complete orthonormal basis for each s in this range

1
L2

∫
S2

√
g sYlm sYl′m′ = δll′δmm′ . (B.8)

Returning to the original problem, it is now a simple exercise to verify that

LD =
[
(m1 +m2)L −ið(s−1)

−ið̄(s) −(m1 −m2)L

]
, (B.9)

25The explicit form of L can be found in [104].
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where
s = 1

2 − q

2 . (B.10)

The spin weight of the two component functions of the spinor is therefore s and s − 1.
Similarly we find

L2D̃D =
[
−ðð̄ +M2

fL
2 0

0 −ð̄ð +M2
fL

2

]
. (B.11)

This shows that the spectral problem for our fermionic operator D can be translated to
understanding the spectral problem for ðð̄ and ð̄ð. In particular, the eigenspinors of
the squared fermionic operator (B.11) can be expressed in terms of the spin-weighted
spherical harmonics

ψlm =
[

sYlm

s−1Ylm

]
. (B.12)

These spinors are eigenspinors also of the linear operator D but not in the usual sense as
they do not possess standard eigenvalues, but rather eigenmatrices:

LDψlm =
[

(m1 +m2)L −i
√

(l − s+ 1)(l + s)
i
√

(l − s+ 1)(l + s) −(m1 −m2)L

]
ψlm . (B.13)

Because of the form of the operator (B.11) and the fact that ð lYlm = 0, and ð̄−lYlm = 0
we see that the smallest possible value of l is either l = −s or l = s− 1 depending on which
is positive. Using (B.10) we see that this means

l + 1
2 ≥ |q|

2 . (B.14)

Furthermore, the expression (B.13) is invalid for these cases since one component of the
eigenspinor is equal to zero. Before analysing these threshold cases we note that for
l + 1/2 > |q|/2 the eigenvalue of L2D̃D is given by

(l + 1/2)2 − q2

4 +M2
fL

2 , (B.15)

which can be observed to also equal the determinant of the eigenmatrix for LD associated
with the eigenspinor ψlm (recall that we include the third Pauli matrix when computing
the determinant of D).

When the inequality (B.14) is saturated, we have to analyse the problem separately.
Let q > 0 and l + 1/2 = q/2, then s = −l. This of course means that s−1Ylm does not exist
as noted before. The eigenspinor is therefore simply given by[

−lYlm

0

]
, (B.16)

with

LD
[
−lYlm

0

]
= (m1 +m2)L

[
−lYlm

0

]
, (B.17)
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and the eigenvalue is clearly read to be (m1 +m2)L. Note that the degeneracy of this mode
is still given by 2l + 1 = q = |q| as usual. For the opposite sign of q, namely q < 0 and
l + 1/2 = −q/2, then s = l + 1 and the eigenfunction is now[

0
lYlm

]
, (B.18)

with eigenvalue of σ3LD given by (m1 − m2)L. Once again the degeneracy is given by
2l + 1 = −q = |q|.

Let us now collect this information and compute the determinant of D. Collecting the
two cases we can write

log det(LD) =
∞∑

l+1/2=|q|/2+1
(2l+ 1) log

[
(l+ 1/2)2 − q2

4 +M2
fL

2
]

+ |q| logL(m1 + sgn(q)m2) ,

(B.19)
where sgn(q) denotes the sign of q. Notice that the mode that we are counting separately
would be a zero-mode if we would have massless fields. To make contact with the discussion
in the main text we should adjust our expression (B.19) such that the sums start from |q|/2
and not |q|/2 + 1. We can remedy this by adding and subtracting terms

log det(LD) =
∞∑

l=|q|/2
(2l) log

[
l2 − q2

4 +M2
fL

2
]
− |q| logL(m1 − sgn(q)m2) , (B.20)

where we have also reindexed the sum l + 1/2 → l.

C Holographic duals to mass deformed ABJM

C.1 SO(4) × SO(4) deformed background in 11 dimensions

The eleven-dimensional solution dual to the SO(4) × SO(4) mass deformation of ABJM
is obtained by uplifting the four-dimensional supergravity solution of [13] by using the
formulae in [90]. The resulting metric and three-form take the form

ds2
11 =

N2/3π2/3ℓ2pl

(2λ)1/3 (Y1Y2)1/3
(

ds2
AdS4 + 4dθ2 + cos2 θ

Y1
ds2

S3
1

+ sin2 θ

Y2
ds2

S3
2

)
,

A3 = −
Niπℓ3pl√

2λ

(
3UvolS3 ∓

c

cosh2(ρ/2)

(cos4 θ

Y1
volS3

1
+ sin4 θ

Y2
volS3

2

))
,

(C.1)

where the metric on AdS4 is Euclidean, round and in spherical coordinates, reflecting
the fact that the field theory is living on S3. The transverse directions also contain two
three-spheres which we denote by S3

1 and S3
2 . The deformation of the standard AdS4 × S7

geometry is implemented by the three functions

Y1 = 1 + c
cos2 θ

cosh2(ρ/2)
,

Y2 = 1 − c
sin2 θ

cosh2(ρ/2)
,

U = 1
12
(
− 9 cosh ρ+ cosh(3ρ) + 16c cos(2θ) sinh4(ρ/2)

)
.

(C.2)
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The signs in the three-forms A3 reflects the two branches of solutions discussed in more detail
in the main text. We can map between the two branches by performing the simultaneous
transformation of the coordinate θ and reversing the sign of c

c 7→ −c , θ 7→ θ + π

2 . (C.3)

In order to reduce to ten-dimensions we must reduce over the hopf fiber of S7. In our
coordinate system the Hopf fiber of S7 is a diagonal combination of the Hopf fibers of S3

1
and S3

2 , this coordinate is furthermore restricted in its range to be 2π/k-periodic. Explicitly
reducing over this circle, identifying the eleven-dimensional Planck length ℓpl with the string
length ℓs, and adding the correct period to the B2 field to account correctly for the ABJ
theory as described in the main text, results in the ten-dimensional solution in section 5.2.

C.2 SU(3) deformed background in type IIA

A second simple mass deformation of ABJM theory is the equal mass deformation which
exhibits SU(3) enhanced symmetry. In order to study non-perturbative corrections to
the free energy of the QFT we should study the worldsheet instantons in the dual ten-
dimensional deformed geometry. In this appendix we take the first step on this path by
constructing the ten-dimensional geometry dual to the particular mass deformation in
question. This is found simply by uplifting the analytic four-dimensional supergravity
solution in [13] using the uplift formulae in [89]. We will not go further in this paper in
studying worldsheet instantons but leave that as future work.

For notational simplicity we introduce the following two functions

S = c(c− 1)(1 − ρ2)(1 + c3ρ2)
(1 + c3)(1 + c3ρ4) , C = 1 − 2c3(1 − ρ2)2

(1 + c3)(1 + c3ρ4) , (C.4)

where ρ is the radial holographic coordinate, and c is related to the field theory mass
deformation through

δ = 1
2
c(1 + c)
1 + c3 . (C.5)

The ten-dimensional metric then becomes

ds2 = L2
√

1 + S2 sin2 θ

[
ds2

4 + 1
C + S

ds2
6

]
, (C.6)

where
ds2

4 = 4(1 + c3)(1 + c3ρ4)
(1 − ρ2)2(1 + c3ρ2)2 (dρ2 + ρ2dΩ2) ,

ds2
6 =dθ2 +

16 cot2 θ
2

1 + S2 sin2 θ
ω2 +

4(C + S) sin2 θ
2

C + S cos θ ds2
CP 2 .

(C.7)

Here we have introduced
ω = 1

2 sin2 θ

2(dφ+ ωCP 2) , (C.8)

which is related to the Kähler form on CP 3 through J = dω. In a similar fashion, the
Kähler form on CP 2 is related to ωCP 2 via JCP 2 = dωCP 2 . The metric ds2

CP 2 on CP 2
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appearing in equation (C.7) is the Fubini-Study metric of radius one. The dilaton and B2
field are

e2Φ = π(2λ)5/2

N2
(1 + S2 sin2 θ)3/2

(C + S)(C + S cos θ)2 , B2 = 4πiℓ2s
√

2λS
C + S cos θ

c+ 1
c− 1

[
J − S sin θ

C + S
dθ ∧ ω

]
.

(C.9)
Finally, the RR gauge potentials are given by

C1 =2Nℓs
λ

1 + 2S(C + S) cos2 θ
2

1 + S2 sin2 θ
ω ,

Cext
3 = − 2Nℓs

λ
B2 ∧ ω ,

Cext
5 = − 32π2Nℓ5s

1 + 2S(S − C) sin2 θ
2

(C + S cos θ)2 J ∧ J ∧ ω .

(C.10)

Notice that we have given the gauge potential C5 and C3 in the CP 3 directions instead of
giving the full C3 potential which would also have terms along the deformed AdS4 directions.
The type IIA field strengths can be computed from these using

H3 = dB2 ,

F2 = dC1 ,

F ext
4 = dCext

3 −H3 ∧ C1 ,

F ext
6 = dCext

5 −H3 ∧ Cext
3 ,

(C.11)

and
F4 = F ext

4 − i ⋆ F ext
6 . (C.12)

With this background it is a simple matter to uplift the solution to eleven dimensions
using the standard uplift formulae (see e.g. [105]).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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