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1 Introduction

In this work we report the next step in the extended project of studying the analytic
properties of the thermodynamic and correlation characteristics of the 2d Ising Field Theory
(IFT) in a magnetic field, as the functions of complex scaling parameter. We understand
the IFT as the Ising conformal field theory (CFT) perturbed by its two relevant operators,
the energy density ε(x) and the spin density σ(x), as defined by the formal action

AIFT = ACFT + m

2π

∫
ε(x)d2x+ h

∫
σ(x)d2x . (1.1)

In [1] the analyticity of free energy was analysed in both High- and Low-Temperature
regimes. Analyticity of the correlation length Rc := M−1

1 (M1 stands for the mass of the
lightest particle of the theory) was addressed in more recent work [2], albeit only in the
High-T regime (the Low-T regime turns out to be more difficult; we plan to return to this
problem in the future). It was argued in [2] that the correlation length, as the function of
complex scaling parameter, is analytic on the complex plane of this parameter, the only
singularity being the so called Yang-Lee edge singularity, the branching point resulting
from condensation of the Yang-Lee zeros in the thermodynamic limit. We refer to this
analytic property as the “standard analyticity”.

In this work we extend the analysis of [2] to the”ϕ3 coupling — the quantity which
controls the large-distance behaviour of the three point correlation function. As in [2],
we limit attention to the High-T domain. We argue that the ϕ3 coupling also enjoys the
standard analyticity. Our approach here is very similar to the analysis in [2], and we often
borrow notations from that paper.
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Clearly, the Yang-Lee edge singularity plays the central role in our study. We refer the
reader to the works [3–6] for recent developments in this area.

ϕ3 coupling. We denote A1 the lightest stable particle of the theory, and M1 its mass.
Also, as in [2], we use the notation S11(θ) the S-matrix element of the A1 +A1 → A1 +A1
elastic scattering. It is a function of the rapidity difference θ. In IFT S11(θ) always has a
pole at θ = 2iπ/3 corresponding to the particle A1 itself in the direct channel. (There is
of course the associated cross-channel pole at θ = iπ/3.) The ϕ3 coupling Γ1

11 is usually
defined in terms of the residue

(Γ1
11)2 = −i Res

θ= 2iπ
3

S11(θ) ; (1.2)

by this definition (Γ1
11)2 is positive in a unitary theory. The vertex Γ1

11 is dimensionless.
It depends on the scaling parameter, the dimensionless ratio of the coupling constants m
and h in (1.1). As in refs. [1, 2], we use here the ratio ξ = h/|m|15/8 (in the High-T
domain m is negative). We also use the related parameter η = m/|h|8/15 = −ξ−8/15 when
convenient. Because in the High-T regime IFT is unsensitive to the change of the sign of
ξ (the change h→ −h in (1.1) can be compensated by the field transformation σ → −σ),
(Γ1

11)2 in (1.2) is an even function of ξ ,1 and it is convenient to regard it as function of the
variable u := ξ2 = h2/(−m)15/8. In what follows we use abbreviated notation Γ := Γ1

11,
and study the closely related function

κ(u) := −
√

3
2 Γ2(ξ) = i

√
3

2 Res
θ= 2iπ

3

S(θ) . (1.3)

Here and below S(θ) is the short-hand for S11(θ).
The function κ(u) can be analytically continued to complex values of u, and under-

standing the analytic properties of this continuation is the primary goal of the present
work. As in [2], our analysis here will be based on the combination of exact results at the
integrable points, as well as on the numerical data obtained via Truncated Free Fermion
Space Approach (TFFSA) [1].

It is natural to expect that analytic properties of κ(u) in the complex u-plane are
similar to those of the vacuum energy density Ghigh(u) [1], and of the mass M1(u) of the
lightest particle A1 [2]. Namely, one can argue that κ(u) is analytic in the whole u-plane
with the branch cut from −∞ to −u0 = −ξ2

0 ≈ −0.03585 . . . , as shown in figure 1. We
refer to it as the “standard analyticity”. The branching point u = −u0 represents the Yang-
Lee edge singularity resulting from accumulation of Yang-Lee zeros in the thermodynamic
limit [7, 8]. The argument is as follows. Generally, the positions and the residues of the
poles of S(θ) may have, besides the singularity at −u0, additional algebraic singularities
(square root branching points) signifying collisions of different poles at special values of
u, with two branches of the square root representing interchange of the colliding poles.
However, the particular pole at θ = 2πi/3 which we are interested in here stays put at all

1To the contrary, the vertex Γ1
11 itself is an odd function, Γ1

11(−ξ) = −Γ1
11(ξ). The sign of Γ1

11 is fixed
by the condition that Γ1

11 is positive at positive ξ.
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−u0

u

Figure 1. Conjectured “standard analyticity” of κ(u) in the complex u-plane: κ(u) is analytic
everywhere except for the branch cut [−∞ : −u0]. The branching point −u0 is the YL edge
singularity. The branch cut represents the shown as the solid line represents the line of first order
phase transitions. In particular, the ϕ3 coupling is discontinuous across this line.

values of u. There is an interesting movements of other poles and associated zeros under
changes of u, as explained in ref. [9]. The choreography of those movements is such that
the residue (1.2) never does evolve singularities. Every time another pole hits the pole at
2πi/3, there is a zero hitting it simultaneously, so that the residue remains regular.

Below we verify this analyticity conjecture using a combination of exact and numerical
data. We build an approximation for the discontinuity across the above branch cut. Then
the analyticity assumption leads to the dispersion relation, and one can check it against
special points where κ(u) is known exactly, as well as the numerical estimates obtained using
TFFSA. We find reasonable agreement (see section 4 and section 5). Alternative numerical
data for κ(u) at real positive u was previously obtained in [10] by rather different approach.
Our results from the dispersion relation are in good agreement with that numerics as well.
All these results support the standard analyticity conjecture formulated above.

2 Special points

The theory (1.1) is exactly integrable at two special points. At u = 0 it reduces to a theory
of free fermi particles with S(θ) = −1, so that the residue (1.2) vanishes. Away from this
point κ(u) admits expansion in powers of u,

κ(u) =
∞∑
n=1

κ(n) un , (2.1)

with finite radius of convergence. The leading term in this expansion was obtained in [11]
via form factor perturbation theory,

κ(1) = −18
√

3 s̄2 = −57.48165545 . . . , (2.2)

where s̄ = 21/12e−1/8A
3/2
G = 1.35783834 . . . , and AG is Glaisher’s constant [12].
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Another important point is u =∞ (i.e. m = 0), where the (1.1) becomes an integrable
theory with eight stable particles and rich factorizable S-matrices [13].2 The value of
κ(u) at u = ∞ can be straightforwardly extracted from the S-matrix S11(θ) (eq. (A.2) in
appendix A),

κ(∞) = −3 tan(7π/15) tan(11π/30)
tan(2π/15) tan(3π/10) = −104.6154448 . . . . (2.3)

In the vicinity of this point κ(u) expands in a convergent series in integer powers of
η = −u−4/15,

κ(u) = κ0 + κ1 η + κ2 η
2 + κ3 η

3 + . . . (2.4)

where κ0 := κ(∞), see eq. (2.3). In principle, the higher coefficients can be obtained via
form factor perturbation theory around the integrable point u = ∞. In practice, this can
be done for κ1 (see appendix A),

κ1 = −202.04 . . . (2.5)

while exact calculations of the higher coefficients are rather difficult. We will estimate some
coefficients using numerical data in section 4 and section 5.

Interesting point where IFT (1.1) is “infrared integrable” is the Yang-Lee edge singu-
larity which is located at pure imaginary magnetic field h, i.e. at real negative u = −u0.
The position u0 was estimated in [1, 2, 14], u0 ≈ 0.035846(4). This point is critical in usual
sense — the analytic continuation of the mass M1(u) vanishes at u = −u0, i.e. the correla-
tion length diverges [15]. This means that the deep infrared asymptotic of the theory (1.1)
at u = −u0 is described by CFT, which was identified in [16] as the non-unitary minimal
CFTM2/5 (in what follows we refer to it as YLCFT). Away from the YL point the theory
is gapped, with the mass M1(u) ∼ (u+ u0)5/12, while its deep IR asymptotic is described
by the so called Yang-Lee QFT (henceforth referred to as YLQFT),

AYLQFT = AYLCFT + iλ(u)
∫
ϕ(x)d2x , (2.6)

where ϕ(x) is the only nontrivial scalar primary with the conformal dimensions
(
−1

5 ,−
1
5

)
of the YLCFT. The coupling constant λ = λ(u) turns to zero at the YL point, λ(−u0) = 0,
in a regular way λ(u) ∼ (u+ u0). The YLQFT (2.6) itself is known to be integrable, and
its factorizable S-matrix is determined by the 2→ 2 elastic amplitude [17]

S
(YLQFT)
11 (θ) = sinh θ + i sin(2π/3)

sinh θ − i sin(2π/3) . (2.7)

However, the full theory (1.1) is not integrable even in small vicinity of the YL point, not
even at the YL point u = −u0 itself. While at u close to −u0 (2.6) describes deep IR

2The masses of the eight particles Ap, p = 1, 2, . . . , 8 at this integrable point are proportional to the
components of Frobenius vector of the Cartan matrix of the Lie algebra E8, and the structure of the S-
matrices reflects in many ways the properties of the E8 root system [13]. For this reason we refer to this
integrable theory as the “E8 theory”.
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asymptotic of the theory (1.1), in the full theory the YLQFT is dressed with an infinite
tower of irrelevant operators,

AIFT → AYLQFT +
∑
i

ai
∫
Oi(x)d2x , (2.8)

which become visible at intermediate scales R . M−1
1 . Here Oi are scalar operators of

YLCFT with ∆i = ∆̄i > 1; contributions of these operators generally break integrability [2]
(we will say more about these operators in section 3 below). While M1 measured in the
units of |m| goes to zero when u→ −u0, the couplings ai = ai(u) remain finite in this limit.
Equivalently, if measured in the units of M1, these couplings tend to zero when u → u0.
Therefore, the value of κ at u = −u0 can be read out of the S-matrix (2.7),

κ(−u0) = i

√
3

2 Res
θ= 2iπ

3

SYLQFT
11 (θ) = 3. (2.9)

The negative value of Γ2 at this point reflects non-unitary nature of YLQFT.

3 Singular expansion and TTbar deformation

In the vicinity of the YL point κ(u) admits singular expansion in fractional powers of u+u0,
generated by the irrelevant operators Oi in the effective action (2.8). Schematically, the
structure of the expansion is

κ(u) =
∞∑
n=1

∑
i1,...,in

Hi1,i2,...,in a
i1(u) . . . ain(u) [M1(u)]δi1+···+δin (3.1)

where −δi = 2(1 −∆i) < 0 are the mass dimensions of the couplings ai, and Hi1,...,in are
dimensionless coefficients. While the couplings ai(u) are regular at u = −u0,

ai(u) = ai0 + ai1 (u+ u0) + ai2 (u+ u0)2 + . . . (3.2)

the mass M1(u) turns to zero at u = −u0 in a singular manner, M1(u) ∼ [λ(u)]5/12 ∼ (u+
u0)5/12, and further admits expansion in fractional powers of (u+u0) around the YL point,
see [2], and eq. (3.16) below. The terms in (3.1) can be interpreted as the contributions
from the perturbative expansion in the couplings ai(u). Of course, the perturbation theory
in the irrelevant operators is non-renormalizable, and by itself it does not unambiguously
define the coefficients in (3.1) beyond the linear order in the couplings ai. (Important
exception is the “least irrelevant” operator T T̄ whose contributions are unambiguous to all
orders in the associated coupling α; we discuss its role below.) Nonetheless, (3.1) shows
the nature of the singular expansion of κ(u) around the YL singularity.

The list of the scalar irrelevant operators entering the expansion (2.8) can be extracted
from the known operator content of YLCFT, a.k.a. the minimal CFT M2/5. We arrange
them in order of growing dimensions ∆i, and exclude total derivatives as they do not
contribute to the action (2.8). Then the lowest of the irrelevant operators is

(T T̄ ) := L−2L̄−2I , (∆, ∆̄) = (2, 2) . (3.3)
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It is well known to generate the so-called TTbar deformation of the YLQFT, which makes
it possible to treat its contributions to all orders (see [18, 19]), as we will discuss shortly.
Let us also display the next three operators,

Ξ := L−4L̄−4ϕ , (∆, ∆̄) = (3.8, 3.8) , (3.4)
Ξ6 = L−6L̄−6ϕ , (∆, ∆̄) = (5.8, 5.8) , (3.5)

(T T̄ )3 := L3
−2L̄

3
−2I , (∆, ∆̄) = (6, 6) . (3.6)

Thus, the least irrelevant terms in (2.8) are

(2.8) = AYL QFT + α(u)
π2

∫
(T T̄ )(x)d2x+ β(u)

2π

∫
Ξ(x)d2x

+γ(u)
2π

∫
Ξ6(x)d2x+ α5(u)

π2

∫
(T T̄ )3(x)d2x + . . . (3.7)

where we used individual notations for the couplings. Like all the couplings in (2.8), the
couplings α, β, γ in (3.7) are functions of u, regular at the YL point; they admit convergent
expansions around the YL point,

α(u) = α0 + α1 (u+ u0) + α2 (u+ u0)2 + . . . , −δα = −2 ,
β(u) = β0 + β1 (u+ u0) + β2 (u+ u0)2 + . . . , −δβ = −5.6 , (3.8)
γ(u) = γ0 + γ1 (u+ u0) + γ2 (u+ u0)2 + . . . , −δγ = −9.6 ,
α5(u) = α5,0 + α5,1 (u+ u0) + α5,2 (u+ u0)2 + . . . , −δα5 = −10 ,

and similarly for further couplings not displayed in (3.7). In (3.8) we also show the mass
dimensions of the couplings. The leading coefficients for the first two coupling parameters
were determined in [2] (see also [1]),

α0 |m|2 = −1.32(5) , β0
2π |m|

28
5 = +0.72(6) . (3.9)

In section 5 below we use TFFSA to obtain numerical estimate (not very precise) α1|m|2 =
18.0(3.5) of the first sub-leading coefficient in (3.8). Estimates of higher coefficients in (3.8)
are not yet available.

With the account of the three lowest irrelevant operators displayed in (3.7) the expan-
sion (3.1) takes the form

κ(u) = 3 +H1 α(u)M2
1 (u) +H2 α

2(u)M4
1 (u)

+HΞ
1 β(u)M

28
5

1 (u) +H3 α
3(u)M6

1 (u) +H4 α
4(u)M8

1 (u) (3.10)

+
(
HΞ

2 α(u)β(u) +HΞ6
1 γ(u)

)
M

48
5

1 (u) +
(
H5 α

5(u) + H̃1 α5(u)
)
M10

1 (u) + . . .

where the leading term comes from the exact number (2.9). The omitted terms have
the powers of M1(u) 11.6 and higher. Note that apart from the terms linear in the cou-
plings, (3.10) involves higher powers of α, as well as the term αβ. These are associated with
the higher order perturbation theory in α. Generally, such terms can not be determined
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within the perturbation theory itself, as they depend on short-distance behavior of the full
IFT. However, due to special properties of the operator (T T̄ ) many such terms are uniquely
defined. As was already mentioned, this operator generates the TTbar deformation, which
allows to collect explicitly the higher order terms in α. We will not explain it here, referring
the reader to [18–20]. In particular, the TTbar deformation leads to simple “dressing” of
the two-particle elastic S-matrix [18, 20],

S(α)(θ) = exp
{
−iαM2

1 sinh θ
}
S(0)(θ) , (3.11)

where S(0)(θ) is the S-matrix of the undeformed theory.3 If S(0)(θ) has a pole at θ = 2πi/3,
so does the deformed S(α)(θ), with the residue determined by (3.11). Therefore the “TTBar
deformed” κ(α) relates to κ(0) at α = 0 as

κ(α) = exp
{√

3
2 αM2

1

}
κ(0) . (3.12)

In our context only five leading terms of the expansion of the exponential in (3.11)
and (3.12) are useful. This is because the higher order terms interfere with the contributions
of higher level descendants of the identity operator in the effective action (3.7). Thus, the
term∼ α5 mixes with the leading contribution from (T T̄ )3 (α5 has the same mass dimension
as α5).4 For the purpose of this work, the expansion

κ(α) =
(

1 +
√

3
2 αM2

1 + 3
8α

2M4
1 +
√

3
16 α

3M6
1 + 3

128α
4M8

1

)
κ(0) +O(α5) (3.13)

is more than sufficient. Here κ(0) is given by the expansion (3.10) with α(u) set to zero,

κ(0)(u) = 3 +HΞ
1 β(u)M

28
5

1 (u) +HΞ6
1 γ(u)M

48
5

1 (u) +O(M10
1 ) . (3.14)

The second and the third terms in the r.h.s. of (3.14) are linear in β and γ; these
terms express the leading order contributions from the operators Ξ and Ξ6 in (3.7). As
usual, unlike the higher orders, these coefficients are determined unambiguously using the
perturbation theory. The calculation involves the four particle form factors of the operators
Ξ and Ξ6, and is rather bulky. We will present detailed calculations elsewhere. Here we
just quote the result [21],

HΞ = −164480625
100352

5
1
4 π

21
5 Γ

(
3
5

)
Γ
(

2
3

) 38
5 Γ

(
4
5

)
Γ
(

8
3

)2

2
1
5 Γ

(
1
6

)10
Γ
(

5
6

) 12
5 Γ(25

6 )2
= −0.004876389 . . . . (3.15)

3For “TTbar dressing” of the full S-matrix see [20].
4From the point of view of straightforward perturbation theory, the TTbar deformation itself generates

an infinite tower of higher descendants of I, which mix with the higher terms in (3.7). Alternatively, one
can think of the term α(T T̄ ) as the “germ” of the full TTbar deformation; with this convention (3.11)
is exact to all orders in α. Likewise, the term α5(T T̄ )3, if understood as the germ of generalized TTbar
deformation [18], leads to exact dressing by the factor

exp
{
−iαM2

1 sinh(θ)− iα5M
10
1 sinh(5θ) + . . .

}
.
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One can note that this coefficient is exceedingly small numerically, and it does not have
any noticeable effect on the analysis in section 4 and section 5 below. We also have reasons
to believe that HΞ6 is yet smaller. Because of this, in what follows we ignore the β- and
γ-contributions in (3.14).

Important ingredient in (3.1) is the mass M1(u) which enjoys the singular expansion
around the YL point [2],

M1(u)
|m|

= (u+ u0)
5

12
(
b(u) + (u+ u0)

5
6 c(u) + (u+ u0)

5
3 e(u) + (u+ u0)

7
3 d(u) + . . .

)
,

(3.16)
where b(u), c(u), d(u), e(u) . . . are regular at u = −u0,

b(u) = b0 + b1 (u+ u0) + b2 (u+ u2)2 + . . . (3.17)
c(u) = c0 + c1 (u+ u0) + . . . (3.18)

and similarly for e(u), d(u) and the higher coefficient functions. Some lower coefficients
in (3.17), (3.18) were determined in [2],

b0 = 4.228(5), b1 = 21.9(9) , c0 = −14.4(6) . (3.19)

For the Ising effective action near the YL point, eq. (3.7), the expansion (3.1) combined
with (3.8), generates expansion of κ(u) in fractional powers of u+ u0

κ(u) = 3 + k1(u+ u0)
5
6 + k2(u+ u0)

5
3

+k3(u+ u0)
11
6 + k4(u+ u0)

5
2 + k5(u+ u0)

8
3 + . . . , (3.20)

where the coefficients are expressed in terms of the coefficients of the expansion of α(u)
in (3.8), as well as the coefficients in (3.16), e.g.

k1 = 3
√

3
2 b20 α0 ≈ −61.3 , (3.21)

k2 = 9
8 b

2
0 α

2
0 ≈ 35.0 , (3.22)

k3 = 3
√

3
2 (2b0b1 α0 + α1) ≈ −681 , (3.23)

where the estimate of α0, eq. (3.9), is used to produce numerics for k1 and k2. Higher kn
involve higher coefficients in (3.9) and (3.16). We give numerical estimate of more kn in
section 4 and section 5.

4 Analyticity and dispersion relation

According to our analyticity conjecture, the function κ(u) admits analytic continuation
to the complex u-plane, with no singularities except for the branch cut along the real
axis from −∞ to −u0, as shown in figure 1. Under this assumption the values of κ(u)
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everywhere in the u-plane are expressed in terms of the discontinuity across the branch
cut, Discκ(u) := κ(u+ i0)− κ(u− i0) = 2i=mκ(u+ i0)

κ(u) = −u
∫ ∞
u0

dx

π

=mκ(−x)
x(x+ u) (4.1)

where we have taken into account that κ(0) = 0. The integral in (4.1) converges because
=mκ(−x) ' x15/16 as x→ +∞, see (2.4). Here we are going to build certain approximation
for the discontinuity Disc κ(u) and then check the numerics for κ(u) obtained via (4.1)
against exact numbers in section 2 and section 3. In addition, in the next section we use
TFFSA to obtain numerical values of κ(u) at generic real u > −u0, and test the dispersion
relation against that numerics as well.

We found it convenient to use the scaling variable

η = −u−4/15 (4.2)

instead of u, and define
κ̂(η) = κ

(
(−η)−15/4

)
. (4.3)

The variable transformation maps the u-plane in figure 1 to the wedge

− 4π/15 < arg(−η) < 4π/15 (4.4)

in the η-plane, with the positive real u mapped to the negative part of the real axis of
η, and negative real u mapped to the rays η = y e±4πi/15 with negative real y. In these
variable, the dispersion relation (4.1) takes the form

κ̂(η) = − 15
4π

∫ Y0

0

y
11
4 ∆(−y) dy(

y
15
4 + (−η)

15
4
) (4.5)

where it is assumed that η lays in the wedge (4.4), and

Y0 = u
−4/15
0 = 2.4293 . . . . (4.6)

The function

∆(y) = 1
2i
[
κ̂
(
y e

4πi
15 +i0

)
− κ̂

(
y e

4πi
15 −i0

)]
= =mκ̂

(
y e

4πi
15 +i0

)
(4.7)

represents the discontinuity across the branch cut in figure 1. To make (4.5) useful we need
to build some approximation for ∆(y).

Approximating ∆(y). As was mentioned in section 2, the function κ̂(η) admits conver-
gent expansion (2.4) in integer powers of η. This generates expansion of the function (4.7),

∆(y) =
∞∑
n=0

κn sin
(4πn

15

)
yn = κ1 sin

(4π
15

)
y + κ2 sin

(8π
15

)
y2 + . . . (4.8)

The first two coefficients are

∆(0) = 0 , ∆′(0) = κ1 sin
(4π

15

)
= −150.14 . . . , (4.9)

where we have used (2.5).
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b̂0 b̂1 b̂2 ĉ0 ĉ1 d̂0 ê0

3.0754 0.8932 −0.8618 −0.9412 0.7835 0.3134 0.2880

Table 1. Numerical values of the expansion coefficients in eq. (4.14).

On the other hand, κ̂(η) enjoys the singular expansion near the YL point y + Y0 = 0,

κ̂(y) = 3 + ε
5
6 K1(ε) + ε

5
3 K2(ε) + ε

5
2 K3(ε) + ε

19
6 K4(ε) + ε

10
3 K5(ε) + ε

25
6 K6(ε) + · · · , (4.10)

Here and below we use the notation ε := −(y + Y0), so that

u+ u0 = −(−y)−15/4 + Y
−15/4

0 = 15
4 Y

− 19
4

0 ε− 285
32 Y

− 23
4

0 ε2 + . . . (4.11)

The coefficient functions Kn(ε) in (4.10) are regular around the YL point

Kn(ε) = K(0)
n +K(1)

n ε+K(2)
n ε2 + · · · . (4.12)

Like in (3.20), the coefficients K(l)
n are related in a straightforward way to the coefficients

of the expansion of the (T T̄ ) coupling

α = α0 + α̂1 ε+ α̂2 ε
2 + . . . (4.13)

and the mass,

M1/|h|
8

15 = ε
5

12 (b̂0 + b̂1 ε+ b̂2 ε
2) + ε

5
4 (ĉ0 + ĉ1 ε) + ε

25
12 ê0 + ε

11
4 d̂0 +O

(
ε

19
6
)
, (4.14)

which are obtained by re-expanding (3.8) and (3.16) in terms of ε. The coefficient α0 is
the same as in (3.9) while

α̂1 |m|2 = −0.85± 0.1 (4.15)

will be determined in section 5. Moreover, analysis in section 5 suggests that α̂2 is small,
and within the (low) accuracy of our numerics we will neglect its contributions. The coeffi-
cients b̂0, b̂1, and ĉ0 in (4.14) are expressed through the numbers (3.19), see corresponding
entries in table 1. Moreover, it was found in [2] that the mass M1 is approximated well at
y + Y0 . 1 by all six terms explicitly displayed in (4.14), with the numerical values of the
coefficients in table 1.

It is straightforward to obtain the expansion of the discontinuity ∆(y) by termwise
analytic continuation ε→ eiπε in (4.10),

∆(y) = (−ε)
5
6 K̃1(ε) + (−ε)

5
3 K̃2(ε) + (−ε)

5
2 K̃3(ε) + · · · (4.16)

where ε = y + Y0 is now negative (∆(y) vanishes at y < −Y0), and

K̃n(ε) = sin(νn π)Kn(ε) , (4.17)

with νn standing for the exponent in εν Kn(ε) term in (4.10). Numerical values of the
coefficients K̃(l)

n = (−)l sin(πνn)K(l)
n at nine leading terms of the expansion (4.16) obtained

from the known coefficients in (4.14) and (4.13) are collected in table 2.
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K̃
(0)
1 K̃

(0)
2 K̃

(1)
1 K̃

(0)
3 K̃

(1)
2 K̃

(2)
1 K̃

(0)
4 K̃

(0)
5 K̃

(1)
3

2.7481 7.274 −1.103 10.78 −1.400 −1.655 −0.5601 10.47 −0.8974

Table 2. Numerical values of the coefficients in the expansion (4.16) with K̃n(ε) =
∑∞

l=0 K̃
l
n ε

l.

0.0 0.5 1.0 1.5 2.0
0

5

10

15

20

25

30

35

-y

Δ
(-

y
)

Figure 2. Approximation (4.18) for the discontinuity ∆(−y) in the dispersion relation (4.5).

We propose the following approximation for ∆(y) in the whole domain of integration
in (4.5):

∆approx(y) = ε
5
6 K̃

(0)
1 + ε

5
3 K̃

(0)
2 + ε

11
6 K̃

(1)
1 + ε

5
2 K̃

(0)
3 + ε

8
3 K̃

(1)
2 + ε

17
6 K̃

(2)
1

+ ε
19
6 K̃

(0)
4 + ε

10
3 K̃

(0)
5 + ε

7
2 K̃

(1)
3 + ε

11
3 K̃

(2)
2 + ε

23
6 K̃

(3)
1 + ε

25
6 K̃

(0)
6 , (4.18)

with K̃(0)
1 , . . . ,K

(1)
3 taken from table 2, and the last three coefficients K̃(2)

2 , K̃(3)
1 , and K̃(0)

6
determined by demanding that ∆approx.(y) meets the two conditions (4.9), and that the
dispersion integral (4.5) evaluated with y = −Y0 returns exact value κ̂(−Y0) = 3 (see (2.9)),

K̃
(2)
2 = −182.959 , K̃

(3)
1 = +238.478 , K̃

(0)
6 = −66.657 . (4.19)

The shape of the function ∆approx.(y) at y ∈ [−Y0, 0] is shown in figure 2. Despite somewhat
artificial way of constructing this approximation, we believe that it is very close to actual
discontinuity (4.7). This expectation can be verified against exact numbers (section 2) and
numerical data obtained in section 5.

Approximation ∆approx.(y) vs. data. In constructing the approximation (4.18) we
have used the exact slope κ1, eq. (2.5). However, the leading term κ0 = κ(∞) in (2.4)
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κ(u) from dispersion relation

κ(u) from 2-parameter fitting
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-12
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u

κ=
κ(
u
)

Figure 3. Numerical estimates of κ(u) obtained by fitting (5.3) to TFFSA data (red bullets),
compared to κdisp(u) from the dispersion relation (4.5) with the approximation (4.18).

does not contribute to the discontinuity. The dispersion integral (4.5) with our approxi-
mation (4.18), evaluated at η = 0, results in

κdisp(∞) = − 15
4π

∫ Y0

0

∆approx(−y)
y

dy = −103.206 , (4.20)

to be compared with the exact value (2.3). The approximation (4.18) suggests estimates
for further coefficients in the expansion (2.1), e.g.

κ2 disp = −213.278 , κ3 disp = −192.962 . (4.21)

Another exactly known quantity is the slope (2.2) of κ(u) at u = 0. The dispersion
relation yields

κ
(1)
disp = − 15

4π

∫ ∞
0

y
11
4 ∆approx(−y) dy = −56.9019 . (4.22)

Again, it agrees well with the exact value (2.2). Our approximation gives predictions for
several higher terms of the expansion (2.1),

κ
(n)
disp = (−)n 15

4π

∫ ∞
0

y
15
4 n−1 ∆approx(−y) dy . (4.23)

Thus
κ

(2)
disp = 317.754 , κ

(3)
disp = −3524.51 . (4.24)

In the next section we will use TFFSA to develop numerics for κ(u), both at positive
and negative u. Although our numerical estimates are not very precise (we present some
details of our numerical analysis in section 5 below), figure 3 we compare them with κdisp(u),
the integral (4.5) evaluated with ∆approx.(y) in the integrand. The numerics for g2

111(η) :=
−4
√

3 κ̂(η) at negative η (positive u) was previously obtained in [10] using much different
analysis of the TFFSA data. We compare these results with κ̂disp(η) in figure 4. The
agreement seems to support the standard analyticity conjecture.
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log(g1112(η)) from dispersion relation

log(g1112(η)) from Ref.[6]
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-2

0

2

4

6

-η

lo
g(
g
11
12
)

Figure 4. Numerical data for g2
111(η) := −4

√
3 κ̂(η) from [10] (blue dots), compared with the same

quantity evaluated from the dispersion relation (4.5) with the approximation (4.18) (red curve).
For better visibility, we plot log(g2

111) against −η.

5 Numerical data from TFFSA

Additional data on κ(u) can be obtained numerically, using the TFFSA. As was mentioned,
TFFSA was applied previously to estimate the scattering amplitude and in particular the
residue (1.3) in [10]. We use different approach, based on the finite-size correction to the
two lowest energy levels. TFFSA is a routine which computes the energy levels En(R) of
the IFT in the geometry of a cylinder, with the spatial coordinate x compactified on a
circle of circumference R. With sufficiently high truncation level L TFFSA returns very
accurate estimates for En(R) as long as R . 7 |h|−8/15, but at larger R the accuracy
quickly deteriorates due to the truncation effects. All numerics quoted below was obtained
at the truncation level L = 13.5

Since in this geometry the lowest excited state n = 1 may be interpreted as a sin-
gle particle A1 at rest on the circle, the gap ∆E1(R) := E1(R) − E0(R) is expected to
converge to M1 as R → ∞. Moreover, when M1 6= 0 the leading finite-size corrections
are expressed exactly in terms of the residue (1.3) and the analytic continuation of the
amplitude S(θ) [22],

∆E1(R)−M1
M1

= κ e−
√

3
2 M1R −

∫
dθ

2π cosh θ
[
S

(
θ + πi

2

)
− 1

]
e−M1R cosh θ + · · · , (5.1)

where the dots represent further corrections which decay yet faster at large R. The two
terms in the r.h.s. of (5.1) express contributions of the particle A1 winding around the

5Here we assume the same definition of the “truncation level” as given in [1, 2]; it differs by a factor of
1/2 from the definition in [10].
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Figure 5. The diagrams are presenting the leading finite size corrections to ∆E1(R), see (5.1)
and (B.2).

ΔE1(R)/M1 at η=-0.0000

ΔE1(R)/M1 at η=-0.4241

ΔE1(R)/M1 at η=-0.8483

ΔE1(R)/M1 at η=-1.2724

0 1 2 3 4 5 6 7

0.7

0.8

0.9

1.0

1.1

1.2

R|h 8/15

Δ
E
1/
M
1

Figure 6. Plots of ∆E1(R)/M1 at different η (real h). The exponential approach to 1 is in accord
with (5.1) with negative κ.

space-time cylinder once, as shown in figure 5. Other stable particles, when present (as
in IFT at u > u2 = 0.0640(25)), lead to additional contributions to the gap (5.1). We
describe some of these contributions in appendix B.

The gaps ∆E1(R) obtained via TFFSA with L = 13, at few sample values of u are
shown in figure 6 and figure 7. The exponential approach to M1 at large R consistent
with the leading term in (5.1) is clearly visible, except for when u is close to the YL point
−u0 where the behavior at R . 7 |h|−8/15 becomes rather power-like. Rough estimate of
numerical values of κ(u) can be obtained by fitting the leading term in the r.h.s. of (5.1)
to the TFFSA data.

Unfortunately, precision of such estimate is low. The reason is that truncation effects
spoil the TFFSA data for ∆E1(R) at large R (typically at MR & 20) where the leading
term in (5.1) dominates. On the other hand, at smaller values of MR the correction terms
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ΔE1(R)/M1 at y=-2.545

ΔE1(R)/M1 at y=-2.715

ΔE1(R)/M1 at y=-2.884

ΔE1(R)/M1 at y=-3.054
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Figure 7. Plots of ∆E1(R)/M1 at different y for (imaginary h). The approach to 1 is consistent
with (5.1) with positive κ.

in the large R expansion (5.1) become comparable to the leading exponential term. Thus,
the second term in the r.h.s. of (5.1) has the leading large-R behavior

− σ (M1R)−1/2 e−M1R , (5.2)

where σ = [S(iπ/2) − 1]/
√

2π; with σ ∼ κ,6 the first term dominates only at MR & 10.
Therefore the window in which the above fitting is meaningful is not sufficiently wide, while
the fitting results were rather sensitive to the choice of the domain of R where fitting was
performed. We estimated the accuracy of this approach by the dependence on the fitting
interval to be typically about 15–25%. It can be somewhat improved by fitting the data
to the two-parameter expression

κ e−
√

3
2 M1R − σ (M1R)−1/2 e−M1R , (5.3)

via κ and σ. The data presented in figure 3 were obtained through this two-parameter
fitting. We estimate the accuracy at generic u as 10–20%.

Accuracy of the estimates obtained using (5.3) deteriorates even more when u is close
to one of the three special points mentioned in section 3. Since the correlation length M−1

diverges at the YL point, the window available for the fitting shrinks as u approaches −u0.
When u is close to zero κ(u) ∼ u becomes small, and within the acceptable range it is
barely detectable on the background of the higher finite-size corrections. In vicinity of the

6The ratio σ/κ is ≈ −3.2 at u = +∞. It becomes positive at −0.0036 / u / 12.5 (turning to zero at the
boundaries of this segment) and it approaches −1.7166 . . . when u→ −u0. Obviously, this ratio diverges at
u = 0, where σ remains finite; in some vicinity of this point the ration actually is very large, which makes
it difficult to estimate κ near the point u = 0.
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E8 point η = 0 the theory involves more than one stable particle; these additional particles
give rise to additional sub-leading terms which are significant in the interval of R available
for fitting. However, near these points the accuracy can be significantly improved with the
use of exact scattering amplitudes at these points.

Vicinity of free fermion point. At u = 0 we are dealing with the free fermion theory,
with trivial S-matrix S(θ) = −1 and κ(0) = 0. In high-T domain, the finite size ground
state is the Neveu-Schwarz vacuum, while the first excited state is understood as one
particle A1 at rest over the Ramond vacuum. Therefore, at u = 0 the finite size gap is
given by

∆EFF
1 (R)−M1
M1

= −
∫ +∞

−∞

dθ

2π cosh θ log
(

1− e−M1R cosh θ

1 + e−M1R cosh θ

)
, (5.4)

which accounts for contributions from particles A1 winding around the cylinder any number
of times. At small u the amplitude S(θ) acquires a correction

S(θ) = −
(

1 + iκA(θ)
sinh θ

)
, A(θ) = Apole(θ) +Aσ(θ) , (5.5)

where:

Apole(θ) = − 2√
3

sinh2 θ

sinh2 θ + 3
4
, (5.6)

and the absorptive part Aσ(θ) is determined by the inelastic processes, see [11]. This leads
to correction terms to the finite size gap (5.4),

∆E1(R)−M1
M1

= −
∫ +∞

−∞

dθ

2π cosh θ log
(

1− e−M1R cosh θ

1 + e−M1R cosh θ

)

+κ e−
√

3
2 M1R − 2√

3
κ

∫
dθ

2π A(iπ/2 + θ) e−M1R cosh θ . (5.7)

When M1R & 1 the integral in (5.7) is dominated by θ . 1, where Aσ(θ) is numerically
small as compared to Apole(θ) (see figure 3 in [11]), and one can neglect its contribution to
the finite size gap. Therefore, we have used (5.7) with A(θ) = Apole(θ) to fit TFFSA data
via κ. The best fit was obtained in the interval 3.5 < M1R < 9.5, and the result is shown
in figure 8, where it is compared to κdisp(u) obtained from the dispersion relation (4.3).

Vicinity of E8 point. When negative η is sufficiently close to the E8 point η = 0, IFT
involves more than one stable particle. At η3 < η < 0, η3 ≈ −0.13, there are two heavier
particles A2 and A3, and at η2 < η < η3, η2 ≈ −2.08, only one additional stable particle
A2 remains in the spectrum7 [9]. While the finite-size correction terms displayed in (5.1)
describe contributions of the particle A1 winding once around the cylinder, similar winding
of these heavier particles generates further sub-leading terms in the large R expansion

7There are eight stable particles at η = 0, see footnote 2 in section 2. When η shifted from zero five of
them loose stability and become resonance states.
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κ from FF fitting

κ(1)u with exact κ(1)
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Figure 8. The results of the fitting (5.7) to TFFSA data via κ, at −0.02 < u < +0.03, are shown
as red bullets. The blue curve is κdisp(u), the integral (4.5) with ∆(y) given by (4.18).

of ∆E1(R),
∆E1(R)−M1

M1
= κ e−

√
3

2 M1R + κ2 e
−µ1

22R + κ3 e
−µ1

33R

−
3∑
p=1

Mp

M1

∫
dθ

2π cosh θ
[
S1p

(
θ + πi

2

)
− 1

]
e−MpR cosh θ +O(e−2M1R) ,

(5.8)

where the notations are explained in appendix B. Of course when η < η3 the terms associ-
ated with the particle A3 (i.e. the exponential term with κ3 as well as the term with p = 3
in the second line in (5.8)) are to be dropped.

We used (5.8) as a fit of the TFFSA data for ∆E1(R) at −0.6 < η < 0. To make (5.8)
useful for determining κ one needs to know the masses M2 and M3 in this interval. We
have determined M2 and M3 directly from the TFFSA data for M1R� 1. Also, κ3 must
be set to zero at η < η3, and moreover one can argue that the parameter κ3 is rather
small at η ∈ [η3 . . . 0]. Indeed, κ3 must turn to zero at the boundaries of this narrow
interval. For that reason we set κ3 to zero in the whole domain [−0.6 . . . 0]. Finally, we
assumed that when η is small the S-matrix elements S1p(θ) are not too much different from
these amplitudes at η = 0 which are known exactly. With these approximations, κ was
determined from the best fit to the TFFSA via two parameters κ and κ2. In all cases some
segments within the window 12.2 < M1R < 18.8 were taken as the fitting domain. This
procedure substantially improved the accuracy of the estimate of κ, especially when η is
close to zero (η & −0.6). The results are shown in figure 9, where the error bars reflect the
dependence on the choice of the fitting interval.

Vicinity of the YL point. When close to the YL point there is a good approximation
for the amplitude S(iπ/2 + θ) in the second term in (5.1). The main correction due to
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κ(η) from TFFSA

κ(∞)+κ1η

κ(η) from dispersion relation
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Figure 9. Red bullets show the result of the best fit of κ̂(η) to TFFSA data for ∆E1(R), using (5.8)
with κ and κ2 (κ3 was set to zero, see main text). The blue curve is κ̂disp(η), the integral (4.5)
with ∆(y) given by (4.18), and the magenta dashed line is showing the exact slope κ1 at E8 point,
see (2.5) and appendix A.

the irrelevant operators in (2.8) to the YLQFT S-matrix (2.7) comes from the operator
(T T̄ ) in (3.7). As was explained in section 3, up to the order α4M8

1 ∼ (u + u0)
10
3 , its

contribution is identical to the TTbar deformation (3.11), with the S(0) taken to be the
YLQFT S-matrix (2.7). Therefore near the YL point (5.1) can be approximated as

∆E1(R)−M1
M1

= κ e−
√

3
2 M1R (5.9)

−
∫
dθ

2π cosh θ
[
e−M1R cosh θ eαM

2
1 cosh θ SYLQFT

11

(
θ + πi

2

)
− 1

]
+ · · ·

with the mass M1 given by the expansion (3.16). We also used two term approximation
for α,

α = α0 + α̂1 (y + Y0) , (5.10)

with known α0 = −1.32 [2], and adjustable slope α1. With this approximations of the
second term in (5.1) we found that the best fit of (5.1) to the TFFSA data via κ can be
obtained with

α̂1|m|2 = −0.85± 0.1 . (5.11)

When the fitting interval was taken within the segment M1R ∈ [4.0, 7.5] the fitting re-
sults were stable for −3.8 < y < −2.8. As we approached yet closer to the YL point
−Y0 = −2.4293 the quality of the fit deteriorated rapidly. The mass M1 ' 1.602 ε5/6

becomes small, and the domain of R where (5.9) is expected to give meaningful approxi-
mation is pushed beyond the range where TFFSA data is accurate. The result is shown
in figure 10, along with κ̃(y) := κ((−y)−15/4) from the approximation (3.12) with α = α0
and α given by (5.10).
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κ(y) from TFFSA

κ(y) from (3.12) and (5.10) with only α0

κ(y) from (3.12) and (5.10) with α0 and α1=-0.85

κ(y) from (3.12) and (5.10) with α0 and α1=-0.75

κ(y) from (3.12) and (5.10) with α0 and α1=-0.95
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Figure 10. Numerical estimates of κ̃(y) := κ((−y)−15/4) obtained by fitting (5.9) to TFFSA data
via κ (grey bullets). The blue line shows κ̃(y) given by (3.12) with κ(0) = 3 and set α ≈ α0 =
−1.32 |m|−2, respectively. The red line is the plot of (3.12) with κ(0) = 3, and α given by (5.10)
with α̂1 = −0.85 |m|−2. The dotted lines show the same function with slightly different values of α̂1.

6 Discussion

In this work we have tested analyticity of the ϕ3 coupling κ(u) as the function of the
scaling parameter u = h2/|m|

15
4 . Assuming maximal analyticity, we have constructed

an approximation for the discontinuity across the branch cut in figure 1, and compared
the dispersion relation (4.3) with exact and numerical data available through TFFSA in
section 5, and previously in [10]. Agreement supports the analyticity conjecture, as well as
the approximation (4.18) for the discontinuity.

As in [2], important tool in our analysis was application of the T T̄ deformation formu-
lae, which allowed for control of higher order terms in the coupling parameter α(u) in the
effective action (3.7). For κ(u) the equation (3.12) reproduces exactly the α-expansion up
to terms α4, leading to the singular expansion (3.13), (3.14). The terms ∼ α5 and higher
interfere with the contributions from the operators (T T̄ )3 = L3

−2L̄
3
−2I and higher descen-

dants of identity. We would like to note in this connection that the operator (T T̄ )3, as well
as (T T̄ )4 := L4

−2L̄
4
−2I and a string of certain higher descendants of identity, generate the

“generalized TTbar deformation” [18] (see also [23]) with known effect on the S-matrix.
This gives access to yet higher terms in the singular expansion (3.10), and potentially may
throw some light on important general question of convergence of the effective action ex-
pansion (2.8): does it (or, rather the associated singular expansions like (3.1)) converge in
some finite domain around the YL point? We hope to address this intriguing problem in
the future.

One of practical outcomes of this work is the first estimate (4.15) of the sub-leading
term α1 in (4.13), which would help to further constrain coefficients in singular expansions
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of physical quantities around the YL point. This is important in view of potential appli-
cation to the problem of “extended analyticity” which would include the low-T domain.
Unfortunately, our estimate (4.15) is not too precise, with possible error of about 20%.
Further work is required to improve this result, and to determine higher couplings in the
effective action (3.7).

We regard this work as a step toward quantitative understanding of how the particle
spectrum (including resonance states) and S-matrix of IFT depends on the parameters of
the theory. Except of some points in the parameter space, the theory is not integrable,
and its S-matrix involve all kinds of inelastic processes. We will address some properties
of inelastic amplitudes and resonance states in forthcoming work [21]. Significance of
this study is two-fold. First, IFT describes the basic universality class of second order
phase transitions (such as the liquid-vapor critical point), and its analysis is important
in understanding detailed structure of the associated critical singularity. On the other
hand, we develop tools for quantitative description of strongly interacting QFT with rich
particle/resonance spectrum and S-matrix.
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Note added. In forthcoming paper [14] the free energy of IFT in imaginary magnetic
field was computed numerically using an improved corner transfer matrix approach. The
authors managed to locate the YL singularity at u0 = 0.0358536516(1), with the precision
which seems to be substantially better then our estimate u0 = 0.03586(4). In addition, they
give what appears to be more precise estimate of some of the parameters in the effective
action (3.7), particularly the coupling α0. We are grateful to the authors of [14] for sharing
these results prior to publication.

A Derivation of κ1 in (2.5)

Consider again the A1 +A1 → A1 +A1 elastic scattering amplitude S11(θ). This amplitude
of course depends on the scaling parameter η, but we suppress this argument to simplify
notations. Analytic continuation of this amplitude to complex θ yields the function analytic
in the θ-plane with the poles manifesting the bound states, and the branch cuts associated
with the inelastic channels A1 + A1 → X, where X stands for any states involving more
than two of the particles A1, as well as the higher bound states Ap. The principal branch
values of this amplitude enjoy the functional relations

S11(θ)S11(−θ) = 1 , S11(θ) = S11(iπ − θ) , (A.1)

which follow from unitarity and analyticity (see e.g. [11] for the details).
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At η = 0 the theory is integrable. We denote S(0)
11 (θ) the amplitude at η = 0. At this

integrable point all inelastic channels are closed, and S(0)
11 (θ) is a meromorphic function of

θ. Its exact form is

S
(0)
11 (θ) :=

sinh θ + i sin 2π
3

sinh θ − i sin 2π
3

sinh θ + i sin 2π
5

sinh θ − i sin 2π
5

sinh θ + i sin π
15

sinh θ − i sin π
15
, (A.2)

the poles at θ = 2πi/3, θ = 2πi/5, and θ = iπ/15 are the manifestations of the particles A1,
A2, and A3 in the direct channel of the scattering, while the poles at θ = iπ/3, θ = 3πi/5,
and θ = 14πi/15 represent the same particles in the cross channel.8 Correspondingly, the
masses of the particles A2 and A3 at η = 0 are

M
(0)
2 = 2M (0)

1 cos
(
π

5

)
, M

(0)
2 = 2M (0)

1 cos
(
π

30

)
, (A.3)

where M (0)
1 is the mass of A1 at η = 0.9

At nonzero but sufficiently small η the elastic amplitude S11(θ) admits convergent
expansion in powers of η, which we choose to write as

S11(θ) = S
(0)
11 (θ)

(
1 + η Φ(1)(θ) + 1

2η
2 Φ(2)(θ) + . . .

)
. (A.4)

Here we concentrate attention on the first correction term η ϕ(1)(θ), which satisfy the
relations

Φ(1)(θ) = −Φ(1)(−θ) , Φ(1)(θ) = Φ(1)(iπ − θ) , (A.5)

in virtue of (A.1). In fact, Φ(1)(θ) can be found in a closed form, as follows.
At nonzero η the integrability of IFT is broken, and S11(θ) develops branching points at

the inelastic thresholds. However, the discontinuities of this amplitude across the associated
branch cuts are O(η2), and hence ϕ(1)(θ) in (A.4) remains a meromorphic function of θ.
Indeed, the discontinuities across the branch cuts are related in a simple way to the inelastic
cross sections, which in turn are proportional to the squares of the absolute values of the
inelastic amplitudes. Since at small η the inelastic amplitudes are O(η), the discontinuities
are O(η2). It is then possible to argue that, up to terms η2 and higher, the amplitude (A.4)
can be written as

S11(θ) =
sinh θ + i sin 2π

3
sinh θ − i sin 2π

3

sinh θ + i sinα2
sinh θ − i sinα2

sinh θ + i sinα3
sinh θ − i sinα3

+O(η2) , (A.6)

where
α2 = 2π

5 + α′2 η , α3 = π

15 + α′3 η , (A.7)

and α′p, p = 2, 3 are numbers, to be determined shortly. In other words, the leading ∼ η

correction to S11(θ) is determined entirely by the shifts of the positions of the poles (and
8Although the theory at this integrable point involves eight stable particles, only three lightest particles

A1, A2, and A3 appear as the poles in S
(0)
11 (θ). The remaining particles show up in as the poles in the

elastic amplitudes of S(0)
pp′ (θ) with p or p′ greater than one, see [13] for details.

9Closed form expression for the coefficient M (0)
1 /|h|

8
15 can be found in e.g. [2], appendix B.
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related zeros) of S11(θ) associated with the particles A2 and A3. Expanding (A.6) to the
first order in η one finds

Φ(1)(θ) =
2i α′2 cos 2π

5 sinh θ
sinh2 θ + sin2 2π

5
+

2i α′3 cos π
15 sinh θ

sinh2 θ + sin2 π
15

. (A.8)

and hence
κ1 =

√
3
[

α′2 cos 2π
5

sin2 2π
3 − sin2 2π

5
+

α′3 cos π
15

sin2 2π
3 − sin2 π

15

]
κ(∞) , (A.9)

where κ0 = κ(∞), see eq. (2.3).
The slopes α′p in (A.10) are related in a simple way

α′p = 2√(
2M (0)

1 /M
(0)
p

)2
− 1

(
M

(1)
1

M
(0)
1
− M

(1)
p

M
(0)
p

)
, (A.10)

to the leading coefficients in the expansions of the masses Mp of the particles Ap,

Mp = M (0)
p +M (1)

p η +O(η2) . (A.11)

While M (0)
p are known exactly from the integrable theory, the leading corrections M (1)

p

were obtained via the form factor perturbation theory in [24], leading to

α′2 = 0.378325 . . . , α′3 = 1.35226 . . . . (A.12)

With this, (A.9) leads to (2.5).
One could rise two objections to the proposed expression (A.8). First, (A.8) seems

to ignore the possibility of appearance of new poles, not directly related to the particles
A2 and A3. It is easy to argue though that such new poles can appear (and indeed do
appear) only in the order O(η2), i.e. in Φ(k)(θ) with k ≥ 2 in (A.4). Assume that a new
pole appears in Φ(1)(θ) at θ = θnew pole within the strip −π ≤ =mθ ≤ 0 in the complex
θ-plane. Obviously, it has to be accompanied by a new zero at θ = θnew zero, close to the
new pole, θnew zero − θnew pole ∼ η, so that the pole disappears at η = 0. The position of
the new pole can’t be deep inside the above strip, because then the associated zero would
lead to a pole within the physical strip 0 < =mθ < π, as dictated by the first equation
in (A.1).10 This would imply appearance of a singularity in the upper half-plane of the
complex energy, incompatible with the physical requirement of macro causality [25] (the
statement that the scattering amplitudes can not have singularities on the principal sheet
of the energy surface). Therefore, the new pole can only appear close to the boundary
=mθ = 0 or π, so that the associated new zero would be located in the physical strip
0 < =mθ < π. In this case the pole θnew pole would signal a conventional resonance state,
with the width proportional to the separation between the new pole and the associated
new zero. This interpretation immediately rules out possibility of emergence of the new
poles in the order η, since then by continuation to the opposite sign of η one could make

10For more details on possible locations of poles and zeroes of the elastic 2 → 2 amplitude see e.g. [9–11].
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the width negative, in contradiction with unitarity.11 To summarize, no additional poles
in the finite part of the θ-plane can appear in Φ(1)(θ).

Another possible objection concerns asymptotic θ →∞ behavior of S11(θ) in the order
∼ η. Without violation of crossing and unitarity one can add to (A.6) an entire function
of θ, subject to the conditions (A.1). Since those conditions suggest 2πi periodicity of the
amplitude, such additional entire function could be either a constant (impossible, as it
would violate the condition S11(0) = −1), or grow at least as sinh θ as θ → ∞. However,
analysis of the form factor perturbation theory suggested that the corrections Φ(k)(θ) decay
as θk−1 e−θ as θ → +∞; in particular Φ(1)(θ) behaves as e−θ in this limit, as (A.8) obviously
does. Indeed, as S11(∞) = +1, at high energies the particles A1 behave much like free
bosons. In particular, the form factors 〈A1(θ1) . . . A1(θN ) | OR(0) | A1(θ′1) . . . A1(θ′M )〉
of any relevant field operator OR(x) are bounded by a constant; the above asymptotic
behavior of Φ(n)(θ) follows.

B Finite-Size corrections to mass gap

Consider a generic 2d massive QFT, and denote Aa the stable particles of the theory, and
Ma their masses. We assume that A1 is the lightest particle in the spectrum. If one puts
this theory in the geometry of a cylinder x ∼ x+R, the energy spectrum acquires the finite
size corrections. Thus, the leading large-R correction to the ground state energy is

E0(R) = FR−
∑
a

Ma

∫
dθ

2πe
−MaR cosh θ cosh θ + · · · , (B.1)

where F is the bulk vacuum energy density. Furthermore, if E1(R) is the energy of the
state of one particle A1 at rest (see e.g. [27])

E1(R) = FR+M1 +
∑
b,c

M1κ
1
bce
−µ1

bcR −
∑
a

Ma

∫
dθ

2πe
−MaR cosh θS1a

(
θ + πi

2

)
cosh θ ,

(B.2)
The sum in the first line here includes particles a, b whose masses satisfy the inequality
M2

1 ≥ |M2
a −M2

b |, and

µabc = MbMc

Ma
sin uabc , κabc = −(Γabc)2 µabc/Ma , (B.3)

Here iucab is the rapidity position of the pole associated with Ac in the amplitude Sab(θ) of
the elastic process Aa +Ab → Aa +Ab,

M2
c = M2

a +M2
b + 2MaMb cosucab , (B.4)

and (
Γcab
)2 = −i Res

θ→iuc
ab

Sab(θ) . (B.5)

11Resonance poles can appear in S11(θ), and indeed do appear, in the order η2, see e.g. [26].
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In the E8 theory in section 5 we have M2 = 2M1 cos π5 and M3 = 2M1 cos π
30 , and

µ1
22 =

√
5 + 2

√
5

2 M1 ≈ 1.53884M1 , µ1
33 = 1

2

√
7 + 8 cos π15M1 ≈ 1.92517M1 . (B.6)

This leads to the fitting formula (5.8).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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