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1 Introduction

There exist a number of well-known models involving scalars and fermions coupled together
by a Yukawa-type interaction, which have a variety of applications both in modelling
condensed matter systems and in providing toy models for behaviour such as chiral symmetry
breaking in quantum field theory (QFT). Two of the more famous are the Gross-Neveu-
Yukawa (GNY) model [1, 2], and the Nambu-Jona-Lasinio-Yukawa (NJLY) model [2–4],
ultraviolet (UV) completions of two-dimensional purely fermionic theories first introduced
to study continuous and discrete chiral symmetry breaking. Recently, it has been suggested
that these models may have a rich structure in 3d, where for certain numbers of fermions,
including non-integer values, they flow to an infrared (IR) conformal field theory (CFT)
with emergent supersymmetry [5, 6].

In the Wilsonian paradigm, one can consider CFTs to arise as theories which do not
flow under renormalisation. These fixed points will then act as the UV and IR limits of
QFT flows through theory space. The ε expansion, first introduced by Wilson and Fisher
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in the 1970s [7], has been a remarkably powerful tool for calculating and understanding the
properties of these fixed points. Picking out the ε poles arising from Feynman diagrams via
counterterms, the beta functions become polynomials in the interaction couplings, so that
the problem of finding fixed points becomes a purely algebraic one. Though this expansion
relies on taking ε to be a small parameter, it is still able to provide meaningful information
in the limit ε → 1. Thus, one can derive information about CFTs in three dimensions
by considering theories close to four dimensions. While it may be difficult to determine
rigorously how data from the four dimensional theory carries over to three dimensions, it
is believed that, except for special bifurcation points, the existence of a fixed point of the
one-loop beta function is not affected by higher order terms when taking ε→ 1.

To derive fixed points one typically considers a specific system, such as the GNY or
NJLY model, where the interactions preserve a definite symmetry group G. One then
examines how this system behaves under symmetry-preserving deformations. The group G

will restrict the number of couplings and the allowed form of the beta functions, generally
simplifying the algebraic equations. The restriction provided by the symmetry group G

is not a general one, and greatly limits the number and type of fixed points which will be
found. Recently, there has been interest in extending beyond this line of thinking in order
to systematically examine the space of all fixed points. Such a search requires a selection
of the field content of the theory, and starting with a potential that contains all possible
classically marginal terms that can be written down from the basic fields. Previously, this
search has been undertaken in the context of purely (massless) scalar theories [8, 9], where
the potential is the completely unconstrained

V (ϕ) = 1
4!λijklϕiϕjϕkϕl , (1.1)

for Ns scalar fields ϕi with i = 1, . . . , Ns and λijkl a symmetric tensor. Beyond the well-
known models with simple symmetry groups and only a few contributions to the scalar
potential, there exist a plethora of more complicated fixed points with reduced symmetry.

Considering the importance of theories containing both scalars and fermions, it is
natural to generalise (1.1) to include Nf Weyl fermions as

V (ϕ, ψ, ψ̄) = 1
4!λijklϕiϕjϕkϕl +

(1
2yiabϕiψaψb + h.c.

)
, (1.2)

where yiab is symmetric in a and b. For specific choices of Ns, λijkl and yiab, one is able to
recover the GNY or NJLY model. However, this framework is presumably general enough
to, as in the scalar case, produce novel fixed points. Recently, the beta functions for λijkl
and yiab have been written down to three-loop order and examined in a supersymmetric
context [10]. As we are more concerned with the simple existence of fixed points in a simple
brute-force search, the one-loop beta function will be sufficient for our purposes.

In this context, we undertake here a general analysis of fixed points in scalar-fermion
theories. After discussing the beta functions in such theories, we analyse the stability matrix
which determines repulsive and attractive directions close to a fixed point in a flow towards
the IR. We show that there is always a positive eigenvalue equal to ε and that whenever the
global symmetry of the free action is broken there are zero eigenvalues at the fixed point.
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These zero eigenvalues do not correspond to exactly marginal operators but are rather zero
due to the associated deformations being total derivatives [11]. Such deformations arise
from broken currents of the free theory.

In scalar models, it is well-known that if with a given set of deformations there exists a
renormalisation group (RG) stable fixed point, in the sense that all directions around it
are attractive in a flow towards the IR, then it is the only RG stable fixed point [12]. In
the case of scalar-fermion models, the one-loop Yukawa beta function does not depend on
the quartic couplings and so it can be solved independently of the quartic beta function.
For every root of the Yukawa beta function there will be multiple roots of the quartic
beta function and thus there are ‘levels’ of fixed points (with each level corresponding to a
different root of the Yukawa beta function). We prove, under fairly general assumptions,
that if a stable fixed point exists within a level, then it is the only fixed point with that
property. Note that different levels can have different stable fixed points.

We also derive upper bounds on linear combinations of group invariants that can be
used to characterise scalar-fermion fixed points. This extends results found for purely scalar
theories [9, 11, 13, 14]. The Yukawa beta function leads to a bound on a combination of
invariants constructed from the Yukawa couplings alone, while the quartic beta function
leads to a bound on a combination of mixed invariants involving both Yukawa and quartic
couplings. There is a way to combine these bounds so that a linear combination of the
tensorial norms ||λ||2 = λijklλijkl and ||yiy∗i ||2 = Tr(yiy∗iyjy∗j) is bounded above:

||λ||2 − 6 ||yiy∗i ||2 ⩽ 1
8Nsε

2 . (1.3)

The minus sign in (1.3) is ultimately due to the minus sign in front of the contribution
of purely Yukawa terms to the beta function of λ. The bound (1.3) indicates that the
allowed region in which unitary fixed points may be found is bounded by a hyperbola in
the ||λ||-||yiy∗i || plane.

These bounds are shown to lead to upper bounds on the one-loop anomalous dimensions
of the scalar and fermion fields if a certain combination quartic in Yukawa couplings is
non-negative. This follows from the fact that anomalous dimensions are given simply by
combinations of couplings evaluated at fixed points. In fact, at leading order only the
Yukawa couplings at the fixed point are enough to determine the anomalous dimensions.
Subject to an unproven assumption that we have numerically checked in a variety of cases,
we find that

γϕ ⩽ 1
2Nsε , γψ ⩽ Nsε . (1.4)

As we have already mentioned, fixed points obtained in the ε expansion are usually
limited by overarching assumptions of symmetry. Here we relax these assumptions and seek
all fixed points in a brute force search for small Ns, Nf . We perform analytic searches but
also numerical ones when we can no longer find all roots of the beta functions analytically.
These searches are not systematic enough to claim that we have found all possible fixed
points, but they are broad enough to indicate the size of the space of fixed points and
to locate well-known theories. While the potentials of fixed points found in purely scalar
theories are necessarily bounded below [11, 13], this is not the case for scalar-fermion fixed
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points. In this work we will not filter fixed points based on the criterion of stability of the
scalar potential.

The outline of the paper is as follows. In section 2 we describe the scalar-fermion
systems, their beta functions and stability matrices, and then derive general bounds that
the beta function equations place on certain combinations of invariants constructed from
the couplings. In this section we also examine how to transfer between Weyl fermions
in four dimensions and real two-component Majorana fermions in three dimensions, and
prove that for each Yukawa-coupling solution there exists at most one stable fixed point.
In section 3 we survey some well-known fixed points involving scalars and fermions. In
section 4 we begin our search of the space of fixed points by directly solving the beta
function equations for small numbers of scalars and fermions, and verify the consistency
with bounds from the previous section. Section 5 then extends the search beyond the scope
of simple analytic techniques by applying numerical methods to the problem. We first verify
that the numerical results are consistent with the analytical results of the previous section,
and then set out towards the unknown. Finally, we conclude in section 6.

2 General results

In d = 4 we may start with the general Lagrangian

L = 1
2 ∂

µϕi∂µϕi + iψ̄aσ̄µ∂µψa + 1
4!λijklϕiϕjϕkϕl + (1

2 yiabϕiψaψb + h.c.) , (2.1)

where ϕi, i = 1, . . . , Ns, are real scalar fields, ψa, a = 1, . . . , Nf , are two-component
Weyl fermions, ψ̄ = ψ† and σ̄µ = (12×2,−σ⃗) with σ⃗ containing the three Pauli matrices,
σ⃗ = (σ1, σ2, σ3). Repeated indices are always summed over the values they take. The
tensor λijkl is fully symmetric and thus has 1

4!Ns(Ns + 1)(Ns + 2)(Ns + 3) independent real
components, while yiab is a complex tensor symmetric in the two fermionic flavour indices
and thus has 1

2NsNf (Nf + 1) independent complex components.
Two-component spinors may be related to four-component spinors in the standard way;

see e.g. [15]. First of all, the Lagrangian (2.1) is equivalent to a Lagrangian built out of
four-component Majorana spinors

ΨM
a =

(
ψaα
ψ̄aα̇

)
, ΨM

a =
(
ψαa ψ̄aα̇

)
. (2.2)

This Lagrangian takes the form

L = 1
2 ∂

µϕi∂µϕi+ 1
2 iΨ

M
a γ

µ∂µΨM
a + 1

4!λijklϕiϕjϕkϕl+
1
2 y

M
iabϕiΨM

a ΨM
b + 1

2 i ŷ
M
iabϕiΨM

a γ
5ΨM

b ,

(2.3)
where now yMiab and ŷMiab are real tensors symmetric in the fermionic flavour indices. Com-
paring with (2.1) we find

yiab = yMiab − i ŷMiab . (2.4)

For the gamma matrices we use the chiral representation and Ψ = Ψ†γ0.
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Dirac spinors can also be used. To define a Dirac spinor one needs two different
two-component spinors. Let us choose

Ψa =
(
ηaα
χ̄aα̇

)
, Ψa =

(
χαa η̄aα̇

)
, (2.5)

with a = 1, . . . , Nf counting Dirac spinors so that we need an even number of two-component
spinors. Without using explicit projectors to two-component spinors, we may write the
Lagrangian

LD = 1
2 ∂

µϕi∂µϕi+iΨaγ
µ∂µΨa+ 1

4!λijklϕiϕjϕkϕl+y
D
iabϕiΨaΨb+i ŷDiabϕiΨaγ

5Ψb , (2.6)

where yDiab and ŷDiab are complex tensors Hermitian in the fermionic flavour indices, i.e.
yD∗
iba = yDiab and ŷD∗

iba = ŷDiab. Beginning with the Lagrangian (2.6), we may write each Dirac
fermion as in (2.5) for Weyl fermions ηa and χa, and re-express this Lagrangian in the
form of (2.1) for 2Nf Weyl fermions. If we define the Weyl fermions ψA, A = 1, . . . , 2Nf ,
such that

ηa = ψa , χa = ψNf +a , (2.7)

we find that the Yukawa coupling of the Weyl fermions can be written in block-matrix
form like

yiAB =
(

0 1
2(yDi )∗ − i

2(ŷDi )∗
1
2y

D
i − i

2 ŷ
D
i 0

)
. (2.8)

As yDi , ŷDi are Hermitian matrices, this coupling will be, as expected, symmetric but not real.
The Lagrangian (2.6) is not as general as (2.1), but widely analysed models like the GNY

and NJLY models are most easily described as special cases of (2.6). Let us remark here
that parity is broken in (2.6). To restore it one may consider scalars ϕi and pseudoscalars
ϕ′p and allow only the couplings yDiabϕiΨaΨb + i ŷDpabϕ

′
pΨaγ

5ΨM
b . Time reversal is also

broken in (2.6).
In our treatment we will use (2.1) in d = 4 − ε dimensions, with the eventual goal of

taking the limit ε→ 1. A proper treatment of fermions in this excursion across dimensions
from 4 to 3 is, to our knowledge, unknown. In the literature, it is common to start with Dirac
fermions in d = 4, which have 8 real degrees of freedom, and assert that proper Majorana
fermions in d = 3 can be obtained, with two real degrees of freedom each, essentially
emerging by some decomposition of the original Dirac spinor. This gives rise to 4 Majorana
fermions in d = 3 per Dirac fermion in d = 4. Our Lagrangian (2.1) contains two-component
Weyl fermions in d = 4, which can be equivalently thought of as d = 4 Majorana fermions.
Despite the lack of precise mappings, we treat each of our two-component Weyl fermions in
d = 4 as containing 2 Majorana fermions in d = 3. However, there is evidence that the story
is not so simple when one wants to include global flavour symmetries. For instance, it is
believed that though the GNY model, (2.6) for Ns = 1 with ŷ = 0 and yab = yδab, has U(Nf )
symmetry in 4d, the Dirac fermions will break apart such that the theory has O(2Nf )2 ⋊Z2
symmetry rather than the O(4Nf ) symmetry one might naively expect [10, 16, 17].
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2.1 Beta functions for scalar-fermion theories

The beta functions for the coupling constants λ and y for scalar-fermion theories are well
known [10, 18–21], and depend only on the type of fermion that is used in that the number
of independent components contained by the spinor can appear as a prefactor in certain
terms. For the Weyl Lagrangian in (2.1), the beta functions are given at one loop by1

βλ,W
ijkl = −ελijkl + S3,ijklλijmnλmnkl − 4S6,ijkl yiaby

∗
jbcykcdy

∗
lda

+ 1
2S4,ijkl (yiaby

∗
mba + ymaby

∗
iba)λmjkl , (2.9)

βy,W
iab = −1

2εyiab + 1
2(yjacy

∗
jcdyidb + yiacy

∗
jcdyjdb) + 2yjacy

∗
icdyjdb + 1

2(yicdy
∗
jdc + yjcdy

∗
idc)yjab ,

(2.10)

where Sn,ijkl sums over the n inequivalent index permutations of the indices i, j, k, l. Oper-
ationally, fixed points may be calculated using the above beta functions, at which point one
takes Nf to be the number of desired Majorana fermions in 3d divided by the appropriate
factor of two. The difficulties associated with attributing the global symmetry group in three
dimensions to the starting symmetry group in four dimensions makes this method subtle.

There is another, perhaps more naive way of continuing across dimensions, by attempting
to directly guess the form the Yukawa interaction ought to take in 3d. If we divide the Nf

4d Weyl fermions into 2Nf 3d Majorana fermions as

ψa = ζa + iξa , (2.11)

the Yukawa interaction in (2.1) becomes

ϕi
(
2 Re(yiab)(ζaζb − ξaξb) + 2 Im(yiab)(ζaξb + ζbξa)

)
= giABϕiθAθB , (2.12)

where A,B = 1, . . . , 2Nf , ζa = θa and ξa = θNf +a. In four dimensions, the Lorentz
symmetry requires that the coefficient of the ζζ and ξξ terms be equal, up to a sign, so
that the theory’s degrees of freedom can be written in terms of Weyl, or Dirac spinors.
In three dimensions, however, this is no longer the case, and relaxing this condition we
conjecture that these theories have the more general Yukawa interaction yiABϕiθAθB , where
now yiAB is simply a real tensor symmetric with respect to its A,B indices. Importantly,
this includes both three-dimensional theories found by taking the ε → 1 limit of (2.1),
and three-dimensional theories which cannot be lifted into four-dimensional theories in a
Lorentz-invariant manner.

The beta functions for the two-component Majorana fermions can be written down
based on this conjecture. As the basic scalar-fermion interaction vertex still takes the
standard Yukawa form, the coupling yiab will be renormalised with precisely the same
diagrams as those needed to renormalise giab. There are only two distinctions which we
must account for: first that the fermion loops will only see half of the degrees of freedom in
the 3d Majorana case as they do in the Weyl case, and second that our conjecture posits

1Here and hereafter we rescale the quartic coupling by 16π2 and the Yukawa coupling by 4π.
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that yiab is real, so that both giab and g∗iab must be replaced by yiab wherever they appear
in a diagram. Implementing these rules in (2.9) and (2.10) yields the new beta functions

βλ,Mijkl =−ελijkl+S3,ijklλijmnλmnkl−4S3,ijkl yiabyjbcykcdylda

+ 1
2S4,ijkl yiabymbaλmjkl , (2.13)

βy,Miab =−1
2εyiab+

1
2(yjacyjcdyidb+yiacyjcdyjdb)+2yjacyicdyjdb+ 1

2 yjcdyicdyjab . (2.14)

To notationally unify the Weyl and 3d Majorana beta functions we can define the symmetric
O(Ns) tensors

Zij = 1
2α
(
yiaby

∗
jba + y∗iabyjba

)
= 1

2αTr(yiy∗j + y∗iyj) ,

Xijkl = 1
2αS6,ijkl yiaby

∗
jbcykcdy

∗
lda = 1

2αS6,ijkl Tr(yiy∗j yk y∗l) ,
(2.15)

where α = 1 for two-component Majorana fermions and α = 2 for Weyl fermions. One can
view α as counting the number of 3d Majorana fermions the 4d fermions will produce when
we take the ε→ 1 limit. The factors of α account for the different number of independent
components in the distinct types of fermions. In the two-component Majorana case, one
must simply remember that the coupling yiab is real to remove the complex conjugation.

Tensors we have encountered so far are not irreducible representations (irreps) of O(Ns),
and can be decomposed as

Zij = Z0 δij + Z2,ij ,

Xijkl = X0S3,ijkl δijδkl + S6,ijlkX2,ij δkl +X4,ijkl ,

λijkl = d0S3,ijkl δijδkl + S6,ijlk d2,ijδkl + d4,ijkl ,

(2.16)

where Z2, X2, X4, d2 and d4 are all symmetric, traceless tensors. In terms of these tensors,
the beta functions simplify in both cases to

βλijkl = −ελijkl + S3,ijklλijmnλmnkl − 4Xijkl + 1
2S4,ijklZimλmjkl , (2.17)

βyiab = −1
2εyiab + 1

2
(
yjacy

∗
jcdyidb + yiacy

∗
jcdyjdb + 4yjacy∗icdyjdb + Zij yjab

)
, (2.18)

where again in the Majorana case we simply use the fact that the couplings y are real to
remove the complex conjugation. The anomalous dimensions of the fields are also known to
one loop order [22], and are given by the eigenvalues of the matrices

γϕij = 1
4αZij , γψab = 1

2 yiacy
∗
icb . (2.19)

These dimensions will be useful in determining how the global symmetry of the free theory
is broken at different fixed points.

2.1.1 Doubling effect

Solving for fixed points in some situations produces pairs of distinct fixed points related
by a rescaling of the scalar couplings. Suppose we have some solution (λ, y) to the beta
function equations and consider the new set of couplings (λ′ = aλ, y). This rescaled set of
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couplings may now also be a fixed point of the same beta function equations, i.e. it may
set (2.17) and (2.18) to zero. One could absorb the rescaling in a field redefinition, but that
would not preserve the form of the kinetic term in the Lagrangian. Thus, demanding a
canonical kinetic term shows that these fixed points will be distinct physical theories.

Let us now assume that (aλ, y) also describes a fixed point. Then, starting from the
fixed point (λ, y) we have

−εa0 + a1 + 2S − 4Ns(Ns + 2)X0 + 1
2Zijλijkk = 0 , (2.20)

where S = λijklλijkl, while for the rescaled fixed point (aλ, y) we have

−εaa0 + a2a1 + 2a2S − 4Ns(Ns + 2)X0 + 1
2Zij aλijkk = 0 . (2.21)

These two equations can be simultaneously satisfied for a unique value of a ̸= 1. Subtracting
1/a times (2.21) from (2.20) yields the condition which a must satisfy:

(1 − a)(a1 + 2S) −
(

1 − 1
a

)
4Ns(Ns + 2)X0 = 0 . (2.22)

Assuming a ̸= 1 and using the fact that X0 only vanishes when all fermions are free, the
last expression becomes

a1 + 2S
4Ns(Ns + 2)X0

= −1
a
. (2.23)

This is the doubling effect: for certain (λ, y) fixed points, there exist a physically inequivalent
(aλ, y) fixed points with a given by (2.23). As everything is positive on the left-hand side
of (2.23), it follows that a < 0.

Notice that as λ = 0 is not a solution to βλ = 0 for non-zero y, a ̸= 1 always exists
for fixed points with interacting fermions. However, this does not a priori guarantee the
existence of a doubled fixed point satisfying the same beta function equations. For that to
be the case, it must hold that

S3,ijklλijmnλmnkl = −4
a
Xijkl (2.24)

for all i, j, k and l, which is a non-trivial condition.
Note that if Ns = 1 the indices in (2.24) disappear so that this equation trivially reduces

to (2.23), and thus every fixed point is doubled in that case. When the fermions are all
free or in a purely scalar theory the only solution to (2.22) is a = 1 and thus there is no
doubling effect in those cases.

2.2 The stability matrix

2.2.1 Eigenvalues and their interpretation

It is crucial to notice that because βy is independent of λ for both Weyl and two-component
Majorana fermions, in both cases the stability matrix will necessarily take the schematic form

SIJ =
(
Hij Bib
0 Cab

)
(2.25)
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for some H, B and C, where I, i and a represent generalised indices. Here, C will be the
stability matrix of the Yukawa couplings. Because of the zero matrix in the lower-left block,
eigenvectors of H will remain eigenvectors of the whole stability matrix as long as we simply
append 1

2NsNf (Nf + 1) zeros to the end of the vector.
Many of the results concerning eigenvalues of this stability matrix carry over virtually

unchanged from those found for the purely scalar case [9]. The stability matrix will always
have an eigenvector with eigenvalue κ = ε which is related to the value of the couplings by

vI =
(
λi

1
2ya

)
. (2.26)

To show that (2.26) is indeed an eigenvector of SIJ we must first show that ya is an
eigenvector of Cab with unit eigenvalue. To see that this is the case, notice that when taking
derivatives of βy with respect to yiab one will get Kronecker deltas in the O(Ns) indices and
Kronecker deltas in the O(Nf ) indices symmetrised over a and b, so that upon contracting
with yiab one gets back the same terms as in βy but now with a prefactor equal to the
number of y’s in each term. That is,

dβyiab
dyjdc

yjdc = −1
2εyiab + 3

2
(
yjacyjcdyidb + yiacyjcdyjdb + 4yjacyicdyjdb + Zijyjab

)
, (2.27)

which, using the fact that βy = 0 at the fixed point, reduces immediately to
dβyiab
dyjdc

yjdc = εyiab . (2.28)

Thus, we have that
SaJvJ = εva . (2.29)

To demonstrate that vI is an eigenvector, all that is left is then to show that SiJvJ = εvi.
To see this, notice that as before contracting S with λ or y will simply introduce factors
equal to the power of the couplings that appear in βλ so that

Sijklmnpqλmnpq = −ελijkl + 2S3,ijklλijmnλklmn + 1
2S4,ijklZimλmjkl ,

1
2Sijklmabymab = −8S3,ijklTr(yiyjykyl) + 1

2S4,ijklZimλmjkl .
(2.30)

Summing these and using the fact that βλ = 0 at the fixed point we arrive at the eigen-
value equation

SiJvJ = εvi . (2.31)

Hence, vI is an eigenvector of the stability matrix with eigenvalue ε. Though the proof was
performed for the two-component Majorana theory, it is also valid for the Weyl theory with
only minor modifications to account for the fact that one now has both y and y∗ couplings.
In the case of decoupled theories, there will be multiple κ = ε eigenvectors, one for each of
the decoupled theories.

There may also exist Yukawa eigenvectors of the stability matrix with κ = 0, which
are related to the breaking of the O(Ns) and O(Nf ) symmetries. For the O(Nf ) symmetry,
define the vector

vI =
(

0
ωacyicb + ωbcyiac

)
, (2.32)
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where ωab is antisymmetric and thus exists in the Lie Algebra of O(Nf ). Then, notice that
because of the antisymmetry of ω, terms arising from contracted fermionic indices in the
beta functions will cancel pairwise, for

dyiab
dykde

yjbcvkde = ωaeyiebyjbc + ωceyiabyjbe . (2.33)

Consequently, to determine the action of SIJ on vI we simply need to attach a factor of ω
to each free fermionic index. We see immediately that

SiJvJ = 0 , (2.34)

as all of the fermionic indices in SiJ are summed over in traces. For βy, we get two separate
ω terms

Siabjcdvjcd = ωae
(
− 1

2εyieb + 1
2(yjecyjcdyidb + yiecyjcdyjdb + 4yjecyicdyjdb + Zijyjeb)

)
+ ωbe

(
− 1

2εyiae + 1
2(yjacyjcdyide + yiacyjcdyjde + 4yjacyicdyjde + Zijyjae)

)
,

(2.35)
which one can see vanishes when applying the fact that βy = 0 twice. If yiab is O(Nf )
invariant, then ωacyicb + ωbcyiac = 0 for all ω by virtue of an infinitesimal O(Nf ) rotation.
Thus, non-zero vI indicate the presence of broken symmetry, with certain O(Nf ) generators
acting non-trivially on the y’s. Similarly, one can define the vector

uI =
(
ωimλmjkl + ωjmλimkl + ωkmλijml + ωlmλijkm

ωijyjab

)
, (2.36)

where now the antisymmetric ωij act as generators of the scalar O(Ns) symmetry. One can
see that the antisymmetry of ω will again, up to applications of the beta function equations,
lead to vanishing eigenvalue in exactly the same way as for vI . That is,

SIJuJ = 0 . (2.37)

Here, non-zero uI demonstrate the presence of broken O(Ns) generators, so that by exam-
ining the form of the eigenvectors with κ = 0 at a fixed point one can see how the O(Ns)
and O(Nf ) symmetries are broken and thus determine the remaining symmetry group.

2.2.2 RG stability

The fact that βy has no dependence on the scalar coupling λ, at least at one loop, means
that to this order the problem of finding fixed points in scalar-fermion theories splits into
two separate problems: first, one can find all possible fixed points in y by considering βy,
and then one can insert these y’s into βλ as constants to find the corresponding values of
λ. In practice this splitting was not needed to determine the fixed points with numerics,
but this observation allows one to observe quite simply some crucial analytic properties of
the system.

In the purely scalar case, one can capture the behaviour of the beta functions and the
stability matrix by writing down the O(Ns) scalar A-function for the system [11],

A = −1
2ελijklλijkl + λijklλklmnλmnij , (2.38)
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which is defined such that
βλijkl = δA

δλijkl
. (2.39)

The stability matrix is then given by the Hessian of the A-function in coupling space.
Determining fixed points and their stability then simply becomes an exercise in extremising
the A-function and classifying the various extrema. The uniqueness of stable fixed points
in the purely scalar system is thus guaranteed by a theorem of Michel which states that the
A-function given in (2.38) has a unique minimum [12].

Let us then suppose that we have previously determined the possible values of y by
solving the βy = 0 equation, and wish now to find the allowed λ’s for one specific y of
our choice. As we have, in a sense, now just simply added constants to the purely scalar
beta function, we can again write down an A-function which generalises (2.38) to the case
of non-zero fermions. Here, it is important to note that now the Hessian of A does not
describe the full stability matrix for the theory, but only the part for perturbations with
purely scalar operators, labeled by H in (2.25). The A-function which generates (2.17) is

Ay(λ) = −1
2ε(λ, λ) + (λ, λ, λ) − 4(X,λ) + (λ, λ)Z , (2.40)

where we have defined the notation

(a, b) = aijklbijkl ,

(a, b, c) = aijklbklmncmnij ,

(a, b)Z = Zijaiklmbjklm .

(2.41)

The only difference here between the Weyl and two-component Majorana theories is which
value of α one uses in the definition of Xijkl and Zij , (2.15). As this is the only distinction,
we will not specify which theory we are working with, as the following theorem and proof
are identical in both cases. If Λy(H) is the set of couplings (λ, y) invariant under some
subgroup H < O(Ns) of scalar rotations, then we then find the following generalisation of
Michel’s theorem:

Theorem. If (λ1, y) and (λ2, y) are two non-identical fixed points which lie in Λy(H) such
that Ay(λ1) > Ay(λ2), then (λ1, y) cannot be stable against perturbations within Λy(H) at
one loop.2

Proof. At a fixed point, we will have that

(βλ, λ) = 0 = −ε(λ, λ) + 3(λ, λ, λ) − 4(X,λ) + 2(λ, λ)Z , (2.42)

so that the A-function will thus be reduced to

A∗(λ) = −1
6ε(λ, λ) − 8

3 (X,λ) + 1
3 (λ, λ)Z . (2.43)

Then, suppose that we have two distinct fixed points (λ1, y) and (λ2, y) with Ay(λ2) <
Ay(λ1), where by distinct we simply mean that λ1 and λ2 are unequal tensors. The fixed

2Note that our proof does not apply if Ay(λ1) = Ay(λ2).
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point (λ1, y) will only be stable against perturbations towards (λ2, y) if the Hessian, H,
of A(λ1) is positive-semidefinite in the λ1-λ2 plane. Expanding A(λ1 + sλ1 + tλ2) and
collecting terms of orders s2, st and t2, we find that at λ1 this Hessian is

H =
(
A′

1 − 8(X,λ1) B − 8(X,λ1)
B − 8(X,λ1) 2B −A′

2 − 8(X,λ1)

)
, (2.44)

where we have defined the O(Ns) invariants

A′
i = −6Ay(λi) , B = ε(λ1, λ2) + 8(X,λ1 + λ2) − 2(λ1, λ2)Z . (2.45)

Notice that we can separate H as H = J +K for

J =
(
A′

1 B

B 2B −A′
2

)
, K = −8(X,λ1)

(
1 1
1 1

)
. (2.46)

As the matrix K has an eigenvector v =
(
1 −1

)T
with eigenvalue 0, if H is to be positive-

semidefinite we must have that

vTJv = A′
1 −A′

2 ⩾ 0 . (2.47)

However, as Ay(λ2) < Ay(λ1), A′
1 < A′

2, so that vTJv < 0 and thus H is not positive
semi-definite. Hence, λ1 will not be a stable fixed point.

It is important to notice that, unlike in the purely scalar case, the mixed scalar-fermion
theory may have multiple stable fixed points, as the theorem only applies when the fixed
points have the same solution for the Yukawa couplings. The different allowed values of y
give us different ‘levels’ of fixed points, each of which may have its own stable fixed point.

2.3 Bounds

The beta function equations allow one to derive various inequalities that must be obeyed
by O(Ns) ×O(Nf ) invariants at the fixed points. We define the invariants

a0 = Ns(Ns + 2)d0 = λiijj ,

a1 = λiimnλjjmn ,

a2 = ||(Ns + 4)d2||2 = a1 −
1
Ns

a2
0 ,

S = λijklλijkl = ||λ||2 ,
b0 = Zii = NsZ0 , b̃0 = a0Z0 ,

b1 = ||Z2||2 ,
b2 = ||(Ns + 4)d2 + Z2||2 = a2 + b1 + 2(Ns + 4)d2 · Z2 ,

b3 = Xiijj = Ns(Ns + 2)X0 ,

Y = ||yiy∗i ||2 = Tr(yiy∗iyjy∗j) .

(2.48)
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We can then derive relations between these invariants by considering contractions of the
beta functions (2.17) and (2.18). By considering an expansion of λ and y in terms of ε we
can ignore factors of ε at leading order.

Considering first βλ, we find that by contracting indices in pairs in this beta function
we derive the following expression which must hold at all fixed points:

βλiijj = −εa0 + a1 + 2S − 4b3 + 2 b̃0 + 2(Ns + 4)d2 · Z2 = 0 . (2.49)

Expanding the inner product in the invariant b2 and then replacing a2 in terms of a1 and
a0 we find

a1 + 2(Ns + 4)d2 · Z2 = b2 − b1 + 1
Ns

a2
0 , (2.50)

so that we have
− 1
Ns

(a2
0 −Nsεa0) = 2S + b2 − b1 − 4b3 + 2 b̃0 . (2.51)

Completing the square on the left-hand side this immediately gives us the inequality

S + 1
2 b2 − 1

2 b1 − 2b3 + b̃0 ⩽ 1
8Nsε

2 . (2.52)

Similarly, at a fixed point we must have βyiaby∗iba = 0, so that

1
α
εZii = 1

α
εb0 = 2Y + 4 Tr(yjy∗iyjy∗i) + 1

α
ZijZij = 2Y + 4 Tr(yjy∗iyjy∗i) + 1

αNs
b2

0 + 1
α
b1 .

(2.53)
To express the remaining trace term in terms of more familiar invariants, notice that

4
α
b3 = 4 Tr(yiy∗iyjy∗j + yjy

∗
iyjy

∗
i + yiy

∗
jyjy

∗
i) = 8Y + 4 Tr(yjy∗iyjy∗i) , (2.54)

where the factor of α in this expression comes from the fact that there are twice as many
terms needed to symmetrise Tr(yiy∗jyky∗l) in the Weyl case. Plugging this in, we see that

− 1
αNs

(b2
0 −Nsεb0) = −6Y + 4

α
b3 + 1

α
b1 . (2.55)

We now see that by completing the square on the left-hand side we can turn this into
the bound

b1 + 4b3 − 6αY = 1
4Nsε

2 − 1
Ns

(
b0 −

1
2Nsε

)2
⩽

1
4Nsε

2 . (2.56)

We may obtain a single inequality relating both fermionic and scalar invariants by eliminating
b1 and b3 from (2.56) and (2.52):

S + 1
2 b2 + b̃0 − 3αY ⩽ 1

4Nsε
2 . (2.57)

It would be simpler to have an inequality relating S, the norm of λ, and Y , the norm of
yiy

∗
i, only. In fact, there is a way to remove the possibly negative b̃0 term from (2.57). To see

this, notice that the b̃0 term in (2.51) means that there is an additional term proportional
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to a0, and thus an additional way to complete the square. Moving this term over to the
other side we have that

S+1
2 b2−

1
2 b1−2b3 = − 1

2Ns
(a2

0−(Ns ε−2b0)a0) = 1
2Ns

(
b0−

1
2Ns ε

)2
− 1

2Ns

(
a0+b0−

1
2Ns ε

)2
,

(2.58)
and combining with (2.56) we get

S + 1
2 b2 − 3αY = 1

8Nsε
2 − 1

2Ns

(
a0 + b0 −

1
2Nsε

)2
, (2.59)

which implies
S + 1

2 b2 − 3αY ⩽ 1
8Nsε

2 . (2.60)

This bound directly generalises the bound obtained in [9, 14], which reads

S + 1
2 a2 ⩽ 1

8Nsε
2 (scalars only) . (2.61)

As we observe, the only difference with the scalar case is to replace a2 with b2 − 6αY . If
we have only scalars or the fermions are decoupled, then b2 is equal to a2 and Y is zero, so
that (2.60) reduces to (2.61) in those cases. Note that b2 can be omitted from the left-hand
side of (2.60) since it is positive, which gives the bound (1.3) discussed in the introduction
(when α = 2).

Note that (2.60) together with (2.57) also imply

b̃0 ⩽ 1
8Nsε

2 ⇒ a0b0 ⩽ 1
8N

2
s ε

2 . (2.62)

Additionally, using (2.58) and (2.56) (or, equivalently, substituting (2.16) in (2.17) and
using (2.55)) we find

(a0 + b0)ε− 1
Ns

(
Ns + 8
Ns + 2a

2
0 + b2

0

)
− 2
Ns

a0b0 + 6αY ⩾ 0 , (2.63)

which becomes the bound a0ε− Ns+8
Ns(Ns+2)a

2
0 ⩾ 0 ⇒ 0 ⩽ a0 ⩽ Ns(Ns+2)

Ns+8 ε when there are no
fermions. Obviously from (2.63) we also have that

(a0 + b0)ε− 2
Ns

a0b0 + 6αY ⩾ 0 . (2.64)

We would also like to point out here that with

T = S + 1
2 b2 − 3αY , R = 1√

2Ns

(
a0 + b0 −

1
2Nsε

)
, (2.65)

we may write (2.59) as
R2 + T = 1

8Nsε
2 , (2.66)

which defines a parabola on which all fixed points lie. Since b2 ⩾ 0, if we define T ′ =
T − 1

2b2 ⩽ T , then the points in the R-T ′ plane corresponding to fixed points will satisfy
R2 + T ′ ⩽ 1

8Nsε
2. Note that fixed points that saturate the bound on R2 + T ′ do not

necessarily have a unique quadratic invariant.
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2.3.1 Anomalous dimensions

From the beta functions (2.17) and (2.18) one can also immediately write down bounds
limiting the allowed anomalous dimensions of the renormalised fields ϕ and ψ.3 Consider
the following combination of couplings, which must vanish at all of the fixed points:

αβy
iaby

∗
iab = −1

2εb0 + 1
2ZijZji + Tr

(
(yiy

∗
j + yjy

∗
i)(yiy

∗
j + yjy

∗
i)
)
− Tr(yiy

∗
jyjy

∗
i) = 0 . (2.67)

Let us assume that

Tr
(
(yiy∗j + yjy

∗
i)(yiy∗j + yjy

∗
i)
)
− Tr(yiy∗jyjy∗i) ⩾ 0 (2.68)

for all fixed point solutions yiab, so that

−εb0 + ZijZji ⩽ 0 . (2.69)

As Zij is a symmetric matrix, it will always be possible to use an O(Ns) field redefinition to
place it in a diagonal form.4 Using the fact that Zij is positive definite, the above inequality
reduces to εb0 ⩾ b1 + 1

Ns
b2

0 which implies that

0 ⩽ b0 ⩽ Nsε . (2.70)

From (2.19) this becomes a bound on the allowed anomalous dimensions of the scalar
fields ϕi,

γϕ ⩽ 1
4αNsε . (2.71)

Subject to the assumption (2.68), this bound on γϕ applies universally to all scalar-
fermion theories with a Yukawa interaction, at least to one-loop order. This bound can also
be related to a bound for the allowed anomalous dimensions of the fermion fields ψa by
noting that

Tr
(
γψ
)

= 1
2αb0 ⩽

1
2αNsε . (2.72)

As the unitary bound prohibits negative anomalous dimensions, this becomes the bound

γψ ⩽ 1
2αNsε , (2.73)

which, again, is applicable to all scalar-fermion theories at leading order in perturbation
theory.

These derivations rest on the assumption (2.68), the validity of which we must now
examine. When Ns = 1, the left-hand side of (2.68) becomes 3 Tr(yy∗yy∗), which is the
norm of the matrix yy∗, and is thus strictly non-negative. For Nf = 1, the trace will be
trivial so that the left-hand side of (2.68) is equal to 3 |yi|2|yj |2, which is again strictly

3While these bounds apply even to non-interacting fixed points, in that case they merely express the fact
that purely scalar theories have a vanishing one loop anomalous dimension. For purely scalar theories one
can bound the two-loop anomalous dimension instead by γϕ ⩽ 1

8 Nsε2 [9].
4Though this transformation is always possible, we will find it more useful to leave Zij general in most

cases, because for any specific theory the necessary form of the rotation matrix Rij will not be known until
a solution has been found.
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non-negative. Thus, the bounds on anomalous dimensions must hold if Ns = 1 or Nf = 1.
When Ns, Nf > 1, the situation becomes more difficult. While we have not been able to
find an analytic proof of (2.68) for the general case, we have verified numerically that it
holds at all fixed points we have found for Ns, Nf ⩽ 4. It thus seems likely that (2.68)
holds for solutions to the beta functions with arbitrary Ns and Nf , so that our bounds on
anomalous dimensions become general.

3 Some well-known models

Up until this point the discussion has been completely general, with no mention made of
specifying the global symmetry group G ⩽ O(Ns) × O(Nf ) for certain theories. While
the majority of the fixed points we will find in our brute-force search will not have been
specifically investigated, we will locate a number of well-known and well-explored theories.
Thus, for completeness we review here two of the better known: the Gross-Neveu-Yukawa
and Nambu-Jona-Lasinio-Yukawa models.

3.1 Gross-Neveu-Yukawa model

First, we consider the Gross-Neveu-Yukawa (GNY) model, which contains a single real
scalar and ND Dirac fermions with the Lagrangian

LGNY = 1
2∂

µϕ∂µϕ+ iΨa/∂Ψa + yϕΨaΨa + 1
8λϕ

4 , (3.1)

for a = 1, . . . , ND. As we are ultimately interested in deriving results in 3d, we will find it
useful to define N = 4ND, which is the number of 3d Majorana fermions we will have in
the end. This theory has a well-known interacting fixed point at which (taking ε→ 1)

y2 = 1
N + 6 , λ =

√
PN −N + 6
6(N + 6) , (3.2)

for PN = N2 + 132N + 36. Using (2.8) and then (2.12), we see that in terms of 3d Majorana
fermions we will obtain the Yukawa interaction

yAB =


yδab 0

0 −yδab
yδab 0

0 −yδab

 , (3.3)

where A,B = 1, . . . , N . This squares to a multiple of the identity,

yAC yCB = y2δAB , (3.4)

so that the invariants at this fixed point will be very simple:

b0 = Ny2 = N

N + 6 ,

Y = Ny4 = N

(N + 6)2 ,

S = λ2 =
(√
PN −N + 6

)2
36(N + 6)2 ,

(3.5)
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where we have implicitly assumed that ND is a positive integer so that N ⩾ 4. In section 4
we will derive all of the interacting fixed points for Ns = 1, Nf = 4, and will thus find it
useful to note that plugging in N = 4 to the above equations yields

S = (1 +
√

145)2

900 , Y = 1
25 , (3.6)

so that we will be able to identify the GNY fixed point for one Dirac fermion.
It has been suggested that one can derive information about theories with N < 4

Majorana fermions in three dimensions by beginning with a non-integer number of Dirac
fermions in four dimensions. Specifically, a connection has been drawn between the GNY
model with ND = 1/4 and a minimal N = 1 supersymmetric theory of a real superfield in
three dimensions with a cubic superpotential [5]. In agreement with (3.2) for N = 1, this
theory is expected to have a fixed point at

y2 = 1
7 , λ = 3

7 . (3.7)

Plugging in N = 1 to the above equations for S and Y yields

S = 9
49 , Y = 1

49 . (3.8)

3.2 Nambu-Jona-Lasinio-Yukawa model

The Nambu-Jona-Lasinio-Yukawa (NJLY) model provides a generalisation of the GNY
model to two scalar fields ϕ1 and ϕ2 (though really ϕ2 is a pseudoscalar) and ND Dirac
fermions Ψa, a = 1, . . . , ND. Its Lagrangian is

LNJLY = 1
2∂

µϕ1∂µϕ1 + 1
2∂

µϕ2∂µϕ2 + iΨa/∂Ψa + yΨa(ϕ1 + iγ5ϕ2)Ψa + 1
8λ(ϕ2

1 +ϕ2
2)2 , (3.9)

which enjoys not only the U(ND) flavour symmetry of the fermions but also a U(1) chiral
symmetry which rotates both the scalars and the fermions. There is again a non-trivial
interacting fixed point with, similarly defining N = 4ND,

y2 = 1
N + 4 , λ =

√
RN −N + 4
20(N + 4) , (3.10)

where RN = N2 + 152N + 16. When expanding the Dirac fermions in terms of 3d Majorana
fermions, we see that the ϕ1 Yukawa interaction is simply that of the GNY model, so that

y1AB =


yδab 0

0 −yδab
yδab 0

0 −yδab

 , (3.11)

where A,B = 1, . . . , N . Using the Weyl representation of the gamma matrices, the ϕ2
Yukawa interaction becomes, in terms of Weyl fermions,

iϕ2Ψaγ
5Ψa = iϕ2(−χaηa + χaηa) . (3.12)
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Applying (2.8) and then (2.12), we have

y2AB =


0 −yδab

−yδab 0
0 −yδab

−yδab 0

 . (3.13)

As before, both of these matrices square to the same multiple of the identity

y1AC y1CB = y2AC y2CB = y2δAB , (3.14)

yielding simple forms for the invariants we use to characterise fixed points:

b0 = 2Ny2 = 2N
N + 4 ,

Y = 4Ny4 = 4N
(N + 4)2 ,

S = 24λ2 =
3
(√
RN −N + 4

)2
50(N + 4)2 ,

(3.15)

where we again have assumed that ND ∈ N. In order to identify the NJLY model in our
fixed points, it will again be useful to plug N = 4 into the above expressions for S and Y .
For future reference these values are

S = 3
5 , Y = 1

4 . (3.16)

As with the GNY model, one can consider taking ND to be non-integer to investigate
theories with small numbers of Majorana fermions in three dimensions. For ND = 1/2, that
is N = 2, it is believed that the IR fixed point of the NLJY model is the same as that of a
Wess-Zumino model for a four-component Majorana fermion with a cubic superpotential.
Here, the U(1) chiral symmetry becoming the Wess-Zumino model’s R-symmetry [5]. For
N = 2 one finds

S = 2
3 , Y = 2

9 . (3.17)

4 Analytic results for small Ns, Nf

As the scalar coupling λ does not appear in βy, we can always look for solutions with yiab = 0.
However, this reduces the system to Ns massless scalars with a general quartic interaction
alongside Nf decoupled free fermions. As this system has already been investigated in
previous papers [9], in what follows we will always assume that yiab is not identically zero. It
is important to note that in both this and the following section we will assume for simplicity
that the Yukawa coupling tensor yiab is real and symmetric on its a, b indices, so that we
will take α = 1. Using (2.12), one can rewrite any fixed point of (2.1) in terms of a real and
symmetric yiab which will also satisfy (2.17), (2.18), so that this assumption comes at the
loss of no generality. This amounts to working with 3d fermions in four dimensions, which
at the level of beta functions simply changes the number of fermionic degrees of freedom
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in fermion loops. However, it is not always clear how one can embed these fermions in 4d
Weyl or Dirac fermions. Unless otherwise indicated, we will now take ε = 1.

We will not be interested in examining every solution to (2.17), (2.18), because there will
be many solutions which are, in some ways, trivial. Given two fixed points with Lagrangians
L1 and L2, one can quite easily see that the Lagrangian L1 + L2 will also lie at a fixed
point, though now with a larger number of scalars and fermions. As there is no interaction
between the different sectors of this Lagrangian, this is not really a new fixed point, with the
invariants (2.48) simply being the sum of the invariants of theories 1 and 2. Similarly, one
could consider adding a number of free fermions or scalars to get the Lagrangian L1 + Lfree.
As the new fields will not interact with the old sector, this Lagrangian will once again be a
solution to (2.17), (2.18) with precisely the same invariants as theory 1, but now with more
fields. To remove these uninteresting cases, we must determine their signature and screen
fixed points accordingly.

First, notice that for decoupled theories one can follow section 2.2.1 to find a κ = 1
eigenvalue for each decoupled sector, with the eigenvector being given by (2.26) using only
the couplings present in that sector. However, notice that the lack of a purely fermionic
interaction necessitates that each decoupled sector must contain at least one scalar, else
it will simply be a sector of free fermions. Thus, we must discard fixed points where the
degeneracy of the κ = 1 eigenvalue is greater than 1 and less than or equal to Ns. Second,
to discard theories with free fermions we will simply need to screen out those which have
a zero eigenvalue of γψab. For scalars, it will not be sufficient to look for zero eigenvalues
of γϕij because to one-loop only the Yukawa interaction will contribute to the anomalous
dimension.5 Instead, from (2.25) one can see that free scalars will be marked by a column
containing only −1 on the diagonal entry. Thus, to eliminate fixed points with free scalars
we must remove those containing any κ = −1 eigenvalues.

An interesting feature of the beta functions becomes apparent when we examine fixed
points analytically. Because yiab is an O(Ns) vector, all of the Yukawa invariants we can
construct, such as those in (2.48), will contain even powers of y. If we take yiab to be
diagonal in its fermionic a and b indices, which happens for example at fixed points which
retain U(Nf ) or O(Nf ) symmetry for Weyl fermions and two-component Majorana fermions
respectively, then the invariants will be sums of even powers of the diagonal elements and
hence be unchanged if we invert the signs of a number of these elements. Inverting these
signs also has no effect on the beta functions (2.17) and (2.18), and thus will also be a fixed
point solution. However, these signs can alter the symmetry of the fixed point, and will
thus alter the number of κ = 0 eigenvalues of the stability matrix.

Explicitly one can see this in the simplest case, where Ns = 1 and Nf = 2. Here, the
Yukawa couplings become the matrix

y =
(
y1 y2
y2 y3

)
, (4.1)

5While scalars which interact only with other scalars have zero one-loop anomalous dimension, this will
be corrected by a two-loop result, where γϕ

ij ⊃ 1
12 λiklmλjklm.
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and their the beta-functions can be written as

βy =
(
y1
(
− 1

2 + 7
2y

2
1 +4y2

2 + 1
2y

2
3
)
+3(y1+y2)y2

2 y2
(
− 1

2 + 7
2(y2

1 +y2
3)+3y1y3+4y2

2
)

y2
(
− 1

2 + 7
2(y2

1 +y2
3)+3y1y3+4y2

2
)

y3
(
− 1

2 + 7
2y

2
3 +4y2

2 + 1
2y

2
1
)
+3(y1+y2)y2

2

)
.

(4.2)
Clearly, the off-diagonal entries can be solved by simply taking y2 = 0, at which point one
finds that

y2
1 = y2

3 = 1
8 . (4.3)

Noting that for y2 = 0,

Tr(y2) = y2
1 + y2

3 = 1
4 , Tr(y4) = y4

1 + y4
3 = 1

32 , (4.4)

one finds that (2.17) is solved by

λ = 1 +
√

19
12 , (4.5)

independently of how we assign signs to y1 and y3. We then have two distinct solutions:
one in which we assign y1 and y3 the same sign and one in which they have opposite signs.6

To see that these solutions are genuinely distinct, we write down their potentials:

V1(ϕ, ψ) = 1 +
√

19
288 ϕ4 + 1√

32
ϕ(ψ2

1 + ψ2
2) , (4.6)

V2(ϕ, ψ) = 1 +
√

19
288 ϕ4 + 1√

32
ϕ(ψ2

1 − ψ2
2) . (4.7)

By inspection, one can see that the first potential retains the full O(2) fermionic rotation
symmetry, while the second only retains a Z2

2 ⋊Z2 global symmetry. To verify this, one can
examine the eigenvalues of the respective stability matrices to look for κ = 0 eigenvalues
arising due to broken symmetry generators. These eigenvalues are, respectively,

{1
2
√

19, 1, 3
4 ,

3
4} , {1

2
√

19, 1, 3
4 , 0} . (4.8)

One sees that, indeed, (4.6) is associated with no symmetry breaking while (4.7) sees the
one-dimensional O(2) symmetry broken down to some discrete subgroup. The peculiarity of
this setup is the fact that the Z2 ×O(2) invariants one can construct will involve only even
powers of the couplings yab, so that from the point of view of invariants such as Y these
two fixed points will be indistinguishable.7 Crucially, this includes the A-function (2.40),
which will take the value

A = −28 + 19
√

19
864 (4.9)

at both fixed points. Examining the eigenvalues of the stability matrix, one notices that
both fixed points are stable, indicating that there will be no RG flow connecting them.

Another explicit example can be seen in table 4. Examining section 3.1, we see that for
Ns = 1, Nf = 4 the

(
S, Y

)
=
( (1+

√
145)2

900 , 1
25
)

fixed point arises from the GNY model with one
6We can always use the field redefinition ϕ → −ϕ to take the sign of y1 to be positive.
7At higher loop order terms in the beta function will arise causing these fixed points to separate.
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Dirac fermion. Depending on whether or not chiral symmetry is broken by the interaction
in the 4d Lagrangian, the symmetry in 3d may be either O(4) or O(2)2 ⋊ Z2 [10, 16, 17].
The O(3) × Z2 fixed point cannot arise from a Lorentz-invariant 4d Lagrangian, because
there is no way to package the 3d fermions into 4d fermions consistent with both the flavour
and spacetime symmetries.8

Also of interest is that for Nf = 1 one is always able to use an O(Ns) field redefinition
so that yi = yδi1. The βyi then reduces to

βy =
(
− 1

2ε+ 1
2(6 + α)|y|2

)
y = 0 , (4.10)

which only has a single non-zero solution. This single level will be verified in both the
following analytic and numerical results.

To find analytic solutions to the beta functions, we follow the same procedure used
to investigate RG stability. Namely, we solve (2.18) first to find the allowed real Yukawa
solutions, and then plug those into (2.17) as constants to find the associated real solutions
for the scalar coupling. Both beta functions will be polynomials in the components of the
couplings, so that these problems are simply finding the shared roots of 1

2NsNf (Nf + 1)
and 1

4!Ns(Ns + 1)(Ns + 2)(Ns + 3) polynomials respectively. We achieved this by using
Mathematica’s GroebnerBasis function to find a simpler equivalent system of polynomials,
which Mathematica’s Solve function was then able to dissect.9 To identify the symmetries
of the fixed point, we then extracted the anomalous dimensions {γs} and {γf} and the
eigenvalues of the stability matrix {κ}. The results for two-component Majorana fermions
with (Ns, Nf ) = (1, 1), (1, 2), (1, 3), (1, 4), and (2, 1) are exhibited in tables 1 to 5. Table 6
contains the fully interacting stable fixed point for Ns = Nf = 2. This table also notes fixed
points at which the invariants a2 and b1 are non-zero by use of stars, e.g. ⋆, ⋆ indicates a
fixed point at which both are non-zero. Where these invariants do not vanish, there will be
additional rank-two O(Ns) tensors, so that ϕiϕi will not be the only quadratic singlet. All
of these fixed points strictly obey the bound (2.60), which can be easily seen by plotting
them as in figures 1 to 5. These plots also show the Ising fixed point for Ns = 1, which is
identical to the usual Ising fixed point but now with Nf free fermions attached.

For equal values of Ns and Nf , the theory will be supersymmetric in three dimensions [5,
6] as long as the scalar and Yukawa couplings obey the relation

λijkl = S3,ijklyijmymkl . (4.11)

Using this, one finds that the Ns = Nf = 1 Z2 fixed point with S = 9
49 and the stable

Ns = Nf = 2 O(2) fixed point have emergent supersymmetry. From sections 3.1 and 3.2 we
see that these correspond to emergent supersymmetry in the N = 1 GNY and N = 2 NJLY
model respectively.

8The Ns = 1 results analysed here for Nf = 2, 4 can be extended to a family of theories for every Nf .
This was pointed out to us by H.Õsborn.

9This was inspired by the discussion in [23].
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Symmetry S Y
# different

γϕ(degeneracies)
# different

γψ(degeneracies) #κ < 0, =0 a2, b1 ̸= 0

Z2
16
441

1
49 1(1) 1(1) 1, 0

Z2
9
49

1
49 1(1) 1(1) 0, 0

Table 1. The two interacting fixed points for Nf = Ns = 1.

Symmetry S Y
# different

γϕ(degeneracies)
# different

γψ(degeneracies) #κ < 0, =0 a2, b1 ̸= 0

Z2
2 ⋊ Z2

(1−
√

19)2

144
1
32 1(1) 1(2) 1, 1

O(2) (1−
√

19)2

144
1
32 1(1) 1(2) 1, 0

Z2
2 ⋊ Z2

(1+
√

19)2

144
1
32 1(1) 1(2) 0, 1

O(2) (1+
√

19)2

144
1
32 1(1) 1(2) 0, 0

Table 2. The four interacting fixed points for Ns = 1 and Nf = 2.

Symmetry S Y
# different

γϕ(degeneracies)
# different

γψ(degeneracies) #κ < 0, =0 a2, b1 ̸= 0

O(2) × Z2
1
9

1
27 1(1) 1(3) 1, 2

O(3) 1
9

1
27 1(1) 1(3) 1, 0

O(2) × Z2
16
81

1
27 1(1) 1(3) 0, 2

O(3) 16
81

1
27 1(1) 1(3) 0, 0

Table 3. The four interacting fixed points for Ns = 1 and Nf = 3.

Symmetry S Y
# different

γϕ(degeneracies)
# different

γψ(degeneracies) #κ < 0, =0 a2, b1 ̸= 0

O(2)2 ⋊ Z2
(1−

√
145)2

900
1
25 1(1) 1(4) 1, 4

O(3) × Z2
(1−

√
145)2

900
1
25 1(1) 1(4) 1, 3

O(4) (1−
√

145)2

900
1
25 1(1) 1(4) 1, 0

O(2)2 ⋊ Z2
(1+

√
145)2

900
1
25 1(1) 1(4) 0, 4

O(3) × Z2
(1+

√
145)2

900
1
25 1(1) 1(4) 0, 3

O(4) (1+
√

145)2

900
1
25 1(1) 1(4) 0, 0

Table 4. The six interacting fixed points for Ns = 1 and Nf = 4.

Symmetry S Y
# different

γϕ(degeneracies)
# different

γψ(degeneracies) #κ < 0, =0 a2, b1 ̸= 0

Z2 0.142072 1
49 2(1,1) 1(1) 4, 1 ⋆, ⋆

Z2
2 0.233467 1

49 2(1,1) 1(1) 2, 1 ⋆, ⋆

Z2
2 0.296351 1

49 2(1,1) 1(1) 0, 1 ⋆, ⋆

Table 5. The three interacting fixed points with Ns = 2 and Nf = 1.
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0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.20

0.005

0.01

0.015

0.02

0.025

S

Y

Scalar-Fermion Fixed Points for Ns = 1 and Nf = 1

Stable
Mixed Stability

Unstable
Bound on Invariants (2.60)

Figure 1. Analytic interacting fixed points for Ns = Nf = 1 given by table 1. Note that the Ising
fixed point (Y = 0 while S ̸= 0) is not included in the table as it only has free fermions.
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0.01
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Scalar-Fermion Fixed Points for Ns = 1 and Nf = 2

Stable
Mixed Stability

Unstable
Bound on Invariants (2.60)

Figure 2. Analytic interacting fixed points for Ns = 1 and Nf = 2 given by table 2 along with the
Ising fixed point.
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Scalar-Fermion Fixed Points for Ns = 1 and Nf = 3

Stable
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Bound on Invariants (2.60)

Figure 3. Analytic interacting fixed points for Ns = 1 and Nf = 3 given by table 3 along with the
Ising fixed point.

0 0.05 0.1 0.15 0.2 0.250
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Scalar-Fermion Fixed Points for Ns = 1 and Nf = 4

Stable
Mixed Stability

Unstable
Bound on Invariants (2.60)

Figure 4. Analytic interacting fixed points for Ns = 1 and Nf = 4 given by table 4 along with the
Ising fixed point.
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Symmetry S Y
# different

γϕ(degeneracies)
# different

γψ(degeneracies) #κ < 0, =0 a2, b1 ̸= 0

O(2) 2
3

2
9 1(2) 1(2) 0, 1

Table 6. Stable, fully interacting fixed point for Ns = Nf = 2. Note that this point corresponds to
the GNY model with N = 2 and is supersymmetric. Further note that there is a stable fixed point
consisting of two decoupled stable Z2 theories.

0 0.1 0.2 0.3 0.40

0.005

0.01

0.015

0.02

0.025

S

Y

Scalar-Fermion Fixed Points for Ns = 2 and Nf = 1

Stable
Mixed Stability

Unstable
Bound on Invariants (2.60)

Figure 5. Analytic interacting fixed points for Ns = 2 and Nf = 1 given by table 5. To compare
with the purely scalar case, we have also included the O(2) fixed point with Y = 0.

5 Numerical searches

The time required to implement the techniques used to find analytic fixed points rapidly
increases as Ns and Nf increase, necessitating numerical methods for efficient searches. For
low enough values of Ns and Nf , Mathematica is still powerful enough for our purposes, and
in this paper we rely on its FindRoot function, selecting only those solutions with an error
less than 5 × 10−15 in order to ensure accuracy. To verify convergence, we ask FindRoot
to use these solutions as initial points to obtain new, iterated solutions with 100 digits of
predision. Ultimately, we then only accept those iterated solutions with an error less than
10−80. FindRoot relies on an initial guess for a solution, so to ensure that the solver would
be capable of locating all of the possible fixed points we selected random initial points
where each of the components of λijkl and yiab are chosen to lie in the interval [0, 1]. This
is not a systematic search for all possible fixed points, but as our intention is to examine
the size of the space of fixed points, a broad survey will be sufficient. One drawback of this
method is that it is difficult for the solver to then find the purely scalar fixed points when
Ns and Nf are not small, because of how increasingly rare it becomes that the initial guess
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has yiab small. However, as these fixed points have been previously explored [9], this does
not substantially affect the findings of this work. As in section 4 we will assume that the
couplings yiab are all real, and we will discard any non-fully interacting fixed points.

First, to verify the efficacy of our numerical program, we applied it to the values of
Ns and Nf in 4. In each case we began with 10,000 random starting points, and found
complete agreement between with the results given in tables 1 to 5. In every case but
for Ns = 1 and Nf = 4, the number of starting points was sufficient for the numerical
solver to correctly obtain all of the interacting fixed points. For Ns = 1 and Nf = 4, the
solver only found eleven out of the sixteen points listed in table 4, but this difference is
eliminated as long as we increase the number of starting points. This highlights a weakness
in our method of choosing initial guesses. The use of FindRoot can make it difficult to
find certain solutions, e.g. solutions with yiab identically vanishing, unless the initial guess
is finely tuned, making our random guesses a pure game of chance with regard to these
points. However, for low enough Ns and Nf this method is sufficient to find the majority of
theories. In addition to the fully interacting fixed points, the solver was able to sporadically
find solutions corresponding to interacting scalar theories accompanied by free fermions.
When they appeared they could be matched with known fixed points found in [9].

5.1 Numerical results for small Ns, Nf

Using our numerical solver, we can extend our fixed point search past the values of Ns

and Nf considered analytically. In figures 6 to 9 the values of S are plotted against Y
for (Ns, Nf ) = (2, 2), (2, 3), (2, 4) and (3, 1), where the stable fixed points are plotted
as green circles, unstable fixed points are red diamonds, mixed stability fixed points are
yellow squares, and the bound on invariants (2.60) as the blue line. In appendix A we list
tables 7 to 10 which contain the fixed points in the aforementioned figures, where we have
used Mathematica’s Rationalize function to interpret the numerical values of Y and S

where possible.
A few important properties of scalar-fermion solutions can be noted already by looking

at these fixed points. Firstly, it is interesting to note that while for purely scalar Ns = 2
there is only one non-trivial fixed point, the O(2) point, introducing fermions into the
system and increasing the value of Nf leads to the rapid proliferation of solutions, not
only by increasing the number of lines of constant Y , but by increasing the number of
solutions for λ within each level. This continues to be true for Ns = 3 in figure 9 and
table 10, where we find 7 solutions with fermions as opposed to the 3 found in the purely
scalar case. Secondly, the stable fixed points are distributed in agreement with section 2.2.2,
demonstrating an important distinction between the scalar and scalar-fermion systems. If
one calculates the A-function at each of the fixed points, one finds that the stable solution
minimises it for that specific Yukawa coupling, and in the case where there are multiple
stable fixed points, as with Ns = Nf = 2, they appear only for different solutions to βy.
The presence of distinct stable fixed points means that, unlike in the purely scalar case, the
RG flows arising from the beta functions can be divided into different basins of stability.
The IR theory one ends up in, if one does not flow away to infinity, is not fixed but rather
depends upon the initial position in theory space and perturbation one introduces.
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Scalar-Fermion Fixed Points for Ns = 2 and Nf = 2
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Mixed Stability

Unstable
Bound on Invariants (2.60)

Figure 6. Results of numerical search for Ns = Nf = 2 beginning with 10,000 points. The points
are listed in table 7. We find a total of 19 fully interacting fixed points. The stable fixed point
agrees with that found in table 6.

It is important to note that the blue line requires the simultaneous saturation of both
the scalar bound (2.52) and the fermionic bound (2.56). While a number of fixed points
are able to saturate one of these bounds, none of the fixed points have saturated both.
However, as the plots indicate there are a number of points which are very nearly able to
saturate (2.60), making it unlikely that an improved bound exists when the number of fields
involved is small. This feature is unlike the purely scalar case [9].

Even for these small numbers of scalars and fermions, figures 6 to 9 are sufficient to
identify some qualitative trends in how the solutions arrange themselves. As emphasised
before, the independence of βy from the scalar coupling λ, a feature specific to one loop,10

means that there will be many fixed point solutions which share the same value of the
Yukawa coupling, perhaps up to an O(Ns) ×O(Nf ) field redefinition. These fixed points
may, however, have markedly distinct scalar potentials, leading to the lines of solutions
with constant Y but variable S which feature prominently in the figures.

Also interesting to note is the fact that in all instances Y is rational, unlike S, and this
may be a general feature of the one loop beta function (2.18). This can clearly be seen by
examining tables 1 to 10. For Nf = 1 this immediately follows from (4.10). For Ns = 1, the
beta function for yab becomes

[(
− 1

2ε+ Tr y2)δab + 3(y2)ab
]
ybc = 0 . (5.1)

10While higher-loop terms in the beta function will remove this λ-independence, there is expected to be a
one-to-one correspondence between solutions of the one loop beta function and higher loop fixed points.
This correspondence suggests that the higher order terms will simply perturb the fixed points to no longer
exactly lie on the same line.
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Figure 7. Results of numerical search for Ns = 2, Nf = 3 beginning with 10,000 points. The points
are listed in table 8 We find 33 distinct fixed points, of which one is stable.
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Scalar-Fermion Fixed Points for Ns = 2 and Nf = 4

Stable
Mixed Stability
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Bound on Invariants (2.60)

Figure 8. Results of numerical search for Ns = 2, Nf = 4 beginning with 10,000 points. The points
are listed in table 9. Note that no fixed points manage to completely saturate (2.60). In total we
find 254 distinct fixed points, two of which are stable. The NJLY model appears as the stable fixed
point at (0.6, 0.25).
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Figure 9. Results of numerical search for Ns = 3, Nf = 1 beginning with 10,000 points. The points
are listed in table 10. We find 7 distinct interacting fixed points, of which none are stable.

For fully interacting fixed points, yab must be invertible, so that one can see that the only
allowed value of Y will be

Y = Nf

(Nf + 6)2 ε . (5.2)

This permits not only the GNY model, but also those mentioned previously arising from
flipping individual signs in yab. Though we do not have a proof of this property for general
Ns and Nf , we have verified it in all of the cases identified numerically. To demonstrate
that these trends are not peculiar to Ns = 1 or 2, we include plots of Ns = 3, 4 and Nf ⩽ 4
in figures 10 to 16. Here, the number of fixed points becomes too large to reasonably list
in tabular form. It is interesting to note that the solver is unable to find any stable fixed
points for Ns = 3, 4; however this may be due to limitations of the solver rather than a
feature of the beta functions.

Examining tables 7 to 10, one sees another peculiarity, namely the existence of fixed
points with the same invariants, yet distinct numbers of κ = 0 eigenvalues. In the analytic
solutions it was seen that this may be associated with sign changes in Yukawa couplings
which break the symmetry of the fixed point without either spoiling the beta functions or
changing the invariants, which depend upon y only in even powers. It seems likely that a
similar effect is happening here.
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Figure 10. Results of numerical search for Ns = 3, Nf = 2 beginning with 10,000 points. We find
35 distinct fixed points, of which none are stable.
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Figure 11. Results of numerical search for Ns = Nf = 3 beginning with 10,000 points. We find 171
distinct fixed points, of which none are stable.
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Figure 12. Results of numerical search for Ns = 3, Nf = 4 beginning with 10,000 points. We find
518 distinct fixed points, none of which are stable.
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Figure 13. Results of numerical search for Ns = 4, Nf = 1 beginning with 10,000 points. We find
5 distinct fixed points, of which none are stable.
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Figure 14. Results of numerical search for Ns = 4, Nf = 2 beginning with 10,000 points. We find
34 distinct fixed points, of which none are stable.
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Figure 15. Results of numerical search for Ns = 4, Nf = 3 beginning with 10,000 points. We find
88 distinct interacting fixed points, of which none are stable.
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Figure 16. Results of numerical search for Ns = 4, Nf = 4 beginning with 10,000 points. We find
240 distinct fixed points, of which none are stable.

6 Conclusion

Beginning with the beta functions for the couplings in a general scalar-fermion theory with
a Yukawa-type interaction, we have derived bounds on linear combinations of coupling
invariants which must be obeyed at all fixed points, beginning with either Dirac or Weyl
fermions in four dimensions. When reduced to three dimensions, these theories, presuming
we begin with an integer number of fermions, will always give an even number of three-
dimensional Majorana fermions. Using the Weyl fermion beta functions as a basis, we have
also considered a naive extension to generalise the results to include all possible Yukawa-type
theories in three dimensions. We have also shown that, for a given solution to the Yukawa
beta functions, there exists at most one stable fixed point.

While we presented the numerical results with a simple linear bound in the S-Y plane
using (2.60), this is not the only way to organise the data. Instead, one could plot the fixed
points in the R-T ′ plane using the bound (2.66), which is a direct generalisation of a purely
scalar bound [9]. We plot this bound for a few combinations of Ns and Nf in figures 17
to 20, which are analogous to figures 4 to 6 in [9]. Here, the fermionic levels do not appear
as straight lines, and are instead distributed throughout the allowed region. Interestingly,
one does not find the same clumping of fixed points as in the purely scalar case, with the
points, even at each fermionic level, being distributed seemingly randomly.

We have searched for all possible scalar-fermion fixed points both analytically and
numerically, but we cannot guarantee that our numerical searches have found all existing
fixed points. The numerical methods used extend very naturally to higher Ns and Nf , and
we were only prevented from listing more numeric results by a lack of space. For large
enough Ns and Nf , Mathematica may no longer have sufficient power to efficiently canvas
the entire space of fixed points, at which point it would be necessary to consider alternatives.
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Figure 17. Results of numerical search for Ns = 3, Nf = 3 beginning with 10,000 points. This
includes a total of 171 fixed points, and does not include the free fixed point.
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Figure 18. Results of numerical search for Ns = 3, Nf = 4 beginning with 10,000 points. This
includes a total of 518 fixed points, and does not include the free fixed point.
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Figure 19. Results of numerical search for Ns = 4, Nf = 3 beginning with 10,000 points. This
includes a total of 88 fixed points, and does not include the free fixed point.
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Figure 20. Results of numerical search for Ns = 4, Nf = 4 beginning with 10,000 points. This
includes a total of 240 fixed points, and does not include the free fixed point.
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Statements made about the properties of beta functions for arbitrary potentials become
statements about a wide class of theories. What these statements may lack in depth and
specificity is made up for in the breadth of their application, especially as the potential
used becomes more and more general. To that end, one could generalise the Lagrangian
we began with in a number of different ways. There exist important models, for example
the chiral Heisenberg model [24, 25] for Ns = 3 scalars, which couple scalars and fermions
in a more non-trivial way. These are not encompassed by (2.1) in the general case. One
could also attempt to add spin-one gauge fields into the system, either by gauging one of
the global symmetries or by introducing a fresh gauge group. Such a system would produce
new fixed points for which the gauge coupling would be non-zero.
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A Fixed point data for small Ns, Nf

Let us here add a remark concerning the number of κ = 0 eigenvalues. The equation

SIJvJ = 0 (A.1)

for some non-zero vector vJ corresponds to a non-trivial constraint which the tensors λijkl
and yiab must obey at the fixed point. From section 2.2.1 we see that broken symmetry
generators can lead to these constraints, but one can additionally imagine that the relatively
simple form of the one-loop beta-functions could allow additional ‘accidental’ constraints.
In these additional cases the extra zero κ eigenvalue will be lifted at higher loop order
because they are not related to symmetry. For example for Ns = 2, Nf = 3 we can have a
maximum of four broken generators of the free-theory global symmetry group O(2) ×O(3).
However, in table 8 there are entries with five zero κ eigenvalues. By considering the
two-loop beta-functions one can indeed verify that these accidental eigenvalues are lifted
at higher loop order, and that only the four zero κ eigenvalues remain. Similar comments
apply to table 9, and will hold also for points with larger numbers of scalars and fermions.

S Y
# different

γϕ(degeneracies)
# different

γψ(degeneracies) #κ < 0, =0 a2, b1 ̸= 0

0.178588 1
32 2(1,1) 1(2) 6, 2 ⋆, ⋆

0.178588 1
32 2(1,1) 1(2) 6, 1 ⋆, ⋆

0.225456 1
32 2(1,1) 1(2) 4, 2 ⋆, ⋆

0.225456 1
32 2(1,1) 1(2) 4, 1 ⋆, ⋆

0.310693 1
32 2(1,1) 1(2) 3, 2 ⋆, ⋆

0.310693 1
32 2(1,1) 1(2) 3, 1 ⋆, ⋆

0.0712582 493
11881 2(1,1) 2(1,1) 6, 2 ⋆, ⋆

0.194755 493
11881 2(1,1) 2(1,1) 5, 2 ⋆, ⋆

0.194755 493
11881 2(1,1) 2(1,1) 5, 2 ⋆, ⋆

Table 7. Fixed points found for Ns = Nf = 2 (continues . . . ).
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S Y
# different

γϕ(degeneracies)
# different

γψ(degeneracies) #κ < 0, =0 a2, b1 ̸= 0

0.210175 493
11881 2(1,1) 2(1,1) 5, 2 ⋆, ⋆

0.217217 493
11881 2(1,1) 2(1,1) 4, 2 ⋆, ⋆

0.287836 493
11881 2(1,1) 2(1,1) 3, 2 ⋆, ⋆

0.327445 493
11881 2(1,1) 2(1,1) 4, 2 ⋆, ⋆

0.363636 493
11881 2(1,1) 2(1,1) 1, 2 ⋆, ⋆

4329
11881

493
11881 2(1,1) 2(1,1) 2, 2 ⋆, ⋆

32
75

2
9 1(2) 1(2) 5, 1

0.632444 2
9 1(2) 1(2) 3, 2 ⋆,

2
3

2
9 1(2) 1(2) 0, 1

0.737926 2
9 1(2) 1(2) 1, 2 ⋆,

Table 7. Fixed points found for Ns = Nf = 2.

S Y
# different

γϕ(degeneracies)
# different

γψ(degeneracies) #κ < 0, =0 a2, b1 ̸= 0

0.310449 1
27 2(1,1) 1(3) 6, 3 ⋆, ⋆

0.310719 1
27 2(1,1) 1(3) 7, 3 ⋆, ⋆

0.10243 1191
22472 2(1,1) 3(1,1,1) 8, 4 ⋆, ⋆

0.238032 1191
22472 2(1,1) 3(1,1,1) 6, 4 ⋆, ⋆

0.239854 1191
22472 2(1,1) 3(1,1,1) 7, 4 ⋆, ⋆

0.344635 1191
22472 2(1,1) 3(1,1,1) 4, 4 ⋆, ⋆

0.359239 1191
22472 2(1,1) 3(1,1,1) 5, 4 ⋆, ⋆

0.365948 1191
22472 2(1,1) 3(1,1,1) 3, 4 ⋆, ⋆

0.380859 1191
22472 2(1,1) 3(1,1,1) 6, 4 ⋆, ⋆

0.0993507 4
75 1(2) 1(3) 8, 4

6
25

4
75 1(2) 1(3) 6, 5 ⋆,

6
25

4
75 1(2) 1(3) 4, 5 ⋆,

9
25

4
75 1(2) 1(3) 4, 5 ⋆,

9
25

4
75 1(2) 1(3) 2, 5 ⋆,

0.371049 4
75 1(2) 1(3) 3, 4

0.371049 4
75 1(2) 1(3) 1, 4

2
5

4
75 1(2) 1(3) 5, 5

2
5

4
75 1(2) 1(3) 3, 5

0.136488 2
27 1(2) 2(1,2) 7, 3

0.287065 2
27 1(2) 2(1,2) 5, 4 ⋆,

0.408408 2
27 1(2) 2(1,2) 3, 4 ⋆,

0.411661 2
27 1(2) 2(1,2) 2, 3

338
729

2
27 1(2) 2(1,2) 4, 4

0.432574 2148
10201 2(1,1) 2(2,1) 5, 4 ⋆, ⋆

0.432574 2148
10201 2(1,1) 2(2,1) 5, 4 ⋆, ⋆

Table 8. Fixed points found for Ns = 2 and Nf = 3 (continues . . . ).
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S Y
# different

γϕ(degeneracies)
# different

γψ(degeneracies) #κ < 0, =0 a2, b1 ̸= 0

0.595522 2148
10201 2(1,1) 2(2,1) 3, 4 ⋆, ⋆

0.621098 2148
10201 2(1,1) 2(2,1) 0, 4 ⋆, ⋆

0.624528 2148
10201 2(1,1) 2(2,1) 4, 4 ⋆, ⋆

0.63302 2148
10201 2(1,1) 2(2,1) 3, 4 ⋆, ⋆

0.670493 2148
10201 2(1,1) 2(2,1) 2, 4 ⋆, ⋆

0.703234 2148
10201 2(1,1) 2(2,1) 1, 4 ⋆, ⋆

0.718282 2148
10201 2(1,1) 2(2,1) 2, 4 ⋆, ⋆

0.877832 2148
10201 2(1,1) 2(2,1) 3, 4 ⋆, ⋆

Table 8. Fixed points found for Ns = 2 and Nf = 3.

S Y
# different

γϕ(degeneracies)
# different

γψ(degeneracies) #κ < 0, =0 a2, b1 ̸= 0

0.135 1
16 1(2) 1(4) 6, 8

0.135267 1
16 1(2) 1(4) 6, 8

0.136281 1
16 1(2) 1(4) 6, 8

0.140128 1
16 1(2) 1(4) 6, 8

0.141986 1
16 1(2) 1(4) 6, 8

0.144275 1
16 1(2) 1(4) 6, 8

0.153065 1
16 1(2) 1(4) 5, 9

0.154858 1
16 1(2) 1(4) 5, 8

0.26852 1
16 1(2) 1(4) 4, 8 ⋆,

0.268533 1
16 1(2) 1(4) 6, 8 ⋆,

0.268544 1
16 1(2) 1(4) 4, 8 ⋆,

0.268552 1
16 1(2) 1(4) 4, 8 ⋆,

0.268581 1
16 1(2) 1(4) 4, 8 ⋆,

0.268604 1
16 1(2) 1(4) 4, 8 ⋆,

0.268621 1
16 1(2) 1(4) 4, 8 ⋆,

0.26865 1
16 1(2) 1(4) 4, 8 ⋆,

0.268734 1
16 1(2) 1(4) 6, 8 ⋆,

0.268745 1
16 1(2) 1(4) 4, 8 ⋆,

0.268916 1
16 1(2) 1(4) 4, 8 ⋆,

0.268988 1
16 1(2) 1(4) 4, 8 ⋆,

0.269024 1
16 1(2) 1(4) 4, 8 ⋆,

0.269032 1
16 1(2) 1(4) 6, 8 ⋆,

0.269074 1
16 1(2) 1(4) 4, 8 ⋆,

0.269203 1
16 1(2) 1(4) 4, 8 ⋆,

0.269254 1
16 1(2) 1(4) 4, 8 ⋆,

0.269337 1
16 1(2) 1(4) 6, 8 ⋆,

0.26949 1
16 1(2) 1(4) 4, 8 ⋆,

Table 9. Fixed points found for Ns = 2 and Nf = 4 (continues . . . ).
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S Y
# different

γϕ(degeneracies)
# different

γψ(degeneracies) #κ < 0, =0 a2, b1 ̸= 0

0.269497 1
16 1(2) 1(4) 4, 8 ⋆,

0.269553 1
16 1(2) 1(4) 4, 8 ⋆,

0.269596 1
16 1(2) 1(4) 6, 8 ⋆,

0.26963 1
16 1(2) 1(4) 4, 8 ⋆,

0.269789 1
16 1(2) 1(4) 6, 8 ⋆,

0.269851 1
16 1(2) 1(4) 4, 8 ⋆,

0.269866 1
16 1(2) 1(4) 4, 8 ⋆,

0.270031 1
16 1(2) 1(4) 6, 8 ⋆,

0.270176 1
16 1(2) 1(4) 5, 8 ⋆,

0.270514 1
16 1(2) 1(4) 5, 8 ⋆,

0.270533 1
16 1(2) 1(4) 5, 8 ⋆,

0.270909 1
16 1(2) 1(4) 5, 8 ⋆,

0.271088 1
16 1(2) 1(4) 4, 8 ⋆,

0.271141 1
16 1(2) 1(4) 5, 8 ⋆,

0.271873 1
16 1(2) 1(4) 4, 8 ⋆,

0.271925 1
16 1(2) 1(4) 6, 8 ⋆,

0.272103 1
16 1(2) 1(4) 4, 8 ⋆,

0.272212 1
16 1(2) 1(4) 5, 8 ⋆,

0.272429 1
16 1(2) 1(4) 7, 8 ⋆,

0.272563 1
16 1(2) 1(4) 5, 8 ⋆,

0.27281 1
16 1(2) 1(4) 5, 8 ⋆,

0.273018 1
16 1(2) 1(4) 4, 8 ⋆,

0.273331 1
16 1(2) 1(4) 4, 8 ⋆,

0.274007 1
16 1(2) 1(4) 5, 8 ⋆,

0.274095 1
16 1(2) 1(4) 4, 8 ⋆,

0.274136 1
16 1(2) 1(4) 3, 9 ⋆,

0.27426 1
16 1(2) 1(4) 5, 8 ⋆,

0.274345 1
16 1(2) 1(4) 3, 8 ⋆,

0.27451 1
16 1(2) 1(4) 3, 8 ⋆,

0.274924 1
16 1(2) 1(4) 3, 8 ⋆,

0.275524 1
16 1(2) 1(4) 4, 8 ⋆,

0.276723 1
16 1(2) 1(4) 3, 8 ⋆,

0.27687 1
16 1(2) 1(4) 5, 8 ⋆,

0.277346 1
16 1(2) 1(4) 5, 8 ⋆,

0.277617 1
16 1(2) 1(4) 5, 8 ⋆,

0.277671 1
16 1(2) 1(4) 5, 8 ⋆,

0.277844 1
16 1(2) 1(4) 5, 8 ⋆,

0.278128 1
16 1(2) 1(4) 5, 8 ⋆,

0.278186 1
16 1(2) 1(4) 5, 8 ⋆,

0.278477 1
16 1(2) 1(4) 5, 8 ⋆,

Table 9. Fixed points found for Ns = 2 and Nf = 4 (continues . . . ).
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S Y
# different

γϕ(degeneracies)
# different

γψ(degeneracies) #κ < 0, =0 a2, b1 ̸= 0

0.278763 1
16 1(2) 1(4) 5, 8 ⋆,

0.278953 1
16 1(2) 1(4) 5, 8 ⋆,

0.279605 1
16 1(2) 1(4) 5, 10 ⋆,

0.279754 1
16 1(2) 1(4) 4, 8 ⋆,

0.280278 1
16 1(2) 1(4) 5, 8 ⋆,

0.280656 1
16 1(2) 1(4) 5, 8 ⋆,

0.307795 1
16 1(2) 1(4) 3, 8 ⋆,

0.308871 1
16 1(2) 1(4) 4, 8 ⋆,

0.312307 1
16 1(2) 1(4) 2, 8 ⋆,

0.314198 1
16 1(2) 1(4) 3, 10 ⋆,

0.314269 1
16 1(2) 1(4) 3, 8 ⋆,

0.317513 1
16 1(2) 1(4) 5, 8 ⋆,

0.3194 1
16 1(2) 1(4) 3, 8 ⋆,

0.321802 1
16 1(2) 1(4) 3, 8 ⋆,

0.325682 1
16 1(2) 1(4) 3, 8 ⋆,

0.331278 1
16 1(2) 1(4) 5, 8 ⋆,

0.333196 1
16 1(2) 1(4) 3, 8 ⋆,

0.336749 1
16 1(2) 1(4) 3, 8 ⋆,

0.337934 1
16 1(2) 1(4) 3, 8 ⋆,

0.341643 1
16 1(2) 1(4) 3, 8 ⋆,

0.344151 1
16 1(2) 1(4) 5, 8 ⋆,

0.345882 1
16 1(2) 1(4) 3, 8 ⋆,

0.352982 1
16 1(2) 1(4) 3, 8 ⋆,

0.359244 1
16 1(2) 1(4) 3, 8 ⋆,

0.361662 1
16 1(2) 1(4) 3, 8 ⋆,

0.365092 1
16 1(2) 1(4) 3, 8 ⋆,

0.372355 1
16 1(2) 1(4) 3, 8 ⋆,

0.374331 1
16 1(2) 1(4) 3, 8 ⋆,

0.375208 1
16 1(2) 1(4) 1, 8

0.375619 1
16 1(2) 1(4) 1, 8

0.375947 1
16 1(2) 1(4) 2, 8 ⋆,

0.377629 1
16 1(2) 1(4) 2, 8 ⋆,

0.378414 1
16 1(2) 1(4) 1, 8

0.379566 1
16 1(2) 1(4) 2, 8 ⋆,

0.380593 1
16 1(2) 1(4) 1, 8

0.381094 1
16 1(2) 1(4) 1, 8

0.382421 1
16 1(2) 1(4) 4, 8 ⋆,

0.382862 1
16 1(2) 1(4) 2, 8 ⋆,

0.383032 1
16 1(2) 1(4) 4, 8 ⋆,

0.383406 1
16 1(2) 1(4) 2, 8 ⋆,

Table 9. Fixed points found for Ns = 2 and Nf = 4 (continues . . . ).
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0.384387 1
16 1(2) 1(4) 1, 8

0.384491 1
16 1(2) 1(4) 3, 8

0.386203 1
16 1(2) 1(4) 3, 8

0.386914 1
16 1(2) 1(4) 1, 8

0.387962 1
16 1(2) 1(4) 5, 8

0.389562 1
16 1(2) 1(4) 4, 8

0.390925 1
16 1(2) 1(4) 1, 8

0.391891 1
16 1(2) 1(4) 4, 10

0.392975 1
16 1(2) 1(4) 6, 8

0.39368 1
16 1(2) 1(4) 1, 10

0.393713 1
16 1(2) 1(4) 2, 8 ⋆,

0.395524 1
16 1(2) 1(4) 2, 8 ⋆,

0.396745 1
16 1(2) 1(4) 4, 8

0.396918 1
16 1(2) 1(4) 4, 8

0.396983 1
16 1(2) 1(4) 2, 8 ⋆,

0.397389 1
16 1(2) 1(4) 2, 8 ⋆,

0.397804 1
16 1(2) 1(4) 4, 8

0.398367 1
16 1(2) 1(4) 4, 8

0.399186 1
16 1(2) 1(4) 6, 8

0.402385 1
16 1(2) 1(4) 2, 8 ⋆,

0.403082 1
16 1(2) 1(4) 4, 8

0.403357 1
16 1(2) 1(4) 4, 8 ⋆,

0.403859 1
16 1(2) 1(4) 4, 8

0.403921 1
16 1(2) 1(4) 2, 8 ⋆,

0.405881 1
16 1(2) 1(4) 2, 8 ⋆,

0.407596 1
16 1(2) 1(4) 2, 8 ⋆,

0.414038 1
16 1(2) 1(4) 4, 8

0.414147 1
16 1(2) 1(4) 2, 8 ⋆,

0.41774 1
16 1(2) 1(4) 4, 8

0.418276 1
16 1(2) 1(4) 2, 8 ⋆,

0.419079 1
16 1(2) 1(4) 4, 8 ⋆,

0.419573 1
16 1(2) 1(4) 2, 8 ⋆,

0.420037 1
16 1(2) 1(4) 2, 8 ⋆,

0.420698 1
16 1(2) 1(4) 4, 8 ⋆,

0.421879 1
16 1(2) 1(4) 2, 8 ⋆,

0.422539 1
16 1(2) 1(4) 2, 8 ⋆,

0.422564 1
16 1(2) 1(4) 2, 8 ⋆,

0.423244 1
16 1(2) 1(4) 4, 8

0.423484 1
16 1(2) 1(4) 4, 8

0.423728 1
16 1(2) 1(4) 1, 9 ⋆,

Table 9. Fixed points found for Ns = 2 and Nf = 4 (continues . . . ).
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0.423912 1
16 1(2) 1(4) 4, 8

0.424515 1
16 1(2) 1(4) 4, 8

0.424672 1
16 1(2) 1(4) 4, 8

0.425003 1
16 1(2) 1(4) 1, 8 ⋆,

0.42551 1
16 1(2) 1(4) 1, 8 ⋆,

0.426232 1
16 1(2) 1(4) 1, 8 ⋆,

0.426519 1
16 1(2) 1(4) 4, 8

0.427174 1
16 1(2) 1(4) 4, 8

0.427916 1
16 1(2) 1(4) 6, 8

0.429833 1
16 1(2) 1(4) 4, 8

0.430072 1
16 1(2) 1(4) 2, 8

0.430612 1
16 1(2) 1(4) 3, 8

0.432475 1
16 1(2) 1(4) 2, 9

0.432602 1
16 1(2) 1(4) 5, 8

0.432763 1
16 1(2) 1(4) 5, 8

0.432779 1
16 1(2) 1(4) 5, 8

0.433177 1
16 1(2) 1(4) 3, 8

0.433336 1
16 1(2) 1(4) 3, 8

0.433375 1
16 1(2) 1(4) 3, 8

0.433745 1
16 1(2) 1(4) 3, 8

0.433977 1
16 1(2) 1(4) 3, 8

0.434047 1
16 1(2) 1(4) 5, 8

0.434078 1
16 1(2) 1(4) 3, 8

0.434171 1
16 1(2) 1(4) 3, 8

0.434717 1
16 1(2) 1(4) 3, 8

0.434806 1
16 1(2) 1(4) 3, 8

0.435204 1
16 1(2) 1(4) 3, 8

0.435966 1
16 1(2) 1(4) 5, 8

0.436023 1
16 1(2) 1(4) 5, 8

0.4362 1
16 1(2) 1(4) 3, 8

0.436251 1
16 1(2) 1(4) 3, 8

0.436473 1
16 1(2) 1(4) 3, 8

0.43654 1
16 1(2) 1(4) 3, 8

0.436762 1
16 1(2) 1(4) 3, 8

0.437164 1
16 1(2) 1(4) 3, 8

0.437292 1
16 1(2) 1(4) 5, 8

0.437349 1
16 1(2) 1(4) 5, 8

0.437493 1
16 1(2) 1(4) 3, 8

0.269845 28410
45292 2(1,1) 4(1,1,1,1) 7, 7 ⋆, ⋆

0.274768 28410
45292 2(1,1) 4(1,1,1,1) 7, 7 ⋆, ⋆

Table 9. Fixed points found for Ns = 2 and Nf = 4 (continues . . . ).
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0.278967 28410
45292 2(1,1) 4(1,1,1,1) 8, 7 ⋆, ⋆

0.318579 28410
45292 2(1,1) 4(1,1,1,1) 6, 7 ⋆, ⋆

0.325431 28410
45292 2(1,1) 4(1,1,1,1) 6, 7 ⋆, ⋆

0.397534 28410
45292 2(1,1) 4(1,1,1,1) 7, 7 ⋆, ⋆

0.420142 28410
45292 2(1,1) 4(1,1,1,1) 5, 7 ⋆, ⋆

0.435306 28410
45292 2(1,1) 4(1,1,1,1) 6, 7 ⋆, ⋆

0.135737 12068
191535 2(1,1) 4(1,1,1,1) 10, 7 ⋆, ⋆

0.272473 12068
191535 2(1,1) 4(1,1,1,1) 7, 7 ⋆, ⋆

0.366059 12068
191535 2(1,1) 4(1,1,1,1) 5, 7 ⋆, ⋆

0.377273 12068
191535 2(1,1) 4(1,1,1,1) 6, 7 ⋆, ⋆

0.381222 12068
191535 2(1,1) 4(1,1,1,1) 7, 7 ⋆, ⋆

0.432955 12068
191535 2(1,1) 4(1,1,1,1) 7, 7 ⋆, ⋆

0.278466 1429
22201 2(1,1) 2(2,2) 9, 7 ⋆, ⋆

0.399211 1429
22201 2(1,1) 2(2,2) 8, 7 ⋆, ⋆

0.399211 1429
22201 2(1,1) 2(2,2) 8, 6 ⋆, ⋆

0.40947 1429
22201 2(1,1) 2(2,2) 6, 7 ⋆, ⋆

0.168508 14307
180625 2(1,1) 4(1,1,1,1) 8, 7 ⋆, ⋆

0.296289 14307
180625 2(1,1) 4(1,1,1,1) 6, 7 ⋆, ⋆

0.312871 14307
180625 2(1,1) 4(1,1,1,1) 7, 7 ⋆, ⋆

0.316749 14307
180625 2(1,1) 4(1,1,1,1) 6, 7 ⋆, ⋆

0.382194 14307
180625 2(1,1) 4(1,1,1,1) 5, 7 ⋆, ⋆

0.404715 14307
180625 2(1,1) 4(1,1,1,1) 3, 7 ⋆, ⋆

0.420064 14307
180625 2(1,1) 4(1,1,1,1) 4, 7 ⋆, ⋆

0.42027 14307
180625 2(1,1) 4(1,1,1,1) 5, 7 ⋆, ⋆

0.476291 14307
180625 2(1,1) 4(1,1,1,1) 6, 7 ⋆, ⋆

0.483238 14307
180625 2(1,1) 4(1,1,1,1) 5, 7 ⋆, ⋆

0.440034 1
5 1(2) 2(2,2) 5, 7

0.579461 1
5 1(2) 2(2,2) 0, 7

0.598295 1
5 1(2) 2(2,2) 3, 7 ⋆,

0.598295 1
5 1(2) 2(2,2) 3, 7 ⋆,

0.613931 1
5 1(2) 2(2,2) 4, 7 ⋆,

0.655038 1
5 1(2) 2(2,2) 2, 7 ⋆,

0.679402 1
5 1(2) 2(2,2) 1, 7 ⋆,

0.845888 1
5 1(2) 2(2,2) 3, 7

0.849994 1
5 1(2) 2(2,2) 2, 7

0.435233 157
784 2(1,1) 2(2,2) 7, 7 ⋆, ⋆

0.435233 157
784 2(1,1) 2(2,2) 7, 6 ⋆, ⋆

0.561397 157
784 2(1,1) 2(2,2) 5, 7 ⋆, ⋆

0.561397 157
784 2(1,1) 2(2,2) 5, 6 ⋆, ⋆

0.582485 157
784 2(1,1) 2(2,2) 2, 6 ⋆, ⋆

Table 9. Fixed points found for Ns = 2 and Nf = 4 (continues . . . ).
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0.614584 157
784 2(1,1) 2(2,2) 6, 7 ⋆, ⋆

0.614584 157
784 2(1,1) 2(2,2) 6, 6 ⋆, ⋆

0.615509 157
784 2(1,1) 2(2,2) 4, 7 ⋆, ⋆

0.615509 157
784 2(1,1) 2(2,2) 4, 6 ⋆, ⋆

0.632019 157
784 2(1,1) 2(2,2) 5, 7 ⋆, ⋆

0.632019 157
784 2(1,1) 2(2,2) 5, 6 ⋆, ⋆

0.672395 157
784 2(1,1) 2(2,2) 3, 7 ⋆, ⋆

0.672395 157
784 2(1,1) 2(2,2) 3, 7 ⋆, ⋆

0.672395 157
784 2(1,1) 2(2,2) 3, 6 ⋆, ⋆

0.700306 157
784 2(1,1) 2(2,2) 4, 7 ⋆, ⋆

0.700306 157
784 2(1,1) 2(2,2) 4, 6 ⋆, ⋆

0.845775 157
784 2(1,1) 2(2,2) 5, 7 ⋆, ⋆

0.845775 157
784 2(1,1) 2(2,2) 5, 6 ⋆, ⋆

0.84714 157
784 2(1,1) 2(2,2) 4, 7 ⋆, ⋆

0.84714 157
784 2(1,1) 2(2,2) 4, 6 ⋆, ⋆

0.440354 112141
559504 2(1,1) 3(2,1,1) 6, 7 ⋆, ⋆

0.580188 112141
559504 2(1,1) 3(2,1,1) 1, 7 ⋆, ⋆

0.599872 112141
559504 2(1,1) 3(2,1,1) 4, 7 ⋆, ⋆

0.607946 112141
559504 2(1,1) 3(2,1,1) 5, 7 ⋆, ⋆

0.657683 112141
559504 2(1,1) 3(2,1,1) 3, 7 ⋆, ⋆

0.671595 112141
559504 2(1,1) 3(2,1,1) 2, 7 ⋆, ⋆

0.847494 112141
559504 2(1,1) 3(2,1,1) 4, 7 ⋆, ⋆

0.85121 112141
559504 2(1,1) 3(2,1,1) 3, 7 ⋆, ⋆

3
5

1
4 1(2) 1(4) 5, 5

3
5

1
4 1(2) 1(4) 0, 5

3
4

1
4 1(2) 1(4) 3, 6 ⋆,

3
4

1
4 1(2) 1(4) 1, 6 ⋆,

Table 9. Fixed points found for Ns = 2 and Nf = 4 .

S Y
# different

γϕ(degeneracies)
# different

γψ(degeneracies) #κ < 0, =0 a2, b1 ̸= 0

0.247862 1
49 2(1,2) 1(1) 11, 3 ⋆, ⋆

0.248061 1
49 2(1,2) 1(1) 11, 3 ⋆, ⋆

0.269318 1
49 2(1,2) 1(1) 9, 3 ⋆, ⋆

0.286823 1
49 2(1,2) 1(1) 9, 2 ⋆, ⋆

0.346219 1
49 2(1,2) 1(1) 6, 3 ⋆, ⋆

0.40898 1
49 2(1,2) 1(1) 4, 3 ⋆, ⋆

0.423905 1
49 2(1,2) 1(1) 4, 2 ⋆, ⋆

Table 10. Fixed points found for Ns = 3 and Nf = 1.
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