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1 Introduction

Dualities in string theory are important tools to uncover and study symmetries and
(algebraic) structures in gauge theories in various dimensions, in particular in the non-
perturbative regime. Even dualities that are not of a strong-weak type oftentimes provide
new viewpoints and alternative descriptions that are more adapted to tackle certain problems.
A particularly rich class of examples of this type are so-called Little String Theories (LSTs) [1–
6] (reviews can be found in [7, 8]). These are quantum theories which at low energies
resemble quantum field theories with point-like degrees of freedom, however, whose UV-
completion requires string-like degrees of freedom. In the context of string theory, such
theories can be obtained through a decoupling limit that removes the gravitational sector,
but retains the string scale.

Concretely, an interesting class of such LSTs [9–12] can be constructed in M-theory
through N parallel M5-branes compactified on a circle S1

τ (of radius τ) and spread out
on a circle S1

ρ (of radius ρ), which probe a transverse ALEAM−1 space. Here ALEAM−1

has the structure of a ZM orbifold and M = 1 corresponds to the flat space R4. The
low-energy world-volume theory on the M-branes is a quiver gauge theory on R4 × T2

with gauge group U(N)M and matter in the bifundamental representation (or the adjoint
in the case of M = 1). This M-theory setting is dual [13–15] to a web of intersecting
D5- and NS5-branes in type II string theory [16] and can further be dualised to F-theory
compactified on a class of non-compact toric Calabi-Yau threefolds called XN,M [10, 14, 15].
These manifolds have the structure of a double elliptic fibration and more details on the
mathematical construction can be found in [17]. These various dual descriptions provide
numerous technical tools to perform explicit computations for the low energy gauge theory
and in particular allow to compute explicitly the full non-perturbative partition function
ZN,M of the theory in various different fashions [15] (see also [18] for other limits that
engineer five-dimensional gauge theories from XN,M ). For example, ZN,M is captured by the
topological string partition function on XN,M , which can be computed explicitly [11, 13–15]
using the (refined1) topological vertex formalism [33, 34]. This has allowed to study the

1‘Refined’ in this context refers to the refined topological string [19–21] and specifically the refined
topological vertex depends on two deformation parameters (called ε1, ε2 ∈ R), which are required to render
the topological string partition function well defined. From the perspective of the gauge theory, these
parametrise the Nekrasov Ω-background which was used in [22–24] to compute the instanton partition
function. See also [25–32] for a physical interpretation of the refinement parameters from a world-sheet
perspective in string theory.
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spectrum of the underlying theories and as a consequence numerous surprising symmetries
and algebraic structures have been discovered, for instance:

(i) By studying flop transformations of certain curves of XN,M it was shown in [35] that
the extended Kähler moduli space of this Calabi-Yau threefold contains regions, which
can be identified with XN ′,M ′ for any integers (N ′,M ′) such that NM = N ′M ′ and
gcd(N,M) = gcd(N ′,M ′). It was furthermore argued in [11] (see also [36]) that the
topological string partition functions of these two geometries are identical. Physically,
this implies that the two LSTs whose low energy descriptions are given by quiver
gauge theories with gauge groups U(N)M and U(N ′)M ′ (with (N,M) and (N ′,M ′)
related as previously stated) are dual to one another, thus leading to webs of dual
gauge theories [12, 37].

(ii) It was shown in [38] (see also [39]) that upon compactification on a further circle, the
LSTs described above realise monopole strings in five dimensions. It was furthermore
argued that the BPS counting function of a particular sector of these monopole strings
can be expressed as the partition function of a symmetric orbifold conformal field
theory whose target space is the symmetric product of moduli spaces of monopoles
with fixed charges. This interpretation requires specific relations among different
contributions to the topological string partititon function ZN,M (or its associated free
energy).

(iii) Exploiting symmetries and geometric transformations of XN,1 (i.e. for M = 1) that
leave the partition function ZN,1 invariant, it was argued in [40] that the LSTs
engineered by this manifold possess a non-trivial dihedral symmetry. This symmetry
acts as linear transformations on the Kähler parameters of XN,1 but is intrinsically
non-perturbative from the perspective of the gauge theory.

(iv) In [41, 42] (Fourier) expansions of subsectors of the (single particle) non-perturbative
free energy of the theory for M = 1 were proposed, which are compatible with the
non-perturbative symmetries found in [40]. Furthermore, it was shown in [43, 44] that
this free energy can be decomposed in a way which resembles a Feynman-diagrammatic
expansion: in the so-called unrefined limit (i.e. where the two deformation parameters
mentioned above satisfy ε1 = −ε2 = ε) the leading instanton contribution (from the
perspective of the underlying U(N) theory), was written as products of propagators of
a chiral free scalar field on the torus. The arguments of these two-point functions were
differences of the gauge parameters of the U(N) group. Furthermore, each propagator
was multiplied by ‘external states’ consisting of contributions to the non-pertrubative
free energy for N = 1. This form was verified up to N = 5 and a closed form
for generic N was conjectured. It was furthermore noticed that higher instanton
contributions follow a similar pattern concerning the separation of gauge parameters
and ‘external states’. However, new ‘decorations’ of the propagator factors appeared,
either in the form of derivatives or multiplicative factors, which were identified with
dihedral graph functions (MGF) with bivalent vertices [45, 46]. These were interpreted
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as contributions of integrated vertices in the Feynman diagrammatic decomposition.
However, no (unique) building pattern for these contributions could be found in [44].

In this paper we go beyond the observation of [43, 44] explained in (iv) and develop it into
a concrete correspondance between specific contributions to the unrefined topological string
partition function of XN,1 and (differences of) two-point functions of chiral scalar fields on
the torus. These contributions Tαjαi are labelled by two integer partitions (αj , αi) and we
can characterise them in two different fashions:

• Geometric characterisation. We can cut the web diagram of XN,1 open by placing
pairs of branes on (certain) Lagrangian cycles of the manifold [47]. Following the
discussion of [48] for a similar geometry, the Tαjαi then count holomorphic curves in
the presence of these Lagrangian branes. In the current case, however, the Tαjαi count
infinitely many curves due to the double elliptic fibration structure of XN,1 (see [11]).

• Gauge theory characterisation. From the perspective of the low-energy U(N)
gauge theory, the Tαjαi calculate Nekrasov subfunctions of vector- and hypermultiplet
contributions in the instanton partition function. Indeed, in the dual type II picture,
these are BPS contributions of open strings stretched between individual D5-branes.

Concretely, the unrefined Tαjαi can be written as sums of Kronecker-Eisenstein series (see
appendix A.3 for the definition) which depend on the gauge parameters of the low energy
theory as well as a Coulomb branch parameter (called S). The former appear shifted by
the remaining deformation parameter ε, with integer coefficients. We find a form for these
coefficients that is dictated by the instanton partition function of the Chern-Simons theory
associated with the open topological string on F0 [48, 49]. The specific combinations of the
Kronecker-Eisenstein series appearing in Tαjαi in turn can be formulated as propagators of
chiral scalar fields on a torus. These results make the observation (iv) much more concrete
and we explain the precise relation to previous work in detail. Moreover, the current work
pin-points the origin of the scalar field propagators observed in [43, 44] both geometrically
as well as from the perspective of the low energy gauge theory. From the latter point of view
in fact our results suggest a correspondence between elements of the partition function of a
U(N) gauge theory on R4 × T2 and combinations of simple Greens function of a free chiral
scalar field on the torus, which is reminiscent of AGT-like correspondences found in [50]
(and subsequent works). Furthermore, the Kronecker-Eisenstein series are building blocks of
elliptic modular graph functions and forms (eMGF) [51, 52], which generalise the concept of
modular graph functions and forms [45, 46]. Our current work therefore further elaborates
on the conjectured relation [43, 44] between the instanton sector of supersymmetric gauge
theories and MGF.

Moving away from the unrefined limit (i.e. keeping ε1,2 generic) we can still re-write
the non-perturbative partition function in terms of Kronecker-Eisenstein series (which,
however, in general do not arrange themselves into propagators of chiral scalars). Using this
re-writing, we uncover new structures of the partition function. We focus on the leading
singularity in ε2 of the level r ∈ N instanton contribution to the instanton partition function
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of the gauge theory2 for N = 1. We show that this contribution is up to a factor r! the
rth power of the leading instanton contribution. We provide evidence that this recursive
structure also generalises to the NS-limit for all N > 1. This structure therefore allows to
recursively calculate the leading ε2 singularities of the non-perturbative partition function.

This paper is organised as follows: In section 2, we give a brief review of the topological
string partition function on the Calabi-Yau threefold XN,1, discussing in particular in detail
the case N = 1. In section 3, we present the decomposition of the topological string partition
function of XN,1 in terms of Kronecker-Eisenstein series and present its interpretation in the
unrefined limit. In section 4, we study the NS-limit of the partition function and provide
evidence for a recursive structure among different instanton levels. In section 5, we develop
further a diagrammatic decomposition of the partition function and compare to previous
results in the literature. We focus in particular on the cases N = 2 and N = 3. Finally,
section 6 contains our conclusions and an outlook for future directions. Mathematical
definitions and details on some computations have been relegated to three appendices.

2 Review: Topological string partition functions

In this section we briefly review the topological string partition function on a class of
non-compact toric Calabi-Yau threefolds, which capture the non-perturbative partition
function of certain Little String Theories.

2.1 Topological string partition function for XN,1

We start by discussing the Calabi-Yau threefolds XN,1 which are characterised by a
web diagram as shown in figure 1. The diagram is double periodic since the curves
labelled with µ and µt as well as (α1, . . . , αN ) and (αt1, . . . , αtN ) are respectively identi-
fied. In figure 1 we have also indicated a labelling of the areas of the individual curves
(h1, . . . , hN , v1, . . . , vN ,m1, . . . ,mN ) (as the suitably normalised integrals over the Kähler
form of the Calabi-Yau manifold). However, due to the double periodicity of the diagram,
not all of these areas are independent

v1 = v2 = . . . = vN , m1 = m2 = . . . = mN , (2.1)

such that the diagram only has N + 2 independent Kähler parameters. A convenient basis
of the latter has been introduced in [37] (see also [11, 12]), labelled by (τ, S, ρ, â1, . . . , âN−1)
with

τ = v1 +m1 , S = v1 , ρ =
N∑

i=1
âi ,

âi = hi+1 + vi , ∀i = 1, . . . , N . (2.2)

Here we have used the identification hN+1 = h1. In [11] (building on earlier work in [13–15]),
a basic building block was computed which allows to explicitly write the refined topological

2We shall call this contribution the Nekrasov-Shatashvili (NS)-limit [53, 54].
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αN
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N

h1

h2

h3

hN

h1

v1

v2

vN

m
1

m
2

m
3

m
N

â
N

â1

â2

â
N−1

Figure 1. Web diagram of the Calabi-Yau manifold XN,1 with a labelling of the various Kähler
parameters. The diagram is glued to itself along the horizontal line (labelled with µ) and the
diagonal lines (labelled α1,...,N ).

string partition function of XN,1,3 as sums over the integer partitions (α1, . . . , αN ) (which
govern the gluing of the strip in figure 1 along the diagonal lines), concretely

ZN,1(ρ, S, â1,...,N−1, τ ; ε1,2)

= WN (∅) Ẑ
∑

α1,...,αN

(
N∏

k=1
(−Qmk)|αk|

)
N∏

i,j=1

Jαiαj (Q̂i,i−j ; q, t)Jαjαi((Q̂i,i−j)−1Qρ; q, t)
Jαiαj (Qi,i−j

√
q/t; q, t)Jαjαi(Q̇i,j−i

√
t/q; q, t)

.

(2.3)

The notation and conventions (following [11]) are further explained in appendix A.1. As
we shall discuss in more detail in section 3.1, using the particular choice of basis (2.2), the
partition function can be expanded in powers of Qτ = e2πiτ

ZN,1(ρ, S, â1,...,N−1, τ ; ε1,2) = WN (∅)
∑

α1,...,αN

Q|α1|+...+|αN |
τ Pα1,...,αN (ρ, S, â1,...,N−1; ε1,2)

= WN (∅)
∞∑

r=0
Qrτ K

N,(r)(ρ, S, â1,...,N−1; ε1,2) . (2.4)

From the perspective of the U(N) gauge theory (with hypermultiplet matter in the adjoint
representation) that is engineered by XN,1, Qτ is identified with the instanton parameter
and the sum over r in (2.4) is the instanton expansion of the partition function. Furthermore,
ε1,2 are parameters related to the topological string. They concretely enter through the
refined topological vertex [33, 34], which was used in [11, 13–15] to compute ZN,1. From
the perspective of the gauge theory, they are identified with the parameters of the Nekrasov
Ω-background [22–24], which allows to compute the instanton contributions [15]. While

3In fact, the building block computed in [11] allows to compute the partition function [12] of more general
Calabi-Yau manifolds (see [10]) that capture M-brane configurations probing transverse orbifolds.
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µ

µt

α1

αt
1

h

h
v

m

Figure 2. Web diagram of X1,1.

ZN,1 in (2.3) is computed for generic values of ε1,2 (with q = e2πiε1 and t = e−2πiε2 and
ε1,2 ∈ R), there are two limits which play an important role in this paper

• Unrefined limit. In this limit the two deformation parameters are identified as

ε1 = −ε2 = ε , (2.5)

which entails q = t. From the perspective of the (unrefined) topological string, the
remaining parameter ε plays the role of the topological string coupling.

• Nekrasov-Shatashvili (NS) [53, 54] limit ε2 → 0. As we shall discuss, in this case the
various instanton contributions KN,(r) to the partition function ZN,1 develop poles.
In the following, we shall therefore take the NS-limit to mean the leading singularity
in a (formal) Laurent series expansion around ε2 = 0. Concretely, starting from

KN,(r)(ρ, S, â1,...,N−1; ε1,2) =
∞∑

k=0
ε2k−r2 K

N,(r)
k (ρ, S, â1,...,N−1; ε1) , (2.6)

and following a similar definition in [9, 10, 55] for the free energy, we shall call KN,(r)
0

the Nekrasov-Shatashvili (NS) limit of the partition function. For later convenience,
we remark that the KN,(r)

k can further be expanded in a (formal) Laurent series
around ε1 = 0

K
N,(r)
k (ρ, S, â1,...,N−1; ε1) =

∞∑

p=0
ε2p−r+k1 K

N,(r)
p,k (ρ, S, â1,...,N−1) . (2.7)

2.2 Instanton partition function for N = 1

As an explicit example and as an important building block for the later computations, we
discuss in some more detail the topological string partition function for X1,1, i.e. the case
N = 1. The web diagram along with the (independent) Kähler parameters is shown in
figure 2. The basis (2.2) is obtained by

ρ = h+ v , S = v , τ = m+ v . (2.8)

The partition function (2.3) can be written in the form

Z1,1(ρ, S, τ ; ε1,2) =
∑

α1

(−Qτ/QS)|α1| W1(∅) · Ẑ

× Jα1α1(Qρ/QS ; q, t)Jα1α1(QS ; q, t)
Jα1α1(Qρ

√
q/t; q, t)Jα1α1(Qρ

√
t/q; q, t)

. (2.9)
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which can be simplified using the identities (A.7) in appendix A.1 to yield

Z1,1(ρ, S, τ ; ε1,2) = W1(∅)
∑

α1

Q|α1|
τ

ϑα1α1(QS ; ρ)
ϑα1α1(

√
q/t, ρ)

= W1(∅)
∑

α1

Q|α1|
τ K1,(|α1|)(ρ, S; ε1,2) .

(2.10)
Comparing with (2.4), we can extract the contribution for a fixed integer partition α1

Pα1(ρ,S;ε1,2) = ϑα1α1(QS ;ρ)
ϑα1α1(

√
q/t;ρ)

=

∏

(i,j)∈α1

θ1
(
S+ε1(αt1,j−i+ 1

2)−ε2(α1,i−j+ 1
2);ρ

)
θ1
(
S−ε1(αt1,j−i+ 1

2)+ε2(α1,i−j+ 1
2);ρ

)

θ1
(
ε1(αt1,j−i+1)−ε2(α1,i−j);ρ

)
θ1
(
−ε1(αt1,j−i)+ε2(α1,i−j+1);ρ

) ,

(2.11)
where we have used (A.8). We remark that Pα1 can be written as a product over con-
tributions, that can be associated with individual boxes of the Young diagram of the
partition α1.

This observation becomes even more apparent in the unrefined limit (2.5): indeed for
q = t (2.11) can be simplified to give

Pα1(ρ, S; ε1 = −ε2 = ε) =
∏

(i,j)∈α1

θ1 (S + ε hα1(i, j); ρ) θ1 (−S + ε hα1(i, j); ρ)
θ1 (ε hα1(i, j))2 , (2.12)

where we have used θ1(x; ρ) = −θ1(x−1; ρ) and hα1(i, j) denotes the hook-length of the box
with the coordinates (i, j) in the Young diagram of α1 (see e.g. [56])

hα1(i, j) = α1,i + αt1,j − i− j + 1 . (2.13)

3 Instanton partition function and Kronecker-Eisenstein series

In [43, 44] it has been argued that the expansions of the free energy associated with the
partition function (2.3) can be organised in a way that resembles a (Feynman) diagrammatic
expansion. This argument is based on studying the leading instanton contributions of the
free energy which can be written using propagators of a free scalar field on the torus (along
with additional contributions resembling loops). In this section we shall show a more direct
relation between the instanton partition function and (elliptic) Modular Graph Functions.

3.1 Decomposition of the instanton partition function

In this section we study in more detail the partition function (2.3) with the goal to re-write
it using as building blocks Kronecker-Eisenstein series (which are reviewed in appendix A.3).
We start by following [11] and rewrite (2.3) in terms of the functions ϑα1α2 defined in (A.8)
using the identities (A.7) (see [15])

ZN,1(ρ, S, â1,...,N−1, τ ;ε1,2) = WN (∅)
∑

α1,...,αN

(
N∏

r=1
(Qτ )|αr| ϑαrαr(QS ; ρ)

ϑαrαr(
√
q/t; ρ)

)

×
∏

1≤i<j≤N

ϑαjαi

(
QS

∏j−1
k=i Qâk ; ρ

)
ϑαjαi

(
Q−1
S

∏j−1
k=i Qâk ; ρ

)

ϑαjαi

(√
q
t

∏j−1
k=i Qâk ; ρ

)
ϑαjαi

(√
t
q

∏j−1
k=i Qâk ; ρ

) . (3.1)
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From this, we can read off Pα1,...,αN (ρ, S, â1,...,N−1; ε1,2) in (2.4)

Pα1,...,αN =
(

N∏

k=1
Pαk(ρ, S; ε1,2)

) ∏

1≤i<j≤N
Tαjαi(ρ, S, â1,...,N−1; ε1,2) , (3.2)

where Pαk is defined in (2.11) and we introduced the shorthand notation

Tαjαi(ρ, S, â1,...,N−1; ε1,2) :=
ϑαjαi

(
QS

∏j−1
k=i Qâk ; ρ

)
ϑαjαi

(
Q−1
S

∏j−1
k=i Qâk ; ρ

)

ϑαjαi

(√
q
t

∏j−1
k=i Qâk ; ρ

)
ϑαjαi

(√
t
q

∏j−1
k=i Qâk ; ρ

) ,

∀1 ≤ i < j ≤ N .

(3.3)

We remark the symmetry

Tαjαi(ρ, S, â1,...,N−1; ε1,2) = Tαtiαtj (ρ, S, â1,...,N−1; ε1,2) , (3.4)

which follows from the invariance of the partition function ZN,1 under a rotation of the
web diagram in figure 1 by 180 degrees. Furthermore, for fixed integer partitions (αj , αi)
we can rewrite Tαjαi in terms of Jacobi theta-functions (see (A.13) for the definition) by
using (A.8)

Tαjαi =
∏

(r,s)∈αj

(
θ1
(
aij + S + ε1

(
αti,s − r + 1

2

)
− ε2(αj,r − s+ 1

2); ρ
)

θ1
(
aij + ε1

(
αti,s − r + 1

)
− ε2(αj,r − s); ρ

)

×
θ1
(
aij − S + ε1

(
αti,s − r + 1

2

)
− ε2(αj,r − s+ 1

2); ρ
)

θ1
(
aij + ε1

(
αti,s − r

)
− ε2(αj,r − s+ 1); ρ

)
)

×
∏

(r,s)∈αi

(
θ1
(
aij + S − ε1

(
αtj,s − r + 1

2

)
+ ε2(αi,r − s+ 1

2); ρ
)

θ1
(
aij − ε1

(
αtj,s − r

)
+ ε2(αi,r − s+ 1); ρ

)

×
θ1
(
aij − S − ε1

(
αtj,s − r + 1

2

)
+ ε2(αi,r − s+ 1

2); ρ
)

θ1
(
aij − ε1

(
αtj,s − r + 1

)
+ ε2(αi,r − s); ρ

)
)
, (3.5)

with the shorthand notation aij = ∑j−1
k=i âk. The quotients of Jacobi-theta functions in

turn can be expressed using the Kronecker-Eisenstein series Ω(u, v; ρ), which are defined
in (A.32)

Tαjαi =
(
−φ−2(S + ε+; ρ)

4π2

)|αi|+|αj |

×
∏

(r,s)∈αj

[
Ω
(
aij + e

αj ,αi
r,s − ε2, S + ε+; ρ

)
Ω
(
aij + e

αj ,αi
r,s + ε1,−S − ε+; ρ

)]

×
∏

(r,s)∈αi

[
Ω
(
aij − e

αi,αj
r,s + ε2, S + ε+; ρ

)
Ω
(
aij − e

αi,αj
r,s − ε1,−S − ε+; ρ

)]
,

(3.6)
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where we have used ε1,2 ∈ R. Furthermore, φ−2 is a standard Jacobi form of weight −2 and
index 1 (see (A.12) for the definition) and

ε± = ε1 ± ε2
2 , e

αj ,αi
r,s = ε1

(
αti,s − r

)
− ε2(αj,r − s) ∀(r, s) ∈ αj . (3.7)

Apart from the overall factor in the first line of (3.6), the contribution Tαjαi is decomposed
in terms of Kronecker-Eisenstein series, where a pair of Ω’s is associated to each box of
the Young diagram of the two partitions. We shall discuss in the following subsection
the unrefined limit ε2 = −ε1 (and ε+ = 0), in which case (3.6) not only simplifies but
can furthermore be written as products of scalar field propagators on the torus. We shall
furthermore attempt in section 3.3 an interpretation of this result both from a geometric
and a gauge theory perspective.

3.2 Unrefined limit

The form of Tαjαi in (3.6) can be further simplified in the unrefined limit (2.5) (i.e. ε+ = 0)

Tαjαi(ρ, S, â1,...,N−1; ε) =
(
−φ−2(S; ρ)

4π2

)|αi|+|αj |

×
∏

κ=±1




 ∏

(r,s)∈αj
Ω
(
aij + ε n

αj ,αi
r,s , κ S; ρ

)



 ∏

(r,s)∈αi
Ω
(
aij − ε nαi,αjr,s , κ S; ρ

)



 ,

(3.8)

with

n
αj ,αi
r,s = αti,s + αj,r − r − s+ 1 , ∀(r, s) ∈ αj . (3.9)

For concreteness, we have collected in the following table the integer numbers

nαjαi = {nαj ,αir,s |(r, s) ∈ αj} ∪ {−nαi,αjr,s |(r, s) ∈ αi} = −nαiαj , (3.10)

i.e. all ε-shifts appearing in (3.8) for fixed (αi, αj) for the simplest integer partitions:

αi αj nαjαi

∅ (0)

∅ (0,−1)

∅ (1, 0)

(1,−1)

∅ (0,−1,−2)

∅ (1, 0,−1)

∅ (2, 1, 0)

αi αj nαjαi

(0, 1,−2)

(0,−1, 2)

∅ (0,−1,−2,−3)

∅ (1, 0,−1,−2)

∅ (1, 0, 0,−1)

∅ (2, 1, 0,−1)

αi αj nαjαi

∅ (3, 2, 1, 0)

(1, 0,−1,−3)

(2, 0, 0,−2)

(3, 1, 0,−1)

(2, 1,−1,−2)

(3, 0, 0,−1)
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The coefficients nαjαi also exhibit the symmetry nαjαi = nα
t
iα
t
j (and thus with (3.10)

nαjαi = −nαtjαti), which is a consequence of the symmetry (3.4) of the contributions Tαjαi
to the partition function. Furthermore, we have checked up to order |αi|+ |αj | = 6 that
the set of integers nαjαi can also be characterised in the following fashion: let x ∈ R and

fαti,αj
(x) =

∑

(r,s)∈αj
xn

αj,αi
r,s +

∑

(r,s)∈αi
x−n

αi,αj
r,s =

∑

a∈nαjαi
xa , (3.11)

then this generating function can be written as

fαti,αj
(x) = (x− 2 + x−1) fαti(x) fαj (x) + fαti

(x) + fαj (x) , with fµ(x) =
`(µ)∑

r=1

µr∑

k=1
xk−r ,

(3.12)

where `(µ) denotes the length of the partition µ = (µ1, . . . , µ`(µ)). From the perspective
of the topological vertex, the generating function arises in the product of two Schur
polynomials [57]

fµ,ν(x) = s�(xµ+k) s�(xν+k)− x

(1− x)2 , (3.13)

where we have used the shorthand notation xµ+k = (xµ1−1/2, xµ2−3/2, xµ3−5/2, . . .) for an
integer partition µ. It furthermore satisfies the following properties [48]

fµt,νt(x) = fµ,ν(x−1) , fµ,ν(x) = fν,µ(x) , (3.14)

which are indeed compatible with the symmetries we have found for the coefficients nαjαi .
From a geometric perspective [48, 49], the generating function (3.11) appears in the partition
function of the Chern-Simons theory that is associated with the open topological string
theory on F0 (see [58]), whose web diagram (along with a labelling of the geometric
parameters associated with the fiber and base) is also shown in the following:

ZCS(QB, QF ; q) =
∑

α1,α2

Q
|α1|+|α2|
B Rα1,α2(QF )2 ,

B

B

F F (3.15)

Here the sum is over integer partitions α1,2, while QB = e2πiTB and QF = e2πiTF and the
general building block associated with a curve of type (−2, 0) (see [48] and section 3.3.1 for
more details) is given by

Rα1,α2(Q) =
∑

α

Q|α|Wα1α(q)Wαα2(q)

= R∅∅(Q)Wα1(q)Wα2(q) exp
( ∞∑

n=1

fα1α2(qn)
n

Qn
)
.

Q

α2

α2
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· · ·

α1

αt
1

α2

αt
2

α3

αt
3

αN

αt
N

Figure 3. Web diagram associated with XN,1. The external green lines are pairwise identified.

Here R∅∅ is the closed string partition function on T ∗(P1) × C and we refer the reader
to [48] for the definition of Wαi and further details.

Besides the simplification of the contributions Tαjαi in (3.8), the unrefined limit (3.6)
affords another important rewriting. Indeed, using the relation (A.33), we can express
pairs of Kronecker-Eisenstein series in (3.8) as differences of Weierstrass elliptic functions
(defined in (A.21)), which with (A.34) can further be express in terms of differences of
Greens functions of free scalar fields on a torus with modular parameter ρ

Tαjαi(ρ,S, â1,...,N−1;ε) =
(
−φ−2(S;ρ)

4π2

)|αi|+|αj |

×

 ∏

(r,s)∈αj

(
G′′(aij+εn

αj ,αi
r,s ;ρ)−G′′(S;ρ)

)



 ∏

(r,s)∈αi

(
G′′(aij−εnαi,αjr,s ;ρ)−G′′(S;ρ)

)

 .

(3.16)

In this form Tαjαi associates a pair of propagator factors to each box of the Young diagram
of the two partitions (αi, αj): one of these depends on S and the other on aij (which are
gauge parameter from the perspective of the gauge theory engineered by XN,1) shifted by ε
in a way that is dictated by the integers nαj ,αi . Before discussing further consequences of
this result as well as the relation to previous work (notably [43, 44]) in subsequent sections,
we shall comment on (3.16) from the perspective of the underlying Calabi-Yau geometry
XN,1 and the associated supersymmetric gauge theory in the following subsection.

3.3 Geometric- and gauge theory interpretation

The relation (3.16) allows to express a contribution to the topological string partition
function that is labelled by the integer partitions (αj , αi) in terms of (differences of)
two-point functions of a free scalar field on the torus.

3.3.1 Holomorphic curves and Lagrangian branes

The local geometry associated with a web diagram of the form depicted in figure 1, but with
de- compactified external legs has been discussed in [57]. Generalising this discussion to
our case, the relevant web diagram is shown in figure 3. As explained in [57], coloured lines
connecting any two vertices represent P1’s, while locally the two non-compact directions of
XN,1 correspond to the direct sum of two line-bundles over each such P1. Concretely, there
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are two possible cases, namely (i) O(−1)⊕O(−1)→ P1 and (ii) O(−2)⊕O(0)→ P1 and
we shall therefore call the respective P1’s either of type (−1,−1) or (−2, 0).4 In the way
the diagram in figure 3 is structured, all individual P1’s shown in red are of type (−1,−1).
Furthermore, curves made from chains of P1’s also have normal bundles O(−1)⊕O(−1) or
O(−2)⊕O(0) depending on whether they consist of an odd or an even number of P1’s of
type (−1,−1). Therefore, focusing on curves on the chain of P1 drawn in red in figure 3,
there are two types

(i) curves connecting any pair of green lines on the same side of the diagram have local
geometry O(−2)⊕O(0)→ P1 (and we shall call them type (−2, 0))

(ii) curves connecting any pair of green lines on opposite sides of the diagram have local
geometry O(−1)⊕O(−1)→ P1 (and we shall call them type (−1,−1))

As explained in [11], to compute the topological string partition function in (2.3), we count
holomorphic curves after placing Lagrangian branes [47] on pairs of the external legs labelled
by (αi, αti) (with i = 1, . . . , N). The contribution to the open topological string amplitude
from curves of type (i) with branes on external legs labelled (αi, αj) or (αti, αtj) (i.e. on the
same side of the diagram) or of type (ii) with branes on external legs labelled (αi, αtj) (i.e.
on opposite sides of the diagram) have explicitly been given in [11]. Due to the compactified
nature of the strip geometry in figure 3, this calculation takes into account that there are
infinitely many holomorphic cuves between any two legs of the diagram, by going around
the entire strip multiple times. For given (αj , αi) (with i < j), the collective contributions
of all such curves in fact gives the Tαjαi in (3.3). The re-writing of the latter in terms of
scalar field propagators (3.16) therefore provides a new interpretation of this geometric
contribution in the unrefined limit.

3.3.2 Nekrasov subfunctions

The contributions to Tαjαi described geometrically in the previous subsubsection can also
be interpreted from a gauge theory perspective. Indeed, as was explained in [12–15], the
Calabi-Yau manifold XN,1 engineers (among others [12, 37]) an U(N) gauge theory with
hypermultiplet matter in the adjoint representation. This theory can also be described by
N parallel D5-branes separated on a circle S1

ρ (with radius ρ) intersecting an NS5-brane
transversally (see [13, 15] for more details on the geometry). In this picture, the Tαjαi encode
the BPS contributions of strings ending on two distinct D5-branes and winding around the
circle S1

ρ. Indeed, Tαjαi is precisely made up from Nekrasov subfunctions of vector- and
hypermultiplet contributions to the instanton gauge theory partition function [12, 15].5
Notice in this regard the following limits of Tαjαi written in (3.16) (i.e. in the unrefined limit)

• Tαjαi has a second order pole for aij → −εn for any n ∈ nαj ,αi i.e. the limit where the
gauge parameter associated with the vector multiplet becomes a particular integer

4Since we are working here in the unrefined limit, we do not separately distinguish cases of the form
O(0)⊕O(−2)→ P1.

5Nekrasov subfunctions (also called subfactors) encode the contributions of different multiplets to the
non-perturbative partition function of gauge theories. They have been studied in four-dimensions [22],
five-dimensions [59] and six-dimensions [60–62] and reviews can for example be found in [12, 63, 64].
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multiple of ε.6 Indeed, in the context of the Nekrasov subfunctions, the parameters aij
correspond to the vacuum expectation values of the scalar fields in the five-dimensional
vector multiplets. For ε = 0, this condition becomes aij → 0 and geometrically
corresponds to the vanishing of a curve of type (−2, 0) in the web diagram.

• Tαjαi is zero for aij+εn = S, for any n ∈ nαj ,αi . For ε = 0, this condition geometrically
corresponds to the vanishing of a curve of type (−1,−1) in the web diagram, connecting
the legs αti with αi+1 in figure 3.

• Tαjαi takes a finite value for S → 0, corresponding to the vanishing of the mass of
the adjoint multiplet associated with strings stretching between branes labelled αi
and αj . For ε = 0, this condition geometrically also corresponds to the vanishing of a
curve of type (−1,−1) in the web diagram, connecting the legs αi with αti in figure 3.

The re-writing of the contribution Tαjαi in (3.16), therefore suggests a relation between the
Nekrasov subfunctions in a gauge theory on R4×T2 and simple combinations of propagators
in a two-dimensional theory of a free scalar field on a torus. This relation is very reminiscent
of a relation between the N = (2, 0) LST compactified on a Riemann surface and the
3-point conformal blocks of a q-deformed ADE-Toda (or Liouville) CFT, which was found
in [50]: in [66] a triality relation between q-deformed Liouville theory (introduced in [67, 68])
on a sphere, three-dimensional N = 2 gauge theories with U(N) gauge group and M

flavours on the Ω-background, and a five-dimensional N = 1 U(M) gauge theory with
2M fundamental hyermultiplets was established. Notably the five-dimensional instanton
sum is captured by the conformal blocks of the two-dimensional CFT. As anticipated by
the AGT-correspondence [69],7 this relation was extended in [77] to a triality involving
conformal blocks of An Toda-CFTs on a sphere and families of four-dimensional N = 2
CFTs as well as two-dimensional theories living on the vortex configurations of the latter.
In [50] (see also [78] for subsequent work for LSTs on more general defects) it was shown that
the partition function of the N = (2, 0) ADE LST on a sphere is captured by the conformal
blocks of a q-deformed ADE Toda theory (see also [79] for relations to q-conformal blocks
on a torus). This result suggests that the combinations of free scalar-field propagators
appearing in Tαjαi (3.16) have an interpretation in terms of the latter two-dimensional
theory. We leave investigation of this relation for future work.

4 Recursive structure in the NS limit

We can use the form of the partition function (3.1) described in the previous section to find
further symmetries and structures: in this section, we argue for a recursive structure in the
leading ε2 pole of the partition (which we call the NS-limit) which receives deformations at
higher ε2-orders.

6It has been observed in [65] that the free energy associated with ZN,1 simplifies and reveals additional
algebraic structures if the gauge parameters are identified with integer multiples of ε.

7The Alday-Gaiotto-Tachikawa correspondence [69, 70] has been originally established for N = 2
supersymmetric gauge theories in four dimensions and extended to five-dimensional gauge theories in [71–73]
and to five-dimensional quiver gauge theories in [74, 75] (see also the excellent review [76]).
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4.1 Recursion for N = 1

4.1.1 NS limit

We start by considering the partition function Z1,1, more concretely the order r-instanton
contribution K1,(r) as defined in (2.10) and which can be written in terms of Pα1 in (2.11)

K1,(r)(ρ, S; ε1,2) =
∑

α1 with |α1|=r
Pα1(ρ, S; ε1,2) , ∀r ∈ N . (4.1)

Since θ1(z; ρ) = 2πη3(ρ) z + O(z3), for a fixed integer partition α1, Pα1 has poles in ε2,
which stem from the boxes in the Young diagram with either αt1,j = i− 1 or αt1,j = i. There
are no boxes for which the first condition is satisfied, but the second condition holds for all
boxes, which have no boxes below them, e.g.

αt1,j = i : e.g. with (i, j) = {(1, 6), (2, 4), (2, 5), (4, 3), (5, 1), (5, 2)} .

Consequently, the highest pole in ε2 in (4.1) (and (2.11)) is of order r = |α1| and stems
from the partition, whose Young diagram consists only of such boxes, i.e.

with
α1,i − j + 1 ∈ {|α1|, |α1| − 1 . . . , 1} ,
αt1,j − i+ 1 = 1

for
i = 1 ,
j ∈ {1, . . . , |α1|} .

(4.2)

We can therefore write for K1,(r)
0 (with r = |α1|)

K
1,(r)
0 (ρ, S; ε1) = 1

r!

(
θ1(S + ε1/2; ρ)θ1(S − ε1/2; ρ)

θ1(ε1; ρ)θ′(0; ρ)

)r
, (4.3)

which in fact allows to recursively express the NS-limit of the r-th instanton contribution
as powers of the leading instanton level

K
1,(r)
0 (ρ, S; ε1) = 1

r!
(
K

1,(1)
0 (ρ, S; ε1)

)r
. (4.4)

4.1.2 Subleading contributions

The relation (4.4) allows for N = 1 to compute iteratively all instanton contributions
starting from the first one in the NS-limit, i.e. to leading order in ε2. For completeness,
we consider whether a similar structure also exists to higher orders in ε2. In the following
we shall provide evidence to this effect, by considering the next-to-leading order, i.e. the
contributions K1,(r)

1 , as defined in (2.6) (which in turn can be expanded in a Laurent series
around ε1 = 0, with coefficients K1,(r)

p,k (ρ, S) as defined in (2.7)). These terms also receive
contributions in (4.1) from partitions with Young diagram other than (4.2), featuring boxes
with other boxes below them. Since keeping track of these various contributions becomes
more and more tedious, in the following we shall provide evidence for further recursion
relations by studying expansions of the K1,(r)

p,k (ρ, S) in terms of Jacobi forms for small
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values of r. Indeed, the K1,(r)
p,k (ρ, S) can again be expanded in polynomials of (φ0, φ−2) (see

appendix A.2 for the definitions) with coefficients given by homogeneous polynomials in
the Eisenstein series (E2, E4, E6). By replacing E2 by Ê2, the K1,(r)

p,k (ρ, S) can be promoted
to quasi-Jacobi forms of index n and weight 2(p+ k − r). Specifically, for k = 1, we find
the following expressions for K1,(r)

p,1 to leading orders in p

r p = 0 p = 1 p = 2

1 φ0+2E2φ−2
48

(E2
2−E4)φ−2

1152
5(E4−E2

2)φ0+2(5E2
2+3E2E4−8E6)φ−2

1105920

2 −φ−2(2φ0+E2φ−2)
24

φ2
0−3E2φ0φ−2+2(8E4−E2

2)φ2
−2

1152
35E2φ2

0−8(5E2
2+44E4)φ0φ−2−4(10E2

2−147E2E4−304E6)φ2
−2

1105920

These expressions are compatible with the following product relations (which we have
checked further up to r = 4)

K
1,(r)
p,1 = r1+r2

r1−r2

r1!r2!
(r1+r2)!

p∑

q=0

(
K

1,(r1)
q,0 K

1,(r2)
p−q,1−K

1,(r1)
q,1 K

1,(r2)
p−q,0

)
, ∀r1,2 with r1+r2 = r ,

r1 6= r2 ,

K
1,(2r)
p,1 = r2

3r−2

p∑

q=0
K

1,(2r)
q,0

(−1)q(4q−1)B2q
(2q−1)!!(2q)!! E2q+ 4(3r−1)(r!)2

(3r−2)(2r)!

p∑

q=0
K

1,(r)
q,0 K

1,(r)
p−q,1 , ∀r≥ 1 ,

where B2q are the Bernoulli numbers. Resumming the Laurent series in ε1, these relations
are equivalent to

K
1,(r)
1 = r1 + r2

r1 − r2

r1!r2!
(r1 + r2)!

(
K

1,(r1)
0 K

1,(r2)
1 −K1,(r1)

1 K
1,(r2)
0

)
, ∀ r1 + r2 = r ,

r1 6= r2 ,

K
1,(2r)
p,1 = r2

3r − 2K
1,(2r)
0 E(ρ, ε1) + 4(3r − 1)(r!)2

(3r − 2)(2r)! K
1,(r)
0 K

1,(r)
1 , ∀r ≥ 1 , (4.5)

where we defined

E(ρ, ε1) =
∞∑

q=0

(−1)q(4q − 1)B2q
(2q − 1)!!(2q)!! E2q(ρ) ε2q−1

1 , (4.6)

which depends on ρ, but is independent of S. To summarise, while the relations (4.5) still
allow to compute instanton contribution from products of lower order ones, the corresponding
coefficients depend on Eisenstein series as functions of ρ. The latter in fact, appear naturally
upon expanding the θ1 in (2.11) in power series of ε2.

4.2 Recursion for N ≥ 1

4.2.1 NS limit

The analysis of the NS-limit for the case N = 1 in section 4.1 can be generalised to N ≥ 1
using (3.1). Indeed, with (2.4) we have

KN,(r)(ρ, S, â1,...,N−1; ε1,2) =
∑

α1,...,αN
|α1|+...+|αN |=r

Pα1,...,αN (ρ, S, â1,...,N−1; ε1,2) . (4.7)
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Furthermore, from (3.5) we find for generic values of â1,...,N−1

lim
ε2→0

Tαjαi(ρ, S, â1,...,N−1; ε1,2) −→ finite ∀1 ≤ i < j ≤ N , (4.8)

such that the only singularities in KN,(r) stem from the factors Pαi in (3.2). These, however,
are exactly the contributions analysed in section 4.1, such that we find immediately for the
leading singularity in ε2

K
N,(r)
0 (ρ, S, â1,...,N−1; ε1) =

∑

r1,...,rN≥1
r1+...+rN=r

(
N∏

k=1

1
rk!

(
K

1,(1)
0 (ρ, S; ε1)

)rk
)

×
∏

1≤i<j≤N
Tβrjβri (ρ, S, â1,...,N−1; ε1, ε2 = 0) , (4.9)

where βri are partitions of ri with Young diagrams of the form (4.2) (with ri boxes).
Concretely, with the definitions (3.7)

e
βj ,βi
r,s −→





{
0 for s ∈ {1, . . . , ri}
−ε1 for s ∈ {ri + 1, . . . , rj}

if ri < rj

0 if ri ≥ rj
(4.10)

we find for the Tβrjβri

Tβrjβri (ε2 = 0) =
(
−φ−2(S+; ρ)

4π2

)ri+rj



ω

2rj
+,0 ω

ri−rj
+,1 ω

rj
−,−1 ω

ri−rj
−,0 ω

rj
−,1 for ri ≥ rj ,

ω2ri
+,0 ω

rj−ri
+,−1 ω

ri
−,−1 ω

rj−ri
−,0 ωri−,1 for ri < rj ,

where we have introduced the shorthand notation ω±,n := Ω(aij + nε1,±S+; ρ) and S+ =
S + ε1/2 for better readability. For later use, we also note

Tβrjβri (ε1,2 = 0) =
(
−φ−2(S; ρ)

4π2 Ω(aij , S; ρ) Ω(aij ,−S; ρ)
)ri+rj

. (4.11)

4.2.2 Leading instanton contribution

Using the results of the previous subsubsection, we first calculate the leading instanton
contribution r = 1. Indeed, this corresponds to all contributions where only one of the
rk = 1, while the remaining ones are vanishing

K
N,(1)
0 (ρ,S, â1,...,N−1; ε1) =−φ−2(S+;ρ)

4π2 K
1,(1)
0 (ρ,S; ε1)

×
N∑

u=1



(
u−1∏

i=1
Ω(aiu−ε1,S+;ρ)Ω(aiu,−S+;ρ)

)


N∏

i=u+1
Ω(aui+ε1,S+;ρ)Ω(aui,−S+;ρ)




 .

(4.12)
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· · ·

b̂1 b̂2

b̂3

b̂N−1

b̂N +

· · ·

b̂1 b̂2

b̂3

b̂N−1

b̂N + . . . +

· · ·

b̂1 b̂2

b̂3

b̂N−1

b̂N

Figure 4. Schematic graphical representation of the leading (i.e. r = 1) instanton contribution
K
N,(1)
0 /

(
−K1,(1)

0 (ρ, S; ε1)φ−2(S+;ρ)
4π2

)
in (4.13). The oriented lines are defined in (4.15).

Using the definitions of the Kronecker-Eisenstein series, we can also write this expression as
a single product

K
N,(1)
0 (ρ, S, â1,...,N−1; ε1)

= −K1,(1)
0 (ρ, S; ε1)φ−2(S+; ρ)

4π2

N∑

u=1

N∏

i=1
i 6=u

Ω(b̂i − b̂u + θiu ε1, S+; ρ) Ω(b̂i − b̂u + θui ε1,−S+; ρ) ,

(4.13)
with the notation

b̂1 = 0 , b̂j =
j∑

n=1
ân ∀j = 2, . . . , N , and θij =

{
1 if i > j ,

0 if i < j .
(4.14)

This notation lends itself to a graphical representation. We have schematically shown KN,(1)
0

(up to the factor −K1,(1)
0 (ρ, S; ε1)φ−2(S+;ρ)

4π2 ) in figure 4: here (oriented) lines are defined as

b̂j

b̂i

=





Ω(b̂j − b̂i + ε1, S+; ρ) Ω(b̂j − b̂i,−S+; ρ) if i < j ,

Ω(b̂j − b̂i, S+; ρ) Ω(b̂j − b̂i + ε1,−S+; ρ) if i > j .
(4.15)

Here the orientation of the lines is purely to keep track of the remaining deformation
parameter ε1 in the NS-limit. We shall see below and in section 5 that this picture
dramatically simplifies in the unrefined limit ε1 = −ε2 in which it is not be necessary to
keep track of this orientation. In fact, we shall discover that the picture resembles much
more directly the decomposition proposed in [44] for the free energy.

4.2.3 Next-to-leading instanton contribution
We next consider the instanton contribution r = 2, in which case there are two distinct
contributions:

• ri = 2 for a single i ∈ 1, . . . , N (and all remaining rj = 0). These configurations
contribute

1
2
(
K

1,(1)
0

)2
(
−φ−2(S+; ρ)

4π2

)2 N∑

u=1

[(
u−1∏

i=1
Ω (aiu − ε1, S+; ρ) Ω (aiu,−S+; ρ)

)

×



N∏

i=u+1
Ω(aui + ε1, S+; ρ) Ω(aui,−S+; ρ)



]2

, (4.16)
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which can be re-arranged in the same way as in (4.13)

(
K

1,(1)
0

)2 φ2
−2(S+;ρ)

32π4

N∑

u=1



N∏

i=1
i 6=u

Ω(b̂i− b̂u+θiu ε1,S+;ρ)Ω(b̂i− b̂u+θui ε1,−S+;ρ)




2

.

(4.17)

• ri = 1 = rj for two distinct i 6= j (and all remaining rk = 0). These configurations
contribute
(
K

1,(1)
0

)2
(
−φ−2(S+;ρ)

4π2

)2 ∑

1≤i<j≤N

[
Ω(aij ,S+;ρ)2 Ω(aij−ε1,S−;ρ)Ω(aij +ε1,S−;ρ)

×
(
i−1∏

r=1
Ω(ari−ε1,S+;ρ)Ω(ari,−S+;ρ)

)


N∏

r=i+1
r 6=j

Ω(air+ε1,S+;ρ)Ω(air,−S+;ρ)




×



j−1∏

r=1
r 6=i

Ω(arj−ε1,S+;ρ)Ω(arj ,−S+;ρ)







N∏

r=j+1
Ω(ajr+ε1,S+;ρ)Ω(air,−S+;ρ)



]
.

(4.18)

Using the definition (4.14), as well as (A.15), we can re-arrange this expression as
(
K

1,(1)
0

)2 φ2
−2(S+; ρ)

16π4
∑

1≤i<j≤N

[
Ω(b̂j − b̂i + ε1, S+; ρ) Ω(b̂j − b̂i,−S+; ρ)

× Ω(b̂i − b̂j , S+; ρ) Ω(b̂i − b̂j + ε1,−S+; ρ)

×
N∏

r=1
r 6=i,j

Ω(b̂r − b̂i + θri ε1, S+; ρ) Ω(b̂r − b̂i + θir ε1,−S+; ρ)

×
N∏

r=1
r 6=i,j

Ω(b̂r − b̂j + θrj ε1, S+; ρ) Ω(b̂r − b̂j + θjr ε1,−S+; ρ)
]
. (4.19)

The combination of these contributions yields

K
N,(2)
0 (ρ, S, â1,...,N−1; ε1) = 1

2
(
K
N,(1)
0 (ρ, S, â1,...,N−1; ε1)

)2
, (4.20)

which generalises (4.3) to generic N for r = 2. While the above expressions are very
complicated, the relation (4.20) can be represented simpler in a graphical fashion. Indeed,
dividing by a factor

(
K

1,(1)
0

)2 (
−φ−2(S+;ρ)

4π2

)2
, (4.20) for N = 2 can be visualised as follows

1
2




b̂2

b̂1

+
b̂2

b̂1




2

= 1
2




b̂2

b̂1

+
b̂2

b̂1


 +

b̂2

b̂1

(4.21)
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Here the first two terms on the right hand side are identified with (4.17), while the last
term corresponds to the first two lines of (4.19) (since the last two lines in (4.19) are absent
for N = 2). The more involved example of N = 3 is schematically represented by8

1
2




b̂1 b̂2

b̂3

+

b̂1 b̂2

b̂3

+

b̂1 b̂2

b̂3




2

= 1
2




b̂1 b̂2

b̂3

+

b̂1 b̂2

b̂3

+

b̂1 b̂2

b̂3




+

b̂1 b̂2

b̂3

+

b̂1 b̂2

b̂3

+

b̂1 b̂2

b̂3

. (4.22)

4.2.4 Higher order instanton contributions

The recursive relation (4.20) can be generalised for higher r > 2 and we conjecture the
following structure

K
N,(r)
0 (ρ, S, â1,...,N−1; ε1) = 1

r!
(
K
N,(1)
0 (ρ, S, â1,...,N−1; ε1)

)r
, ∀r ∈ N . (4.23)

We remark that this relation is complementary to the self-similarity found in [10], which
allows to related the (single-particle) free energy for N > 1 to the one for N = 1. For
simplicity, we shall demonstrate (4.23) only to leading order in ε1, i.e. for the KN,(r)

0,0 defined
in (2.7). Indeed, in this case the structure in (4.13) simplifies drastically9 and we have

(
K
N,(1)
0,0 (ρ,S, â1,...,N−1)

)r
=


−K1,(1)

0,0
φ−2(S;ρ)

4π2

N∑

u=1

N∏

i=1
i 6=u

Ω(b̂i− b̂u,S;ρ)Ω(b̂i− b̂u,−S;ρ)




r

.

Upon introducing the shorthand notation

Gij := −φ−2(S; ρ)
4π2 Ω(b̂j − b̂i, S; ρ) Ω(b̂j − b̂i,−S; ρ) = Gji (4.24)

8Here we have again divided by a factor
(
K

1,(1)
0

)2 (
−φ−2(S+;ρ)

4π2

)2
.

9In fact also the graphical representation (4.15) becomes much more streamlined since the orientation of
the lines (i.e. the arrows) become irrelevant.
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we can develop the power of r in the following form

(
K
N,(1)
0,0

)r
=
(
K

1,(1)
0,0

)r r∑

r1,...,rN=0
r1+...+rN=r

r!
r1! . . . rN !

N∏

u=1




N∏

i=1
i 6=0

Giu




ru

=
(
−K1,(1)

0,0

)r r∑

r1,...,rN=0
r1+...+rN=r

r!
r1! . . . rN !

∏

1≤i<j≤N
Gri+rjij . (4.25)

Notice that in total the last expression contains (N − 1)r factors G (with different end-
points), which are organised graphically as ri + rj (unoriented) lines stretching between the
nodes b̂i and b̂j . Using (4.4), we have finally

(
K
N,(1)
0,0

)r
= r!

r∑

r1,...,rN=0
r1+...+rN=r



(

N∏

u=1
K

1,(ru)
0,0

) ∏

1≤i<j≤N
Gri+rjij


 = r!KN,(r)

0,0 , (4.26)

which is indeed the leading term in the relation (4.23).

5 Diagrammatic decomposition in the unrefined limit

In section 3 we have seen that the topological string partition function on XN,1 can be
re-formulated using the Kronecker-Eisenstein series as an example of an elliptic modular
graph form (eMGF). Moreover, in the unrefined limit, the latter conspire in a fashion to
allow a rewriting of specific contributions to the non-perturbative gauge theory partition
function in terms of (differences of) two-point functions of a (chiral) free scalar field on
the torus (see (3.16)). This result resembles a similar proposal made in [43, 44] for the
decomposition of the free energy of XN,1. In this section we shall therefore discuss in more
detail the unrefined limit of the partition function and explain how our results of section 3
are not only compatible with [43, 44], but also fix certain ambiguities that have been pointed
out there for the exact decomposition. We shall start out by reviewing the results of [43, 44]
(adapted to our notation) and, for simplicity, consider the concrete examples N = 2, 3.

5.1 Unrefined limit and diagrammatic decomposition

We start by using the result (3.16) for the unrefined limit of the contribution Tαjαi to give
a diagrammatic representation of the (entire) non-perturbative partition function ZN,1.
Indeed, for ε1 = −ε2 = ε, the contribution Tαjαi simplifies as in (3.8) and allows for a much
more streamlined (graphical) representation of Pα1,...,αN as defined in (3.2). To make the
discussion more concrete, we first divide out overall factors in Pα1,...,αN that do not depend
on â1,...,N−1 by defining

Pα1,...,αN =
(

N∏

k=1
Pαk(ρ, S; ε)

)(
φ−2(S; ρ)
−4π2

)(N−1)
∑N

k=1 |αk|

× P̂α1,...,αN (ρ, S, â1,...,N−1; ε) , (5.1)
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· · ·

(̂b1, α1) (̂b2, α2)

(̂b3, α3)

(̂bN−1, αN−1)

(̂bN , αN )

Figure 5. Diagrammatic Representation of P̂α1,...,αN
in the unrefined limit.

with

P̂α1,...,αN =
∏

1≤i<j≤N
T̂αjαi(ρ, S, â1,...,N−1; ε) . (5.2)

The reduced functions P̂α1,...,αN are schematically represented in figure 5, which is similar
to the graphical representation in section 4.2.3 in the NS-limit. However, in addition to the
‘positions’ (b̂1, . . . , b̂N ) we also associate the integer partitions (α1, . . . , αN ) with each of the
vertices, as shown in figure 5. To each line connecting two distinct such vertices (b̂i, αi) and
(b̂j , αj) (with i < j) we then associate the following expression

(̂bj , αj)

(̂bi, αi)
=

∏

n∈nαjαi
Ω
(
b̂j − b̂i + ε n, S; ρ

)
Ω
(
b̂j − b̂i + ε n,−S; ρ

)
for i < j .

(5.3)

As already remarked in (3.16) the combination of Kronecker-Eisenstein series in (5.3) can
be re-written as products of differences of propagators of free scalar fields on a torus

(̂bj , αj)

(̂bi, αi)
=

∏

n∈nαjαi

(
G′′(b̂j − b̂i + n ε; ρ)−G′′(S; ρ)

)
, for i < j . (5.4)

We also remark that if αi = ∅ = αj (5.4) is trivially 1.

5.2 Free energy and decomposition in terms of propagators

In [44] the non-perturbative free energy

FN,1(ρ, S, â1,...,N−1, τ ; ε1,2) = ln ZN,1(ρ, S, â1,...,N−1, τ ; ε1,2) , (5.5)

was discussed. Evidence was provided that the leading instanton contribution to FN,1 in
the unrefined limit can be written in the form

∞∑

s=0
ε2s−2H

(1),{0}
(s) (ρ, S)

N−1∑

k=0

(
W

(1)
(0) (ρ, S)

)N−1−k (
H

(1),{0}
(0) (ρ, S)

)k
O(N),k(â1,...,N−1, ρ) .

(5.6)
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b̂`

b̂`+1

· · ·
b̂N−1

b̂N

b̂1
b̂2

· · ·

b̂`−1

Figure 6. Diagrammatic Representation of a single term in the sum over S in (5.7) for fixed `.

We refer the reader to [44] for the precise notation and conventions (it is briefly reviewed in
appendix B) and only mention here that H(1),{0}

(s) are functions appearing in the instanton
expansion of the free energy FN=1,1, while W (1)

(0) are expansion coefficients of a quasi-Jacobi
form that governs the BPS-counting of an M-brane configuration of single M2-branes ending
on either side of an M5-brane [9, 38]. Most importantly, the functions O(N),α which encode
the entire gauge structure of the free energy can be written as10

O(N),k(â1,...,N−1, ρ) = 1
(2π)2k

∑

`=0

∑

S∈{1,...,N}\{`}
|S|=k

∏

j∈S

(
G′′(b̂` − b̂j ; ρ) + 2πi

ρ− ρ̄

)
, (5.7)

where a single term in the sum over S (i.e. for a fixed `) is schematically represented in
figure 6. The dashed lines in this figure represent a single propagator of a free scalar field
on a torus, whose argument (for fixed `) is determined by its end points

b̂j

b̂`

= 1
(2πi)2

(
G′′(b̂` − b̂j ; ρ) + 2πi

ρ− ρ̄

)
. (5.8)

The right hand side of this object is identical to I0 defined in (A.20): as can be seen from
this expression, however, it is a quasi-Jacobi form due to the appearance of E2. With
the representation given in figure 6, the leading instanton contribution (5.6) therefore
takes the form of a (tree-level) N -point function of a free scalar field on the torus, while
H

(1),{0}
(s) and W (1)

(0) encode additional information for the ‘external states’ of these correlators.
Higher instanton contributions were shown in [43] to allow for a similar (albeit not unique)
decomposition as (5.6), in particular separating the gauge structure and the parameter S.
However, in addition11 derivatives of propagator factors appear as well as multiplicative
factors of (polynomials of) Eisenstein series, which were identified with (holomorphic)
dihedral graph functions with bivalent vertices [45, 46, 80–86]. These contributions have
been interpreted in [44] as contributions stemming from integrated points in scalar field
correlation functions.

10We have adapted the notation for b̂1,...,N relative to [44] to conform with the definition (4.14).
11A more systematic overview over these new elements is given in appendix B.2.
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5.3 Further expansion of the partition function

In this subsection we discuss the relation between the diagrammatical decomposition of
the partition function (5.1) (with the graphical representation shown in figure 5) to the
decomposition (5.7) appearing in the free energy (as graphically represented in figure 6) for
the examples N = 2 and N = 3. Indeed, we shall show that (upon further decomposition)
the instanton contributions to the partition function can be decomposed in a form resembling
figure 6. To this end, for convenience, we define a(n a priori formal) Laurent series expansion
of KN,(r) in terms of the remaining deformation parameter ε

KN,(r)(ρ, S, â1,...,N−1; ε1 = −ε2 = ε) =
∞∑

k=0
ε2k−2r L

N,(r)
k (ρ, S, â1,...,N ) . (5.9)

We shall discuss the functions LN,(r)k (ρ, S, â1,...,N ) (predominantly for k = 0) in more detail
for N = 2 and N = 3 in sections 5.3.1 and 5.3.2 resepctively.

5.3.1 Configuration (2, 1)

Studying explicit examples12 suggests that L2,(r)
k (ρ, S, â1) in (5.9) can be decomposed as

L
2,(r)
k (ρ, S, â1) = z

(r)
k (ρ, S) +

∞∑

n=1

(
Qn
â1

+
Qnρ
Qn
â1

)
p

(r)
k (ρ, S, n)
1−Qnρ

, (5.10)

where the z
(r)
k can be promoted to quasi-Jacobi forms of index 2r and weight −2r + 2k

and the p
(r)
k are homogeneous polynomials in (φ0, φ−2) of order 2r with coefficients given

by polynomials in (E2, E4, E6, n). It was remarked in [41, 42] that (in the case of the
single-particle free energy) the form (5.10) is compatible with a non-perturbative dihedral
symmetry found in [40]. Concretely, for r = 1 we find to leading orders in k

z
(1)
0 = −φ−2

12 (φ0 + 2E2φ−2) , z
(1)
1 = φ0

288(φ0 + 2E2φ−2) , z
(1)
2 = −E4 φ0

2880 (φ0 + 2E2φ−2) ,

p
(1)
0 = −2nφ2

−2 , p
(1)
1 = n

12 φ0 φ−2 , p
(1)
2 = n

120 E4 φ
2
−2 ,

and similarly for r = 2

z
(2)
0 = φ2

−2
288 (φ2

0 + 4E2 φ0φ−2 + 4E4φ
2
−2) ,

z
(2)
0 = − φ−2

13824
(
7φ3

0 + 28E2φ
2
0φ−2 + 28E4φ0φ

2
−2 + 96(E2E4 − E6)φ3

−2
)
,

p
(1)
2 = n

6 φ
3
−2 (φ0 + 2n2φ−2) , p

(2)
1 = −nφ

2
−2

288
(
7φ2

0 + 32n2φ0φ−2 + 12(n4 + 2E4)φ2
−2
)
.

Higher orders can be computed in the same fashion. Moreover, following the discussion of
section 5.2 and using the notation in appendices B.1 and B.2, we can re-organise (5.10)

L
2,(1)
0 (ρ,S, â1) =−2H2

1
b̂1

b̂2
+ 2H1W1 ,

12We have studied examples up to r = 6 and k = 3.
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L
2,(2)
0 (ρ,S, â1) = 1

3 H
4
1

b̂1

b̂2 − 8
3 H

2
1 H2

b̂1

b̂2
+ 4

3 H
2
1 W2 ,

L
2,(3)
0 (ρ,S, â1) =−H

6
1

90
b̂1

b̂2
+ 4

9 H
4
1 H2

b̂1

b̂2 − 3H3
1 H3

b̂1

b̂2

+ H6
1

15 E4
b̂1

b̂2
+ H6

1
60 dE4 + H3

1W3 . (5.11)

In the context of the free energy, the appearance of the Eisenstein series as explicit pre-
factors (such as in the decomposition of L2,(3)

0 ) has been interpreted as contributions from
integrated insertion points and a connection to modular graph functions has been proposed.
While several observations have been presented that support this proposal, no precise
pattern for the decomposition of the free energy (notably for the numerical prefactors) has
been found in [44] and also (5.11) a priori seems difficult to generalise to higher orders.
However, the form presented in (5.1) (along with (2.4)) for the partition function implicitly
fixes all higher instanton terms. For k = 0 this relationship13 can be cast into a very
compact form, using a few further observations regarding the partition function:

• The various factors of Eisenstein series in (5.11) appear in combinations that are
manifestly Jacobi forms. For example, as explained in appendix A.2 (see (A.26)),
the contribution proportional to H6

1 in L
2,(3)
0 is 1

60 (4E4 + dE4), which is a
meromorphic Jacobi form of weight 6 and index 0: in an expansion in powers of â1, all
contributions of E2 precisely cancel out. We have also verified that to higher orders
(i.e. r > 3) only combinations of the form (A.26) (for n > 1) appear.

• Similarly, in all the combinations (−r Hr +Wr) that appear in L2,(r)
0 all Eisen-

stein series E2 cancel out, rendering them meromorphic Jacobi forms. This condition
in fact uniquely dictates the contribution of any of the states Wr to the partititon
function at this order of ε. Since the derivatives of the propagator (B.8) are meromor-
phic Jacobi forms, this suggests that the expressions in (5.11) are also meromorphic
Jacobi forms.

This last property can in fact be made manifest: we first use the explicit form of W1 in (B.6)
to write for the leading instanton contribution

L
2,(1)
0 = −2H2

1



b̂1

b̂2
+ 1

24

(
φ0
φ−2

+ 2E2

)
 = −2H2

1



b̂1

b̂2
+ E2

12 + ℘(S; ρ)
24ζ(2)




= H2
1

(2π)2




(̂b1, ∅)

(̂b2,�)
+

(̂b1,�)

(̂b2, ∅)


∣∣∣∣
ε=0

. (5.12)

13These relations can be generalised to higher k, but lead to more complicated relations than (5.13), which
we shall not exhibit in detail in this work.
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with the generalised propagator defined in (5.3). The recursive structure (4.23) then
leads to the pattern

L
2,(r)
0 (ρ, S, â1) = 1

r!


H1

2π (̂b1, ∅)

(̂b2,�) H1
2π + H1

2π (̂b1,�)

(̂b2, ∅) H1
2π



r ∣∣∣∣
ε=0

. (5.13)

5.3.2 Configuration (3, 1)

For simplicity, we shall restrict ourselves to the coefficients L3,(r)
0 in (5.10). Studying low

values of r suggest that it can be decomposed in the following form

L
3,(r)
0 (ρ,S, â1, â2) = z

(r)
0 (ρ,S)

+
∞∑

n=1

(
Qn
â1

+Qn
â2

+
(
Qâ1

Qâ2

)n
+
Qnρ
Qn
â1

+
Qnρ
Qn
â2

+
Qnρ

(Qâ1
Qâ2

)n

)
p

(r)
0 (ρ,S,n)
1−Qnρ

+
∞∑

n=1

[
Qnρ

(
Qn
â1

+Qn
â2

+
Qnρ

(Qâ1
Qâ2

)n

)
+
(
Qâ1

Qâ2

)n
+
Qnρ
Qn
â1

+
Qnρ
Qn
â2

]
q

(r)
0 (ρ,S,n)
(1−Qnρ )2

+
∞∑

n1,n2=1


Qn1+n2

â1
Qn1
â2

+Qn1+n2
â2

Qn1
â1

+
Qn1+n2
ρ

Qn1+n2
â1

Qn1
â2

+
Qn1+n2
ρ

Qn1+n2
â2

Qn1
â1

+
Qn1
ρ Q

n2
â1

Qn1
â2

+
Qn1
ρ Q

n2
â2

Qn1
â1




×
(
h

(r)
0 (ρ,S,n1,n2)n2(2n1 +n2)

(1−Qn1
ρ )(1−Qn1+n2

ρ )
+ h

(r)
0 (ρ,S,n1,−n1−n2) (n2

1−n2
2)

(1−Qn1
ρ )(1−Qn2

ρ )

)
. (5.14)

Concretely, we find for r = 1

z
(1)
0 = −φ−2

192 (φ0 + 2E2φ−2)2 , p
(1)
0 = −nφ

2
−2

12 (φ0 + 2E2φ−2) ,

q
(1)
0 = −φ3

−2 n
2 , h

(1)
0 = −φ3

−2 ,

and for r = 2

z
(2)
0 = φ2

−2

[
5E2

4−8E2E4 +6E4E2
2

13824 φ4
−2−

2E6−5E2E4
6912 φ0φ

2
−2 + 2E4 +7E2

2
27648 φ2

0φ
2
−2

+ E2
9216φ

3
0φ−2 + φ4

0
73728

]
,

p
(1)
0 = nφ3

−2

[2E4n2−2E6 +3E2E4
864 φ3

−2 + 5E4 +4n2E2
1728 φ0φ

2
−2 + 7E2 +2n2

3456 φ−2φ
2
0 + φ3

0
2304

]
,

q
(2)
0 = nφ4

−2

[
n(3E4 +4n4)

144 φ2
−2 + 7n3

144 φ−2φ0 + 7n
576 φ

2
0

]
,

h
(2)
0 = φ4

−2

[(
E4
48 + (n1 +n2)2(n2

1 +n1n2 +n2
2)

36

)
φ2
−2 + 7n2

1 +12n1n2 +7n2
2

144 φ0φ−2 + 7φ2
0

576

]
.
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Using the notation of appendix B.3, we can write (5.14) for r = 1

L
3,(1)
0 = H3

1




b̂1 b̂2

b̂3

+

b̂1 b̂2

b̂3

+

b̂1 b̂2

b̂3




− 2H2
1 W1




b̂1 b̂2

b̂3

+

b̂1 b̂2

b̂3

+

b̂1 b̂2

b̂3




+ 3H1W
2
1 ,

(5.15)

with the various elements defined in (B.10). Moreover, using the definition (5.3), as well as
the definitions in appendix B we can equally represent this partition function as

L
3,(1)
0 = H3

1
(2π)3




(̂b1,�) (̂b2, ∅)

(̂b3, ∅)

+

(̂b1, ∅) (̂b2,�)

(̂b3, ∅)

+

(̂b1, ∅) (̂b2, ∅)

(̂b3,�)



ε=0

.

(5.16)

We note that the lines connecting points that both have the trivial partition ∅ associated
with them, are trivial factors of 1.

We briefly remark that similar decompositions of the partition function can also be
written to higher instanton order. For example, using the shorthand notation explained in
appendix B.3, the two-instanton contribution can be written in the form

L
3,(1)
0 = H6

1
72

b̂1 b̂2

b̂3

∑ + 4
3H

4
1H2

b̂1 b̂2

b̂3

∑ + 2
9 H

4
1H2

b̂1 b̂2

b̂3

∑

+ 2
9H

2
1
(
8H2

2 + 9H2
1H2

)

b̂1 b̂2

b̂3

∑

+ single 2-point functions + terms independent of â1,2 (5.17)

– 26 –



J
H
E
P
0
8
(
2
0
2
3
)
1
1
4

(All) these combinations can be equally represented in the form

L
3,(2)
0 = H6

1
(2π)6




(̂b1,�) (̂b2,�)

(̂b3,∅)

+

(̂b1,∅) (̂b2,�)

(̂b3,�)

+

(̂b1,�) (̂b2,∅)

(̂b3,�)



ε=0

+ H6
1

2(2π)6




(̂b1, ) (̂b2,∅)

(̂b3,∅)

+

(̂b1,∅) (̂b2, )

(̂b3,∅)

+

(̂b1,∅) (̂b2,∅)

(̂b3, )



ε=0

.

(5.18)

We have furthermore checked, that this result is compatible with the recursive struc-
ture (4.23)

L
3,(r)
0 = H3r

1
(2π)3rr!




(̂b1,�) (̂b2, ∅)

(̂b3, ∅)

+

(̂b1, ∅) (̂b2,�)

(̂b3, ∅)

+

(̂b1, ∅) (̂b2, ∅)

(̂b3,�)



r

ε=0

.

(5.19)

5.4 Recursive structures and product relations

In the previous section we have shown how the (combinations of) two-point functions defined
in (5.3) can be related to the propagators proposed in [44] (see (5.8)) by expanding leading
contributions of the partition function in both ways for N = 2 and N = 3. To make contact
to similar results at the level of the free energy FN,1 = lnZN,1 requires to (re-)expand
products of the propagators of the type in (5.8), with the same arguments. By comparing
the series expansions in b̂j − b̂i (assuming convergence of the series) we find for example


 b̂j

b̂i




2

= 1
6

b̂j

b̂i

− E2
6

b̂j

b̂i

− E4 − E2
2

144 . (5.20)

Formally (i.e. by comparing the leading expansion terms), we can generalise these relations
to products of the infinite series Ik1 Ik2 (for integers k1,2 ≥ 0), as defined in (A.18), which
can be re-expanded in a finite sum of Ik with coefficients that are functions of Eisenstein
series. Based on the leading examples in k1,2, we have found the following empiric relation

Ik1(u, ρ) Ik2(u, ρ) = −B2k̄
2k̄

dE2k̄(ρ)−
k̄∑

k=0

B2k̄−2kE2k̄−2kPk(k1, k2)
(2k + 1)! Ik(u, ρ) ,

fork̄ = k1 + k2 + 1 ,
(5.21)

which we have checked up to k1 = k2 = 6. Here the derivatives dE2n of the Eisenstein
series have been defined in (A.24) and E0 = 1 is understood. Furthermore, Pk(k1, k2) are
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symmetric polynomials of order 2(k+1) with integer coefficients, for which more information
is provided in appendix C. In writing (5.21) we have implicitly assumed that the sums Ik
are convergent. We leave a more systematic (and rigorous) study of the relations (5.21) to
future work, but simply remark that up to the level we have checked (i.e. up to k1 +k2 = 10)
they are sufficient to relate the results found here to the decompositions of the free energy
provided in [44] (and to fix any ambiguities pointed out there). We note that this structure
is consistent with the product relation on generalised Eisenstein series given in [87].

6 Conclusions and outlook

In this paper we have analysed the topological string partition function on a class of toric,
non-compact Calabi-Yau threefolds XN,1. Physically, these capture (among others) the
instanton partition function of Little String Theories, whose low energy limit are gauge
theories with gauge group U(N) and matter in the adjoint representation. We have shown
for generic deformation parameters ε1,2 that for fixed instanton level, the contribution to
the partition function that depends on the gauge structure can be written in terms of simple
elliptic modular graph functions: indeed, we have identified elementary building blocks Tαjαi
(see (3.3)) that are labelled by two integer partitions and which can be re-written in terms
of Kronecker-Eisenstein series as in (3.6). In the unrefined limit (i.e. for ε1 = −ε2 = ε), the
latter re-arrange themselves in terms of differences of propagators of a free chiral boson on
the torus. We have shown that this re-organisation of the partition function is responsible
for the Feynman-diagrammatic decomposition of the non-perturbative free energy observed
previously in the literature [43, 44]. Moreover, we have provided an interpretation of the
origin of the propagator factors both geometrically (in terms of counting holomorphic curves
on the geometry XN,1) and physically (in terms of Nekrasov subfunctions of the U(N)
gauge theory).

In a different limit of the deformation parameters (i.e. the leading singularity in ε2,
which we have called the NS-limit), we have shown for N = 1 a recursive structure, which
allows to express higher instanton contributions as powers of the leading one. We have
provided strong evidence that this structure also persists for higher N . Including corrections
(in terms of ε2) to the NS limit, we have shown that a similar hierarchy structure exists in
principle for the entire partition function, however, non-trivial coefficient functions appear.
Implicitly, these relations govern the precise numerical factors that appear in Feynman
diagrammatic expansion of the free energy.

The results of this work strengthen the idea that the non-perturbative partition function
(and thus also the free energy) of a class of LSTs (whose low energy limit are supersymmetric
gauge theories with gauge group U(N)) allows a decomposition in terms of propagators
of free two-dimensional scalar fields. We have found a precise relation between Nekrasov-
subfunctions of the low energy theory and combinations of Greens functions of free scalar
fields on the torus. At the same time, AGT-like correspondences [69] for (compactifications
of) LSTs have been studied [50], establishing a connection to q-deformed Toda (and Liouville
theories). In the future it will be important to understand the deeper physical connection
to the results presented in this work. Moreover, it would be interesting to see if a possible
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connection to eMGF that we pointed out can cast further light on the computation of
conformal blocks in the two-dimensional theory. Similarly, it would be interesting to
understand how the results presented here are related to the reformulation of the non-
perturbative partition function of a Γ-quiver gauge theory in terms of a correlator in an
underlying W (Γ)-algebra that was found in [88].

Furthermore, it will be interesting in the future to extend our analysis to more general
models of LSTs (see e.g. [89] for a classification of such theories using F-theory compactifi-
cations). Indeed, as a simple generalisation, models of M5-branes probing non-trivial ZM
orbifold geometries have been studied for which the partition function can be computed
using the same technology that we have used here [10–12, 37]. It would be interesting to
extend our results to this class of models. Moreover, it would be interesting to see if similar
decompositions as the ones discussed here also exist in LSTs that are not of AN -type.
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A Notation and conventions

A.1 Non-perturbative topological string partition function

In this appendix we collect our conventions and notation used to write the partition function
discussed in section 2. Starting from the parameters (h1, . . . , hN , v1, . . . , vN ,m1, . . . ,mN )
introduced in figure 1, we first define

Qhk = e2πihk , Qvk = e2πivk , Qmk = e2πimk , Q̃k = QhkQvk , ∀k = 1, . . . , N . (A.1)

Throughout this appendix, we consider the indices i, j, k = 1, . . . , N to be defined modulo
N (e.g. QhN+1 = Qh1). With this convention, we furthermore define [11]

Q̂i,j = Qhi

j−1∏

k=1
Q̃i−k , Q̇i,j = Q̃i+1 . . . Q̃i+j , Qi,j =

{
1 if j = N ,

QhiQvi−j
∏j−1
k=1 Q̃i−k if j 6= L .

(A.2)

For the basis of Kähler parameters (τ, S, ρ, â1, . . . , âN−1) defined in (2.2), we introduce

Qτ = e2πiτ , QS = e2πiS , Qρ = e2πiρ , Qâi = e2πîai ∀i = 1, . . . , N . (A.3)

and for the deformation parameters ε1,2 of the refined topological vertex [33, 34]

q = e2πiε1 , and t = e−2πiε2 . (A.4)
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In order to write the partition function (2.3) we next need to review a number of def-
initions [11, 15]. For µ = (µ1, . . . , µ`(µ)) an integer partition of length `(µ) and µt its
transpose, let

|µ| =
`(µ)∑

i=1
µi , ||µ||2 =

`(µ)∑

i=1
µ2
i , ||µt||2 =

`(µt)∑

i=1
(µti)2 . (A.5)

We then define

Jµν(x; q, t) =
∞∏

k=1
Jµν(Qk−1

ρ x; q, t) ,

Jµν(x; q, t) =
∏

(i,j)∈µ

(
1− xqνtj−i+ 1

2 tµi−j+
1
2
) ∏

(i,j)∈ν

(
1− xq−µtj+i− 1

2 t−νi+j−
1
2
)
, (A.6)

where (i, j) ∈ µ denote the positions of the boxes in the Young diagram associated with the
partition µ. Products of Jµν can be simplified using the relations

Jµν(x; q, t)Jνµ(Qρx−1; q, t) = x
|µ|+|ν|

2 q
||νt||2−||µt||2

4 t
||µ||2−||ν||2

4 ϑµν(x; ρ) ,

(−1)|µ|t
||µ||2

2 q
||µt||2

2 Z̃µ(q, t)Z̃µt(t, q)
Jµµ(Qρ

√
t/q; q, t)Jµµ(Qρ

√
q/t; q, t)

= 1
ϑµµ(

√
q/t; ρ)

= 1
ϑµµ(

√
t/q; ρ)

, (A.7)

where we have defined the theta-functions (with x = e2πiz)

ϑµν(x; ρ) =
∏

(i,j)∈µ
ϑ
(
x−1q−ν

t
j+i−

1
2 t−µi+j−

1
2 ; ρ

) ∏

(i,j)∈ν
ϑ
(
x−1qµ

t
j−i+

1
2 tνi−j+

1
2 ; ρ

)
,

ϑ(x; ρ) =
(
x1/2 − x−1/2

) ∞∏

k=1
(1− xQkρ)(1− x−1Qkρ) = iQ

−1/8
ρ θ1(z; ρ)∏∞
k=1(1−Qkρ)

, (A.8)

with θ1 the Jacobi-theta function. The factors Z̃µ in (A.7) appear naturally in the partition
function (2.3) as part of Ẑ, namely

Ẑ =
N∏

k=1
t
||αk||2

2 q
||αt
k
||2

2 Z̃αk(q, t) Z̃αt
k
(t, q) , with Z̃α(q, t) =

∏

(i,j)∈α

(
1− qνtj−i+1tνi−j

)−1
.

(A.9)

Finally, the normalisation factor WN (∅) in (2.3) has an interpretation as a closed topological
string amplitude and the precise definition (which shall not be needed in this paper) can be
found in [11].

A.2 Modular objects

We define a weak Jacobi form of index m ∈ Z and weight w ∈ N as a holomorphic function
φ : C×H→ C which transforms in the following manner

φ

(
z

cρ+ d
,
aρ+ b

cρ+ d

)
= (cρ+ d)w e

2πimcz2
cρ+d φ(z, ρ) , ∀

(
a b

c d

)
∈ SL(2,Z) ,

φ(z + k1ρ+ k2, ρ) = e−2πim(k2
1ρ+2k1z)φ(z, ρ) , ∀k1,2 ∈ N , (A.10)
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and which has the following Fourier expansion

φ(z, ρ) =
∞∑

n=0

∑

k∈Z
c(n, k)Qnρ e2πizk , with c(n, k) = (−1)w c(n,−k) . (A.11)

We define the following standard Jacobi forms of index m = 1 and weights w = −2 and
w = 0

φ−2(z; ρ) = θ2
1(z; ρ)
η6(ρ) , and φ0(z; ρ) = 8

4∑

i=2

(
θi(z; ρ)
θi(0; ρ)

)2
, (A.12)

where θi=1,2,3,4 are the Jacobi theta functions, notably

θ1(z; ρ) = −iQ1/8
ρ eπiz

∞∏

n=1

(
1−Qnρ

) (
1− e2πiz Qnρ

) (
1− e−2πiz Qn−1

ρ

)
, (A.13)

and η the Dedekind eta function

η(ρ) = Q1/24
ρ

∞∏

n=1
(1−Qnρ ) . (A.14)

We note the followig shift symmetry of θ1

θ1(z ± ρ; ρ) = −Q−1/2
ρ e∓2πiz θ1(z; ρ) . (A.15)

Furthermore, we define the Eisenstein series

E2n(ρ) = 1− 4n
B2n

∞∑

k=1
σ2n−1(k)Qkρ , with n ∈ N , (A.16)

with B2n the Bernoulli numbers and σn(k) the divisor sigma function. The E2n are
holomorphic modular forms of weight 2n, while E2 can be completed into a quasi-modular
form of weight 2

Ê2(ρ, ρ̄) = E2(ρ)− 3
π Im(ρ) . (A.17)

We also define [43, 44]

Ik(â, ρ) =
∞∑

n=1

n2k+1

1−Qnρ

(
Qn
â

+
Qnρ
Qn
â

)
, (A.18)

which can be computed iteratively

Ik(â, ρ) = D2k
â
I0(â, ρ) , with Dâ = 1

2πi
∂

∂â
= Qâ

∂

∂Qâ
, (A.19)

where I0 can be written as

I0(â, ρ) = 1
(2πi)2 [2ζ(2)E2(ρ) + ℘(â; ρ)] = 1

(2πi)2

[
G′′(â; ρ) + 2πi

ρ− ρ̄

]
. (A.20)
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Here ℘ is Weierstrass’ elliptic function, which is defined as

℘(z; ρ) = 1
z2 +

∞∑

k=1
2(2k + 1)ζ(2k + 2)E2k+2(ρ) z2k , (A.21)

and which can expressed as [90, 91]

℘(z; ρ) = ζ(2) φ0(z; ρ)
φ−2(z; ρ) . (A.22)

G appearing in (A.20) is the two-point function of a free scalar field on the torus (and a
prime denotes the derivative with respect to z)

G(z; ρ) = − ln
∣∣∣∣
θ1(z; ρ)
θ′1(0; ρ)

∣∣∣∣
2
− π

2Im(ρ) (z − z̄)2 . (A.23)

For use in section 5.3, we introduce the following derivatives of the Eisenstein series

dE2n(ρ) = Qρ
dE2n(ρ)
dQρ

, (A.24)

which are quasi-modular forms of weight 2n + 2 that can be written as homogeneous
polynomials in (E2, E4, E6), e.g.

dE2 = 1
12(E2

2 − E4) , dE4 = 1
3(E2E4 − E6) , dE6 = 1

2(E2E6 − E2
4) ,

dE8 = 2
3 E4 (E2E4 − E6) , dE10 = 1

6(5E2E4E6 − 3E3
4 − 2E2

6) . (A.25)

These derivatives can be used to define meromorphic Jacobi forms of index 0 and weight
2n. Indeed, we have verified up to n = 6 that in an expansion in powers of â all E2 cancel
out in the following combinations

2nE2n(ρ) I0(â, ρ) + dE2n(ρ) , ∀n > 1 . (A.26)

Finally, we also define the Hecke operator : let Jw,m be the space of Jacobi forms of index
m and weight w, then

Hk : Jw,m(Γ) −→ Jw,km(Γ)

φ(z, ρ) 7−→ Hk(φ(z, ρ)) = kw−1 ∑

d|k
b mod d

d−w φ

(
kz

d
,
kρ+ bd

d2

)
. (A.27)

A.3 Elliptic modular graph forms

In this appendix we review important basic notation and definitions related to elliptic
modular graph functions and forms (eMFG). Our conventions follow mainly [51, 52, 92].

Modular graph functions [45, 46, 80, 81, 83–85, 93–95] are maps from graphs of N
vertices connected by (decorated and oriented) edges, to the space of modular invariant
functions. They can be generalised to modular graph forms which are maps from such
graphs into the space of (non-holomorphic) modular forms. Such maps are important in the
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study of scattering amplitudes in string theory and (supersymmetric) gauge theories (see
e.g. [96, 97]) and have been systematically studied in recent years (see e.g. [98–100]). The
concept of modular graph functions and forms can further be generalise to elliptic modular
graph (functions) forms (eMFG) [51, 52] as maps from graphs to (non-holomorphic) elliptic
functions on the torus that are (invariant) covariant under modular transformations. A
simple example is the function G defined in (A.23), which is the scalar Greens-function (i.e.
the 2-point function) of a free scalar on the torus. Let

Λ = {z ∈ C|z = mρ+ n for (m,n) ∈ Z2} ,
Λ′ = {z ∈ C|z = mρ+ n for (m,n) ∈ Z2 and (m,n) 6= (0, 0)} , (A.28)

then G(z; ρ) can also be written in the following form

G(z; ρ) = ρ− ρ̄
2πi

∑

p∈Λ′

χp(z; ρ)
|p|2 . (A.29)

Here we have introduced

χp(z; ρ) = e2πi(nr−ms) with z = r ρ+ s for r, s ∈ [0, 1]
p = mρ+ n ∈ Λ′ , (A.30)

which satisfy the relations

χp1+p2(z; ρ) = χp1(z; ρ)χp2(z; ρ) ,
χp(z1 + z2; ρ) = χp(z1; ρ)χp(z2; ρ) ,

χ−p(z; ρ) = χp(−z, ρ) .

A building block for more sophisticated eMGF is the Kronecker-Eisenstein series [101–103]

Ω(u, v; ρ) =
∑

p∈Λ

χp(u; ρ)
v − p = 1

v
+
∑

p∈Λ′

χp(u; ρ)
v − p , ∀u, v ∈ C . (A.31)

As a function of u, Ω is invariant under u→ u+ κ for any κ ∈ Λ and as a function of v, Ω
is meromorphic with simple poles for v ∈ Λ. It can also be written in terms of Jacobi-theta
functions (A.13), which make these properties more tangible

Ω(u, v; ρ) = exp
(

2πiv Im(u)
Im(ρ)

)
θ1(u+ v; ρ)θ′1(0; ρ)
θ1(u; ρ)θ1(v; ρ) , ∀u, v ∈ C , (A.32)

where θ′1(0; ρ) = 2πη3(ρ), with η the Dedekind eta function defined in (A.14).
We also remark the following important relation between a product of two Ω with related

arguments and the difference of two Weierstrass elliptic functions introduced in (A.21)

Ω(u, v; ρ) Ω(u,−v; ρ) = −4π2η6(ρ) θ1(u+ v; ρ)θ1(u− v; ρ)
θ2

1(u; ρ) θ2
1(v; ρ) = ℘(u)− ℘(v) , ∀u, v ∈ C .

(A.33)

Using (see (A.20)) ℘(u) = G′′(u; ρ) − 2ζ(2) Ê2(ρ), we can therefore write the combina-
tion (A.33) of Kronecker-Eisenstein series in terms of the difference of two scalar-Greens
functions on the torus

Ω(u, v; ρ) Ω(u,−v; ρ) = G′′(u; ρ)−G′′(v; ρ) . (A.34)

– 33 –



J
H
E
P
0
8
(
2
0
2
3
)
1
1
4

B Propagator building blocks

In this appendix we review some of the objects introduced in [44]. Our notation is slightly
adapted to the current paper.

B.1 External states

In order to expand the free energy in a form that resembles Feynman diagrams, in [44]
certain ‘external states’ have been defined. In this work we shall use a more condensed
notation for the leading contributions in ε1,2:

• free energy of the configuration (1, 1)
The non-perturbative free energy associated with the web diagram (1, 1) was expanded
in [44] for q = t = e2πiε in the following form

F1,1(ρ, S, τ ; ε) = lnZ1,1(ρ, S, τ ; ε) =
∞∑

n=0

∞∑

s=0
Qnτ ε

2s−2H
(n),{0}
(s) (S, ρ) . (B.1)

In this work we shall use the following condensed notation for the coefficients with
s = 0, namely Hr(S, ρ) := H

(1),{0}
(s) (S, ρ) which are weak Jacobi forms of weight −2

and index r. They are related through a Hecke transformation (see [44])

Hr(S, ρ) = Hr (H1(S, ρ)) , (B.2)

where the Hecke operator is defined in (A.27). The first few instances are given by

H1 = −φ−2 , H2 = − 1
16 φ0 φ−2 , H3 = −φ−2

432
(
φ2

0 + 12E4 φ
2
−2
)
. (B.3)

• W function
In [9, 38] the function W (1)

(0) was found to be related to counting BPS states of a single
M5-brane with M2-branes ending on both sides of it

W (S, ρ; ε) = θ2
1(S; ρ)− θ1(S + ε; ρ) θ1(S − ε; ρ)

θ2
1(ε; ρ) =

∞∑

s=0
ε2sW

(1)
(s) (S, ρ) . (B.4)

For the coefficients s = 0 we shall use the shorthand notation Wr(S, ρ) = W
(r)
(0) (S, ρ)

in this article, where the Wr are quasi-Jacobi forms of weight 0 and index r. Similar
to the Hr, they can (formally) also be related through Hecke transformations

Wr(S, ρ) = Hr (W1(S, ρ)) , (B.5)

with Hr defined in (A.27). The first few instances of Wr are given explicitly by

W1 = 1
24 (φ0 + 2E2 φ−2) , W2 = 1

384
(
φ2

0 + 4E2 φ0 φ−2 + 4E4 φ
2
−2
)
, (B.6)

W3 = 1
10368

(
φ3

0 + 6E2φ
2
0φ−2 + 12E4φ0φ

2
−2 + 8(9E2E4 − 8E6)

)
. (B.7)
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B.2 Two points

In addition to the definition (5.8), we also introduce a graphical notation for the derivatives
of the scalar two-point function (in the sense of (A.19)) by inserting 2k-crosses

b̂1

b̂2· · ·
︸ ︷︷ ︸

2k-times

:= Ik(b̂2 − b̂1, ρ) = 1
(2πi)2 G(2k+2)(b̂2 − b̂1; ρ) , ∀k > 1 . (B.8)

While the two-point function in (5.8) (which is equal to (A.20)) is a quasi-Jacobi
form, the quantities with derivatives in (B.8) are meromorphic Jacobi forms since only the
term O(â0) in (A.20) contains E2.

For vanishing ε, the two-point function (5.8) can furthermore be related to (5.3) in the
following manner

(̂b1, ∅)

(̂b2,�)
+

(̂b1,�)

(̂b2, ∅)
∣∣∣∣
ε=0

= 2
(
℘(b̂2 − b̂1; ρ)− ℘(S; ρ)

)

= 2
[
G′′(b̂2 − b̂1; ρ)− π2

3 Ê2(ρ)
]
− 2℘(S, ρ)

= 2(2πi)2




b̂1

b̂2
+ E2

12 + ℘(S, ρ)
24ζ(2)


 . (B.9)

We notice that this two-point function is manifestly modular and holomorphic, however,
(compared to (5.8)) it is also a function of S.

B.3 Three points

In this appendix we describe combinations of objects resembling three-point functions, which
are relevant to describe the contributions to the non-perturbative partition function for
N = 3. We start by defining the quantities that appear in the leading instanton contribution
in (5.15)

b̂1 b̂2

b̂3

+

b̂1 b̂2

b̂3

+

b̂1 b̂2

b̂3

= 1
(2πi)2

3∑

`=1

∑

j 6=`

(
G′′(b̂`−b̂j ;ρ)+ 2πi

ρ−ρ̄

)
,

b̂1 b̂2

b̂3

+

b̂1 b̂2

b̂3

+

b̂1 b̂2

b̂3

= 1
(2πi)4

3∑

`=1

∏

j 6=`

(
G′′(b̂`−b̂j ;ρ)+ 2πi

ρ−ρ̄

)
.

(B.10)
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For higher instanton levels, we also introduce the shorthand notation

b̂1 b̂2

b̂3

∑ = 1
(2π)6

∏

1≤i<j≤3

(
G′′(b̂j−b̂i;ρ)+ 2πi

ρ−ρ̄

)
,

b̂1 b̂2

b̂3

∑ = 1
(2π)4

3∑

`=1

∏

j 6=`

(
G′′(b̂`−b̂j ;ρ)+ 2πi

ρ−ρ̄

)
,

b̂1 b̂2

b̂3

∑ = 1
(2π)4

3∑

`=1

∑

S∈{1,2,3}\{`}
|S|=2

∏

(j1,j2)∈S
G(4)(b̂`−b̂j1 ;ρ)

(
G
′′(b̂`−b̂j2 ;ρ)+ 2πi

ρ−ρ̄

)
,

b̂1 b̂2

b̂3

∑ = 1
(2π)4

3∑

`=1

∏

j 6=`
G(4)(b̂`−b̂j ;ρ) ,

where the symbol ∑ indicates that a cyclic sum over all points has been taken into account.

C Propagator polynomials

In this appendix, we provide the leading examples of the polynomials Pk(k1, k2) appearing
in (5.21):

P0 = 1 ,
P1 = 4(k2

1 − k1k2 + k2
2)− 1 ,

P2 = 16(k4
1 − k3

1k2 + k2
2k

2
2 − k1k

3
2 + k4

2)− 8(3k3
1 − k2

1k2 − k1k
2
2 + 3k2

2)
− 4(k2

1 − 3k1k2 + k2
2) + 6(k1 + k2) ,
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P3 = 64(k6
1 − k5

1k2 + k4
1k2 − k3

1k
3
2 + k2

1k
4
2 − k1k

5
2 + k6

2)
− 64(5k5

1 − 3k4
1k2 + k3

1k
2
2 + k2

1k
3
2 − 3k1k

4
2 + 5k5

2)
+ 32(15k4

1 − 3k2
1k2 − k2

1k
2
2 − 3k1k

3
2 + 15k4

2)
− 32(5k3

1 + k2
1k2 + k1k

2
2 + 5k3

2)− 4(31k2
1 − 15k1k2 + 31k2

2) + 60(k1 + k2) . (C.1)

We remark that these can also be characterised in the following way (which lends itself to
generalisation to higher k):

fk(x) = x2k+1

1−Qxρ
, for k ∈ N∗ , (C.2)

then one can decompose the convolution of two such functions in the following way

(fk1 ? fk2)(x) :=
∫

R
dy fk1(y) fk2(x− y) = 1

1−Qxρ

k1+k2+1∑

k=0
ck1k2k

x2k+1

ρ2(k1+k2−k+1)

= −
k1+k2+1∑

k=0

B2(k1+k2−k+1) Pk(k1, k2)
(2k + 1)! ρ2(k1+k2−k+1) fk(x) . (C.3)

We have furthermore observed a few further properties of the polynomials Pk(k1, k2). Indeed,
the highest powers in each case follow the pattern 22k∑2k

a=0(−1)aka1k2k−a
2 , while subleading

contributions are characterised by particular symmetries. We have notably observed

Pk(k − k1 − 1, k − k2 − 1) = Pk(k1, k2) , (C.4)

and we have verified up to k = 10 that they factorise for certain values of their arguments

Pk(k1,−1
2) = Pk(k1, k1 + 1

2) =
2k−1∏

j=0
(2k1 + 1− j) ,

Pk(k1, k1 − 1
2) = Pk(k1, k − 1

2) =
2k∏

j=1
(2k1 + 1− j) ,

Pk(k1, k1) = Pk(k1,
k−1

2 ) =
∏2k
j=0(2k1 + 1− j)

2k1 + 1− k . (C.5)

Finally, up to k = 10 the Pk vanish for specific values of their arguments

Pk(0, j) = 0 , ∀j = 1, . . . , k − 2 ,

Pk( j−1
2 , `−1

2 ) = 0 , ∀
{
` = 1, . . . , 2k − 2− j ,
j = 1, . . . , 2k . (C.6)

We have also verified that the properties mentioned in this appendix uniquely fix the
polynomial Pk up to k = 10.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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