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1 Introduction

What is the space of low-energy effective field theories (EFTs) that can give rise to a
consistent theory of quantum gravity in the UV? Over the last few years, significant progress
has been made towards answering this question by deriving sharp two-sided bounds on
(usually the ratios of) the Wilson coefficients that parametrize the low-energy EFTs. This
has been made possible through the use of twice-subtracted dispersion relations that follow
from the assumptions of analyticity and Regge boundedness of the scattering amplitudes [1–
30]. Dispersion relations express the low-energy Wilson coefficients in terms of the UV
data of the theory. Demanding that scattering amplitudes obey crossing symmetry and
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unitarity in the UV leads to the bounds on Wilson coefficients [31–48]. While the procedure
is straightforward without gravity, inclusion of the graviton presents an obstacle due to a
pole that arises in the forward scattering limit of the graviton exchange term. This was
recently overcome in both flat space and AdS space by measuring the Wilson coefficients
in the small impact parameter limit (see [49, 50], also see [51, 52]).

In this paper, we consider the 2–2 scattering of identical scalars of mass m ∼ 1/R in a
weakly-coupled gravitational EFT in AdS (R is the AdS radius). We take the view that the
full theory of quantum gravity in AdS is defined non-perturbatively by its CFT dual. AdS
scattering amplitudes are then naturally expressed in terms of the Mellin representation of
the dual CFT correlator [53]. For our case, we therefore consider the Mellin correlator of
identical scalar primaries of dimension ∆φ ∼ mR. We assume the following expansion of
the Mellin amplitude

M(s1, s2) ∼ 8πGMgravity +W0,0 +W1,0x+W0,1y +W2,0x
2 +W1,1xy + . . . (1.1)

where x = −(s1s2 + s2s3 + s3s1), y = −s1s2s3 and si are related to the usual Mellin-
Mandelstam variables by a shift such that s1 + s2 + s3 = 0. The coefficients Wp,q provide
a parametrization of the low-energy EFT in AdS and we shall refer to them as the AdS
Wilson Coefficients in this paper. 8πGMgravity is the term corresponding to the graviton
exchange in AdS and leads to the familar graviton pole term ∼ 8πGx2

y in the flat-space
limit. Our goal is to derive two-sided bounds on Wp,q. This is in contrast to previous
studies [49, 50] where bounds are typically derived on the ratios of Wilson coefficients or
ratio with respect to G.

An essential tool in our work is the upliftment of the Celestial CFT techniques for flat
space employed in [55] to AdS. For details of the flat space Celestial amplitudes program,
see [56–67]. We begin by writing down a twice-subtracted crossing symmetric dispersion
relation for the Mellin correlator [68] in terms of the celestial variable z and ω defined as

s1 = ω2, s2 = zw2, s3 = (z − 1)ω2 . (1.2)

The price one has to pay for having a fully crossing symmetric expansion is the loss of
manifest locality. The crossing symmetric conformal partial waves have spurious poles.
These poles must cancel when summing over the spectrum and spins. Otherwise, there
will be terms with poles in x in (1.1) which cannot come from a local bulk Lagrangian.
Therefore, we must impose the “locality condition”, W−r,q = 0, ∀ r > 0, where W−r,q is
the coefficient of the term x−ryq. We can separate out the spurious pole contribution from
each conformal partial wave; the new partial waves are fully crossing symmetric and local,
and are called Witten blocks in the literature [69–75].

We perform a Celestial transform of the CFT Mellin amplitude of four identical scalars
(see (2.1)) as follows

M̃(β, z) =
∫ ∞

0
dω ωβ−1M(ω2,−zω2) . (1.3)

The amplitude M̃(β, z) is known to have poles at β = −2n i.e. negative even integers.
The residues at these poles capture all the information about the low-energy Wilson Coef-

– 2 –



J
H
E
P
0
8
(
2
0
2
3
)
1
1
2

ficients [76]. More precisely, we have

Resβ=−2nM̃(β, z) ≡ W̃(n, ρ) =
∑
p,q

2p+3q=n

(−1)q

2p+q Wp,q(1− ρ)p(1 + ρ)q (1.4)

where we use the variable ρ(z) = −1 + 2z − 2z2 introduced in [55]. Using the dispersion
relation, we write an explicit expression for the residue W̃(n, ρ) in terms of a sum over
Celestial Witten blocks (see (3.1)) for each n. We examine the properties of these blocks
in the variable ρ and find that they satisfy remarkable positivity properties, namely sign
definiteness and typically realness. The Celestial transform plays an important role here as
these properties of the Celestial Witten blocks in the ρ variable are not obvious without the
Celestial transform. These properties had not been demonstrated for Mellin amplitudes
before, mainly due to the appearance of Mack polynomials in Mellin space partial wave
expansions which are more complicated than the Gegenbauer polynomials that appear in
the flat-space partial wave expansions. The properties are sufficient for us to derive two-
sided bounds on all Wilson coefficients except when n = 2, 3, i.e. for W1,0 and W0,1. For
these Wilson coefficients, the results of [49, 50] suggest that only the ratio W0,1/W1,0 is
expected to have two-sided bounds. In an upcoming work [95], we will derive precise two-
sided bounds on W0,1/W1,0. These will follow from positivity properties of the full Mellin
amplitude which imply two-sided bounds on ratios of all Wilson coefficients in a CFT.

The positivity properties we find for Celestial Witten blocks display an interesting
pattern. For n ≥ 4, we find that they hold beyond a critical spin `c only above some
critical twist τ∗(n, `). For example, for n = 4 (i.e. for W2,0), we find that positivity holds
for ` ≥ 4 only above some twist τ∗(4, 4) which we can compute numerically. For higher
n, there is a similar critical twist for spins greater than four and in general we find that
τ∗(n, `) grows with n. In all, this means that to bound the Wilson coefficients via our
procedure, it is sufficient that all spins ≥ 4 exist above a certain twist max(τ∗(n, `)). The
bounds we derive are given in terms of discrete moments of OPE coefficients (see (4.4))
of operators with spin ≤ 2. This demonstrates in a precise fashion, a form of the HPPS
conjecture made in [77] where similar conditions were conjectured to be sufficient for a
(large N) CFT to have a local AdS dual. Our proof of the HPPS conjecture aligns with the
findings of [50] where two-sided bounds were derived on the ratios of Wilson coefficients.

Next, to make contact with known examples, we consider the Witten block expansion
in the flat-space limit. We show that in the flat-space limit [54], our bounds reproduce
the two-sided bounds on the flat-space Wilson coefficients [55]. In some cases, we are also
able to bound the sub-leading 1/R2 corrections to the flat-space Wilson coefficients. As a
check of our results, we demonstrate that the AdS Virasoro-Shapiro amplitude (see [79, 80])
expanded in the large R limit satisifies our bounds up to order 1/R2.

We end with a discussion of low-spin dominance in AdS EFTs. This refers to the
case when the contribution of low-spin (spin 0 and spin 2) partial waves to the scattering
amplitude dominates over higher spins. Through the use of null constraints, we are able to
quantify low-spin dominance. Our results suggest that it is the strongest in the flat space
limit and weakens as we move towards higher AdS curvature (see figure 1).
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The paper is organized as follows. In section 2, we review the crossing symmetric
dispersion relation (CSDR) for Mellin amplitudes. In section 3, using the CSDR, we write
down a partial wave expansion for the Celestial-transformed Mellin amplitude in terms of
the Celestial Witten blocks. We then study the positivity properties of the Celestial Witten
blocks in section 4 and show that they naturally lead us to focus on CFTs satisfying the
HPPS conjecture. We use the positivity properties to derive two-sided bounds on AdS
Wilson coefficients. In section 5, we work in a large R expansion and find known bounds
on flat space Wilson coefficients and new bounds on their sub-leading 1/R2 corrections. We
check that the AdS Virasoro-Shapiro amplitude satisfies our bounds. Section 6 discusses
low-spin dominance in AdS EFTs and in section 7, we conclude with a discussion of our
results and future work.

2 Crossing symmetric representation of Mellin amplitudes: a brief
review

The Mellin amplitude M (s1, s2) (following the conventions of [68]) is defined via

G(u, v) =
∫ c+i∞

c−i∞

ds1
2π

ds2
2π u

s1+
2∆φ

3 vs2−
∆φ
3 µ (s1, s2, s3)M (s1, s2) (2.1)

where G(u, v) is the position space conformal correlator of four identical scalars of dimension
∆φ. The measure factor µ(s1, s2, s3) = Γ2

(∆φ

3 − s1
)

Γ2
(∆φ

3 − s2
)

Γ2
(∆φ

3 − s3
)
. The

amplitude satisfies full crossing symmetry, i.e.,M (s1, s2) = M (s2, s3) = M (s3, s1). In [68],
using a crossing symmetric dispersion relation, it was shown that the amplitude can be
expressed through a fully crossing symmetric conformal partial wave expansion as follows

M(s1, s2) = α0 +
∞∑
τ,`,k

c
(k)
τ,`

τk
P(k)
τ,`

(√
τk + 3a
τk − a

)(
s1

τk − s1
+ s2
τk − s2

+ s3
τk − s3

)
, a = y

x

(2.2)

where x = −(s1s2 + s2s3 + s3s1) and y = −s1s2s3. The sum runs over the twist τ = ∆− `
and spin ` of the primaries, and the k sum gives the contribution from descendants. α0 is
a subtraction constant and τk = τ

2 + k − 2∆φ

3 . c(k)
τ,` is proportional to the OPE coefficient

squared (see appendix A for details). We consider a real and − τ (0)

3 ≤ a <
2τ (0)

3 (see [68]),
where τ (0) = min (τk). We further define

P(k)
τ,`

(
x = 1 + 2s′2(τk, a)

τk

)
= P(k)

τ,`

(√
τk + 3a
τk − a

)
≡ Pτ+`,`

(
τk, s

′
2 (τk, a)

)
, (2.3)

where P∆,`(s1, s2) is the Mack Polynomial (see appendix A) and s′2 (τk, a)=− τk
2

[
1−
(
τk+3a
τk−a

)1/2
]
.

For a more detailed discussion of CSDR, we refer the reader to [81–85] and for properties
of Mellin amplitudes — see [86–89].
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3 The Celestial Witten block expansion

The amplitude M̃(β, z) defined in (1.3) is known to have poles in β at negative even integers
i.e. β = −2n [76]. The residue at these poles is related to the low-energy expansion of the
amplitude as given in (1.4). Using (2.2), we can express the residue in a partial wave
expansion as follows

Resβ=−2nM̃(β, z) = (−1)n
∑
τ,`,k

τ−n−1
k c

(k)
τ,`

[
(−1)nP(k)

τ,` (1− 2z) + znP(k)
τ,`

(
z− 2
z

)

+(1− z)nP(k)
τ,`

(
z+ 1
z− 1

)
+ (z(1− z))n−`(z2− z+ 1)−n+3Q(k)

τ,` (−2n, z)
]
.

(3.1)
The Q(k)

τ,` (β, z) are polynomials in z given as

Q(k)
τ,` (β, z) = (z(1− z))`(z2 − z + 1)−3

3∑
i=1
Z(k)
τ,` (β, xi) ,

Z(k)
τ,` (β, xi) = e−iπβ/2(

`
2 − 1

)
!
d`/2−1

dx`/2−1

[
xβ/2(1 + x)`/2

(x− xi)
P(k)
τ,`

(√
1− 3x
1 + x

)]∣∣∣∣∣
x=−1

(3.2)

with x1 = −z(z − 1)(z2 − z + 1)−1, x2 = (z − 1)(z2 − z + 1)−1, x3 = −z(z2 − z + 1)−1.

Null/Locality constraints. As discussed in the Introduction, the crossing symmetric
partial waves have spurious poles which must cancel while summing over the spectrum and
spins [55, 68].1 In the expansion (3.1) above, these show up as poles at ρ = 1. We therefore
expand around ρ = 1 and separate out these poles to get the following useful form

Resβ=−2nM̃(β, z) ≡ W̃(n, ρ) =
∞∑
τ,`,k

τ−n−1
k c

(k)
τ,`

n−3∑
q=1

Nq(n, τ, `, k)
(ρ− 1)q + FB(n, τ, `, k, ρ)

 .
(3.3)

FB(n, τ, `, k, ρ) is a polynomial of degree
⌊
n
2
⌋
in ρ. We will refer to it as the Celestial

Witten block. Demanding that the unphysical poles at ρ = 1 vanish gives the conditions
∞∑

τ,`=2,k=0
τ−n−1
k c

(k)
τ,`Nb(n, τ, `, k) = 0 for all n ≥ 4 and b = 1, 2, . . . , n− 3 . (3.4)

These conditions have been termed null/locality constraints in the literature [33, 68]. We
will refer to Nb(n, τ, `, k) as Null blocks. A compact formula for the Null blocks is as follows

Nr(n, τ, `, k) = − 2`−3

(n− 3− r)! lim
ρ→1

dn−3−r

dρn−3−r

[
(1 + ρ)n−`Q(k)

∆,`(−2n, ρ)
]
. (3.5)

In section 5, we show that they satisfy positivity properties that imply a low-spin dominance
for AdS EFTs.

1In the fixed t dispersion relation, there are no such negative powers and the corresponding sum rules
turn out to follow from requiring crossing invariance [33].
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After imposing the null constraints, we equate (1.4) and (3.3) to get a partial wave
expansion for the Wilson coefficients as follows∑

p,q

2p+3q=n

(−1)q

2p+q Wp,q(1 + ρ)q(1− ρ)p =
∑
τ,`,k

τ−n−1
k c

(k)
τ,`FB(n, τ, `, k, ρ) . (3.6)

4 Bounds on AdS EFTs and the HPPS conjecture

In this section, we will examine the positivity properties of the Celestial Witten blocks. As
mentioned earlier, they are polynomials of degree

⌊
n
2
⌋
in ρ.

4.1 Positivity properties of the Celestial Witten blocks

We perform numerical checks and find that the Celestial Witten blocks satisfy the following
positivity properties.

1. Sign Definiteness: for any m, the coefficients of ρm in FB(n, τ, `, k, ρ) have the
same sign for all ` ≥ `SD(n) and above some critical twist τSD(n, `).

For example, we find `SD(n = 4, 5) = 4. τSD(n, `) in general depends on the
spacetime dimension d of the CFT and the scaling dimension ∆φ. For d = 4, ∆φ = 4,
we find for n = 4, τSD(4, 4) ≈ 8.6, τSD(4, 6) ≈ 7.5 and τSD(4, 8) ≈ 7.1. For n = 5,
τSD(5, 4) ≈ 11.3, τSD(5, 6) ≈ 8.0 and τSD(5, 8) ≈ 7.4.

2. Typically Realness: a function f(z) is said to be typically real within the unit disc
|z| < 1 if Im (f(z)) Im(z) > 0, ∀z (except when Im(z) = 0).

We find that, FB(n, τ, `, k, ρ) is a typically real polynomial of ρ within the unit
disc |ρ| < 1 for all ` ≥ `TR(n) and above some critical twist τ > τTR(n, `).

For example, `TR(4) = 4 and `TR(5) = 6. For d = 4, ∆φ = 4, we find for n = 4,
τTR(4, 4) ≈ 8.2, τTR(4, 6) ≈ 7.2 and τTR(4, 8) ≈ 6.9. For n = 5, τTR(5, 6) ≈ 9.3 and
τTR(5, 8) ≈ 8.1.

In general, we refer to the larger of `SD and `TR as `c and the larger of τSD(n, `) and τTR(n, `)
as τ∗(n, `). As we will show in the next section, we require the positivity properties above
to derive bounds. This naturally leads us to consider CFTs where there are no operators
of spin ` ≥ `c(n) below τ∗(n, `). For such CFTs, the r.h.s. of (3.6) can be separated into
two parts as

`c−2∑
`=0

∞∑
τ,k

τ−n−1
k c

(k)
τ,`FB(n, τ, `, k, ρ) +

∞∑
`=`c

∞∑
τ>τ∗(n,`),k

τ−n−1
k c

(k)
τ,`FB(n, τ, `, k, ρ)

︸ ︷︷ ︸
T

(heavy)
n (ρ)

.
(4.1)

T
(heavy)
n (ρ) is designated so because it refers to a sum of only heavy, higher spin operators.

It follows from unitarity (positivity of the OPE coefficients squared) that T (heavy)
n (ρ) is

a positive sum of Celestial Witten Blocks. And since positive sums preserve both sign
definiteness and typically realness ([90]), T (heavy)

n (ρ) inherits both the properties of Celestial
Witten Blocks mentioned above.
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More precisely, lets expand T (heavy)
n (ρ) =

∑bn2 c
m=0 am(n)ρm. Then we get

1. Sign definiteness: For any m, the coefficient of ρm in T (heavy)
n (ρ) has the same sign

as the coefficients of ρm in FB(n, τ, `, k, ρ) for any ` ≥ `c, i.e.

am(n) always have fixed signs. (4.2)

2. Typically realness: T (heavy)
n (ρ) is a typically real polynomial of ρ within the unit

disc |ρ| < 1.
Taylor expansion coefficients of typically-real polynomials satisy two-sided bounds

called Suffridge bounds [91–93]. For degree 1 polynomials, i.e. n = 2, 3, the Suffridge
bounds do not exist. Here, we quote them for n = 4, 5, i.e. degree 2 polynomials. For
general bounds, see [55] ∣∣∣∣a2(n)

a1(n)

∣∣∣∣ ≤ 1
2 , for n = 4, 5 . (4.3)

Why can we not have two-sided bounds for n = 2, 3, i.e. on W1,0 and W0,1?
As mentioned in the Introduction, the results of [49, 50] suggest that we can only derive
two-sided bounds on the ratioW0,1/W1,0, not on each Wilson coefficient. In our formalism,
this follows from the fact that for n = 2 and n = 3, the Celestial Witten blocks are degree 1
polynomials given as FB(2, τ, `, k, ρ) ∼ (1− ρ) and FB(3, τ, `, k, ρ) ∼ (1 + ρ). For degree 1
polynomials, the Suffridge bounds do not exist. Further, it is easy to see by plugging
in FB(2, τ, `, k, ρ) and FB(3, τ, `, k, ρ) in (3.6) that sign definiteness also can only lead to
one-sided bounds. In an upcoming work [95], we study the positivity properties of the full
Mellin amplitude to show that two-sided bounds can be derived on the ratio W0,1/W1,0.

4.2 Bounds on AdS Wilson cofficients

In this section, we will use the positivity properties discussed above to derive bounds on
the AdS Wilson coefficients. These will be given in terms of discrete moments of OPE
coefficients defined as follows

Ĉ`,m(n) =
∞∑
τ,k

τ−n−1
k c

(k)
τ,` bm(n, `, k) (4.4)

where bm(n, `, k) are the coefficients of ρm in the expansion of the Celestial Witten Blocks.
The moments are always finite. The sum over k converges because the normalization factor
in c(k)

τ,` falls off faster than k−1e−
1
k at large k (see (B.3)). The sum over τ is also convergent

because the OPE coefficient for holographic theories is known to fall off exponentially at
large τ [94].

In terms of the moments, equation (4.1) reads

T (heavy)
n (ρ) =

 ∑
p,q

2p+3q=n

(−1)q

2p+q Wp,q(1 + ρ)q(1− ρ)p

−
`c−2∑
`=0

Ĉ`,m(n)ρm . (4.5)
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We can now simply expand both sides in powers of ρ and use the positivity properties
of T (heavy)

n (ρ) given in (4.2) and (4.3) to derive bounds on Wp,q. We label the bounds
following from sign definiteness as SD and those from typically realness as TR. Let us see
how this works case-by-case starting from n = 2.

n = 2 and n = 3. For n = 2, we simply get a lower bound

SD : W1,0 ≥ 0 . (4.6)

For n = 3, we get This leads to a lower bound

SD : W0,1 ≥ −2Ĉ0,0(3) . (4.7)

n = 4. For n = 4, `c = 4 and we find that a0(4) ≤ 0, a1(4) ≥ 0 and a2(4) ≤ 0. This
leads to the following bounds

SD : 1
4W2,0 ≤ Ĉ0,0(4)+Ĉ2,0(4), 1

2W2,0 ≥ Ĉ0,1(4)+Ĉ2,1(4), 1
4W2,0 ≥ Ĉ0,2(4)+Ĉ2,2(4) .

(4.8)
From typically realness, we get

TR : − 1
2 ≤

1
4W2,0 − Ĉ0,2(4)− Ĉ2,2(4)
1
2W2,0 − Ĉ0,1(4)− Ĉ2,1(4)

≤ 1
2 ,

=⇒ W2,0 > 2Ĉ0,2(4) + 2Ĉ2,2(4) + Ĉ0,1(4) + Ĉ2,1(4)

(4.9)

n = 5. For n = 5, `c = 6 and we find that a0(5) ≤ 0 and a2(5) ≥ 0. This leads to the
following bounds

SD : 1
4W1,1 ≥ Ĉ0,0(5) + Ĉ2,0(5) + Ĉ4,0(5), 1

4W1,1 ≥ Ĉ0,2(5) + Ĉ2,2(5) + Ĉ4,2(5) .

(4.10)
From typically realness, we get

TR : − 1
2 ≤

1
4W1,1 − Ĉ0,2(5)− Ĉ2,2(5)− Ĉ4,0(5)
−Ĉ0,0(5)− Ĉ2,0(5)− Ĉ4,0(5)

≤ 1
2

=⇒ W1,1 ≥ 4Ĉ0,2(5) + 4Ĉ2,2(5) + 4Ĉ4,2(5)− 2Ĉ0,0(5)− 2Ĉ2,0(5)− 2Ĉ4,0(5) and

W1,1 ≤ 4Ĉ0,2(5) + 4Ĉ2,2(5) + 4Ĉ4,2(5) + 2Ĉ0,0(5) + 2Ĉ2,0(5) + 2Ĉ4,0(5) .
(4.11)

Similarly, we can go to higher n. In each case, sign definiteness and typically realness of
Celestial Witten blocks prove sufficient to derive two-sided bounds.

4.2.1 Connection to the HPPS conjecture

We found above that to derive the two-sided bounds on Wilson coefficients, it is sufficient
that all spin 4 and higher operators appear only above some critical twist max(τ∗(n, `)).
This leads us to the statement “any CFT in which all spin four and higher operators have
twists greater than some critical max(τ∗(n, `)) has all Wilson Coefficients beginning from
W2,0 onwards bounded on both sides”. We therefore prove in a precise wasy, a form of the
HPPS conjecture which states that similar conditions are sufficient for a (large N) CFT to
have a local AdS dual.

– 8 –
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5 Bounds in the flat space limit

In this section, we derive bounds on AdS Wilson coefficients in a 1/R expansion, i.e. around
the flat-space limit [54]. The details of taking the flat-space limit change depending on
the space-time dimension and the dimension ∆φ of external scalars. Our procedure is
independent of these details. Our goal is to check that the bounds we derive are respected
by the AdS Virasoro-Shapiro amplitude [79, 80]. So, in this section, we will focus on Mellin
amplitudes of scalars with ∆φ = 4 in d = 4. We consider Mellin amplitudes with the
following large R expansion

M(s1, s2) = 8πGMsugra + 1
R6

∑
p,q

Γ(2p+ 3q + 6)
(R2)2p+3q xpyq

(
W(0)
p,q + W

(1)
p,q

R2 + . . .

)
. (5.1)

The above normalization of AdS Wilson coefficients is chosen so that in the flat-space limit,
we recover the Wilson coefficients of the corresponding flat-space scattering amplitude

Mflat(S1, S2) = 8πG
S1S2S3

+ 2
∑
p,q

W(0)
p,qX

pY q . (5.2)

S1, S2 are the Mandelstam variables and X, Y are the flat-space analogues of x, y. The
normalization follows from the flat-space transform that relates the CFT Mellin amplitude
and the flat-space scattering amplitude. Explicitly (see [80]),

FS(M(s1, s2)) ∼ lim
R→∞

R6
∫ +i∞

−i∞

dα

2πie
αα−6M

(
R2

α
s1,

R2

α
s2

)
=Mflat(S1, S2) . (5.3)

The transform effectively removes the Γ(2p+3q+6) factor in the expansion above without
which the sum would not converge.

An important example that falls in the category of amplitudes in (5.1) is the planar
correlator of four stress-tensor multiplets in N = 4 SYM. This amplitude is the AdS
analogue of the Virasoro-Shapiro amplitude and reduces to it in the flat space limit

MV S
flat(S1, S2) = 8πG

S1S2S3

Γ(1− S1)Γ(1− S2)Γ(1 + S1 + S2)
Γ(1 + S1)Γ(1 + S2)Γ(1− S1 − S2) . (5.4)

The coefficients W(0)
p,q for this amplitude can be easily found by expanding MV S

flat(S1, S2)
as in (5.2). In [80], the sub-leading curvature corrections W(1)

p,q and their partial wave
expansion were fully determined as well.

We’ll write the Celestial Witten block expansion (3.6) in a 1/R expansion and use it to
put bounds on W(0)

p,q and in some cases, also on W(1)
p,q . Our bounds on W(0)

p,q exactly match
those of [55] in flat-space, while the bounds on W(1)

p,q are new. We compare our results with
the 1/R expansion of the AdS Virasoro-Shapiro amplitude and find that it satisfies our
bounds upto order 1/R2.

5.1 1/R expansion of the conformal partial wave expansion

We define Wp,q(R) ≡ W(0)
p,q +W(1)

p,q /R2 + . . . as the AdS Wilson coefficient. The goal is
to write the r.h.s. of (3.6) in a 1/R expansion. Since we are going to eventually compare
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with a supersymmetric amplitude, we will work with a partial wave expansion with a twist
shifted by 4. This is to take into account the factorization of supersymmetric amplitudes
due to the superconformal Ward Identity. We then have

∑
p,q

2p+3q=n

(−1)q

2p+q Wp,q(1 + ρ)q(1− ρ)p =
∑
τ,`,k

(τk + 4)−n−1c
(k)
τ+4,`FB(n, τ + 4, `, k, ρ) . (5.5)

The flat space limit from the CFT side is controlled by the fixed `, large τ limit. Follow-
ing [80], we therefore parametrize τ and the OPE coefficients as

τ(r, `, R) = m0(r)R+m1(r, `) + m2(r, `)
R

+ . . . , c
(k)
τ+4,`(r,R) = D(τ, `, k)f(r, `, R),

f(r, `, R) = f0(r, `) + f1(r, `)
R

+ f2(r, `)
R2 + . . .

(5.6)

where r denotes the collection of all other quantum numbers characterising the CFT oper-
ators, f0(r, `) are related to the flat space partial wave coefficients (see (C.3)) and D(τ, `, k)
is a normalization factor (see (B.2)).

We are left with the job of expanding the Witten blocks and the normalization factor
D(τ, `, k). This can done easily by first expanding in large τ , plugging the expansion
of τ(r, `, R) and expanding again in large R. For the Witten block, this computation
is involved. We provide an expansion of the Mack polynomial in the large s and large
ν = τ + `− h limit in the eq. (B.1) that makes it simpler.

The final step is to perform the k sum. It is carried out by first noticing that for large
τ , the dominant contribution must come from terms of order k ∼ τ2. We can thus define
k = xτ2 and turn the k sum into an integral,

∑
k → τ2 ∫∞

0 dx following [79, 80]. The
integral is easy to perform term by term in 1/R.

Constraints from AdS. The expansion of the amplitude/Wilson coefficients in (5.1)
has no correction proportional to odd powers of 1/R. This is not automatic from the
partial wave expansion (5.5). Imposing it for the first odd power fixes m1(r, `) and f1(r, `)
in terms of m0(r) and f0(r, `). Since there are just two unknowns to be fixed, we can
demand that first odd power vanishes for n = 4, 5 and it will hold true for higher n as well.
This yields

m1(r, `) = −`− 2, f1(r, `) = 23 + 12`
2m0(r) f0(r, l) . (5.7)

The same result is obtained in [79].

5.2 Bounds in the 1/R expansion

5.2.1 Bounds in terms of partial wave moments

In the flat space limit, the Mack polynomial reduces to the Gegenbauer polynomial
(see (B.1)). This means that the Celestial Witten blocks reduce to crossing symmetric
and local blocks given in terms of the Gegenbauer polynomials. These blocks were termed
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Celestial Feynman blocks in [55] and were shown to satisy similar positivity and typi-
cally realness properites as we find for the Celestial Witten blocks. For exact results on
the positivity properties of Celestial Feynman blocks, we refer the reader to [55]. At the
sub-leading order, sign-definiteness is not guaranteed but we find that typically realness
continues to hold.

Instead of the OPE moments C̃l,m(n), we get moments of f0(r, l) and the correction
f2(r, l). These are defined as

φ(0)(`, n) =
∑
r

f0(r, `)
(m0(r)/2)2n+6 , φ

(1)
1 (`, n) =

∑
r

f0(r, `)τ2(r, `)
(m0(r)/2)2n+6+1 ,

φ
(1)
2 (`, n) =

∑
r

f0(r, `)
(m0(r)/2)2n+8 , φ

(1)
3 (`, n) =

∑
r

f2(r, `)
(m0(r)/2)2n+6 .

(5.8)

φ(0)(`, n) only appears at the leading order in 1/R and is positive due to flat space partial
wave unitarity. The rest occur at the sub-leading order in 1/R.

n = 2, 3. For n = 2, at the leading order in 1/R2, we find

SD : φ(0)(0, 2) ≤ W(0)
1,0 . (5.9)

For n = 3, we find

SD : − 3
2φ

(0)(0, 3) ≤ W(0)
0,1 . (5.10)

For AdS Virasoro-Shapiro, this leads to the bounds W(0)
1,0 ≥ 1 and W(0)

0,1 ≥ −1.506 while
the actual values are W(0)

1,0 = 1.037 and W(0)
0,1 = −1.445.

n = 4. At the leading order in 1/R2, we find

SD : φ(0)(0, 4) + φ(0)(2, 4) ≤ W(0)
2,0 ≤ φ

(0)(0, 4) + 17φ(0)(2, 4)

TR : W(0)
2,0 ≥ φ

(0)(0, 4)− 1
3φ

(0)(2, 4) .
(5.11)

For AdS Virasoro-Shapiro, this gives the bound 1.0078 ≤ W(0)
2,0 ≤ 1.1015 while the actual

value is W(0)
2,0 = 1.0083.

Sub-leading order: we find

TR : W(1)
2,0 ≤ φ

(1)
3 (0, 4)− 1

3φ
(1)
3 (2, 4)− 7

(
φ

(1)
1 (0, 4)− 1

3φ
(1)
1 (2, 4)

)
−
(3967

96 φ
(1)
2 (0, 4)− 11791

288 φ
(1)
2 (2, 4)

)
.

(5.12)

For AdS Virasoro-Shapiro, this gives the bound W(1)
2,0 ≤ −40.266 while the actual value

is W(1)
2,0 = −40.302.
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n = 5. At the leading order in 1/R2, we find

SD : − 5
2φ

(0)(0, 5) + 17
6 φ

(0)(2, 5) ≤ W(0)
1,1

TR : − 5
2φ

(0)(0, 5) + 1
6φ

(0)(2, 5) ≤ W(0)
1,1 ≤ −

5
2φ

(0)(0, 5) + 11
2 φ

(0)(2, 5) .
(5.13)

For AdS Virasoro-Shapiro, this gives the bound −2.4941 ≤ W(0)
1,1 ≤ −2.4863 while the

actual value is W(0)
1,1 = −2.4929.

Sub-leading order: we find

TR : W(1)
1,1 ≤ −

5
2φ

(1)
3 (0, 5) + 1

6φ
(1)
3 (2, 5) + (20φ(1)

1 (0, 5)− 44φ(1)
1 (2, 5))

+
(10185

64 φ
(1)
2 (0, 5)− 210607

576 φ
(1)
2 (2, 5)

)
TR : W(1)

1,1 ≥ −
5
2φ

(1)
3 (0, 5) + 11

2 φ
(1)
3 (2, 5) +

(
20φ(1)

1 (0, 5)− 4
3φ

(1)
1 (2, 5)

)
+
(10185

64 φ
(1)
2 (0, 5)− 50639

576 φ
(1)
2 (2, 5)

)
.

(5.14)

For AdS Virasoro-Shapiro, this gives the bound 161.3481 ≤ W(1)
1,1 ≤ 161.5155 while the

actual value is W(1)
1,1 = 161.4318.

5.2.2 Bounds in terms of the mass gap

In terms of the flat space partial wave coefficients (see appendix C for our conventions),
we can write φ(0)(n, `) = 28(` + 1)2 ∫∞

4M2
ds

sn+1+1/2a`(s). Using partial wave unitarity (0 ≤
a`(s) ≤ 1), this leads to the bounds 0 ≤ φ(0)(n, `) ≤ 29(`+1)2

(2n+1)(4M)2n+1 . This allows us to write
the flat space bounds given before in terms of the mass gap M . We get

3.2
M5 ≤ W

(0)
1,0 , −0.857

M5 ≤ W
(0)
1,0 , 0 ≤ W(0)

2,0 ≤
17.111
M9 , −0.057

M11 ≤ W
(0)
1,1 ≤

1.125
M11 .

(5.15)

Note that these are bounds on the Wilson coefficients themselves, not on the ratios of two
Wilson coefficents or ratio with respect to G. The scaling with the mass gap therefore
depends on the spacetime dimension D of flat space as Wp,q ∼M4−2n−D, n = 2p+ 3q.

6 Low-Spin dominance for AdS amplitudes

In this section, we explore the consequences of the null constraints given in (3.4). Consid-
ering the first null constraint, we find that

“for n = 4, the spin two Null blocks are always positive while the higher spin
Null blocks are always negative beyond some critical twist”.
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The critical twist here is not the same as the critical twist we found for positvity of
` ≥ 4 Celestial Witten blocks before and in general, we denote the larger of the two by
τ∗(4, `). Considering CFTs where all ` ≥ 4 operators are above τ∗(4, `), we get the following
relation

∞∑
τ,`=2,k

τ−5
k c

(k)
τ,`N1(4, τ, `, k) =

∞∑
`=4

∞∑
τ>τ∗(4,`),k

τ−5
k c

(k)
τ,`N1(4, τ, `, k) . (6.1)

This suggests that the spin two contribution dominates any other higher spin contribution
in the CFT. To quantify this dominance, we again focus us the case when d = 4, ∆φ = 4
although the conclusions we derive hold generally. We parametrize the twists and OPE
coefficients as in (5.6) and look at the leading order behaviour in 1/R. The shift τ → τ + 4
is not significant here as we are interested in the large τ behaviour. In the flat space limit,
we recover

16
3 φ

(0)(2, 4) = 432
5 φ(0)(4, 4) + 480φ(0)(6, 4) + . . . (6.2)

This implies a low-spin dominance for flat space partial wave moments as follows

φ(0)(4, 4)
φ(0)(2, 4)

≥ 16.2, φ(0)(6, 4)
φ(0)(2, 4)

≥ 90 . (6.3)

It is interesting to study how low-spin dominance changes as we move slightly away from
flat space. To make this comparison, we plug c(k)

τ,` = D(τ, `, k)f(τ, `) and define

χ(τ, `, 4) =
∑
k

D(τ, `, k)N1(4, τ, `, k)
τ5
k

. (6.4)

From (6.1), it follows that∑
τ

f(τ, 2)χ(τ, 2, 4) ≥
∑

τ>τ∗(4,`)
f(τ, `)χ(τ, `, 4) for all ` ≥ 4 . (6.5)

We are interested in the large τ behaviour of the ratios χ(τ, 4, 4)/χ(τ, 2, 4) and χ(τ, 6, 4)/
χ(τ, 2, 4). We plot these in figure 1 and find that they increase with τ and converge towards
their maximum values in the flat space (τ →∞) limit (as given in (6.3)). This suggests that

“low-spin dominance of partial wave coefficients is the strongest in flat space
and weakens as we move away from flat space towards higher AdS curvature”.

7 Discussion

In this paper, we introduce a new approach to study CFT Mellin amplitudes motivated
by the program of Celestial amplitudes in flat space. We perform a Celestial transform of
the CFT Mellin amplitude. Using the crossing symmetric dispersion relation (CSDR), we
expand the resulting amplitude in a basis of crossing symmetric partial waves which we
refer to as the Celestial Witten blocks. The blocks possess remarkable positivity properties
in the variable ρ which is related to the Celestial variable z. These positivity properties
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Figure 1. The plots suggest that low-spin dominance weakens as we move away from the flat space
limit (τ →∞).

along with the positivity of OPE coefficients squared (unitarity) are sufficient to derive
two-sided bounds on Wilson coefficients.

The positivity properties we derive are sufficient to derive two-sided bounds on all
Wilson coefficients except W1,0 and W0,1 for which we only find a lower bound. In an
upcoming work [95], we will show that the ratio W0,1/W1,0 can also be bounded. This
follows from positivity properties of the full Mellin amplitude which imply two-sided bounds
on ratios of all Wilson coefficients in a CFT.

We then turn to deriving bounds in a 1/R expansion around the flat space limit. The
goal is to compare our results with the AdS Virasoro amplitude which is given by the planar
Mellin correlator of four stress tensor multiplets in N = 4 SYM. We find that it satisfies
our bounds upto sub-leading order in 1/R2. A complication that arises in taking the flat
space limit is the appearance of the graviton pole x2

y in the forward scattering limit. Due
to this pole, the partial wave expansion we write does not hold in the flat space limit for
Wilson coefficientsWp,q with 2p+3q < 4, in particular,W1,0 andW0,1. We do not face this
issue in the example we study because we consider a supersymmetric amplitude where the
graviton pole appears as 1

y . In an upcoming work, we show how to deal with the graviton
pole x2

y in a simple manner using the CSDR [96].
In the future, it will be interesting to extend our methods to theories with spinors

as well as theories with global symmetries [108–111]. Another area of application is the
pion bootstrap at large N [14, 97, 99, 100]. It will also be interesting to examine the
consequences of our methods for weakly-coupled CFTs [101–104]. QFTs in dS background
as considered in [105–107] offer an intriuging area of applicaton as well. Another interesting
direction is to study the connection between typically realness and the positive geometry
of scattering amplitudes [112–114].
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A Details of conventions

We define c(k)
τ,` = C∆,`N∆,`R

(k)
∆,`, where C∆,` is the OPE coefficient squared as defined in [68]

and the normalization factor is given as

N∆,` = 2`(∆ + `− 1)Γ2(∆ + `− 1)Γ(∆− h+ 1)
Γ(∆− 1)Γ4

(
∆+`

2

)
Γ2
(
∆φ − ∆−`

2

)
Γ2
(
∆φ − 2h−∆−`

2

) ,

R(k)
∆,` =

Γ2
(

∆+`
2 + ∆φ − h

) (
1 + ∆−`

2 −∆φ

)2

k

k!Γ(∆− h+ 1 + k) .

The form for the Mack polynomial we use is [68]

P
(s)
∆−h,`(s, t) =

∑̀
m=0

`−m∑
n=0

µ(∆,`)
n,m

(∆− `
2 − s

)
m

(−t)n , (A.1)

where µ has a general closed form

µ(∆,`)
n,m =

2−``!(−1)m+n(h+ `− 1)−m
(
`+∆

2 −m
)
m

(`+ ∆− 1)n−`
(

∆−`
2 +n

)
`−n

(
∆−`

2 +m+n
)
`−m−n

m!n!(`−m−n)!

× 4F3

(
−m,−h+ ∆− `

2 + 1,−h+ ∆− `
2 + 1, n+ ∆− 1; ∆ + `

2 −m, ∆− `
2 +n,−2h− `+ ∆ + 2; 1

)
.

(A.2)
In the main text, we use

P∆,`(s1, s2) = P
(s)
∆−h,`

(
s1 + 2∆φ

3 , s2 + ∆φ

3

)
,

and we further define
P(k)

∆,` (z) ≡ P∆,`

(
τk, s2 = τk(z − 1)

2

)
. (A.3)

B Flat space limit

B.1 Large R expansion of the Mack polynomial

The large s and large ν = τ + `− h expansion of the Mack polynomial is given as follows

P(k)
τ+`,`(z) = 8−``!s`

(h− 1)`

[(
C

(h−1)
`

(
1 + 2t

s

)
− (h− 1)

ν2 C
(h)
`−2

(
1 + 2t

s

))

+2(h− 1)2

s

(
C

(h)
`−2

(
1 + 2t

s

)
− 1
ν2

(
hC

(h+1)
`−4

(
1 + 2t

s

)
− C(h)

`−2

(
1 + 2t

s

)))
+h− 1

24s2

(
2
(
−3h2 + 2h(5`− 7) + `2 − 22`+ 31

)
C

(h)
`−2

(
1 + 2t

s

)
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+2h
(
24h2 − 40h+ 1

)
C

(h+1)
`−4

(
1 + 2t

s

))
+ 1
ν2

((
4h
(
24h2 − 2h(4`+ 17)− 2`2 + 14`− 9

)
C

(h+1)
`−4

(
1 + 2t

s

)
−6
(
4h2 − 8h+ 3

)
C

(h)
`−2

(
1 + 2t

s

)
+ h

(
−48h3 + 32h2 + 83h+ 3

)
C

(h+2)
`−6

(
1 + 2t

s

))

+6ν2C
(h)
`−2

(
1 + 2t

s

))]
+ . . .

(B.1)

where we put t = s2 −
∆φ

3 , s = s1 + 2∆φ

3 , s2 = z−1
2 s1, s1 = τk. Then, we simply need to

plug k = xτ2 and the expansion for τ(r, `, R) in (5.6) and expand around large R.

B.2 Large R parametrization of the OPE coefficient

The normalization factor relating the OPE coefficient squared to the flat space partial
waves in (5.6) is given as

D(τ, `, k) = π34−`−6τ6

4τ (`+ 1) sin2 (πτ
2
)R(k)

τ+4+`,`Nτ+4+`,` . (B.2)

Again, we plug k = xτ2 and expand around large τ first. At leading order, this gives

D(τ, `, xτ2) = τ−2`
(

23`−7e−
1
4xx−l−6

(l + 1)τ6 +O

( 1
τ7

))
. (B.3)

We then plug in the expansion for τ(r, `, R) and expand around large R.

C Conventions for flat space partial wave coefficients

The f0(r, `) are defined by (see appendix C of [80])

Im (M(S1, S2)) =
∑
r,`

f0(r, `)
(`+ 1)S2

1
πδ

(
S1 −

(
m0(r)

2

)2)
C(1)
`

(
1 + 2S2

S1

)
. (C.1)

In our convention,

Im (M(S1, S2)) = 128π
∑
`

(2`+ 2)a`(S1)S−
1
2

1 C
(1)
`

(
1 + 2S2

S1

)
(C.2)

where a`(S1) is the imaginary part of the flat space partial wace coefficient. This convention
ensures 0 ≤ a` ≤ 1.

Comparing both gives,

a`(S1) = 1
256

∑
r

f0(r, `)
(`+ 1)2S2

1
S

1/2
1 δ

(
S1 −

(
m0(r)

2

)2)
. (C.3)

This allows us to define a moment for partial wave coefficients a`(S1) as

ã(`, n) =
∫ ∞

4M2

dS1

S
n+1+ 1

2
1

a`(S1) = φ(0)(`, n)
256(`+ 1)2 . (C.4)
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