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1 Introduction

The nonperturbative effects of quantum chromodynamics (QCD) encompass a wide array
of rich phenomena ranging from low energy nuclear physics, the spectrum of hadrons, the
structure of energetic protons described by parton densities, the physics of hadronization,
the formation and evolution of the quark gluon plasma, and much more, each contributing
to the richness of the QCD phase-diagram. These nonperturbative effects can be probed
in different experimental setups and studied via an appropriate effective field theory of
QCD. Among these, the physics of hadronization is one such complex phenomenon that
has so far remained largely elusive to first principle calculations. Studies of jets and jet
substructure in high energy collisions have offered us invaluable insights about hadronization.
On the other hand, jets are also unique tools that allow us to probe fundamental aspects
of QCD and in searching for physics beyond the Standard Model [1, 2]. Hadronization
impacts measurements of jet substructure observables relative to a reference parton level
computation in a way that is partly unique to the observable and partly universal [3–9].
Because the effects of hadronization cannot be predicted from first principle calculations,
the effort has been to seek ways to eliminate or minimize hadronization corrections, such
that perturbative calculations can be reliably compared to collider data.
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Typically, the dominant effects of hadronization arise in the soft wide angle physics,
which is challenging to bring under theoretical control even in perturbation theory. More-
over, at the Large Hadron Collider (LHC), the underlying event and pile-up also make a
contribution of similar nature. With the introduction of grooming algorithms [10–17] it
has been possible to make first principle predictions for jet substructure observables at the
LHC due to their effectiveness in removing soft wide angle contamination in the complex
LHC environment and thus suppressing hadronization, underlying event and pile-up effects.
These grooming techniques were initially designed as a taggers to suppress effects of QCD
in searches of multiprong decays originating from electroweak and potentially new physics,
but over the recent years they have come to be seen as tools with strong potential for
applications in precision physics.1

Among various variants, the soft drop (SD) groomer [14] (including the modified Mass
Drop Tagger [13, 15] as a special case), has been extensively studied and all-orders factoriza-
tion formulae have been established [24–26]. Among an impressive list of phenomenological
applications, examples of application of soft drop grooming include measurement of the
QCD splitting functions [27, 28], study of fragmentation structure [29, 30], isolation of the
soft-sensitive dynamics [31–33], and quantification of medium modifications [34–38]. The
algorithm of jet grooming is intimately tied to sequential recombination jet algorithms that
pair-wise cluster particles/subjets into subjets, to eventually form a jet. The criteria for soft
drop is given by a sequential test between pairs of subjets i and j found by de-clustering a
Cambridge-Achen clustered tree (based solely on angular separation) of particles in a jet:

min(pTi , pTj )
pTi + pTj

> zcut

(∆Rij
R0

)β
. (1.1)

If the pair collectively fails this criteria then the softer of the two (say i with pTi < pTj ) is
removed and the next pair obtained by de-clustering the harder subjet (j) is tested for this
condition. The pair that eventually satisfies this condition terminates the groomer, and
the remaining particles in either of the subjets in the pair constitute the groomed jet. The
parameters zcut and β control the strength of the groomer and are typically chosen to be
zcut ∼ 0.1 and β ∼ 1. The careful formulation of the soft drop condition in eq. (1.1) ensures
that IRC-safe observables measured on jets remain calculable in perturbation theory even
after grooming.

A classic observable studied extensively at the LHC is the jet mass. For instance,
both ungroomed and groomed jet substructure measurements have been measured by
ALICE [39], ATLAS [40–44], and CMS [45–48] collaborations. The groomed jet angularities
(a generalization of the jet mass) and other groomed jet substructure observables have also
recently been measured by the ALICE [49], CMS [46, 50] and ATLAS [51] collaborations.
Soft drop jet mass has been explored for applications such as precision top quark mass [26,
52, 53] and strong coupling constant [54, 55] measurements. State-of-the-art perturbative
calculations for soft drop jet mass have reached high accuracy of next-to-next-to-next-to-
leading logarithmic accuracy (N3LL) matched to next-to-next-to-leading order (NNLO)

1Somewhat recently, there has also been a lot of exciting progress in developing a completely complemen-
tary approach of employing energy-energy correlators (EEC) for precision collider physics [18–23].
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predictions for groomed jets in the e+e− → qq̄ process [56], and next-to-next-to-leading-
logarithmic (NNLL) accuracy [24, 55] for jets at the LHC.

To make these calculations useful for precision phenomenology, it is crucial to describe
nonperturbative power corrections in the jet mass spectrum. In the region where soft drop
is effective in removing soft-wide angle radiation and where perturbation theory is dominant,
the nonperturbative power corrections can be as large as ∼ 10%. As was shown in a recent
analysis in ref. [55], these power corrections thus start to become relevant already at NNLL
accuracy. For instance, we showed in ref. [55] that the unconstrained effects of hadronization
respectively contribute about 3% and 8% irreducible uncertainty for quark and gluon jets
groomed with zcut = 0.1 and β = 1. Understanding these effects is also crucial for top quark
mass determination using soft drop jet mass — in ref. [26], leveraging on the resilience of soft
drop against underlying event, soft drop jet mass was proposed as a candidate for precision
top mass measurement, and followed up by a MC top mass calibration in Pythia8+Powheg
by the ATLAS collaboration [53]. By directly comparing the theory prediction against the
unfolded LHC data, a determination of the top quark mass in a short distance scheme can
be envisaged. However, the peak of the distribution where the dominant sensitivity to the
top mass lies, receives significant hadronization corrections which are important to account
for in order to formulate a consistent hadron level prediction.

One of the most common method to account for non-perturbative (NP) corrections is to
use hadronization models, such as those provided with event generators such as Pythia [57],
Sherpa [58], and Herwig [59], see for example ref. [60]. These hadronization models are
extremely useful tools in guiding our intuition and allow us to study nonperturbative effects
on any arbitrarily complicated observable. In a more recent work in ref. [61], this approach
was employed to delve deeper into the interaction between parton showers and hadronization
corrections, and account for the impact of event migration across pT,jet bins resulting from
hadronization and underlying event. However, it is crucial to note that these models are
designed to be compatible with the respective parton showers that are less precise than
the aforementioned analytical calculations at NNLL and beyond, and hence are not ideal
for describing NP power corrections in high precision analytical calculations. Moreover,
the parameters of event generators are tuned to a broad range of measurements that are
distinct from the target observables, thereby claiming universality. However, understanding
the underlying physics described by these models from a field theory perspective remains
challenging. Due to the intricate nature of these models, which offer multiple adjustable
parameters, it is unclear how to associate an intrinsic uncertainty with their predictions.

Another approach utilized to incorporate nonperturbative corrections involves the
application of an analytical model for hadronization [8, 13, 54, 62]. This model is based
on the dispersive representation of the strong coupling constant [63], allowing for efficient
analysis of power corrections in a wide range of observables using Feynman diagrams
with ‘probe nonperturbative gluons’. The dispersive approach has established a systematic
framework for investigating power corrections, addressing various limitations encountered
with hadronization models in precision phenomenology. In a first approximation, a single
probe gluon is often sufficient to capture the broad-scale kinematic features of the power
corrections. For non-inclusive observables like the jet mass, where the computation of power
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corrections may differ depending on whether one or multiple probe gluons are considered,
the introduction of the ‘Milan factor’ [64, 65] allows for universality features within this
approach to be preserved. The Milan factor has been computed for a wide range of e+e−-
event shapes, and studies in refs. [66, 67] have explored the variations in the correction
factor arising from different jet clustering procedures. Finally, in ref. [68] has shown how
naive estimates within the dispersive framework can be further corrected to account for
hadron mass effects. To additionally account for underlying event effects, extensions have
been made to this model in refs. [8, 62].

However, it is important to note that the dispersive model assumes that the effective
coupling constant αeff(µ2)/π, when extrapolated into the nonperturbative regime, remains
numerically small and that higher-order effects in powers of the effective coupling do not
significantly alter the estimation of power corrections. Despite the considerable phenomeno-
logical success of the dispersive approach, a rigorous proof of the universality of the infrared
coupling constant and its smallness for an expansion in the number of probe gluons is still
lacking, and hence the approach fundamentally relies on a model. To enhance the robustness
and reliability of the dispersive approach, it is important to thoroughly investigate the
behavior of the effective coupling constant in the nonperturbative regime. Such a positive
proof would allow the results obtained within this framework to be regarded as entirely
model-independent, providing more confidence in their interpretation and applicability to
high-precision phenomenology.

1.1 A field-theoretic formalism for nonperturbative corrections

For precision studies we need a first principles, field-theoretic paradigm for describing these
nonperturbative power corrections [3–7, 9] that can be systematically improved and can
be combined with perturbative calculations independent of their accuracy, beyond those
achievable with parton showers. This has been made possible thanks to rigorous QCD
factorization theorems [69–73], combined with the powerful machinery of soft-collinear
effective field theory (SCET) [74–78]. These methods have enabled a field theoretically
consistent study of NP power corrections. Although this approach cannot be applied gener-
ally to any arbitrary observable, by systematically analyzing a variety of jet substructure
observables and event shapes, we have been able to draw universal and model-independent
conclusions about the precise way in which NP corrections enter in these observables. By
exploiting the universal properties of soft QCD, this approach allows us to identify the
kinematic dependence of these NP corrections in a variety of jet observables, allowing them
to be parameterized in terms of a few (a lot fewer than parameters in a hadronization
model), universal O(ΛQCD) constants. For example, an analysis along these lines reveals
that nonperturbative corrections to the jet mass and jet pT take the following form [8, 9],

δm2
J = pT

(
RΩ(1)

κ +R3Ω(3)
κ + . . .

)
, δpT = 1

R
Υ(−1)
κ +RΥ(1)

κ + . . . . (1.2)

Here Ω(i)
κ and Υ(i)

κ are unknown O(ΛQCD) parameters which only depend on the flavor
κ = q, g of the parton initiating the jet, and R is the jet radius. The specific scaling of these
corrections with pT and the dependence on the jet radius is a model-independent statement
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that can be derived on general arguments of factorization of the soft physics. Here the
leading terms with the smallest power of R correspond to the leading hadronization effect in
each of these cases. The subleading terms (including ones not shown in eq. (1.2)) arise due
to contributions from the initial state radiation (ISR) and the underlying event. Although
not obtainable from a first-principle calculations, these nonperturbative parameters can be
determined by making a comparison with experimental data.2 These field theory predictions
also clearly demarcate the kinematic region of validity of the proposed NP corrections as
well as allow for precisely estimating the associated theory uncertainty (for example in terms
of the size of higher order power corrections) and the experimental uncertainty (related to
the statistics and the fitting procedure). This approach was pursued in determination of
the strong coupling constant from the LEP data in refs. [79–81].

In this paper we focus on a factorization-based approach for analyzing the nonper-
turbative power corrections to groomed observables. Based on recent advancement in the
understanding of the nonperturbative structure of the soft drop jet mass in refs. [82, 83], the
power corrections in this case can be similarly encoded into universal, O(ΛQCD) constants
as in eq. (1.2). These power corrections in the groomed case in fact constitute a very
non-trivial extension and a combination of those in eq. (1.2) for ungroomed jet mass shift
and ungroomed jet pT . More specifically, it was shown in ref. [82] that, in the region where
soft drop is active and where a perturbative description is valid, the leading corrections
from hadronization take the following form:

1
σκ

dσκ
dm2

J

= 1
σ̂κ

dσ̂κ
dm2

J

−QΩ◦◦1κ
d

dm2
J

(
1
σ̂κ

dσ̂◦◦κ
dm2

J

)
+

Υ�
1,0κ + βΥ�

1,1κ
Q

1
σ̂κ

dσ̂�
κ

dm2
J

+ · · · , (1.3)

where the left hand side denotes the hadron-level soft drop jet mass cross section initiated
by a parton κ = quark/gluon and Q is the hard scale characterizing the jet. The first
term on the right hand side with a hat, dσ̂κ is the perturbative parton level soft drop jet
mass cross-section. The 1/σ̂κ factor is included to consider normalized cross section. In the
region of small jet masses that we are interested in, these functions can be unambiguously
defined as jet mass distributions of jets with a specific quark or gluon flavor. See ref. [55] for
more details on how these objects can be systematically defined in the context of inclusive
or exclusive jet measurements. The remaining pieces in eq. (1.3) are the nonperturbative
corrections parameterized in terms of the three O(ΛQCD) universal nonperturbative (NP)
constants Ω◦◦1κ, Υ�

1,0κ and Υ�
1,1κ. They appear with certain jet mass dependent functions

that we describe below.
The form of NP power corrections in eq. (1.3) holds for jet masses that satisfy the

criteria

QΛQCD
m2
J

(
m2
J

QQcut

) 1
2+β

� 1 , (soft drop stopping emission is perturbative) , (1.4)

m2
J < QQcut , (soft drop is active) .

2Further assumptions about the hadronization physics in the dispersive approach [8] can be used to
reduce them down to a single parameter (which also reveals that the leading hadronization correction to the
jet pT , Υ(−1)

1 < 0).
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Figure 1. Various regions of the soft drop jet mass spectrum that are differently affected by
nonperturbative corrections. This work focuses on the middle, soft drop operator expansion region,
where the hadronization corrections, while significant, can be described in a systematic expansion.
Here ξ = m2

J/(pTR)2.

Here Qcut ∼ Qzcut is the energy scale associated with soft drop and is precisely defined
below. This region is referred to as the soft drop operator expansion (SDOE) region and
is shown in figure 1. The first condition ensures that the subjet that stops the soft drop
is typically perturbative, such that soft drop spectrum can be calculated in perturbation
theory. This need not always be the case, but the cases where the stopping subjet is
nonperturbative are power suppressed. The second condition constraints the softer of
the stopping pair to be also collinear to the jet, such that the radiation at wider angles
is groomed away. For larger jet masses, the groomer can stop at wider angles and the
distribution consequently looks very similar to the ungroomed jet mass spectrum,

m2
J & QQcut , (plain jet mass resummation region) . (1.5)

Interestingly, it is only with the LHC kinematics with jets of transverse momenta ∼ 500GeV
that this OPE region opens up and becomes accessible.3 We also note that in eq. (1.3) we
have ignored the impact of hadronization on the hard scale Q. This is justified because the
spectrum in the SDOE region for large Q values (pT & 400GeV) is largely independent of
the jet pT , and while hadronization and underlying event impacts the relative statistics in
different jet pT bins, the impact on normalized cross section shown in figure 1 is expected
to be sub-dominant. This was also shown to be the case in ref. [61] where a transfer
matrix approach was employed to investigate the effect of migration across pT bins due to
hadronization and UE.

The three parameters are grouped in two terms which have distinct physical meanings
associated with them. The first term proportional to Ω◦◦1κ is the “shift correction” analogous

3Soft drop jet mass distributions (and soft drop angularities) have been measured in the legacy ALEPH
data in ref. [84]. However, at LEP energies the above conditions cannot be satisfied and almost the entire
soft drop jet mass spectrum (including even the cusp region) is fully nonperturbative.
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to eq. (1.2) that captures a shift to the groomed jet mass, coming from the NP particles4

that survive grooming. The second term proportional to Υ�
1,0κ and Υ�

1,1κ is referred to as the
“boundary correction” that describes how the outcome of the soft drop test (with respect to a
reference parton level configuration) is altered due to hadronization. The parameter Υ�

1,0κ is
exactly analogous to Υ(−1)

κ in eq. (1.2) but now refers to the pT of the dynamically determined
collinear-soft (c-soft) subjet that is found at the last stage of the soft drop groomer. The
term proportional to β is related to the change in direction of this c-soft subjet relative
to the collinear core due to hadronization. Thus, an interesting implication of jet grooming
is that both types of hadronization corrections appear in the same groomed observable.

We pause to note that ‘. . .’ in eq. (1.3) refer to two types of subleading power corrections.
The first kind are those that are suppressed by higher powers of ΛQCD. These power
corrections grow as the groomed jet mass is reduced and become O(1) for small jet masses
beyond the SDOE region. The second type corresponds to those where the radiation pattern
of the groomed jet is more complicated than a simplest possible “two-pronged configuration”
of a collinear and c-soft subjet. The second type of correction is a next-to-leading logarithmic
(NLL) effect, as at leading-logarthmic accuracy, strong ordering of angles between the
perturbative soft radiation off the jet can be assumed, such that any further radiation beyond
the c-soft subjet must lie at hierarchically small angles within the collinear jet, resulting in a
dipole-configuration that governs the hadronization corrections. Equivalently, eq. (1.3) can
be seen as an expansion in number of identified and ordered soft subjets, analogous to the
dressed gluon expansion employed in non-global logarithms (NGL) resummation [85] and
more recently for resummation of jet mass close to the cusp [86]. With this interpretation, the
leading terms in eq. (1.3) represent the leading single-subjet piece. The dominance of the two-
prong configuration was crucial in ref. [82] for identifying universal NP constants in eq. (1.3).

Because these corrections necessarily involve kinematic properties of the c-soft subjet
that cannot be unambiguously identified via the jet mass measurement, these corrections
appear with certain jet mass dependent perturbative weights dσ̂◦◦,�κ that capture this
dynamical effect. Furthermore, in the SDOE region specified by eq. (1.4), these weights
are perturbatively calculable and hence indicated with a hat. These weights are related
to moments of the groomed jet radius, Rg, the angular separation between the soft drop-
stopping pair, at a given jet mass m2

J .5 They are given in terms of cross sections that are
differential in these kinematic properties of the c-soft subjet in addition to the jet mass:

1
σ̂κ

dσ̂◦◦κ
dm2

J

≡
∫

drg rg
1
σ̂κ

d2σ̂κ
dm2

Jdrg
, (1.6)

1
σ̂κ

dσ̂�
κ

dm2
J

≡
∫ drgdzg δ

(
zg − zcutr

β
g

)
rg

1
σ̂κ

d3σ̂κ
dm2

Jdrgdzg
. (1.7)

4We will often refer to hadrons produced at the last stage of hadronization (for example, subsequent
to a parton shower in an event generator) as “nonperturbative particles”. In the language of SCET, these
corresponds to distinct modes in the effective theory that have significantly lower virtuality ∼ ΛQCD

compared to other perturbative modes.
5Unlike ref. [87], we do not normalize the groomed jet radius Rg by the original jet radius R. However,

for sake of simplifying calculations we will consider a normalized variant rg defined in eq. (2.16) below.
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We have expressed here the groomed jet radius Rg in terms of rg = Rg/R, which we also
generalize below in eq. (2.16) to include jets in e+e− collisions. Here, zg is the energy (or
pT ) fraction of the c-soft subjet. These moments in fact appear in precisely the same fashion
as the factor of jet radius R does in the leading NP power correction in the ungroomed jet
mass and jet pT in eq. (1.2). For the shift correction, the groomed jet mass shift is given by

m2
J,sd = m̂2

J,sd + pTRgΩ◦◦1κ . (1.8)

Here m̂J, sd is the jet mass of a reference parton level configuration. Here we are implicitly
considering inclusively identified jets, where, as we will discuss below, the hard scale
Q = pTR. Normalizing the jet mass squared by Q2 we find that the shift δm2

J,sd = rgΩ◦◦1κ/Q.
Thus, eq. (1.6) indicates that rg must be averaged over all possible values allowed for a
given jet mass measurement mJ . Lastly, because this shifts the value of the jet mass, the
corresponding shift upon Taylor-expanding appears as a derivative as shown in eq. (1.3).

The term in eq. (1.7) apperaing with a 1/rg factor is analogous to 1/R factor with the
leading hadronization effect associated with the jet pT in eq. (1.2). Instead of a shift in the
jet mass, this effect modifies the normalization of the cross section. It is analogous to how
the normalization of the jet mass spectrum changes from parton-level to hadron-level due
to migration of events across pT bins. Just as this effect predominantly affects the events
that are at the boundary of the pT -bin, the analogous correction in eq. (1.7) appears in
groomed jet mass when there are c-soft subjets near the “boundary” of passing/failing the
soft drop condition, i.e. when zg ≈ zcutr

β
g , such that effects of hadronization can lead to

different outcomes at parton and hadron levels. Hence, in eq. (1.7) an additional δ-function
for soft drop boundary is included. The factor of 1/rg can be understood by noting that
the parton level values ẑg and r̂g upon hadronization are modified as

zg = ẑg + 1
rg

Υ�
1,0κ
Q

, rg = r̂g −
Υ�

1,1κ
Q

. (1.9)

The two O(ΛQCD) constants Υ�
1,0κ and Υ�

1,1κ respectively encode the shift in the c-soft
subjet pT and the groomed jet radius. When combined together, along with the factor of β
resulting from differentiation of rβg , we arrive at the boundary correction in eq. (1.3). Finally,
as a technical remark, while eq. (1.7) is more intuitive to understand when expressed in
terms of zg, in practice, we will find it simpler to compute this correction by varying the
soft drop condition itself in the doubly differential cross section in eq. (1.6), allowing us to
recycle the calculations for the shift correction.

Next, while typical values of the grooming parameters lead to strong suppression of
underlying event (UE) and ISR effects, there are situations where less aggressive grooming
is desirable. For example, in the case of groomed boosted top quark jets [26], a strong
10%-level grooming invalidates a simple inclusive description of the top decay, and instead
a light grooming of 1%-level is desired. Likewise, for exclusively studying soft radiation
and quark gluon discrimination using the collinear-drop [31, 33], combinations of light and
more aggressive soft drop is employed. In such scenarios the effect of underlying event
on the jet mass spectrum is no longer negligible. We show in figure 2 the spectrum for
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Figure 2. For certain values of soft drop parameters, such as β = 2, the underlying event effects
can be significant. Here ξ = m2

J/(pTR)2.

zcut = 0.1 and β = 2. In the SDOE region the impact of UE is even somewhat larger than
hadronization. While it is impossible to predict the effects of UE from first principles, we
can nevertheless attempt to phenomenologically describe these effects by making certain
reasonable assumptions. The UE distribution is to a good approximation uniform in rapidity
and independent of the hard scattering, such that it makes a contribution proportional to
the jet area [88]. Under these assumptions, in ref. [89] we show that effects of ISR and UE
appear as corrections associated with higher powers of groomed jet radius:

1
σκ

dσhad+UE
κ

dm2
J

= 1
σκ

dσκ
dm2

J

−QΩ◦◦UE
d

dm2
J

(
C

(4)
1κ (m2

J)
σκ

dσκ
dm2

J

)
(1.10)

+ Υ�
0UE + βΥ�

1UE
Q

C
(2)
2κ (m2

J)
σκ

dσκ
dm2

J

+ · · · ,

where dσκ (without a hat) is the hadron level cross section and the left hand side, dσhad+UE
κ

is the hadron+UE level cross section. The jet mass dependent coefficients C(n)
1,2κ(m2

J) are
parton level rg-moments of the doubly differential soft drop and boundary soft drop cross
sections:

1
σ̂κ

dσ̂κ
dm2

J

C
(n)
1κ (m2

J) ≡
∫

drg rng
1
σ̂κ

d2σ̂κ
dm2

Jdrg
, (1.11)

1
σ̂κ

dσ̂
dm2

J

C
(n)
2κ (m2

J) ≡
∫

drgdzg δ(zg − zcutr
β
g ) rng

1
σ̂κ

d3σ̂κ
dm2

Jdrgdzg
.

The appearance of n = 4 for the shift correction and n = 2 for the boundary correction is
analogous to the jet radius scaling of the impact of ISR and underlying event on the jet
mass and jet pT distribution respectively [8].
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1.2 Precisely computing the perturbative weights of nonperturbative
moments

We thus see that eq. (1.3) significantly constrains the form of the leading nonperturbative
corrections, which can be parameterized for a given flavor of jet in terms of 3 constants.
However, for eq. (1.3) to be useful in precision physics with soft drop jet mass, we are
required to accurately calculate the jet mass dependent weights in perturbation theory.
The accuracy with which these weights can be determined in turn determines the extent to
which the NP parameters can be extracted or constrained in an analysis with real world
collider data. In ref. [82], a straightforward calculation of these weights at LL accuracy
in the coherent branching formalism was presented. The factorization in eq. (1.3) was
tested by performing a comparison between parton and hadron level jet mass spectra in the
e+e− → qq̄ process in the dijet region simulated in the MC event generators using the LL-
accurate predictions of the weights. However, while a good agreement with the predictions
of factorization was found, there was no clear procedure to ascertain the perturbative
uncertainty in the LL calculations.

To enable more precise predictions of these weights, it was in ref. [83] where their compu-
tation was first recast as moments of a multi-differential soft drop cross section. By dissecting
the kinematic phase space of rg and the mJ , ref. [83] identified the relevant set of effective
field theories that are required for a precise computation of the doubly differential cross sec-
tion in the SDOE region.6 The boundary correction in eq. (1.7) was computed by considering
variations in the soft drop condition in the doubly differential d2σ̂κ

dm2
Jdrg cross section. The EFT

formalism enabled a systematic improvement in the computation of these weights. In ref. [83]
these moments were computed with NLL resummation including O(αs) singular matrix ele-
ments to achieve NLL′ accuracy in the SDOE region. At the same time, the framework also
enabled a systematic estimate of the perturbative uncertainty associated with these weights
that was previously lacking in the LL calculations in the coherent branching framework.

In this work, with the goal of providing necessary perturbative input for eq. (1.3) for
precision phenomenology, we further improve the prediction of these jet mass dependent
perturbative weights. A straightforward improvement comes from employing relatively re-
cently calculated two-loop non-cusp anomalous dimensions of certain factorization functions
associated with soft drop from ref. [91] to extend the resummation of global logarithms in the
doubly differential cross section to NNLL accuracy. More crucially, we extend the calculation
by matching the doubly differential cross section in the SDOE region in eq. (1.4) to the
ungroomed region for m2

J & QQcut which involves calculating new contributions previously
not considered in ref. [83]. There the power corrections of the form

(
m2
J/(QQcut)

)2/(2+β)

were systematically dropped, which become significant close to the soft drop cusp for
m2
J . QQcut. They also impact the location of the soft drop cusp which differs between

NLL and NNLL estimates. Thus, it is essential to include these power corrections in order
to provide the necessary perturbative input for precision phenomenology consistent with
the NNLL soft drop jet mass prediction.

6See also [27, 32, 90] for applications of doubly differential cross sections in the context of other groomed
jet observables.
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In ref. [55], the matching of the single differential jet mass spectrum dσ/dm2
J be-

tween soft drop and plain jet mass resummation regions was derived from demand-
ing consistency with the doubly differential cross section dΣ(rg)/dm2

J that in the limit
rg = rmax

g (m2
J) ≤ 1 (applied as a cumulative measurement of rg) reduces to the jet mass

distribution, dΣ(rmax
g (m2

J))/dm2
J = dσ/dm2

J . As discussed in ref. [83], the calculation of
the doubly differential cross section involves consideration of three different EFTs depending
on whether the groomed jet radius is close to the minimum rg & rmin

g (m2
J) (“min-Rg”) or

maximum kinematic bound rg . rmax
g (m2

J) imposed by jet mass measurement (“max-Rg”),
or in an intermediate region within these bounds rmin

g (m2
J)� rg � rmax

g (m2
J) (“int-Rg”).

The regions of validity of these three EFTs are nontrivial patches in the m2
J -rg plane.

Consequently, the transition for the doubly differential cross section between the soft drop
and plain jet mass resummation regions can be expected to be significantly more intricate
than dσ/dm2

J due to nontrivial interplay of various power expansion that determine the
two-dimensional region in the m2

J -rg plane for the three EFTs; see figure 3.
Fortunately, as we show in this paper, the results in the min-Rg and int-Rg regimes

can be smoothly continued into the plain jet mass region. On the other hand, the max-Rg
regime (of which the single differential distribution dσ/dm2

J is a component) transitions
discontinuously between the soft drop and plain jet mass resummation region. This is
because, different from soft drop resummation region where rg ≤ rmax

g � 1, in the plain jet
mass region the rg is close to the jet radius boundary rg = 1 and the mode structure of the
soft sector in the EFT changes. However, the mode and resummation structure of this EFT
is identical to that of single differential jet mass (in either regions), and the dependence on
rg in this EFT can be incorporated via fixed order calculations. This allows us to employ
similar strategy as in ref. [55] to compute this matching. To achieve a smooth transition
between various patches in the entire m2

J -rg plane demarcating the EFTs we expand the
toolbox of ref. [83] including new resummation kernels, generalizations of profile functions
and weight functions described below. Finally, we also compute here the O(αs) non-singular
pieces that capture O(zcut) power corrections for the doubly differential cross section that
were previously not taken into account.

As above, the computation of the boundary soft drop cross section and its moments in
eq. (1.7) is also similarly extended into the plain jet mass region. In fact, we will find that
including the matching to the plain jet mass region significantly impacts the C(n)

2κ moment
defined in eq. (1.11) in the cusp region relative to C(n)

1κ because this moment sharply drops
to zero past the soft drop cusp. Furthermore, as shown in ref. [92], the dominant uncertainty
in the determination of nonperturbative parameters results from that of the C(−1)

2κ moment
because in the case of C1κ, the uncertainties in the single and doubly differential cross
sections are highly correlated and cancel in the ratio. The computation of C2κ is also
more challenging as the tree-level result is O(αs) and effects of resummation start at O(α2

s)
captured through cross terms of various one-loop pieces. When extending to the plain
jet mass resummation region, we find that new additional O(α2

s) cross terms arise. As a
result, while conceptually straightforward, the computation of the boundary cross section
quickly becomes unwieldy due to appearance of several resummation kernels associated with
these new pieces in the plain jet mass region and O(α2

s) cross terms, exhibiting intricate
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cancellations as we transition from groomed to ungroomed region. We overcome this and
simultaneously achieve an efficient numerical implementation of these resummation kernels
by recasting them as certain “integral transforms” involving nested plus-functions. We find a
significantly faster implementation of the boundary cross section compared to ref. [83] where
these kernels were instead expressed in terms of incomplete beta functions and their integrals.

The results of this work are used in complementary applications of eqs. (1.3) and (1.10)
and discussed in companion papers: firstly, as already mentioned above, in ref. [55] the
NNLL results are employed for estimating impact of the nonperturbative corrections on
αs-determination in a completely model-independent approach. Secondly, in ref. [92] these
results are used for a precise calibration of MC hadronization models in event generators,
investigating their interplay with parton showers, and rigorously testing the universality
predictions of eq. (1.3). Analysis of ref. [92] confirms that indeed with precise calculations
of the perturbative weights with reliable uncertainty estimates, a determination of these
parameters with LHC data is foreseeable. Finally, in ref. [89] the calculations of the
moments relevant for UE and ISR are used for an analogous calibration of underlying
event contribution in simulations. An interesting extension of this approach will be to
consider nonperturbative corrections to groomed angularities. We expect the dependence the
angularity exponent to be captured by more general perturbative weights. However, since
hadron mass effects impact jet mass and angularities (when measured in their usual scheme)
differently, care must be taken in relating the associated nonperturbative parameters.

The organization of the paper is as follows: in section 2 we discuss the effective field
theories required for a complete prediction of the doubly differential groomed cross section
and identify the relevant EFT modes for extension into the plain jet mass resummation
region. Before describing in detail the factorization formulae associated with each of
these regions, we will find it advantageous to first review O(αs) computation of various
factorization functions in section 3. In section 4 we describe how the results for these
functions are incorporated into the factorization formulae. The cross sections in various
regions are eventually combined together in section 5 where we also describe the procedure for
obtaining perturbative uncertainty. The analogous calculation for the boundary correction
is described in section 6. Having discussed the complete calculation of the perturbative
weights, in section 7 we compare the results of this work with the previous calculation in
ref. [83] as well as their impact on the jet mass spectrum and on the calibration of MC
hadronization models in terms of soft drop nonperturbative moments. In section 8 we show
a comparison of the NNLL resummed results and parton shower simulations for various
moments of rg, for both shift and boundary cross sections. We conclude in section 9. In
the appendices we consolidate some of the technical details.

2 Effective theory regions and modes

In this section we review the relevant results of previous work from refs. [55, 83] and discuss
the mode structure of the doubly differential cross section in the plain jet mass region. We
first review in section 2.1 the measurement and kinematics of inclusive jets and the various
energy scales associated with the groomed jet mass measurement. In sections 2.2 and 2.3
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we summarize the various effective field theory regions and modes derived in ref. [83] and
the new cases from extension into the plain jet mass region.

2.1 Measurement and kinematics

For concreteness, our starting point is the inclusive jet measurement in hadron colliders.
However, we will shortly generalize our notation to also simultaneously describe exclusive
jets in pp and inclusive jets in e+e− collisions. In the formal limit of jet radius R/2� 1 the
cross section for the process pp→ jet +X, where X includes any radiation we are inclusive
over factorizes as [93–95]

d3Σ(Rg)
dpTdηJdm2

J

=
∑
abc

∫ dxadxbdz
xaxbz

fa(xa,µ)fb(xb,µ)Hc
ab

(
xa,xb,ηJ ,

pT
z
,µ
)
Gc(z,m2

J ,Rg,pT ,R,µ) .

(2.1)

Here fa,b are parton distribution functions which when combined with inclusive hard
function Hc

ab account for the hard process leading to production of parton c. This can
also be generalized to describe processes with an additional vector boson V , such as
pp→ jet + V +X. The subsequent branching of the parton c to form a jet is described via
the inclusive jet function Gc. In addition to the jet pT and pseudorapidity ηJ , Gc depends
on z, the momentum fraction of original parton retained in the reconstructed jet as well as
(groomed) jet mass. Finally dΣ(rg) refers to the cross section that is differential in the jet
kinematics and the jet mass with an additional upper bound of Rg as the groomed jet radius.

In the small jet mass limit m2
J � p2

TR
2, the radiation in the jet is constrained to be

predominantly soft and collinear, such that the inclusive jet function factorizes as

Gfact.
c

(
z,m2

J , Rg, pT , R, µ
)

=
∑
i

Hc→i
(
z, pTR,µ

)
Ji(m2

J , Rg, pT , ηJ , R, µ)
[
1 +O

(
m2
J

p2
TR

2

)]
.

(2.2)

The factorization involves separation of hard collinear modes at scales pTR described by
Hc→i, and soft and collinear modes in a multiscale function Ji. As discussed in ref. [55], in
this region, the normalized cross section can be expressed as

1
σincl(pT , ηJ)

d3Σ(Rg)
dm2

JdpTdηJ
(2.3)

= xq(pTR, ηJ , µ) G̃q(m2
J , Rg, pTR,µ) + xg(pTR, ηJ , µ)G̃g(m2

J , Rg, pTR,µ) .

where xq,g are quark/gluon fractions that are theoretically well defined, but renormalization
scale µ-dependent objects. These fractions depend on the underlying hard process and
being normalized quantities are only mildly dependent on the parton distribution functions.
Our focus will be on computing the piece that captures the jet mass and groomed jet radius
dependence G̃κ, which is interpreted as the normalized cross section for parton κ:

G̃κ(m2
J , Rg, pTR,µ) ≡ 1

σincl
κ

dΣκ(Rg)
dm2

J

= Nκ
incl(pTR,µ)Jκ(m2

J , pT , ηJ , R, µ) . (2.4)

– 13 –



J
H
E
P
0
8
(
2
0
2
3
)
0
5
4

Here the normalization factor Nκ
incl arises from factoring out the piece of Hc→i that describes

the Sudakov double-logarithmic part connected with the soft-collinear factorization of Gc
in eq. (2.2). The product of Nκ

incl and Jκ lead to an RG-invariant combination that can
be independently studied. When considering different measurements involving groomed
jet mass and groomed jet radius, only the function Jκ will be modified. We will state the
all-orders factorization formulae below in terms of Gc in eq. (2.2), and employ eq. (2.4) for
numerical implementation.

2.1.1 Hard kinematics

The above formulation in terms of the normalized inclusive cross section G̃κ and quark/gluon
fractions can be extended to exclusive, fixed number of jets with a jet veto on additional
radiation, or jets in e+e− collisions. Apart from different definitions of the quark gluon
fractions, this involves straightforward substitutions of the hard scales and kinematic
and grooming parameters. Thus, it will prove worthwhile to develop a unified notation
to simultaneously treat all these cases. We first define the hard scale for the following
scenarios:

Qppincl ≡ pTR , Qppexcl ≡ 2pT cosh ηJ , Qe
+e−

incl ≡ 2EJ tan R2 , (2.5)

where the subscript ‘incl’ (‘excl’) indicates that the jets are identified inclusively (exclusively)
and the superscript for the incoming partons involved. This way, the function Nκ

incl only
depends on the scale Q. We now define a dimensionless variable ξ as a substitute for the
jet mass:

ξ ≡ m2
J

Q2 . (2.6)

We have suppressed the superscripts and subscripts on Q, and will generally follow this
convention, such that the above definition of ξ can be adjusted for the three situations in
eq. (2.5).

Next, to describe dynamics of the soft and collinear radiation we will work with light
cone coordinates defined via the light-like vectors

nµ ≡ ζ−1(1, ~n) , n̄µ ≡ ζ
(
1,−~n

)
, (2.7)

where the parameter ζ encodes a large boost in the jet direction given by:

ζppincl ≡
R

2 cosh ηJ
, ζppexcl ≡ 1 , ζe

+e−
incl ≡ tan R2 . (2.8)

Including the boost factors in the reference light-like vectors will allow us to work with
hemisphere-like coordinates and eliminate several intermediate factors involving jet radius.
In terms of these light-like vectors, we will follow the following light-cone decomposition of
momentum qµ:

qµ = q+ n̄
µ

2 + q−
nµ

2 + qµ⊥ , q+ ≡ n · q , q− ≡ n̄ · q . (2.9)
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2.1.2 Soft drop kinematics

Next we define some useful variables associated with soft drop. The criteria for soft drop
differs between e+e− and pp cases and is given by

min(Ei, Ej)
Ei + Ej

> zcut

(√
2 sin(θij/2)

sin(Re+e−
0 /2)

)β
, (e+e− case) , (2.10)

min(pTi , pTj )
pTi + pTj

> zcut

(∆Rij
Rpp0

)β
, (pp case) ,

Application of soft drop introduces an additional scale Qcut that plays a role in distinguishing
the radiation that is groomed away from the radiation that is not, which is given by

Qppcut, incl ≡ zcutQ
pp
incl

(
R

Rpp0

)β
, Qppcut, excl ≡ zcutQ

pp
excl

(2 cosh ηJ
Rpp0

)β
, (2.11)

Qe
+e−

cut, incl ≡ zcutQ
e+e−
incl

(
√

2
tan R

2

sin Re
+e−

0
2

)β
.

As we probe jets with smaller masses, the emissions at wider angles become progressively
softer and are groomed away. Using the scale Qcut we can identify the jet mass transition
point below which soft drop becomes active. This is simply given by

ξ0 ≡
Qcut
Q

. (2.12)

This point roughly defines the location of the distinct soft drop cusp, and for the reasons
that will become clear below, is referred to as the “soft-collinear transition point”. Higher
order corrections slightly modify this value. We will see below that at O(αs), the transition
point appears at the location

ξ′0 ≡
ξ0(

1 + ζ2) 2+β
2
. (2.13)

We will refer to ξ′0 as the soft wide-angle transition point. ξ′0 corresponds to the location of
the cusp for the NNLL resummed groomed jet mass spectrum. For later use we also define

Q′cut ≡ Qξ′0 = Qcut(
1 + ζ2) 2+β

2
. (2.14)

Finally, the of validity of perturbative calculations is specified by eq. (1.4), which demarcates
the extent of the SDOE region. In terms of ξ, we define the lower end of the perturbative
region by

ξSDOE ≡ ξ0

(
ρΛQCD
Qξ0

) 2+β
1+β

, (2.15)

where the factor ρ > 1 is included to approximate the strong inequality in eq. (1.4). Below
we will take ρ = 5.
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Finally, we now specify our choice of normalization for the groomed jet radius. We refer
to Rg as the groomed jet radius which can stand for rapidity invariant angular distance in
pp collisions or physical angular distance in e+e− collisions. For simplicity, we will work
with a normalized version of Rg to simultaneously treat these two cases defined by

rppg ≡
Rg
R
, re

+e−
g ≡

tan Rg
2

tan R
2
. (2.16)

Here the same definitions apply for both inclusive and exclusive cases in pp. In this
normalization, rg can at most be 1, which corresponds to scenario where grooming does not
eliminate any radiation from the jet.

As detailed in ref. [83], the measurement of jet mass m2
J , or equivalently ξ, puts

kinematic bounds on the groomed jet radius, such that

Simultaneous ξ, rg measurement: rmin
g (ξ) ≤ rg ≤ rmax

g (ξ) , (2.17)

where

rmin
g (ξ) =

√
ξ , rmax

g (ξ) ≈ min
{( ξ

ξ0

) 1
2+β

, 1
}
. (2.18)

The rmin
g arises from the kinematic bound imposed by the jet mass measurement: for a given

jet mass ξ, it is impossible to squeeze the radiation into a jet of radius smaller than rmin
g (ξ).

The maximum bound has two terms. For ξ < ξ0, we are in the region where grooming is
active. Here the combination of the groomed jet mass measurement and requirement that
the radiation pass grooming leads to the first of the two upper bounds shown. For ξ > ξ0,
the radiation can be close to the jet boundary and still pass the groomer, and hence the
upper bound rmax

g (ξ) saturates to 1. Here we have stated an approximate version of rmax
g

that was derived in ref. [83] in the limit ξ � ξ0. We provide the formula compatible with the
NNLL transition point below in eq. (2.18). We also see that for ξ < 1, rmin

g (ξ) < rmax
g (ξ).

2.2 Effective theory regions

The measurement of jet mass, groomed jet radius and application of soft drop introduce
several energy scales which can become hierarchical in certain regions of the ξ-rg phase
space and consequently induce logarithmic singularities. We now list down the various
regions that require a specialized effective field theory based treatment.

We first consider the single differential groomed jet mass measurement and enumerate
the various factorization regimes that are relevant.

1. Fixed order region: This corresponds to the region when ξ . 1. Here the fixed order
treatment of the (groomed) jet mass differential cross section suffices.

2. Plain jet mass resummation region: This is the region where ξ0 < ξ � 1. Here ξ � 1
implies that the jet mass mJ is hierarchically smaller than the hard scale Q. This
results in dominance of the soft-collinear modes leading to Sudakov double logarithms,
αns lnkξ, with k ≤ 2n. This region can be described by the standard soft-collinear
Sudakov factorization for plain jet mass. The condition that ξ > ξ0 implies that
effects of grooming alone can be treated in fixed order perturbation theory.
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3. Soft drop resummation region: As we discussed above, the effects of grooming on the
spectrum become visible for ξ < ξ0. When we move to yet lower jet masses for ξ � ξ0,
additional logarithms related to soft drop involving the ratio ξ/ξ0 become large and
require resummation. This results in an additional factorization of the soft radiation
beyond the one mentioned above in plain jet mass resummation.

Next, as discussed in ref. [83], three different effective theory regimes related to simul-
taneous measurement of rg and ξ arise:7

1. Max-Rg regime: In this region the groomed jet radius is close to the maximum possible
value, such that

Max-Rg regime: rmin
g (ξ)� rg . rmax

g (ξ) . (2.19)

As we will see below, the factorization in this regime is identical to that of the single
differential groomed jet mass, and the additional measurement of rg can be treated as
a fixed order correction. Note that unlike ref. [83] we do not impose an additional
constraint of rmax

g (ξ)� 1 and also include the situation rmax
g (ξ) . 1 which arises in

the plain jet mass region.

We also note that this regime is also relevant for the leading hadronization corrections.
Here the collinear-soft modes that pass grooming lie at maximal possible angular
separation from the collinear core, and hence the leading two-pronged configurations
relevant for eq. (1.3) arise specifically in this regime.

2. Intermediate-Rg regime: This regime is relevant when the groomed jet radius is
hierarchically separated from both minimum and maximum kinematic bounds:

Intermediate-Rg regime: rmin
g (ξ)� rg � rmax

g (ξ) . (2.20)

Depending on the precise values of the hard scale and grooming parameters, this
regime may or may not be relevant. However, because of the two hierarchies, describing
this regime leads to the most factorized version of the doubly differential cross section.
As a result, the intermediate regime cross section can be used as an efficient tool to
subtract the singular pieces and define a stable prescription for incorporating fixed
order power corrections in the entire double differential spectrum.

3. Min-Rg regime: This regime arises when the groomed jet radius is close to the lower
bound:

Min-Rg regime: rmin
g (ξ) . rg � rmax

g (ξ) . (2.21)

This physically corresponds to a scenario where the jet is filled uniformly with hard
collinear radiation, with a haze of soft radiation at the same angular scales. If we fix
the rg and vary the jet mass, this region in fact corresponds to the end-point of the jet

7In ref. [83] these regimes were respectively referred to as large-Rg, intermediate-Rg and small-Rg cases.
We avoid using labels ‘small’ and ‘large’ to avoid any confusion related to numerical size of Rg.
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Figure 3. Three regimes relevant for doubly differential groomed jet radius and groomed jet mass
measurement for β = 0, 1, 2. The region to the left of the vertical line ξ = ξ0 is the soft drop
resummation region, and to the right is the plain jet mass resummation region. The boundaries
of the shaded region denote the kinematic bounds imposed on groomed jet radius by the jet mass
measurement. Depending on the values of grooming parameters, a third intermediate-Rg regime
can become relevant.

mass spectrum. For this reason, the factorization in this regime has resemblance with
the fixed-order region of the singly differential jet mass spectrum. This feature of this
regime was utilized in ref. [55] for incorporating jet mass related power corrections in
the single differential jet mass spectrum.

We show the various regimes discussed above in figure 3 for jets with LHC kinematics
and β = 0 and β = 1. The vertical line at ξ = ξ0 separates the soft drop and plain jet mass
resummation regions. The boundary of the colored region is the kinematic bound on rg
given in eq. (2.18). We see that for β = 0, the intermediate-Rg regime is absent whereas this
regime covers a substantial phase space for β = 2 in the soft drop resummation region. The
precise formulae for demarcating these regions are discussed in section 5 and appendix C.

2.3 Effective theory modes

From above discussion we learn that there are two jet mass regions and three regimes corre-
sponding to groomed jet radius measurements that require resummation. It is instructive to
represent the measurements and the modes in the (primary) Lund plane of a soft/collinear
emission off the jet-initiating fast parton as shown in figure 4. Here z is the momentum
fraction of the emission and θ is the angle it makes relative to the jet axis. The choice
of axes in figure 4 implies that emissions to the right are increasingly collinear and those
higher are increasingly softer. These schematic figures are extremely useful in identifying
the relevant effective theory modes that appear at the intersections of various measurements
and constraints imposed on the jet.

We first describe how various measurements are displayed in figure 4. The black vertical
line labeled θ = R denotes the boundary of the jet and the gray region corresponds to
radiation outside the jet. Emissions on the blue line with negative slope labeled p+Q = m2

J

contribute (in combination with the fast massless jet-initiating parton) jet mass of m2
J .

Thus, increasing the jet mass corresponds to moving this line downwards. The soft drop
condition is given by the dashed black line with positive slope. The groomed jet radius
measurement is given by the orange vertical line labeled θ = Rg. Emissions that are vetoed
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Figure 4. Effective theory modes appearing in various regimes for double differential measurement.
The solid yellow shaded region is where radiation is groomed away. The rectangular gray region
corresponds to radiation falling outside the jet. The hatched region is the radiation vetoed by
combination of grooming, jet mass and groomed jet radius measurements. The top row corresponds
to the jet masses in the soft drop resummation region where as the bottom row describes scenarios
in the plain jet mass resummation region.

by soft drop are the ones that are encountered at angles larger than Rg and are shown
in yellow shaded region. Hence, the columns from left to right correspond to max-Rg,
intermediate-Rg and min-Rg regimes respectively. Finally, a given jet mass and groomed
jet radius measurement (along with jet radius and soft drop constraints) excludes any
emissions that are harder shown in the hatched region. The cases in the top row where the
jet mass lies in the soft drop resummation region were already considered in ref. [83]. The
cases in the bottom row are new and correspond to larger jet masses in the plain jet mass
resummation region. In the bottom left plot we show the completely ungroomed case when
the Rg = R. However, this plot also includes the scenario where Rg . R, and where the
effects of soft drop do not require any further factorization.

We notice that the relevant EFT modes appear at the intersections of two or more
measurement or veto conditions.

1. Collinear modes: Modes on the x-axis represent collinear radiation with z ∼ 1 emitted
by the fast parton at the core of the jet. In the scenarios there is a softer radiation
at wider angles that stops the groomer, the jet mass measurement imposed on the
collinear radiation at the center of the jet is essentially inclusive denoted by C. On
the other hand, (hard-)collinear modes denoted by N and C respectively see the jet
radius and groomed jet radius boundary.

2. Wide-angle soft modes: Modes at wider angles on the y-axis will naturally encounter
the groomer first. For jet masses in the top row of figure 4, the radiation at the
jet-boundary must necessarily be groomed away, else we would have found a larger
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Mode Description Scaling
N Hard-collinear mode at jet boundary Q

(
1, 1, 1

)
C Hard-collinear mode within Rg Qrg

(
rg,

1
rg
, 1
)

C Collinear mode for inclusive jet mass Q
√
ξ

(√
ξ, 1√

ξ
, 1
)

Splain Wide-angle soft Qξ
(
1, 1, 1

)
SG Global soft Qcut

(
1, 1, 1

)
CSg Collinear-soft mode for groomed jet radius Qcutr

1+β
g

(
rg,

1
rg
, 1
)

CSm Collinear-soft mode for jet mass Qξ
rg

(
rg,

1
rg
, 1
)

CS Collinear-soft mode at maximum Rg
Qξ

rmax
g (ξ)

(
rmax
g (ξ), 1

rmax
g (ξ) , 1

)
Table 1. Scalings of various modes for soft drop double differential cross section following the
light cone decomposition in eq. (2.9). Including jet radius related factors in the reference light cone
vectors results in hemisphere-jets like kinematics. The third argument also indicates the virtuality
of these modes.

value of the jet mass. The physics associated with this radiation can be factorized in
the soft drop resummation region when ξ � ξ0 described by the global soft mode SG.
On the other hand, in the plain jet mass region, for rg . 1, the wide angle radiation is
energetic enough to pass soft drop and thus we do not encounter this mode, as shown
in the bottom left case. Here, the wide angle mode Splain is the same as in the plain
jet mass resummation. These two modes only differ in their relative energy and the
combination of measurements and vetoes they see.

3. Collinear-soft modes: Finally, we have modes that have simultaneously z � 1 and
θ � 1. These collinear soft modes are distinguished from each other via the role they
play in the entire measurement. The CS mode is the same as that appears in the
single differential jet mass measurement in the soft drop resummation region. It has
the largest possible angle and energies to saturate the soft drop condition. When
rg < rmax

g (ξ), we denote the soft radiation that stops soft drop as CSg. However, as
we can see CSg mode does not carry sufficient energy to result in the jet mass shown.
Thus we include another mode CSm which lies at similar angular scales but is more
energetic as required by the jet mass measurement.

The momentum scaling of various modes in the light cone coordinates in eq. (2.9) are
shown in table 1.

3 One-loop results of factorization functions

Before we state the factorization formulae for each of the cases discussed above, we first
perform one-loop caluclations of the corresponding soft and collinear factorization functions
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to gain familiarity with the details of measurements associated with each of the modes in
figure 4. We first set up a convenient notation to express one-loop phase space integrals in
section 3.1 and review the known factorization functions results in section 3.2. In section 3.3
we describe computation of new factorization functions associated with modes in max-Rg
and also compute the fixed order non-singular corrections.

3.1 Matrix elements and measurement functions

At O(αs), the jet initating parton i∗ splits as i∗ → jk. It will prove useful parameterize the
light cone coordinates in the decomposition in eq. (2.9) in terms of dimensionless numbers:

Soft functions : y ≡
q+
j

Q
, x ≡

q−j
Q
, (3.1)

Collinear functions : y ≡ p2
i∗

Q2 , x ≡
q−j
Q
,

where j is the softer of the two final state partons. Here p2
i∗ = s = (pj + pk)2. All the soft

functions associated with the wide-angle soft and collinear-soft modes involve the same
eikonal matrix element with a single-particle phase space, whereas those associated with
collinear modes involve the full splitting functions and two-particle phase space. For a
generic observable O including any veto conditions Θ, the corresponding soft and collinear
functions renormalized in MS-scheme at O(αs) are then given by

J [1]
κ

(
O, δO, µ

)
≡ αs

2π
eεγE

Γ(1− ε)

(
µ2

Q2

)ε ∫ 1

0

dx dy
y1+ε[x(1− x)

]ε δO[Ô(x, y), Θ̂(x, y)
]∑
κ′

P̂κ′κ(x) ,

S [1]
κ

(
O, δO, µ

)
≡ αsCκ

π

eεγE

Γ(1− ε)

(
µ2

Q2

)ε ∫ ∞
0

dx dy
(xy)1+ε δO

[
Ô(s,cs)(x, y), Θ̂(s,cs)(x, y)

]
, (3.2)

where δO combines the measurement and veto conditions on the two parton system and
also includes the virtual contribution. We have suppressed dependence on kinematic and
grooming parameters for simplicity. The splitting functions are given by

P̂gq(x) = CF

[1 + (1− x)2

x
− εx

]
,

P̂gg(x) = CA

[
x

1− x + 1− x
x

+ x(1− x)
]
,

P̂qg(x) = nfTF

[
x2 + (1− x)2 − 2εx(1− x)

]
. (3.3)

In the soft matrix elements, we additionally take soft or collinear-soft limit of the observable
and the veto condition as indicated by the superscript (s, cs):

Soft limit : x→ 0 , x ∼ y , (3.4)

Collinear-soft limit : x→ 0 , y

x
→ 0 .

Thus, factorization functions associated with various modes differ only in the details
of the measurement and veto conditions and some of the modes may only involve veto
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conditions. For the cases we are interested in, we will only consider the jet mass measurement,
which is the same for both collinear and soft matrix elements, and is simply given by

ξ̂(x, y) = y . (3.5)

Next, we have the jet radius, groomed jet radius and soft drop constraints. The jet radius
constraint corresponds to the kT clustering condition:

Θ̂kT (x, y) ≡ Θ
(
x(1− x)− y

)
. (3.6)

Note that the jet radius does not explicitly appear in the above constraint as we have
absorbed the factor ζ defined in eq. (2.8) in the definitions of the light cone coordinates.
Similarly, it is easy to check the condition that the two partons are within the groomed jet
radius is given by

Θ̂rg(x, y, rg) ≡ Θ
(
r2
gx(1− x)− y

)
. (3.7)

Finally, the full soft drop condition in eq. (2.10) in terms of the variables x and y is given by

Θ̂sd(x, y, ξ0, ζ) = Θ
(min{x1, x2}

x1 + x2
− ξ0

( y

4x1x2

)β
2
)
, (3.8)

where

x1(x, y) = xyζ2

2 + 1− x
2 , x2(x, y) = (1− x)yζ2

2 + x

2 , (3.9)

and we have suppressed dependence on β for simplicity.
The corresponding soft and collinear-soft limit of these results read:

soft particle clustered with the jet: Θ̂(s,cs)
kT

(x, y) ≡ Θ(x− y) , (3.10)

soft emission at an angle < rg: Θ̂(s,cs)
rg (x, y, rg) ≡ Θ(r2

gx− y) ,

collinear-soft emission passes soft drop: Θ̂(cs)
sd (x, y, ξ0) ≡ Θ

(
x− y

β
2+β ξ

2
2+β
0

)
.

soft emission passes soft drop: Θ̂(s)
sd (x, y, ξ0, ζ) ≡ Θ

(
x+ yζ2 − y

β
2+β ξ

2
2+β
0

)
,

Having compiled the various measurement and veto functions, we now describe how
they are combined in the functions δO appearing in eq. (3.2).

3.2 Compilation of known results

We first review the known results of factorization functions.

3.2.1 Hard-collinear radiation outside the jet
We first state the normalization contribution of the hard-collinear near the boundary of the
jet as calculated in refs. [55, 96]:

N q
incl(Q,µ) = 1 + αs(µ)CF

2π

{
− 1

2 ln
2 µ

2

Q2 −
3
2 ln

µ2

Q2 −
13
2 + 3π2

4

}
, (3.11)

Ng
incl(Q,µ) = 1 + αs(µ)

2π

{
− CA

2 ln2 µ
2

Q2 −
β0
2 ln µ

2

Q2 + CA

(
− 5

12 + 3π2

4

)
− 23

12β0

}
.
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3.2.2 Inclusive jet mass measurement on collinear radiation

We now consider the simplest case of inclusive ungroomed jet mass, which is relevant for the
collinear mode C in the max- and intermediate-Rg cases. Here the measurement function is
given by

δCξ (x, y) = δ(ξ − y)− δ(y) , (3.12)

such that using eq. (3.2) the inclusive jet function at NLO is given by

J [1]
κ (m2

J , µ) = δ(m2
J) + 1

Q2J
[1]
κ

(
ξ = m2

J

Q2 , δ
C
ξ , µ

)
+O(α2

s) . (3.13)

We have expressed the jet function in terms of its natural argument, and will do the same
for all the factorization functions below. The results read [97, 98]

Jq(m2
J , µ) = δ(m2

J) + αs(µ)CF
π

(
L1(m2

J , µ
2)− 6

8L0(m2
J , µ

2)− δ(m2
J)

4
(
π2 − 7

))
, (3.14)

Jg(m2
J , µ) = δ(m2

J) + αs(µ)
π

(
CA
π
L1(m2

J , µ
2)− β0

4 L0(m2
J , µ

2)

+ δ(m2
J)

36
(
CA
(
67− 9π2)− 20nFTR

))
,

where Ln is the standard plus function:

Ln(`+, µ) ≡ 1
µ
Ln
(
`+

µ

)
. (3.15)

For later use we also state the result for the Laplace transform defined by

J̃κ(x, µ) ≡
∫ ∞

0
dm2

J e
−xm2

J Jκ(m2
J , µ) , (3.16)

such that

J̃q(x, µ) = 1 + αsCF
π

[
1
2 log2

(
xµ2eγE

)
+ 3

4 log
(
xµ2eγE

)
+ 7

4 −
π2

6

]
, (3.17)

J̃g(x, µ) = 1 + αs
π

[
CA
2 log2

(
xµ2eγE

)
+ β0

4 log
(
xµ2eγE

)
+ CA

(
67
36 −

π2

6

)
− nFTR

5
9

]
.

3.2.3 Hard-collinear radiation within groomed jet radius

Next, we turn to the hard-collinear mode C which involves an additional constraint of
groomed jet radius with jet mass measurement:

δCξ (x, y, rg) ≡ Θ̂rg(x, y, rg)
[
δ(ξ − y)− δ(ξ)

]
, (3.18)

where Θ̂rg was defined in eq. (3.7). The corresponding collinear function is then given by

Cκ
(
ξ, rg, Q, µ

)
≡ 1
r2
g

Cκ
(
ξ

r2
g

, Qrg, µ

)
= δ(ξ) + J [1]

κ

(
ξ, δCξ , µ

)
+O(α2

s) , (3.19)
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with explicit expressions of the function with three arguments being [55, 83],

Cq
(
ξ,Q, µ

)
= δ(ξ) + αs(µ)CF

π

{
δ(ξ)

(1
4 ln

2 µ
2

Q2 + 3
4 ln

µ2

Q2 + 7
4 −

5π2

24

)
(3.20)

+ Θ
(
1− 4ξ

)[
− L1(ξ) + L0(ξ)

(
2ln
(

1 +
√

1− 4ξ
2

)
− 3

4
√

1− 4ξ
)]}

,

Cg
(
ξ,Q, µ

)
= δ(ξ) + αs(µ)

π

{
δ(ξ)

(
CA
4 ln2 µ

2

Q2 + β0
4 ln µ

2

Q2 + CA

(
67
36 −

5π2

24

)
− 5

9nfTF

)

+ Θ
(
1− 4ξ

)[
− CAL1(ξ) + L0(ξ)

(
2CA log

(
1 +
√

1− 4ξ
2

)

− β0
4
√

1− 4ξ + CA − 2nfTF
6 ξ

√
1− 4ξ

)]}
.

3.2.4 Collinear-soft radiation within groomed jet radius

We now consider soft functions and consider the simplest case of CSm mode with jet mass
measurement and groomed jet radius boundary. The measurement function is simply a soft
limit of the previous case and is defined as:

δCSm
ξ (x, y, rg) ≡ Θ̂(cs)

rg

(
x, y, rg

)[
δ(x− y)− δ(ξ)

]
, (3.21)

with the corresponding function given by

Sκcm

(
`+

rg
, µ

)
= δ

(
`+

rg

)
+ 1
Q
S [1]
κ

(
ξ = `+

Q
, δCSm
ξ , µ

)
+O(α2

s) , (3.22)

which yields

Sκcm

(
`+

rg
, µ

)
= δ

(
`+

rg

)
+ αsCκ

2π

[
− 4L1

(
`+

rg
, µ

)
+ π2

12δ
(
`+

rg

)]
. (3.23)

We next define the Laplace transform:

S̃cm(u, µ) ≡
∫ ∞

0
d`+ e−u`

+
Sκcm(`+, µ) , (3.24)

which yields

S̃κcm
[
u, µ

]
= 1 + αsCκ

π

[
− log2 (ueγEµ)− π2

8

]
. (3.25)

3.2.5 Wide-angle soft radiation failing soft drop

The next case we consider is the global soft modes SG that fail soft drop. Here we only
have a veto condition and no measurement:

Θ̂SG(x, y, ξ0, ζ) ≡ Θ̂(s)
kT

(x, y)
(
1− Θ̂(s)

sd (x, y, ξ0, ζ)
)
, (3.26)
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such that

SκG
(
Qcut, ζ, β, µ

)
= 1 + S [1]

κ

(
· , Θ̂SG , µ

)
+O(α2

s) . (3.27)

Here the empty slot in the first argument simply denotes that the function has no differential
measurement applied on it and only contributes to the normalization. At one-loop the
result reads [24, 95]

SκG
(
Qcut, ζ, β, µ

)
= 1 + αs(µ)Cκ

π

[
1

(1 + β) log2
( µ

Qcut

)
− π2

24
( 1

1 + β

)
(3.28)

− (2 + β)
4

(
2Li2

[
ζ2

1 + ζ2

]
+ log2 [1 + ζ2])] .

Note that the above global soft function is really only valid for inclusive jets measurement.
For exclusive measurements, one additionally needs to include contributions from the
beam region and other trigger jets. However, as detailed in ref. [55], the above result
is nevertheless useful in the case of exclusive jets with an appropriate treatment of the
quark-gluon fractions.

3.2.6 Collinear-soft radiation at intermediate groomed jet radius

Analogous to above, we consider the case of CSg modes that pass soft drop and are within
the required groomed jet radius, but do not contribute to the jet mass measurement:

Θ̂CSg(x, y, rg, ξ0) ≡ Θ̂(cs)
rg (x, y, rg)Θ̂(cs)

sd (x, y, ξ0) . (3.29)

The corresponding function being

Sκcg
(
Qcutr

1+β
g , β

)
= 1 + S [1]

κ

(
· , Θ̂CSg , µ

)
+O(α2

s) . (3.30)

While formally in eq. (3.29) we are required to take the collinear-soft limit of the soft drop
constraint, we will also find it useful to employ the results of intermediate-Rg regime for
implementing fixed-order subtractions. To this end, it is helpful to evaluate the above
function in the soft-wide angle limit, for which we can directly recycle the computation of
the previous result of global soft function (while being careful about minus signs):

Sκcg
(
Qcutr

1+β
g , ζg, β

)
= 1− αs(µ)Cκ

π

[
1

(1 + β) log2
(

µ

Qcutr
1+β
g

)
− π2

24

( 1
1 + β

)

− (2 + β)
4

(
2Li2

[
ζ2
g

1 + ζ2
g

]
+ log2 [1 + ζ2

g

])]
. (3.31)

Here we have defined a variable ζg analogous to ζ defined above in eq. (2.8)

ζppg,incl ≡
Rg

2 cosh ηJ
, ζppg,excl ≡ 1 , ζe

+e−
g,incl ≡ tan Rg2 . (3.32)
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3.3 One-loop results in max-Rg and fixed-order regime

We now state results for the remaining functions that are relevant for max-Rg regimes.
Some of the results below have already been calculated elsewhere but only after expanding
in rg � 1 limit, and we reinstate the full rg dependence at O(αs).

3.3.1 Widest angle collinear soft radiation passing soft drop

We consider the CS mode that saturates the kinematic constraints imposed by jet mass
measurement and soft drop passing condition. Here we have

δCS
ξ (x, y, rg, ξ0) ≡ Θ̂(cs)

sd (x, y, ξ0)
[
Θ̂(cs)
rg (x, y, rg)δ(ξ − y)− δ(ξ)

]
(3.33)

This condition can be straightforwardly obtained by demanding that modes that pass soft
drop are also required to satisfy the groomed jet radius constraint. On the other hand,
modes that fail soft drop and the virtual piece, however, do not see this constraint. The
collinear-soft function is then given by

Sκc
(
k̃, rg, Qcut, β, µ

)
≡ δ(k̃) + 1

QQ
1

1+β
cut

S [1]
κ

ξ = k̃

QQ
1

1+β
cut

, δCS
ξ , µ

+O(α2
s) . (3.34)

Note that we have made use of a 2+β
1+β dimensional variable which appears as the natural

argument for this function. It will be helpful to split the measurement in eq. (3.33) as

δCS
ξ (x, y, rg, ξ0) = Θ̂(cs)

sd (x, y, ξ0)
[
δ(ξ − y)− δ(ξ)

]
+ ∆δCS

ξ, rg(x, y, rg, ξ0) , (3.35)

where

∆δCS
ξ, rg(x, y, rg, ξ0) ≡ −

(
1− Θ̂(cs)

rg (x, y, rg)
)
Θ̂(cs)

sd (x, y, ξ0)δ(ξ − y) , (3.36)

such that the first term simply results in the standard collinear-soft function for single
differential jet mass, and the second piece in a finite fixed order correction:

Sκc
(
k̃, rg, Qcut, β, µ

)
= Sκc

(
k̃, β, µ

)
+ ∆Sκrg

(
k̃, rg, Qcut, β, αs(µ)

)
, (3.37)

where [24] (see also ref. [55])

Sκc
(
k̃, β, µ

)
= δ(k̃) + αsCκ

π

[
−2(1 + β)

2 + β
L1

(
k̃, µ

2+β
1+β

)
+ π2

24
2 + β

1 + β
δ(k̃)

]
. (3.38)

Here the dependence on Qcut drops out as it is a high scale from the perspective of low
energy collinear-soft modes. The Laplace transform is defined by

S̃κc (s, β, µ) ≡
∫

dk̃ e−sk̃Sκc
(
k̃, β, µ

)
, (3.39)

such that

S̃κc (s) = 1 + αsCκ
π

[
−
(1 + β

2 + β

)
log2

(
seγEµ

2+β
1+β

)
− π2

24
β(3β + 4)

(1 + β)(2 + β)

]
. (3.40)
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Next we turn to the finite correction ∆Sκrg that describes fixed-order corrections due
to rg measurement and re-introduces dependence on Qcut. This correction was evaluated
in ref. [83] in the rg � 1 limit. Since we are also interested in covering the region close to
the soft drop cusp, where rg . 1, we will find it helpful for the purposes of matching to
include the full jet radius dependence by employing the soft-wide angle limit of the soft
drop constraint Θ̂(s)

sd in eq. (3.33) and including jet radius constraint Θ̂(s)
kT

, such that we use
in eq. (3.35)

∆δCS, full
ξ, rg

(x, y, rg, ξ0, ζ) ≡ −Θ̂(s)
kT

(x, y)
(
1− Θ̂(s)

rg (x, y, rg)
)
Θ̂(s)

sd (x, y, ξ0, ζ)δ(ξ − y) , (3.41)

which yields the correction piece

Q
1

1+β
cut ∆Sκrg

(
`+Q

1
1+β
cut , rg, Qcut, ζ, β, αs(µ)

)
= 1
Q
S [1]
κ

(
ξ = `+

Q
,∆δCS, full

ξ, rg
, µ

)
(3.42)

= αsCκ
π

Θ(`+ −Q′cutv(rg))
`+

[
ln(r2

g) + Θ(Q′cut − `+)ln
((Qcut

`+

) 2
2+β − ζ2

)]
,

where we have defined

v(rg) ≡
(

1 + ζ2

1
r2
g

+ ζ2

) 2+β
2

, (3.43)

and have expressed the result in terms of `+Q
1

1+β
cut due to explicit Qcut dependence from

constraining rg. We had defined Q′cut in eq. (2.14). We can check that by setting ζ to zero,
we recover the result in the soft drop resummation region (ξ < ξ0) calculated in ref. [83]:

Q
1

1+β
cut ∆Sκrg

(
`+Q

1
1+β
cut < Q

2+β
1+β
cut , rg, Qcut, ζ = 0, β, αs(µ)

)
(3.44)

= −2
2 + β

αsCκ
π

Θ
(
`+

Qcut
− r2+β

g

) 1
`+

log
(

`+

Qcutr
2+β
g

)
.

We thus see that including soft-wide angle effects modify the transition point from Qcut
to Q′cut.

3.3.2 Wide-angle soft radiation in plain jet mass region

We now consider the final case where the wide-angle soft mode Splain is tested for soft drop,
jet radius constraints with jet mass measurement. This is relevant for the max-Rg regime
in the plain jet mass resummation region. The measurement function is given by

δ
Splain
ξ (x, y, rg, ξ0, ζ) ≡ Θ̂(s)

kT
(x, y)Θ̂(s)

sd (x, y, ξ0, ζ)
[
Θ̂(s)
rg (x, y, rg)δ(ξ − y)− δ(ξ)

]
(3.45)

This expression is a simple extension of eq. (3.33) where we have also included the jet
radius constraint. We will find it helpful to split the measurement into chunks that we have
already encountered:

δ
Splain
ξ (x, y, rg, ξ0, ζ) = δCSm

ξ (x, y, 1) + ∆δCS, full
ξ, rg

(x, y, rg, ξ0, ζ) + ∆δSplain
ξ, sd (x, y, ξ0, ζ) .

(3.46)
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In the first term on the right hand side, setting rg = 1 in eq. (3.21) results in the same jet
radius constraint, and hence is simply the familiar ungroomed soft function. The second
piece accounts for the cumulative measurement of groomed jet radius using eq. (3.41).
Finally, the new piece accounts for effects of soft drop on wide-angle soft modes:

∆δSplain
ξ, sd (x, y, ξ0, ζ) = −Θ̂(s)

kT
(x, y)

(
1− Θ̂(s)

sd (x, y, ξ0, ζ)
)[
δ(ξ − y)− δ(ξ)

]
. (3.47)

Hence, the soft function in the plain jet mass region is given by

Sκplain
(
`+, rg, Qcut, ζ, β, µ

)
= δ(`+) + 1

Q
S [1]
κ

(
ξ = `+

Q
, δ
Splain
ξ , µ

)
+O(α2

s) (3.48)

= Sκcm
(
`+, µ

)
+Q

1
1+β
cut ∆Sκrg

(
`+Q

1
1+β
cut , rg, Qcut, ζ, β, αs(µ)

)
+ ∆Sκsd

(
`+, Qcut, β, ζ, αs(µ)

)
,

where we have written the result in terms of previous results in eqs. (3.23) and (3.42) and
a new piece given by [55]

∆Sκsd
(
`+, Qcut, ζ, β, αs(µ)

)
= 1
Q
S [1]
κ

(
ξ = `+

Q
,∆δSplain

ξ, sd , µ

)
(3.49)

= −αs(µ)Cκ
π

[
Θ(`+)Θ(Q′cut − `+)

`+
ln
((Qcut

`+

) 2
2+β − ζ2

)][Q′cut]

+

.

Here the plus-function with a non-standard boundary condition is defined as

[
Θ(x)q(x)

][x0]
+ ≡ lim

ε→0

(
Θ(x− ε)q(x)− δ(x− ε)

∫ x0

ε
dx′ q(x′)

)
. (3.50)

We also note that for functions satisfying q(x) = λαg(λ−1x) we have,[
Θ(x)q(x)

][x0]
+ = λα

[
Θ(λ−1x)g(λ−1x)

][λ−1x0]
+ . (3.51)

This property proves useful in simplifying expressions involving integrals of such plus-
functions.

3.3.3 Fixed-order cross section

We now turn to the fixed order cross section. Here the measurement function is same as
eq. (3.45) without any expansions:

δFO
ξ (x, y, rg, ξ0, ζ) ≡ Θ̂kT (x, y)Θ̂sd(x, y, ξ0, ζ)

[
Θ̂rg(x, y, rg)δ(ξ − y)− δ(ξ)

]
, (3.52)

and the fixed order cross section is given by

GFO
κ,sd

(
ξ, rg, ξ0, ζ, αs(µ)

)
= J [1](ξ, δFO

ξ , µ
)

+O(α2
s) . (3.53)

Because of the complicated form of the full soft drop condition in eq. (3.8) we will evaluate
this numerically. To this end, we define a subtraction term with the measurement function,

δ
FO(0)
ξ (x, y, rg, ξ0, ζ) ≡ Θ̂kT (x, y)Θ̂(s)

sd (x, y, ξ0, ζ)
[
Θ̂rg(x, y, rg)δ(ξ − y)− δ(ξ)

]
, (3.54)

– 28 –



J
H
E
P
0
8
(
2
0
2
3
)
0
5
4

where we have now replaced full soft drop constraint by its soft limit in eq. (3.10), and
evaluate the following function numerically by implementing subtraction at the level of the
integrand:

∆GFO[1]
κ,sd

(
ξ, rg, ξ0, ζ, αs(µ)

)
= GFO

κ,sd
(
ξ, rg, ξ0, ζ, αs(µ)

)
− GFO(0)

κ,sd
(
ξ, rg, ξ0, ζ, αs(µ)

)
. (3.55)

The soft matrix element corresponding to this measurement is given by

G̃FO(0)
κ, sd (ξ, rg, ξ0, ζ, αs(µ)) ≡ S [1]

κ

(
ξ, δ

FO(0)
ξ , µ

)
+O(α2

s) , (3.56)

such that we have

ξG̃FO(0)
q, sd (ξ, rg, ξ0, ζ, αs(µ)) = αs(µ)CF

π
ln

 1
2

(
1 +

√
1 + 4ξ/r2

g

)
max

{
1
2

(
1−

√
1 + 4ξ/r2

g

)
, ξ

2
2+β
0 y

β
2+β − yζ2

}
 ,

ξG̃FO(0)
g, sd (ξ, rg, ξ0, ζ, αs(µ)) = αs(µ)CA

π
ln

 1/2

max
{

1
2

(
1−

√
1 + 4ξ/r2

g

)
, ξ

2
2+β
0 y

β
2+β − yζ2

}
 .

(3.57)

Since we are interested in the differential cross section we can restrict to ξ > 0 by multiplying
by ξ and avoid considering the zero-bin terms.

4 Factorization and resummation

Having discussed the mode structure, we now state the factorization formulae for the three
regimes discussed here [83]. In section 4.1 we describe the factorization formula for max-Rg
regime, and review min and intermediate Rg regimes in section 4.2.

4.1 Max-Rg regime

We first consider the max-Rg regime in the plain jet mass region and identify the resummation
kernels associated with the one-loop results calculated in section 3.3.

4.1.1 Max-Rg in plain jet mass resummation region

We recall the discussion in section 2.1 where in eq. (2.2) we showed how in the small jet
mass region the inclusive jet function factorizes, which can be formulated in terms of an
RG invariant jet mass distribution for a jet flavor κ in eq. (2.4). We will see that the
various cases we consider below for ξ � 1 will differ only in the details of the multi-scale
Jκ function describing soft collinear dynamics. We will treat the non-global logarithms
at NLL accuracy where they can be factorized. Next, in the ungroomed region the soft
drop condition and measurement of the groomed jet radius are accounted for via fixed
order corrections, and hence the factorization and resummation proceeds precisely the same
way as the ungroomed jet mass case. This is given by the bottom left scenario in figure 4
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involving the hard collinear modes N , the (inclusive) collinear modes C and the wide angle
soft modes Splain. The factorized cross section is given by

Gplain
κ (z, ξ, rg, µ) =

∑
κ′

Hκ′→κ(z,Q, µ) d
dξ

[
SκNGL

(
t[ξQ,Q]

)
Σκ

plain(ξ, rg, Q,Qcut, ζ, µ)
]
, (4.1)

where we have suppressed dependence on kinematic and grooming parameters in Gplain
κ .

As shown in eq. (2.2), this factorization involves the same hard collinear function Hκ′→κ.
The jet mass measurement with cumulative rg cut off is described by the derivative of the
cumulative cross section:

Σκ
plain(ξ,rg,Q,Qcut, ζ,µ) =

∫ ∞
0

dsd`+c Jκ
(
s,µ

)
Sκplain

(
`+c , rg,Qcut, ζ,β,µ

)
δ

(
ξ− s

Q2−
`+c
Q

)
,

(4.2)

where Sκplain is the cumulative version of the wide-angle soft function in eq. (3.48).

Sκplain
(
`+c , rg, Qcut, ζ, β, µ

)
≡
∫ `+c

0
d`+ Sκplain

(
`+, rg, Qcut, ζ, β, µ

)
. (4.3)

The SκNGL accounts for non-global logarithms up to NLL accuracy, and the argument is
defined as

t[µ0, µ1] ≡ 1
2π

∫ µ1

µ0

dµ′

µ′
αs(µ′) . (4.4)

From eq. (4.2) we see that the NGLs depend on the integral of running coupling between
wide-angle soft and hard-collinear scales.

Finally, we point out that factorizing the cross section in eq. (4.2) amounts to dropping
the following power corrections:

Gκ
(
z, ξ, rg, αs(µ)

)
= Gplain

κ (z, ξ, rg, µ)
(
1 +O(ξ0, ξ)

)
, (4.5)

where the left hand side is the full QCD cross section which only depends on running
coupling at a single scale µ. In the resummed version of the factorized cross section we
will employ separate jet mass and groomed jet radius dependent profile scales for each of
the factorization functions. In addition to the O(ξ) jet mass power corrections mentioned
above, we have also dropped the finite-zcut terms of O(ξ0).

We now describe the resummation using the renormalization group evolution of the
functions appearing in factorization formula above. We will consider the normalized cross
section G̃plain

κ defined in eq. (2.4) after stripping off the DGLAP evolution. We will find it
helpful to isolate the fixed-order corrections in Sκplain in eq. (3.48) and decompose G̃plain

κ as

G̃plain
κ (ξ, rg, Q,Qcut, ζ, µplain) = G̃plain

κ ,no sd(ξ,Q, µplain) + ∆G̃plain
κ (ξ, rg, Q,Qcut, ζ, µplain) .

(4.6)

Instead of a single scale µ, we employ here a set of scales µplain for plain jet mass resummation
that minimize the logs in each factorization function:

µplain ≡ {µN , µJ(ξ), µs(ξ)} . (4.7)
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Precise implementation of these scales was discussed extensively in refs. [55, 83]. We
summarize the formulae for these scales and their variations in appendix B.

The first of these is the resummed ungroomed cross section given by

G̃plain
κ,no sd(ξ,Q, µplain) = Nκ

incl(Q,µN )eKN
(µN
Q

)ωN
J plain
κ,no sd(ξ,Q, µplain) , (4.8)

where KN and ωN are resummation kernels associated with the hard collinear function
Nκ

incl. We follow a shorthand throughout this paper

KF ≡ jFK
(
ΓF [αs], µ, µF

)
+ η

(
γF [αs], µ, µF

)
, ωF ≡ η

(
ΓF [αs], µ, µF

)
, (4.9)

where KF and ωF are resummation kernels associated with any factorization function F ,
jF is the dimension of the argument of the function such as m2

J(jF = 2), `+(jF = 1),
k̃(jF = 2+β

1+β ), µF is the choice of scale used to minimize the logs and µ is the final scale
up to which the function is RG evolved (which we will leave unspecified). The functions
K(Γ, µ, µF ) and η(Γ, µ, µF ) are responsible for implementing single and double logarithmic
resummation associated with cusp ΓF and non-cusp γF anomalous dimensions of the
functions. The formulae for these kernels were described in detail in appendix A of ref. [83].
In appendix A we state the anomalous dimensions required for NNLL resummation.

The function J plain
κ,no sd accounts for the remaining soft and collinear pieces:

J plain
κ,no sd(ξ,Q, µplain) = d

dξ
(
SκNGL

(
t[Qξ,Q]

)
Σκ

no sd(ξ,Q, µplain)
)
, (4.10)

where Σκ
no sd is defined analogously to Σplain in eq. (4.2):

Σκ
no sd

(
ξ,Q, µ

)
=
∫

ds
∫

d`+c Jκ
(
s, µ

)
Sκcm(`+c , µ) δ

(
ξ − s

Q2 −
`+

Q

)
, (4.11)

and similar to eq. (4.3), Sκcm is the cumulative version of the Scm soft function defined in
eq. (3.22). Making the RG evolution in eq. (4.10) explicit, we have

J plain
κ,nosd(ξ,Q,µplain) =

(
SκNGL

(
t[Qξ,Q]

)
J plain
κ [∂Ω;ξ,Q,µplain] e

γEΩ

Γ(−Ω) (4.12)

+
( d
dlnξS

κ
NGL

(
t[Qξ,Q]

))
J κplain[∂Ω;ξ,Q,µplain] eγEΩ

Γ(1−Ω)

)∣∣∣∣∣
Ω=ω̃csm (µs,µJ )

,

where Ω is evaluated at

ω̃csm(µs, µJ) ≡ ωcsm(µ, µs) + ωJ(µ, µJ) , (4.13)

and the function of the derivative operator is given by

J plain
κ [∂Ω;ξ,Q,µplain]≡ 1

ξ
eKJ+Ks

(
Qµs

)ωs(µ2
J

)ωJ
(ξQ2)Ω

×J̃κ

[
∂Ω+log

(
µ2
J

Q2ξ

)
, αs(µJ)

]
S̃κcm

[
∂Ω+log

(
µs
Qξ

)
,αs(µs)

]
. (4.14)
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Here J̃κ and S̃κcm are the Laplace transforms of the jet and ungroomed soft function, and
we have written them in a notation that makes the logarithms explicit:

J̃κ
[
log(eγExµ2

J), αs(µJ)
]
≡ J̃κ(x, µJ) , (4.15)

S̃κcm

[
log

(
ueγEµs

)
, α(µs)

]
≡ S̃κcm

(
u, µs

)
.

We now turn to the remaining piece in eq. (4.6). Since this term involves fixed order
terms that are not related to a boundary condition of the RG evolution, they have to be
treated differently, and result in the formula

∆G̃plain
κ (ξ,rg,Q,Qcut, ζ,µplain) =Nκ

incl(Q,µN )eKN
(µN
Q

)ωN
(4.16)

×
(
SκNGL

(
t[Qξ,Q]

)
J plain
κ [∂Ω;ξ,Q,µplain]Qplain

κ (Ω, ξ,rg,αs(µs))

+
( d
dlnξS

κ
NGL

(
t[Qξ,Q]

))
J plain
κ [∂Ω;ξ,Q,µplain]Qplain

κ (Ω−1, ξ,rg,αs(µs))
)∣∣∣∣

Ω=ω̃(µs,µJ )
.

where the kernel Qplain
κ is defined as Laplace transform of the fixed order soft function terms

and convolved with RG resummation kernels:

Qplain
κ ≡ Qsd

κ

(
Ω, ξ, αs(µ)

)
+Qrgκ

(
Ω, ξ, rg, αs(µ); amax

20
)

+Q(sd,rg)
κ

(
Ω, ξ, rg, αs(µ)

)
. (4.17)

The first two terms in eq. (4.17) involve the O(αs) soft function pieces in eqs. (3.42)
and (3.49):

Qsd
κ

(
Ω, ξ, αs(µ)

)
≡ eγEΩ

Γ(−Ω)

∫ ∞
0

d`+ L−Ω
0

(
1− `+

Qξ

)
∆Sκsd

(
`+, Qcut, ζ, β, αs(µ)

)
,

Qrgκ
(
Ω, ξ, rg, αs(µ); amax

20
)
≡ eγEΩ

Γ(−Ω)

∫ ∞
0

d`+ L−Ω
0

(
1− `+

Qξ

)(
1 + αs(µcs)

π
amax

20

)
×Q

1
1+β
cut ∆Sκrg

(
Q

1
1+β
cut `

+, rg, Qcut, ζ, β, αs(µ)
)
, (4.18)

and the third is an O(α2
s) cross term:

Q(sd,rg)
κ

(
Ω, ξ, rg, Qcut, ζ, β, αs(µ)

)
≡ eγEΩ

Γ(−Ω)

∫ ∞
0

d`+1 d`+2 L
−Ω
0

(
1− `+1 + `+2

Qξ

)
(4.19)

×∆Sκsd
(
`+1 , Qcut, ζ, β, αs(µ)

)
Q

1
1+β
cut ∆Sκrg

(
Q

1
1+β
cut `

+
2 , rg, Qcut, ζ, β, αs(µ)

)
.

Here we have defined

La0(x) ≡ La(x) + 1
a
δ(x) , La(x) ≡

[Θ(x)
x1−a

]
+
, a 6= 0 , (4.20)

and case with Ω = 0 corresponds to turning off resummation:

lim
Ω→0

eγEΩ

Γ(−Ω)L
−Ω
0 (x) = δ(x) . (4.21)
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We note that the rg-dependence in the cross section in the plain jet mass region arises at
O(αs) through the fixed order correction ∆Sκrg in eq. (3.42). However, as mentioned above,
∆Sκrg itself cannot provide the O(αs) boundary condition for NLL evolution (and for NNLL
accuracy). Hence, as discussed in ref. [83], we are required to consider cross terms with
between O(αs) pieces in J plain

κ and the normalization factor Nκ
incl, and the rg-dependent

piece in eq. (3.42). We will see that the same applies to the cross section in the soft drop
resummation region. On the other hand, the role of the piece ∆Sκsd in eq. (3.49) is to
account for effects of grooming on the soft drop jet mass which factorize into global-soft
and collinear-soft pieces in the soft drop resummation region. As we will see below, we are
required to include the cross term Q(sd,rg)

κ in eq. (4.19) in order to ensure that the O(α2
s)

terms in the plain jet mass region consistently match with O(α2
s) pieces in the soft drop

resummation region. Finally, the computation of these kernels and others below is detailed
in section 6.4.

We note that unlike ref. [83], we have chosen not to include additional O(α2
s) terms

proportional to β0 in order to cancel running coupling effects in these kernels and render
them µ-independent. We have retained for simplicity only the minimal set of O(α2

s) terms
required to achieve NNLL accuracy, and parameterized uncertainty due to the missing
O(α2

s) corrections in terms of the nuisance parameter amax
20 in eq. (4.18). We assume that

the missing two-loop pieces in eq. (4.17) have the same functional form as the one-loop
kernels with an unknown normalization parameterized by amax

20 ∈ [−2π, 2π]. Additionally,
we will separately consider below the effects of two-loop logarithmic terms that arise from
RG evolution.

4.1.2 Max-Rg in soft drop resummation region

In the soft drop resummation region, the relevant modes are shown in the top left case in
figure 4. The factorized cross section reads

Gsd res.
κ

(
z, ξ, rg, µ

)
=
∑
κ′

Hκ′→κ(z,Q, µ)SκG
(
Qcut, ζ, β, µ

)
SκNGL

(
t
[
Qcut, Q

])
(4.22)

×
∫

dk̃
∫

ds Jκ
(
s, µ

)
Sκc
(
k̃, rg, Qcut, β, µ

)
δ

ξ − s

Q2 −
k̃(Qcut)

−1
1+β

Q

 .
This involves the global-soft and c-soft functions we discussed above in eqs. (3.27) and (3.34).
The NGLs are now independent of jet mass involving constant scales Qcut and Q, such that
we are able to write it directly as differential in groomed jet mass. The power corrections
associated with this factorization are given by

Gκ
(
z, ξ, rg, αs(µ)

)
= Gsd res.

κ

(
z, ξ, rg, µ

)[
1 +O

(
ξ0,

ξ

r2
g

,
( ξ
ξ0

) 2
2+β
)]

. (4.23)

We see that the jet mass related O(ξ) power corrections in the plain jet mass region are now
replaced by O(ξ/r2

g), due to modification of the effective jet radius seen by collinear modes.
In the plain jet mass region with rg = 1, these corrections match with those in eq. (4.5).
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Additionally, we have new power corrections related to soft drop that have resulted in the
factorization of the wide-angle soft mode into a global soft and c-soft mode.

Next we state the resummed formula for this regime for the jet mass dependent part of
Gκ:

G̃sd res.
κ (ξ, rg, Q,Qcut, ζ, β, µsd) = N evol

κ

(
µN , µgs, Q,Qcut, ζ, β

)
SκNGL

(
t
[
Qcut, Q

])
(4.24)

× J sd res
κ [∂Ω; ξ,Q,Qcut, µsd]

(
eγEΩ

Γ(−Ω) +Qrgκ
(
Ω, ξ, rg, αs(µcs); amax

20
))∣∣∣∣∣

Ω=ω̃cs(µcs,µJ )

.

Here µsd stands for the set of scales in the max-Rg regime in the soft drop resummation
region:

µsd(ξ) ≡ {µN , µgs, µJ(ξ), µcs(ξ)} . (4.25)

The normalization factor N evol
κ includes resummation of logarithms between the hard-

collinear and global-soft scales:

N evol
κ

(
µN , µgs, Q,Qcut, ζ, β

)
≡ Nκ

incl(Q,µN )SκG
(
Qcut, ζ, β, µgs

)
(4.26)

× e
[
KN+Kgs

](µN
Q

)ωN( µgs
Qcut

)ωgs
.

The function of the derivative operator is given by

J sd res
κ [∂Ω; ξ,Q,Qcut, µsd] ≡ 1

ξ
eKcs+KJ

(
µ2
J

)ωJ (Qµcs)ωcs
(ξQ2)Ω

(( µcs
Qcut

) 1
1+β

)ωcs
(4.27)

× J̃κ

[
∂Ω + log

(
µ2
J

Q2ξ

)
, αs(µJ)

]
S̃κc

[
∂Ω + log

(
µcs
Qξ

( µcs
Qcut

) 1
1+β

)
, αs(µcs)

]
,

where the Laplace transforms are written analogously to eq. (4.15). Similar to eq. (4.13),
the derivatives are evaluated at ω̃cs(µcs, µJ) defined as

ω̃cs(µcs, µJ) ≡ ωcs(µ, µcs) + ωJ(µ, µJ) . (4.28)

Finally, as in eq. (4.16), we expand the above equation to O(α2
s) including cross terms

between J sd res
κ and the same kernel Qrgκ defined in eq. (4.18) required for NNLL accuracy.

4.2 Min and intermediate Rg regimes

For completeness we review the factorization formulae for the remaining min and intermedi-
ate Rg regimes derived in ref. [83].

4.2.1 Min-Rg regime
We now turn to the min-Rg regime. As seen in the rightmost column in figure 4, the
cross section in the min-Rg regime involves combination of the hard collinear C mode, the
collinear soft mode CSg and the global soft mode SG, and is given by

Gmin
κ

(
z, ξ, rg, µ

)
=
∑
κ′

Hκ′→κ(z,Q, µ)SκG
(
Qcut, ζ, β, µ

)
SκNGL

(
t
[
Qcut, Q

])
(4.29)

× Sκcg
(
Qcutr

1+β
g , β, µ

)
SκNGL

(
t
[
Qcutr

1+β
g , Qrg

]) 1
r2
g

Cκ
(
ξ

r2
g

, Qrg, µ

)
.
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Here we notice appearance of new NGLs between the scales associate with CSg and C modes
due to an additional boundary of the groomed jet radius. The power corrections that are
dropped in this formula are given by

Gκ
(
z, ξ, rg, αs(µ)

)
= Gmin

κ

(
z, ξ, rg, µ

)[
1 +O

(
ξ0,
( ξ
ξ0

) 2
2+β

, r2+β
g

ξ0
ξ

)]
. (4.30)

As before, the soft drop factorization proceeds by dropping the O((ξ/ξ0)
2

2+β ) power correc-
tions. In contrast with the max-Rg regime in eqs. (4.5) and (4.23) collinear function now
includes the O(ξ/r2

g) terms which become O(1) in this regime. However, in order to resum
logarithms between scales associated with CSg and C modes, the power corrections of the
form r2+β

g
ξ0
ξ are dropped.

The resummed result for the normalized cross section is given by

G̃min
κ (ξ,rg,Q,Qcut, ζ,β,µmin) =N evol

κ

(
µN ,µgs,Q,Qcut, ζ,β

)
SκNGL

(
t
[
Qcut,Q

])
(4.31)

×SκNGL

(
t
[
Qcutr

1+β
g ,Qrg

])
eKC+Kcsg

(
µgs

Qcutr
1+β
g

)ωcsg( µC
Qrg

)ωC
×Sκcg

(
Qcutr

1+β
g ,β,µcsg

) 1
r2
g

Cκ
(
ξ

r2
g

,Qrg,µC ;amin
20

)
,

with the set of profiles for this regimes being:

µmin(rg) ≡ {µN , µgs, µC(rg), µcsg(rg)} . (4.32)

Here we have included additional O(α2
s) terms in the collinear function precisely as described

in ref. [83]:

ξ

r2
g

Cq
(
ξ

r2
g

, Qrg, µ; amin
20

)
= αs

π
a
Cq
10

(
ξ

r2
g

)[
1 + αsCF

π

(1
4 ln

2 µ2

Q2r2
g

+ 3
4 ln

µ2

Q2r2
g

)]
(4.33)

+ αs
π
amin

20
αs
π
a
Cq
10

(16
25

ξ

r2
g

)
,

ξ

r2
g

Cg
(
ξ

r2
g

, Qrg, µ; amin
20

)
= αs

π
a
Cg
10

(
ξ

r2
g

)[
1 + αs

π

(
CA
4 ln2 µ2

Q2r2
g

+ β0
4 ln µ2

Q2r2
g

)]
+ αs

π
amin

20
αs
π
a
Cg
10

(16
25

ξ

r2
g

)
.

Here aCκ10
αs(µ)
π is the O(αs) result of the collinear function in eq. (3.20) after including ξ/r2

g

factor that sets the δ(ξ/r2
g) terms to zero. The new O(α2

s) pieces in the square brackets
provide the boundary condition for NLL resummation, as we saw above in the max-Rg
case. In the second line we have included parameterized the uncertainty from missing
O(αs) pieces in terms of the parameter amin

20 ∈ [−2π, 2π], while shifting the argument
appropriately to take into account the different end-point of the jet mass spectrum at
NLO [83] at rg = 8/5

√
ξ instead of rg = 2

√
ξ at LO. Additionally, we also include O(α2

s)
cross terms from other pieces in eq. (4.31).
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4.2.2 Intermediate-Rg regime

Finally, we describe the factorization in the intermediate Rg regime shown in the middle
column in figure 4 which represents the most factorized scenario:

Gint
κ (z, ξ, rg, µ) =

∑
κ′

Hκ′→κ(z,Q, µ)SκG
(
Qcut, ζ, β, µ

)
SκNGL

(
t
[
Qcut, Q

])
Sκcg
(
Qcutr

1+β
g , β, µ

)
× d

dξ

[
SκNGL

(
t

[
Qcutr

1+β
g ,

Qξ

rg

])
Σκ

int

(
ξ

r2
g

, Qrg, µ

)]
. (4.34)

Here the rg-dependent NGLs are analogous to the previous case but involve running between
the scales associated with CSg and CSm modes. Since they do depend on the jet mass, we
have written them as a derivative of the cumulative jet mass cross section. Here Σκ

int is
defined in terms of Σκ

no sd in eq. (4.11):

Σκ
int

(
ξ

r2
g

, Qrg, µ

)
= Σκ

no sd

(
ξ → ξ

r2
g

, Q→ Qrg, µ

)
. (4.35)

The power corrections that are dropped in this regime are combinations of the previous
cases:

Gκ
(
z, ξ, rg, αs(µ)

)
= Gint

κ

(
z, ξ, rg, µ

)[
1 +O

(
ξ0,

(
ξ

ξ0

) 2
2+β

, r2+β
g

ξ0
ξ
,
ξ

r2
g

)]
. (4.36)

Finally, we state the formula for the resummed cross section in this regime:

G̃int
κ (ξ, rg, Q,Qcut, ζ, β, µint) = N evol

κ

(
µN , µgs, Q,Qcut, ζ, β

)
SκNGL

(
t
[
Qcut, Q

])
(4.37)

×
(
SκNGL

(
t

[
Qcutr

1+β
g ,

Qξ

rg

])
J int
κ [∂Ω; ξ, rg, Q,Qcut, ζ, β, µint]

eγEΩ

Γ(−Ω)

+ d
dlnξS

κ
NGL

(
t

[
Qcutr

1+β
g ,

Qξ

rg

])
× J int

κ [∂Ω; ξ, rg, Q,Qcut, ζ, β, µint]
eγEΩ

Γ(1− Ω)

)∣∣∣∣∣
Ω=ω̃(µs,µJ )

.

where

J int
κ [∂Ω;ξ,rg,Q,Qcut, ζ,β,µint]≡

eKJ+Ks+Kcsg

ξ

(
µcsg

Qcutr
1+β
g

)ωcsg (Qrgµcsm)ωcsm(µ2
J)ωJ

(ξQ2)Ω

×Sκcg
(
Qcutr

1+β
g ,β,µcsg

)
J̃κ

[
∂Ω+log

(
µ2
J

Q2ξ

)
, αs(µJ)

]
S̃κcm

[
∂Ω+log

(
µcsmrg
Qξ

)
,αs(µcsm)

]
,

(4.38)

and the intermediate-Rg profiles being

µint(ξ, rg) ≡ {µN , µgs, µJ(ξ), µcsm(ξ, rg), µcsg(rg)} . (4.39)

Unlike the previous two cases, here every function contributes to the NLL boundary
condition, and hence we do not need to include any additional O(α2

s) pieces.

– 36 –



J
H
E
P
0
8
(
2
0
2
3
)
0
5
4

5 Matched cross section

We now combine the cross sections in the three regimes and the two jet mass regions to
obtain the complete matched cross section. In section 5.1 we describe how the results of
ref. [55] are extended to match the max-Rg regime between soft drop and plain jet mass
resummation regions. In section 5.2 we match this result to min- and int-Rg regimes,
including the plain jet mass region. In section 5.3 we compute the perturbative uncertainty
due to scale variation and nuisance parameters. The impact of O(α2

s) cross terms is
assessed in section 5.4 and that of non-singular fixed order corrections in section 5.5. The
computation of C(n)

1κ weights and the impact of NGLs is discussed in section 5.6.

5.1 Matching in the max-Rg regime

We first begin with combining the max-Rg cross sections in eqs. (4.6) and (4.24) to obtain
a complete matched result in this regime. Our prescription for matching the two results
parallels that of the single differential jet mass distribution derived in ref. [55], and is given by

G̃max
κ (ξ, rg) ≡ G̃sd res.

κ (ξ, rg, µsd→plain) +
[
G̃plain
κ (ξ, rg, µplain)− G̃sd res.

κ (ξ, rg, µplain)
]
. (5.1)

For simplicity we have suppressed dependence on kinematic and grooming parameters. The
profile µsd→plain is designed such that it transitions from µsd scales in eq. (4.25) to µplain scales
in eq. (4.7) by merging the c-soft µcs and global-soft µgs scales for ξ ≥ ξ0. As a result the two
G̃sd res.
κ terms cancel each other for ξ ≥ ξ0 leaving behind the correct G̃plain

κ cross section in
this region. In the soft drop resummation region for ξ < ξ0, the term G̃sd res.

κ (ξ, rg, µplain) acts
as subtraction piece for the G̃plain

κ cross section evaluated with the same scale. By evaluating
the collinear-soft and global-soft pieces at the same µs scale, the difference between the two
amounts to (ξ/ξ0)

2
2+β soft drop related power corrections lacking in the G̃sd res.

κ in eq. (4.23).
Furthermore, since we have chosen to employ the same kernel Qrgκ in eq. (4.18) in all the
three pieces, the matching of rg-related piece simply amounts to choosing the right soft scale
in the argument of αs and the resummation kernels ωcsm,s in eqs. (4.13) and (4.28). Finally,
as remarked above, including the cross term Q(sd,rg)

κ defined in eq. (4.19) in the plain jet
mass cross section, eq. (5.1) seamlessly implements matching of O(α2

s) terms as well.
We show the result of matching for gluon and quark jets in figure 5. For now we will

only include terms up to O(αs) and discuss the effects of including O(α2
s) cross terms below.

Here we have taken the groomed jet radius cut rg to lie somewhere between the maximum
and minimum value of rg for a given jet mass:

rmin
g (ξ) ≡

√
ξ , rmax

g (ξ) ≡ min
{

1,
[(
ξ0
ξ

) 2
2+β
− ζ2

]− 1
2
}
. (5.2)

In figure 5 the vertical lines denote the extent of the soft drop operator expansion region,
ξ ∈ (ξSDOE, ξ

′
0). As explained above, the overlap curve Gsd res.

κ (ξ, rg, µplain) merges with the
un-factorized soft drop curve in for small jet masses and with the factorized one for ξ > ξ0.
We see that the effect of matching close to the cusp is particularly noticeable for gluon jets.
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Figure 5. Matching for max-Rg cross section. The vertical lines denote the extent of the soft drop
operator expansion region. The three curves correspond to choosing different intermediate values of
groomed jet radius as a function of the jet mass.

5.2 Matched resummed cross section

Having defined the max-Rg cross section, we now follow the same strategy as in ref. [83] to
obtain the matched resummed cross section valid across all three regimes:

G̃match
κ (ξ, rg) ≡ G̃int

κ (ξ, rg, µhyb) +
[
G̃max
κ (ξ, rg)− G̃int

κ (ξ, rg, µsd→plain)
]

(5.3)
+
[
G̃min
κ (ξ, rg, µmin)− G̃int

κ (ξ, rg, µmin)
]
.

The new hybrid profile µhyb that appears in the first term interpolates between the three
sets of profiles µsd→plain, µmin and µint, and is given by

µhyb ≡
(
µmin

)wmin(µint
)wint(µsd→plain

)wsd→plain , wmin + wint + wsd→plain = 1 . (5.4)

where wi are weight functions that depend on both ξ and rg and provide a prescription for
demarcating boundaries between the three regimes, as shown in figure 3. The construction
of the weight functions for soft drop resummation region was discussed in ref. [83]. In this
work we extend the weight functions into the plain jet mass region, with their final result
given by:

2-EFT: wmax = X
(
rg, rg,t(ξ)

)
, wint = 0 , (5.5)

3-EFT: wmax = X
(
rg, r

max
g,PC(ξ)

)
, wint =

[
1−X

(
rg, r

max
g,PC(ξ)

)]
X
(
rg, r

min
g,PC(ξ)

)
,

and wmin = 1 − wint − wmax. Here X(rg, rg,t) → 0 for rg � rg,t and X(rg, rg,t) → 1 for
rg � rg,t transitioning around rg,t. The transition points rmin

g,PC(ξ) and rmin
g,PC(ξ) are derived

from power expansion parameters that determine validity of the EFT. We describe the
details of the implementation in appendix C.

In figure 6 we show the matching across the three regimes for quark and gluon jets. We
can see that the overlap pieces obtained from the intermediate-Rg regime (shown as dotted
lines) cancel the max-Rg cross section for rg � rmax

g (ξ) and likewise the min-Rg cross section
for rg � rmin

g . The intermediate-Rg cross section with hybrid profiles (dashed) interpolates
between the two overlap pieces. The matched curve thus obtained agrees with the NNLL
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Figure 6. Matching across the three Rg regimes. The vertical lines denote the minimum and
maximum rg allowed for the specified ξ = 10−2 value.

jet mass cross section at the end point rg = rmax
g , such that Gmatch

κ (ξ, rmax
g (ξ)) = GNNLL

κ (ξ).
However, note that Gmatch

κ (ξ, rmax
g (ξ)) 6= Gmax

κ (ξ, rmax
g (ξ)). This is because the Gmax

κ cross
section is derived from factorizing the jet mass measurement and lacks jet mass related
power corrections which are supplied by the min-Rg cross section.

5.3 Perturbative uncertainty

In figure 7 we show the estimate of perturbative uncertainty at NNLL through scale
variations and nuisance parameters. In appendix B we summarize the implementation
of profile scales and their variation discussed in refs. [55, 83]. The variation involves six
parameters that test sensitivity of the cross section to a) a uniform up/down variation of all
scales, b) trumpet variation of ξ- and rg-dependent scales in the resummation region, c) the
scale where the coupling is deemed non-perturbative and frozen to a constant value, and d)
breaking of three canonical relations which are used to derive the jet and (hard-)collinear
scales from the soft scales.

In addition to scale variations, we also show uncertainty induced from lack of knowledge
of two-loop non-logarithmic terms in the max-Rg and min-Rg cross sections via parameters
a

max/min
20 in eqs. (4.18) and (4.33). As discussed in ref. [83] we limit these variations within

their respective regime by multiplying them by the corresponding weight functions. We see
that the amin

20 variation allows us to probe sensitivity to the order-dependent minimum rg
end point of the cross section, and that this variation also is the dominant uncertainty in
the min-Rg regime. On the other hand, the variation due to amax

20 is subdominant compared
to scale variations in the max-Rg region. We note that both these variations vanish for
rg = rmax

g and they do not impact the single differential jet mass cross section, whereas the
scale variations are correlated between both single and doubly differential cross sections at
each value of mJ .

5.4 Effect of two-loop pieces for NNLL resummation

Next, we inspect the effect of including O(α2
s) cross-terms to implement the boundary

condition for NNLL resummation. As noted above, there are two places where this is
needed: firstly in the max-Rg cross sections in eqs. (6.12) and (4.24) and secondly in the
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Figure 7. Profile and two-loop constant terms variation of the cumulative rg cross section (top row)
and the single differential jet mass cross section (bottom row) for quarks (left) and gluon (right) jets.
The vertical lines in the top row denote the minimum and maximum rg allowed for the specified
ξ = 10−2 value.

collinear function in the min-Rg regime as shown in eq. (4.33). Since these two loop pieces
do not match straightforwardly as the one-loop pieces above in eq. (5.3) we include them
in the cross section by multiplying these terms by the corresponding weight function. We
show this in figure 8 where we plot

wX(ξ, rg) ξG̃[O(α2
s)]

κX (ξ, rg) ≡ wX(ξ, rg)
[
ξG̃κX(ξ, rg)− ξG̃[O(αs)]

κX (ξ, rg)
]
, (5.6)

where X refers to the regime considered and in the second term we truncate all the fixed-
order terms to O(αs). In figure 8 we show the size of the two-loop pieces in the min-Rg
cross section multiplied by wmin(ξ, rg), and those from each of the three terms in eq. (5.1)
with a common weight factor wmax(ξ, rg). Note that despite the fact that corrections to the
G̃plain
κ (ξ, rg, µplain) are relatively large, after including the two loop cross term in eq. (4.19)

it cancels almost entirely against the correction from G̃sd res.
κ (ξ, rg, µplain) and only those

remaining in the G̃sd res.
κ with soft drop resummation survive. These corrections are overall

small and they turn out to be smaller than the perturbative uncertainty at NNLL from
scale variations and nuisance parameters in figure 7. We will investigate them again when
considering rg-moments of the doubly differential cross section.
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Figure 8. Size of two-loop pieces of the resummed cross section required for NLL′ boundary
condition for quark and gluon jets. Here we have multiplied each piece in a given regime by
corresponding weight function.

5.5 Non-singular corrections

Finally, we can include the non-singular pieces in the resummed, matched cross section as

G̃κ(ξ, rg) ≡ G̃match
κ (ξ, rg) + ∆G̃[n.s.]

κ

(
ξ, rg, αs(µN )

)
, (5.7)

where

∆G̃[n.s.]
κ

(
ξ, rg, αs(µN )

)
≡ G̃FO

κ (ξ, rg, αs(µN ))− G̃match
κ (ξ, rg, µi → µN ) (5.8)

In G̃match
κ (ξ, rg, µi → µN ) all the µi scales are set to the hard-collinear µN scale, turning

off all resummation and non-global logarithms. To see how the cancellation of singular
pieces between the fixed order and the matched cross section takes place, we note that the
measurement function in eq. (3.52) can be written as

ξδFO
ξ (x, y, rg, ξ0, ζ) ' ξ

[
δCξ (x, y) + δCSm

ξ (x, y, 1)− δCSm
ξ (x, y, rg) (5.9)

+ ∆δCS, full
ξ,rg

(x, y, rg, ξ0, ζ) + ∆δSplain
ξ, sd (x, y, ξ0, ζ)

]
,

where the approximate equality results from dropping power suppressed terms in the soft
approximations on the right hand side. The measurement functions on the right hand side
were defined above in eqs. (3.18), (3.21), (3.41) and (3.47) respectively. It is not hard to
see that setting all the scales in eq. (5.3) to µN will result in the above combination of
factorization functions at one-loop.

In figure 9 we show the non-singular correction for quark and gluon jets. In fact, we find
a complete cancellation between the fixed order and the matched cross-section for rg ≤ rmax

g

defined in eq. (5.2). This is because we have already taken into account the mass-power
corrections in the collinear function in eq. (3.20) and the remaining power corrections in
eq. (5.7) arise from only approximations made in the soft drop condition. For rg ≤ rmax

g the
rg-constraint is stronger than soft drop constraint. This also serves as a strong cross check
of the numerical implementation. On the other hand for rg > rmax

g , the resummed-cross
section saturates to single differential jet mass cross section governed by the soft drop
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Figure 9. Non-singular correction related to approximations in the soft drop constraint. The
vertical lines denote the range of groomed jet radius allowed for the specified jet mass value of
ξ = 10−2. The non-singular correction related to soft drop is non-zero only beyond this range since
it is where the soft drop constraint is a stronger condition than rg-constraint.

constraint. It is here there is a non-trivial non-singular correction in eq. (5.7). However,
as can be seen in figure 9, this correction is numerically negligible. It is of the same order
as the non-singular correction in single differential jet mass which was also shown to be
numerically negligible in ref. [55]. Hence, we will ignore the non-singular corrections from
soft drop constraints entirely in our numerical analysis.

5.6 Rg-weighted jet mass cross section

Having set up the matched cross section we can compute the rg-weighted cross section
differential in jet mass that are relevant phenomenologically as perturbative weights of
hadronization and underlying event corrections. To facilitate comparison with Monte Carlo
event generators we will normalize the weighted cross section with the usual jet mass cross
section. To this end we define

C
(n)
1κ (ξ) 1

σ̂κ

dσ̂κ
dξ ≡

∫ 1

0
drg rng

1
σ̂κ

d2σ̂κ
drgdξ

(5.10)

Since we have access to the cross section cumulative in rg, we have

1
σ̂κ

d2σ̂κ
drgdξ

= dG̃match
κ (ξ, rg)

drg
,

1
σ̂κ

dσ̂κ
dξ = G̃match

κ (ξ, 1) ≡ G̃match
κ (ξ) . (5.11)

Hence, the moment C(n)
1 (ξ) becomes

C
(n)
1κ (ξ) = 1

G̃match
κ (ξ)

∫ rmax
g (ξ)

rmin
g (ξ)

drg rng
d
drg
G̃match
κ (ξ, rg)

= 1
G̃match
κ (ξ)

([
rmax
g (ξ)

]nG̃match
κ

(
ξ, rmax

g (ξ)
)
− n

∫ rmax
g (ξ)

rmin
g (ξ)

drg rn−1
g G̃match

κ (ξ, rg)
)

=
[
rmax
g (ξ)

]n − n

G̃match
κ (ξ)

∫ rmax
g (ξ)

rmin
g (ξ)

drg rn−1
g G̃match

κ (ξ, rg) , (5.12)
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1κ for n = 1 (top) and n = 4 (bottom) for quark and gluon jets. The vertical lines
denote the extent of the SDOE region.

where we have used the fact that the differential cross section only has support between
rmin
g (ξ) and rmax

g (ξ).

In figure 10 we show C
(n)
1κ for n = 1, 4 cases, relevant for hadronization and underlying

event corrections. Following the same color scheme as in figure 7 we find that the effect of
scale variations on the normalized moment is very small. This is because the scale variation
uncertainties are correlated between the doubly differential and the singly differential cross
sections and cancel in the ratio. On the other hand, the dominant uncertainty in C

(n)
1κ

results from variation of the amin
20 and amax

20 nuisance parameters.
In figure 11 we inspect the effect of adding two-loop logarithmic pieces, that are

required to implement consistently the NNLL boundary condition, and non-global logs at
NLL (both separately) by considering the fractional deviation in the moment. We also show
for comparison the fractional deviation from adding two loop non-logarithmic terms in the
min-Rg cross section by varying the nuisance parameter amin

20 , which dominates both these
effects. The amax

20 variation (not shown) in the ungroomed region will similarly dominate
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Figure 11. Fractional deviation of C(1)
1 (ξ) upon including O(α2

s) pieces and non-global logarithms
compared with that from varying the amin

20 nuisance parameter.

the effect of two-loop logarithmic terms. Hence, in our final numerical analysis we can safely
ignore the O(α2

s) logarithmic pieces and non-global logarithms.

6 Soft drop boundary cross section

We now consider the computation of the soft drop boundary cross section stated in eq. (1.7).
After describing the measurement function in section 6.1, we discuss the computation in
the plain jet mass and soft drop resummation regions in sections 6.2 and 6.3. As we will see
below, the one-loop fixed order results for soft functions are transformed into resummation
kernels whose computation is discussed in section 6.4. In section 6.5 we discuss the fixed
order non-singular corrections and show them to be small as seen above. In section 6.6 we
finally describe the computation of the C(n)

2κ moment.

6.1 The measurement function

We are specifically interested in the projection of the triply differential cross section on the
boundary of the soft drop:

1
σ̂κ

dσ̂�
κ

drgdξ
≡
∫

dzg δ(zg − ξ0r
β
g ) 1
σ̂κ

dσ̂κ
dzgdrgdξ

(6.1)

However, instead of directly computing the triply-differential cross section we can equiva-
lently calculate the doubly differential cross section while including a soft drop condition
small shift in the soft drop condition:

Θ̂sd(x, y, ξ0, ζ, ε) = Θ
(

min{x1, x2}
x1 + x2

− ξ0
( y

4x1x2

)β
2 + ε

)

= Θ̂sd(x, y, ξ0, ζ) + ε δ

(
min{x1, x2}
x1 + x2

− ξ0
( y

4x1x2

)β
2

)
+ . . . , (6.2)

and differentiate it with respect to ε:

1
σ̂κ

dσ̂�
κ

drgdξ
= d

dε

( 1
σ̂κ

d2σ̂κ,ε
drgdξ

)∣∣∣∣
ε→0

, (6.3)

where dσκ,ε is calculated with the shifted soft drop condition.
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Additionally, as explained in ref. [83], we only need to consider the max-Rg regime
which captures the correct two-pronged geometry, whereas the contributions from the
intermediate and min-Rg enter beyond the LL nonperturbative factorization in eq. (1.3). In
the discussion above for doubly differential cross section we did not drop contributions from
these regions because effects of hadronization (and of ISR and underlying event) involve
positive powers of rg-moments, and hence they are naturally suppressed. Whereas for the
boundary cross section we require 1/rg moment, which receives large power corrections from
the intermediate and min-Rg region, which must be suppressed by hand when calculating
using shifted soft drop condition.

As above, in practice, we will find it easier to compute first the soft matrix elements,
and use them in the factorization formulae as well as subtractions for fixed order pieces. In
the soft limit, the shifted soft drop condition reads

Θ̂(s)
sd (x, y, ξ0, ζ, ε) = Θ

(
yζ2 + x− ξ

2
2+β
0 y

β
2+β + 2ε

2 + β

( y
ξ0

) β
2+β
(
ζ2 + x

y

)β
2 + . . .

)

= Θ̂(s)
sd (x, y, ξ0, ζ) + 2ε

2 + β
δ
(
yζ2 + x−

(
ξ0
) 2

2+β (y)
β

2+β
)

+ . . . . (6.4)

The same in collinear-soft limit is given by

Θ̂(cs)
sd (x, y, ξ0, ε) = Θ

(
x− ξ

2
2+β
0 y

β
2+β + 2ε

2 + β

( y
ξ0

) β
2+β
(x
y

)β
2 + . . .

)

= Θ̂(cs)
sd (x, y, ξ0) + 2ε

2 + β
δ
(
x− ξ

2
2+β
0 y

β
2+β
)

+ . . . . (6.5)

Thus, we define:

δ̂
(s)
sd (x, y, ξ0, ζ) ≡ 2

2 + β
δ
(
yζ2 + x−

(
ξ0
) 2

2+β (y)
β

2+β
)
, (6.6)

δ̂
(cs)
sd (x, y, ξ0) ≡ 2

2 + β
δ

(
x− ξ

2
2+β
0 y

β
2+β

)
.

6.2 Plain jet mass region

We first consider the plain jet mass region. Here the modification to the soft drop condition
only affects the Splain mode. Thus, the measurement function analogous to eq. (3.45) is
given by

δ
Splain
ξ,ε (x, y, rg, ξ0, ζ) ≡ Θ̂(s)

kT
(x, y)δ̂(s)

sd (x, y, ξ0, ζ)
[
Θ̂(s)
rg (x, y, rg)δ(ξ − y)− δ(x)

]
, (6.7)

where here, and everywhere below, we will include a subscript ε to distinguish functions
relevant to the soft drop boundary cross section. Similar to eq. (3.46) we can isolate the
piece corresponding to rg measurement:

δ
Splain
ξ,ε (x, y, rg, ξ0, ζ) = ∆δCS, full

ξ, rg , ε
(x, y, rg, ξ0, ζ) + ∆δSplain

ξ, sd, ε(x, y, ξ0, ζ) . (6.8)
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Unlike eq. (3.46), there is no term corresponding to ungroomed measurement as we have
differentiated with respect to ε. These terms are given by

∆δCS, full
ξ, rg , ε

(x, y, rg, ξ0, ζ) ≡ −Θ̂(s)
kT

(x, y)
(
1− Θ̂(s)

rg (x, y, rg)
)
δ̂

(s)
sd (x, y, ξ0, ζ)δ(ξ − y) , (6.9)

∆δSplain
ξ, sd, ε(x, y, ξ0, ζ) ≡ +Θ̂(s)

kT
(x, y)δ̂(s)

sd (x, y, ξ0, ζ)
[
δ(ξ − y)− δ(ξ)

]
.

The fixed order correction that captures the dependence on the rg measurement is
given by

Q
1

1+β
cut ∆Sκrg , ε

(
`+Q

1
1+β
cut , rg, Qcut, ζ, β, αs(µ)

)
= 1
Q
S [1]
κ

(
ξ = `+

Q
,∆δCS, full

ξ, rg , ε
, µ

)
(6.10)

= αsCκ
π

Θ(`+ −Q′cutv(rg))Θ(Q′cut − `+)
(`+)2/Q

((
Qcut
`+

) 2
2+β
− ζ2

)−1
,

and analogously, the soft drop related fixed-order piece is given by

∆Sκsd, ε
(
`+, Qcut, ζ, β, αs(µ)

)
= 1
Q
S [1]
κ

(
ξ = `+

Q
,∆δSplain

ξ, sd, ε, µ

)
(6.11)

= 2
2 + β

αs(µ)Cκ
π

[
Θ(`+)Θ(Q′cut − `+)

(`+)2/Q

((Qcut
`+

) 2
2+β − ζ2

)−1][Q′cut]

+

.

These fixed order corrections are combined with the rest of the factorized cross section
in precisely the same manner as in eq. (4.16) above

G̃plain
κ, ε (ξ,Q,Qcut, ζ, µplain) = Nκ

incl(Q,µN )eKN
(µN
Q

)ωN
(6.12)

×
(
SκNGL

(
t[Qξ,Q]

)
J plain
κ [∂Ω; ξ,Q, µplain]Qplain

κ,ε (Ω, αs(µs))

+
( d
dlnξS

κ
NGL

(
t[Qξ,Q]

))
J plain
κ [∂Ω; ξ,Q, µplain]Qplain

κ,ε (Ω− 1, αs(µs))
)∣∣∣∣

Ω=ω̃(µs,µJ )
.

Similar to eq. (4.17), the kernels Qplain
κ,ε include Laplace transforms of the soft functions

in eqs. (6.10) and (6.11), but also O(α2
s) cross terms that are required to consistently carry

out NNLL resummation [83]. In table 2 we summarize the various O(α2
s) cross terms

that constitute the kernel Qplain
κ,ε . We have included cross terms involving ∆Sκsd pieces for

consistent matching with the cross section in the soft drop resummation regime. Finally,
there are also cross terms arising from O(αs) parts of J plain

κ and O(αs) soft functions that
we have not shown.

6.3 Soft drop resummation region

We now turn to the boundary cross section in the soft drop resummation region. Here,
including shift in the boundary cross section modifies the measurement for the global soft
and collinear-soft functions:

Θ̂SG
ε (x, y, ξ0, ζ) ≡ −Θ̂(s)

kT
(x, y)δ̂(s)

sd (x, y, ξ0, ζ) + δ̂
(s)
sd (x, y, ξ0, ζ) , (6.13)

δCS
ξ, ε(x, y, rg, ξ0) ≡ δ̂(cs)

sd (x, y, ξ0)
[
δ(ξ − y)− δ(ξ)

]
+ ∆δCS

ξ, rg , ε(x, y, rg, ξ0) ,
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O(αs) O(α2
s)

Ungroomed region ∂rg∆S
κ[1]
rg , ε ∆Sκ[1]

sd ∂rg∆S
κ[1]
rg , ε, ∆Sκ[1]

sd, ε∂rg∆S
κ[1]
rg , ∂rg

[
∆Sκ[1]

rg ∆Sκ[1]
rg , ε

]
SD res., β = 0 ∂rg∆S

κ[1]
rg , ε J sd res

κ, ε [∂Ω] ∂rg∆S
κ[1]
rg , ∂rg

[
∆Sκ[1]

rg ∆Sκ[1]
rg , ε

]
SD res., β > 0 ∂rg∆S

κ[1]
rg , ε ∆Sκ[1]

sd, ε∂rg∆S
κ[1]
rg , ∂rg

[
∆Sκ[1]

rg ∆Sκ[1]
rg , ε

]
Table 2. Fixed order corrections to soft functions that appear in soft drop boundary resummation
kernels Qplain

κ, ε and Qsd res.
κ,ε for plain and soft drop resummation regions respectively. We have

not shown the additional O(α2
s) terms that result from action of J plain

κ [∂Ω] and J sd res.
κ [∂Ω] on

O(αs) pieces.

The corresponding soft functions are given by

SκG,ε
(
Qcut, ζ, β, µ

)
≡ S [1]

κ

(
· , Θ̂SG

ε , µ
)

+O(α2
s) , (6.14)

Sκc,ε
(
k̃, rg, Qcut, β, µ

)
≡ 1

QQ
1

1+β
cut

S [1]
κ

(
ξ = k̃

QQ
1

1+β
cut

, δCS
ξ, ε, µ

)
+O(α2

s) .

Here, the second term in eq. (6.13) in the global soft measurement function Θ̂SG
ε is required

to appropriately cancel the UV divergences in of the virtual piece. In the collinear-soft
measurement function, the measurement ∆δCS

ξ, rg , ε
is simply the collinear limit of the one in

eq. (6.9), which yields

Sκc,ε
(
k̃, rg, Qcut, β, µ

)
= Sκc,ε

(
k̃, β, µ

)
+ ∆Sκrg , ε

(
k̃, rg, Qcut, β, αs(µ)

)
. (6.15)

However, as we did above for the usual soft drop case, we will continue to include the power
suppressed terms and employ the full measurement in eq. (6.9).

It is helpful to consider the β = 0 and β > 0 cases separately. For β = 0, the soft
functions are given by

Sκ,bare
G,ε

(
Qcut, ζ, β = 0, µ

)
= 1
ξ0

αsCκ
π

(1
ε

+ 2ln
( µ

Qcut

))
, (6.16)

Sκ,bare
c,ε

(
k̃, β = 0, µ

)
= αsCκ

π

1
ξ0

[
−δ(k̃)

ε
+ L0(k̃, µ2)

]
,

and the same rg-dependent correction as in eq. (6.11). Here we find an extra log-
divergence [83] which is unrelated to the soft drop factorization we considered above.
The extra divergence leads to a nontrivial non-cusp anomalous dimension ε γε0(zcut) where

γ
ε,SκG
0 = −γε,S

κ
c

0 ≡ γε0(zcut) = 8Cκ
zcut

, (β = 0) . (6.17)

We can verify that for µcs = µgs = µ the fixed order pieces add to yield the correct
fixed order result in eq. (6.11) in the limit ξ � ξ0 by noting that

Q
1

1+β
cut S

κ
c,ε

(
Q

1
1+β
cut `

+, β = 0, µ
)

= 1
ξ0

αsCκ
π

QcutL0
(
Qcut`

+, µ2)

= 1
ξ0

αsCκ
π

[
L0
(
`+, µ

)
− ln

( µ

Qcut

)
δ(`+)

]
(6.18)

– 47 –



J
H
E
P
0
8
(
2
0
2
3
)
0
5
4

adding to this the contribution from global soft function, we find

δ(`+)SκG,ε
(
Qcut, ζ, β = 0, µ

)
+Q

1
1+β
cut S

κ
c,ε

(
Q

1
1+β
cut `

+, β = 0, µ
)

(6.19)

= 1
ξ0

αsCκ
π

[
L0
(
`+, µ

)
+ ln

( µ

Qcut

)
δ(`+)

]

= 1
ξ0

αsCκ
π

[Θ(`+)
`+

][Qcut]

+
,

which is precisely the limit `+/Qcut � ζ of ∆Sκsd,ε above for β = 0.
On the other hand, for β > 0, there is no straightforward way to split ∆Sκsd,ε in eq. (6.11)

into two pieces as the divergence is a power law and we simply include the piece as in the
case of plain jet mass region. Thus, the resummed formula in soft drop resummation region
is given by

G̃sd res
κ, ε (ξ, rg, Q,Qcut, ζ, β, µsd) = N evol

κ

(
µN , µgs, Q,Qcut, ζ, β

)
SκNGL

(
t
[
Qcut, Q

])
(6.20)

× J sd res.
κ, ε [∂Ω; ξ,Q,Qcut, µsd]Qsd res.

κ, ε

(
Ω, ξ, rg, Qcut, ζ, β, αs(µcs)

)∣∣∣
Ω=ω̃(µcs,µJ )

.

J sd res.
κ, ε [∂Ω] =

(
1 + δβ,0η

(
γε0(zcut), µcs, µgs

))
J sd res
κ [∂Ω] (6.21)

+ δβ,0
ξξ0

eKcs+KJ
(
µ2
J

)ωJ (Qµcs)ωcs
(ξQ2)Ω

( µcs
Qcut

) ωcs
1+β

×
[

2αs(µgs)Cκ
π

ln
( µgs
Qcut

)
− αs(µcs)Cκ

π

(
∂Ω + log

(
µcs
Qξ

( µcs
Qcut

) 1
1+β
))]

,

Here J sd res
κ [∂Ω] is the same function that appeared above for the usual soft drop cross

section in eq. (4.27). The additional O(ε) terms arise only for β = 0 case. The first of these
involves η(γε0(zcut), µcs, µgs) which is the single log non-cusp resummation kernel arising
from the new non-cusp anomlous dimension in eq. (6.17):

η
(
γε0(zcut), µcs, µgs

)
= −γ

ε
0(zcut)
2β0

ln
(αs(µcs)
αs(µgs)

)
. (6.22)

In the third line of eq. (6.21) we have included the O(αs) logarithms associated with
the factorized β = 0 boundary global-soft and collinear-soft functions in eq. (6.16). For
this reason these pieces are not included in the Qsd res.

κ,ε kernel for β = 0. For β > 0, the
non-factorized ∆Sκsd,ε contribution is included directly in Qsd res.

κ,ε as indicated in table 2.

6.4 Computing the resummation kernels

We now turn to the computation of the resummation kernels that appear due to non-
logarithmic functions in the cross sections summarized in table 2. For compactness, we
write all the relevant soft functions as

aκS(sd)
κ (ξ) ≡ Q∆Sκ[1]

sd
(
Qξ, αs(µ)

)
, aκS(rg)

κ (ξ) ≡ QQ
1

1+β
cut ∆Sκ[1]

rg

(
ξQQ

1
1+β
cut , rg, αs(µ)

)
,

aκS(sd)
κ,ε (ξ) ≡ Q∆Sκ[1]

sd, ε
(
Qξ, αs(µ)

)
, aκS(rg)

κ,ε (ξ) ≡ QQ
1

1+β
cut ∆Sκ[1]

rg , ε

(
ξQQ

1
1+β
cut , rg, αs(µ)

)
.

(6.23)
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where we have defined aκ ≡ αs(µ)Cκ/π, and have left the rg-dependence of S(rg)
κ and S(rg)

κ,ε

implicit. Next, since we do not intend to match the max-Rg cross section with other regimes
for boundary cross section, we can directly consider the rg-derivative. This will help us
avoid considering some of the more complicated cross terms not shown in table 2. The
rg-derivatives of the soft functions are given by

Q
1

1+β
cut ∂rg∆Sκ[1]

rg

(
`+Q

1
1+β
cut , rg, αs(µ)

)
= 2αsCκ

π

Θ(`+ −Q′cutv(rg))
`+

, (6.24)

Q
1

1+β
cut ∂rg∆Sκ[1]

rg , ε

(
`+Q

1
1+β
cut , rg, αs(µ)

)
= 2

2 + β

αsCκ
π

1
ξ′0

( rg
v(rg)

)2
∂rgv(rg)δ(`+ −Q′cutv(rg)) .

Next, we write

Q[1]X
κ (Ω) ≡ aκ

eγEΩ

Γ(−Ω)
(
δX,plainR(sd)

κ

(
Ω
)

+R(rg)
κ

(
Ω
))
, (6.25)

Q[2]X
κ (Ω) ≡ a2

κ

eγEΩ

Γ(−Ω)δX,plainR(sd,rg)
κ

(
Ω
)
,

∂rgQ[1]X
κ,ε

(
Ω
)
≡ aκ

2
2 + β

eγEΩ

Γ(−Ω)
Ψ(ξ, rg)

ξ
R′(rg)
κ,ε

(
Ω
)
,

∂rgQ[2]X
κ,ε

(
Ω
)
≡ a2

κ

2
2 + β

eγEΩ

Γ(−Ω)
Ψ(ξ, rg)

ξ

∑
AB∈{sd, rg}X

R′ABκ,ε

(
Ω
)
,

where X ∈ {plain, sd res.} and the set {sd, rg}X refers to the combinations of soft functions
in eq. (6.23) relevant for plain jet mass and soft drop jet mass resummation region, as
summarized in table 2. In the last two lines, for the soft drop boundary cross section we
have factored out the pre-factor,

Ψ(ξ, rg) ≡
ξ

ξ′0

( rg
v(rg)

)2
∂rgv(rg) . (6.26)

In terms of the rescaled-soft functions defined in eq. (6.23), from eq. (4.18) we have

R(sd/rg)
κ

(
Ω
)

=
∫ ∞

0
dy L−Ω

0
(
1− y

)
ξS(sd/rg)

κ (ξy) , (6.27)

R(sd,rg)
κ

(
Ω
)

=
∫ ∞

0
dyAdyB L−Ω

0
(
1− (yA + yB)

)
ξS(sd)

κ,ε (ξyA) ξS(rg)
κ (ξyB) ,

Ψ(ξ, rg)
ξ

2
2 + β

R′(rg)
κ,ε (Ω) =

∫ ∞
0

dy L−Ω
0
(
1− y

)
ξ∂rgSrgκ,ε(ξy) ,

Ψ(ξ, rg)
ξ

2
2 + β

R′ABκ,ε (Ω) =
∫ ∞

0
dyAdyB L−Ω

0
(
1− (yA + yB)

)
∂rg

[
ξSAκ,ε(ξyA) ξSBκ (ξyB)

]
.

To proceed further we define the functions,

γ(ξ, rg) ≡
ξ′0v(rg)
ξ

, f(w) ≡ ln(rg2)
w

, h(w) ≡ 1
w
ln
(

(1 + ζ2)
(γmax
w

) 2
2+β − ζ2

)
, (6.28)

γmax(ξ) ≡ ξ′0
ξ
, f ′(w) ≡ 2

wrg
, g(w) ≡ 1

w2

(
(1 + ζ2)

(γmax
w

) 2
2+β − ζ2

)−1
.
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We see that in terms of γ(ξ, rg) the prefactor Ψ(γ, rg) using eq. (6.26) becomes

Ψ(γ, rg) =
(rg
γ

)2
∂rgγ(ξ, rg) . (6.29)

We will find it convenient later to switch variables rg → γ when considering rg-moments.
In terms of these functions we have

ξS(sd)
κ (ξw) = −

[
Θ(γmax − w)h(w)

][γmax]
+ ,

ξS(rg)
κ (ξw) = Θ(w − γ)

[
f(w) + Θ(γmax − w)h(w)

]
, (6.30)

ξS(sd)
κ,ε (ξw) = 2

2 + β

[
Θ(γmax − w)g(w)

][γmax]
+ ,

ξS(rg)
κ,ε (ξw) = − 2

2 + β
Θ(γmax − w)Θ(w − γ)g(w) ,

such that from eq. (6.27), the one-loop kernels are given by

R(sd)
κ (Ω) = −

∫ ∞
0

dw L−Ω
0
(
1− w

)[
Θ(γmax − w)Θ(w)h(w)

][γmax]
+ , (6.31)

R(rg)
κ (Ω) =

∫ ∞
0

dw L−Ω
0
(
1− w

)
Θ(w − γ)

[
f(w) + Θ(γmax − w)h(w)

]
,

R′(rg)
κ,ε (Ω) = L−Ω

0
(
1− γ

)
,

and the two-loop kernels R(sd,rg)
κ and R′ABκ,ε being

R(sd,rg)
κ =−

∫ ∞
0

dwduL−Ω
0 (1−w−u)

[
Θ(γmax−u)Θ(u)h(u)

][γmax]
+ (6.32)

×Θ(w−γ)
[
f(w)+Θ(γmax−w)h(w)

]
,

R′(sd,rg)
κ,ε (Ω) =−

∫ ∞
0

dwL−Ω
0
(
1−w−γ

)[
Θ(γmax−w)Θ(w)h(w)

][γmax]
+ ,

R′(rg ,sd)
κ,ε (Ω) = +Ψ−1

∫ ∞
0

dwduL−Ω
0
(
1−u−w

)
f ′(w)Θ(w−γ)

[
Θ(γmax−u)Θ(u)g(u)

][γmax]
+ ,

R′(rg ,rg)
κ,ε (Ω) =−Ψ−1

∫ ∞
0

dwduL−Ω
0
(
1−u−w

)
f ′(w)Θ(w−γ)Θ(γmax−u)Θ(u−γ)g(u)

+
∫ ∞

0
dwL−Ω

0
(
1−w−γ

)
Θ(w−γ)

[
f(w)+Θ(γmax−w)h(w)

]
.

Note that we have not included R(sd,sd)
κ,ε in the list above as it does not carry any rg

dependence and vanishes upon taking rg-derivative.
To further compactify these expressions we introduce the following transforms acting

on a function or a distribution F (w):

q{F}(u, umin) ≡ Θ(1− umin − u)
∫ ∞

0
dw L−Ω

0
(
1− u− w

)
F (w)Θ(w − umin) , (6.33)

q+{F}(u, umax) ≡ Θ(1− u)
∫ ∞

0
dw L−Ω

0
(
1− u− w

)[
Θ(umax − w)Θ(w)F (w)

][umax]

+
.
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In terms of these transforms the above expressions become

R(sd)
κ (Ω) = −q+{h}(0, γmax) , (6.34)

R(rg)
κ (Ω) = q{f + h}(0, γ)− q{h}(0, γmax) ,

R(sd,rg)
κ (Ω) = −

∫ min{γmax,1}

γ
dw q+{h}

(
w, γmax

)[
f(w) + Θ(γmax − w)h(w)

]
,

R′(sd,rg)
κ,ε (Ω) = −q+{h}(γ, γmax) ,

R′(rg ,sd)
κ,ε (Ω) = Ψ−1

∫ γmax

0
du g(u)

[
q{f ′}(u, γ)− q{f ′}(0, γ)

]
,

R′(rg ,rg)
κ,ε (Ω) = −Ψ−1

∫ γmax

γ
du g(u) q{f ′}(u, γ) +

[
q{f + h}(γ, γ)− q{h}(γ, γmax)

]
.

The transform on the combination f + h in the second and last line is necessary to stabilize
the numerical integration.

The transforms simplify to the following expressions:

q{F}(u, umin) =
[

F (1− u)
−Ω

(
1− umin − u

)Ω +
∫ 1−u

umin
dw F (w)− F (1− u)(

1− w − u
)1+Ω

]
,

q+{F}(u, umax) = Θ(1− u− umax)
∫ umax

0
dw F (w)

[(
1− w − u

)−1−Ω
−
(
1− u

)−1−Ω]
+ Θ(umax − 1 + u)

[ ∫ 1−u

0
dw

((
F (w)− F (1− u)

)(
1− w − u

)1+Ω − F (w)(
1− u

)1+Ω

)

−
∫ umax

1−u
dw F (w)(

1− u
)1+Ω + F (1− u)

−Ω
(
1− u

)Ω
]
. (6.35)

In the first expression, the w integration always sees the zero of the argument of L−Ω
0 for

every value of u. In the second expression, we see that only in the second and third line is
the plus prescription of L−Ω

0 necessary. In writing the integrals in the form shown above,
we regulate singularities in F (w) at w → 0 and in L−Ω

0 (1− u) for u→ 1. Finally, for Ω→ 0
limit, the resummation is turned off and we find

lim
Ω→0

eγEΩ

Γ(−Ω)q{F}(u, umin) = Θ(1− umin − u)F (1− u) , (6.36)

lim
Ω→0

eγEΩ

Γ(−Ω)q+{F}(u, umax) =
[
Θ
(
umax − (1− u)

)
Θ(1− u)F (1− u)

][umax]

+
.

In ref. [83], the results for some of the resummation kernels above were presented in
terms of incomplete beta functions and their integrals. We have checked that the results
there agree with the ones above when ζ → 0 in eq. (6.28). The numerical implementation
associated with this work follows the above presentation of these kernels in terms of integral
transforms, and in fact results in a significantly faster and reliable code.

6.5 Fixed order cross section

Finally, we consider the non-singular corrections from using the full soft drop condition
without expansions in the soft limit. In analogy with eq. (3.52) the measurement function
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is given by

δFO
ξ,ε (x, y, rg, ξ0, ζ) ≡ Θ̂kT (x, y)δsd(x, y, ξ0, ζ)

[
Θ̂rg(x, y, rg)δ(ξ − y)− δ(ξ)

]
. (6.37)

Again restricting to ξ > 0 for the differential cross section we can ignore the δ(ξ) term. The
two delta-functions fix both x and y, such that the fixed order cross section is given by

ξG̃FO[1]
κ,ε (ξ, rg) = (1 + δκ,g)j(x∗, ξ)

αs
2π Θ̂kT (x∗, ξ)Θ̂rg

(
x∗, ξ, rg

)∑
κ′

P̂κ′κ(x∗) (6.38)

+ δκ,q|j(1− x∗, ξ)|
αs
2π Θ̂kT (x∗, ξ)Θ̂rg

(
x∗, ξ, rg

)∑
κ′

P̂κ′κ(1− x∗) ,

where x∗ is the solution of the soft drop constraint in eq. (6.2) for y = ξ and j(x, y) is the
Jacobian given by

j(x, y) =
(1 + yζ2

1− yζ2

)(
1 + β

2
(1− 2x)(1− yζ2)

(1− x) + xyζ2

)−1
. (6.39)

In the soft limit (x ∼ y, x→ 0), j(x, y) = 2/(2 + β). The δsd constraint can be easily solved
for β = 0, for which we find

x∗(y, ξ0, β = 0) = 1− 1− ξ0(1 + yζ2)
1− yζ2 . (6.40)

For other values of β we employ the following approximation which fairly well reproduces
the exact solution for the range of zcut and β that we consider:

x∗(y, ξ0, β > 0) ≈ y
β

2+β ξ
2

2+β
0 − yζ2 + 1

4yζ
2
(
zcut
0.1

)
. (6.41)

Since the rg-dependence in the fixed order cross section in eq. (6.38) only arises from the
measurement theta-function and collinear matrix elements, to gauge the size of non-singular
corrections we can simply consider the boundary soft drop cross section for rg = 1. To this
end we define

∆G̃n.s.[1]
κ, sd,ε

(
ξ, αs(µN )

)
≡ G̃FO

κ,ε

(
ξ, rg = 1

)
−Q∆Sκsd,ε

(
Qξ,Qcut, ζ, β, αs(µN )

)
. (6.42)

In figure 12 we show the size of the non-singular correction relative to the fixed-order result.
We see that the deviation is below 5% which we will find to be well within the perturbative
uncertainties.

6.6 Rg-weighted boundary soft drop cross section

Having discussed the construction of the soft drop boundary cross section we now use
it to compute the rg moments. The first step is to combine the results in the plain jet
mass and soft drop resummation regions to compute the matched cross section. This is
straightforwardly obtained by repeating the steps for the max-Rg cross section in eq. (5.1):

G̃match
κ,ε (ξ, rg) ≡ G̃sd

κ,ε(ξ, rg, µsd→plain) +
[
G̃plain
κ,ε (ξ, rg, µplain)− G̃sd

κ,ε(ξ, rg, µplain)
]
. (6.43)
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Figure 12. Relative size of non-singular corrections to the boundary soft drop cross section. Using
the full soft drop condition shifts the cusp slightly to the left of ξ′0 (green-dashed vertical line).

Using this result, we can compute the C(n)
2κ (ξ) moments:

C
(n)
2κ (ξ) = ξ

G̃match
κ (ξ)

∫ rmax
g (ξ)

rmin
g (ξ)

drg rng wsd→plain(ξ, rg)
dG̃match

κ,ε (ξ, rg)
drg

. (6.44)

Next, we note that the cross section ∂rg G̃match
κ,ε (ξ, rg) is proportional to Ψ(ξ, rg) defined in

eq. (6.26):

ξ
dG̃match

κ,ε (ξ, rg)
drg

= Ψ(ξ, rg) Fmatch
κ,ε (ξ, rg) , (6.45)

and have factored out the pre-factor in eq. (6.24), such that using eq. (6.29) C(n)
2κ (ξ) in

eq. (6.44) becomes

C
(n)
2κ (ξ) = 1

G̃match(ξ)

∫ min{1,γmax(ξ)}

γmin(ξ)
dγ
[
rg(γ)

]n(rmax
g (ξγ)
γ

)2

Fmatch
κ,ε

(
ξ, rmax

g (ξγ)
)
, (6.46)

where

rg(ξ, γ) ≡ rmax
g (ξγ) , γmin(ξ) ≡ ξ′0v(

√
ξ)

ξ
, γmax(ξ) = ξ′0

ξ
. (6.47)

In figure 13 we demonstrate how the matching for C(−1)
2κ works. We see that the overlap

piece completely cancels the soft drop resummed cross section in the plain jet mass region
and the plain jet mass cross section in the soft drop resummation region. In figure 14 we show
the impact of scale variations and the variation of the nuisance parmaeter amax

20,ε for two-loop
non-logarithmic pieces for C(−1,2)

2κ moments. Unlike the doubly differential cross section
considered in the previous section the boundary cross section is not directly related to single
differential jet mass cross section. As a result we find a significant impact of scale variation
left in the ratio, which dominates the nuisance parmaeter variation. The variations for C(2)

2κ
are somewhat smaller than those of the C(−1)

2κ moment. This is because for positive moments
n = 2, the contribution from the int-Rg and min-Rg regions is naturally power suppressed.
The scale variations for small rg tend to be larger due to smaller scales being probed.
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Figure 13. Matching the result for C(n)
2κ for n = −1 for quark and gluon jets across the soft drop

resummation and plain jet mass regions. The vertical lines denote the extent of the SDOE region.

Figure 14. C(n)
2κ for n = −1 (top) and n = 2 (bottom) for quark and gluon jets. The vertical lines

denote the extent of the SDOE region.

7 Comparison with previous results

Having discussed the NNLL computation of the Wilson coefficients we now investigate the
impact of improvements achieved in this work from matching to the plain jet mass region.
In figure 15 we show the comparison of NNLL results for C(1)

1q and C(1)
2q and the previous

result derived in ref. [83], taking the e+e− → qq̄ process for illustration. A comparison with
LL and NLL results, as well as with a computation in the coherent branching framework
can be found in ref. [83]. Crucially, in the NLL′ calculation in ref. [83] the power corrections
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Figure 15. Comparison of NNLL prediction of C(1)
1 and C(−1)

2 against the NLL′ prediction from
ref. [83] in the soft drop resummation region.
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Figure 16. Hadronization corrections in the jet mass spectrum by combining the Wilson coefficients
and the corresponding moments following eq. (1.3). The insets show correction to the parton level
curve for two different calculations of perturbative weights. The same sets of legends apply to both
plots and the corresponding insets.

associated with the max-Rg regime in the soft drop resummation region shown in eq. (4.23)
were systematically dropped. Hence, the result is not valid close to the soft drop cusp and
beyond. For this reason we only show the central curve in figure 15 obtained by simply
switching from soft drop to plain jet mass resummation profiles. Our NNLL calculation
reveals that the power corrections from matching to the plain jet mass region are not large
in the region ξ < ξ′0 < ξ0 for typical grooming parameters. For both C(1)

1κ and C(−1)
2κ the

difference in the region where the two results overlap, however, becomes significant for low
grooming cases such as zcut = 0.05 and β = 2. On the other hand, we see a significant
impact on C(−1)

2κ from the shift of the soft drop cusp from the NLL location, ξ0, to NNLL
location, ξ′0. We now investigate the impact of this shift on the cusp location on the
numerical size of the power corrections.

We first assess the improvements in the perturbative weights achieved in this work by
considering the impact on the jet mass spectrum. We note that the NLL jet mass spectrum
exhibits cusp at ξ0, whereas the NNLL (or NLL′) spectrum at ξ′0. To include hadronization
corrections consistently we must ensure that this is also the case for the Wilson coefficients.
In figure 16 we combine the NLL′ results for perturbative weights from ref. [83] without
(ξ/ξ0)1/(2+β) soft drop power corrections with the NLL jet mass spectrum, and the NNLL
results derived in this work (including these power corrections) with the NNLL jet mass
spectrum. Here, as a reference, we used {Ω◦◦1q,Υ�

1,0q,Υ
�
1,1q} = {0.55,−0.57, 1.06} obtained

from fitting to Pythia 8.3 hadronization model in ref. [92].8 As can be seen in the top
panel, figure 16, the nonperturbative corrections start to grow as we reduce the jet masses
past the respective cusp location shown in dashed vertical lines. We find, however, that the
correction to the parton level for two different calculations of perturbative weights shown in

8These values are chosen purely for illustration purposes and we do not claim to have determined these
parameters by fitting to Pythia 8.3.
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Figure 17. Results of fitting to Pythia 8.3 using NNLL C
(n)
κ coefficients and with dropping soft

drop power corrections.

the bottom inset differs significantly only beyond the cusp at ξ0, with the NNLL calculation
being the reliable one in this region.

We can further investigate this effect by carrying out simple Monte Carlo fitting analysis
along the lines of ref. [92]. More specifically, we treat the parton shower prediction in the MC
as the perturbative calculation and fit for the nonperturbative parameters {Ω◦◦1q,Υ�

1,0q,Υ
�
1,1q}

in e+e− → qq̄ process by comparing it with the hadron level curve and using analytical
calculations of the Wilson coefficients. We consider two different cases where calculation of
Wilson coefficients in ref. [83] without soft drop power corrections and the NNLL calculation
of this work is employed. When fitting using the NNLL result of this work, we take the
fit region to be ξ ∈ (ξSDOE, ξ

′
0), where ξSDOE was defined above in eq. (2.15) and with

ρ in eq. (2.15) chosen to be 4.5 [92]. On the other hand, since in the NLL′ calculation
of ref. [83] the soft drop power corrections were systematically dropped, it is natural to
choose the fit range to be ξ ∈ (ξSDOE, ξ0). Additionally, following the procedure of ref. [92],
we interpret the uncertainty in the extractions of these moments by varying the Wilson
coefficients within their respective uncertainty bands shown in figure 15. In figure 17 we
show the results of this fitting procedure. The dominant uncertainty comes from variations
in C(−1)

2κ which are shown as dotted and dashed ellipses, whereas the uncertainty in C(1)
1κ

being small leads to tighter variations. From the spread of the ellipses we can gauge that
the two fit results are compatible. However, the fit results for NLL′ computation, where soft
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drop power corrections are also dropped, lead to larger uncertainty (and a slightly lower χ2

value). Thus, the improved calculation with matching in the plain jet mass region enables
a more precise calibration of hadronization models in terms of soft drop nonperturbative
parameters. At the same time, through this comparison it is reassuring to see that by
including power corrections, we do not significantly alter the outcome the determination
of these parameters. A discussion on how the choice of lower end of the fit range ξSDOE
impacts the fit results can be found in ref. [92].

Finally, we note that in figure 16 we have not truncated the hadronization corrections
in the ungroomed region, and have incorporated as shown in eq. (1.3) also for jet masses
larger than the respective cusp locations. While the prescription of eq. (1.3) is strictly
valid only in the SDOE region, this approach nevertheless captures the main features of
transition from the groomed to ungroomed region. This is because the C(−1)

2κ coefficient
which is specific to effects of soft drop automatically becomes small in the ungroomed
region for ξ > ξ0, ξ

′
0, whereas the C(1)

1κ coefficient tends to 1, the value at the jet radius
boundary. This is consistent with the behavior expected in the ungroomed region as
described in eq. (1.2). However, because of the jet boundary, the dipole geometry valid in
the SDOE region gets distorted, and as such Ω◦◦1κ is a distinct moment from Ω(1)

κ for the
ungroomed region. Nevertheless, the power corrections are very small in this region and
numerically the differences between these two moments may be ignored. Hence, our NNLL
result valid throughout the jet mass spectrum provides a starting point for matching the
nonperturbative power corrections across the two regions.

8 Comparison with simulations

In this section we show a comparison of the numerical implementation of the NNLL
calculation of the moments above against simulations of quarks and gluon jets in e+e−

and pp collisions in Pythia 8.3 and Herwig 7.2. For Pythia 8.3 simulations we employ
the default pT -ordered shower and for Herwig 7.2 the default angular-ordered shower.
Both parton showers are simulated with LO hard process. Below we only show results for
parton-level predictions and do not turn on hadronization and underlying event models.
In the simulations we reconstruct anti-kT [99] jets using Fastjet [100], and analyze them
using jet analysis software JETlib [101]. We note that since the parton shower results are ∼
LL accurate, we do not anticipate a perfect agreement with the more precise NNLL results.
Nevertheless, we will see below that the parton shower results are largely in agreement with
analytical calculations within perturbative uncertainty.

8.1 Results for C1

In figure 18 we show compare the analytical prediction for C(n)
1κ for phenomenologically

relevant cases of n = 1, 4 for quark jets in e+e− → qq̄ parton level process simulated at
leading order for all combinations of zcut ∈ {0.05, 0.1, 0.2} (rows) and β ∈ {0, 1, 2} (columns).
We will stick to leading order treatment of the hard scattering since the main goal of this
work is the hadronization model and its interface with the parton shower which can be well
isolated with the help of soft drop in the SDOE region. Within the SDOE region shown
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between the vertical lines we find the MC extraction to agree very well with the analytical
result, and we expect this to work even when higher order hard matching corrections are
included. Beyond the cusp, however, we expect that the prediction for ξ0 < ξ . 1 to be
modified with more precise matching to account for additional jets, though continue to find
a very good agreement for e+e− collisions for our LO simulations. We have also shown
the result for the central curve of NLL′ calculation without soft drop power corrections in
dashed line. We also simulate the e+e− → h0 → gg process to study gluon jets in isolation
shown in figure 19 and find similar results as quark jets.

In figures 20 and 21 we compare the analytical prediction for quarks and gluon jets in
pp collisions against simulations. Here we simulate pp→ Z+ q/g jet process and sample the
leading jet. We see that both MC simulations yield almost identical results and agree with
the NNLL result in the SDOE region, though there are some small noticeable differences
for β = 2 case. We find that despite the differences in the theory setup for inclusive jets
and the jet selection criteria in simulations they remain close to the analytical result in the
plain jet mass region for many of the zcut, β combinations.

8.2 Results for C2

Next, we show a comparison of NNLL results for C(n)
2κ for n = −1, 2 and parton level

simulations for the same processes as considered above. Here we use an improved method
for extracting of C(n)

2κ moments from parton showers than what was originally employed in
ref. [82]. In ref. [82] the soft drop condition was shifted by a small amount ε/rg to result in
a new constraint Θ(z−ξ0r

β
g +ε/rg) which upon numerically differentiating with respect to ε

resulted in the C(−1)
2κ moment. This approach however fails to work for positive moments that

we consider because for small angles and n > 0 the shift εrng becomes too small for numerical
differentiation. Instead, we calculate C(n)

2κ here via a weighted cross-section given by

C
MC,(n)
2κ (ξ) = ξ

dσ̂MC
κ /dξ

∫
drg

∑
εi

afd
i(

rmax
g (ξ)

)β
ε
rngwsd→plain(ξ, rg)

dσ̂MC
κ (εi)
drgdξ

(8.1)

where dσ̂MC
κ (εi)

drgdξ is obtained by differentiating the jet with the shifted soft drop condition

ΘMC
sd (ε) ≡ Θ

(
z − ξ0r

β
g + ε

(
rmax
g (ξ)

)β)
, (8.2)

for a range of uniformly spaced {εi} choices and the corresponding finite difference coeffi-
cients {afd

i } to build in numerical derivative. Doing so ensure that the shifted term remains
commensurate in size with the ξ0r

β
g term.

The results for e+e− → qq̄ process are shown in figure 22. Unlike in the case of C(n)
1κ ,

the simulations in Pythia and Herwig do not agree with each other for β > 0. Nevertheless,
for all combinations of zcut and β shown the simulations agree with analytical calculations
within the NNLL uncertainty band, with the Herwig result being closer to the central curve.
Comparing n = −1 and n = 2 we see a better agreement between the analytical results
and simulations for n = 2. This is due to the fact that for n = −1 there is larger weight
associated with smaller angles in eq. (8.1) which we need to manually eliminate using the
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Figure 18. Comparison of NNLL prediction of C(1)
1 (top) and C(4)

1 (bottom) against parton level
simulations of quark jets in e+e− collisions in Pythia 8.3 and Herwig 7.2.
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Figure 19. Comparison of NNLL prediction of C(1)
1 and C(4)

1 against parton level simulations of
gluon jets in isolation in Pythia 8.3 and Herwig 7.2.
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Figure 20. Comparison of NNLL prediction of C(1)
1 (top) and C(4)

1 (bottom) against parton level
simulations of quark jets in pp collisions in Pythia 8.3 and Herwig 7.2.
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Figure 21. Comparison of NNLL prediction of C(1)
1 and C(4)

1 against parton level simulations of
gluon jets in pp collisions in Pythia 8.3 and Herwig 7.2.
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Figure 22. Comparison of NNLL prediction of C(−1)
2κ and C(2)

2κ against parton level simulations in
Pythia 8.3 and Herwig 7.2.
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weight function to capture only the max-Rg regime contribution. We have also displayed for
comparison the NLL′ result from ref. [83]. We see that including soft drop power corrections
results in a more accurate location of the cusp and agrees better with simulations. This is
particularly noticeable for β = 1, 2. In figure 23 we show the results for gluon jets simulated
in e+e− collisions and can draw similar conclusions as the quark case.

In figures 24 and 25 comparison of analytical results with simulations in pp collisions for
quark and gluon jets is shown. Contrary to the e+e− case the simulations differ significantly
in the plain jet mass region due to additional inevitable contribution from the initial state
radiation. In the SDOE region, the analytical result agrees with the simulations, except
however for the n = −1 moment, there is a disagreement for jet masses closer to the cusp.
These differences for pp collisions between our analytical results and MC simulations are
however not troublesome since we expect the contribution of ISR to nonperturbative effects
to be proportional to C(2)

2κ , which is suppressed relative to that of the collinear-soft radiation
within the jet. Thus, as far as the nonperturbative corrections associated with boundary
soft drop are concerned, the same moment C(−1)

2κ describes both e+e− and pp scenario.
For n = 2 moment, we however find a comparatively better agreement between MC and
analytical calculation in the SDOE region.

9 Conclusion

In this paper we have calculated the key ingredients required to describe hadronization and
underlying event corrections to the groomed jet mass spectrum in a model independent
framework. These ingredients are differential jet mass cross sections weighted by certain
moments of groomed jet radius and occur in combination with universal nonperturbative
O(ΛQCD) constants for hadronization corrections and analogous parameters for underlying
event contribution to the groomed jet mass. A precise knowledge of these perturbative
weights is crucial for precision measurements with soft drop jet mass as higher order calcula-
tions become available. The results for the moments associated with hadronization derived
in this paper were used in ref. [55] to ascertain the ultimate precision possible on the strong
coupling constant determination when all the nonperturbative power corrections are left
unconstrained. At the same time, this field-theory based formalism imposes highly nontrivial
constraints on the form and functional dependence of power corrections on jet kinematics
and grooming parameters. This property of nonperturbative corrections can be used as
a benchmark tool for improving modeling of hadronization and its interface with parton
showers in event generators. The NNLL predictions for the perturbative weights calculated
in this paper were employed in ref. [92] for a detailed calibration of hadronization models.

We calculated the perturbative weights associated with power corrections by computing
the NNLL result for the doubly differential cross section and the boundary soft drop
cross section. We improved upon the earlier calculation in ref. [83] and extended the
previous result into the ungroomed region and performed a more accurate treatment of the
prediction near soft drop cusp. We also accounted for the O(αs) non-singular corrections
and parameterized the effect of two-loop non-logarithmic pieces via nuisance parameters.
We compared the phenomenologically relevant Rg-moments of these cross sections against
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Figure 23. Comparison of NNLL prediction of C(−1)
2κ and C(2)

2κ against parton level simulations of
gluon jets in isolation in Pythia 8.3 and Herwig 7.2.
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Figure 24. Comparison of NNLL prediction of C(−1)
2κ and C(2)

2κ against parton level simulations of
quark jets in Pythia 8.3 and Herwig 7.2 in pp collisions. The additional contribution beyond the
cusp region arises from ungroomed initial state radiation.
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Figure 25. Comparison of NNLL prediction of C(−1)
2κ and C(2)

2κ against parton level simulations of
gluon jets in Pythia 8.3 and Herwig 7.2 in pp collisions. The additional contribution beyond the
cusp region arises from ungroomed initial state radiation.
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parton level extractions from Pythia 8.3 and Herwig 7.2 simulations. The parton shower
extractions of these weights, though less precise, agreed well within the uncertainty bands for
e+e− → qq̄ and e+e− → gg processes within the SDOE region. We saw some disagreement
near the cusp for C(−1)

2κ moment for pp collisions due to inevitable contribution from the
initial state radiation in simulations. On the other hand, the moments that are relevant for
ISR and the underlying event were found to be in better agreement in the SDOE region for
simulations of jets in pp collisions.

In comparing the results of this work with the previous computation in ref. [83] we
found that the results in the soft drop resummation region did not differ significantly.
However, by including the ungroomed region, we ensure a more comprehensive treatment of
the problem. This matching also described the significant shift in the soft drop cusp arising
at NNLL accuracy, that cannot be systematically accounted for otherwise. Additionally, in
the region soft drop resummation region, the fact that the new calculation falls within tthe
uncertainty of the previous results can be seen as a consistency check, giving us increased
confidence in the validity of our theoretical framework. It is also reassuring to see that the
new calculation, though more intricate, does not introduce any unexpected large power
corrections in the soft drop resummation region that were previously neglected. Finally, the
result of the perturbative weights extended into the ungroomed region provides a starting
point for equivalently extending the power corrections beyond the soft drop cusp.

In summary, we believe that this paper provides motivation for carrying out analyses
with unfolded data from colliders. With the prospects of high quality data to be delivered
from high-luminosity phase of the LHC, it will be very exciting to use the approach presented
in this paper to further our understanding of hadronization effects as well as carry out
precision measurements using groomed observables.
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A Anomalous dimensions

In this appendix we consolidate the anomalous dimensions up to O(α2
s) for NNLL resum-

mation of the various factorization functions appearing in our analysis as well as results
of certain functions in Laplace space. We refer the reader to appendix A of ref. [83] for a
details of the notation for anomalous dimension and RG evolution kernels.

The cusp anomalous dimensions are given by

ΓNκ
incl

[αs] = −2CκΓcusp[αs] , (A.1)

ΓJκ [αs] = +2CκΓcusp[αs] ,
ΓCκ [αs] = +2CκΓcusp[αs] ,

ΓSκcm [αs] = −2CκΓcusp[αs] ,

ΓSκG [αs] = +2CκΓcusp[αs] ,

ΓSκcg [αs] = −2CκΓcusp[αs] ,

ΓSκc [αs] = −2CκΓcusp[αs] ,

where with the convention

Γcusp[αs] =
∞∑
n=0

Γcusp
n

(αs
4π
)n+1

, (A.2)

up to NNLL we have [104–106]

Γcusp
0 = 4 , (A.3)

Γcusp
1 = 8

[(
67
18 −

π2

6

)
CA −

5
9nf

]

Γcusp
2 = 16

[(
245
24 −

67
54 + 11π4

180 + 11
6

)
C2
A +

(
−209

108 + 5π2

27 −
7
3ζ3

)
CAnf

+
(−55

27 + 2ζ3

)
CFnf −

1
27n

2
f

]
.

Next, we state the non-cusp anomalous dimensions following the same series expansion
as in eq. (A.2). The non-cusp anomalous dimensions of the normalization factor Nκ

incl for
quark and gluon jets are given by

γN
q

0 = −6CF , γN
g

0 = −2β0 , (A.4)

γN
q

1 =
(
− 3 + 4π2 − 48ζ3)C2

F +
(
− 961

27 −
11π2

3 + 52ζ3

)
CFCA +

(260
27 + 4π2

3

)
CFnfTF ,

γ
Ng
1 =

(
− 118

9 + 4ζ3

)
C2
A +

(
− 38

9 + π2

3

)
CAβ0 − 4β1 . (A.5)
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For the jet function we have

γ
Jq
0 = 6CF , γ

Jg
0 = 2β0 , (A.6)

γ
Jq
1 = CF

[
CF
(
3− 4π2 + 48ζ3

)
+ CA

(
1769
27 + 22π2

9 − 80ζ3

)
+ TRnf

(
−484

27 −
8π2

9

)]
,

γ
Jg
1 = C2

A

(
2192
27 − 22π2

9 − 32ζ3

)
+ CATRnf

(
−736

27 + 8π2

9

)
− 8CFTRnf . (A.7)

The one-loop non-cusp anomalous dimension of all the soft functions are zero (with the
exception of the boundary soft drop non-cusp anomalous dimension for β = 0 in eq. (6.17)).
For Sκcm (and Sκplain), we have

γ
Sκcm
1 = Cκ

(
CA

(
−808

27 + 11π2

9 + 28ζ3

)
+ nfTF

(
224
27 −

4π2

9

))
. (A.8)

At two-loops a numerical approximation of the global soft anomalous dimension reads [55,
91]:

γ
SκG
1 (β) = Cκ

1 + β

(
γ
SκG
CF

(β) + nfγ
SκG
TF

(β) + γ
SκG
CA

(β)
)
, (A.9)

where

γ
SκG
CF

(β) = CF
(
0.00563338β3 − 0.621462β2 − 1.11337β + 16.9974

)
, (A.10)

γ
SκG
TF

(β) = TF
(
− 0.26041β3 + 2.01765β2 + 3.48117β − 10.9341

)
,

γ
SκG
CA

(β) = CA
(

+ 0.640703β3 + 3.37308β2 + 3.68876β − 20.4351
)
.

The anomalous dimension of the hard-collinear function Cκ(ξ, rg, Q, µ) is simply the
negative of that of the normalization factor Nκ

incl. Likewise the anomalous dimension of Sκcg
is negative of that of the global soft function:

γCκ [αs] = −γNκ [αs] , (A.11)
γSκcg [αs] = −γSκG [αs] .

Finally, the non-cusp anomalous dimension of the collinear soft function Sκc can be obtained
using RG consistency of the max-Rg cross section:

γ
Sκc
1 (β) = −γNκ

1 − γJκ1 − γ
SκG
1 (β) . (A.12)

B Profile functions

Here we discuss the profile functions that incorporate the appropriate canonical scales for
various factorization functions as well as enable us to estimate perturbative uncertainty
through their varaitions. Here we simply summarize the final formulae of original imple-
mentation discussed in great detail in ref. [83] in the soft drop resummation region, which
was further extended into the plain jet mass region in ref. [55].
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Firstly, the hard scale and global-soft scales are defined as

µN ≡ eNQ , µgs ≡ eNQcut , eN ∈ [0.5, 2] , (B.1)

where the parameter eN is varied in the range shown. In the fixed-order cross section we use
the same µN scale. We vary the two scales with the same parameters so as to be consistent
with matching at the soft drop cusp by ensuring that µgs/µN = ξ0.

B.1 Plain jet mass profiles

Next, we summarize the profile scales and their variations associated with the plain jet
mass cross section as described in ref. [55]:

µ̃plain
s (ξ;λ) ≡ µN

[
fplain

vary (ξ)
]λ
fplain

run (ξ) , (B.2)

µplain
s (ξ;λ) ≡ ffreeze

[
µ̃plain
s (ξ;λ)

]
,

µplain
J (ξ;λ, γ) ≡ µ

1
2 +γ
N

(
µplain
s (ξ;λ)

) 1
2−γ .

The jet and soft scales being proportional to µN inherit the eN norm-variation in eq. (B.1).
The interpolation of the canonical ungroomed soft scales between various regions is governed
by fplain

run (ξ) given by

fplain
run (ξ) ≡



x0
(
1 + ξ2

4x2
0

)
ξ ≤ 2x0

ξ 2x0 < ξ ≤ x1

ξ + (2−x2−x3)(ξ−x1)2

2(x2−x1)(x3−x1) x1 < ξ ≤ x2

1− (2−x1−x2)(ξ−x3)2

2(x3−x1)(x3−x2) x2 < ξ ≤ x3

1 x3 < ξ ≤ 1

. (B.3)

The regions ξ < x0, 2x0 < ξ < x1 and x3 < ξ < 1 respectively correspond to the ungroomed-
nonperturbative, ungroomed-resummation and fixed order region. x0 is determined by the
point where the soft scale freezes to a nonperturbative scale,

x0 = n0
(µN/1GeV) , (B.4)

where we take the default value of n0 = 1. Additionally, varying this parameter tests
sensitivity of the cross section to nonperturbative effects:

Vary αs freezing scale: n0 ∈ [0.75, 1.25] . (B.5)

The other three parameters take different values depending on the transition point ξ0.
Firstly, x3 is given by

ξ0 < 0.2 : x3 = 0.2 , (B.6)

0.2 ≤ ξ0 < 0.25 : x3 = 0.25 + ξ0
2 ,

0.25 ≤ ξ0 : x3 = min{ξ0 + 0.1, 1} ,
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and x1 and x2 are given by

x1 = Θ(x3 − 1.15ξ0)1.15ξ0 + Θ(1.15ξ0 − x3)ξ0 , x2 = x1 + x3
2 . (B.7)

Having defined the canonical soft scale µ̃s(ξ) we implement its variation in the plain
jet mass resummation region alone, different than the overall normalization probed by eN ,
using the trumpet function

fplain
vary (ξ) ≡


1 0 < ξ ≤ ξ0
ζ
(
ξ, ξ0, xmid; 1, 2

)
, ξ0 ≤ ξ < xmid

ζ
(
ξ, xmid, x3; 2, 1

)
, xmid ≤ ξ ≤ x3

1 x3 < ξ ≤ 1

, (B.8)

where

xmid ≡
ξ0 + x3

2 , (B.9)

and

ζ
(
ξ, xstart, xend; a1, a2

)
≡


a1 ξ ≤ xstart

a1 + 2(a2−a1)(ξ−xstart)2

(xend−xstart)2 , xstart ≤ ξ < xstart+xend
2

a2 − 2(a2−a1)(xend−ξ)2

(xend−xstart)2 , xstart+xend
2 ≤ ξ ≤ xend

a2 xend < ξ

. (B.10)

This variation is controlled via the parameter λ:

Trumpet variation in plain jet mass region: λ ∈ [−1, 0.3] . (B.11)

Finally we avoid the scale varying below the nonperturbative scale n0 by re-freezing via the
function

ffreeze[µ] ≡

 µ , µ ≥ 2n0

n0
(
1 + µ2

4n2
0

)
, µ < 2n0

. (B.12)

The jet scale in eq. (B.2) is derived from the ungroomed soft scale using the canonical
see-saw relation with γ = 0. Breaking this canonical relation defines another variation:

Break jet-hard-soft see-saw canonical relation: γ ∈ [−0.1, 0.1] , (B.13)

We have written a “plain” subscript on the jet scale as we use a sightly different prescription
for freezing in the nonperturbative region for the jet scale in the soft drop resummed cross
section below.

B.2 Soft drop profiles

We first summarize min-Rg profiles:

µ̃csg(rg;α) ≡
(
f sd res.

vary (r1+β
g )

)α
µgs f

sd res.
run

(
r1+β
g

)
, (B.14)

µcsg(rg;α) ≡ ffreeze
[
µ̃csg(rg;α)

]
,

µC(rg;α, γ) ≡ µN
(
µcsg(rg;α)

µgs

) 1−γ
1+γ

1
1+β

,
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Here the soft scale depends on the groomed jet radius rg instead of the jet mass, and the
interpolating function is defined to be

f sd res.
run (rg) ≡

 y0
(
1 + r2

g

4y2
0

)
rg ≤ 2y0

rg 2y0 < rg ≤ 1
. (B.15)

Here, the parameter governing the transition into the (soft drop) nonperturbative region is
given by

y0 ≡
n0

(µgs/1 GeV) >
ΛQCD
Qcut

. (B.16)

As above, the trumpet variation that vanishes at the end points is governed by

f sd res.
vary (rg) =

{
2(1− r2

g) , rg < 0.5
1 + 2(1− rg)2 , 0.5 ≤ rg ≤ 1

. (B.17)

With α = 0 in eq. (B.14) the new variation we have is given by

Trumpet variation in the soft drop resummation region: α ∈ [−1, 1] . (B.18)

As in the case of jet scale above, the hard-collinear scale µC is derived from the µcsg scale
as shown in eq. (B.14) using the canonical relation for γ = 0. To ensure that the jet scale
in the max-Rg and int-Rg region merges with the hard-collinear scale for γ 6= 0, we are
required to use the same parameter for the two and vary them together as in eq. (B.13).

Next, we summarize the implementation of profiles for max-Rg cross section in soft
drop resummation region:

µ̃sd res.
s (ξ) ≡ µgs

[
f sd res.

run

(( ξ
ξ0

) 1+β
2+β
)] 2+β

1+β

, (B.19)

µ̃cs(ξ;α, ρ) ≡
[
f sd res.

vary

(( ξ
ξ0

) 1+β
2+β
)]α(

µ̃sd res.
s (ξ)

) 1+β+ρ
2+β

(
µgs
) 1−ρ

2+β ,

µcs(ξ;α, ρ) ≡ ffreeze
[
µ̃cs(ξ;α, ρ)

]
,

µJ(ξ;α, γ, ρ) ≡
[
µC(rg;α, γ)

] 1
2 +γ

[
µcs(ξ;α, ρ)

(
µcs(ξ;α, ρ)

µgs

) 1
1+β
] 1

2−γ

.

In addition to the functions and variation parameters discussed already above, we have a new
canonical relation between the ungroomed soft scale, collinear-soft scale and global-soft scale.
This relation allows us to define the c-soft scale in terms of the other two, whereas the aux-
iliary “ungroomed-soft scale” µ̃sd res.

s (ξ) itself is derived using the µcsg scale. Thus, the vari-
ation of ρ with default value ρ = 0 now probes the effect of breaking this canonical relation:

Break µgs, µcs and plain soft see-saw canonical relation: ρ ∈ [−0.1, 0.1] . (B.20)
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Lastly, in the intermediate region, we use the µJ , µgs, µcsg and the hard scale above, and
use the soft drop canonical see-saw relation to define the µcsm scale:

µcsm(ξ, rg;α, ρ) ≡ µcs(ξ;α, ρ)
(
µcs(ξ;α, ρ)

µgs

) 1
1+β
(
µcsg(rg;α)

µgs

)−(1−ρ)
1+ρ+β

. (B.21)

This concludes the summary of profile scales implementation and their variations.

C Weight functions

Here we describe how the weight functions constructed in ref. [83] are extended into the
plain jet mass resummation region. We first list down the relevant canonical profile scales

µcan.
J = Q

√
ξ , µcan.

gs = Qcut , µcan.
csm = Qξ/rg , µcan.

csg = Qcutr
1+β
g , (C.1)

Using these scales and the size of power corrections in the intermediate-Rg regime in
eq. (4.36) we can define parameters that control transition from intermediate to min and
max-Rg regimes. For transition from intermediate to min-Rg regime, we define

λmin ≡
µcsm
µJ

=
√
ξ

rg
. (C.2)

In transitioning to the max-Rg regime, we define two parameters for cases ξ < ξ′0 and
ξ > ξ′0:

λsd res.
max ≡

µcsg
µcsm

= ξ0
ξ
r2+β
g , λplain

max ≡
µcsg
µgs

= r1+β
g . (C.3)

Next, to determine whether or not the intermediate regime is required, we calculate the
angle rg,t for which λmin = λmax:

rsd res.
g,t (ξ) ≡

[
ξ

ξ0

√
ξ

] 1
3+β

, rplain
g,t (ξ) ≡

(√
ξ
) 1

2+β , (C.4)

which can be combined as

rg,t(ξ) ≡
( ξ
ξ0

)asd(log10 ξ)(
√
ξ)aplain(log10 ξ) , (C.5)

where the exponents are modified as a function of ξ, and are given by

asd(log10 ξ) ≡ a
(

log10(ξ); 1
3 + β

, 0
)
, (C.6)

aplain(log10 ξ) ≡ a
(

log10(ξ); 1
3 + β

,
1

2 + β

)
,

where a(log10(ξ);x, y) is a function that smoothly transitions from the value x to y as ξ is
increased past ξ = ξ′0, and is defined as

a(log10(ξ); x, y) ≡ ζ
(

log10 ξ,
[
log10(ξ′0)− δξ

]
,
[
log10(ξ′0) + δξ

]
; x, y

)
, (C.7)
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where the function ζ(ξ, xstart, xend; a1, a2) was defined above in eq. (B.10) and we set
δξ = 0.75.

We will take λ = 1/3 as the reference power correction to determine the validity of
the intermediate regime; i.e. if λmax, λmin < λ then we implement resummation in the
intermediate region defined by

rmin
g,PC(ξ, λ) ≤ rg ≤ rmax

g,PC(ξ, λ) , (C.8)

where

rmin
g,PC(ξ, λ) ≡

√
ξ

λ
. (C.9)

Now for the max-Rg regime, we have two cases:

rsd res.
g,PC (ξ, λ) ≡

( ξ
ξ0
λ
) 1

2+β
, rplain

g,PC(ξ, λ) ≡ λ
1

1+β , (C.10)

the following combination of which defines rmax
g,PC in eq. (C.8):

rmax
g,PC(ξ, λ) ≡

( ξ
ξ0

)aPC
sd (log10 ξ)

λa
PC
plain(log10 ξ) , (C.11)

where

aPC
sd (log10 ξ) ≡ a

(
log10 ξ;

1
2 + β

, 0
)
,

aPC
plain(log10 ξ) ≡ a

(
log10 ξ;

1
2 + β

,
1

1 + β

)
. (C.12)

We finally introduce a transition function X(rg, rg,t) for a given value of ξ:

X(rg, rg,t) = 1
2

(
1 + tanh

(
xt

rg − rg,t
rmax
g (ξ)− rmin

g (ξ)

))
, xt = 20 , (C.13)

and design the weight functions for the three EFT regimes as

2-EFT: wmax = X(rg, rg,t(ξ)) , wint = 0 , (C.14)
3-EFT: wmax = X(rg, rmax

g,PC(ξ, λ)) , wint =
[
1−X(rg, rmax

g,PC(ξ, λ))
]
X(rg, rmin

g,PC(ξ, λ)) ,

In either of these cases wmin = 1− wint − wmax. With the above construction, these weight
functions turn on in their respective regime.
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