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1 Introduction and summary

This work is devoted to eliciting the possible self-adjoint boundary conditions for one-
dimensional Schrödinger systems defined in finite intervals and their implications for string
vacua with broken supersymmetry. We were repeatedly confronted with aspects of this
mathematical problem, which has a long history (see, for example, [1–7]) when studying
the modes present in the warped compactifications found in [8, 9]. These backgrounds are
string-inspired solutions of the supergravity [10–13] effective action, which can include the
“tadpole potentials”

V = T eγ φ (1.1)

that accompany the breaking of supersymmetry in String Theory [14–21]. They are
generalizations of the Dudas-Mourad vacuum of [22], and share with it the emergence of a
finite internal interval. An internal interval had previously made its entry, in String Theory,
in the Horava-Witten recovery [23, 24] of the E8×E8 heterotic string [25–27] from the eleven-
dimensional supergravity of Cremmer, Julia and Scherk [28]. However, the examples that
motivated the present analysis contain an additional ingredient, supersymmetry breaking,
which can substantially affect vacuum stability. Consequently, one cannot forego a careful
scrutiny of the resulting modes, which depend to a crucial extent, as we shall see, on the
possible choices of self-adjoint extensions.
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The tadpole potential is the leading back-reaction to the breaking of supersymmetry
in the three non-tachyonic string models of [29–35]. The first is a heterotic model, where
the contribution in eq. (1.1) emerges from the torus amplitude and γ = 5

2 , while the others
are orientifolds [36–44], where the potential emerges at the (projective) disk level and
the parameter γ has the “critical” value γc = 3

2 . The last model embodies the simplest
realization of “brane supersymmetry breaking” [34, 45–49], a peculiar mechanism induced
by the simultaneous presence, in the vacuum, of extended BPS objects, anti-branes and
orientifolds, preserving incompatible portions of the supersymmetries originally present in
ten-dimensional Minkowski space. These extended objects result in the complete breaking
of supersymmetry at the string scale, which appears non-linearly realized in the low-energy
supergravity [50–52]. In ten dimensions there are no tachyonic modes, but there is also no
order parameter to recover an unbroken phase.

The non-trivial profiles considered in [8, 9] for the metric, the dilaton and a p+ 1-form
potential describe compactifications to lower-dimensional Minkowski spaces, with intervals
of finite length that are covered by finite spans 0 ≤ z ≤ zm of a conformal coordinate,
and the resulting modes can be associated to Schrödinger-like systems after suitable field
redefinitions. The possible choices of boundary conditions at the ends of the interval are
thus essential to characterize the resulting spectra. In [53, 54] we discussed Hermitian
Schrödinger systems for Bose fields of the type

H ψ = m2 ψ (1.2)

and their counterparts for Fermi systems, but we did not address in detail the possible
choices of self-adjoint extensions. Self-adjoint boundary conditions grant the reality of the
eigenvalues and the completeness of the resulting modes, which is instrumental to address all
possible origins of instability, but they do not exclude, in general, the presence of negative
eigenvalues. In reductions to lower-dimensional Minkowski spaces instabilities manifest
themselves precisely, at the perturbative level, as negative m2 eigenvalues of the Schrödinger
systems (1.2), and the relevance of the sign is precisely where our problem departs from
the conventional setup. As we shall see, negative eigenvalues can emerge even in cases
where, at first sight, one would be inclined to exclude them. As a result, vacuum stability
can only hold, in general, with special self-adjoint boundary conditions granting positive
spectra for the Schrödinger operators (1.2), among those compatible with the symmetries
of the backgrounds.

The plan of this paper is as follows. In section 2 we motivate the appearance of
Schrödinger problems with double-pole singularities at the ends of the intervals of interest
for the types of warped backgrounds encountered originally in [22], and more recently
in [8, 9]. In section 3 we discuss in detail how to characterize self-adjoint extensions for
one-dimensional Schrödinger systems in a finite interval. We begin from the free theory, thus
impinging on old results that have been widely considered in Mathematics [1–7], but from a
perspective that seems to us potentially useful. We then turn to the types of Hamiltonians
of direct interest to us, with double poles at the ends of an interval, and we discuss in detail
a class of exactly solvable cases of this type. As we shall see, while the modes resulting
from singular potentials typically develop algebraic singularities at the ends of the interval,
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one can still characterize the allowed self-adjoint boundary conditions along the lines of
non-singular problems. In section 4 we elaborate on some lessons of the analysis for the
actual vacua of [8, 9, 22]. We collect our conclusions in section 5.

2 Singular potentials from warped string vacua

The solutions discussed in [8, 9] can clearly motivate the analysis presented in this paper,
and conversely the present analysis can complement the previous work on their modes
in [53]. To this end, we can actually confine our attention to the isotropic nine-dimensional
solutions that can be deduced starting from the Einstein-frame effective action

S = 1
2 k2

10

∫
d10x

√
−g

(
R− 1

2 ∂
M φ∂M φ− T eγ φ

)
. (2.1)

These generalize the results in [22] and share with them some features that are central to
our analysis, but nonetheless are relatively simple to characterize. Abiding to common
practice, we have already called the last term in eq. (2.1) “tadpole potential”, while paying
attention the “critical” value

γc = 3
2 . (2.2)

This characterizes the non-tachyonic ten-dimensional orientifold models with broken super-
symmetry and will play an important role in the following.

In [8] we found two isotropic nine-dimensional solutions that follow from the action (2.1)
for T = 0, for which

ds2 = (µ0 ξ)
2
9 dx2 + dξ2 , eφ = (µ0 ξ)±

4
3 eφ0 , (2.3)

where ξ > 0 and µ0 and φ0 are arbitrary constants. These two solutions are related to one
another by the redefinition φ→ −φ, which is a manifest symmetry of the action for T = 0.
In both cases, the interval has an infinite length and the string coupling diverges, as ξ →∞
or as ξ → 0.

When T 6= 0 the solutions depend on γ, which we can assume to be larger than zero,
up to a redefinition of φ, but one must distinguish different ranges for it [9]. Still, the
T = 0 solutions (2.3) continue, surprisingly, to play a role in asymptotic regions, as we can
now recall.

• For γ = γc the solution is the one originally found in [22], and reads

ds2 = e−
u
6 u

1
18 dx2 + 2

3T u 3
2
e−

3
2 (u+φ0) du2 , eφ = eu+φ0 u

1
3 . (2.4)

Here u ≥ 0, and now the internal interval has a finite length. However, the additional
substitution

µ0 ξ ∼ u
1
4 , (2.5)

where µ0 depends on T and φ0, shows that, up to a rescaling of the spatial coordinates,
the limiting behavior in the vicinity of the boundary at u = 0 is dominated by

ds2 ∼ (µ0 ξ)
2
9 dx2 + dξ2 , eφ ∼ (µ0 ξ)

4
3 . (2.6)

– 3 –



J
H
E
P
0
8
(
2
0
2
3
)
0
4
1

This is a first instance of the role played by the solutions (2.3) even for T 6= 0, as we
had anticipated. In this first case the correspondence is perhaps not too surprising,
since the string coupling tends to zero as ξ → 0, but something similar also occurs,
strikingly, for large values of u. In this limit the powers have negligible effects
compared to the exponential terms, and the background in eqs. (2.4) approaches

ds2 = e−
u
6 dx2 + 1

T
e−

3
2 udu2 , eφ = eu . (2.7)

One can now let
µ0 (ξm − ξ) ∼ e−

3
4 u , (2.8)

where µ0 is determined by T , so that ξm measures the total proper length of the
interval, with

µ0 ξm = 2√
T

(
3 eφ0

)− 3
4 Γ

(1
4

)
. (2.9)

In the neighborhood of the second boundary at ξm, up to a rescaling of the spatial
coordinates, the background thus approaches

ds2 ∼ [µ0 (ξm − ξ)]
2
9 dx2 + dξ2 , eφ ∼ [µ0 (ξm − ξ)]−

4
3 . (2.10)

This limiting behavior is also captured by one of the isotropic tensionless solutions in
eq. (2.3) that is now approached, surprisingly, within a region of strong coupling. The
tadpole ought to dominate at this end of the interval. Yet, while it is instrumental to
grant the internal interval a finite length and determines the scale µ0, it has somehow
negligible effects on the asymptotic structure of the background.

• For γ < γc the solutions read

ds2 = e
− 2 γ λ r

γc
dx2

[∆ cosh (r)]2λ
+ e

− γ
(

18λ
γc

r+φ0
)
dr2

[∆ cosh (r)]18λ ,

eφ = [∆ cosh (r)]
18 γ
γ2
c
λ
e

18λ
γc

r+φ0 , (2.11)

where now −∞ < r < +∞,

∆2 = T

2
∣∣∣γ2 − γ2

c

∣∣∣ , λ = 1
9
(
1− γ2

γ2
c

) (2.12)

and φ0 is a constant. This class of solutions describes again compactifications on
intervals of finite length, where the string coupling vanishes at one end and diverges
at the other. Still, the reader can verify that, as for γ = γc, the limiting behavior at
both ends is captured by the isotropic tensionless solutions in eqs. (2.6) and (2.10),
albeit with different finite values of ξm.

• For γ >γc there are altogether three classes of solutions. The solutions in the first
class read

ds2 = r2|λ| dx2 + r18 |λ|

∆2 e− γ φ0 dr2 , eφ = r
− 18 γ

γ2
c
|λ|
eφ0 , (2.13)
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where 0 < r <∞. They describe intervals of infinite length, and the string coupling
diverges at the origin. Letting

∆ ξ = e−
γ
2 φ0 (r)9 |λ|+1

(9 |λ|+ 1) , (2.14)

the preceding expressions become, for 0 < ξ <∞,

ds2 = (∆ ξ)
2 γ2
c

9 γ2 dx2 + dξ2 , eφ = (∆ ξ)−
2
γ eφ0 , (2.15)

after absorbing some multiplicative constants in rescalings of the x coordinates and
in redefinitions of φ0. Within this range matters are different and, in contrast with
what happens for γ ≤ γc, the limiting behavior at both ends is no longer captured by
the tension-free solutions (2.3).
In addition, there are the two branches of solutions

ds2 = e
∓ 2 γ |λ| r

γc [∆ sinh (r)]2 |λ| dx2 + [∆ sinh (r)]18 |λ| e∓
18 γ |λ| r

γc e− γ φ0 dr2 ,

eφ = eφ0 e
± 18 |λ| r

γc

[∆ sinh (r)]
18 γ
γ2
c
|λ|
, (2.16)

where 0 < r <∞. In both cases, the string coupling vanishes as r →∞ but diverges
at r = 0. Moreover, the length of the r-interval is finite in the first branch (upper
sign), while it is infinite in the second (lower sign). Close to r = 0 the string coupling
is unbounded and the limiting behavior is as in eqs. (2.15). On the other hand, as
r →∞ the string coupling vanishes and the limiting behavior is captured once more,
for the two branches, by the isotropic tensionless solutions (2.3).

A special presentation of the metrics will play a prominent role in the following sections,
since it is closely related to Schrödinger systems. It rests on the introduction of conformal
coordinates, which turn them into the form

ds2 = e2Ω(z)
(
dx2 + dz2

)
. (2.17)

For γ = γc the conformal coordinate is defined as

z(r) =
∫ r

0
du

√
2

3 T e−
2
3 u−

3
4 φ0 u−

7
9 , (2.18)

while for γ < γc it is defined as

z(r) =
∫ r

−∞

du

(∆ cosh u)8λ e
− γ
(

8λu
γc

+φ0
2

)
. (2.19)

In both cases z has finite range (0 ≤ z ≤ zm), with different values for zm = z(∞). The
limiting behavior close to the left end of the interval is now

ds2 ∼
(8µ0z

9

) 1
4 (
dx2 + dz2

)
, eφ ∼

(8µ0z

9

) 3
2
, (2.20)
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while close to the right end

ds2 ∼
[8µ0 (zm − z)

9

] 1
4 (
dx2 + dz2

)
, eφ ∼

[8µ0 (zm − z)
9

]− 3
2
. (2.21)

For γ > γc, as we have seen, there are three classes of solutions. Only those belonging
to the second class, which live in an interval of finite length, and for which the conformal
coordinate z can be defined as

z(r) =
∫ r

0
du (∆ sinh u)8|λ| e− γ

( 8|λ|u
γc

+φ0
2

)
, (2.22)

lead to a finite value for zm = z(∞). Now close to z = 0

ds2 ∼ z
2 γ2
c

9 γ2−γ2
c

(
dx2 + dz2

)
, eφ ∼ z

− 18 γ
9 γ2−γ2

c , (2.23)

while close to other end of the interval, which lies at z = zm,

ds2 ∼
(8µ0 (zm − z)

9

) 1
4 (
dx2 + dz2

)
, eφ ∼

(8µ0 (zm − z)
9

) 3
2
. (2.24)

Following [53], one can define tensor and scalar perturbations of these backgrounds
according to

ds2 = e2 Ω(z)
[
ηMN + hMN (x)f(z)

]
dxM dxN , φ = φ(z) + ϕ(x) g(z) , (2.25)

and there are also perturbations of the Yang-Mills fields and of the Ramond-Ramond
two-form potential. The last two sets of modes can be conveniently described in a “radial”
gauge, letting

Az = 0 , BzM = 0 . (2.26)

One is thus led to Schrödinger-like equations, with Hamiltonians

H = −∂ 2
z + V (z) (2.27)

that can be cast in the form
H = b+AA† , (2.28)

where
A = ∂z + a

2 , A† = −∂z + a

2 , (2.29)

so that the Schrödinger potential is

V = b+ 1
2 a
′ + 1

4 a
2 , (2.30)

where the “prime” indicates a derivative with respect to z. In detail, for tensor perturbations

a = 8 Ω′ , b = 0 , (2.31)

– 6 –
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Figure 1. The potentials for tensor perturbations (left panel, solid) and for scalar perturbations
(right panel, solid), in units of 1

z2
m
, for γ = γc, as functions of z

zm
, and their approximations obtained

adding the two limiting behaviors in eq. (2.36) (dashed).

while for scalar perturbations1

a = 24 Ω′ − 2 T γ

φ′
e2Ω + γ φ = 24 Ω′ − γ

φ′

[(
φ′
)2 − (12 Ω′

)2]
,

b = 7
4 T e

2 Ω + γ φ
(

1 + 8 γ Ω′
φ′

)
= 7

8φ′
[(
φ′
)2 − (12 Ω′

)2] [
φ′ + 8 γ Ω′

]
. (2.32)

Using the explicit forms of the background, one can show that b > 0 for the three cases
where zm is finite, while b < 0 in the other two cases. To this end, it is convenient to use
the first expression in the second of eqs. (2.32).

For the orientifolds of [31–35], with γ = γc, there are also vector and two-form
perturbations, whose Schrödinger potentials have again b = 0 and

aV = 8 Ω′ + 1
2 φ
′ ,

aRR = 6 Ω′ + φ′ . (2.33)

On the other hand, for the SO(16)× SO(16) heterotic model, with γ = 5
2 , the vector and

two-form perturbations have once more b = 0, but

aV = 8 Ω′ − 1
2 φ
′ ,

aNS = 6 Ω′ − φ′ . (2.34)

The Schrödinger wavefunctions Ψ for the two cases of tensor and scalar perturbations
are proportional to the two functions f(z) and g(z), and the proportionality factor is

e−
1
2

∫
dz a(z) . (2.35)

Similar steps can be followed for the other types of bosonic perturbations.
The Schrödinger potentials (2.30) for the different perturbations develop double-pole

singularities at the ends of the interval, and in their neighborhood they behave as

V ∼
µ2 − 1

4
z2 , V ∼

µ̃2 − 1
4

(zm − z)2 . (2.36)

1There is a subtlety, explained in [53], when using the first type of expressions as γ → γc.
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• For γ ≤ γc, the preceding expressions imply that for tensor perturbations

a = 1
z
, b = 0 (2.37)

close to the origin, so that eq. (2.30) implies that

µ = 0 , (2.38)

and
a = − 1

zm − z
, b = 0 (2.39)

close to zm, so that eq. (2.30) implies that

µ̃ = 0 . (2.40)

For scalar perturbations
a = 3

z
, b = 0 (2.41)

close to the origin, so that eq. (2.30) implies that

µ = 1 , (2.42)

and
a = − 3

zm − z
, b = 0 (2.43)

close to zm, so that eq. (2.30) implies that

µ̃ = 1 . (2.44)

• On the other hand, for γ > γc the preceding expressions imply that for tensor
perturbations

a = 8 γ2
c

z (9 γ2 − γ2
c ) , b = 0 (2.45)

close to the origin, so that, on account of eq. (2.30),

µ = 9
2

γ2 − γ2
c

9 γ2 − γ2
c

, (2.46)

and clearly 0 ≤ µ ≤ 1
2 . On the other hand

a = − 1
zm − z

, b = 0 (2.47)

close to zm, so that eq. (2.30) implies that

µ̃ = 0 . (2.48)

For scalar perturbations

a = 6
z

3 γ2 + γ2
c

9 γ2 − γ2
c

, b = 0 (2.49)

– 8 –



J
H
E
P
0
8
(
2
0
2
3
)
0
4
1

Range µT µ̃T µS µ̃S

γ ≤ γc 0 0 1 1
γ > γc

9
2

γ2−γ2
c

9 γ2−γ2
c

0 9 γ2+7 γ2
c

2(9 γ2−γ2
c ) 1(

0 ≤ µT ≤ 1
2
) ( 1

2 ≤ µS ≤ 1
)

Table 1. Values of µ and µ̃ for the different ranges of γ for tensor and scalar perturbations.

close to the origin, so that eq. (2.30) implies that

µ = 9 γ2 + 7 γ2
c

2 (9 γ2 − γ2
c ) , (2.50)

and clearly 1
2 ≤ µ ≤ 1, while

a = − 3
zm − z

, b = 0 (2.51)

close to zm, so that eq. (2.30) implies that

µ̃ = 1 . (2.52)

Table 1 summarizes the values of µ and µ̃ for tensor and scalar perturbations in the
different ranges for γ.

• In addition, for the orientifold models of [31–35], with γ = γc = 3
2 , one finds

µV = 3
8 , µ̃V = 3

8 ,

µRR = 5
8 µ̃RR = 7

8 , (2.53)

for vector and Ramond-Ramond perturbations, while for the SO(16)×SO(16) heterotic
model of [29, 30], with γ = 5

2 , one finds

µV = 1
8 , µ̃V = 3

8 ,

µNS = 1
24 , µ̃NS = 7

8 , (2.54)

for vector and NS-NS perturbations.

3 Self-adjoint Schrödinger systems

In [53, 54], as well as in the previous section, we discussed how to define Hermitian
Schrödinger-like settings for Bose and Fermi modes combining suitable choices of the
independent variable with redefinitions of the fields. Here we would like to supplement
those results describing how to attain self-adjoint extensions, referring to a large extent to
the finite intervals that are central to the present setting. Self-adjointness requires proper

– 9 –
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choices of boundary conditions, and is instrumental to identify complete sets of modes.
These are needed to expand arbitrary perturbations, and thus to make definite statements
on the issue of stability that is central to the present work and to [53, 54, 59]. Most of the
basic setup is dealt with at length in the literature, and in particular in [1–5] (see also the
more recent treatments in [6, 7]), but here we shall reformulate it in a way that seems more
transparent to us.

Our aim, in this section, is highlighting how proper choices of boundary conditions
at the endpoints of an interval [0, zm] of the real axis can grant that a Schrödinger-like
operator

H = −∂ 2
z + V (z) (3.1)

be self-adjoint. To this end, let us first consider a potential V (z) that is regular in the
interval, together with a pair of wavefunctions ψ and χ with the standard L2 scalar product.

The condition granting that H be Hermitian is the vanishing of the boundary
contribution [

ψ? ∂z χ− ∂z ψ? χ
]zm

0
= 0 , (3.2)

for all ψ and χ wavefunctions belonging to the domain D of H. This domain identifies, in
general, sets of functions ψ subject to proper boundary conditions that are in L2, and such
that H ψ and H χ are also in L2.

H is Hermitian if, for any χ and ψ in D, eq. (3.2) holds, but this condition does not
suffice to guarantee the self-adjointness. The operator H is self-adjoint if, given any element
χ in L2 such that H χ is in L2 and the condition (3.2) holds for all ψ belonging to D, then
χ must also belong to D. Defining the two doublets

ψ =
(

ψ

zm ∂z ψ

)
, χ =

(
χ

zm ∂z χ

)
, (3.3)

the condition (3.2) can be cast in the convenient form

ψ† (zm) σ2 χ (zm) = ψ† (0) σ2 χ (0) , (3.4)

with σ2 the usual Pauli matrix.
The linear boundary conditions defining D for self-adjoint extensions of the Schrödinger

operator (3.1) can thus be described by SU(1, 1)-valued, or equivalently by SL(2, R)-valued
matrices U , endowed with an additional phase factor β, such that

U † σ2 U = σ2 , (3.5)

and the χ and ψ wavefunctions satisfy

eiβ ψ (zm) = U ψ (0) , eiβ χ (zm) = U χ (0) . (3.6)

These boundary conditions depend on four real numbers parametrizing U(1, 1) and relate,
in general, the values of the wavefunction and its derivative at z = 0 to those at z = zm,
rather than specifying them independently at the two ends.

– 10 –
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A global characterization of SL(2, R), whose group manifold can be identified with
AdS3, is given by

U (ρ, θ1, θ2) = cosh ρ (cos θ1 1 − i σ2 sin θ1) + sinh ρ (σ3 cos θ2 + σ1 sin θ2) , (3.7)

where 0 ≤ ρ <∞, 0 ≤ θ1 < 2π, 0 ≤ θ2 < 2π, and the inverse is

U−1 (ρ, θ1 θ2) = U (ρ,−θ1, θ2 + π) . (3.8)

An important class of U matrices emerges from the preceding expressions in the ρ→∞
limit, where

U ∼ 1
2 e

ρM (θ1, θ2) , (3.9)

with
M (θ1, θ2) =

(
cos θ1 + cos θ2 sin θ2 − sin θ1
sin θ1 + sin θ2 cos θ1 − cos θ2

)
. (3.10)

Making use of eqs. (3.6), (3.8) and (3.9), one thus recovers the more familiar local boundary
conditions, given independently at the two ends:

M (θ1, θ2)ψ (0) = 0 , M (− θ1, θ2 + π)ψ (zm) = 0 . (3.11)

Only two of these conditions are independent, since the M matrices have rank one and
their product vanishes, so that one can work with

(cos θ1 + cos θ2)ψ (0) + (sin θ2 − sin θ1) zm∂z ψ (0) = 0 ,
(cos θ1 − cos θ2)ψ (zm) + (sin θ1 − sin θ2) zm ∂z ψ (zm) = 0 , (3.12)

or alternatively with

(sin θ1 + sin θ2)ψ (0) + (cos θ1 − cos θ2) zm∂z ψ (0) = 0 ,
(sin θ1 + sin θ2)ψ (zm)− (cos θ1 + cos θ2) zm ∂z ψ (zm) = 0 . (3.13)

One can use either pair, unless one condition vanishes identically. Some special choices
recover the familiar Dirichlet (D) and Neumann (N) conditions: θ1 = θ2 = π

2 yields DD
conditions, θ1 = −θ2 = π

2 yields NN conditions, and finally θ1 = θ2 = 0 and θ1 = 0, θ2 = π

lead to DN and ND conditions.
Each choice of U and the phase β defines a self-adjoint extension of H , and the resulting

spectrum depends, in general, on four real parameters. There are some surprises, as we
shall see shortly. For example, one or even two negative eigenvalues can emerge, even in
the simple case V = 0, with suitable choices of boundary conditions.

3.1 The free theory in an interval

It is instructive to take a close look at the simple Hamiltonian

H = −∂2
z , (3.14)
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in the interval [0, zm], for the general self-adjoint boundary conditions in eq. (3.6), so that
the eigenvalue equation of interest is

H ψ(z) = k2 ψ(z) . (3.15)

As we have seen in eq. (3.6), general self-adjoint boundary conditions involve a phase β
and generic SL(2, R) matrices U . These boundary conditions can be described via eq. (3.7),
or alternatively via a vector ~n, writing the SL(2, R) matrix as

U (~n) = en1 σ1+i n2 σ2+n3 σ3 = e~n ·~σ , (3.16)

with ~n = (n1, i n2, n3) and real ni, which can be more convenient in some cases.
The eigenvalue equation for the vector ψ of eq. (3.3) can be recast into the first-order

system

zm ∂z ψ =
[(

0 1
0 0

)
− (k zm)2

(
0 0
1 0

)]
ψ ≡

[
σ+ − (k zm)2 σ−

]
ψ , (3.17)

and in this notation the general solution reads

ψ(z) = V (z)ψ(0) , (3.18)

where
V (z) = cos(kz) 1 +

(
σ+ − (k zm)2 σ−

)sin(kz)
kzm

(3.19)

is also a special SL(2, R) matrix. This is a general property for Hamiltonians of the
form (2.27), which reflects the constancy of the Wronskian. Consequently, one can write

V (zm) = U
(
~n′
)
, (3.20)

where ~n′ is a special z-dependent vector of the type introduced in eq. (3.16), with components

n1
′ = 1

2
(
1− (k zm)2

)
, i n2

′ = i

2
(
1 + (k zm)2

)
, n3

′ = 0 . (3.21)

As a result, the boundary condition (3.6) translates into

U−1 (~n) U
(
~n′
)
ψ(0) = e− i β ψ(0) , (3.22)

and demands that one of the eigenvalues of the product of the two U matrices, which is
also an SL(2, R) matrix, be equal to e− i β .

When referring to eq. (3.16), one must actually distinguish three classes of SL(2, R)
elements, according the value of ~n · ~n.

• If ~n · ~n = 0, the vector ~n depends on a real parameter r and an angle θ, according to

~n = (r cos θ,± i r, r sin θ) . (3.23)

In this case the SL(2, R) matrix U (~n) is

U (~n) = 1 + ~n · ~σ (3.24)

and has only the eigenvalue 1.
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• If ~n · ~n = λ2 > 0, the vector ~n depends on the two real parameters λ > 0 and ζ, and
on an angle θ, according to

~n = λ (cos θ cosh ζ, i sinh ζ, sin θ cosh ζ) . (3.25)

In this case the SL(2, R) matrix U (~n) is

U (~n) = cosh λ+ sinh λ
λ

~n · ~σ , (3.26)

and its eigenvalues are e±λ.

• If ~n · ~n = −λ2 < 0, the vector ~n depends again on the two real parameters λ > 0 and
ζ, and on an angle θ, according to

~n = λ (cos θ sinh ζ,± i cosh ζ, sin θ sinh ζ) . (3.27)

In this case the SL(2, R) matrix U (~n) is

U (~n) = cosλ+ sin λ
λ

~n · ~σ , (3.28)

and its eigenvalues are e± i λ, so that λ has effectively a limited range and behaves as
an angle.

Note that the preceding considerations imply that the trace of U uniquely determines
its class, and thus its eigenvalues. In the three cases

Tr (U) (~n) = {2, 2 cosh λ, 2 cosλ} . (3.29)

Consequently U−1 (~n) U (~n′) is of the third type, and the condition (3.22) is equivalent to

Tr
[
U−1 (~n) U

(
~n′
)]

= 2 cosβ , (3.30)

which is the equation that determines the energy eigenvalues. Given any energy eigenvalue,
eq. (3.22) yields the corresponding boundary conditions.

We can now discuss in detail the content of eq. (3.30), referring to eq. (3.31) and using
for U (~n) the global parametrization of eq. (3.7).

3.1.1 Negative-energy solutions

For negative-energy states, so that

µ2 = − (kzm)2 (3.31)

is positive, eq. (3.30) takes the form

cosh ρ
[
cos θ1 coshµ−

(
1− µ2

) sinhµ
2µ sin θ1

]
−
(
1 + µ2

) sinhµ
2µ sinh ρ sin θ2 = cosβ ,

(3.32)
with real values of µ. The features of these negative-energy states depend on the values of
a number of parameters, and by tuning them one can make their energy approach zero.
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Figure 2. Curves of constant tachyonic mass for the large-ρ eigenvalue equation (3.36). The filled
regions identify boundary conditions leading to instabilities.

In the µ→ 0 limit, the eigenvalue equation simplifies considerably and becomes

cosh ρ
[
cos θ1 −

1
2 sin θ1

]
− 1

2 sinh ρ sin θ2 = cosβ . (3.33)

Letting

sin γ = 2√
5
, cos γ = 1√

5
, (3.34)

the simpler eigenvalue equation (3.33) be cast in the more compact form

√
5 cosh ρ sin (θ1 − γ) + sinh ρ sin θ2 = − 2 cosβ . (3.35)

For example, there are two solutions of eq. (3.33), ρ ' 0.69 or 4.47, if sin (θ1 − γ) ' 0.3,
sin θ2 ' −0.65, cosβ ' − 0.17. There is always one solution if sin (θ1 − γ) = 0, while if
sin θ2 = 0 there is one solution if 2 cosβ√

5 sin(θ1−γ) ≤ − 1 and there are no solutions otherwise.
These zero-mass solutions are generically limits of tachyonic modes. There can be tachyons
with arbitrarily large µ2. A simple example obtains taking cosβ = cos θ1 = 0 and sin θ1 =
sin θ2 = 1, so that eq. (3.32) reduces to µ2 = e2ρ. There are then states whose negative
energies span the whole range (−∞, 0], depending on the value of ρ.

For large values of ρ the eigenvalue equation (3.32) simplifies and reduces to

cos θ1 coshµ−
(
1− µ2

) sinhµ
2µ sin θ1−

(
1 + µ2

) sinhµ
2µ sin θ2 = 0 , (3.36)

and tachyonic modes are present in the filled region of figure 2, where the different curves
correspond to different values of µ. As µ increases, the tachyonic modes quickly pile up
along the curve

sin θ1 = sin θ2 , (3.37)

which corresponds to the straight lines in figure 2.
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Figure 3. The shaded areas are the regions of parameter space where positivity holds, for ρ = 0.2
(left panel), and for large ρ (right panel).

3.1.2 Positive-energy solutions and exactly solvable cases

It is now interesting to take a closer look at the choices of boundary conditions that yield
positive spectra for k2. To this end, let us note that, after a partial integration, for a
normalized ψ,

k2 =
∫
dz |∂z ψ|2 − ψ? ∂z ψ|z=zm + ψ? ∂z ψ|z=0 . (3.38)

The positivity of k2 is thus guaranteed if the boundary contribution is positive. In terms of
the two-component vector ψ, this condition takes the form

− ψ† (σ1 + i σ2)ψ
∣∣∣
z=zm

+ ψ† (σ1 + i σ2)ψ
∣∣∣
z=0

≥ 0 . (3.39)

Making use of the self-adjoint boundary conditions (3.6) and of eq. (3.5), this reduces to
requiring that

ψ†
(
σ1 − U † σ1 U

)
ψ
∣∣∣
z=0

≥ 0 . (3.40)

The inequality is guaranteed to hold if the trace and the determinant of the symmetric matrix

S = σ1 − U † σ1 U (3.41)

are both non-negative. In terms of the global parametrization (3.7), these conditions
translate into

sin (θ1 + θ2) ≤ 0 ,

sin2 θ1 − tanh2 ρ sin2 θ2 ≤ 0 . (3.42)

For ρ ' 0 the allowed region reduces to θ1 = 0, π and π ≤ θ1 + θ2 ≤ 2π mod 2π, while for
positive values of ρ it rapidly approaches the profile displayed in the right panel of figure 3.
Note that the constant-µ curves of figure 2 lie outside the shaded regions in figure 3.

There are infinite spectra of positive-energy solutions, which can be investigated letting
µ = i ν with real ν in eq. (3.32), thus turning it into

coshρ
[
cosθ1 cosν−

(
1+ν2

) sinν
2ν sinθ1

]
−
(
1−ν2

) sinν
2ν sinhρ sinθ2 = cosβ . (3.43)
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The choices (U, β) and (−U, β + π) identify identical elements of U(1, 1), so that the
independent parameters actually correspond to SL(2, R)×U(1)/Z2, for both positive-energy
and negative-energy solutions.

In some cases, which we can now discuss, this eigenvalue equation can be solved
relatively simply.

• The simplest case corresponds to

U = 1 , β = 0 , (3.44)

and is recovered for ρ = 0, θ1 = 0. The eigenvalue equation (3.43) then reduces to

cos ν = 1 , (3.45)

and consequently ν = 2 ` π, with ` an arbitrary integer. Moreover, since U (~n′) is the
identity, ψ(0) is unconstrained and there are two independent solutions of this type for
any choice of `. The end result is indistinguishable from the spectrum corresponding
to a circle of radius zm

2π .

• If U = 1 but β 6= 0, there are two independent families of solutions, with

ν± = ±β + 2 ` π , (3.46)

and the preceding degeneracy is lifted, since U (~n′) is no more the identity. The end
result is indistinguishable from the spectrum corresponding to a circle of radius zm

2π
with twisted periodicity.

• If θ1 = 0 and sin θ2 also vanishes but ρ 6= 0,

U (ρ, θ1, θ2) =
(
e± ρ 0

0 e∓ ρ

)
, (3.47)

and the eigenvalue equation is solved by

ν = ± arccos
( cosβ

cosh ρ

)
+ 2 ` π . (3.48)

• If θ1 = π and sin θ2 also vanishes,

U (ρ, θ1, θ2) = −
(
e∓ ρ 0

0 e± ρ

)
, (3.49)

and the eigenvalue equation is solved by

ν = ± arccos
( cosβ

cosh ρ

)
+ (2 ` + 1)π . (3.50)
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3.1.3 Large–ν (or semi-classical) behavior

There are some simplifications in eq. (3.43) for large values of ν. One can distinguish
two cases.

• The terms proportional to ν sin ν are absent in eq. (3.43) if

cosh ρ sin θ1 − sinh ρ sin θ2 = 0 , (3.51)

or equivalently if U(~n) is lower triangular. This is only possible if

|sin θ1| < |sin θ2| , (3.52)

so that cos θ1 cannot vanish, and then eq. (3.43) reduces to

cosh ρ
[
cos θ1 cos ν − sin ν

ν
sin θ1

]
= cosβ . (3.53)

There is an infinite number of allowed frequencies, whose behavior for large values of
ν is dominated by the first term, while the second determines the leading correction.
Consequently

ν±` = ± arccos
( cosβ

cos θ1 cosh ρ

)
+ 2 ` π ≡ ν±0 + 2 ` π , (3.54)

or, taking the leading correction into account,

ν± ' ν±0 + 2 ` π + tan θ1

ν±`
. (3.55)

• On the other hand, if eq. (3.51) does not hold, which is the generic case, the terms
proportional to ν sin ν must vanish to leading order, and the large eigenvalues of
eq. (3.43) approach

ν ' ` π − 2
` π

cosβ − (−1)` cosh ρ
cosh ρ sin θ1 − sinh ρ sin θ2

, (3.56)

with ` a large positive integer.

There are thus two classes of leading behavior for large ν, which correspond asymptotically
to the same number of modes.

3.1.4 Large–ρ behavior and open boundary conditions

As we have explained, the large-ρ limit yields independent boundary conditions at the two
ends of the interval that generalize the standard Neumann and Dirichlet choices.

After eq. (3.9) we identified four special cases:

• Dirichlet-Dirichlet boundary conditions, which obtain for θ1 = θ2 = π
2 . No negative

energy solutions emerge from eq. (3.32), while eq. (3.43) reduces to
sin ν
ν

= 0 , (3.57)

and thus yields the familiar positive-energy spectrum, with ν` = ` π and ` = 1, 2, . . ..
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• Neumann-Neumann boundary conditions, which obtain for θ1 = −θ2 = π
2 . There are

again no negative-energy solutions, while eq. (3.43) reduces to

ν sin ν = 0 , (3.58)

so that now ν` = ` π and ` = 0, 1, 2, . . ., which now include a zero mode.

• Neumann-Dirichlet and Dirichlet-Neumann boundary conditions, which obtain for
θ1 = 0 and θ2 = 0, π. The eigenvalue equation (3.43) is identical in the two cases, and
there are again no negative-energy solutions, while now

cos ν = 0 , (3.59)

so that ν` =
(
` + 1

2

)
π and ` = 0, 1, 2, . . ..

Negative-energy solutions can still emerge in the ρ→∞ limit. This can be foreseen
from the limiting form of eq. (3.35) as ρ→∞,

√
5 sin (θ1 − γ) + sin θ2 = 0 , (3.60)

which can admit at most two solutions, provided |sin (θ1 − γ)| ≤ 1√
5 . An interesting

example of their occurrence is found letting θ1 = π
2 , which is relevant to both the Neumann-

Neumann and Dirichlet-Dirichlet cases. In the large ρ limit the eigenvalue equation (3.32)
is then exactly solved by

µ2 = 1 + sin θ2
1− sin θ2

. (3.61)

These values of µ2 range from 0, the massless Neumann-Neumann mode, to ∞ where the
Dirichlet-Dirichlet case is approached. The behavior for θ2 = π

2 ± ε, with 0 < ε � 1 is
peculiar, with two solutions associated to the two signs that are localized at the ends of the
interval and disappear as ε→ 0, but whose squares approach δ functions there.

The positive energy solutions of this type are determined in general by the ρ → ∞
limit of eq. (3.43),[

cos θ1 cos ν −
(
1 + ν2

) sin ν
2 ν sin θ1

]
−
(
1− ν2

) sin ν
2 ν sin θ2 = 0 , (3.62)

so that β becomes irrelevant for these modes. There are two special cases in which the
equation simplifies greatly. If sin θ1 = sin θ2 it reduces to

tan ν
ν

= cot θ1 , (3.63)

while if sin θ1 = − sin θ2 it reduces to

ν tan ν = cot θ1 , (3.64)

and in both cases there are clearly infinitely many solutions, which approach
(
`+ 1

2

)
π and

` π, respectively. When sin θ1 6= sin θ2, the large-ν behavior is determined by the limiting
form of eq. (3.56), and

ν ' ` π + 2 (−1)`
` π

1
sin θ1 − sin θ2

. (3.65)
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3.2 Singular potentials

In all cases considered in section 2, and more generally for the vacua in [8, 9, 22], the
potential V (z) is singular at the ends of the interval, which we can denote by z = 0 and
z = zm when the range is finite, where it has double poles. The leading behavior depends, in
general, on two real parameters µ and µ̃, defined in eq. (2.36), whose values are summarized
in table 1.

The condition that H ψ be in L2 constrains in general the choice of wavefunctions [1–7].
Confining our attention to real and non-negative values for µ2 and µ̃2, which characterize
all cases of interest for our problem, the asymptotic behaviors at the two ends of the z
interval are

ψ ∼ C1

(
z

zm

) 1
2 +µ

+ C2

(
z

zm

) 1
2−µ

if 0 < µ < 1 ;

ψ ∼ C1

(
z

zm

) 1
2

+ C2

(
z

zm

) 1
2

log
(
z

zm

)
if µ = 0 ;

ψ ∼ C3

(
1 − z

zm

) 1
2 +µ̃

+ C4

(
1 − z

zm

) 1
2−µ̃

if 0 < µ̃ < 1 ;

ψ ∼ C3

(
1 − z

zm

) 1
2

+ C4

(
1 − z

zm

) 1
2

log
(

1 − z

zm

)
if µ̃ = 0 . (3.66)

For brevity, we can concentrate on different ranges for µ, since identical considerations
hold for µ̃. If µ ≥ 1 only the solution behaving as z 1

2 +µ is in L2, so that there is a unique
choice of limiting behavior.

Imaginary values of µ and µ̃ are not encountered in the vacua of [8, 9, 22], but have
been examined in the literature [1–7] and lead the “fall to the center”, with the inevitable
emergence of infinitely many unstable modes. Leaving aside this pathological range, which
does not concern the vacua of interest to us, there are still, in principle, four types of
behavior, which we can now analyze separately.

3.2.1 0 ≤ µ < 1 and 0 ≤ µ̃ < 1

This first case presents itself when 0 ≤ µ < 1 and 0 ≤ µ̃ < 1, and one must still distinguish
three sub-cases.

1. If µ = µ̃ = 0 the boundary term (3.2) originating from two functions ψ and χ as in
eqs. (3.66) is proportional to

C?1 D2 − C?2 D1 − C?4 D3 + C?3 D4 , (3.67)

where the C’s correspond to the ψ’s and the D’s correspond to the χ’s. The reader
may recognize that this and the following expressions characterizing the self-adjoint
boundary conditions rest on the Wronskian for a Hamiltonian H as in eq. (2.27),
which is guaranteed to be non-singular even in the presence of a singular potential.

2. If µ 6= 0 but µ̃ = 0 the preceding boundary term becomes

− 2µ (C?1 D2 − C?2 D1)− C?4 D3 + C?3 D4 . (3.68)
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3. Similarly, if µ = 0 and µ̃ 6= 0 it becomes

C?1 D2 − C?2 D1 − 2µ̃ (−C?4 D3 + C?3 D4) . (3.69)

4. Finally, if µ 6= 0 and µ̃ 6= 0 the boundary term becomes

2µ (C?1 D2 − C?2 D1) + 2µ̃ (−C?4 D3 + C?3 D4) . (3.70)

Note that the µ→ 0 and µ̃→ 0 limits are singular, so that the last expression does not
approach eq. (3.67). However, all these cases afford a unified formulation, if one lets

C(0) =
√

2µ
(
C1
C2

)
if µ 6= 0 , C(0) =

(
C2
C1

)
if µ = 0 , (3.71)

and
C (zm) =

√
2 µ̃
(
C4
C3

)
if µ̃ 6= 0 , C (zm) =

(
C3
C4

)
if µ̃ = 0 , (3.72)

so that the self-adjointness condition becomes in all these cases

C†(0) σ2 D(0) = C† (zm) σ2 D (zm) , (3.73)

which is similar to eq. (3.4). All the preceding considerations thus apply, up to replacement
of ψ(0) with the column vector C(0), and so on, so that one is led to boundary conditions
like those in eq. (3.6),

eiβ C (zm) = U C (0) , (3.74)

where U is a generic SL(2, R) matrix, which can be parametrized as in eq. (3.7), and β is a
phase. The large-ρ limit yields again independent boundary conditions at the ends with
two parameters θ1 and θ2. These are the counterparts of eqs. (3.12) and (3.13), and like
them can be cast in the form

cos
(
θ1 − θ2

2

)
C1 − sin

(
θ1 − θ2

2

)
C2 = 0 ,

sin
(
θ1 + θ2

2

)
C4 − cos

(
θ1 + θ2

2

)
C3 = 0 . (3.75)

The options corresponding to the DD, NN, ND and DN cases are (C1, C4) = (0, 0),
(C2, C3) = (0, 0), (C2, C4) = (0, 0) and (C1, C3) = (0, 0).

3.2.2 µ ≥ 1 and 0 ≤ µ̃ < 1, or 0 ≤ µ < 1 and µ̃ ≥ 1

These cases only differ by the interchange of the two ends, and present themselves when
µ > 1 and 0 ≤ µ̃ ≤ 1, or when 0 ≤ µ ≤ 1 and µ̃ > 1. Now the limiting behavior at one end
is fixed and the corresponding boundary term (3.2) vanishes. Eq. (3.2) then reduces to the
contribution at the other end, where two types of asymptotic behavior are still allowed. A
similar limiting form obtains for χ, with C1,2 simply replaced by another pair of constants
D1,2. The result is thus proportional to

C?1 D2 − C?2 D1 = C† i σ2 D , (3.76)
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where, for instance

D =
(
D1
D2

)
. (3.77)

This boundary term is eliminated if C and D are such that

C = ΛC , D = ΛD , (3.78)

where Λ is Hermitian, satisfies Λ2 = 1 and anticommutes with σ2, so that

Λ = cosα σ3 + sinα σ1 , (3.79)

with α an arbitrary parameter. Each choice of α leads to a Hermitian Schrödinger-like
operator, with

C2 = tan
(
α

2

)
C1 . (3.80)

In addition, if C verifies eq. (3.78) and eq. (3.76) is to vanish for all such choices, D must
also satisfy eq. (3.78). In conclusion, one is thus led to a family of self-adjoint extensions
characterized by the angle α.

3.2.3 µ ≥ 1 and µ̃ ≥ 1

In this case the limiting behavior is fixed at both ends, with exponents 1
2 + µ and 1

2 + µ̃,
while the boundary term vanishes identically.

Referring to table 1, tensor perturbations fall into case 1 for all values of γ, while scalar
perturbations fall into cases 3 or 2 depending on whether γ ≤ γc or γ > γc. In addition,
vector and RR perturbations in the ten-dimensional orientifolds, and also vector and NS
perturbations in the SO(16)× SO(16) model, belong to case 1.

3.2.4 A family of exactly solvable cases

As summarized in table 1, within the range γ ≤ γc that is relevant for the orientifold models,
the limiting behavior of tensor and scalar perturbations near the ends of the interval is
as in eq. (2.36), with µ = µ̃ = 0 for the former and µ = µ̃ = 1 for the latter. It is thus
interesting to examine the two classes of exactly solvable potentials

V± =
(
π

zm

)2

(
µ2 − 1

4

)
sin2

(
π z
zm

) − β2
±

 (3.81)

that have double poles at the ends of the interval with µ = µ̃, as in the cases of interest.
The two constants

β± = 1
2 ± µ (3.82)

are introduced so that these Hamiltonian are also expressible as products of first-order
operators, according to

H± ψ = A±A†± ψ =
(
πm

zm

)2
ψ . (3.83)
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Here m is a dimensionless quantity proportional to the mass eigenvalues of H±, and

A± = ∂z + π

zm
β± cot

(
π z

zm

)
, A†± = −∂z + π

zm
β± cot

(
π z

zm

)
. (3.84)

Clearly,

H+ −H− = −2µ
(
π

zm

)2
, (3.85)

so that a zero mode of H+ is also a massive mode of H−, while a zero mode of H− is also a
tachyonic mode of H+.

For 0 < µ < 1 each of the two Hamiltonians H± has a pair of normalizable zero modes,
one of which solves A†± ψ

(0)
± = 0 in the two cases and reads

ψ
(0)
± = C

[
sin
(
π z

zm

)]β±
. (3.86)

These two solutions correspond to special choices of the Ci coefficients, which enter the
self-adjoint extensions in eqs. (3.66). For the former, ψ(0)

+ , C2 = C4 = 0, while for the latter,
ψ

(0)
− , C1 = C3 = 0. These boundary conditions are special choices corresponding to the

ρ→∞ limit, and in the notation of eqs. (3.75) they can be recovered for (θ1, θ2) = (π, 0)
and for (θ1, θ2) = (0, 0). There are two other zero-mode solutions, which can be constructed
with the Wronskian method. Moreover, on account of eq. (3.85)

H+ ψ
(0)
− = −2µ

(
π

zm

)2
ψ

(0)
− , H− ψ

(0)
+ = 2µ

(
π

zm

)2
ψ

(0)
+ , (3.87)

so that ψ(0)
− is also a tachyonic mode of H+, while ψ(0)

+ is also a massive mode of H−.
Consequently, we see already that the self-adjoint extension with ρ→∞ and (θ1, θ2) = (0, 0)
contains at least an unstable mode of H+. As in the free case, the AA† form of the
Hamiltonian does not guarantee, by itself, the positivity of the spectrum in an interval.
For µ = 0 the two wavefunctions ψ(0)

± coincide, while for µ ≥ 1 only ψ(0)
+ is a normalizable

zero mode.
The preceding discussion indicates that, in order to discuss the general solution, one

must distinguish a few cases.

• If 0 < µ < 1, the general normalizable solution of the Schrödinger equations for H± is
a linear combination of two Legendre P functions [60],

Ψ =
√

sin
(
π z

zm

){
A P−µν

[
cos

(
π z

zm

)]
+B Pµν

[
cos

(
π z

zm

)]}
, (3.88)

with

ν = −1
2 +

√
m2 +

(
µ ± 1

2

)2
(3.89)

for the two Hamiltonians H±, so that

for H+ : m2 = (ν + µ + 1) (ν − µ) ,

for H− : m2 = (ν + µ) (ν − µ + 1) . (3.90)
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Note that for H+ there are tachyonic modes in the range − 1
2 ≤ ν < µ, while for H−

they correspond to the range − 1
2 ≤ ν < max (−µ, µ− 1). We have already seen an

example of this type, the wavefunction ψ(0)
− of eq. (3.86), which has m2 = −2µ for

H+, and therefore
ν = −1

2 +
∣∣∣∣µ− 1

2

∣∣∣∣ . (3.91)

There can be additional tachyonic modes for H± with2

ν = −1
2 + i x , (3.92)

with x real, which correspond to

for H+ : m2 = −x2 −
(
µ + 1

2

)2
,

for H− : m2 = −x2 −
(
µ − 1

2

)2
. (3.93)

The limiting behavior of Ψ close to the z = 0 end is [60]

Ψ ∼
√

2
[

A

Γ(1 + µ)

(
πz

2zm

) 1
2 +µ

+ B

Γ(1− µ)

(
πz

2zm

) 1
2−µ

]
, (3.94)

so that the two coefficients in eq. (3.66) are

C1 = A
√

2
Γ(1 + µ)

(
π

2

) 1
2 +µ

, C2 = B
√

2
Γ(1− µ)

(
π

2

) 1
2−µ

. (3.95)

The behavior near the other end can be deduced from the connection formulas
contained in [60], and in particular from

Pµν

[
cos

(
π z

zm

)]
= − sin(π ν)

sin(π µ) P
µ
ν

[
cos

(
π − πz

zm

)]
+Γ(ν + µ+ 1) sin π(ν + µ)

Γ(ν − µ+ 1) sin πµ P−µν

[
cos

(
π − πz

zm

)]
(3.96)

and the corresponding one with µ replaced by −µ. One can thus conclude that

C3 = 1
sinπµ

{
C1 sin(πν) +C2

(
π

2

)2µ Γ(1−µ)Γ(ν+µ+1) sinπ(ν+µ)
Γ(1+µ)Γ(ν−µ+1)

}
, (3.97)

C4 =− 1
sinπµ

{
C2 sin(πν) +C1

(
π

2

)−2µ Γ(1+µ)Γ(ν−µ+1) sinπ(ν−µ)
Γ(1−µ)Γ(ν+µ+1)

}
.

Note that the link between (C1, C2) and (C4, C3) rests on a special SL(2,R) matrix
U (~n′), which is the counterpart of the matrix V (zm) of eqs. (3.18) and (3.20) that

2The corresponding wavefunctions are often called conical (or Mehler) functions in the literature [60].
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we obtained in section 3.1 for the free theory. The general self-adjoint boundary
condition thus becomes

U−1 (~n) U
(
~n′
)
C(0) = e− i β C(0) , (3.98)

and the general eigenvalue equation is then determined by

Tr
[
U−1 (~n) U

(
~n′
)]

= 2 cosβ . (3.99)

It can be cast in the form

2 cosh ρ sin θ1 sin πν + b(µ, ν)
(

cosh ρ cos θ1 + sinh ρ cos θ2
)

− b(−µ, ν)
(

cosh ρ cos θ1 − sinh ρ cos θ2
)

= 2 cosβ sin πµ , (3.100)

where
b(µ, ν) =

(
π

2

)2µ Γ(1− µ) Γ(ν + µ+ 1)
Γ(1 + µ) Γ(ν − µ+ 1) sin π (ν + µ) . (3.101)

Eq. (3.100) determines the mass spectrum for the different self-adjoint extensions.
It is manifestly real for real values of ν, but one is also interested in the line (3.92),
where it is convenient to recast it in a manifestly real form. To this end note that

B(µ, x) =
b
(
µ,− 1

2 + i x
)

cosh πx = −
π
(
π
2
)2µ Γ(1− µ)

Γ(1 + µ) cosh πx
∣∣∣Γ (1

2 − µ + i x
)∣∣∣2 , (3.102)

which is manifestly real. As a result, along the line ν = −1
2 + ix the eigenvalue

equation becomes

− 2 sin θ1 +B(µ, x)
(

cos θ1 + tanh ρ cos θ2
)

−B(−µ, x)
(

cos θ1 − tanh ρ cos θ2
)

= 2 cosβ sin πµ
cosh πx cosh ρ . (3.103)

In the large-ρ limit the eigenvalue equation simplifies, and can be cast in the form

2 sinθ1 sinπν+ b(µ,ν)
(

cosθ1 + cosθ2
)
− b(−µ,ν)

(
cosθ1− cosθ2

)
= 0 (3.104)

for real values of ν, and as

−2 sinθ1+B(µ,x)
(

cosθ1 + cosθ2
)
−B(−µ,x)

(
cosθ1− cosθ2

)
= 0 (3.105)

along the line ν = −1
2 + ix.

In some special cases, the spectra emerging from eq. (3.100) can be exactly determined.

– If θ1 = ± π
2 and θ2 = ±π

2 the eigenvalue equation reduces to

sin πν = cosβ sin πµ
sin θ1 cosh ρ , (3.106)
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Figure 4. For µ = 3
8 , there are instabilities for H+, for all values of θ1 and θ2 away from the special

points (π, 0) and (0, π) (left panel), while for H− there are wide stability regions that include those
points (right panel).

and the solutions correspond to real values of ν ≥ −1
2 and read

ν = ν0 + 2n , ν = − ν0 + 2n + 1 , n = 0, 1, . . . , (3.107)

where
ν0 = 1

π
arcsin

( cosβ sin πµ
sin θ1 cosh ρ

)
. (3.108)

There is a tachyon in the first sequence if ν0 < 0.
– For (θ1, θ2) = (±π, 0) or (0,±π) the eigenvalue equation reduces to

b(−µ, ν) = 0 , (3.109)

which is solved by
ν = µ+ n , n ≥ 0 . (3.110)

The resulting mass spectrum for H+ is

m2 = n (2µ + 1 + n) , n = 0, 1, . . . , (3.111)

and there are no tachyons. The spectrum for H− is obtained adding 2µ to this
result, and there are also no tachyons along the line (3.92). This case, which
corresponds to C2 = C4 = 0, is relevant for the ground-state wavefunctions (3.86).

– For (θ1, θ2) = (0, 0) or (π, π) the eigenvalue equation reduces to

b(µ, ν) = 0 , (3.112)

which is solved by
ν = −µ+ n , n ≥ 0 , (3.113)

and the resulting mass spectrum for H+

m2 = (2n + 1) (n− 2µ) , n = 0, 1, . . . , (3.114)

includes one or two tachyons, depending on whether or not µ > 1
2 , and H− has

one tachyon if µ > 3
4 .
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– The pattern is similar for generic values of θ1 and θ2, and in particular in the
large-ρ limit there are typically tachyons in the range −1

2 ≤ ν ≤ µ for H+,
and fewer for H− where the upper bound on ν is reduced to max (−µ, µ− 1).
Additional tachyonic modes are present along the line (3.92). For x of order
one or larger the term in eq. (3.105) containing B(µ, x) becomes dominant, and
consequently there is an infinite number of tachyonic modes along the curve

cos θ1 + cos θ2 = 0 , (3.115)

or equivalently along the square θ1 = ± θ2 ± π, so that with these special
boundary conditions the spectrum is unbounded from below. Different curves of
constant tachyon mass for the case µ = 3

8 are displayed in figure 4.

• For µ = 0 the two functions used in eq. (3.88) are no longer independent, and
consequently one must start from [60]

Ψ =
√

sin
(
π z

zm

){
A P 0

ν

[
cos

(
π z

zm

)]
+B Q0

ν

[
cos

(
π z

zm

)]}
, (3.116)

with associated Legendre functions of the first and second kind.

The limiting behavior close to z = 0 is then [60]

Ψ =
(
π z

zm

) 1
2
A−B

(
π z

zm

) 1
2
[
log

(
z

zm

)
+ σ(ν)

]
, (3.117)

where
σ(ν) = log

(
π

2

)
− ψ(1) + ψ (ν + 1) , (3.118)

and ψ(ν) = Γ′(ν)
Γ(ν) , with ψ(1) = − γ ' − 0.77, the Euler-Mascheroni constant, while the

limiting behavior close to the other end is determined by the connection formulae [60]

P 0
ν

[
cos

(
πz

zm

)]
= cosπνP 0

ν

[
cos

(
π−πz

zm

)]
− 2 sinπν

π
Q0
ν

[
cos

(
π−πz

zm

)]
(3.119)

Q0
ν

[
cos

(
πz

zm

)]
=− cosπνQ0

ν

[
cos

(
π−πz

zm

)]
−π sinπν

2 P 0
ν

[
cos

(
π−πz

zm

)]
,

which give

Ψ =
√

sin
(
π z

zm

)
P 0
ν

[
cos

(
π − π z

zm

)](
A cosπν −B π sin πν

2

)

+
√

sin
(
π z

zm

)
Q0
ν

[
cos

(
π − π z

zm

)](
−A 2 sin πν

π
−B cosπν

)
. (3.120)

Consequently
C1 = A π

1
2 −B π

1
2 σ(ν) , C2 = −B π

1
2 , (3.121)
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Figure 5. The function f1(x) (black, solid) and the function f2(x) (red, dashed).

while

C4 = 2 sin πν
π

C1 −
[
cosπν + 2

π
σ(ν) sin πν

]
C2 ,

C3 = C1

[
cosπν + 2

π
σ(ν) sin πν

]
+ C2

[
π

2 sin πν − 2
π
σ(ν)2 sin πν − 2σ(ν) cosπν

]
. (3.122)

Note that these transformations define, once more, an SL(2, R) matrix U (~n′). The
general eigenvalue equation is then obtained from eq. (3.99), and reads

(cosh ρ cos θ1 + sinh ρ cos θ2)
[
sin πν

(
π

4 −
1
π
σ2(ν)

)
− σ(ν) cosπν

]
+ (cosh ρ cos θ1 − sinh ρ cos θ2) sin πν

π

+ cosh ρ sin θ1

[ 2
π

sin πν σ(ν) + cosπν
]

= cosβ , (3.123)

and in this case eq. (3.89) gives

m2 = ν(ν + 1) . (3.124)

Massless modes obtain, in this sector with µ = 0, if there are solutions with ν = 0.

As for 0 < µ < 1, tachyonic modes lie in the real interval −1
2 ≤ ν < 0, which

corresponds to solutions with m2 ≥ − 1
4 , and also in another interval, with ν =

− 1
2 + i x, which corresponds to solutions with m2 = − 1

4 − x2, with x real. A special
property of the ψ function [60],

Im

[
ψ

(1
2 + i x

)]
= π

2 tanh (πx) , (3.125)

makes the eigenvalue equation (3.124) real also along the additional line, where
it becomes

(cosh ρ cos θ1 + sinh ρ cos θ2) f1(x) − (cosh ρ cos θ1 − sinh ρ cos θ2)

− 2 cosh ρ sin θ1 f2(x) = −π cosβ
cosh πx , (3.126)
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Figure 6. Left panel: the simplified eigenvalue equation (3.129) for ν real and ν > − 1
2 , with

cosβ = 1 (solid vs green,long-dashed), cosβ = 0.7 (solid vs red,dashed) and cosβ = 0.4 (solid vs
blue, dash-dotted). Right panel: the same eigenvalue equation for ν = − 1

2 + ix.

where

f1(x) =<
[
σ

(
− 1

2 +ix
)]2
− π2

4 cosh2πx
, f2(x) =<

[
σ

(
− 1

2 +ix
)]
. (3.127)

There are generally tachyons in this sector, whose squared masses lie below − 1
4 . These

two functions are displayed in figure 5: notice how f1(x) soon becomes much larger
than f2(x), so that the spectrum is actually unbounded from below on the surface

cosh ρ cos θ1 + sinh ρ cos θ2 = 0 . (3.128)

The eigenvalue equation simplifies in some special cases:

– If ρ = 0 and θ1 = π
2 , it reduces to

2
π

sin πν σ(ν) + cosπν = cosβ , (3.129)

which can be solved graphically for real values of ν, as in the left panel of
figure 6. Note the presence of a zero mode for β = 0 and the emergence of a
tachyonic mode for 0 < β < π

3 . These boundary conditions actually correspond
to U = − i σ2, and eqs. (3.122) show that if β = 0 the spectrum is given exactly
by ν = 2n, with n = 0, 1, . . ., as can be foreseen from the left panel of figure 6.
The right panel then shows the absence of tachyons along the line (3.92), so that
the system is completely stable with these boundary conditions, which give

C4 = −C2 , C3 = C1 − 2σ(2n)C2 , (3.130)

while compatibility with the U matrix demands that C2 = C4 = 0. There is a
limited range of values of x for which the eigenvalue equation can be solved by
ν = −1

2 + ix, as shown in the right panel of figure 6, with an upper bound for
x of order one. These modes have tachyonic masses with m2 = −1

4 − x
2 > −5

4 .
Actually, no tachyons are present altogether if β < π

3 , as can be seen from figure 6.
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– In the ρ→∞ limit eq. (3.124) reduces to

(cos θ1 + cos θ2)
[
sin πν

(
π

4 −
1
π
σ2(ν)

)
− σ(ν) cosπν

]
(3.131)

+ (cos θ1 − cos θ2) sin πν
π

+ sin θ1

[ 2
π

sin πν σ(ν) + cosπν
]

= 0 ,

to be considered for ν ≥ −1
2 , while eq. (3.126) reduces to

(cos θ1 + cos θ2) f1(x) − (cos θ1 − cos θ2)− 2 sin θ1 f2(x) = 0 . (3.132)

– If θ1 = 0, along the x line the tachyonic eigenvalue equation (3.132) reduces to

f1(x) = tan2
(
θ2
2

)
, (3.133)

and as one can see from the left panel of figure 5 it always has solutions as θ2
spans the [0, π] range, with values of x ranging from about 0.6 to ∞. These
tachyonic modes can thus have arbitrarily negative values of m2. In a similar
fashion, if θ1 = π the eigenvalue equation (3.132) reduces to

f1(x) = cot2
(
θ2
2

)
, (3.134)

and as θ2 spans the [0, π] range, x varies from ∞ to about 0.6. If θ1 6= 0, π the
equation takes the form

cos θ1 + cos θ2
2 sin θ1

f1(x) − cos θ1 − cos θ2
2 sin θ1

− f2(x) = 0 , (3.135)

which can have zero, one or two solutions, as one can see graphically. The
first type of solutions, which correspond to stable vacua, obtain when the first
coefficient is positive and not too small and the second is negative and not
too small.

– There are special choices of boundary conditions for which eq. (3.131) is exactly
solvable, (θ1, θ2) = (0, π) or (π, 0). They correspond to

C2 = C4 = 0 , (3.136)

and in both cases the eigenvalue equation reduces to

sin πν = 0 , (3.137)

so that
m2 = n (n+ 1) , n = 0, 1, . . . . (3.138)

There are no tachyons even along the additional line, since eq. (3.132) admits no
solutions with these choices of parameters.
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Figure 7. The (non-normalized) zero-mode wavefunctions of eq. (3.139) (blue, solid, left panel) and
of eq. (3.140) (blue, solid, right panel), and the non-normalized wavefunction of the corresponding
tachyonic mode (red, dashed, right panel).

With the preceding choices of self-adjoint boundary conditions leading to eq. (3.136),
the zero mode is the simple solution in eq. (3.86) for β = 1

2 , proportional to

ψ =
√

sin
(
π z

zm

)
. (3.139)

The other independent solution in eq. (3.116), which corresponds to C1 = 0, is
proportional to

ψ(z) =
√

sin
(
πz

zm

)
log

[
π

2 cot
(
πz

2 zm

)]2
, (3.140)

and has C3 = − 2 log
(
π
2
)
C2, C4 = −C2. Using eq. (3.75), one can see that these

choices correspond to

θ1 = θ2 = arctan
[
2 log

(
π

2

)]
. (3.141)

The spectrum resulting from these boundary conditions can be deduced from figure 8,
where it corresponds to the intersections of the dashed curves with the real axis.
In particular, the left panel refers to the real range for ν, while the right panel
identifies a single tachyonic eigenvalue along the complex line (3.92), with x ' 1. The
wavefunction (3.140) has a node, as can be seen in figure 7, and indeed there is one
lower eigenvalue with these self-adjoint boundary conditions, as we have just seen.
The wavefunction of the tachyonic mode is a Mehler function, and is displayed in
figure 7: it has no nodes in the interior of the interval, and is orthogonal to the zero
mode, as expected.

In fact, the presence of tachyons is generic for µ = 0, as can seen from figure 9, which
collects the lines of constant tachyonic mass in this case. Consequently, we are led to
conclude that the choice C2 = C4 = 0, which results in the simple spectrum (3.138),
is the only self-adjoint boundary condition that is free of instabilities for µ = 0, in the
ρ→∞ limit that, as we have seen, translates into independent boundary conditions
at the ends of the interval.
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Figure 8. In the left panel, the intersections with the horizontal axis identify the spectrum of ν
corresponding to the boundary conditions of the zero-mode wavefunctions in eqs. (3.139) (solid),
and in eq. (3.140) (dashed). In the right panel, the intersection with the horizontal axis identifies
the value of x corresponding to the tachyonic mode with the boundary conditions (3.141).
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Figure 9. For µ = 0, there are instabilities for all values of θ1 and θ2 away from the special point
(π, 0), which corresponds to the spectrum of eq. (3.138) that starts with a massless “graviton” mode
with the wavefunction (3.139).

• For µ = 1, the value of interest for scalar perturbations in the orientifold 9D vacuum,
only one choice of wavefunction,

ψ = A

√
sin
(
π z

zm

)
P− 1
ν

[
cos

(
π z

zm

)]
, (3.142)

is compatible with the L2 condition at the left end of the interval. The behavior at
the right end is then determined by the connection formula [60]

P− 1
ν

[
cos

(
π z

zm

)]
= − cosπν P− 1

ν

[
cosπ

(
1− z

zm

)]
+ 2
π

sin πν Q− 1
ν

[
cosπ

(
1− z

zm

)]
(3.143)

in the limit z → zm. Consequently, if the coefficient of Q− 1
ν does not vanish,

ψ ∼ 1√(
1− z

zm

) , (3.144)
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Figure 10. The non-normalized ground-state wavefunction for µ = 1 (blue, solid) and the
corresponding one for the first excited state (red, dashed).

as z → zm, since

Q− 1
ν

[
cosπ

(
1− z

zm

)]
∼ 1
π ν(ν + 1)

(
1− z

zm

) , (3.145)

and the L2 condition thus demands that
sin πν

πν(ν + 1) = 0 . (3.146)

Combining this condition with eq. (3.89), one can conclude that

ν ∈ N = 1, 2, 3, . . . . (3.147)

The corresponding m2 eigenvalues are then

m2 = (n− 1)(n+ 2) = 0, 4, 10, . . . for H+ ,

m2 = n(n+ 1) = 2, 6, 12, . . . for H− . (3.148)

There is a normalizable zero mode, given in eq. (3.34), only for H+, which is displayed
in figure 10 together the wavefunction of the first excited state, and there are no
tachyons in both cases. These spectra differ by a constant shift in m2, as is manifest
in eq. (3.81), and the spectrum for H− is identical to the massive one obtained for
µ = 0 in eq. (3.138), which corresponds to the special boundary conditions for which
the ground-state wavefunction is annihilated by A†.

3.2.5 The issue of positivity

In section 2 we have recast the spectral problems for the different sectors of the 9D
compactifications of [22] in terms of Schrödinger-like operators of the form

AA† ψ = m2 ψ , (3.149)

with
A = ∂z + ω(z) , A† = −∂z + ω(z) . (3.150)

Similar steps were made in [53].
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Multiplying eq. (3.149) by ψ? and integrating gives

m2
∫ b

a
dz |ψ|2 =

∫ b

a
dz

∣∣∣A† ψ∣∣∣2 +
[
ψ?A† ψ

]b
a
, (3.151)

and one can thus conclude that if [
ψ?A† ψ

]b
a
≥ 0 , (3.152)

as b and a approach the singular ends zm and 0, then m2 ≥ 0. If this condition does
not hold, positivity is not guaranteed, and as we saw in the preceding section self-adjoint
boundary conditions can lead to the emergence of tachyonic modes even if the factorization
of the Schrödinger operator holds, and in particular in the absence of a potential. The free
case was already analyzed in section 3.1.2, and here we would like to add some considerations
for the singular potentials.

For the cases of interest, as we have seen, close to the left end of the interval

A± ∼ ∂z + β±
z
, (3.153)

and similarly close to the right end

A± ∼ ∂z −
β±

zm − z
. (3.154)

For 0 < µ < 1,
∣∣∣A†+ ψ∣∣∣2 is not normalizable, and in that case eq. (3.151) contains pairs

of singular contributions as a and b approach the endpoints, while
∣∣∣A†− ψ∣∣∣2 is normalizable,

and the boundary term for H− reads

2µ (C?2 C1 + C?4 C3) . (3.155)

In this case eq. (3.152) translates into the inequality

C(0)†
[
σ1 + U † σ1 U

]
C(0) ≥ 0 , (3.156)

and using eq. (3.7) this can be turned into the conditions

sin (θ1 + θ2) ≥ 0 ,
cos2 θ1 − tanh2 ρ cos2 θ2 ≤ 0 , (3.157)

which hold in the shaded regions of figure 11. One can thus conclude that positivity holds
for H− within these regions. This pattern can be recognized in the last two panels of
figure 4, which refer to H−: the tachyonic curves displayed there lie outside these regions.

Furthermore, eq. (3.85) indicates that, within the same regions of figure 11, the
eigenvalues of H+ are bounded from below, and

m2 ≥ −2µ . (3.158)

However, the preceding argument does not identify the stability regions of H+.
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Figure 11. The shaded areas are the regions of moduli space where positivity holds for H−, for
ρ = 0.2 (left panel), and for large ρ (right panel).

For µ = 0 the situation is similar to what we described for H+, since

A† ψ ∼ C2√
z
, (3.159)

which is not normalizable, and the boundary term is divergent, although the divergent
contributions cancel again between boundary and bulk. As a result, the analysis is not
conclusive in this case unless C2 = C4 = 0. Indeed, as we saw in section 3.2.4, there are
tachyonic modes for all values of θ1 and θ2 away from the special point (θ1, θ2) = (π, 0).

Even when the Hamiltonian factorizes as in eq. (3.149), special choices of boundary
conditions are thus needed to grant positivity. In general, however, if there is a normalizable
zero mode ψ0 such that

A† ψ0 = 0 , (3.160)

one can conclude that positivity holds for the whole spectrum subject to its self-adjoint
boundary conditions. In this case, the ground state is massless and clearly satisfies the
preceding condition (3.152), while the mass term in eq. (3.149) is subdominant close to the
singularities present in our problem at the ends of the interval. The corresponding massive
modes are thus of the form

ψ = ψ0 + δ ψ , (3.161)

and near the origin δ ψ ∼ m2 zα+2 if ψ0 ∼ zα. As a result, the contribution to eq. (3.152)
has the leading behavior z2α+1, and vanishes if α > −1

2 , a condition that must hold if ψ0
is in L2, which grants a positive spectrum. Similar considerations apply close to zm, and
consequently in all sectors of this type positivity is guaranteed by the limiting behavior of
the zero mode.

4 Application to tensor, scalar and vector perturbations

We have seen in section 2 that, within the range γ ≤ γc that includes the tadpole potentials
of the orientifold models, the two parameters µ and µ̃ characterizing the singular behavior at
the ends of the interval coincide for tensor, scalar and vector perturbations. This motivated
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Figure 12. The potentials for tensor perturbations (left panel, solid), scalar perturbations (middle
panel, solid) and vector perturbations (right panel, solid) for γ = γc, in units of 1

z2
m

and as functions
of z

zm
. The potential of eq. (3.81) with µ = 0 is the red dashed curve in the left panel, while the H+

potentials for µ = 1 and µ = 3
8 are the red dashed curves in the middle and right panels. Finally,

the H− potentials for µ = 1 and µ = 3
8 are the green dotted curved in the middle and right panels.

us to analyze in detail the class of potentials in eq. (3.81), which share the preceding
property concerning µ and µ̃ and afford exact solutions in terms of associated Legendre
functions. This allowed us to perform a complete span of the constant mass curves, in order
to characterize the stability regions.

Eq. (3.81) provides a very good approximation for the potential of tensor perturbations,
and good ones for those of scalar and vector perturbations in these vacua, as the reader can
see in figure 12. For tensor perturbations µ = 0, so that there is a unique potential of the
type (3.81) of the AA† form, with β = 1

2 , and the agreement between the real potential
and eq. (3.81) is actually striking. The correspondence is still good but less accurate in
the other two cases of scalar and vector perturbations, for which µ = 1 and µ = 3

8 , with a
relative preference for the H− choice, to which we shall return shortly.

Using the results of section 3, we can now summarize the lessons that can be drawn
from the preceding analysis of the potentials (3.81).

• Tensor perturbations, (µ = 0). In this case there is a priori an SL(2, R) × U(1)
moduli space associated to the possible boundary conditions, and in particular the
boundary of SL(2, R) parametrizes the independent boundary conditions at the two
ends, while the H+ andH− choices coincide. However, as we have seen in the preceding
section, all choices of independent boundary conditions lead to instabilities, aside
from the special one corresponding to a wavefunction with no logarithmic singularities
at the ends. As a result, a unique boundary condition is compatible with stability, and
the resulting spectrum,

M2 =
(
π

zm

)2
n(n+ 1) , n = 0, 1, . . . , (4.1)

includes a massless graviton as its low-lying mode, whose normalized ground-state
wavefunction (3.86) is

ψ0 =
√

π

2 zm
sin
(
π z

zm

)
. (4.2)

To reiterate, the Dudas-Mourad vacuum does lead to a non-vanishing Newton constant
in nine dimensions, as shown in [22], and it does so while also leaving there a long-range
gravitational force.

– 35 –



J
H
E
P
0
8
(
2
0
2
3
)
0
4
1

• Scalar perturbations, (µ = 1). In this case the boundary conditions are fixed, and
the issue is optimizing the overall shift. Figure 12 already indicates that the H− choice
is preferable with respect to H+. However, one can estimate the best choice for the
shift a, starting from H+ + π2

z2
m
a, with the normalized zero-mode wavefunction (3.86),

ψ0 =
√

3π
4 zm

[
sin
(
π z

zm

)] 3
2
, (4.3)

and demanding that

∆m2 = 〈ψ0|
[
Vtrue(z)− V+(z)− π2

z2
m

a

]
|ψ0〉 (4.4)

be as small as possible in absolute value. In fact, in this case the first contribution is
negligible with respect to the second, and therefore one can choose

a ' −z
2
m

π2 〈ψ0|V+(z)|ψ0〉 = 9
8 , (4.5)

so that the best Legendre potential is

V '
(
π

zm

)2
 3

4
[
sin
(
π z
zm

)]2 − 9
8

 = V− −
7
8

(
π

zm

)2
. (4.6)

With H+ the spectrum would contain a massless mode, but taking the correction into
account our estimate for the scalar spectrum is

M2 '
(
π

zm

)2 [
n(n+ 1) − 7

8

]
, n = 1, . . . , (4.7)

and is purely massive. Therefore, the low-lying dilaton mode that emerges in the
nine-dimensional effective theory is not a modulus, as in the conventional Kaluza-Klein
setting, but it is stabilized. The common goal of stabilizing moduli is thus realized in
this simple case.

• Vector perturbations,
(
µ = 3

8

)
. This sector belongs to the region 0 < µ < 1,

and therefore, as for tensor perturbations, there are in principle infinitely many
choices of self-adjoint boundary conditions. However as shown in figure 4, demanding
stability for the H+ Hamiltonian excludes all boundary conditions except for those
corresponding to the solution of

A†+ ψ = 0 , (4.8)

which is

ψ0 =

√√√√√7
√
π Γ

(
7
8

)
3 zm Γ

(
3
8

) [
sin
(
π z

zm

)] 7
8

(4.9)

and its excitations.
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Figure 13. The wider stability region for vector perturbations implied by the shift in eq. (4.11).

For µ = 3
8 the two options, H+ and H−, are different, and the latter appears preferable

by inspection, so that there is a residual moduli space of stable boundary conditions
with only massive modes. One can again estimate the best choice for the shift a,
starting from H+ + π2

z2
m
a and the zero-mode wavefunction (4.9), so that

∆m2 = 〈ψ0|
[
Vtrue(z)− V+(z)− π2

z2
m

a

]
|ψ0〉 . (4.10)

The best choice for a eliminates this correction, and the result is

a ' 0.19 +
(3

8 + 1
2

)2
. (4.11)

The alternative option of starting from H− and the corresponding zero mode wave-
function (3.86) would have resulted in singular integrals.
The corrected stability region for vector perturbations, shown in figure 13, is wider
than the one for H−, which is displayed in the right panel of figure 4, since the value
obtained for a corresponds to H− + 0.2 π2

z2
m
. As a result, in figure 13 the only tachyons

originate from part of the complex ν line of eq. (3.92).

5 Conclusions

This work was devoted to identifying the possible self-adjoint boundary conditions for
one-dimensional Schrödinger systems in finite conformal intervals 0 ≤ z ≤ zm and their
consequences for the nine-dimensional compactifications [22] of the string models of [29–35].
We paid special attention to the positivity conditions for the resulting spectra, which
translate into the perturbative stability of the vacua.

These compactifications are driven by the tadpole potentials (1.1), and intervals, rather
than the circles of conventional Kaluza-Klein theory, play a prominent role in them and in
their generalizations of [8, 9]. Logarithmic singularities of the dilaton φ and the conformal
factor Ω translate into regular singular points of the Schrödinger-like differential equations
for the modes, which develop double poles at the endpoints of the interval. These double
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poles can be characterized by the two parameters µ and µ̃ in eq. (2.36), and the resulting
wavefunctions have algebraic singularities that depend on them.

As we saw in section 2, for γ ≤ γc only zm depends on γ, while the two non-negative
parameters µ and µ̃ for tensor, vector and scalar modes in eq. (2.36) coincide and are
independent of it. These properties reflect a curious correspondence between the asymptotics
of these solutions in the presence of tadpole potentials and pairs of Kasner-like solutions
in [8] that obtain in the absence of them and are mapped into one another by the interchange
of φ with −φ.

Characterizing the possible self-adjoint boundary conditions is a crucial prerequisite to
addressing the stability of these vacuum solutions with broken supersymmetry of [8, 9, 22].
Still, while self-adjoint boundary conditions grant the completeness of the corresponding
spectra, which is instrumental to describe arbitrary perturbations, they do not provide
any clues on the positivity of the resulting real m2 eigenvalues. We have seen that self-
adjoint boundary conditions introduce, in general, a number of parameters in the problem,
whose values can have crucial effects on vacuum stability. In section 3 we explored these
general boundary conditions for the free theory, which would play a role when considering
intervals, along the lines of the Horava-Witten setting of [23, 24], or when the internal
space terminates at branes or orientifolds [61]. In these cases the boundary conditions
resulting in the emergence of instabilities can be linked to the presence of boundary mass
terms in the action principle. In the compactifications of interest, the intervals emerge
dynamically and the singularities present at the ends make this type of correspondence less
direct, but generic self-adjoint boundary conditions do give rise to instabilities. When µ

and µ̃ are both less than one, the independent choices of boundary conditions are, in fact,
in one-to-one correspondence with SL(2, R)×U(1) matrices, as in the free theory, so that
the different options endow these types of compactifications with an additional AdS3 × S1

moduli space. Self-adjoint boundary conditions enforced independently at the two ends
are a subset of these, correspond to the boundary of AdS3 and are insensitive to the U(1)
factor. There are regions of moduli space when one or two tachyonic modes are present,
both in the free theory and with the singular potentials of interest. We have explained how,
in general, the limiting behaviors of the solutions at the two ends are connected by special
SL(2, R) matrices, consistently with the constancy of the Wronskians of the Schrödinger
operators (2.27) under scrutiny. On the other hand, the boundary conditions are unique at
ends where µ or µ̃ are larger than or equal to one.

For γ ≤ γc, the equality of µ and µ̃ allowed us to rely on a class of exactly solvable
potentials related to Legendre functions that can closely approximate the actual potential
for tensor perturbations, and reasonably well those for scalar and vector perturbations.
They include, in particular, the proper double-pole singularities present in the different
cases. We have analyzed the models in detail, and the exact eigenvalue equations allowed
us to identify regions of parameter space where tachyonic modes are present and others
where the spectrum includes at most massless modes, or is even massive altogether.

For 0 < µ < 1 we have identified pairs of Hamiltonians, H±, with H− > H+, which
factor into first-order operators as A±A†±, and we have provided concrete evidence that H−
is stable within wide regions of parameter space while H+ is only stable at special points.
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Vector perturbations in the ten-dimensional orientifolds correspond to µ = 3
8 , a value within

this range. Optimizing the correspondence with the actual potential by allowing constant
shifts of H±, we obtained an improved estimate of the stability region shown in figure 13,
which is wider than the one for H− displayed in the right panel of figure 4. One can
therefore conclude that both purely massive spectra and others also containing massless
modes are viable options that can emerge for vectors in the vacua of [22], with suitable
choices of boundary conditions, consistently with the possible spontaneous breaking of the
open-string gauge symmetry.

Our most surprising result concerns gravity. For tensor perturbations µ = 0, so that H+
and H− coincide, and we could show that a long-range gravitational force with a finite value
of the nine-dimensional Newton coupling is not only natural for the Dudas-Mourad vacuum
of [22], as proposed in [53], but it is the only viable option! Other choices of boundary
conditions are in principle possible, but they all lead to instabilities here or there, and
excluding them we arrived at simple, similar spectra, for tensor and scalar perturbations.
The only difference between them is that scalar perturbations lack a massless mode, so that
the dilaton is stabilized by the compactification, thus realizing an often sought scenario.

We leave for the future a similar analysis of potentials where µ and µ̃ are different,
which are relevant for γ > γc and in particular for the SO(16)× SO(16) model of [29, 30],
but also for the RR modes of the orientifold models of [31–35].

Summarizing, with the quadratic action principles

S =
∫
dz ψ?

(
H −m2

)
ψ (5.1)

underlying the boundary-value problems that we addressed, if the ψ’s are chosen within the
self-adjointness domain for H, one is led to Schrödinger-like equations with the L2 scalar
products that we have discussed. In the non-singular case, the boundary conditions (3.6)
generalize the familiar Neumann and Dirichlet ones. In the singular case, although the
wavefunctions are generally non-analytic at the ends of the interval, non-standard boundary
conditions can still be characterized in terms of their leading behaviors. The solutions
may even satisfy Neumann and Dirichlet conditions at the same time, as we saw for the
unique option for µ = µ̃ = 1 related to scalar perturbations, while boundary conditions can
introduce some moduli of their own, as was the case within the 0 ≤ µ < 1 range, and in
particular for the solutions related to vector perturbations. Stability, however, can even
reduce a moduli space to a single option, as we saw for tensor perturbations.

What we did not address in detail here is the correspondence between the boundary
conditions and possible boundary terms in the action, although we made a cursory comment
in this respect, for the free theory, in section 3.1.4. This correspondence will play a role in
the comparison with the current literature on “dynamical cobordism”, some of which can
be found in [62–68], and we shall return to it in a future work [59].

It would be interesting to combine the analysis presented in this paper with the methods
of “fake supersymmetry” [69–72], first considered in this context in [73]. The present analysis
of boundary conditions will play a prominent role for the Bose modes of the solutions
in [8] examined in [59], where no strong string-coupling regions are present at the ends of
the interval.
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