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1 Introduction

Adding right-handed (RH) neutrinos to the Standard Model (SM) particle spectrum is one
of the best motivated extensions to address several of the open problems in particle physics.
They constitute the simplest possibility to accommodate the evidence for neutrino masses
and mixing, and they can also play an important role as dark matter candidates [1–4] or
portals to dark sectors [5–8] as well as in the generation of the matter-antimatter asymmetry
of the Universe [9–12].

Due to the singlet nature of the RH neutrinos, also known as heavy neutral leptons
(HNLs), there is a new energy scale associated to their allowed Majorana mass, which
is unknown from the theoretical point of view. If this scale is low enough, they could
be produced at different laboratories, motivating the strong experimental effort (see for
instance [13]) that led to a plethora of constraints (see e.g. [14, 15]). On the other hand, if
the scale is above the experimental energy, the RH neutrinos cannot be produced, but their
existence induces deviations from unitarity of the leptonic mixing matrix, so they can still
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be probed for at the intensity frontier via electroweak precision observables, universality
ratios or charged lepton flavour violating (cLFV) processes [16–56].

When the RH neutrino masses are above the experimental energy, it is useful to consider
an effective field theory (EFT) parametrization of their impact at accessible energies. After
integrating them out, the lowest order dim-5 Weinberg operator [57] generates neutrino
masses and mixings after electroweak symmetry breaking, while the only dim-6 induced
at tree level leads to non-unitarity effects in lepton mixing [58]. In a high-scale seesaw
mechanism [59–62], the naive expectation is that both dim-5 and 6 operators are suppressed,
explaining the smallness of neutrino masses at the price of rendering the model virtually
untestable. On the other hand, symmetry protected [63–66] low-scale seesaw mechanisms,
such as the linear [67, 68] or inverse [69, 70] seesaw mechanisms, suppress the dim-5 operator,
but not the dim-6 one, allowing for large deviations from unitarity.

When extending the SM with n new RH neutrinos N i
R, both a neutrino Yukawa and a

Majorana mass term for the right-handed neutrinos should be added to the Lagrangian:

L = −1
2N i c

R M ij
M N j

R − Y αi
ν Lαϕ̃N i

R + h.c. (1.1)

where ϕ̃ = iσ2ϕ stands for the SM Higgs doublet, Yν is a complex 3× n Yukawa coupling
matrix and MM is a n × n symmetric Majorana matrix for the NR fields. When the RH
neutrinos are heavy, upon integrating them out, they induce light neutrino masses via the
dim-5 Weinberg operator [57],

mν = −ΘMMΘT , (1.2)

where Θ is the mixing between the active SM neutrinos and the RH ones:

Θ ≡ v√
2

YνM−1
M = mDM−1

M , (1.3)

and v = 246GeV is the Higgs vev. The symmetric mass matrix for the light neutrinos
mν will be diagonalised by a unitary matrix U . Additionally, as already mentioned, the
only dimension 6 operator generated at tree level induces the non-unitarity effects we are
interested in [58]. In particular, the leptonic mixing matrix coupling the light neutrino mass
eigenstates to the SM charged leptons through CC interactions will be given by:

N = (I− η)U . (1.4)

We have dubbed the leptonic mixing matrix N to emphasise its non-unitary character.
Indeed, while U is the unitary matrix that diagonalises the Weinberg d = 5 operator in
eq. (1.2), η parametrises the unitarity deviations of N and corresponds to (half of) the
coefficient of the d = 6 operator obtained upon integrating out the heavy fields [58]:

η = 1
2ΘΘ† . (1.5)

Notice that, any general matrix can be parametrised through the product of an
Hermitian and a unitary matrix. Hence, eq. (1.4) is a completely general and convenient
way to encode unitarity deviations through the small Hermitian matrix η [71]. As we
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will show in more detail later, most observables depend on the combination NN †, since
the flavour indices corresponding to the charged leptons are fixed by the process and the
physical neutrino indices are summed over, since they are not measured. Being η a small
parameter, we have

3∑
i=1

NαiN
†
iβ = δαβ − 2ηαβ +O

(
η2

αβ

)
. (1.6)

Thus, the observables do not depend on U and the η matrix encodes any possible effect
arising from non-unitarity, regardless of the UV completion that originates the deviations
and how many fields it contains.

In all generality, the dim-5 and 6 operators are independent, meaning that in the most
general case we can decouple η from light neutrino masses and mixing. Nevertheless, when
induced by RH neutrinos, η is a positive-definite matrix, as shown by eq. (1.5), and hence
its parameters are not entirely independent. In particular, the Schwarz inequality will
be satisfied:

|ηαβ | ≤
√

ηααηββ . (1.7)

Furthermore, since both operators are generated from different combinations of the same
Yukawa and mass matrices (see eqs. (1.2) and (1.5)), it is possible to find correlations
between them depending on how many new heavy neutrinos are considered. Thus, with the
aim of covering from the minimal to the most general case, we will consider the following
4 scenarios:

• The minimal scenario that accommodates oscillation data adding only 2 RH neutrinos.
Here the dim-5 and 6 operators are fully correlated, since the latter (and thus η) can
be fully reconstructed from the former up to a global scale [72].

• The next to minimal scenario with 3 RH neutrinos, where the dim-5 operator still
imposes strong correlations on η [73].

• The most general RH neutrino scenario where we assume a general η matrix, indepen-
dent of neutrino oscillation data, which encodes the low-energy effects of an arbitrary
number of heavy RH neutrinos.

• Generic deviations from unitarity not requiring η to be positive-definite or subject to
the Schwarz inequality. This would imply more elaborate additions to the SM particle
content beyond only RH neutrinos (see ref. [55] for a dedicated discussion).

In order to obtain a complete picture of the experimental situation, we will perform
a global fit analysis of an extended set of observables that are affected by a non-unitary
leptonic mixing matrix, and derive current limits for all these scenarios. Compared to
previous analyses [44, 54, 74] we improve and extend the study in several ways:

• We update and complete the list of observables taking into account all correlations
among them consistently. We also comment on the role of the CDF-II anomalous
measurement of the W mass [75], given the importance of this observable in the
non-unitarity analysis.
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• We extend the number of scenarios considered. In particular and as mentioned
above, we specifically consider the minimal case with two heavy neutrinos and obtain
its corresponding bounds, which is an analysis that was previously missing in the
literature.

• We improve the statistical treatment with an explicit calibration of the test statistic,
since deviations from Wilks’ theorem are expected for most of the scenarios under
consideration.

• We avoid using the values provided in the PDG review for the SM prediction of
the different observables. Indeed, while this procedure is common and convenient,
these values are obtained from a global fit which includes also the observables of
interest in this study. This approach is therefore not consistent as it double counts
these observables and, by using them in the prediction, it may artificially reduce any
preference for new physics. We instead choose an independent and accurate set of
input observables distinct from the others to make our predictions consistently.

This paper is organised as follows. In section 2 we describe the observables considered
in our global fits specifying their dependence on the unitarity deviations of the leptonic
mixing matrix and how we include them in our statistical analysis. In sections 3, 4 and 5
we present the results for the scenarios with 2, 3 and a general number of additional RH
neutrinos respectively, while in section 6 we show the impact of dropping the assumption of
η being positive definite as it might be the case if not induced (only) by mixing with RH
neutrinos. Finally, we summarise our conclusions in section 7.

2 Observables

In this work, we will derive global bounds on deviations from unitarity, and consequently
on heavy neutrino mixing, via a fit to the following observables:

• Four determinations of the W-boson mass: MLEP
W , MTev

W , MLHCb
W , MATLAS

W .

• Two determinations of the effective weak angle: s2 LHC
eff and s2 Tev

eff .

• Five LEP observables measured at the Z-pole, plus a determination of the Z invisible
width from CMS: ΓZ , σ0

had, Re, Rµ, Rτ , ΓLHC
inv .

• Five weak decay ratios constraining lepton flavour universality: Rπ
µe, Rπ

τµ, RK
µe,

Rτ
µe, Rτ

τµ.

• Ten weak decays constraining CKM unitarity.

• cLFV observables.

With the obvious exception of cLFV processes, all these observables are lepton flavour
conserving (LFC) and thus constrain the diagonal entries of the η matrix. Nevertheless,
through the Schwarz inequality of eq. (1.7), LFC observables will also impose constraints
on the off-diagonal entries. As we will see, these limits will be often stronger than those
imposed by direct contributions to cLFV processes.
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SM input parameters and predictions. For the SM input parameters the very precise
determinations of the Z-boson mass MZ , the fine structure constant α and the Fermi
constant (GF ) extracted from µ decay Gµ will be used. The corresponding values are taken
from the PDG [76]:

MZ = 91.1876(21) GeV ,

α−1 = 137.035999180(10) ,

Gµ = 1.1663788(6) · 10−5 GeV−2 .

(2.1)

However, since the extraction of GF comes from a charged current weak decay and the W

boson couplings to leptons are modified due to the non-unitarity of the leptonic mixing
matrix, Gµ will no longer be equal to GF . In fact, in the presence of a non-unitary mixing
matrix the muon decay width gets modified as:

Γµ =
G2

F m5
µ

192π3

3∑
i=1

|Nµi|2
3∑

j=1
|Nej |2 ≃

G2
F m5

µ

192π3 (1− 2ηee − 2ηµµ) ≡
G2

µm5
µ

192π3 , (2.2)

and thus GF , as measured through muon decay, picks a non-unitarity dependence,

GF ≃ Gµ (1 + ηee + ηµµ) , (2.3)

which will propagate into any observable which depends on it. In the following, we discuss
in detail the dependence of these observables on the non-unitarity parameters. The main
results are already summarised in table 1.

The SM predictions for all the observables entering in our fit will also be necessary. A
common practice is to take their SM values as given by the PDG, however this would not
be consistent since the PDG values correspond to a global fit including the electroweak
observables themselves. Hence, since our goal is precisely to perform such a fit but in the
context of non-unitarity, it is not consistent to take values which have already been fitted.
Moreover, since the experimental data is being fitted, the resulting SM predictions would be
systematically closer to the experimental values than the values obtained by just inserting
the SM input parameters into the expression for the observables. This may artificially
diminish any preference for new physics in the data.

For this reason, we will instead derive the SM predictions for each observable from its
parametric dependence on the SM input parameters. This implies including the relevant
loop corrections, which requires additional inputs: the mass of the top quark (mt), the mass
of the Higgs boson (MH), the strong coupling constant at MZ (αs (MZ)) and the running
of the fine-structure constant at MZ (∆α (MZ)). We adopt the following values [76]:

mt = 172.69(30) GeV ,

MH = 125.25(17) GeV ,

αs (MZ) = 0.1185(16) ,

∆α (MZ) = 591.05(70) · 10−5 .

(2.4)

Notice that we only consider SM loop contributions, which are of course necessary for
the precise evaluation of the SM prediction of each observable. In principle one should
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also take into account heavy neutrino loop contributions to the non-unitarity dependence
of the observables, however it has been shown that these can be safely neglected as they
are subleading [73].

2.1 Constraints from MW and s2
eff

Although MW and s2
w do not depend directly on the non-unitarity parameters, they provide

alternative determinations of GF to be compared to the one extracted from muon decay,
which, as previously discussed, does depend on η. In other words, the predicted values for
MW and s2

w through Gµ will inherit the following dependence on η

MW = MZ

√√√√1
2 +

√
1
4 − πα (1 + ηee + ηµµ)√

2GµM2
Z (1−∆r)

, (2.5)

s2
w = 1

2

1−
√√√√1− 2

√
2πα (1 + ηee + ηµµ)
GµM2

Z (1−∆r)

 , (2.6)

with the SM radiative corrections included in ∆r = 0.03657(22) [76]. Here, it is useful to
factorise the SM contribution and keep only the leading corrections in η, obtaining the
expressions reported in table 1. Then, we can compute more precisely the SM predictions
for MW and s2

eff using, respectively, the formulas given in [80] and [81]. Notice that the
“on-shell” value of s2

w is related to the effective weak angle s2
eff in the table through a

multiplicative factor κ that includes SM loops [76]

s2
eff = κ s2

w , (2.7)

and, therefore, it has the same η-dependence than s2
w.

These η-dependent predictions are to be compared with the current experimental
values. For the W boson mass, we compute the current world average also considering
the most recent ATLAS result [82]. For this, we follow the PDG [76] prescription and
combine the results of ATLAS, LHCb [83], Tevatron [84] and LEP [85] following the BLUE
procedure [86, 87] and taking into account the corresponding correlations.1 In section 2.5
we will discuss the latest and anomalous CDF-II measurement [75]. Since we find there
is too much tension with other observables even in presence of non-unitarity, we will not
include it in the global fit.

Regarding the weak mixing angle, we use two measurements of s2
eff coming from the

LHC and Tevatron. On the other hand, we do not include low-energy determinations of
s2

w, such as its determination from Møller scattering. This is due to the fact that in the
electron vector coupling ge

V = −1
2 + 2s2

w there is a partial cancellation (since s2
w ∼ 1/4).

This renders the extraction of s2
w very sensitive to higher order contributions which would

require a higher level of accuracy to include it reliably in the fit.
1Following the PDG [76], we will assume a correlated uncertainty of 9 MeV for LHCb and ATLAS in

order to compute the LHC average. Then, assuming a correlation of 7 MeV between LHC and Tevatron, we
compute the hadron collider average. The world average is then extracted by combining the hadron collider
average with the LEP measurement assuming no correlations.
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Observable SM prediction Experimental value

MW ≃ MSM
W (1 + 0.20 (ηee + ηµµ)) 80.356(6)GeV 80.373(11)GeV -

s2 Tev
eff ≃ s2 SM

eff (1− 1.40 (ηee + ηµµ)) 0.23154(4) 0.23148(33) [76]

s2 LHC
eff ≃ s2 SM

eff (1− 1.40 (ηee + ηµµ)) 0.23154(4) 0.23129(33) [76]

ΓLHC
inv ≃ ΓSM

inv (1− 0.33 (ηee + ηµµ)− 1.33ηττ ) 0.50145(5)GeV 0.523(16)GeV [77]

ΓZ ≃ ΓSM
Z (1 + 1.08 (ηee + ηµµ)− 0.27ηττ ) 2.4939(9)GeV 2.4955(23)GeV [76]

σ0
had ≃ σ0 SM

had (1 + 0.50 (ηee + ηµµ) + 0.53ηττ ) 41.485(8) nb 41.481(33) nb [76]

Re ≃ RSM
e (1 + 0.27 (ηee + ηµµ)) 20.733(10) 20.804(50) [76]

Rµ ≃ RSM
µ (1 + 0.27 (ηee + ηµµ)) 20.733(10) 20.784(34) [76]

Rτ ≃ RSM
τ (1 + 0.27 (ηee + ηµµ)) 20.780(10) 20.764(45) [76]

Rπ
µe ≃ (1− (ηµµ − ηee)) 1 1.0010(9) [78]

Rπ
τµ ≃ (1− (ηττ − ηµµ)) 1 0.9964(38) [78]

RK
µe ≃ (1− (ηµµ − ηee)) 1 0.9978(18) [78]

Rτ
µe ≃ (1− (ηµµ − ηee)) 1 1.0018(14) [78]

Rτ
τµ ≃ (1− (ηττ − ηµµ)) 1 1.0010(14) [78]∣∣∣V β

ud

∣∣∣ ≃√1− |Vus|2 (1 + ηµµ)
√
1− |Vus|2 0.97373(31) [76]∣∣V τ→Kν

us

∣∣ ≃ |Vus| (1 + ηee + ηµµ − ηττ ) |Vus| 0.2236(15) [79]∣∣V τ→K,π
us

∣∣ ≃ |Vus| (1 + ηµµ) |Vus| 0.2234(15) [76]∣∣V KL→πeν
us

∣∣ ≃ |Vus| (1 + ηµµ) |Vus| 0.2229(6) [76]∣∣V KL→πµν
us

∣∣ ≃ |Vus| (1 + ηee) |Vus| 0.2234(7) [76]∣∣V KS→πeν
us

∣∣ ≃ |Vus| (1 + ηµµ) |Vus| 0.2220(13) [76]∣∣V KS→πµν
us

∣∣ ≃ |Vus| (1 + ηee) |Vus| 0.2193(48) [76]∣∣∣V K±→πeν
us

∣∣∣ ≃ |Vus| (1 + ηµµ) |Vus| 0.2239(10) [76]∣∣∣V K±→πµν
us

∣∣∣ ≃ |Vus| (1 + ηee) |Vus| 0.2238(12) [76]∣∣∣∣Vus

Vud

∣∣∣∣K,π→µν

≃ |Vus|√
1− |Vus|2

|Vus|√
1− |Vus|2

0.23131(53) [76]

Table 1. Set of precision observables used as input for our global fit. The first column includes
their dependence on the non-unitarity parameters, the second their SM prediction and the third one
their experimental value. For MW , we compute the current world average without including the
CDF-II measurement (see text for details).
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2.2 Constraints from Z-pole observables

All of the predicitions for the Z-pole observables will be modified, as they depend on GF

and s2
w. For instance, this is the case for the partial decay widths to charged fermions:

Γf = NC

GµM3
Z

(
gf2

V + gf2
A

)
6
√
2π

(1 + ηee + ηµµ) , (2.8)

where NC is a color factor and gf
V and gf

A are the vector and axial couplings of the Z boson
to fermions, respectively:

gf
V = Tf − 2Qf s2

w ,

gf
A = Tf ,

(2.9)

with Tf and Qf being the isospin and charge of the fermion.
Moreover, the Z boson invisible decay width will be also modified when the right-handed

neutrinos are heavier than MZ and not kinematically available:

Γinv =
GµM3

Z

∑3
i,j=1

∣∣∣(N †N
)

ij

∣∣∣2
12
√
2π

(1+ηee+ηµµ)≃
GµM3

Z

12
√
2π

(
3−
(
ηee+ηµµ+4ηττ

))
. (2.10)

Thus, non-unitarity effects reduce the Z invisible decay width with respect to the SM
prediction which, interestingly, helped explaining the long-standing ∼ 2σ LEP anomaly in
the number of neutrinos. Nevertheless, this anomaly is now gone after an improvement
in the computation of the Bhabha scattering cross section [88]. On top of that, a recent
determination of Γinv from the CMS experiment [77] is ∼ 1σ away from the SM towards
larger values of Γinv, which imposes further constraints on non-unitarity effects.

Having this in mind, the observables of our fit will be the usual combinations used for
LEP from the partial widths of the Z. Namely, we have the total width ΓZ , the hadronic
cross section σ0

had and the leptonic ratios Rℓ, defined as:

ΓZ =
∑
f ̸=t

Γf + Γinv , (2.11)

σ0
had = 12πΓeΓhad

M2
ZΓ2

Z

, (2.12)

Rℓ =
Γℓ

Γhad
, (2.13)

where Γhad =∑
q ̸=t Γq. Moreover, we will include the new CMS measurement of Γinv as an

additional independent observable.
The parametric dependences of the different Z partial widths in order to extract the

SM predictions are taken from [89]. The expression for the singlet vector contribution to
the full hadronic width of the Z is taken from [90]. It should be noted that, since all of
these observables (except ΓLHC

inv ) were measured in LEP, correlations between them must be
taken into account, which we have taken from table B.13 of [88].

Finally, it is worth mentioning that there exist other LEP observables, such as Rc, Rb

or the forward-backward asymmetries AFB, which are not included here. The reason why
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we have chosen to leave them out is the fact that they are not as precisely measured as
other observables that depend on the same combination of η-parameters, thus they hold less
constraining power and would end up diluting the goodness-of-fit by artificially increasing
the number of degrees of freedom.

2.3 Constraints from lepton flavour universality (LFU)

The tightest constraints on the universality of weak interactions among the different lepton
flavours come from ratios of meson or charged lepton decay widths differing in the flavour
of one of the leptons involved. Since they are ratios, the η dependence coming from GF

will cancel out, and only the contributions coming from the W vertex will matter. Namely:

Γ (P → µν)
Γ (P → eν) = Γ (P → µνµ)SM

Γ (P → eνe)SM

∑3
i=1 |Nµi|2∑3
i=1 |Nei|2

≃ Γ (P → µνµ)SM

Γ (P → eνe)SM

(
RP

µe

)2
, (2.14)

Γ (τ → Pν)
Γ (P → µν) = Γ (τ → Pντ )SM

Γ (P → µνµ)SM

∑3
i=1 |Nτi|2∑3
i=1 |Nµi|2

≃ Γ (τ → Pντ )SM

Γ (P → µνµ)SM

(
RP

τµ

)2
, (2.15)

where P = π, K and the ratio RP
αβ is defined as:

RP
αβ = 1− (ηαα − ηββ) . (2.16)

Similarly, there are also competitive bounds coming from ratios of fully leptonic decays.
In particular, the µ − e sector can be constrained via:

Γ (τ → µνν)
Γ (τ → eνν) = Γ (τ → µνµντ )SM

Γ (τ → eνeντ )SM

∑3
i=1 |Nµi|2∑3
i=1 |Nei|2

≃ Γ (τ → µνµντ )SM

Γ (τ → eνeντ )SM

(
Rτ

µe

)2
, (2.17)

whereas the τ − µ sector is constrained by:

Γ (τ → eνν)
Γ (µ → eνν) = Γ (τ → eνeντ )SM

Γ (µ → eνeνµ)SM

∑3
i=1 |Nτi|2∑3
i=1 |Nµi|2

≃ Γ (τ → eνeντ )SM

Γ (µ → eνeνµ)SM

(
Rτ

τµ

)2
. (2.18)

Here Rτ
αβ has the same η-dependence as in eq. (2.16). The correlations between the ratios

extracted from τ decays are taken from [78]. Notice that RK
τµ has not been included in table 1

to avoid double counting since these decays will be included individually as independent
measurements of Vus as described below.

2.4 Constraints from CKM unitarity

The unitarity of the first row of the CKM is also constrained with significant accuracy.
While violations of the unitarity of the leptonic mixing matrix leave the CKM matrix
unchanged, the processes by which the values of its elements are extracted involve weak
decays and will inherit a dependence on the η parameters.

Since the CKM matrix is still unitary, the following CKM unitarity relation holds

|Vud|2 + |Vus|2 + |Vub|2 = 1 , (2.19)
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where, given the uncertainty on the value of |Vus|, the element |Vub| = 3.82(20) · 10−3 can
be safely neglected and thus one can substitute:

|Vud| =
√
1− |Vus|2 . (2.20)

We will treat |Vus| as a nuisance parameter which will be marginalised over.
The most precise determination of |Vud| comes from superallowed β decays. As such,

its extraction will be modified by the leptonic W vertex by (1− 2ηee) and additionally by
G2

F with (1 + 2ηee + 2ηµµ), which in the end amounts to:∣∣∣V β
ud

∣∣∣ = √
1− |Vus|2 (1 + ηµµ) . (2.21)

On the other hand, |Vus| can be determined from semileptonic and leptonic K decays,
as well as τ decays. For the case of the K semileptonic decays, similarly to the superallowed
β decays, the η dependence will come from the W vertex and the indirect dependence of
GF . In particular: ∣∣∣V K→πeν

us

∣∣∣ = |Vus| (1 + ηµµ) , (2.22)∣∣∣V K→πµν
us

∣∣∣ = |Vus| (1 + ηee) . (2.23)

Moreover, one can also constrain the ratio |Vus| / |Vud| by means of the ratio between
K and π leptonic decay widths:∣∣∣∣Vus

Vud

∣∣∣∣K,π→µν

= |Vus|√
1− |Vus|2

. (2.24)

In this case, there is no dependence on the η parameters, as they cancel out due to the fact
that both final states have the same flavour. However, this ratio is still useful to constrain
the nuisance parameter Vus.

Regarding τ decays, |Vus| can be extracted from its decay to a K:∣∣∣V τ→Kν
us

∣∣∣ = |Vus| (1 + ηee + ηµµ − ηττ ) , (2.25)

where the η dependence arises from the W vertex with the τ and from GF . Additionally,
another determination can be made from the ratio of the τ decay widths to K and π. This
ratio, as in the case of eq. (2.24), does not depend on η. However, as one needs to multiply
it by the determination of |Vud| to get |Vus|, it inherits the dependence of eq. (2.21).∣∣∣V τ→K,π

us

∣∣∣ = |Vus| (1 + ηµµ) . (2.26)

It should be noted that after a reassessment of radiative corrections to the neutrino and
superallowed β decays, the estimated value of Vud decreased, leading to a 4-5σ tension with
the assumption of CKM unitarity known as the Cabibbo anomaly [91–94]. More recently,
the uncertainty associated to this measurement has also been revised and increased due to
a more conservative estimate of the nuclear structure uncertainties [76]. This has reduced
the Cabibbo anomaly to a 2-3σ effect. Nevertheless, for a positive-definite η-matrix, this
anomaly is only worsened for ηµµ > 0, as shown by eq. (2.21) and therefore will push the
global fit to very small values of this parameter.
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2.5 About the CDF-II MW measurement

Given its accuracy, one of the most important constraints on the unitarity of the leptonic
mixing matrix and heavy neutrino mixing is the comparison of MW with its value obtained
from GF from muon decay, and therefore affected by ηee+ηµµ as discussed above, see eq. (2.5).

However, the most recent (and most precise) determination of MW by the CDF-II
collaboration [75] is around 7σ larger than the SM and around 3σ with respect to the
prior world average. Intriguingly, this larger value of MW , in tension with the SM, can
in principle be explained through non-unitarity parameters for positive definite ηee + ηµµ,
as shown in table 1. This possibility was explored in ref. [95] considering a subset of the
observables studied here including in particular the invisible width of the Z, LFU ratios
and tests of CKM unitarity. The conclusion of that study was that the combined fit to the
CDF-II MW measurement plus the other observables was in significant tension, mainly due
to the Cabibbo anomaly which, at the time, was estimated to be 4-5σ prior to the revision
of the uncertainty in the determination of Vud. Indeed, the Cabibbo anomaly would prefer
negative values for η, and it can thus only be worsened when the CDF-II MW anomaly is
accommodated.

The recent revision of the significance of the Cabibbo anomaly to the 2-3σ level invites
to reconsider the explanation of the CDF-II anomaly through non-unitarity. Nevertheless,
we find that this measurement is still in too much tension with, not only the other
determinations of MW , but also with other very precise measurements such as s2

eff and the
Z-pole observables. In fact, even though the tension between the CDF-II measurement of
MW and its SM prediction could be explained by non-unitarity, MW , s2

eff and the Z-pole
observables all depend on the same combination of η parameters (i.e. ηee + ηµµ). Thus, any
tension between these measurements cannot be improved by the presence of non-unitarity.

We quantify this tension through the parameter goodness-of-fit (p-g.o.f.) [96], which is
particularly suited to explore the situation in which two or more sets of observables are in
tension. In practice it amounts to splitting the dataset into two (or more) subsets, A1 and
A2, and computing:

χ2 = χ2
12 − χ2

1 − χ2
2 , (2.27)

where χ2
i is the minimum of the χ2 considering the dataset Ai, and χ2

12 is the χ2 minimum
considering both datasets. The p-g.o.f. is then obtained by dividing χ2 by its number of
degrees of freedom. In the following, we take A1 as the CDF-II MW measurement alone
and consider three other options for the second set of data:

• A2 as the dataset formed by s2 LHC
eff , s2 Tev

eff and the world average MW without
CDF-II.

• A2 as the Z-pole observables.

• A2 as the combination of the two previous sets of data.

The results of these three p-g.o.f. are summarised in table 2. As expected, adding
the measurements of s2

eff increases the tension already present between the new CDF-II
result and other determinations of MW , pushing it above the 4σ level. Moreover, the
tension of CDF-II with the Z-pole observables alone is also above 4σ, indicating a high
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Set of observables p-g.o.f. tension p-value

CDF-II vs MW /s2
eff 21.75/1 4.7σ 3.1 · 10−6

CDF-II vs Z-pole 21.48/1 4.6σ 3.6 · 10−6

CDF-II vs MW /s2
eff and Z-pole 27.30/1 5.2σ 1.7 · 10−7

Table 2. Tension between different sets of observables, quantified through the parameter goodness-of-
fit [96]. Note that the CDF-II measurement of MW is in tension not only with other determinations
of MW and seff, but also with the Z-pole observables measured at LEP.

incompatibility due to the fact that the Z-pole observables are in good agreement with the
SM expectation. Finally, the combination of the non-CDF-II MW measurements, effective
weak angle and Z-pole observables results in a tension above 5σ, clearly indicating that the
CDF-II measurement cannot be reconciled with the aforementioned observables through
unitarity deviations of the leptonic mixing matrix, since they all share the same dependence
on these parameters and, therefore, we choose not to include it among the observables of
our global fit.

2.6 Charged lepton flavour violation

In the presence of heavy neutrinos, charged lepton flavour violating processes are no longer
protected by the GIM mechanism [97], as both non-unitarity of the leptonic mixing matrix
and the scale separation between light and heavy neutrinos prevent such cancellation.
Therefore, given the strong experimental constraints on cLFV transitions, they can be used
to derive bounds on the off-diagonal elements of the η-matrix.

Currently, the most relevant cLFV processes for probing heavy neutrinos include [28, 38]
radiative decays, three body leptonic decays and µ − e conversion in heavy nuclei, whose
present bounds are summarised in table 3. The available list of cLFV observables is actually
much longer, including for example decays of the Z [31] and Higgs [27, 33, 43] bosons,
although their current sensitivities for non-unitarity effects are lower.2

Radiative ℓα → ℓβγ decays are very well-studied and have so far dominated the
constraints set by cLFV processes. Their complete rates induced by heavy neutrinos were
first reported in refs. [16–21]. In the limit of heavy neutrinos, i.e. heavier than MW , and
when their potential mass differences can be neglected,3 these rates can be approximated by

BR(ℓα → ℓβγ) ≃ 3α

2π

∣∣ηαβ

∣∣2 , (2.28)

and therefore they are directly related to the off-diagonal entries of the non-unitarity matrix
η. Notice moreover that this relation is independent of the heavy neutrino mass, as long as
it is heavy enough, implying that the radiative decays impose mass-independent bounds
on ηαβ .

2Nevertheless, a future Tera-Z factory would obtain competitive bounds from LFV Z decays [46, 50].
3In principle, non-degenerated heavy neutrinos could lead to numerical cancellations in some of the cLFV

processes [105]. Nevertheless, we consider such a situation very unlikely, as we explain in appendix B, and
therefore do not take into account in our global analysis.
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Observable Experimental bound

µ → eγ 4.2 · 10−13 [98]

τ → eγ 3.3 · 10−8 [99]

τ → µγ 4.2 · 10−8 [100]

µ → eee 1.0 · 10−12 [101]

τ → eee 2.7 · 10−8 [102]

τ → µµµ 2.1 · 10−8 [102]

µ → e (Ti) 4.3 · 10−12 [103]

µ → e (Au) 7.0 · 10−13 [104]

Table 3. Summary of present 90%CL upper limits for the branching ratios of the most important
cLFV observables constraining off-diagonal elements of the matrix η.

On the other hand, the relation between η and other cLFV transitions is in general
more involved. The reason is that, contrary to the radiative decays, other cLFV observables
also get contributions from neutral currents from the Z and H boson penguins, as well as
from box-diagrams, which have a different dependence on heavy neutrino mixings at large
masses [38, 51–53, 56], and thus a different η-dependence.

As an example to illustrate this behaviour, let us consider a minimal scenario with two
almost degenerated neutrinos forming a single pseudo-Dirac pair of mass M (see section 3).
Then, the rate for µ − e conversion in nuclei [38] can be approximated by

CR(µ → e) ≃
α5m5

µG2
F F 2

p

10368π4s2
wΓcapt

Z4
eff

Z

∣∣ηeµ

∣∣2 ∣∣∣ (A + Z)Fu + (2A − Z)Fd

∣∣∣2 , (2.29)

with

Fu = −27− 148s2
w − (27− 64s2

w) log
M2

M2
W

− (18− 48s2
w)

M2

M2
W

Tr [η] , (2.30)

Fd = −27 + 74s2
w + (27− 32s2

w) log
M2

M2
W

+ (18− 24s2
w)

M2

M2
W

Tr [η] , (2.31)

and A, Z(Zeff), Fp and Γcapt are properties of the nucleus: mass number, (effective) atomic
number, nuclear form factor and capture rate, respectively. Notice that we chose µ − e

conversion rate as an example, but similar expressions can be derived for other cLFV
processes such as µ → eee or τ → eee.

Besides the mild logarithmic dependence, there is a new M -dependent contribution,
not present in the current with photons and thus in ℓα → ℓβγ. This new term is suppressed
by an additional power of the small η-matrix, encoded as Tr [η] in this simplified scenario,
but at the same time it is enhanced by the new mass scale, so it can still be important
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Figure 1. Upper bounds on |ηeµ| (|ηeτ |) imposed by current limits of µ → eγ (τ → eγ), µ → eee

(τ → eee) and µ − e conversion in gold (see table 3). We considered the minimal scenario described
in section 3 with a normal ordering for light neutrino masses. The color bands reflect how the
upper bound on |ηαβ | is modified as we vary the other free parameters. The upper right area in red
corresponds to Yukawa couplings larger than 1, outside the perturbativity region.

for sufficiently heavy neutrinos. This also happens for other cLFV processes such as the
three-body leptonic decays, with additional M -dependent terms involving also the diagonal
entries of η. Consequently, processes such µ → eee and µ − e conversion in nuclei do
not impose mass-independent bounds on |ηeµ| in the M ≫ MW limit. Moreover, the
experimental limits for these processes cannot be straightforwardly translated to bounds for
|ηeµ|, given the additional dependence on Tr [η]. Thus, in all generality, the |ηeµ| bounds
depend not only on the mass but also on the diagonal entries of η.

In order to understand better and to quantify these mass and η dependencies, we show
in figure 1 the upper bounds that can be set on |ηeµ| and |ηeτ | from each of the cLFV rates
individually. This figure corresponds to the most minimal scenario with only a degenerate
pair of heavy neutrinos, which will be introduced and explored in detail in section 3, but
it is sufficient to exemplify and discuss the overall behaviour. Besides varying the heavy
neutrino mass, we also survey the values of the additional free parameters of the model (see
section 3) in order to also scan Tr [η] from its minimum4 to its maximum value allowed in
this scenario. This defines a color band for each observable, showing how much the bound
on ηαβ changes as we vary Tr [η]. Since the radiative decays do not depend on Tr [η], see
eq. (2.28), the band is only a line and it can be seen that they quickly saturate to a constant
value as soon as the heavy neutrino mass becomes a few times heavier than MW .

On the other hand, the rest of observables display a more complex behaviour. Their
bounds lie in a band, thicker for heavier masses since the importance of the Tr [η] terms grows
with M , and they become more stringent for heavier neutrino masses,5 even overcoming
those from the radiative decays. Nevertheless, whether this crossing between observables
happens within the perturbative region of the model and where exactly depend on the

4Notice that in general Tr [η] cannot be zero for ηαβ > 0 due to the Schwarz inequality in eq. (1.7). For
example, in the minimal model of section 3, we have Tr [η] ≥ 2 |ηeµ|.

5With the exception of a cancellation in the µ − e conversion rate in gold for masses around 20 TeV. The
exact position of this cancellation depends however on the mass and atomic number of the nucleus, so it will
be different for each nuclei.
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values of Tr [η]. In this particular example, µ − e conversion dominates over µ → eγ for
masses above 10 TeV approximately, although the exact position varies with Tr [η]. The
situation is similar in the τ -e sector, where τ → eee can dominate over τ → eγ for heavy
masses above the TeV range, again depending on the value of Tr [η]. Notice that in the τ -e
sector this crossing happens for lower masses than in the µ-e sector, since in the former
we are probing larger values of η and, thus, the additional η-terms are less suppressed.
Nevertheless, in both sectors these effects become relevant only close to the perturbativity
limit, since they require large masses and mixings simultaneously.

For these reasons, which cLFV observable provides the most stringent bound is model-
dependent and also changes in different regions of the parameter space. To deal with
this fact and to provide the most robust constraints possible, we will “marginalise over”
the dependencies shown in figure 1 by selecting a bound that would apply to all values
of the mass and Tr [η]. In practice we simply consider the constraint stemming from
radiative decays as given in eq. (2.28). This choice slightly overestimates the bounds from
radiative decays for masses close to MW , where the GIM cancellation starts to be recovered.
Nevertheless, in the µ-e sector this effect is compensated by µ − e conversion in gold,
which provides a strikingly similar constraint precisely in that region of the parameter
space. While this is not the case in the τ sector, those cLFV bounds are subdominant
compared to those derived from the Schwarz inequality, so that its effect is not relevant
in the fit. Consequently, eq. (2.28) turns out to be a good approach to a conservative and
mass-independent cLFV limit, and will be added to our fit. In any event, it should be noted
that in some regions of the parameter space, for the heaviest masses, stronger constraints
than our conservative estimate might apply as shown in figure 1.

3 Global fit bounds for the 2 neutrino case (2N-SS)

In order to reproduce the two distinct mass splittings that characterise the neutrino
oscillation phenomenon, at least two of the mainly-SM neutrinos need to become massive.
Therefore the minimum number of heavy neutrinos needed in order to have a realistic
neutrino mass model is two, as we consider in this section. We will dub this setup with two
heavy neutrinos as the 2N-SS, with RH neutrinos NR and N ′

R inducing the observed light
neutrino masses and mixings.

Moreover, in order for these RH neutrinos to have sizeable mixing with the active
neutrinos while generating radiatively stable and small neutrino masses, a lepton number
protected seesaw realization is required with the heavy neutrinos forming a pseudo-Dirac
pair [64–66, 72]. The most general neutrino mass matrix which satisfies these characteristics,
in the basis (νL N c

R N ′c
R)

T , has the following form:

Mν =

 0 Y v/
√
2 ϵY ′v/

√
2

Y T v/
√
2 µ′ M

ϵY ′T v/
√
2 M µ

 , (3.1)

where the ϵ, µ and µ′ terms softly break a generalised lepton number symmetry, Le = Lµ =
Lτ = LN = −LN ′ = 1. Therefore, it is technically natural to consider ϵ, µ/M, µ′/M ≪ 1.
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Indeed, in the limit when these terms vanish, Mν preserves the symmetry, yielding three
massless neutrinos (mν = 0) and two degenerate heavy neutrinos forming a Dirac fermion.
However, even in this limit the active-heavy mixings are already non-zero and hence
unsuppressed by the smallness of neutrino masses

Θα =
(
0 Yαv√

2M

)
≡
(
0 θα

)
, (3.2)

leading to potentially sizable non-unitarity effects given by

η = 1
2

|θe|2 θeθ∗µ θeθ∗τ
θ∗eθµ |θµ|2 θµθ∗τ
θ∗eθτ θ∗µθτ |θτ |2

 . (3.3)

The minimality of this model has two important implications for our analysis. On the
one hand, this η-matrix saturates the Schwarz inequality (i.e. |ηαβ | =

√
ηααηββ), meaning

that the cLFV bounds will constrain not only the off-diagonal entries of η, but also the
diagonal ones. Therefore the cLFV observables need to be added into the global fit together
with the LFC ones in table 1. On the other hand, the flavour structure of the mixing
is subject to important constraints from the requirement of explaining the correct light
neutrino mass matrix. In fact, this flavour structure can be reconstructed from the light
neutrino masses and mixings [72], except for an overall scale θ:

θα = θ√
2

(√
1 + ρ U∗

α3 +
√
1− ρ U∗

α2

)
for Normal Ordering (NO), (3.4)

θα = θ√
2

(√
1 + ρ U∗

α2 +
√
1− ρ U∗

α1

)
for Inverted Ordering (IO), (3.5)

where

ρ =

√
∆m2

31 −
√
∆m2

21√
∆m2

31 +
√
∆m2

21

for NO, (3.6)

ρ =

√
∆m2

23 −
√
∆m2

23 −∆m2
21√

∆m2
23 +

√
∆m2

23 −∆m2
21

for IO, (3.7)

with ∆m2
ij = m2

i − m2
j and where we use for U the standard PDG parametrization with a

single Majorana phase, as one neutrino remains massless.
From oscillation experiments the values of the two light neutrino mass splittings and

the three mixing angles have been determined with good accuracy. However, the Dirac
CP phase and Majorana phases are still mostly unconstrained. As such, in our analysis
we will fix the mass splittings and the mixing angles to their best-fit values as reported
by NuFIT [106], while treating the Dirac phase δ, the Majorana phase ϕ and the overall
magnitude6 of the mixing θ as free parameters for our fit. All in all, this scenario is fully
described by 3 free parameters.

6Actually θ is a complex parameter. However, only its modulus is relevant for our analysis, as its phase
only appears in lepton number violating processes, which are not studied in this work.
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Figure 2. Profiles from our global fit analysis of the minimal model with 2 RH neutrinos (2N-SS),
for NO (upper panels) and IO (lower panels). In each panel, we minimised over all the parameters
of the fit but the corresponding ηαα. The dashed green lines are obtained following Wilks’ theorem,
while the solid black lines are the result of calibrating the test statistic by bootstrapping it (see
appendix A).

The results of our statistical analysis for this 2N-SS setup are shown in figure 2, where
we plot the profiles for the diagonal entries of the η-matrix for the two neutrino mass
orderings. In each panel, the dashed green line is obtained following Wilks’ theorem, while
the solid black line is the result of calibrating our test statistic through the bootstrapping
procedure (see appendix A), since, given the strong correlations among the observables
implied by eqs. (3.4) and (3.5), the requirements for Wilks’ theorem to apply are not met.
Nevertheless, we find that in this case Wilks’ theorem still provides a good approximation.
Indeed, given the little freedom available to this rather constrained scenario, the bound
on the non-unitarity parameter θ mainly stems from the best constrained observable in
the fit, namely µ → eγ, and, neglecting the contributions of the other observables, the
requirements for Wilks’ theorem to apply are approximately met. However, we will see that
this is not the case for other, less constrained, scenarios.

The resulting 68% and 95%CL upper limits (or preferred intervals in some cases) are
summarised in table 4. Here and in all the RH neutrino scenarios under study, we also
provide the constraints derived for Tr [η], which in this simplest case amounts to θ2/2, as a
measurement of how large the total deviation from unitarity of the whole matrix is allowed
to be regardless of its particular flavour structure. Indeed, Tr [η] is an invariant under
changes of basis and, given that η is positive definite by construction, its trace corresponds
to the sum of its three eigenvalues.

It is interesting to note that in this scenario the results are rather different between
the profiles for normal and inverted orderings. Besides the different ranges for each ηαα,
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2N-SS Normal Ordering Inverted Ordering
68%CL 95%CL 68%CL 95%CL

ηee = |θe|2

2 6.4 · 10−6 9.4 · 10−6 [0.98, 4.4] · 10−4 5.5 · 10−4

ηµµ = |θµ|2

2 6.9 · 10−5 1.3 · 10−4 [0.20, 1.0] · 10−6 3.2 · 10−5

ηττ = |θτ |2

2 8.6 · 10−5 2.1 · 10−4 [0.94, 2.8] · 10−5 4.5 · 10−5

Tr [η] = |θ|2

2 1.6 · 10−4 2.9 · 10−4 [1.1, 4.8] · 10−4 6.0 · 10−4

|ηeµ| =

∣∣∣θeθ∗µ

∣∣∣
2 8.3 · 10−6 1.2 · 10−5 [0.37, 1.0] · 10−5 1.3 · 10−5

|ηeτ | =
|θeθ∗τ |
2 1.5 · 10−5 2.2 · 10−5 [0.25, 1.2] · 10−4 1.4 · 10−4

|ηµτ | =
|θµθ∗τ |
2 7.2 · 10−5 1.3 · 10−4 [0.38, 3.0] · 10−6 3.5 · 10−5

Table 4. Upper bounds (or preferred intervals) for the most minimal set-up with two heavy neutrinos
forming a single pseudo-Dirac pair (2N-SS), which are obtained from the bootstrapped profiles in
figure 2 and the equivalent ones (not-shown) for Tr [η] and the off-diagonal elements. Note that
these results directly apply to η and to (half of) the squared active-sterile mixings |θα|2. They can
also be easily translated to the α-parametrization, as detailed in the text.

as it can be seen in figure 2, we find a non-unitary best-fit point for IO, while this does
not happen for NO. This qualitative difference, which also conditions the different values
obtained for the allowed ranges, can be understood as an interplay between the preference
of the data and the constrained flavour structure of η in this model.

On the one hand, in table 1 a mild (∼ 1σ) preference for a non-zero ηee + ηµµ from
MW and s2

w can be seen, as well as an also mild (∼ 1σ) preference for ηee > ηµµ from the
LFU ratios. Furthermore, the CKM data strongly disfavors non-zero values of ηµµ, as they
can only worsen the Cabibbo anomaly, and there is also no preference for a non-zero ηττ .
On top of that, the strong cLFV bounds7 on the µ-e sector require either the electron or
the muon mixing to be very small. Combining all these aspects, we obtain that the data
prefers a non-zero ηee with suppressed ηµµ and ηττ . This is represented with a black star
in figure 3, where we display the possible flavour patterns for both normal and inverted
orderings and for the different scenarios under consideration.

On the other hand, the flavour structure of the 2N-SS is very restricted. It is determined
up to the mass ordering and the unknown phases δ and ϕ, and the resulting regions in flavour
space are shown as darker areas in figure 3. In particular, the NO case is characterised
by having a suppressed |θe| with respect to |θµ| and |θτ | (for all values of δ and ϕ), which
is precisely the opposite of what the data prefers. This is manifest in the figure, where

7Notice that in the 2N-SS we expect mixings to all three flavours, since all of them are proportional to
the overall scale θ. This implies that the cLFV rates cannot be avoided by turning just a single θα off, and
thus they are specially constraining for this 2N-SS scenario.
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Figure 3. Regions in the RH neutrino mixing flavour space consistent with current neutrino
oscillation data, fixing the mixing angles to their best fit values, and varying the phases and absolute
neutrino mass. The darker regions correspond to the minimal scenario with 2 RH neutrinos (2N-
SS) [107] described in section 3, while the lighter regions are for the next-to-minimal scenario with 3
RH neutrinos (3N-SS) [54] studied in section 4, where we include the cosmological upper bound
on neutrino masses. The black star corresponds to the best-fit point for the general neutrino case
(G-SS, see section 5), where the hole triangle is allowed, indicating the actual preference of the data
set given in table 1. Note that in the 2N-SS and 3N-SS, the axes correspond to the normalised
squared mixings since ηαα/Tr [η] = |θα|2/|θ|2.

the dark red region is far away from the data-preferred black star. Therefore, the NO has
the best fit-point at η = 0, with stronger bounds for ηee than for the other flavours. On
the contrary, the flavour structure of the IO case is such that, for certain values of the
phases, the mixing to the electron overcomes that of the muon and tau, and thus it can
accommodate better the preference of the data. We see it again from figure 3, as the dark
blue region approaches more to the black star. Consequently, the IO has a non-trivial
best-fit point, with a mild (∼ 1σ) preference for non-zero η, where the best-fit for ηµµ is
suppressed with respect to ηee and ηττ . Consistently, we find a ∆χ2 = 2.07 in favour of the
IO minimum with respect to the NO one.

Regarding the off-diagonal elements, the bound on |ηeµ| is completely dominated by the
corresponding cLFV bound. Conversely, the bounds on |ηeτ | and |ηµτ | are much stronger
than the bounds derived from their corresponding cLFV processes. This effect is related to
the saturation of the Schwarz inequality in eq. (1.7) and the strong correlations present in
the flavour structure of the 2N-SS: since all three mixings are proportional to a common
scale, this also implies |ηeµ| ∝ |ηeτ | ∝ |ηµτ | where the proportionality depends on the phases
δ and ϕ. Thus, the very strong bound on |ηeµ| also induces quite stringent bounds on |ηeτ |
and |ηµτ |.

It should be noted that, even though the Schwarz inequality is saturated and one can
reconstruct the off-diagonal elements from the diagonal ones, the bounds for the former

– 19 –



J
H
E
P
0
8
(
2
0
2
3
)
0
3
0

cannot be inferred from the latter. This is a consequence of the strong correlations imposed
by the cLFV constraints and of the fact that, in order to obtain each bound, the rest of the
parameters are profiled over. Therefore, it is not possible to saturate simultaneously all
bounds and it should be checked that all constraints are satisfied for a given mixing pattern.

As an alternative to η, a lower triangular parametrization [108, 109] has been shown to be
more convenient for the study of non-unitarity in the neutrino oscillation phenomenon [110]:

α =

α11 0 0
α21 α22 0
α31 α32 α33

 . (3.8)

These α parameters can be straightforwardly mapped to the η-matrix [110], thus our bounds
can be easily translated to this parametrization. In particular, at 95%CL we obtain:

NO: |I− α| <

9.4 · 10−6 0 0
2.4 · 10−5 1.3 · 10−4 0
4.4 · 10−5 2.6 · 10−4 2.1 · 10−4

 , (3.9)

IO: |I− α| <

5.5 · 10−4 0 0
2.6 · 10−5 3.2 · 10−5 0
2.8 · 10−4 7.0 · 10−5 4.5 · 10−5

 . (3.10)

4 Global fit bounds for the 3 neutrino case (3N-SS)

The scenario in the previous section with two heavy neutrinos is the most minimal set-up
to accommodate oscillation data, however it predicts the lightest neutrino to be massless.
While this is in agreement with current observations, the overall scale of neutrino masses
still remains unknown and, thus, it is perfectly possible that all light neutrinos are massive.
In that case, the minimum number of extra neutrinos needed to accommodate light neutrino
masses is three, in line with the three SM generations for all other fermions. In this section
we will investigate the bounds that may be derived in this scenario that we dub 3N-SS.

Similarly to the previous section, the only way in which sizeable mixing can be obtained
while keeping neutrino masses small and stable under radiative corrections is via a lepton
number protected Lagrangian. More precisely, in the basis (νL N c

R N ′c
R N ′′c

R)
T , the mass

matrix reads:

Mν =


0 Y v/

√
2 ϵ1Y ′v/

√
2 ϵ2Y ′′v/

√
2

Y T v/
√
2 µ1 M µ3

ϵ1Y ′T v/
√
2 M µ2 µ4

ϵ2Y ′′T v/
√
2 µ3 µ4 M ′

 , (4.1)

where ϵ1, ϵ2 ≪ 1 and the µi parameters are small compared with M, M ′. Assigning
Le = Lµ = Lτ = LN = −LN ′ = 1 and LN ′′ = 0, in the lepton number conserving limit two
heavy neutrinos arrange into a Dirac fermion with non-vanishing mixing with the active
neutrinos, while the third heavy neutrino behaves as a decoupled Majorana state. Therefore,
the structure of the η matrix is exactly the same as in eq. (3.3) and thus the Schwarz
inequality is again saturated, which requires the inclusion of cLFV bounds in combination
with the LFC observables in our global fit.
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However, the relations between the mixings to the active flavours are different from the
ones present in the 2N-SS, as the increased freedom in the parameter space implies different
(looser) correlations imposed by correctly reproducing the observed neutrino mass matrix.
In particular, it has been shown in [73] that the mixing to one flavour is determined by the
other two and the entries of the light neutrino mass matrix. For instance, if one chooses to
reconstruct the τ mixing, then:

θτ ≃ 1
m2

eµ − meemµµ

(
θe (meµmµτ − meτ mµµ) + θµ(meµmeτ − mµτ mee)

+
√

θ2
emµµ − 2θeθµmeµ + θ2

µmee ×

×
√

m2
eτ mµµ − 2meµmeτ mµτ + meem2

µτ + m2
eµmττ − meemµµmττ

)
,

(4.2)

where mαβ ≡ (mν)αβ =
(
Umdiag UT

)
αβ

are the entries of the light neutrino mass matrix.
In our analysis, we fix the mass splittings and the mixing angles to their best-fit values,

leaving the Dirac phase δ, the two Majorana phases ϕ1 and ϕ2, and the lightest neutrino mass
mlightest as the only free parameters in mν . Additionally, we have also as free parameters the
mixings θe and θµ, both in modulus and phase. In total, this setup is characterised by 8 free
parameters. Among these parameters, the only one that is constrained by experimental data
is mlightest, which is currently bounded from kinematical searches at KATRIN [111] and,
more strongly, from cosmology [112]. We provide our results considering the more stringent
bound from Planck of ∑mν < 0.12 eV (95%CL). Nevertheless, we have also performed the
analysis using the looser constraint from KATRIN and obtained very similar results.

The results of the analysis are shown in figure 4 and table 5. Given the large dimen-
sionality of the parameter space of this setup, the bootstrapping procedure we followed
in the 2N-SS is no longer tractable, as the number of points one has to calibrate grows
exponentially with the number of free parameters. As a consequence, we are forced to
perform an approximated bootstrap procedure, which we will dub Profiled Bootstrap, and
whose details can be found in appendix A.

We find that assuming Wilks’ theorem does not deviate much from the results of
the approximate bootstrapping, with the main differences usually appearing close to the
physical border at ηαα = 0. For the ηee profile, we find a non-zero best-fit value and a
slight enhancement of the CL with respect to Wilks’ near ηee = 0 due to boundary effects
expected [113]. For the ηµµ profile, we find a more complex behaviour. For lower CL, since
the data prefers ηee ̸= 0, the ηµµ profile is dominated by the cLFV bound, which leads to
a good agreement with Wilks’ theorem and to a very stringent 68% bound. However, at
higher CL, when ηee is allowed to vanish by the rest of the observables, µ → eγ ceases to
be a relevant bound, and ηµµ is instead constrained by the LFC observables, which are
looser. As a result, the profile develops a plateau-like feature at the same CL at which
ηee = 0. Furthermore, we observe an enhancement of the CL in the plateau region, with
respect to Wilks’ expectation coincident with the same enhancement for ηee = 0 which
causes the plateau.
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Figure 4. Same as figure 2 but for the scenario with 3 RH neutrinos (3N-SS). In this case, however,
the calibration of the test statistic is done following the profiled bootstrapping procedure described
in appendix A. We have used the Planck upper bound [112] on neutrino masses, but similar results
are obtained using the KATRIN bound [111]. Notice the different (log)scale for ηµµ.

3N-SS Normal Ordering Inverted Ordering
68%CL 95%CL 68%CL 95%CL

ηee = |θe|2

2 [0.28, 0.99] · 10−3 1.3 · 10−3 [0.31, 1.0] · 10−3 1.4 · 10−3

ηµµ = |θµ|2

2 1.3 · 10−7 1.1 · 10−5 1.2 · 10−7 1.0 · 10−5

ηττ = |θτ |2

2 [0.3, 3.9] · 10−4 1.0 · 10−3 1.7 · 10−4 8.1 · 10−4

Tr [η] = |θ|2

2 [0.35, 1.3] · 10−3 1.9 · 10−3 [0.33, 1.0] · 10−3 1.5 · 10−3

|ηeµ| =

∣∣∣θeθ∗µ

∣∣∣
2 8.5 · 10−6 1.2 · 10−5 8.5 · 10−6 1.2 · 10−5

|ηeτ | =
|θeθ∗τ |
2 [1.3, 5.1] · 10−4 9.0 · 10−4 3.3 · 10−4 8.0 · 10−4

|ηµτ | =
|θµθ∗τ |
2 5.0 · 10−6 5.7 · 10−5 3.8 · 10−6 1.8 · 10−5

Table 5. Upper bounds (or preferred intervals) for the 3N-SS scenario, considering the cosmological
upper bound on neutrino masses. The results for the diagonal entries of η are obtained from the
profiled bootstrap in figure 4, while the off-diagonal ones follow Wilks’ theorem, as explained in
appendix A. Similar results are obtained when considering instead the KATRIN upper bound.
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Contrary to the 2N-SS case, the results do not depend significantly on the neutrino
mass ordering. In particular, we find a non-zero best-fit now for both mass orderings,
since the additional freedom with respect to the 2N-SS setup allows for accommodating
oscillation data with larger ηee also for NO. This can be seen in figure 3, where the lighter
regions cover a much bigger area of the triangle for both NO and IO. The only substantial
difference is that, for NO, there is a slight preference (1− 2σ) for a non-zero ηττ . This is a
result of the correlation between the mixings present in the 3N-SS. As the best-fit point
stands at ηee ̸= 0 and ηµµ = 0, given the correlation in eq. (4.2) this also induces a best-fit
point for ηττ ̸= 0 in the NO case. However, this does not happen for IO, since its flavour
structure allows for a suppressed ηττ even when ηee ̸= 0 (see figure 3). Consequently, since
the data prefers a suppressed ηττ , the IO case yields again a slightly better fit with respect
to the NO, although less pronounced compared to the 2N-SS scenario. More precisely, we
find a ∆χ2 = 0.5 in favor of the IO best-fit with respect to the NO one.

Regarding the bounds on the off-diagonal entries, it is interesting to compare the global
bounds with those imposed directly by cLFV observables8 following eq. (2.28). We see that
the constraints on |ηeµ| are very similar to the ones derived directly from cLFV processes,
which reflects that in the µ-e sector the test statistics is dominated by the strong bounds on
µ → e transitions. In the e-τ sector, we find a mild (1− 2σ) preference for a non-zero |ηeτ |,
which is induced from the correlation given in eq. (4.2) that implies a non-zero |θτ | for a
non-zero |θe|. This effect is softer for IO, since, as explained previously, its flavour structure
allows for a suppressed |θτ | even when |θe| is non-zero. Nevertheless, when focusing on the
95% C.L. upper limits, we see that the bounds in both the e-τ and µ-τ sectors are much
stronger than those derived from the corresponding cLFV processes. This is especially true
for |ηµτ |, which can be understood in terms of the ηµµ profiles in figure 4: as previously
stated, ηµµ is constrained to be very small up to relatively high CL due to the preference
for a non-zero ηee and the very strong cLFV bound on |ηeµ| =

√
ηeeηµµ. This tight bound

on ηµµ also induces a strong bound on |ηµτ | =
√

ηµµηττ . Note that this interplay is a
consequence of the saturation of the Schwarz inequality.

Finally, the bounds shown in table 5 can be again translated to the lower-triangular α

parametrization obtaining, at 95%CL:

NO: |I− α| <

1.3 · 10−3 0 0
2.4 · 10−5 1.1 · 10−5 0
1.8 · 10−3 1.1 · 10−4 1.0 · 10−3

 , (4.3)

IO: |I− α| <

1.4 · 10−3 0 0
2.4 · 10−5 1.0 · 10−5 0
1.6 · 10−3 3.6 · 10−5 8.1 · 10−4

 . (4.4)

5 Global fit bounds for the general neutrino case (G-SS)

When the seesaw scenario features more than three neutrinos, the dim-5 and 6 operators are
in general independent (see e.g. refs. [58, 114–116]) and therefore there are no correlations

8These bounds correspond to the LFV bound column in table 6.

– 23 –



J
H
E
P
0
8
(
2
0
2
3
)
0
3
0

0.0 0.3 0.6 0.9 1.2 1.5
ηee

10−2

10−1

100

1-
C

L

×10−3

68%

95%

Bootstrap
Wilks

0.00 0.05 0.10 0.15 0.20 0.25
ηµµ

10−2

10−1

100

×10−3
0.0 0.2 0.4 0.6 0.8 1.0 1.2

ηττ

10−2

10−1

100

×10−3

Figure 5. Same as figure 2 but for the general neutrino scenario with an arbitrary number of RH
neutrinos (G-SS).

in the flavour structure of the mixing coming from the correct reproduction of neutrino
masses and mixings. The Schwarz inequality will in general not be saturated either, in
contrast to the previous scenarios. Thus, the 6 elements of the η-matrix are completely
independent and cLFV observables cannot be used to constrain the LFC ones. Therefore,
we can extract the bounds on the diagonal elements ηαα via a global fit to the observables
of table 1 and, separately, extract the bounds on the off-diagonal entries from the bounds
on the cLFV observables using eq. (2.28). Additionally, the Schwarz inequality given by
eq. (1.7) also allows us to derive constraints on the off-diagonal elements from the bounds
on the diagonal ones.

The results of our global fit are shown in figure 5 and table 6. As in previous sections,
figure 5 shows the profiles obtained following Wilks’ theorem and those obtained after
calibrating the test statistic. Note that, despite the absence of correlations induced by
reproducing the observed light neutrino mass and mixing, the ηαα ≥ 0 condition still holds,
as required by eq. (1.5), which imposes a physical boundary and violates the requirements
for Wilks’ theorem to apply. Therefore, we could expect that calibration effects will be more
important close to the ηαα = 0 border. Indeed, this can be clearly appreciated in the ηee

profile, where the most substantial deviations appear near the physical boundary at zero.
As we move away from ηee = 0, the two profiles converge, as naively expected. However,
when moving away from the boundary, the ηµµ and ηττ profiles do not seem to converge to
Wilks’. This is because ηµµ and ηττ have a best-fit at zero and, thus, comparatively larger
values would be required in order to recover the Wilks’ behaviour.

The profiles show a slight preference (≈ 2σ) for a non-zero value of ηee, whereas ηµµ

has quite stringent bounds. This is again driven by the Cabibbo anomaly in the CKM
sector tightly constraining the size of ηµµ and several observables pushing for a non-zero
ηee. Additionally, ηττ is less tightly constrained than ηµµ, mainly because the τ sector
is constrained by fewer observables and does not contribute to the CKM anomaly. The
preference for a non-zero ηee induces also a preference for a non-zero Tr [η].

Regarding the off-diagonal elements, we show their corresponding profiles in appendix A,
and collect their bounds in table 6. The second and third columns collect the bounds from
the global fit to LFC observables including the Schwarz inequality. In the fourth and fith
columns we show the constraints on the off-diagonal elements directly imposed by cLFV
processes. We have highlighted in bold the strongest bound for each sector. As can be seen,
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G-SS LFC Bound LFV Bound
68%CL 95%CL 68%CL 95%CL

ηee [0.33, 1.0] · 10−3 [0.081, 1.4] · 10−3 - -

ηµµ 1.5 · 10−5 1.4 · 10−4 - -

ηττ 1.6 · 10−4 8.9 · 10−4 - -

Tr [η] [0.28, 1.2] · 10−3 2.1 · 10−3 - -

|ηeµ| 1.4 · 10−4 3.4 · 10−4 8.4 · 10−6 1.2 · 10−5

|ηeτ | 4.2 · 10−4 8.8 · 10−4 5.7 · 10−3 8.1 · 10−3

|ηµτ | 9.4 · 10−6 1.8 · 10−4 6.6 · 10−3 9.4 · 10−3

Table 6. Upper bounds (or preferred intervals) for the G-SS. The LFC bounds are obtained from
the global fit analysis to the observables in table 1, in particular from the bootstrapped profiles in
figure 5 (see also figure 7 in the appendix). For off-diagonal ηαβ elements, we also derive limits from
cLFV transitions and highlight the strongest bound for each flavour sector.

the cLFV bound is the most constraining in the e-µ sector due to the stringent upper limits
on µ → e transitions. Conversely, in the e-τ and µ-τ sectors, the indirect LFC bounds from
the Schwarz inequality clearly dominate. Notice the very strong 68%CL bound on |ηµτ |.
This is a consequence of the strong border effects that appear since both ηµµ and ηττ have
their best-fit at 0. As expected, the 95%CL bound is, in turn, much less tight.

As before, we can translate the bounds to the α parametrization, which at 95%CL reads

|I− α| =

[0.081, 1.4] · 10−3 0 0
< 2.4 · 10−5 < 1.4 · 10−4 0
< 1.8 · 10−3 < 3.6 · 10−4 < 8.9 · 10−4

 . (5.1)

Finally, also in this more general setup the η parametrization can be connected to the
mixing between active and RH neutrinos, as given in eq. (1.5). Consequently, the bounds
in table 6 can be understood as bounds on the total mixings to a given flavour, defined as
the sum of (squared) mixings of each RH neutrinos to a given flavour:

ηαα = 1
2 |Θα|2 , with |Θα|2 ≡

n∑
k=1

|Θαk|2 . (5.2)

Thus, the bounds on these total mixings Θα can be compared to those from other experi-
mental facilities directly searching for heavy neutrinos (see e.g. refs. [13, 14]), bearing in
mind that they depend on the RH neutrino mass scale and apply to lighter scales than the
ones considered here. The only caveat is that most of these experimental bounds for a given
flavour are obtained switching-off the mixing with the other flavours, while we marginalised
over them. Nevertheless, we have verified that considering the simplified scenario in which
there is mixing exclusively with one given flavour leads to very similar results to those
in table 6.
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6 Global fit bounds for generic unitarity violation (GUV)

Finally, we consider the case in which the η-matrix is not assumed to be positive-definite.
Thus, its diagonal entries are allowed to be also negative while the off-diagonal parameters
are not required to satisfy the Schwarz inequality. This generic unitarity violation (GUV)
cannot be realised in a pure Type-I Seesaw mechanism and a more elaborate particle content,
with different contributions to non-unitarity would be required [55]. This extra freedom
can lead to rather different results from the G-SS setup due to the Cabibbo anomaly being
solved by negative values of ηµµ, which are unattainable for a Type-I Seesaw but are possible
for an unconstrained η-matrix [55].

From the point of view of the analysis, the LFC and LFV fits can be decoupled as
the diagonal and off-diagonal elements are not correlated, similarly to the G-SS. However,
contrary to the G-SS case, the off-diagonal entries can only be constrained from LFV
bounds, as the Schwarz inequality no longer holds. Furthermore, in the GUV setup there
are no physical boundaries and the ηαα can cover both positive and negative values. This
means that Wilks’ theorem can be safely assumed, as the violations present in the G-SS are
no longer an issue.

It should be noted that, contrary to the previous cases, in this scenario we have adopted
an agnostic stance on the kind of new physics responsible for non-unitarity. As such,
the extra degrees of freedom that may contribute to the loop level cLFV observables are
unknown. We thus consider exclusively the contribution of the light neutrinos to the cLFV
processes in order to obtain a bound on |ηαβ |, which assumes no substantial cancellations
with the contributions from possible new particles. In particular, the contribution of only
the light neutrinos to radiative decays is:

BR(ℓα → ℓβγ) = 25α

6π

∣∣ηαβ

∣∣2 , (6.1)

as opposed to eq. (2.28) which contains also the heavy neutrino contributions. Since we are
neglecting the contributions from the new particles, the off-diagonal bounds we will quote
using eq. (6.1) are only orientative and model-dependent.

We perform our statistical analysis for the LFC observables leaving the sign of ηαα

unconstrained. Remarkably, a much better fit to the data than in the G-SS is found. Indeed,
while the G-SS improves the fit with respect to the SM by ∆χ2 = 3.75, the GUV setup
improves upon the SM fit by ∆χ2 = 11.07. As previously stated, this is mainly due to the
fact that the GUV scenario can fit the Cabibbo anomaly, whereas the G-SS cannot.

The resulting profiles are shown in figure 6, where bootstrapping provides no deviation
from Wilks’ theorem, as expected. Apart from the 2σ preference for a non-zero ηee, which
was already present in the G-SS, we also find a 2σ preference for ηµµ < 0 induced by the
Cabibbo anomaly. Conversely, we do not find any significant preference for ηττ different
from zero. The corresponding preferred intervals and upper bounds are collected in table 7.

Finally, as in the previous cases, these bounds can be translated to the α parametrization.
At 95%CL, we have:

1− α11 ∈ [0.20, 1.65] · 10−3 , |α21| < 1.4 · 10−5 ,
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Figure 6. Same as figure 2 but for the generic unitarity violation scenario (GUV), where the
η-matrix can also take negative values and eq. (1.7) does not need to be satisfied.

GUV LFC Bound LFV Bound
68%CL 95%CL 68%CL 95%CL

ηee [0.56, 1.29] · 10−3 [0.20, 1.65] · 10−3 |ηeµ| 5.0 · 10−6 7.2 · 10−6

ηµµ [−8.2,−3.3] · 10−4 [−1.1,−0.088] · 10−3 |ηeτ | 3.4 · 10−3 4.9 · 10−3

ηττ [−2.2,−0.38] · 10−3 [−3.1, 0.56] · 10−3 |ηµτ | 4.0 · 10−3 5.6 · 10−3

Table 7. Upper bounds (or preferred intervals) for the GUV.

1− α22 ∈ [−1.1,−0.088] · 10−3 , |α31| < 9.8 · 10−3 ,

1− α33 ∈ [−3.1, 0.56] · 10−3 , |α32| < 1.1 · 10−2 . (6.2)

7 Discussion and conclusions

In this work we have updated and improved upon present constraints on the unitarity of
the leptonic mixing matrix and the mixing of heavy right-handed neutrinos with the SM
active flavours with a global fit to flavour and electroweak precision observables. Besides
updating all the experimental constraints from the different observables under consideration,
compared to previous studies we have improved the analysis in several additional ways. In
particular, given the expected deviations from Wilks’ theorem, we have explicitly calibrated
our test statistics by bootstrapping in order to properly estimate the significance of the
constraints placed. We have also explicitly computed the SM prediction for the different
observables in terms of the input data instead of using the results of the available electroweak
fits, as has been done in the past, so as to make the global fit fully consistent.

We have provided results for four distinct scenarios. The first three correspond to
leptonic mixing unitarity deviations induced by scenarios with 2, 3 or a higher arbitrary
number of extra right-handed neutrinos, dubbed 2N-SS, 3N-SS, and G-SS, respectively. The
results are summarised in tables 4, 5, and 6. The main difference among these scenarios
is the level of correlation between the parameters that describe the unitarity deviations,
provided that the correct pattern of neutrino masses and mixings is also recovered. The
deviations from unitarity are encoded in all generality through a small Hermitian matrix
η. This matrix corresponds to the coefficient of the only d = 6 operator obtained at tree
level upon integrating out the heavy neutrinos, and is moreover directly connected with the
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square of their mixing with the active neutrino flavours. Additionally, we also considered
the possibility of lepton mixing unitarity deviations not necessarily induced by the presence
of additional right-handed neutrinos, whose results are collected in table 7. This scenario
removes the requirement that they are described by a positive definite matrix η. For all
the scenarios considered, we also report our results in an alternative parametrization of
unitarity deviations through a lower triangular matrix, more appropriate when studying
the neutrino oscillation phenomenon.

We derived our results from a global fit to the observables summarised in table 1. Thus,
the set of bounds derived is valid as long as the new degrees of freedom are heavier than
the mass of the Z. For lighter new particles, some of the LEP constraints at the Z pole
are lost, but the remaining observables apply down to the mass of the τ . Notice that we
did not include the latest CDF-II measurement on MW among our observables since it is
in significant tension (above 5σ) with the rest of measurements with the same parametric
dependence on η (see section 2.5).

The strongest constraint on unitarity deviations comes from the very stringent bound
from µ → e transitions. In the 2N-SS scenario this observable dominates the constraints on
essentially all elements, given the little freedom and strong correlations implied by having
only 2 right-handed neutrinos reproducing the measured pattern of light neutrino masses
and mixings. In the 3N-SS, µ → e processes instead forbid mixing to both electrons and
muons simultaneously, while in the more general scenarios they provide strong constraints
on the ηeµ element. Conversely, constraints from τ → e and τ → µ transitions are generally
subleading and stronger bounds are implied through the LFC observables. Nevertheless,
when unitarity deviations are not sourced by right-handed neutrinos exclusively, both sets
of constraints would, a priori, be uncorrelated and cLFV observables are the only bounds
applying on ηeτ and ηµτ .

Regarding the lepton flavour conserving observables we find the following behaviours:
due to the existing tension in the unitarity test of the first row of the CKM (the so-called
Cabibbo anomaly), ηµµ > 0 (or equivalently right-handed neutrino mixing with muons
θµ ̸= 0, if that is the source of η) is disfavoured, since its presence worsens the anomaly.
Moreover, even though LFU observables are generally in good agreement with the SM,
there is a mild preference (∼ 1σ) for ηee > ηµµ, both in Rπ

µe and Rτ
µe. On the other hand,

the measured values of s2
eff and MW show a slight preference (∼ 1-2σ) for a deviation from

unitarity either in the electron or muon sector.
The combination of these effects leads to constraints on all the η parameters ranging

between 10−3 and 10−5 at 2σ for both the 3N-SS and G-SS, with the exception of a
preference for non-unitarity at the level of ηee ∼ 10−3 at around 2σ (see figures 4 and 5).
This implies a 2σ preference for a mixing of the heavy neutrinos with the electron at the
|θe| ∼ 10−2 level. Conversely, unitarity deviations are very disfavoured in the case of the
muons due to the Cabibbo anomaly and the LFU constraints. Finally, the tau sector is
almost exclusively constrained by the Z-pole observables Γinv, ΓZ and σ0

had which show no
preference for non-unitarity.

The main difference regarding the 2N-SS is that stronger bounds on the η elements,
ranging approximately between 10−4 and 10−5 at 2σ, are found given its more constrained
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structure. Indeed, for normal neutrino mass ordering there is not enough freedom to fit
the preference for a dominant mixing with the electron flavour. Thus, slightly stronger
constraints and no preference for unitarity violations are found with respect to the inverted
ordering case. Conversely, for inverted ordering (or when more than 2 right-handed neutrinos
are considered), the constraints implied by the measured pattern of light neutrino masses
and mixings are compatible with a dominant role of the mixing to the electron flavour, as
data prefers. Thus, these scenarios provide a somewhat better fit with a preference for
unitarity violation in the electron sector.

Finally, if the unitarity deviations are not assumed to be positive definite (as required
when they are solely induced by right-handed neutrinos), negative values in the muon
sector may actually solve the Cabibbo anomaly. Thus, in this most general, but also more
complex, extension a significantly better fit is found with a preference for unitarity deviations
(ηαα ̸= 0) at the 2σ level both in the electron and muon sectors and with opposite signs.
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A Details of the analysis

Wilks’ theorem is a common assumption in many statistical analyses. It establishes that
the test statistic on the form

∆χ2 = χ2(θ)−min
θ′

χ2(θ′) , (A.1)

where
χ2(θ) =

∑
d∈D

(
µd(θ)− µ̄d

σd

)2
, (A.2)

θ is a set of model parameters, D the set of data points, µd(θ) the expected data for d given
θ, µ̄d the observed data, and σ2

d the variance in µd(θ), is everywhere distributed according
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to a χ2-distribution, with a number of degrees of freedom that can be derived from the
total number of free parameters. When the theorem applies, it can be used to directly map
the test statistic to a confidence level.

However, for the theorem to hold, several assumptions on the behaviour of the test
statistic have to be made. One of the most important assumptions, which is generally
violated in our analysis, is that the expectation µd(θ) for the observables included in the fit
must describe a hyperplane in the space of possible observations as one varies the model
parameters θ. A straight-forward source of violation of Wilks’ theorem assumptions is that
our parameters have a physical boundary (ηαα ≥ 0) in the 2N-SS, 3N-SS and G-SS scenarios,
and therefore so will our observables. Moreover, we will also find violations when including
LFV observables, since they depend quadratically on η unlike the LFC ones of table 1,
which depend linearly on η, thereby leading to a curved expected region of the observations.
Additionally, when the observables depend on cyclic parameters, such as phases, they will
describe compact trajectories in the space of possible observations, providing an additional
source of violation of Wilks’ theorem.

Our analysis is therefore plagued with potential deviations from Wilks’ theorem, and
we cannot rely on it for extracting confidence intervals. Instead, the test statistic must be
calibrated at each point of parameter space, in order to know how it is distributed and
associate the resulting value of ∆χ2 to a confidence level. This procedure is commonly
referred to as bootstrapping. We describe the bootstrapping procedure of our analysis below.

We start by computing the χ2(ηαβ) where ηαβ are the parameters of the model assuming
Gaussian uncertainties for all the experimental values of the observables Oi reported in
table 1 and taking into account correlations among them when relevant:

χ2(ηαβ) =
∑
i,j

(
Oi − Ei(ηαβ)

)
σi

corrij

(
Oj − Ej(ηαβ)

)
σj

, (A.3)

where Ei(ηαβ) is the expectation of Oi given the model parameters ηαβ as given by the first
two columns in table 1, σi is the corresponding uncertainty reported together with Oi in the
third column of table 1 and corrij is the correlation matrix among the different observables.

Since we are interested on showing the CL profiles for a particular parameter of interest,
for definiteness ηee but the procedure would be the same for any other parameter, we
choose the profiled χ2 over all the parameters ηαβ except for ηee itself as our test statistic.
Denoting the other (nuisance) parameters ν⃗ = ηαβ with αβ ̸= ee, then the profiled χ2 is:

χ̂2(ηee) ≡ min
ν⃗

χ2(ηee, ν⃗) . (A.4)

If Wilks’ theorem holds, then the significance with which a point η0
ee may be excluded by

the observables Oi will be given by the square root of:

∆χ2(η0
ee) = χ̂2(η0

ee)− χ2
min , (A.5)

where χ2
min is the minimum value of the test statistic, since χ̂2(ηee) would follow a χ2 distri-

bution with 1 degree of freedom. Note that only the value of η0
ee is relevant independently

of in which point of nuisance parameter space ν⃗ the statement is made, as Wilks’ theorem
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guarantees that the test statistic of eq. (A.5) is χ2-distributed (with one degree of freedom)
in all the parameter space. However, in the presence of violations of Wilks’ theorem, there
is no reason why this should be the case and we cannot assume a χ2-distribution for the
test statistic. Moreover, the distribution of the test statistic may be different in different
points of parameter space.

Instead, in order to claim an exclusion confidence level for η0
ee, we need to consider all

points in the ν⃗ parameter space, calibrate the test statistic’s distribution in each of these
points, and then compare each of these calibrated distributions with the actual value ∆χ2

from eq. (A.5) in order to extract a confidence level. The minimum of these confidence
levels would then represent the significance of the exclusion of η0

ee regardless of η⃗.
We therefore implement the following bootstrap procedure:

1. The values of the parameter of interest for which we want to quote a confidence level
are fixed, {ηi

ee}n
i=1. For each of those values, we consider a grid of points in ν⃗ space.

2. For each of the ηi
ee, we consider the different ν⃗ and compute the corresponding

predictions for the observables of the fit.

3. Using the predictions as the central value, we generate pseudo-data for the observables
by drawing from a Gaussian distribution.

4. For each of the sampled sets of pseudo-data, we compute the corresponding value of
the test statistic ∆χ2(ηi

ee).

Repeating the generation of pseudo-data and consequent computation of the test statistic
many times results in a large sample of the test statistic distribution. A confidence level
is then computed by comparing the real data with this distribution, the CL simply being
the percentage of times that ∆χ2(ηi

ee) of the pseudo-data sets are smaller than the value
computed for the real data. Repeating this procedure for all ν⃗ points for a certain ηi

ee value
and then picking the minimum CL, we can finally associate an exclusion level to ηi

ee.
Since we need to generate a large amount of pseudo-data over a grid of points in

parameter space, the number of points required grows exponentially with the number of
parameters. Moreover, since at each point of the grid many numerical minimizations of
the test statistic are required in order to reconstruct its distribution, the computational
cost of this procedure quickly becomes unfeasible. Nevertheless, for the G-SS and 2N-SS
scenarios, this procedure is still computationally tractable, since their parameter spaces are
three-dimensional. However, in the case of the 3N-SS, characterised by 8 free parameters,
this is no longer the case.

We have therefore opted for an approximation to the bootstrap procedure for the
3N-SS scenario, which we dub Profiled Bootstrap. As its name suggests, it consists of only
performing the calibration in the points that profile the test statistic along the direction of
some parameter of interest ηee. As such, for each value ηi

ee, instead of considering a grid of
points in nuisance parameter space ν⃗, we will only consider the point:

ˆ⃗ν(ηi
ee) ≡ argmin

ν⃗
χ2(ηi

ee, ν⃗) . (A.6)
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Figure 7. Comparison between the bootstrap (solid black) and profiled bootstrap (dashed black)
for the G-SS case. We also show the expectations of Wilks’ theorem (dashed green) for reference.
In general we see quite good agreement between both procedures for the diagonal elements in the
upper panels, but not for the off-diagonal combinations in the lower panels.

We are thus reducing the task of exploring a grid of points in ν⃗ space to just a single point.
The rest of the procedure follows steps 2–4 as before.

The requirement that needs to be satisfied in order for the profiled bootstrap to be
an acceptable approximation to the complete bootstrap is that the point ˆ⃗ν(ηi

ee) needs to
be close to the point in ν⃗ space that yields the minimum CL for a fixed ηi

ee. While this
can seem to intuitively always be the case, there may be scenarios in which points in the
parameter space with a value of the test statistic far from its minimum may yield a smaller
CL if the distribution of the test statistic leans toward even larger values in that point
of the parameter space. We have thus compared the original bootstrap and the profiled
bootstrap in the G-SS case, which is a scenario in which both procedures are tractable, to
test its accuracy. The results are shown in the upper panels of figure 7 where we can see
that, in general, both the solid and dashed black lines are in good agreement. The reason
why this behaviour is expected to also hold for the 3N-SS is that both the G-SS and 3N-SS
showcase very similar freedom when it comes to fitting the data: even though the 3N-SS
case presents non trivial correlations between the ηαα parameters (see eq. (4.2)), they do
not strongly constrain the flavour pattern,9 as it can be seen in figure 3.

However, while the agreement between these two procedures is good for the profiles
of the diagonal elements ηαα, this is no longer the case for the off-diagonal combinations

9This is not the case of the 2N-SS, which showcases a quite predictive flavour pattern. However, it should
be noted the flavour pattern of the 3N-SS becomes more predictive for mlightest values much smaller than
the existing bounds [54].
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√
ηααηββ, as can be seen in the lower panels of figure 7. Therefore, assuming the same

discrepancy will be present for the 3N-SS, we adopted a more conservative approach and
the off-diagonal bounds quoted in table 5 are extracted assuming Wilks’ theorem, which
provides the weaker constraint between the two options. Note that the latter only applies
for the 3N-SS, since in the 2N-SS and G-SS scenarios we are able to follow the full bootstrap
procedure also for the off-diagonal elements.

B About cancellations in the cLFV rates

In section 2.6 we neglected potential differences between the masses of all heavy neutrinos,
so we could simplify the discussion of cLFV transitions. The bounds we derived after
including these rates should still apply to more generic scenarios, nevertheless in principle
having several mass scales could lead to potential cancellations in some of the cLFV rates,
as advocated in ref. [105]. We devote this appendix to such a discussion.

First of all, let us emphasise that this discussion does not apply to the minimal scenarios
in sections 3 and 4, where the Schwarz inequality in eq. (1.7) is saturated, meaning that the
cLFV bounds must be included in our global fit and that they impose bounds also for the
diagonal entries of the η-matrix. The reason is that there is only a single relevant heavy
scale and, moreover, the flavour mixing pattern is quite defined by oscillation data. Thus,
there is not enough freedom to accommodate the potential cancellations we discuss here,
and the bounds derived for those scenarios are robust.

The question about potential cancellations in the cLFV rates becomes relevant for
models with more heavy neutrinos, for which the general bounds in section 5 should be
respected, and when having several heavy neutrino mass scales. In such a scenario, and
taking the radiative decays as an example, we have

Γ(ℓα → ℓβγ) ∝
∣∣∣∣∣∑

k

ΘαkΘ∗
βk Fγ

(
M2

Nk
/M2

W

)∣∣∣∣∣
2

, (B.1)

where the sum goes over all the heavy neutrinos, and the missing factors and explicit form
of the loop-function Fγ can be found for instance in ref. [38].

If all heavy neutrinos are degenerate or, more generally, if the value of Fγ

(
M2

Nk
/M2

W

)
is

common for all contributions, the sum of ΘαkΘ∗
βk gives the ηαβ dependence in eq. (1.5). Oth-

erwise, additional dependence on other parameters beyond ηαβ will be present, potentially
even leading to a suppression of the radiative decay for non-vanishing ηαβ. Nevertheless,
the loop function monotonically increases from 1/8 to 1/2 as the heavy neutrino mass varies
from MW to infinity. Thus, deviations from a constant value for Fγ

(
M2

Nk
/M2

W

)
cannot be

large. Furthermore, a cancellation requires opposite-sign contributions from the mixing
terms ΘαkΘ∗

βk, which would also (partially) suppress ηαβ. Therefore, having a large |ηαβ |
with suppressed ℓα → ℓβγ is possible only for rather large ΘαkΘ∗

βk mixings and for very
specific values of the heavy neutrino masses, so that is only a partial cancellation in |ηαβ |
but the values of Fγ are such that the radiative decays are strongly suppressed.

Furthermore, this kind of configurations would lead to a numerical cancellation only
for the radiative decays, but in general they will not suppress other cLFV observables such
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as the 3-body decays or µ − e conversion in nuclei, which can actually be more restrictive,
as we have seen in section 2.6. While adding more neutrinos enhances the number of
parameters and the freedom to choose very specific values of mixings and masses so that all
the cLFV channels are suppressed (but not the respective |ηαβ |), this seems an extremely
unlikely configuration.

Nevertheless, to account also for this possibility, our results for the G-SS in section 5
are given considering separately the lepton flavour conserving and violating channels, see
table 6. While for |ηeµ| the bounds from the cLFV observables are stronger, they may be
regarded as more model dependent, as discussed above. Conversely, LFC bounds, which are
also the most stringent for |ηeτ | and |ηµτ | cannot be avoided by these kind of cancellations.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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