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1 Introduction

The physics of “jet quenching” — a rather general concept which encompasses the ensemble
of the modifications suffered by an energetic jet or hadron which propagates through
a quark-gluon plasma — represents one of our main sources of information about the
properties of the dense QCD medium created in the intermediate stages of ultrarelativistic
heavy-ion collisions at RHIC and the LHC [1–3]. The theory of jet quenching was originally
developed for a limited set of phenomena — collisional transverse momentum broadening
and medium-induced radiative energy loss —, for a relatively simple “hard probe” (an
energetic parton), and for a weakly-coupled plasma in thermal equilibrium. More recently,
the theory and phenomenology of jet quenching have progressively been extended to genuine
jets (including vacuum-like and medium-induced parton cascades), to more complex aspects
of the jet-medium interactions, like colour decoherence or medium back-reaction, and to a
plasma which is far away from thermal equilibrium and might be even strongly coupled.
At the same time, the spectrum of associated observables has extended from inclusive
quantities like the nuclear suppression of hadron and jet production (largely controlled
by the in-medium energy loss), to extremely complex, global, phenomena like the dijet
asymmetry (which likely probes all the stages of the in-medium evolution, as well as the fine
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structure of the medium), and also to fine probes of the jet substructure (which arguably
lies within the realm of QCD perturbation theory).

In this paper, we propose another effect that should emerge from the jet interactions in
a dense QCD medium: if the medium is anisotropic, then the jet partons should acquire
net polarisation. There are several mechanisms for generating such an anisotropy for the
quark-gluon plasma created in the intermediate stages of a nucleus-nucleus collision.

The high energy of experiments naturally leads to a rapid longitudinal expansion of
the quark-gluon plasma (QGP) medium created in the wake of a collision [4]. In turn,
the expansion of the QGP medium leads to a pronounced anisotropy in the momentum
distribution of the medium constituents: their momentum component pz along the collision
axis is typically much smaller than the transverse components px and py [5]. This has
interesting consequences for various probes of the medium, such as stronger binding of
quarkonia and preferred orientation of the quarks comprising a quarkonium [6–9], angular
dependence in energy loss and momentum broadening of heavy quarks [10–12] and a
modification of the spectrum of dileptons radiated by the plasma [13–15]. An anisotropy
in the transverse plane is possible as well, especially in not so central collisions where it
leads to the elliptic flow of hadrons. This transverse anisotropy will be ignored in our
subsequent study.

Another scenario leading to medium anisotropy is inherent in the glasma picture for
the early stages [16]. The “glasma” (the precursor of the quark-gluon plasma) is a form of
gluonic matter with large occupation numbers, that can be conveniently described in terms
of strong, classical, colour fields. The underlying theory (the “colour glass condensate”,
or CGC [17–20]) predicts that, right after the collision, the distribution of these fields
should be strongly anisotropic: their energy density is concentrated within longitudinal
(chromo-electric and chromo-magnetic) flux tubes which extend between the recessing nuclei.
This anisotropy has been argued to have observable consequences, such as inducing spin
polarization of heavy quarks in the glasma [21].

In both the case of the QGP medium and of the glasma, the anisotropy is expected to
decrease with time. The longitudinal expansion of the QGP medium should compete with
elastic collisions among the plasma constituents which redistribute energy and momentum,
and thus broaden the originally anisotropic momentum distribution. In the glasma scenario,
the longitudinal flux tubes are unstable and should eventually break and transmit their
energy to gluons with transverse polarisations. Yet, explicit calculations in both scenarios —
lattice calculations for the glasma [22–25] (that is, classical Yang-Mills theory with initial
conditions from the CGC) and, respectively, numerical solutions to kinetic theory for a
quark-gluon plasma undergoing boost-invariant longitudinal expansion [26–28] and with
initial conditions inspired by the “bottom-up” scenario [5] — demonstrate that the process
of isotropisation proceeds only slowly, so that a sizeable anisotropy persists at all the times
that should be relevant for the phenomenology of heavy ion collisions.

Furthermore, both scenarios predict that the medium anisotropy should affect the
transverse momentum broadening of an energetic probe (parton or jet) which propagates
through the plasma: if the hard probe propagates at central rapidities, say along the x axis,
then one should observe an asymmetry between its momentum broadening along the two
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directions orthogonal to the jet axis, that is, the y and z directions. For the glasma case,
lattice calculations of the relevant chromo-electric and chromo-magnetic field correlators
(two-point functions of the non-Abelian Lorentz force) have found sizable anisotropy in
momentum broadening [24, 25]. These results are furthermore supported by analytic
approximations [29, 30].

For a weakly-coupled plasma — the case that we shall focus on in this paper —, the
transverse momentum broadening is a consequence of quasi-local elastic collisions and the
respective rates — the jet quenching parameters q̂y and q̂z — can in principle be computed
within perturbation theory. Yet, perturbative calculations for anisotropic plasmas appear to
be unstable, due to the non-Abelian analog of the Weibel instabilities (e.g., the polarisation
effects introduce a pole at space-like momenta in the retarded propagator) [31–33]. Whereas
for electromagnetic plasma such instabilities are physical and lead to charge filamentation,
the fate of instabilities in a non-Abelian plasma is less clear. Classical Yang-Mills simulations
on the lattice [22, 23] point to the fact that plasma instabilities do not appear to play a
dominant role in the non-equilibrium evolution of the glasma beyond very early times. So,
in what follows we shall ignore this problem and assume that the physics of transverse
momentum broadening in an anisotropic plasma can be faithfully described in terms of
two (generally different) jet quenching parameters, q̂y and q̂z, even though for the time
being we still lack an explicit calculation of these parameters from first principles (see
however [34–37]).

For simplicity we assume the medium to be homogeneous and static, although it
should be possible to incorporate the time-dependence of q̂ due to longitudinal expansion
of the medium along the collision axis by following the discussions in [5, 38–43]. Relaxing
the assumption of a homogeneous medium introduces new effects in which gradients in
temperature and density, as well as net flow of the medium, change the spectrum of
radiated partons [44–46]. These medium inhomogeneities arise naturally in the framework
of ideal hydrodynamics where temperature and flow velocity vary in space and time but the
medium is everywhere in local thermal equilibrium. Here our goal is to consider genuine
non-equilibrium effects and how they modify the spectrum of radiated jet partons. In
other words, we consider a QGP medium that is locally out of equilibrium, as e.g. captured
by pressure anisotropy and viscous corrections in second order hydrodynamics or non-
equilibrium momentum distributions in kinetic theory. Such a non-equilibrium description
of the QGP medium is known to be necessary to describe measurements of soft hadrons,
see e.g. [47]. Conveniently, for jet partons at sufficiently high energy where the so-called
“harmonic approximation” is valid, the effect of a non-equilibrium medium on the jet is
completely captured by the two jet quenching parameters q̂y and q̂z such that a detailed
microscopic description of the medium is not needed. Our work could be extended to
include medium inhomogeneities, in addition to the homogeneous local deviations from
equilibrium considered here.

Within this framework, our main observation is that the medium anisotropy should also
introduce a polarisation-dependent bias in the rates for medium-induced gluon branching
(g → gg). Thus the two daughter gluons can carry non-zero net polarisation even when the
parent gluon is unpolarised. We demonstrate this effect within the BDMPS-Z approach,
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where medium-induced radiation is linked to transverse momentum broadening: parton
branching is triggered by multiple soft scattering, leading to a loss of coherence between the
daughter partons and their parent. This approach has been originally developed [38, 39, 48–
54] for an isotropic plasma and for the branching of unpolarised partons, but here we shall
provide its generalisation to an anisotropic medium and to gluons with definite polarisation
states. (We leave the inclusion of quarks to a further study.)

By using the in-medium branching rates for polarised gluons, we construct kinetic
equations which describe the evolution of the jet energy and polarisation distributions via
multiple branchings. The equation satisfied by the unpolarised distribution is formally the
same as for an isotropic medium and its solution is well understood [55, 56]: it exhibits
wave turbulence, that is, the soft gluons rapidly multiply via quasi-democratic branchings,
thus allowing for an efficient transfer of energy from the leading parton to low-energy
gluons. By using both numerical methods and analytic approximations, we also solve
the equation for the polarised distribution which quantifies the degree of polarisation of
partons at a given energy. We do this for the case where the leading parton is originally
unpolarised. We find that the democratic branchings play an important role for the polarised
distribution, with two opposite effects. On one hand, democratic branchings enhance the
net polarisation via the branching of unpolarised partons in the presence of the anisotropy.
On the other hand, they rapidly randomise the parton polarisation, due to the inability
of the soft gluons to keep trace of the polarisation of their parents. The competition
between these two tendencies implies that the parton polarisation is created and washed
out quasi-locally in energy and time, so that the polarised distribution closely follows the
unpolarised one: for sufficiently low energies, these two distributions are simply proportional
to each other, with a proportionality coefficient which would vanish for an isotropic medium.
In particular, the polarised distribution shows the same characteristic enhancement at
low-energies, which is the hallmark of the BDMPS-Z spectrum and also a fixed point of the
turbulent parton cascade.

The previous considerations imply that net polarisation of jet partons is only present
in the final state if the medium anisotropy survives until the moment when the jet exits
the medium. Indeed, at least for the ideal, turbulent cascade that we have studied here,
any net polarisation that might be acquired at early stages will be rapidly washed out (via
multiple branching) if the medium becomes fully isotropic. Conversely, an experimental
observation that indicates a net polarisation of partons in a jet, tells us that the medium
anisotropy had persisted until relatively late times. It furthermore gives an indication of the
degree of anisotropy as the jet escapes the medium. Measurements of net jet polarisation
could be signalled e.g. by a larger-than-expected abundance of non-zero spin hadrons in
the jet fragmentation or indirectly through anisotropy in the distribution of hadrons in
the jet cone. Thinking further ahead, one could envisage correlating measurements of jet
polarisation with jet energy loss, which probes the path length of the jet in medium and
thus the time at which a jet escapes the medium. This might give the anisotropy of the
medium at different times as the escape time for jets varies between collisions.

So far, we have considered the effect of the medium anisotropy on the polarisation of the
partons in a jet, but one could also imagine a scenario where this polarisation is transmitted
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back to the medium. This is related to the late stage of the bottom-up scenario, which
predicts that most of the energy of the medium comes from the quenching of mini-jets in
the presence of a highly anisotropic background. The soft gluons created by the decay of the
mini-jets are expected to carry net polarisation and thus produce a polarised quark-gluon
plasma. It would be interesting to identify observables for such a polarised medium at early
stages, like the spin distribution of heavy quarks.

This paper is organised as follows. Section 2 presents general considerations about
the collisional momentum broadening of an energetic parton propagating through a non-
equilibrium, weakly-coupled, quark gluon plasma, which is anisotropic. Our main purpose
here is to motivate the relation between the anisotropy in the momentum distributions
of the plasma constituents and that in the transverse momentum broadening of the hard
probe. Then in section 3 we investigate the consequences of this anisotropy on the branching
rates for medium-induced emissions of linearly polarised gluons. After quickly re-deriving
the polarised version of the DGLAP splitting functions, we proceed with extending the
BDMPS-Z formalism to an anisotropic medium and to polarised gluons. Our main result in
that section is a set of polarised in-medium branching rates, shown in eqs. (3.33)–(3.36),
whose physical content is briefly discussed in section 3.4. In section 4 we study the evolution
of the jet distribution in energy and polarisation via multiple branching. We start by
constructing the respective evolution equations — a set of coupled kinetic equations for
the polarised and the unpolarised (or total) gluon distributions. The equation for the
unpolarised distribution is essentially the same as for an isotropic plasma (it differs only by
a rescaling of the time variable), so its solution is well known [55]. In sections 4.3 and 4.4,
we also solve the equation for the polarised distribution, via the Green’s function method.
Our main results are encoded in figure 5 together with the analytic approximation (4.34),
valid for soft gluons. We summarise our conclusions together with some open problems
in section 5.

2 Transverse momentum broadening in an anisotropic plasma

For simplicity, we consider a jet made only of gluons. This is a good approximation at large
number of colours Nc. The jet is initiated by a “leading gluon” which propagates along the
x axis. The secondary gluons produced via successive gluon branchings are assumed to be
quasi-collinear to the leading parton, hence to the x axis. In the BDMPSZ approach, the
physics of medium-induced radiation is linked to that of transverse momentum broadening,
where by “transverse” we now mean the (y, z) plane, which is perpendicular to the jet
direction of motion. Since the jet dynamics is most naturally analysed w.r.t. the jet axis,
we shall systematically use this convention from now on: by “transverse” we shall always
mean the (y, z) plane, and not the plane (x, y) which is orthogonal to the collision axis.
Similarly, the x axis will often be referred to as “longitudinal”.

The “transverse momentum broadening” in this context means that the partons from
the jet suffer independent collisions with the plasma constituents, leading to a broadening
of their 3-momentum distribution along the y and z directions: the transverse momenta
py and pz, as accumulated via collisions, are relatively small (p2

y, p
2
z � p2

x) and random,
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with dispersions which grow linearly in time: 〈p2
y〉 = q̂y∆t and 〈p2

z〉 = q̂z∆t. The hallmark
of an anisotropic plasma is the fact that the rates, q̂y and q̂z, for transverse momentum
broadening along the two transverse directions are not the same:

q̂y ≡
d〈p2

y〉
dt

6= q̂z ≡
d〈p2

z〉
dt

. (2.1)

Inspired by recent calculations of momentum broadening in the Glasma [24, 25, 29], we
shall sometimes assume that q̂z > q̂y — the momentum broadening is stronger along the
collision axis than perpendicular to it. That said, our subsequent results do not crucially
depend upon the sign of the difference q̂z − q̂y: all that matters is the fact that these
quantities are generally different. The limit of an isotropic plasma can be easily obtained
from our results by letting q̂z = q̂y ≡ q̂/2.

Although the physical origin of the anisotropy is not essential for what follows, it is
still interesting to understand how the difference between q̂z and q̂y may arise in the case of
a weakly coupled quark-gluon plasma. To that aim, we shall briefly recall the respective
calculation of transverse momentum broadening, with emphasis on the possible sources of
anisotropy.

Before that, let us summarise our notations. The Minkowski coordinates of a generic
space-time point x will be written as xµ = (t, x, y, z) = (t, ~x) = (t, x,x⊥), where the
3-vector ~x ≡ (x, y, z) encompasses all the spatial coordinates, while the 2-vector x⊥ ≡ (y, z)
refers to the transverse plane alone. Similarly, for the 4-momentum p we will write
pµ = (p0, px, py, pz) = (p0, ~p) = (p0, px,p⊥). To study the interactions between the jet and
the medium, it will also be convenient to use light-cone vector notations w.r.t. to the jet
(x) axis, defined as

x+ ≡ t+ x√
2
, x− ≡ t− x√

2
, p+ ≡ p0 + px√

2
, p− ≡ p0 − px√

2
. (2.2)

The variable x+ plays the role of the LC time, while p+ is the LC longitudinal momentum.
To simplify wording and notations, we shall generally refer to x+ simply as “time” (and use
the simpler notation t ≡ x+), while p+ will be the “energy” (sometimes denoted as ω). Also,
we shall ignore the “perp” subscript ⊥ on transverse vectors whenever there is no possible
confusion. In LC notations, the 4-momentum of a parton reads pµ = (p+, p−,p⊥), where
p⊥ = (py, pz) is the transverse momentum and p− = p2

⊥/2p+ for an on-shell massless parton.
To study transverse momentum broadening, we consider the propagation of an energetic

gluon (the “hard probe”) through a weakly-coupled QGP. The gluon longitudinal momentum
p+ is assumed to be much larger than both the (longitudinal and transverse) momenta
of the plasma constituents and the transverse momentum p⊥ acquired by the probe via
collisions. In this high-energy kinematics, the interactions between the hard gluon and the
plasma constituents can be treated in the eikonal approximation, that is, by keeping only
the coupling between the “plus” component j+ of the colour current associated with the
gluon and the “minus” component A− ≡ (A0 −Ax)/

√
2 of the gauge field generated by the

plasma constituents. Then the medium can be described as a random colour field A−a with
two-point correlation function

〈A−a (x+, x−,x⊥)A−b (y+, y−,y⊥)〉 = δabδ(x+ − y+) γ(x⊥ − y⊥), (2.3)
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where the angular brackets denote the medium average. The restriction to the two-point
function is justified to leading order at weak coupling. The δ-function in colour space, δab,
follows from gauge invariance, while that in LC time, δ(x+−y+), from Lorentz time dilation
(the energetic parton has a poor resolution in x+, hence it “sees” the medium correlations as
quasi-local in time). The two-point function is independent of x− and y−, since the medium
is probed near the trajectory of the energetic parton, at x− ' 0. This is in agreement
with our assumption that the plasma fields A−a carry relatively small longitudinal momenta
k+ � p+. In turn, this implies that both the longitudinal momentum p+ of the hard gluon
and its polarisation are not effected by the medium.1 Finally, γ(x⊥ − y⊥) depends only
upon the transverse separation x⊥ − y⊥ by homogeneity, and is independent of x+ because
the plasma is assumed to be static. (More general situations, e.g. a plasma which expands
along the collisional axis, can be similarly considered.)

In this set-up, the medium anisotropy is encoded in the fact that the two-point
correlation γ(x⊥ − y⊥) has no rotational symmetry in the transverse plane, that is, it is
not just a function of the distance r ≡ |x⊥ − y⊥|. When Fourier transformed to transverse
momentum space, eqs. (2.3) becomes (we suppress the irrelevant variables x− and y−)〈

A−a (x+,k⊥)A∗−b (y+, q⊥)
〉

= δabδ(x+ − y+)(2π)2δ(2)(k⊥ − q⊥) γ̃(k⊥) . (2.4)

For an anisotropic case, the function γ̃(k⊥) (a.k.a. the “collision kernel”) depends upon the
orientation of the 2-dimensional vector k⊥ = (ky, kz), that is, it separately depends upon
its 2 components.

To gain more insight in the structure of γ̃(k⊥) and thus understand how an anisotropy
might be generated, it is instructive to recall the relation between the two-point function
of the field and that of its colour sources (the quarks and gluons from the plasma). Our
discussion will be very schematic, since merely intended for illustration purposes. In
particular, we shall often ignore the Minkowski and colour indices, and write the gluon
correlator simply as2 G(x, y) ≡ 〈A(x)A(y)〉. For a plasma which is static and homogeneous,
this admits the Fourier representation

G(x− y) =
∫ dk−

2π e−ik−(x+−y+)
∫ dk+

2π e−ik+(x−−y−)
∫ d2k⊥

(2π)2 eik⊥·(x⊥−y⊥)G(k+, k−,k⊥)

'
∫ dk−

2π e−ik−(x+−y+)
∫ dk+

2π

∫ d2k⊥
(2π)2 eik⊥·(x⊥−y⊥)G(k+, k− = 0,k⊥), (2.5)

where the second lines was obtained by using x− ' y− ' 0 (more precisely, x− ∼ y− ∼ 1/p+

with p+ � k+) and by approximating k− ' 0 inside the correlator: this is appropriate since
1These features are reminiscent of the eikonal approximation, but our calculation is in fact more general

— we do not need to assume that the hard probe preserves a straight line trajectory with a fixed transverse
coordinate. Indeed, such an assumption would not be justified for the gluons produced via medium-induced
emissions (see below).

2In general, this is a Minkowski tensor, 〈Aµa(x)Aνb (y)〉 = δabG
µν(x− y); here, we only need its particular

projection G−− = nµnνG
µν , with nµ = δµ+ (hence, n · A = A−). Also, the precise gauge choice is

unimportant so long as we choose a gauge (such as the covariant gauge, or the LC gauge A+ = 0) in which
the component A− is non-zero.
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the LC times x+ and y+ take relatively large values x+ ∼ y+ ∼ 1/p−, with p− = p2
⊥/2p+

much smaller than the typical values of k−. Hence, the integral is controlled by unusually
small values of k− (to avoid large oscillations of the phase e−ik−(x+−y+), so the function G
inside the integrand can be evaluated at k− = 0. This condition k− = 0, or k0 = kx, shows
that we consider space-like modes of the gluon correlator: k2 = k2

0 − ~k2 = −k2
⊥ < 0, where

~k = (kx, ky, kz) = (kx,k⊥).
The integral over k− generates the δ-function δ(x+− y+), so the final result in eq. (2.5)

is indeed consistent with eq. (2.4), with the following representation for the collision kernel:

γ̃(k⊥) '
∫ dk+

2π G−−(k+, k− = 0,k⊥). (2.6)

For space-like modes, the statistical two-point function of the gluon field emitted by the
plasma constituents has the general structure

G(k) = |GR(k)|2 Π(k), (2.7)

where GR(k) is the retarded propagator and Π(k) is the gluon polarisation tensor. This
structure can be understood as follows: introducing the colour charge density ρ(k) of
the plasma constituents, the (event-by-event) gauge field is schematically obtained as
A(k) = GR(k)ρ(k), hence its two-point function has indeed the structure (2.7) with
Π(k) = 〈ρ(k)ρ(−k)〉 (the charge-charge correlator). The retarded propagator too is modified
by polarisation effects, via the retarded version of the polarisation tensor: G−1

R = G−1
0,R+ΠR,

with G0,R the free retarded propagator.
Due to the mobility of the colour charges, the polarisation tensor is non-local, i.e Π(k)

is a non-trivial function of the 4-momentum kµ = (k0, ~k). This non-locality reflects the
momentum distribution of the plasma constituents: when this distribution happens to be
anisotropic, it implies a corresponding anisotropy in the “collision kernel” γ̃(k⊥). To be
more specific, let us remind the reader of the expression of the polarisation tensor in the
Hard Thermal Loop (HTL) approximation.

The HTLs describe the response of the medium constituents to long-wavelength excita-
tions, such as the soft gluons exchanged in elastic collisions (see refs. [57, 58] for pedagogical
discussions). Originally introduced in the context of thermal equilibrium [59–61], the HTLs
have subsequently been extended to more general, non-equilibrium, situations, that can
be still described in terms of quasi-particles and their occupation numbers. (See notably
refs. [34, 37, 62–64] for HTL studies in the context of anisotropic plasmas.) For a static
and homogeneous plasma, we shall denote these occupation numbers as fg(~p) and fq(~p)
for (on-shell) gluons and quarks, respectively. In thermal equilibrium, the quasi-particles
have typical energies and momenta of the order of the temperature, p0 = p ∼ T (with
p = |~p|), whereas the typical momenta exchanged via (small-angle) elastic collisions are
much softer: k0, k ∼ gT � T . Out of equilibrium, we shall assume that a similar hierarchy
exists, between the “hard” momenta of the medium constituents and the “soft” exchanges.
Under these assumptions, the leading-order expression of the polarisation tensor for soft
gluons is given by the gluon HTL, which reads (after restoring the Minkowski indices)

Πµν(k) = 4πg2
∫ d3~p

(2π)3 [Ncfg(~p)(1 + fg(~p)) +Nffq(~p)(1− fq(~p))] vµvν δ(v · k), (2.8)
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where vµ ≡ pµ/p = (1, ~v) with ~v = ~p/p (the particle velocity). The piece proportional
to Nc (Nf ) is the gluon (quark) contribution. The support of the δ-function reflects the
microscopic origin of the plasma polarisation — the absorption of the soft gluon by a plasma
constituent (“Landau damping”): for this process to be kinematically allowed, the soft gluon
must be space-like. The argument of the δ-function can be rewritten as v ·k = (p ·k)/p with

p · k = p+k− + p−k+ − p⊥ · k⊥ ' p−k+ − p⊥ · k⊥, (2.9)

where the last, approximate, equality, uses k− = 0, as in eq. (2.5). So long as the transverse
momentum p⊥ of the hard parton is kept fixed, the integrand of eq. (2.8) is clearly anisotropic
in the transverse plane: it depends upon the azimuthal angle φ between k⊥ and p⊥.

In thermal equilibrium, this anisotropy is washed out by the integral over p⊥, because
the thermal distributions — the Bose-Einstein distribution f eq

g (p) for gluons and the Fermi-
Dirac distribution f eq

q (p) for quarks — are themselves isotropic. It is then straightforward
to perform the integral over p and find

Πµν(k0, ~k) = 2πm2
DT

∫ dΩ
4π v

µvνδ(k0 − ~v · ~k), (2.10)

where the angular integral runs over the directions of the unit vector ~v and

m2
D = (2Nc +Nf )g

2T 2

6 , (2.11)

is the Debye mass. We also used the following integrals for the thermal distributions:∫
dp p2fq(p)(1− fq(p)) = −T

∫
dp p2 dfq

dp = 2T
∫

dp pfq(p) = π2T 3

6 ,

∫
dp p2fg(p)(1 + fg(p)) = −T

∫
dp p2 dfg

dp = 2T
∫

dp pfg(p) = π2T 3

3 . (2.12)

Still in thermal equilibrium, the statistical self-energy Π and the retarded one ΠR are
related via the KMS condition, which implies (for soft gluon modes with k0 � T )

Πµν(k) = − T
k0

2 Im Πµν
R (k) . (2.13)

Using this relation together with eq. (2.10) one finds the expected result for the imaginary
part of the retarded HTL [57, 58]. The Debye mass m2

D acts as a screening mass in the
propagator of the longitudinal gluon and also in the collision kernel.

Specifically, in thermal equilibrium and to leading-order in perturbative QCD, the
collision kernel (2.6) has been computed as3 [65, 66]

γ̃(k⊥) = 1√
2

Tm2
D

k2
⊥(k2

⊥ +m2
D)
, (2.14)

3See e.g. eqs. (A.1)–(A.3) in [65]; as compared to those equations, our result includes an additional factor
of
√

2 because the integration variable in (2.6) is k+ =
√

2k0, rather than k0.
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where the first (second) terms inside the parentheses refers to the exchange of a transverse
(longitudinal) gluon. For relatively large momenta k⊥ � mD, we recognise the characteristic
power tail ∼ 1/k4

⊥ of Rutherford scattering, but the singularity at low momenta k⊥ → 0
gets milder (1/k2

⊥ instead of 1/k4
⊥), due to Debye screening for k⊥ . mD.

Out of equilibrium, the momentum distributions can be anisotropic for a variety of
reasons. One natural mechanism in that respect is the expansion of the plasma along the
collision (z) axis: the partons liberated in a heavy-ion collision should follow straight-line
trajectories and segregate themselves in z according to their longitudinal velocity vz = pz/p.
This “free-streaming” scenario, expected to hold at very early stages, leads to an anisotropic
momentum distribution, which is strongly oblate: 〈p2

z〉 � 〈p2〉 in the local rest frame. With
increasing time, the interactions are expected to become more important (notably, due
to the emission of soft gluons) and to reduce the anisotropy via elastic collisions. In this
“bottom-up” scenario for thermalisation [5], that is supported by numerical solutions to
kinetic theory [26–28], the plasma is predicted to slowly evolve towards isotropisation and
eventually reach thermal equilibrium at very large times — much larger than the lifetime
of the quark-gluon plasma produced in heavy ion collisions.

During this slow approach to isotropisation at late stages,4 it seems legitimate to
neglect the time-dependence of the anisotropy. In what follows, we shall make the stronger
assumption that the medium is static as a whole — that is, we also neglect its longitudinal
expansion along the collision axis. This assumption is only intended for simplicity and
can be relaxed in further work: the effects of the medium expansion can be included in
an adiabatic approximation (e.g. by allowing the jet quenching parameters, q̂y and q̂z, to
be time-dependent), as in previous studies [5, 38–43, 67, 68] which assumed an isotropic
medium. For such a static but anisotropic medium, the momentum distributions of the
plasma constituents take the generic form

fν(~p) = F

(√
p2 + νp2

z

)
, (2.15)

where the parameter ν characterises the strength of the anisotropy: a positive value ν > 0
implies an oblate distribution with 〈p2

z〉 < 〈p2
x〉 = 〈p2

y〉. The precise form of the function F
is unimportant for what follows (in some calculations, this is taken to be the equilibrium
distribution [37, 63]). Using a momentum distribution such as eq. (2.15) in the general
expressions in eqs. (2.6), (2.7), (2.10), one would then expect to obtain an anisotropic
collision kernel for momentum broadening γ̃(k⊥) from first principles. In practice this is
hindered by e.g. plasma instabilities which are beyond the scope of this paper, see e.g. [37]
for further discussion.

We now return to our energetic gluon probe and examine the effects of the collisions
on its transverse momentum distribution. This problem has been studied at length in
the literature and here we shall only focus on the new aspects which emerge when the
medium is anisotropic. We would like to compute the probability density P(∆p⊥,∆t)
for the gluon to acquire a transverse momentum ∆p⊥ after crossing the medium along a

4We recall that our main goal in this paper is to study medium-induced radiation, which is controlled by
the behaviour at large times, of the order of the distance L travelled by the jet through the medium.
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distance (or LC time) ∆t. The calculation is most conveniently formulated in the transverse
coordinate representation, which allows for an efficient treatment of multiple scattering:
the in-medium propagation of the test particle is governed by a 2-dimensional Schrödinger
equation describing quantum diffusion in the random field A− (see appendix A). As well
known, this Schrödinger equation admits a formal solution in terms of a path integral.
By multiplying two such solutions — for the gluon in the direct amplitude (DA) and in
the complex-conjugate amplitude (CCA), respectively — and averaging over the random
field A− according to eq. (2.4), one effectively builds the S-matrix S(r,∆t) for the elastic
scattering of a gluon-gluon dipole with transverse size r. The probability density of interest
is finally obtained as the following Fourier transform (see appendix A for details)

P(∆p⊥,∆t) =
∫

d2r e−i∆p⊥·r S(r,∆t) , S(r,∆t) ≡ e−g2Nc∆t[γ(0)−γ(r)]. (2.16)

The dipole S-matrix obeys S(r → 0)→ 1 (“colour transparency”), which ensures the proper
normalisation for the probability density:∫ d2p⊥

(2π)2 P(p⊥,∆t) = 1. (2.17)

We are interested in the multiple-scattering regime where the distance ∆t travelled by
the probe through the medium is much larger than the mean free path λmfp between two
successive collisions. Accordingly, the momentum ∆p⊥ ≡ |∆p⊥| accumulated during ∆t
is typically much larger than the Debye mass5 mD (the typical momentum transfer in a
single collision): ∆p⊥ � mD. In this regime, the function in the exponent of S, that is,

γ(0)− γ(r) =
∫ d2k⊥

(2π)2

(
1− eik⊥·r

)
γ̃(k⊥), (2.18)

has a logarithmic domain of integration atmD � k⊥ � 1/r ∼ ∆p⊥. Indeed, the polarisation
effects (in or out of thermal equilibrium) cannot modify the fact that γ̃(k⊥) ∝ 1/k4

⊥ for
sufficiently large momenta k⊥ � mD. Hence, in the leading-logarithmic approximation
which only keeps the contribution enhanced by the large logarithm ln 1

rmD
, one can evaluate

the integral by expanding the exponential eik⊥·r within the integrand. It is natural to assume
reflexion symmetry, e.g. γ̃(−ky, kz) = γ̃(ky, kz) — that is, γ̃(k⊥) is truly a function of |ky|
and |kz|. Then the linear terms and also the crossed quadratic terms in the expansion cancel
after the integration and the leading logarithmic contribution comes from the diagonal
quadratic terms:

γ(0)− γ(r) ' 1
2

∫ d2k⊥
(2π)2

(
k2
yr

2
y + k2

zr
2
z

)
γ̃(k⊥). (2.19)

This finally implies
S(r,∆t) ' exp

{
−∆t

2
(
q̂yr

2
y + q̂zr

2
z

)}
, (2.20)

where
q̂y ≡

g2Nc

2

∫ d2k⊥
(2π)2 k

2
y γ̃(k⊥), (2.21)

5For an anisotropic plasma, one can have different screening masses along the y and z directions, but
this difference should not matter to the leading-logarithmic accuracy of our calculation; see below.
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together with a similar expression for q̂z. As already mentioned, the above integral has
a logarithmic divergence at large values of k⊥ which must be cut off at k⊥ ∼ 1/r. For
instance, for a plasma in thermal equilibrium, we can use (2.14) to deduce q̂y = q̂z = q̂/2,
with

q̂ ' αsNcTm
2
D√

2

∫ 1/r2 dk2
⊥

k2
⊥ +m2

D

'
√

2αsNcTm
2
D ln 1

rmD
. (2.22)

Similar logarithmic dependences upon the dipole size r are expected for both q̂y and
q̂z in the case of an anisotropic plasma. Such dependences complicate the final Fourier
transform to transverse momentum space, cf. eq. (2.16). A common approximation at
this level, known as the “harmonic approximation”, consists in ignoring this residual r-
dependence [38, 39]. This is appropriate for describing the effects of multiple soft scattering.
With this approximation, the Fourier transform is easily computed as

P(∆p⊥,∆t) = 2π√
q̂y q̂z∆t

exp
{
−(∆py)2

2q̂y∆t
− (∆pz)2

2q̂z∆t

}
. (2.23)

This Gaussian probability distribution immediately implies the expected results for
anisotropic momentum broadening, namely 〈∆p2

y〉 = q̂y∆t and 〈∆p2
z〉 = q̂z∆t.

Incidentally, the above discussion shows that eq. (2.20) can be rewritten as

S(∆t, r) ' exp
{
−1

2
(
r2
y〈∆p2

y〉+ r2
z〈∆p2

z〉
)}

. (2.24)

This formula is more general than our present considerations at weak coupling: it is also
found when non-perturbatively evaluating the Wilson loop which reduces to our gluon-gluon
dipole correlator in the LC gauge A+ = 0 (see e.g. eq. (31) in [24]). This formula was used
in [24] to extract 〈∆p2

y〉 and 〈∆p2
z〉 from real-time lattice simulations of the Glasma. In our

perturbative approach, this formula comes together with results like eq. (2.21), which relate
q̂y and q̂z to the microscopic structure of the medium.

3 Polarised gluon splitting in an anisotropic plasma

Besides providing transverse momentum broadening, the transverse “kicks” received by
a test parton via collisions in the plasma also have the effect to trigger radiation. The
medium-induced radiation in the kinematical range of interest is controlled by the BDMPS-Z
mechanism [38, 39, 48–54], which takes into account the coherence effects associated with
multiple soft scattering during the quantum formation of an emission. This mechanism is
effective so long as the characteristic formation time tf =

√
2ω/q̂, with ω the energy of the

emitted gluon and q̂ the jet quenching parameter, is much larger than the parton mean
free path λmfp = m2

D/q̂ between two successive collisions, but smaller than the medium size
L available to the parent parton. (Note that we ignore the medium anisotropy for these
physical considerations: its effects, to be later discussed, do not modify the general picture.)
These conditions imply an energy window ωBH � ω . ωc. The lower limit ωBH ≡ m4

D/2q̂,
corresponding to tf ' λmfp, separates from the Bethe-Heitler regime, where emissions are
triggered by a single, soft, scattering. The upper limit ωc ≡ q̂L2/2 is the maximal energy of
a gluon emitted via multiple soft scattering, for which tf ' L.
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In what follows, we shall focus on the typical gluon emissions, those with energies much
smaller than ωc, but much larger than ωBH. Such emissions have relatively short formation
times, tf (ω)� L, hence a large emission probability,

ω
dP
dω '

αsCR
π

L

tf (ω) = αsCR
π

√
ωc
ω
, (3.1)

so for them the effects of multiple branchings are expected to be important [55, 56, 69]. On
the other hand, such emissions occur quasi-instantaneously, hence multiple emissions can
be simply resummed by solving appropriate rate equations [55, 56]. The only non-trivial
ingredient of these equations is the emission rate (the emission probability per unit time),
which in turn can be inferred from the BDMPS-Z spectrum for a single gluon emission with
ω � ωc. So, our main objective in this section is to generalise the BDMPS-Z branching
rate to the case of an anisotropic plasma and to gluons with fixed polarisations. As we
shall see, this generalisation brings no conceptual difficulties: the treatment of multiple soft
scattering in an anisotropic medium has already been discussed in the previous section and
the polarisation dependence of the branching rate is fully encoded in the (leading-order)
DGLAP splitting functions, which are well known — including for polarised partons (see
e.g. [70] and section 3.1 below).

After this preparation, let us start our study of polarised medium-induced gluon
branching (g → gg) in an anisotropic plasma. Consider the branching process a→ b+ c,
where the gluon labels a, b and c encompass all the relevant “quantum numbers” (longitudinal
and transverse momenta, polarisation, and colour). Both the parent gluon and the two
daughter ones are assumed to be on-shell, yet the branching is kinematically allowed due
to the collisions in the medium. As already argued, the parton longitudinal momenta
(“energies”) are not significantly changed by the interactions with the medium, so we can
assume energy conservation: p+

a = p+
b +p+

c . It is then convenient to use the simpler notation
ω ≡ p+

a and introduce the splitting fractions ζ ≡ p+
b /ω and 1− ζ = p+

c /ω of the daughter
gluons. The transverse momentum balance is more subtle: this is conserved at the QCD
splitting vertex, which is local in time, but not also for the overall branching process,
which is non-local. Physically, this non-conservation is associated with the collisional
broadening during the formation time, estimated as ∆k2

⊥ ' q̂tf with tf =
√

2ζ(1− ζ)ω/q̂.
Mathematically, this is expressed by the fact that the QCD splitting vertices occur at
different times, t1 and t2, in the DA and, respectively, the CCA, so they generally involve
different transverse momenta on their external legs: this difference accounts for the additional
momentum broadening during the interval t2 − t1.

Before we discuss the full process including medium effects, let us consider the QCD
splitting vertex for gluons with linear polarisations (this will be an ingredient of the
complete calculation).

3.1 DGLAP splitting functions for linearly polarised gluons

As announced, the special geometry of the medium, which distinguishes between momentum
broadening along the y and the z directions, makes it useful to work with linearly polarised
states which are aligned along these 2 directions. To specify these states, we first need to

– 13 –



J
H
E
P
0
8
(
2
0
2
3
)
0
2
7

fix the gauge. The natural gauge for describing quantum evolution in LC time x+ is the
LC gauge A+ = 0 (with A+ ≡ (A0 +Ax)/

√
2 of course). In this gauge and in LC notations,

εµ = (ε+, ε−, ε⊥), the polarisation vectors describing linear polarisations along the two
transverse directions y and z read as follows (for a gluon with transverse momentum k⊥
and longitudinal momentum k+):

εµ(k, λ) =
(

0, ελ · k⊥
k+ , ελ

)
, εy = (1, 0), εz = (0, 1) , (3.2)

where λ is the polarisation index: λ = y or z. These vectors obey k · ε(k, λ) = 0.
The QCD vertex for the g → gg branching process has the familiar structure

V µνρ
abc (pa, pb, pc) = igfabc [gµν(pa + pb)ρ + gνρ(−pb + pc)µ + gρµ(−pc − pa)ν ] , (3.3)

where we use the convention that the momentum pa flows towards the vertex, while pb and
pc flow away from the vertex; hence, momentum conservation reads pa = pb + pc. Notice
that, with a slight abuse of notations, the indices a, b and c are used both as labels for
the 3 gluons, and as the respective colour indices in the adjoint representation. When
computing the branching amplitude, this vertex is projected onto the polarisation vectors
for the three external gluons, that is, εµa ≡ εµ(pa, λa) for the parent gluon and similarly for
the two daughter gluons. After using momentum conservation (pa = pb + pc) and the fact
that εa · pa = εb · pb = εc · pc = 0, the result of this projection can be written as [70]

εµaε
ν
b ε
ρ
c V

abc
µνρ(pa, pb, pc) = igfabcΓa→bc , (3.4)

with the new vertex Γa→bc defined as

Γa→bc ≡ 2 [(εa · εb) (εc · pb)− (εb · εc) (εa · pb)− (εc · εa) (εb · pc)] . (3.5)

Notice that the “minus” components (e.g. p−a ) of the parton 4-momenta do not contribute
to this vertex, due to our use of the LC gauge.

From eq. (3.2), one easily finds6

εa · εb = −ελa · ελb = −δλaλb , (3.6)

(and similarly for the other pairs of gluons); this is simply the statement that two different
polarisation states (e.g., λa = y and λb = z) are orthogonal to each other.

To compute dot products like εa · pb, it is useful to introduce the relative transverse
momentum between the 2 daughter partons (or between one daughter parton and its parent),
defined as7

P ≡ (1− ζ)pb − ζpc = pb − ζpa = (1− ζ)pa − pc , (3.7)

6We here use the subscripts λ = y or z in the sense of discrete values, e.g. δyy = δzz = 1 and δyz = 0.
7We remind the reader that ζ ≡ p+

b /ω and 1− ζ = p+
c /ω (with ω ≡ p+

a ) are the splitting fractions of the
daughter gluons.
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where the second and third equalities follow from transverse momentum conservation
(pa = pb + pc). One then easily finds

εa · pb = ζpa · ελa − pb · ελa = −P · ελa ,

εc · pb = ζ

1− ζ pc · ελc − pb · ελc = −P · ελc1− ζ ,

εb · pc = 1− ζ
ζ

pb · ελb − pc · ελb = P · ελb
ζ

. (3.8)

The final result of these manipulations can be compactly written us

Γa→bc(P , ζ) = 2
[
δλaλb

Pc
1− ζ − δλbλcPa + δλaλc

Pb
ζ

]
. (3.9)

As manifest from this result, the QCD vertex projected onto the gluon polarisation states
depends upon the gluon transverse momenta only via the relative transverse momentum
P = (Py, Pz).

The (medium-induced) branching probability to be presented in the next subsection
will involve the product of the vertex (3.9) in the DA times a similar vertex, but evaluated
at a different value, P , of the relative momentum, in the CCA. The polarisation states for
the external gluon are identical for the 2 vertices, since polarisations cannot change via soft
scattering with the medium constituents (see the discussion at the end of this subsection).
Since the polarisation indices can only take two values, λa,b,c = y or z, one can distinguish
between 8 possible polarised splitting functions, conveniently grouped in 4 cases (unless
otherwise stated, in the equations below, there is no summation over repeated indices):

(i) when all 3 gluons have the same polarisation, λa = λb = λc, one finds

Γa→aa(P , ζ)Γa→aa(P̄ , ζ) = 4PaP̄a
ζ(1− ζ)

[1− ζ
ζ

+ ζ

1− ζ + ζ(1− ζ)
]

; (3.10)

(ii) when λa = λb 6= λc (e.g. λa = λb = y, whereas λc = z), one finds

Γa→ac(P , ζ)Γa→ac(P̄ , ζ) = 4PcP̄c
(1− ζ)2 ; (3.11)

(iii) when λa = λc 6= λb:

Γa→ba(P , ζ)Γa→ba(P̄ , ζ) = 4PbP̄b
ζ2 ; (3.12)

(iv) when λa 6= λb = λc:

Γa→bb(P , ζ)Γa→bb(P̄ , ζ) = 4PaP̄a. (3.13)

As a final check, let us show that, when summing over polarisation states for all gluons,
we recover the familiar expression of the DGLAP splitting function for unpolarised gluons:

1
2

∑
λa,b,c=y,z

Γa→bc(P , ζ)Γa→bc(P̄ , ζ) = 4P · P̄
ζ(1− ζ)

[1− ζ
ζ

+ ζ

1− ζ + ζ(1− ζ)
]

(3.14)

where P ·P̄ = PyP̄y+PzP̄z. This is indeed the expected result in the unpolarised case [69, 70].
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The above formalism also allows us to check one important assertion that we previously
made, namely the fact that the polarisation of a hard probe cannot change via soft scattering
off the plasma constituents. Recall that, in the present, eikonal approximation, the hard
parton couples only to the “minus” component A−a of the background field — the Coulomb
field created by the partons from the plasma. Hence, the relevant QCD vertex is obtained
from eq. (3.3) by choosing one of the upper Minkowski indices to be “plus” (say ν = +),
while contracting the two other indices with the polarisation states of the hard gluon prior
and after the scattering. We are thus led to

εµaε
ρ
c V

abc
µ−ρ(pa, pb, pc) = −2igfabcω (εc · εa) = 2igfabcωδλaλc , (3.15)

where p+
b ' 0, hence p+

c ' p+
a ≡ ω. This vertex is diagonal in the polarisation indices,

which confirms our above statement. It is indeed well known, and also well documented
in the literature (see e.g. [71–73]), that one has to go beyond the eikonal approximation
(notably, by taking into account the transverse components of the background field) in order
to describe a polarisation-flip scattering process. More precisely, one needs to consider the
second order corrections to the eikonal approximation — that is, the corrections of order
(k⊥/ω)2 to the amplitude, meaning of order (k⊥/ω)4 to the cross-section — in order to
change the polarisation of the hard parton [73]. Here, k⊥ . T is the transverse momentum
transferred in the collision. Given that the leading-order (at high energy) collision kernel,
as given by the eikonal approximation, scales like γ̃(k⊥) ∼ αsT

3/k4
⊥ (cf. eq. (2.14)), one

concludes that, parametrically, the corrections to it which are responsible for polarisation
flip scale like αsT 3/ω4. After multiplying by a factor αs (to account for the coupling to the
hard gluon) and integrating over k⊥, this yields a polarisation-changing contribution to the
collision rate

dΓcoll
dt

∣∣∣
pol−flip

∼
∫
d2k⊥Θ(T − k⊥) α

2
sT

3

ω4 ∼ α2
sT

5

ω4 . (3.16)

For the interesting energies ω � T , this is strongly suppressed and truly negligible as
compared to the respective contribution due to medium-induced gluon branchings. To
demonstrate this point, let us use the well known fact that the typical interval ∆t between
two successive medium-induced emissions is of order ∆t ∼ (1/αs)

√
ω/q̂, with ω the energy

of the emitted gluon (see the discussion at the end of section 3.3 for more details). The
probability to change the polarisation via collisions during this interval can be estimated as

dΓcoll
dt

∣∣∣
pol−flip

∆t ∼ α2
sT

5

ω4
1
αs

√
ω

q̂
∼
(
T

ω

)7/2
, (3.17)

where we have also used the fact that, parametrically, q̂ ∼ α2
sT

3. When ω � T , this is
strongly suppressed compared to the probability for a polarisation flip via the branching
process, which is of order one when integrated over the interval ∆t.

3.2 BDMPS-Z branching rate in an anisotropic medium

We shall now construct the medium-induced branching rate for polarised gluons propagating
through an anisotropic plasma by generalising the corresponding results for unpolarised
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gluons which split in an isotropic medium. To that aim, we shall use the path-integral
formulation of the BDMPS-Z approach (see e.g. the presentations in [69, 74]). More precisely,
we follow the analysis in ref. [69], which includes a detailed discussion of the transverse
momentum dependence of the branching rate. This is indeed important for our purposes,
since the polarisation effects depend upon the flow of transverse momentum at the splitting
vertices, as previously explained.

The medium-induced branching rate for polarised gluons has the same general structure
as in the unpolarised case, except for the fact that it includes the polarised splitting vertices
introduced in the previous subsection. Specifically (see eq. (5.1) in ref. [69])

dPa→bc
dζdt

= g2Nc

8πω2ζ(1− ζ) Re
∫ L

0
d∆t

∫
d2P

(2π)2

∫
d2P̄

(2π)2

× Γa→bc(P , ζ) Γa→bc(P̄ , ζ) S̃(3)(∆t,P , P̄ ), (3.18)

where we recall that ω ≡ p+
a is the LC longitudinal momentum of the parent parton,

ζ ≡ p+
b /ω is the splitting fraction of gluon b, 1− ζ is the corresponding fraction for gluon c,

and the “time” variables like t or ∆t are truly light-cone times, cf. eq. (2.2). The integration
variable ∆t ≡ t2 − t1 is the difference between the splitting times (the temporal locations
of the QCD vertices) in the direct amplitude (DA) and the complex conjugate amplitude
(CCA), respectively. In writing eq. (3.18), we implicitly assumed that both t1 and t2 lie
inside the medium, that is, we ignored the possibility that the parent gluon splits already
before entering the medium, or after exiting from it. This is indeed legitimate for the typical
emissions, which have relatively low energies ζ(1− ζ)ω � ωc and therefore short formation
times tf � L. In the present context, the formation time tf is the typical value of ∆t, as
fixed by the integrations in eq. (3.18).

The branching rate in eq. (3.18) keeps trace of the energies and the polarisation states
of the participating gluons, but not of their transverse momenta which are integrated over.
More precisely, the integrations run over the relative transverse momenta at the splitting
vertices,8 that is, P in the DA (cf. eq. (3.7)) and P̄ in the CCA. As already explained, the
difference between P and P̄ reflects the momentum transferred by the medium during the
formation time ∆t.

The medium effects are encoded in the 3-point function S̃(3)(∆t,P , P̄ ) which describes
the dynamics of the branching system during the time interval ∆t. This is a three point
function since it refers to the three gluons which “co-exist” during ∆t: the two daughter
gluons in the DA (where the splitting occured at t1) and the parent gluon in the CCA
(which splits only later, at t2 = t1 + ∆t). This 3-point function controls the values for ∆t,
P⊥ and P̄⊥. It is most conveniently computed via a Fourier transform from the transverse

8The fact that one can use relative transverse momenta alone is a consequence of translational invariance
in the transverse plane (y, z): this is manifest for the QCD vertex (3.9), which is the same as in the vacuum,
and is also true for the medium effects, since we implicitly assume the medium to be homogeneous (albeit
anisotropic): e.g. the transport coefficients q̂z and q̂y take the same values at all the points (ξ, y, ζ), although
these values can be different from each other: q̂z 6= q̂y.
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coordinate representation, that is,

S̃(3)(∆t,P , P̄ ) =
∫
d2u

∫
d2v eiu·P e−iv·P̄ S(3)(∆t,u,v). (3.19)

Indeed, as discussed in the previous section and also in appendix A, the transverse coordinate
representation is better suited for a study of the propagation of a test particle which
undergoes multiple scattering off the plasma constituents. Each of the three gluons included
in S(3) undergoes 2-dimensional quantum diffusion in the presence of the (Gaussian)
random potential A−. The formal solution to this quantum diffusion problem can be given
a path integral representation, shown in appendix A. The function S(3)(∆t,u,v) is built
by multiplying 3 such solutions (for the 3 gluons involved in the branching process) and
then averaging over the random potential according to eq. (2.4). The ensuing path integral
can be explicitly computed in a “harmonic approximation” which consists in ignoring the
logarithmic dependence of the jet quenching parameters q̂y and q̂z upon the transverse
separations between the 3 partons (recall the discussion after eq. (2.22)).

The path integral representation for S(3)(∆t,u,v) is well known for the case of an
isotropic plasma. In the harmonic approximation, it reads (see e.g. eq. (B.26) in ref. [69])

S(3)(∆t,u,v) =
∫ r(t=∆t)=v

r(t=0)=u
Dr exp

{
iM

∫ ∆t

0
dt

[
ṙ2

2 + Ω2r2

2

]}
, (3.20)

where r(t) =
(
ry(t), rz(t)

)
is a 2-dimensional path in the (y, z) plane and we denoted

M ≡ ζ(1− ζ)ω, Ω2 ≡ i [1− ζ(1− ζ)] q̂

2M . (3.21)

As suggested by these notations, the path integral (3.20) is formally the same as the solution
to the Schrödinger equation for a non-relativistic particle with mass M propagating in a
harmonic potential with complex frequency Ω. As generally for a harmonic oscillator, the
motions along different directions (here, y and z) are independent from each other. This
makes the generalisation of (3.20) to an anisotropic plasma quite straightforward: it suffices
to replace

q̂r2 = q̂(r2
y + r2

z)→
q̂y
2 r2

y + q̂z
2 r2

z (3.22)

where the factors 1/2 are related to our normalisation conventions in eq. (2.1) (namely, the
isotropic limit is obtained as q̂z = q̂y = q̂/2). Then the original 2-dimensional path integral
factorises into two independent 1-dimensional such integrals, which are easily evaluated
(since Gaussian), to yield

S(3)(∆t,u,v) =

√√√√ (1− i)k̂2
y

4π sinh Ωy∆t
exp

[
(i− 1)k̂2

y

4 sinh Ωy∆t
(
(u2
y + v2

y) cosh Ωy∆t− 2uyvy
)]

×

√
(1− i)k̂2

z

4π sinh Ωz∆t
exp

[
(i− 1)k̂2

z

4 sinh Ωz∆t
(
(u2
z + v2

z) cosh Ωz∆t− 2uzvz
)]
(3.23)

– 18 –



J
H
E
P
0
8
(
2
0
2
3
)
0
2
7

where

Ωy ≡
1 + i√

2

√
q̂y[1− ζ(1− ζ)]
ζ(1− ζ)ω

(3.24)

and
k̂2
y ≡

√
2ζ(1− ζ)ω q̂y[1− ζ(1− ζ)], (3.25)

and similarly for Ωz and k̂2
z . As expected, eq. (3.23) reduces to the well-known result in the

literature in the isotropic limit (see eq. (B.27) in ref. [69]).
As anticipated, the correlation function (3.23) determines the natural values of the time

difference ∆t: when ∆t is large enough for either |Ωy|∆t > 1, or |Ωz|∆t > 1, this correlator
decreases exponentially, since e.g. 1/(sinh Ωy∆t) ∝ exp{−∆t/tf,y} for large ∆t; here,

tf,y ≡
1

Re Ωy
=
√

2ζ(1− ζ)ω
q̂y[1− ζ(1− ζ)] , (3.26)

together with a similar expression for tf,z. In the isotropic case, tf,y = tf,z ≡ tf is
naturally interpreted as the formation time for medium-induced gluon branching. For
an anisotropic medium, the corresponding role is played by the smallest among tf,y and
tf,z (which corresponds to the largest among q̂y and q̂z). That is, the formation time is
controlled by the direction along which the transverse momentum broadening is strongest.
After also performing the Fourier transforms in eq. (3.19), one can infer the typical values
for the (anisotropic) transverse momentum broadening during formation: one thus finds
〈P 2

y 〉 = 〈P̄ 2
y 〉 = q̂y[1−ζ(1−ζ)]tf , with tf = min(tf,y, tf,z), and similarly for the z components.

3.3 Medium-induced splitting rates for polarised gluons

Even though the Fourier transform in eq. (3.19) would be straightforward to compute (in
the harmonic approximation), this is actually not needed for computing the branching
rate (3.18). Indeed, given the structure of the QCD vertices in eqs. (3.10)–(3.13), it is
enough to compute∫

d2P

(2π)2

∫
d2P̄

(2π)2 PyP̄y S̃
(3)(∆t,P , P̄ ) = ∂uy∂vyS

(3)(∆t,u,v)
∣∣∣
u=v=0

(3.27)

= 2π
[

(1− i)k̂2
y

4π sinh Ωy∆t

]3/2 [
(1− i)k̂2

z

4π sinh Ωz∆t

]1/2

−→
∆t→0

2π
[ 1

2π
1− i
1 + i

ζ(1− ζ)ω
∆t

]2
,

together with a similar double integral with PyP̄y → PzP̄z.
In the second line of eq. (3.27), we have also shown the behaviour of the result in the

limit ∆t→ 0, to emphasise the fact that the subsequent integration over ∆t (cf. eq. (3.18))
would generate a linear divergence

∫
d∆t/(∆t)2 from the inferior limit of the integral at

∆t = 0. To understand the origin of this divergence and also the way to cure it, let us
observe that this limit ∆t→ 0 is in fact equivalent to the vacuum limit q̂a → 0 (with a = y

or z): indeed, ∆t enters the previous results only via the products Ωy∆t and Ωz∆t, and
Ωa ∝

√
q̂a. Hence, the divergence observed when ∆t → 0 is related to the fact that our
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results also include vacuum-like radiation (bremsstrahlung) and, moreover, they do that
in a wrong way: gluon emissions in the vacuum can occur at all times −∞ < t1, t2 <∞,
and when all the regions in t1 and t2 are included, the overall result must vanish (since
energy-momentum conservation forbids an on-shell parton to decay into two other on-shell
partons). Hence, the fact that our results seem to admit a non-trivial (and even divergent)
“vacuum-limit” is unphysical — this is due to the fact that we restricted the time integrations
to 0 < t1, t2 < L, which is indeed appropriate for the (relatively soft) medium-induced
emissions, but not also for the vacuum-like emissions. The way to cure this is however
obvious: we are anyway interested in medium-induced emissions alone, so it is enough the
subtract the “vacuum-limit” from our results.

As an example, let us exhibit the calculation of the decay rate for the process y → z, z

— that is, a parent gluon with linear polarisation along the y axis decays into 2 gluons
polarised along the z axis. Using the respective splitting function from eq. (3.13) together
with eqs. (3.18) and (3.27), and the subtraction of the vacuum contribution as above
discussed, we are left with

dPy→zz
dζdt

= g2Nc

2πω2ζ(1−ζ) Re
∫ L

0
d∆t

∫
d2P

(2π)2

∫
d2P̄

(2π)2 PyP̄y S̃
(3)(∆t,P , P̄ ) (3.28)

= g2Nc

ω2ζ(1−ζ) Re
∫ L

0
d∆t


[

(1−i)k̂2
y

4π sinhΩy∆t

]3/2[
(1−i)k̂2

z

4π sinhΩz∆t

]1/2

−
[ 1

2π
1−i
1+i

M

∆t

]2
 ,

where we recall that M = ζ(1− ζ)ω. The remaining integral over ∆t is now well defined.
Since the integrand is exponentially suppressed when ∆t � tf with tf � L (recall our
assumption that M � ωc), one can extend the upper limit to infinity without loss of
accuracy. Then the above integral is conveniently rewritten as

Re
∫ ∞

0
d∆t {· · · } = [ζ(1− ζ)ω]3/2

2(2π)2

√
2[1− ζ(1− ζ)]

(
q̂y q̂z

)1/4
f

(√
q̂z/q̂y

)
, (3.29)

where we defined

f(a) ≡
∫ ∞

0
dx

[ 1
a1/2x2 −

1
sinh1/2 ax sinh3/2 x

]
. (3.30)

The isotropic limit q̂z = q̂y = q̂/2 corresponds to a = 1 and then one finds f(1) = 1. For
a medium which is only weakly anisotropic, ∆q̂ � q̂, with ∆q̂ ≡ q̂z − q̂y and q̂ ≡ q̂z + q̂y,
a ' 1 + ∆q̂/q̂ is close to one, and

f(a) ' 1− a− 1
4 ' 1− ∆q̂

4q̂ = 1− 1
4
q̂z − q̂y
q̂z + q̂y

when ∆q̂ � q̂ . (3.31)

In the second part of this paper, we shall study the energy distribution of polarised
partons, as produced via multiple medium-induced branchings. To that aim, we will need
the inclusive rate for the transition a→ b between 2 given polarisation states a and b. We
shall compute this inclusive rate starting with the exclusive rate for the process a→ b, c

and summing over the two possible polarisation states for the gluon c. That is, the daughter
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gluon that we will explicitly follow is that with splitting fraction ζ. (So long as the energy
of the measured daughter gluon is specified as well, the two daughter gluons cannot be
confused with each other.) We are thus led to define

dPa→b
dζdt

≡
∑

λc=y,z

dPa→bc
dζdt

, (3.32)

where it is understood that the parent gluon has energy ω and polarisation state λa, whereas
the measured daughter gluon has energy ζω and polarisation state λb.

It is straightforward although a bit tedious to derive the analog of eqs. (3.27)–(3.29) for
all the relevant a→ b transition channels. The results are suggestively written as follows

dPz→z
dζdt

= ᾱs
(q̂y q̂z)1/4
√

2ω
A(q̂z/q̂y) γ(ζ)

[
F0
z→z(ζ) +G(q̂z/q̂y)F1

z→z(ζ)
]
. (3.33)

dPz→y
dζdt

= ᾱs
(q̂y q̂z)1/4
√

2ω
A(q̂z/q̂y) γ(ζ)

[
F0
z→y(ζ)−G(q̂z/q̂y)F1

z→y(ζ)
]

(3.34)

dPy→z
dζdt

= ᾱs
(q̂y q̂z)1/4
√

2ω
A(q̂z/q̂y) γ(ζ)

[
F0
y→z(ζ) +G(q̂z/q̂y)F1

y→z(ζ)
]

(3.35)

dPy→y
dζdt

= ᾱs
(q̂y q̂z)1/4
√

2ω
A(q̂z/q̂y) γ(ζ)

[
F0
y→y(ζ)−G(q̂z/q̂y)F1

y→y(ζ)
]

(3.36)

where ᾱs ≡ αsNc/π, γ(ζ) is a splitting kernel which summarises the ζ-dependence of the
medium-induced radiation,

γ(ζ) = [1− ζ(1− ζ)]1/2

ζ1/2(1− ζ)1/2 , (3.37)

and the new functions A(q̂z/q̂y) and G(q̂z/q̂y) are defined as

A(q̂z/q̂y) ≡
1
2 [f(a) + f(1/a)] , G(q̂z/q̂y) ≡

f(1/a)− f(a)
f(a) + f(1/a) , (3.38)

with a =
√
q̂z/q̂y and the function f(a) introduced in eq. (3.30). In the isotropic limit

(a → 1), one has A → 1 and G → 0. For an anisotropic medium, G(a) is positive when
a > 1 and negative when a < 1. In particular, in the limit of a small anisotropy, ∆q̂ � q̂,
one finds G(q̂z/q̂y) ' ∆q̂/4q̂. In figure 1, we plot G, as well as

Ã(q̂z/q̂y) ≡
[4q̂y q̂z
q̂ 2

]1/4
A(q̂z/q̂y) =

(
1− (∆q̂/q̂)2

)1/4
A(q̂z/q̂y) (3.39)

which measures the overall change in the splitting rates in eqs. (3.33)–(3.36) due to medium
anisotropy. These functions are plotted in terms of the dimensionless ratio ∆q̂/q̂, which is
the most direct measure of the medium anisotropy. Interestingly, the function Ã remains
very close to one up to very large asymmetries |∆q̂|/q̂ ≤ 1, which demonstrates that the
anisotropy has only a tiny effect on the total branching rate. On the contrary, the function G
has a rather pronounced dependence upon the anisotropy, which is quasi-linear in ∆q̂. The
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Figure 1. The functions Ã(q̂z/q̂y) and G(q̂z/q̂y) which control the medium-induced branching
rates in an anisotropic plasma are plotted as functions of the medium anisotropy ∆q̂/q̂, where
∆q̂ = q̂z − q̂y and q̂ = q̂z + q̂y.

quantity ∆q̂/q̂ runs between −1 when q̂z = 0 and 1 when q̂y = 0 such that in a maximally
anisotropic plasma G takes the value G(±1) = ±0.29.

The splitting functions which carry an upper label 0 are the only ones to matter in the
case of an isotropic medium. They have the following expressions:

F0
z→z(ζ) = F0

y→y(ζ) = 1
2

(1− ζ
ζ

+ 2ζ
1− ζ + ζ(1− ζ),

)
F0
z→y(ζ) = F0

y→z(ζ) = 1
2

(
ζ(1− ζ) + 1− ζ

ζ

)
. (3.40)

For an anisotropic medium, there are additional contributions which involve the splitting
functions carrying the upper index 1; these read

F1
z→z(ζ) = F1

y→y(ζ) = 1
2

(1− ζ
ζ

+ ζ(1− ζ)
)

F1
z→y(ζ) = F1

y→z(ζ) = 1
2

(1− ζ
ζ
− ζ(1− ζ)

)
. (3.41)

Using the above expressions, it is easily to check that the total branching rate, averaged
over the initial polarisation and summed over the final ones, takes the form

dP
dζdt

≡ 1
2

∑
λa,b=y,z

dPa→b
dζdt

= ᾱs
(q̂y q̂z)1/4
√

2ω
A(q̂z/q̂y) γ(ζ)F(ζ), (3.42)

were F(ζ) is the unpolarised DGLAP splitting function:

F(ζ) = 1− ζ
ζ

+ ζ

1− ζ + ζ(1− ζ). (3.43)

Notice that the function A(q̂z/q̂y) characterises the strength of the total branching rate,
whereas the function G(q̂z/q̂y) has disappeared after summing over polarisations — this
function only matters for the polarisation flip at the splitting vertices.

As a check, let us verify that, using the above, we recover the well-known result for
the BDMPS-Z branching rate for an unpolarised parton propagating through an isotropic
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medium: when q̂z = q̂y = q̂/2 (and hence A = 1 and G = 0), one indeed finds the
expected result

1
2
dPz→z + dPy→z

dζdt
= 1

2
dPy→y + dPz→y

dζdt
= ᾱs

4

√
q̂

ω
γ(ζ)F(ζ), (3.44)

which in particular is independent of the polarisation of the (measured) daughter gluon.
One important aspect of the splitting rates in eqs. (3.33)–(3.36) is the fact that, unlike

the familiar law for bremsstrahlung in the vacuum, they depend not only upon the splitting
fraction ζ, but also upon the energy ω of the parent parton: the medium-induced branching
probability increases like 1/

√
ω with decreasing ω. This feature is of course well known

for the case of an isotropic medium, where it has important consequences (notably, in
relation with multiple branching; see e.g. [5, 55, 56, 69, 75]), that we briefly recall now.
Its additional implications for the case where the plasma is anisotropic will be thoroughly
discussed in the remaining part of the paper.

So, let us consider the branching rate for an unpolarised parent parton in an isotropic
medium, cf. eqs. (3.42) and (3.44). After integrating this rate over all times 0 < t < L, with
L the medium size available to the parent parton, one finds

dP
dζ

= ᾱs
L

tf (ω, ζ) F(ζ) with tf (ω, ζ) ≡
√

4ζ(1− ζ)ω
q̂[1− ζ(1− ζ)] . (3.45)

The quantity ζ(dP/dζ) can be interpreted as the probability for having a single branching
with splitting fraction9 ζ < 1/2. When this quantity becomes of order one or larger, the
effects of multiple branching become important and our formalism must be extended to
account for them. According to eq. (3.45), this happens when ζ(1 − ζ)ω . ωbr ≡ ᾱ2

sωc,
where we recall that ωc = q̂L2/2. This condition is satisfied by two types of emissions:
(i) very asymmetric emissions with ζ � 1 by a parent parton with generic energy ω, or
(ii) quasi-democratic emissions with generic values of ζ (say, ζ ∼ 1/2), but such that the
parent parton itself is sufficiently soft: ω . ωbr. Case (i) typically applies to the successive
emissions of “primary” gluons by the leading parton (whose initial energy E can be very
large, even larger than ωc). These primary gluons have typical energies ω . ωbr, since for
such energies, their emission probability is of order one.

After being emitted, the primary gluons are bound to split further, mostly via democratic
branchings, and thus transmit their energy to a myriad of even softer gluons. The typical
interval ∆t between two such branchings can be estimated by replacing L→ ∆t in eq. (3.45):
the probability ζ(dP/dζ) becomes ∼ O(1) when ∆t ∼ tf (ω)/ᾱs, which is much smaller than
L for low enough ω � ωbr. These “democratic cascades” are expected to stop when the
gluon energies become as small as the typical energies of the plasma constituents (say, their
temperature T for a medium in thermal equilibrium) or as the Bethe-Heitler energy ωBH,
which corresponds to emissions with formation times of the order of the mean free path.

In section 4, this picture of jet evolution via multiple branching will be generalised to
include anisotropy effects and to keep trace of the parton polarisations.

9The case 1/2 < ζ < 1 can be similarly treated by using the symmetry of eq. (3.45) under ζ → 1− ζ.
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3.4 Polarisation distribution after one splitting: a qualitative discussion

To get more intuition for the formalism developed so far, let us compute the transmission
of polarisation via a single gluon branching. Specifically, we shall assume that the parent
gluon has probability p of being polarized in the z direction and hence probability 1− p
of being polarized in the y direction. We are interested in the probility p′ for an emitted
daughter parton with splitting fraction ζ to be polarized in the z direction. This is given by

p′ = pPz→z + (1− p)Py→z
p (Pz→z + Pz→y) + (1− p) (Py→z + Py→y)

(3.46)

where Pz→z = dPz→z/dζdt etc is a shorthand for the splitting rates introduced in eqs. (3.33)–
(3.36). Notice that the dependence upon the energy ω of the parent parton disappears in
the ratio. Hence, the r.h.s. of eq. (3.46) merely depends upon the splitting fraction ζ.

For more clarity, we first analyze the case of an isotropic medium with q̂z = q̂y = q̂/2.
In that case, the dependence upon q̂ drops out in the ratio and we are left with

p′ − 1
2 = h(ζ)

(
p− 1

2

)
(3.47)

where

h(ζ) ≡ ζ2

(1− ζ)2 + ζ2 + ζ2(1− ζ)2 (3.48)

We immediately see that for p = 1/2, i.e. an unpolarised initial gluon, the emitted gluon is
also unpolarised, p′ = 1/2. Importantly, 0 ≤ h(ζ) ≤ 1 for all 0 ≤ ζ ≤ 1. Therefore, in an
isotropic medium, the net polarisation reduces with each splitting. After multiple splitting
we therefore expect the net polarisation of the initial gluon to have gone away. Furthermore,
h(ζ = 1) = 1, so when the daughter parton carries all of the energy fraction of the mother
parton, we have p′ = p. Similarly, h(ζ = 0) = 0 so that a soft parton has no knowledge of
the polarisation of the mother parton and is unpolarised in an isotropic medium.

We now turn to the case of an anisotropic medium, for which we find

p′ − 1
2 =

ζ2(p− 1/2) + 1
2 G(q̂z/q̂y)(1− ζ)2

(1− ζ)2 + ζ2 + ζ2(1− ζ)2 + 2G(q̂z/q̂y) (p− 1/2)ζ2(1− ζ2) (3.49)

This equation becomes more intuitive if we assume that the net initial polarization is small,
p− 1/2� 1, and/or the medium is only slightly anisotropic, ∆q̂ � q̂, so that we can drop
the term proportional to (p− 1/2)G in the denominator.10 Then

p′ − 1
2 = h(ζ)

(
p− 1

2

)
+ g(ζ) 1

2 G(q̂z/q̂y), (3.50)

where
g(ζ) ≡ (1− ζ)2

(1− ζ)2 + ζ2(1− ζ)2 + ζ2 = h(1− ζ). (3.51)

10More precisely we are doing a Taylor expansion in p−1/2 and ∆q̂/q̂. In order for corrections to eq. (3.49)
to be subleading we need (p− 1/2)2 � 1, (p− 1/2)(∆q̂/q̂)� 1 and (∆q̂/q̂)2 � 1, so that the anisotropy is
small and the initial polarization is not too big. Notice that because of the squares in these conditions, the
conditions are not very stringent and eq. (3.50) is fairly robust.
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The second term on the right hand side of eq. (3.50) is a source term that increases
polarisation in the z direction (assuming that G > 0). It is independent of the polarisation
of the mother parton.

In eq. (3.50) we have two competing effects. The term h(ζ)
(
p− 1

2

)
, which is also

present in an isotropic medium, tends to reduce the net polarisation. The other term
proportional to G(q̂z/q̂y) tends to align the polarisation of the daughter gluon with the z
direction. When the daughter parton carries nearly all of the energy of its parent, ζ → 1,
we find

p′ − 1
2 ' p−

1
2 + (1− ζ)2 1

2 G(q̂z/q̂y), (3.52)

where the source term ∝ (1− ζ)2G is very small and should strictly speaking be discarded.
Thus the daughter parton nearly retains the polarisation of the mother parton. In the
opposite situation where the measured daughter parton is soft ζ → 0, we obtain

p′ − 1
2 ' ζ

2
(
p− 1

2

)
+ 1

2 G(q̂z/q̂y). (3.53)

This time, it is the first term ∝ ζ2 which can be discarded, hence the polarisation of the
soft daughter gluon is nearly independent of that of its parent and it is fully driven by the
anisotropy of the medium: when G > 0, its polarisation is aligned with the z axis.

4 Jet evolution in an anisotropic medium

So far we have considered a single splitting in an anisotropic medium. Yet, our focus is on
the relatively soft emissions with formation times tf � L, for which the effects of multiple
branching are expected to be important. Hence, in order to understand what a jet looks
like after traversing an anisotropic plasma, we need to allow for multiple splittings. We will
do this by solving evolution equations for the jet. These are rate equations — i.e. kinetic
equations involving gain and loss terms — with the rates given by the probabilities for one
splitting per unit time, as shown in eqs. (3.33)–(3.36).

We want to track how the polarisation of jet partons at energy fraction ξ = ω/E

changes with time. Here ω is the energy11 of a parton and E is the energy of the initial
parton that seeds the jet. As before, we assume that the leading parton moves along the x
axis (so, it is orthogonal to the collision axis z), that the jet involves only gluons, and that
q̂y and q̂z are constant throughout the plasma — albeit generally different from each other.
As discussed at the beginning of section 3, our approach is strictly valid for parton energies
within the range ωBH � ω � ωc, so we shall not track the very soft gluons with ω . ωBH,
which propagate at large angles.

A crucial assumption here is that all jet partons move roughly collinearly. This is
needed in order for the plane transverse to the direction of motion to be the same for all
jet partons, including the softest ones. That allows us to describe the polarisation of all
partons using fixed directions y and z. This assumption is justified so long as the energies

11More precisely, ω and E are the “plus” components of the respective LC momenta, recall the discussion
after eq. (2.2); they are referred to as “energies” for brevity.
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of the jet partons are much larger than the transverse momenta they acquire via collisions
in the medium. Roughly speaking, the condition reads ω �

√
q̂L with q̂ ≡ q̂y + q̂z, but this

condition gets modified for the sufficiently soft gluons, whose lifetime (between successive
splittings) is smaller than L (see below).

Another important assumptions, whose justification is far from trivial in the present
context, is the fact that one can follow the time evolution of the polarised-gluon one-point
functions — the average numbers of gluons with a given polarisation and in a given energy
bin — independently of the higher n-point functions with n ≥ 2, which describe correlations.
Each splitting vertex correlates the polarisation of the parent gluon with those of the two
daughter gluons, so in general one should expect the evolution of the one-point functions
to be related to that of the two-point functions, which in turn are related to three-point
functions, and so on. That is, the evolution equations for the n-point functions should
generally form a non-linear hierarchy of coupled equations. Yet, as we shall argue in the next
section, there is an important limit, which gives the dominant contributions to the evolution
and in which the evolution equations can be decoupled from each other. In this limit — that
was also used in the original study of unpolarised gluon evolution in an isotropic plasma [55]
—, the one-point functions obey closed evolution equations, that we will write down and
solve explicitly (via both analytic approximations and exact numerical studies).

4.1 Disentangling the hierarchy

Given the structure of eqs. (3.33)–(3.36), it is convenient to define a rescaled time variable,
which is dimensionless:

τ ≡ ᾱs
(q̂z q̂y)1/4
√

2E
A(q̂z/q̂y) t (4.1)

We shall use the notation τL for the maximum value of this variable, corresponding to t = L.
To gain more intuition for the maximum value, let us notice that, in the case of an isotropic
plasma (q̂z = q̂y ≡ q̂/2),

τL = ᾱs

√
q̂

4E L =
√
ωbr
2E and τL√

ξ
=
√
ωbr
2ω , (4.2)

where ω = ξE and we recall that ωbr = ᾱ2
sωc = ᾱ2

s q̂L
2/2. From the discussion following

eq. (3.45), we recall that multiple branchings become important when ω . ωbr. Therefore the
most interesting physical regime for us here corresponds to the case where 1� τL &

√
ξ � ξ.

The condition τL � 1 ensures that E � ωbr, so the leading parton survives in the final
jet, after crossing the medium12 (it does not suffer a democratic branching itself). The
condition τL &

√
ξ means that we concentrate on gluon emissions which are sufficiently

soft (ω = ξE . ωbr) to be sensitive to multiple branching. They can be either soft (ζ � 1)
primary emissions by the leading parton, or quasi-democratic branchings (ζ ∼ 1/2) of the
primary gluons.

12Note that this condition allows e.g. E ∼ ωc, in which case τL ∼ ᾱs.
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In terms of this new time variable, the medium-induced branching rates take a more
compact form, e.g.

dPz→z
dζdτ

= γ(ζ)√
ξ

[
F0
z→z(ζ) +G(q̂z/q̂y)F1

z→z(ζ)
]
. (4.3)

We observe once again that the branching rate depends not only upon the splitting fraction
ζ but also upon the energy fraction ξ of the parent gluon.

These branching rates are the main ingredients of the equations describing the time
evolution of the energy distributions of gluons with a given polarisation state, λ = y or
λ = z. These evolution equations (often referred to as the rate equations) are conveniently
written for the respective spectra (the one-point functions):

Dy(ξ, τ) ≡ ξ dNy

dξ
, Dz(ξ, τ) ≡ ξ dNz

dξ
, (4.4)

where Nλ(ξ, τ) is the number of jet constituents with polarisation λ and energy fraction ξ.
Notice that the polarisation of the “leading parton” — the gluon which initiates the cascade
— is left implicit in our notations. This gluon can either have some fixed polarisation λ0 (in
which case we shall use the more elaborate notation Dλ0→λ(ξ, τ)), or be unpolarised: the
evolution equations are the same in both cases, it is only the initial condition which changes.

The two functions Dy and Dz will mix under this evolution, as the polarisation can flip
at the splitting vertices. Moreover, as anticipated at the beginning of this section, they could
also mix with higher n-point functions with n ≥ 2 — like the pair-density D(2)

λ,λ′(ξ, ξ′, τ) —,
due to the correlations in polarisation space introduced by the medium-induced branchings.
Yet, as we shall argue in what follows, there exists a meaningful approximation in which
the mixing with the higher n-point functions can be neglected. In that approximation, one
can write a closed system of equations for the one-point functions Dy and Dz alone.

Before we present the mathematical argument, let us first exhibit its graphical inter-
pretation. In the left panel of figure 2 we show a generic gluon cascade initiated by a
leading parton a with polarisation λa. We sum over the polarisations of all the final and
intermediate gluons except for one — the final gluon indicated as “b”. After performing
this sum, the cascade contributes to the one-point function Dλa→λb(ξb, τ) ≡ Da→b(ξb, τ).
The question we would like to adress is, can one generate this one-point function by solving
a closed equation, which is not sensitive to higher n-point functions with n ≥ 2? This is
possible provided one can effectively replace the full cascade by the branch leading from a

to b which contains primary emissions alone (see the right panel in figure 2). This branch,
which is made with all the ancestors of b, is indeed unique; a “primary emission” is defined
as a direct emission by any gluon belonging to it.

Clearly, this argument has to do with unitarity: it holds provided the effects of all
the secondary and subsequent branchings sum up to unity provided none of the other
partons is measured, except for b. This statement would be almost obviously true if there
was not for the gluon polarisations and the associated correlations, as introduced by the
branching vertex.

To be specific, let us consider the two particular cascades shown in figure 3. The
first one, in the left panel, is a primary branch — it involves two primary emissions. Its
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Figure 2. Left: an example of jet evolution. The primary branch leading to the measured parton b
is highlighted in blue. Right: all secondary branchings (those which do not belong to the primary
branch) have been removed.

Figure 3. Left: the diagram corresponding to the cross-section σ2 in eq. (4.5). Right: the diagram
corresponding to the cross-section σ3 in eq. (4.6).

contribution σ2(a→ b) to the one-point function Da→b(ξb, τ) can be written as:

σ2(a→ b) =
∑
c,b1,c1

Pa→b1c1 Pb1→bc =
∑
b1,c1

Pa→b1c1
∑
c

Pb1→bc =
∑
b1

Pa→b1 Pb1→b, (4.5)

in schematic notations, whose meaning should be quite obvious. (Strictly speaking, a
branching probability like Pa→b1c1 also depends upon the branching time and upon the
longitudinal momentum fractions of the various gluons, but these dependences are irrelevant
for our present purposes.) In the last equality we introduced the probabilities summed over
the unmeasured daughter gluons, cf. eq. (3.32). It is quite clear that the final result in (4.5)
is formally consistent with an evolution involving the one-point functions alone.

The second branching sequence, as shown in the right panel of figure 3, contains one
additional splitting of the secondary type. Its contribution is similarly evaluated as

σ3(a→ b) =
∑

c,b1,c1,b2,c2

Pa→b1c1 Pb1→bc Pc1→b2c2 =
∑
b1,c1

Pa→b1c1 Pb1→b
∑
b2,c2

Pc1→b2c2 . (4.6)

Clearly, this contribution cannot be fully written in terms of reduced probabilities like Pa→b
in which only one of the two daughter gluons is measured. Via contributions of this type,
the evolution of the one-point function Da→b(ξb, τ) is coupled to two-point functions (in
this case, to D(2)

a→b2c2).
Yet, as we will shortly argue, it is a good approximation to replace∑

b2,c2

Pc1→b2c2 '
1
2
∑

a2,b2,c2

Pa2→b2c2 , (4.7)
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where the r.h.s. is independent of c1. In other terms, the result of summing over the
polarisations of both final gluons is roughly independent of the polarisation of the parent
gluon (and hence it is the same as for an unpolarised parent). We shall justify (4.7) in a
moment, but before that let us discussion its consequences for eq. (4.6): after using eq. (4.7),
the latter becomes

σ3(a→ b) '
(1

2
∑

a2,b2,c2

Pa2→b2c2

)∑
b1

Pa→b1 Pb1→b, (4.8)

that is, it is proportional to the contribution (4.5) of the respective primary branch.
Together with the two branching sequences shown in figure 3, let us consider all the

other cascades that are obtained via the successive branchings of the primary gluon c1 and
of its descendants. Thanks to eq. (4.7), all these cascades give contributions proportional
to that of the primary branch, cf. eq. (4.5). Moreover, by summing over all these cascades,
one finds the probability that the gluon c1 splits in all the possible ways, or it does not
split at all. Clearly this overall probability is equal to one. We conclude that the sum of all
the cascades generated via secondary branchings is simply equal to the contribution of the
primary branch alone, eq. (4.5).

It remains to justify eqs. (4.7). To that aim, let us consider the difference

∑
bc

dPy→bc
dζdt

−
∑
bc

dPz→bc
dζdt

= ᾱs
(q̂yŷz)1/4
√

2ω
A(q̂z/q̂y)γ(ζ)G(q̂z/q̂y)2ζ(1− ζ), (4.9)

where the r.h.s. has been obtained by using eqs. (3.33)–(3.36). This difference is proportional
to the function G(q̂z/q̂y) and hence it vanishes for an isotropic medium, as it could have
been expected — the correlations in polarisation space can only occur due to the medium
anisotropy. Yet, as compared to the anisotropic splitting functions F1

a→b(ζ) in eq. (3.41),
one sees that terms that would be singular for ζ → 0 and ζ → 1 have cancelled in the linear
combination in eq. (4.9). (The r.h.s. of eq. (4.9) is still singular in these limits, due to the
respective behaviour of the function γ(ζ), cf. eq. (3.37), but the remaining singularities
are integrable.) This is important since, as already observed in refs. [55, 76, 77] (in the
context of an isotropic medium), the jet evolution via medium-induced branchings is in fact
controlled by the strong singularities in 1/ζ3/2 or 1/(1− ζ)3/2 of the BDMPS-Z branching
rate at the endpoints ζ = 0 and respectively ζ = 1. When integrating out the contributions
of intermediate gluons with splitting fraction equal to ζ, the main singularities cancel
between gain (“real”) and loss (“virtual”) terms, but the finite contributions that are left
after such cancellations give the dominant results for the correlation functions. In particular,
they control the singular behaviour of the one-point function D(ξ, τ) near ξ = 0 and ξ = 1;
see e.g. eq. (4.18) below.

In view of the above, in the remaining part of this paper we shall neglect the non-
singular pieces proportional to ζ(1−ζ) in all the splitting functions in eqs. (3.40)–(3.41) and
also in the structure (3.37) of the splitting kernel γ(ζ). For the case of an isotropic medium,
the quality of this approximation has been explicitly checked by comparing the numerical
solutions corresponding to the two types of kernel (exact and approximate) [76, 77]. In this
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approximation, eq. (4.7) is correct and then it becomes possible to write a set of coupled
but closed evolution equations for the one-point functions Dy and Dz. These equations will
be presented in the next section.

4.2 Rate equations for the polarised gluon distributions

By following standard techniques (e.g. the method of the generating functional described
in [56]), one deduces the two following coupled equations for Dy and Dz:

dDy(ξ, τ)
dτ

=
∫ 1

ξ
dζ Kz→y(ζ)

√
ζ

ξ
Dz

(
ξ

ζ
, τ

)
+
∫ 1

ξ
dζ Ky→y(ζ)

√
ζ

ξ
Dy

(
ξ

ζ
, τ

)
− 1

2

∫ 1

0
dζ
[
Ky→z(ζ) +Ky→y(ζ)

] 1√
ξ
Dy(ξ, τ),

(4.10)

and

dDz(ξ, τ)
dτ

=
∫ 1

ξ
dζ Kz→z(ζ)

√
ζ

ξ
Dz

(
ξ

ζ
, τ

)
+
∫ 1

ξ
dζ Ky→z(ζ)

√
ζ

ξ
Dy

(
ξ

ζ
, τ

)
− 1

2

∫ 1

0
dζ
[
Kz→z(ζ) +Kz→y(ζ)

] 1√
ξ
Dz(ξ, τ).

(4.11)

The splitting kernels Kz→z(ζ) etc. contain the ζ-dependence of the branching rates like
eq. (4.3); they are defined as, e.g.

Kz→z(ζ) ≡
√
ξ
dPz→z
dζdτ

= γ(ζ)
[
F0
z→z(ζ) +G(q̂z/q̂y)F1

z→z(ζ)
]

' 1
ζ1/2 (1− ζ)1/2

[1− ζ
2ζ + ζ

1− ζ +G(q̂z/q̂y)
1− ζ

2ζ

]
,

(4.12)

where as shown in the second line, one is supposed to ignore the non-singular pieces
proportional to ζ(1− ζ), in conformity with the arguments in the previous subsection.

Equations (4.10)–(4.11) have a familiar structure, with “gain terms” and “loss terms”.
The “gain terms”, as shown in the first line of each of the two equations, represent the
rate for producing a gluon (ξ, λ) via the branching of a parent gluon with energy fraction
ξ′ = ξ/ζ > ξ and any polarisation state λ′ = y or z. The “loss terms”, as shown in the
second line, describe the decay of a gluon (ξ, λ) into two softer gluons with energy fractions
ζξ and (1 − ζ)ξ and arbitrary polarisation states. The integrals for the gain terms are
restricted to ζ > ξ because of the constraint ξ/ζ ≤ 1 on the energy fraction of the parent
gluon. The factor 1/2 in front of the loss terms is needed to avoid double counting. Its
origin is a bit subtle, so it is worth showing a more detailed argument.

Recall that a branching rate like Kz→z refers to the process where, for a parent gluon with
λ = z, the daughter gluon with splitting fraction ζ has polarisation z independently of the
polarisation state of the other daughter gluon, with splitting fraction 1−ζ. Hence, Kz→z(ζ) =
Kz→zz(ζ) + Kz→zy(ζ) in obvious notations. Similarly, Kz→y(ζ) = Kz→yz(ζ) + Kz→yy(ζ).
Now, in the loss term in eq. (4.11), ζ is a dummy variable which can take any value between
0 and 1. The decays where both daughter partons are in a same polarisation state, i.e.
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Kz→zz(ζ) and Kz→yy(ζ), are symmetric under the exchange of the daughter gluons, since
the respective rates are symmetric under ζ → 1− ζ (recall eqs. (3.10) and (3.13)). Clearly,
such processes would be counted twice when integrating over all values of ζ. As for the
remaining processes where the daughter gluons have different polarisation states, their
rates get interchanged when ζ → 1− ζ; that is, Kz→zy(1 − ζ) = Kz→yz(ζ), cf. eqs. (3.11)
and (3.12). So, these processes too would be counted twice after integrating over ζ.

In order to make contact with the known equations for the case of an isotropic plasma
and for unpolarised gluons, it is convenient to use the following linear combinations of Dy

and Dz:
Dtot ≡ Dy +Dz, and D̃ ≡ Dz −Dy. (4.13)

Dtot is the total spectrum for gluons and D̃ is the jet polarisation. Using eqs. (4.10)
and (4.11), it is straightforward to deduce the corresponding equations for Dtot and D̃.
One finds

dDtot(ξ, τ)
dτ

=
∫ 1

ξ
dζ K0(ζ)

√
ζ

ξ
Dtot

(
ξ

ζ
, τ

)
−
∫ 1

0
dζ K0(ζ) ζ√

ξ
Dtot(ξ, τ) (4.14)

and

dD̃(ξ, τ)
dτ

=
∫ 1

ξ
dζM0(ζ)

√
ζ

ξ
D̃

(
ξ

ζ
, τ

)
−
∫ 1

0
dζ K0(ζ) ζ√

ξ
D̃(ξ, τ)

+
∫ 1

ξ
dζ L0(ζ)

√
ζ

ξ
Dtot

(
ξ

ζ
, τ

)
.

(4.15)

with the new kernels

K0(ζ) ≡ 1
ζ3/2(1− ζ)3/2 , L0(ζ) ≡ (1− ζ)1/2

ζ3/2 G(q̂z/q̂y), M0(ζ) ≡ ζ1/2

(1− ζ)3/2 .

(4.16)

Quite remarkably, the evolution equation for the total number of partons Dtot takes exactly
the same form as for an isotropic medium [55, 56]. The exact solution to this equation is
known in analytic form [55], which will be useful for what follows.

The equation (4.15) obeyed by the polarised distribution D̃ is new and has an interesting
structure: besides a gain term and a loss term, with kernelsM0(ζ) and K0(ζ), respectively,
it also features a source term, proportional to the total parton distribution Dtot, which
is non-zero only in the presence of anisotropy. Indeed, its kernel L0(ζ) is proportional
to the function G(q̂z/q̂y) which would vanish for an isotropic plasma, cf. eq. (3.38). This
demonstrates that, in an anisotropic medium, non-trivial polarisation can be generated via
medium-induced gluon branchings, independently of the polarisation of the parent gluons.

This is in agreement with our previous discussion of a single splitting in section 3.4:
the source term in eq. (4.15) is analogous to the second piece, proportional to G(q̂z/q̂y),
in the r.h.s. of eq. (3.50). In fact, one can recognise similar properties in both cases. The
kernel g(ζ) in eq. (3.50) vanishes like (1− ζ)2 as ζ → 1, whereas the corresponding kernel
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L0(ζ) in eq. (4.15) is suppressed by (1− ζ)2 relative to the isotropic functions K0(ζ) and
M0(ζ). This reflects the fact that a daughter parton carrying nearly all of the energy of
its parent parton does not “feel” the anisotropy of the medium — rather, it retains the
polarisation of the parent.

Furthermore, the gain term on the r.h.s. of eq. (4.15), with kernelM0(ζ), show how
polarisation gets transmitted from the parent parton to the daughter parton with splitting
fraction ζ. It is analogous to the first term on the right hand side in eq. (3.50) for a single
splitting. Like in that case, the respective kernel is suppressed by ζ2 in the soft limit ζ → 0
(soft gluons do not “know” about the polarisation of their parents). Finally, the loss term
on the r.h.s. of eq. (4.15) describes the decay of partons carrying polarisation. As their
total decay rate is (to our order of approximation) independent of their polarisation, the
respective kernel is the unpolarised function K0(ζ) — the same as in eq. (4.14).

4.3 A Green’s function for the polarised gluon distribution

In what follows, we shall solve the rate equations (4.14) and (4.15) with the initial condition
that, at time τ = 0, the jet consists of a single gluon (the “leading parton”) which
is unpolarised:13

Dtot(ξ, τ = 0) = δ(1− ξ) and D̃(ξ, τ = 0) = 0. (4.17)

The corresponding solution for Dtot is known in analytic form and reads [55, 77]

Dtot(ξ, τ) = τ√
ξ(1− ξ)3/2 e

−πτ2/(1−ξ) . (4.18)

For small τ and ξ close to 1, this exhibits a pronounced peak at 1− ξ . τ2 which describes
the leading parton. The width of this peak reflects the fact that the energy loss by the
leading parton, namely E(1 − ξ) ∼ Eτ2 ∼ ᾱ2

s q̂t
2, is associated with the radiation of soft

gluons. For ξ � 1, the full spectrum in presence of multiple branching, Dtot ' τ/
√
ξ, is

formally the same as the spectrum that would be created via a single emission by the
leading parton, cf. eq. (3.45). This reflects the turbulent nature of the democratic gluon
cascades [55]. In particular, the power-law spectrum 1/

√
ξ is a fixed point of the rate

equation (4.14): the gain and loss terms in its r.h.s. exactly cancel each other for this
particular spectrum.

The knowledge of the exact solution (4.18) for the total spectrum allows us to deduce
the corresponding solution Dtot for the polarised distribution D̃ without too much effort.
To that aim, it is convenient to first consider the homogeneous version of eq. (4.15), that is,
the equation obtained after removing the source term in the second line of (4.15). For more
clarity, we denote the respective solution as D̃0(ξ, τ); this obeys the homogeneous equation

dD̃0(ξ, τ)
dτ

=
∫ 1

ξ
dζM0(ζ)

√
ζ

ξ
D̃0

(
ξ

ζ
, τ

)
−
∫ 1

0
dζ K0(ζ) ζ√

ξ
D̃0(ξ, τ), (4.19)

13Note that in terms of the distributions Dy and Dz for gluons with definite polarisations, this initial
condition reads Dy(ξ, τ = 0) = Dz(ξ, τ = 0) = δ(1− ξ)/2 (cf. eq. (4.13)).
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with the initial condition D̃0(ξ, τ = 0) = δ(1− ξ). The only difference w.r.t. eq. (4.14) for
Dtot refers to the kernel M0(ζ) for the gain term, which satisfies M0(ζ) = ζ2K0(ζ) (cf.
eq. (4.16)). It is then easy to check that the respective solutions are related in the same
way, that is,

D̃0(ξ, τ) = ξ2Dtot(ξ, τ) = ξ3/2 τ

(1− ξ)3/2 e
−πτ2/(1−ξ) . (4.20)

This can be demonstrated by inserting D̃0 ≡ ξ2D̃1 within eq. (4.19); one then finds
that D̃1 obeys the same equation as Dtot, i.e. eq. (4.14), with the initial condition
D̃1(ξ, τ = 0) = δ(1− ξ).

Here, we merely use eq. (4.19) as an auxiliary equation, but in fact, this equation has an
interesting interpretation, which is more transparent in the case of an isotropic plasma. In
that case, eq. (4.19) describes the transmission of polarisation from the leading parton to the
partons in the cascade via successive branchings. Its solution (4.20) represents the polarised
gluon distribution created by a leading gluon with initial polarisation along the z axis
(Dz(ξ, τ = 0) = δ(1− ξ) and Dy(ξ, τ = 0) = 0). For ξ ' 1, eq. (4.20) is very similar to the
unpolarised distribution (4.18); this shows that the leading parton essentially preserves its
initial polarisation so long as it survives in the medium (i.e. for τ � 1). On the other hand,
for the much softer modes with ξ � 1, D̃0(ξ, τ) is suppressed by ξ2 compared to Dtot(ξ, τ ),
meaning that the net polarisation is negligible. This is of course consistent with the fact
that soft gluons cannot inherit the polarisation of their parents. These considerations are
illustrated in the left panel of figure 4, where we have plotted the two functions Dtot(ξ, τ)
and D̃0(ξ, τ).

The above discussion shows that the only way to generate a net polarisation for the
soft gluons is through the effects of anisotropy, as encoded in the source term in eq. (4.15).
Using the above solution for D̃0(ξ, τ), one can construct the Green’s function G(ξ, ξ1, τ)
which permits to solve the inhomogeneous equation (4.15) for an arbitrary source term.
This Green’s function obeys the sourceless equation, that is,

dG(ξ, ξ1, τ)
dτ

=
∫ 1

ξ
dζM0(ζ)

√
ζ

ξ
G

(
ξ

ζ
, ξ1, τ

)
−
∫ 1

0
dζ K0(ζ) ζ√

ξ
G(ξ, ξ1, τ), (4.21)

with the initial condition

G(ξ, ξ1, τ = 0) = δ(ξ − ξ1) . (4.22)

Comparing eqs. (4.21) and (4.19), one immediately sees that

G(ξ, ξ1, τ) = θ(ξ1 − ξ)
ξ1

D̃0

(
ξ

ξ1
,
τ√
ξ1

)
. (4.23)

Notice the θ-function in the structure of G(ξ, ξ1, τ): it shows that the integral over ζ in the
gain term in eq. (4.21) is truly restricted to ζ > ξ/ξ1. After also using (4.20) and (4.18),
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Figure 4. Left: the total (unpolarised) gluon distribution Dtot(ξ, τ ) (cf. eq. (4.18)) and the polarised
distribution D̃0(ξ, τ) that would be created in an isotropic medium by a polarised leading gluon
(cf. eq. (4.20)). Both functions are multiplied by

√
ξ, to emphasise the emergence of the turbulent

spectrum Dtot ∝ 1/
√
ξ at small ξ . τ2. Right: the source term I(ξ, τ) responsible for inducing

polarisation in an anisotropic medium, numerically computed from eq. (4.27) with G(q̂z/q̂y) = 0.3.
The solutions are shown down to very small values of ξ, to check the quality of the analytic
approximation (4.28).

one finds

G(ξ, ξ1, τ) = θ(ξ1 − ξ)
ξ1

(
ξ

ξ1

)2
Dtot

(
ξ

ξ1
,
τ√
ξ1

)

= θ(ξ1 − ξ)
(

ξ

ξ1(ξ1 − ξ)

)3/2
τ e−πτ

2/(ξ1−ξ) . (4.24)

We are finally in a position to solve the inhomogeneous eq. (4.15) with vanishing initial
condition. The solution can be expressed via the Green’s function as

D̃(ξ, τ) =
∫ 1

ξ
dξ1

∫ τ

0
dτ1G(ξ, ξ1, τ − τ1)I(ξ1, τ1), (4.25)

with I(ξ1, τ1) the source term in the r.h.s. of eq. (4.15), that is,

I(ξ1, τ1) =
∫ 1

ξ1
dζ L0(ζ)

√
ζ

ξ1
Dtot

(
ξ1
ζ
, τ1

)
. (4.26)

This source term is non-local in energy, since associated with radiation — polarised gluons
with energy fraction ξ1 are produced via the decay of gluons with any polarisation and
with larger energy fractions ξ1/ζ, for any 1 > ζ > ξ1 —, but is local in time, because
of our assumption that medium-induced emissions are quasi-instantaneous. The ensuing
convolution with the Green’s function in eq. (4.25) shows how the net polarisation of gluons
with energy fraction ξ1 created at time τ1 propagates (via successive branchings) into the
measured bin at ξ at the measurement time τ > τ1.

4.4 The polarised jet distribution

Eq. (4.25) with the source term (4.26) represents an exact but formal solution to the
equation obeyed by the polarised jet distribution D̃(ξ, τ). In order to render this solution
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more explicit and uncover its physical consequences, one needs to (at least, approximately)
perform the remaining convolutions over ξ1 and τ1, and also the integral over ζ in the
expression (4.26) for the source term. As previously explained, we are mainly interested in
the production of soft gluons with ξ � 1 at relatively small times τ � 1, so we shall adapt
our approximations to these conditions.

Let us start by simplifying the source term. Using the expression in eq. (4.16) for the
kernel L0 together with eq. (4.18) for Dtot, one finds

I(ξ1, τ1) = G(q̂z/q̂y)
∫ 1

ξ1
dζ (1− ζ)1/2 ζ

ξ1

τ1
(ζ − ξ1)3/2 e

−πτ2
1 ζ/(ζ−ξ1) . (4.27)

We shall later check that, when ξ � 1, the convolution in eq. (4.25) is controlled by ξ1 � 1
as well. On the other hand, the integral in eq. (4.27) is convergent at its upper limit
and hence is dominated by relatively large values ζ ∼ 1. Indeed the would-be pole of the
integrand at ζ = ξ1 is regulated by the exponential, which effectively restricts the support of
the integration to ζ − ξ1 & ζτ2

1 . We can therefore neglect ξ1 next to ζ inside the integrand,
to deduce

I[ξ1, τ1] ' G(q̂z/q̂y)
τ1e
−πτ2

1

ξ1

∫ 1

0
dζ

√
1− ζ
ζ

= G(q̂z/q̂y)
πτ1e

−πτ2
1

2ξ1
. (4.28)

The final integral is indeed controlled by values of ζ in the bulk, say ζ ∼ 1/2, in agreement
with our previous discussion. This argument also shows that the polarisation source at
ξ1 � 1 is generated via the democratic branching of an unpolarised parent gluon which
is itself soft, with energy fraction ξ′ = ξ1/ζ ∼ 2ξ1. This dominance of the democratic
branchings within the source term is not a consequence of the polarised splitting function
— by itself, the kernel L0(ζ) in eq. (4.16) would rather favour very asymmetric splittings
with ζ � 1 —, but rather of the fact that the number of sources Dtot(ξ′, τ1) is rapidly
increasing with decreasing ξ′ = ξ1/ζ. Since ξ1 itself is small, this property favours relatively
large values of ζ, albeit not too large — since the kernel L0(ζ) vanishes when ζ → 1. This
competition ultimately selects intermediate values ζ ∼ 1/2.

In the right panel of figure 4, we display the results for the source term obtained
via numerical integration in eq. (4.27). Besides confirming the power-law increase ∝ 1/ξ1
at small ξ1 � 1 as analytically found in eq. (4.28), these numerical results also show
an interesting behaviour at larger values ξ1 > 0.1: the source term is rather abruptly
generated when decreasing ξ1 below 1. This region at large ξ1 is not covered by our
previous approximation (4.28), yet it can be analytically understood as follows: so long
as τ1 � 1, a polarised distribution at ξ1 ∼ O(1) can be generated via primary emissions
by the leading parton. This direct contribution to the source term can be estimated by
replacing Dtot (ξ1/ζ, τ1) ' δ(ξ1/ζ − 1) within the integrand of (4.26), which yields

I(ξ1, τ1) ' ξ1L0(ξ1) =
√

1− ξ1
ξ1

G(q̂z/q̂y). (4.29)

This result is independent of time but truly holds only for very small times τ1 � 1. Its
dependence upon ξ1 explains the shape of the curves in figure 4 (right) near ξ1 = 1. As
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Figure 5. The polarised gluon distribution D̃(ξ, τ) created in an anisotropic medium with
G(q̂z/q̂y) = 0.29 by an unpolarised leading gluon. The results are obtained via numerical in-
tegration in eq. (4.25) with the source term from (4.26) and the Green’s function (4.24). Left:
D̃(ξ, τ) is multiplied by

√
ξ to emphasise the turbulent spectrum at small ξ � τ2 (cf. eq. (4.33)).

Right: the ratio between the polarised and unpolarised distributions; one observes their proportion-
ality at small ξ, in agreement with (4.34).

expected, the leading parton contribution (4.29) to the source term dominates at ξ1 > τ2
1 ,

whereas the respective contribution (4.28) from democratic branchings becomes dominant
at small ξ1 . τ2

1 .
Substituting the approximate expression (4.28) for the source together with eq. (4.24)

for the Green’s function into eq. (4.25), one finds

D̃(ξ,τ)' π2 G(q̂z/q̂y)
∫ 1

ξ
dξ1

∫ τ

0
dτ1

(
ξ

ξ1(ξ1−ξ)

)3/2
(τ−τ1) e−π

(τ−τ1)2
ξ1−ξ

τ1
ξ1
e−πτ

2
1 . (4.30)

The integrand involves a competition between the power laws ξ−5/2
1 (ξ1 − ξ)−3/2, which

strongly enhance the contribution from values of ξ1 as small as possible, meaning ξ1 ∼ ξ, and
the exponential exp

{
− π(τ − τ1)2/(ξ1 − ξ)

}
, which limits the difference ξ1 − ξ to non-zero

values ξ1 − ξ & ∆τ2, with ∆τ ≡ τ − τ1. Since however both ξ1 and ∆τ are integration
variables, it seems quite clear that the maximal contribution to the integral should come
from their minimal values allowed by these two constraints, namely ∆τ2 ∼ ξ1 − ξ ∼ ξ.
Indeed, with these choices, ξ1 ∼ 2ξ is parametrically of order ξ, yet the exponent remains
of order one, so there is no exponential suppression. These values for ξ1 and ∆τ are in fact
correlated with each other: ξ1 ∼ 2ξ corresponds to a democratic branching and ∆τ ∼

√
ξ is

indeed the typical lifetime of a gluon with energy fraction ξ1 ∼ ξ before it undergoes such a
democratic branching,14 as discussed after eq. (3.45).

The dominance of democratic branchings in the case of eq. (4.30) has two well-identified
physical origins: (i) the fact that the source term in eq. (4.28) increases with decreasing
ξ1, and (ii) the fact that the Green’s function (4.24) is strongly suppressed for very
asymmetric splittings with ζ ≡ ξ/ξ1 � 1 (which in turn reflects the fact that soft splittings
lose memory of the polarisation of the parent parton).

14Indeed, this condition ∆τ ∼
√
ξ is equivalent to ∆t ∼ tf (ω)/ᾱs, which as explained after eq. (3.45)

represents the typical interval between two successive democratic branchings for gluons with energies ω ∼ ξE.
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Although physically appealing, the above argument calls for an explicit mathematical
proof, that we now present. To that aim, it is convenient to perform a change of integration
variables, from τ1 and ξ1, to ∆τ = τ − τ1 and v ≡

√
ξ/(ξ1 − ξ). Then eq. (4.30) becomes

D̃(ξ,τ)' π

ξ3/2 G(q̂z/q̂y)
∞∫

√
ξ/(1−ξ)

dv

[
v2

1+v2

]5/2 ∫ τ

0
d∆τ∆τ

(
τ−∆τ

)
e
−π v

2∆τ2
ξ e−π(τ−∆τ)2

.

(4.31)
Since ξ � 1, one can replace

√
ξ/(1− ξ) '

√
ξ in the lower limit of the integral over v.

We will shortly check that this double integral is controlled by values v ∼ 1 and
∆τ ∼

√
ξ. In order to analytically perform the integrations, it is convenient to assume that

τ is even larger, namely 1� τ �
√
ξ. Physically, this means that we focus on polarised

gluons with very low energies ω = ξE � ωbr (recall that ξ ∼ τ2 corresponds to ω ∼ ωbr).
Since τ �

√
ξ ∼ ∆τ , we can neglect ∆τ next to τ in the above integrand and then the

integral over ∆τ becomes trivial:∫ τ

0
d∆τ ∆τ

(
τ −∆τ

)
e
−π v

2∆τ2
ξ e−π(τ−∆τ)2 ' τ e−πτ2

∫ τ

0
d∆τ ∆τ e−π

v2∆τ2
ξ

= τe−πτ
2 ξ

2πv2

(
1− e−π

v2τ2
ξ

)
(4.32)

By inserting this result into eq. (4.31), one finds

D̃(ξ,τ)'G(q̂z/q̂y)
τe−πτ

2

2
√
ξ

∞∫
√
ξ

dv
v3

(1+v2)5/2

(
1−e−π

v2τ2
ξ

)

'G(q̂z/q̂y)
τe−πτ

2

2
√
ξ

∞∫
√
ξ/τ

dv
v3

(1+v2)5/2 = G(q̂z/q̂y)
3

τe−πτ
2

√
ξ

[
1+O(

√
ξ/τ)

]
. (4.33)

Notice that the final integral is controlled by values v ∼ 1, as anticipated. Hence, neither
the exponential within the integrand in the first line, nor the lower limit

√
ξ/τ on the

integral over v in the second line (that was precisely introduced by the exponential) were
important for the final result. Indeed, when τ �

√
ξ and v ∼ 1, the exponent v2τ2/ξ is

large and the exponential is strongly suppressed. When v ∼ 1, it is easy to check that the
previous integral in eq. (4.32) is indeed controlled by ∆τ ∼

√
ξ.

Remarkably, D̃(ξ, τ) is simply proportional to Dtot(ξ, τ) for such small values of ξ:

D̃(ξ, τ)
Dtot(ξ, τ) '

G(q̂z/q̂y)
3 for ξ � τ2. (4.34)

Although derived here for very small energies ω � ωbr, we expect this relation between the
polarised and the total distributions to remain qualitatively true for all the gluons affected
by multiple branching — those with energies ω . ωbr, or ξ . τ2 (so long as τ � 1, of
course). This is confirmed by a numerical calculation of D̃(ξ, τ ) based on eqs. (4.25)–(4.26)
(that is, the numerical evaluation of a series of three convolutions), with the results displayed
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in figure 5. In this calculation, we have assumed the maximum value G(q̂z/q̂y) = 0.29 for
the quantity which measures the effects of the anisotropy on the branching rates. (As visible
in figure 1, this value G = 0.29 corresponds to ∆q̂/q̂ = 1, i.e. to maximum anisotropy.)
Changing the value of G does not change the trends visible in figure 5, but only the
normalisation of the curves. The proportionality relation (4.34) is seen to be numerically
verified so long as ξ � τ2, while small deviations are observed when increasing ξ towards τ2.

To summarise, we have found that, even for a jet initiated by an unpolarised leading
parton, the soft gluon distribution generated via multiple branching in an anisotropic
medium exhibits a net polarisation, which is proportional to the medium anisotropy (via
the function G(q̂z/q̂y)) and also to the total (unpolarised) distribution — in particular, it
exhibits the same power-law enhancement at small ξ � 1: D̃ ∝ 1/

√
ξ. As our calculation

also shows, these remarkable features are the consequence of the fact that the polarisation
is essentially built in the last few splittings — one or two quasi-democratic branchings,
which are close in time and also in energy to the measurement time and the energy bin.

Said differently, the polarisation is continuously created and then washed out at each
step of the democratic cascade: unlike the energy (which is a conserved quantity), it does
not propagate between gluons from very different generations. Accordingly, the only reason
why the polarised distribution appears to increase with time and with 1/ξ is because the
number of its sources — the unpolarised distribution Dtot(ξ, τ) — keeps rising so long as
τ � 1, i.e. so long as the leading parton is still “alive” and acts as a source of soft primary
gluons, which regenerate the cascade.

5 Conclusions and perspectives

In this paper, we have studied the evolution of a jet propagating through an anisotropic
quark-gluon plasma, with emphasis on the consequences of the anisotropy for the polarisation
of the jet constituents. The physical problem we had in mind is the production of jets
at central rapidities in ultrarelativistic heavy ion collisions, at RHIC and the LHC. In
that context, the anisotropy is naturally generated by the rapid expansion of the medium
along the collision axis, leading to a squeezed momentum distribution for the partons from
the plasma. Our first observation is that the medium anisotropy leads to a difference
between the jet quenching parameters — the rates for transverse momentum broadening
— along the two directions transverse to the jet axis: the collision axis and a direction in
the plane orthogonal to it. Within the BDMPS-Z mechanism for medium-induced gluon
emissions, such an asymmetry in the transverse momentum broadening naturally leads to a
modification in the parton branching rates. This modification depends upon the partons’
polarisation and thus has the potential to dynamically generate net polarisation.

In order to study this, we considered a somewhat simplified scenario, in which the
plasma is weakly coupled and stationary, and the anisotropy is enforced by merely assuming
different values for the relevant jet quenching parameters. Also, we considered a jet which
is made only of gluons. Within this set-up, we have generalised the BDMPS-Z mechanism
to the anisotropic plasma and to the branchings of gluons with definite (linear) polarisation
states. Our results for the splitting rates, as shown in eqs. (3.33)–(3.36), confirm that, due
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to the anisotropy, the daughter gluons can carry net polarisation even when their parent
gluon was unpolarised. This effect is particularly remarkable for the emissions of soft gluons
which cannot inherit the polarisation of their parent: in the absence of the anisotropy, such
gluons would always be unpolarised, irrespective of the polarisation state of their parent (cf.
the discussion in section 3.4).

Using the polarised splitting rates in eqs. (3.33)–(3.36), we have constructed kinetic
equations which determine the time evolution of the energy and polarisation distributions
among the jet constituents, eqs. (4.14) and (4.15). They represent natural generalisations
of the respective equations for an isotropic medium and unpolarised gluons [56]. Like the
latter, the polarized kinetic equations exhibit turbulent dynamics: the soft gluons multiply
via quasi-democratic branchings, which now control both the creation of net polarisation
(via the decay of unpolarised partons) and its transmission from one parton generation
to the next one. This transmission however is not very efficient: it is hindered by the
fact that, as alluded to above, soft gluons lose memory of the polarisation of their parents.
As a result, the polarisation is both created (by the anisotropy) and washed out (via the
subsequent emissions of soft gluons) quasi-locally in energy and time — that is, within just
a few, successive democratic branchings. Accordingly, the net polarisation of soft gluons
closely follows the evolution of the unpolarised gluon distribution: the two distributions are
simply proportional to each other, with a proportionality coefficient that would vanish for
an isotropic plasma, cf. eq. (4.34).

These considerations also suggest that for a more realistic scenario, where the plasma
anisotropy decreases with time — the momentum distributions of the plasma constituents are
expected to evolve towards isotropy, as a result of elastic collisions which compete with, and
eventually take over, the medium expansion [5] —, this mechanism for generating polarisation
should become less and less effective with increasing time. That said, the numerical solutions
to both kinetic theory [26–28] and (viscous) relativistic hydrodynamics [78–81] demonstrate
that, even for relatively large values of the QCD coupling, the approach towards (local)
thermal equilibrium is very slow. So, it is quite plausible that, during the late stages of
the jet propagation through the medium — the most important ones for its evolution
via medium-induced parton branchings — the anisotropy is still sizeable and only slowly
varying with time. In such a case, our general conclusions in this paper should remain valid
(at least qualitatively).

Our present analysis could be improved at several levels, referring both to the description
of the medium and to the treatment of the jet-medium interactions. First, it should be
straightforward to include the effects of the longitudinal expansion of the medium, by
promoting the jet quenching parameters to time-dependent quantities,15 like in refs. [5, 38–
43]: q̂z(t) = q̂z0t0/t and q̂y(t) = q̂y0t0/t. A more ambitious approach would involve the
microscopic calculation of q̂z(t) and q̂y(t) for an anisotropic medium, following the lines in
section 2. This would require a theory, or at least a model, for the non-equilibrium (quark
and gluon) occupation numbers, which enter the gluon polarisation tensor (2.8).

15Notice that, with these choices, the ratio q̂z(t)/q̂y(t) = q̂z0/q̂y0 remains independent of time, therefore the
same is true for the functions A(q̂z/q̂y) and G(q̂z/q̂y) which enter the polarised branching rates (3.33)–(3.36).
Hence, while the total emission rate becomes time-dependent, the effects of the anisotropy are still stationary.
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Alternatively, the occupation numbers could be taken from numerical solutions to
kinetic theory [26–28], or (at late stages) from hydrodynamical simulations, the results
of which can be at least approximately matched onto parton occupation numbers [78–81].
In such a case, it could be more convenient to use numerical solutions also for the rate
equations describing the (polarised) parton distributions inside the jet. Alternatively, and
perhaps more efficiently, one could use the Monte-Carlo formulation of the in-medium
partonic cascades, as developed in [43, 82–84]; that would also permit to include the
vacuum-like parton branchings (those resulting from parton virtualities). Yet another
approach would be to solve the linearized kinetic equations describing the evolution of the
jet partonic distributions via both elastic and inelastic collisions [85]. In such an approach,
the jet quenching parameters are dynamically generated. Yet, for the present purposes, the
equations in [85] must be extended to a non-equilibrium background distribution, which
is anisotropic.

Our present conclusions may also have interesting implications for the late stages of
the “bottom-up” equilibration scenario [5] — more precisely, for its third stage, where the
(semi)hard partons are “quenched” via gluon radiation induced by their rescattering off a
thermal plasma made with softer gluons. As a result of this radiation, the “hard” partons
disappear in the medium, while leaving behind “mini-jets” which eventually thermalise.
At those early stages, the surrounding plasma is still highly anisotropic, hence the gluons
from the mini-jets should carry significant (net) polarisation. In turn this implies that the
plasma created by this early evolution is itself polarised. That should be the stage at which
the hydrodynamics starts to be applicable. It would be therefore interesting to consider
hydrodynamical simulations of a polarised medium.

Having shown that gluons in jets become polarised in an anisotropic medium, a natural
question is how this effect could be measured in experiments. A natural proposal would be
to measure the polarisation of jet hadrons, as angular momentum conservation suggests
that polarisation of gluons in the jet is transmitted to polarisation of the final-state hadrons.
This proposal is complicated by at least two factors: firstly, polarisation of hadrons is
difficult to measure, and secondly, the fragmentation functions specifying the polarisation
states for both the initial parton and the final hadron are presently not known.

Yet another strategy to uncover the polarisation of the partons in a jet is based on
the fact that, via the hadronisation process, the polarisation of the initial parton can be
correlated with the direction of motion of the outgoing hadron. As an example, a quark
travelling in the x-direction with spin aligned along the z-axis is more likely to emit a
hadron with momentum component in the y-direction than in the z-direction. For quarks
this correlation is captured by the Collins function [86, 87] which has been measured in
experiments, see e.g. [88, 89]. In principle, one could therefore measure the anisotropic
distribution of hadrons inside the jet cone and extract from it the net polarisation of quarks
before hadronisation. Our present study only deals with gluons for which the analogue of
the Collins function is not known. However, it should be straightforward to generalise our
work to include quarks. Another complication is the fact that jet parton polarisation is not
the only source of final-state anisotropy of the hadrons inside the jet cone. Another obvious
source is the anisotropic momentum broadening of the partons prior to hadronisation, which
can be computed and included in a complete phenomenological study.
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Last but not least, we hope that the methodology and the formalism that we have
developed on this occasion — especially, the generalisation of the BDMPS-Z approach to
an anisotropic plasma and to gluons with definite polarisation states — will turn out to be
useful for other problems as well and will inspire further developments.
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A Gluon propagation and transverse momentum broadening

In this appendix we shall briefly review the calculation of the transverse momentum
broadening for an energetic gluon propagating through a weakly-coupled quark-gluon
plasma. Our purpose is to justify eq. (2.16) for the relevant probability density. The main
ingredient of the calculation is the amplitude, Ma

λ(p+,p⊥, t) for finding the gluon with
longitudinal momentum p+, transverse momentum p⊥, polarisation λ and colour a at “time”
t ≡ x+. This amplitude must be computed for a given configuration of the random gauge
field A− representing the medium. The average over A−, cf. eq. (2.3), should be done after
squaring the amplitude.

The time evolution of this amplitude is encompassed in the following recurrence relation

Ma
λ(p+,p⊥, t) =

∫
d2p0
(2π)2 Gab(t,p⊥; t0,p0; p+)Mb

λ(p+,p0, t0) (A.1)

where t0 < t (we assume that the gluon is inside the medium at both t0 and t) and
Gab(t,p⊥; t0,p0; p+) is the (relevant component of the) gluon propagator in the background
field A−. This propagator is diagonal in p+ and λ (since these quantities are not modified
by the medium) and also independent of λ (since both transverse polarisations propagate
in the same way). On the other hand, it describes a non-trivial change ∆p⊥ = p⊥ − p0 in
transverse momentum, associated with multiple scattering in the plasma. To describe this
scattering, it is preferable to work in transverse coordinate space, e.g.

Ma
λ(p+,p⊥, t) =

∫
d2x⊥ eip⊥·x⊥Ma

λ(p+,x⊥, t) . (A.2)

The background-field propagator in mixed Fourier representation Gab(t,x⊥; t0, ξ0; p+) obeys[
i∂t +

∇2
x⊥

2p+ + gA−(t,x⊥)
]
ac

Gac(t,x⊥; t0, ξ0; p+) = iδabδ(t− t0)δ(x⊥ − ξ0), (A.3)

which is formally the same as the Schrödinger equation in two dimensions (the transverse
plane x⊥ = (y, z)) for a non relativistic particle of mass p+ moving in a time dependent
potential A−(t,x⊥). As well known, the solution can be written as a path integral,

Gab(t,x⊥; t0, ξ0; p+) =
∫ u(t)=x⊥

u(t0)=ξ0
Du exp

{
i
p+

2

∫ t

t0
dt′ u̇2

}
Uab(t, t0;u) (A.4)
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where u(t′) is a 2-dimensional path with the indicated end points and U is a Wilson line in
the adjoint representation, evaluated along this path:

U(t, t0;u) = T exp
{
ig

∫ t

t0
dt′A−a (t,u(t′))T a

}
. (A.5)

To compute the transverse momentum distribution at time t, one must take the modulus
squared of the amplitudeMa

λ(p+,p⊥, t) and average over A−. This operation involves the
average of the colour trace of a product of two Wilson lines, one from the direct amplitude
(DA), the other one from the complex conjugate amplitude (CCA). The colour trace appears
because the final colour state a must be the same in both the DA and the CCA (since we
measure the gluon at time t), and then the same must be true for the initial colour state b
at time t0, by gauge invariance:

〈Uab(t, t0;u)U∗ac(t, t0;v)〉 = δbcS(t, t0;u,v),

S(t, t0;u,v) ≡ 1
N2
c − 1

〈
Tr U(t, t0;u)U †(t, t0;v)

〉
. (A.6)

Here, v(t′) is the two dimensional path in the CCA, with end points v(t0) = y0 and
v(t) = y⊥. Mathematically, the quantity S(t, t0;u,v) is the S-matrix for the elastic
scattering between a gluon-gluon colour dipole — a pair of gluons in an overall colour
singlet state — and the medium. A priori, this is a functional of the paths, u(t′) and v(t′),
of the two gluons. Yet, due to the fact that the field-field correlator (2.3) is local in time
and homogeneous in the transverse plane, the medium average in eq. (A.6) yields a result
which only depends upon the difference path r(t) ≡ u(t)− v(t):

S(t, t0;u,v) = exp
{
−g2Nc

∫ t

t0
dt′ [γ(0)− γ(r(t′))]

}
≡ S(t, t0; r) . (A.7)

Then the ensuing path integrals over u(t′) and v(t′) greatly simplify: they select only paths
which are such that their difference r(t′) is a linear function of time, fully determined by
its endpoints:

r(t′) = r(t0) + [r(t)− r(t0)] t
′ − t0
t− t0

. (A.8)

When evaluated along this path, the function S(t, t0; r) factorises out from the path integrals
over u(t′) and v(t′), which become trivial and provide the respective free propagators.

To return to momentum space, one must perform Fourier transforms from the end
points x⊥ and y⊥ to p⊥ (since the momentum p⊥ of the measured gluon is the same in the
DA and in the CCA). These two Fourier transforms together with transverse homogeneity
enforce x⊥ − y⊥ = ξ0 − y0, that is, r(t) = r(t0), so the difference path (A.8) becomes
independent of time: r(t′) = x⊥ − y⊥ ≡ r for any t′. Accordingly, the final momentum
distribution is obtained via a Fourier transform from r to p⊥, as shown in eq. (2.16).
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