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1 Introduction

Our perception of the string Landscape is conditioned by how well we understand the
set of vacua that compose it and, in particular, the equations that describe such vacua.
In this sense, type IIB or F-theory flux compactifications on warped Calabi-Yau (CY)
orientifolds seem like a particularly simple setup. The energy-minimization constraints
that background fluxes impose on the axio-dilaton/complex structure vacuum expectation
values (vevs) can be characterized in terms of a tree-level Kähler potential and superpo-
tential [1, 2] (see [3–12] for reviews), and the corresponding flux vacuum conditions lead to
a system with the same number of equations as of unknowns.1 Algebraically, this points
towards a discrete set of solutions, which is indexed by the set of flux quanta. Since the
number of flux quanta grows with the number of complex structure deformations, this
reasoning would indicate that this sector of the string Landscape is dominated by CY
manifolds with the largest number of such moduli.

The problem of this naive picture is that such fluxes induce D3-brane charge and
tension, measured by the integer Nflux, and this quantity cannot overshoot the negative
charge and tension induced by the geometry of the compactification, or else flux vacua
cannot be found. This additional constraint could in principle modify the above perception
that the discretum of type IIB/F-theory flux vacua should be dominated by Calabi-Yau
manifolds with a large complex structure sector. In fact, it was argued in [13] that quite the
opposite should be true, as a consequence of the Tadpole Conjecture (TC). This proposal
essentially states that if nstab & O(100) is a large number of flux-stabilized moduli, then
the ratio

Nflux/nstab , (1.1)

is bounded from below by 1/3.
1In this paper we do not discuss Kähler moduli stabilization, and the term flux vacua refers to those

axio-dilaton/complex structure vevs that solve the equations of motion at tree-level in 4d Minkowski.
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The difficulty in testing this proposal is that, in general, the set of vacuum equa-
tions becomes intractable for a very large number of moduli. As a consequence, many
of its tests are of numerical nature [13–15], while analytic techniques to address the va-
lidity of the proposal are still being developed. Along these lines, [16] provided a set of
algebraic equations that describe smooth F-theory and type IIB flux vacua in the large
complex structure (LCS) regime, for an arbitrary number of moduli. Using them, one
can see that the value of Nflux goes to infinity along some directions in field space, unless
certain flux quanta are set to zero. Guided by this fact, [16] proposed a set of patterns
for vanishing flux quanta which, in the case of type IIB compactifications were dubbed
IIB1 and IIB2 scenarios. While in the second of these setups Nflux is independent of nstab,
which goes against the TC statement, it was argued in [17–19] that demanding control over
exponentially-suppressed corrections could restore a linear dependence, in line with the TC
proposal. Using asymptotic Hodge structure techniques, this intuition was made precise
for strict asymptotic regimes in complex structure moduli space [20], finding a lower bound
for the ratio (1.1) twice above the proposed value. Such strict asymptotic regimes probe
asymptotic limits along many directions in field space, which points towards a universal
behaviour of the ratio (1.1) as we approach them. However, it is important to stress that
they demand a strict hierarchy between the complex structure vevs, and as such they do
not cover the whole of the LCS region. This leaves open the possibility that the ratio (1.1)
lowers its value at other regions within the LCS regime, as well as on the deep interior of
the complex structure moduli space. In fact, it was shown in [21] that at symmetric loci
in the deep interior of complex structure moduli space one can measure the above ratio to
be two orders of magnitude below the initially proposed value.

Regardless of the validity of the Tadpole Conjecture and/or its refinements, evaluating
the quantity (1.1) in different regions of fields space is interesting per se, as it measures
the efficiency of this moduli stabilization mechanism in them. Indeed, at flux vacua Nflux
measures the energy stored in the flux background, and so the inverse of (1.1) can be
understood as the number of stabilized moduli per flux-energy unit. It is thus a pressing
question to determine if this moduli-stabilization efficiency grows towards the interior of
the moduli space, as the above set of results seem to indicate, since this would have a
direct impact on our perception of the string Landscape. The problem is that the dataset
at the deep interior of moduli space is very scarce, as the type of analysis made in [21]
(see also [22, 23]) is only valid along invariant loci of discrete symmetries acting on the
CY complex structure moduli space; loci that are selected upon choosing fluxes invariant
under such a symmetry [24–30].

In this paper we aim to bridge the gap between the analysis made in [20] and [21],
by analysing flux moduli stabilization in a complex structure region in between these two
regimes, as illustrated by figure 3. We consider flux vacua in the LCS region, so that we
can make use of mirror symmetry techniques to write down equations that describe such
vacua. Even though we are in an asymptotic regime of the CY moduli space, we focus
on regions that are far away from the growth sectors considered in [20], which require
a strict hierarchy between vevs. More precisely, we consider flux vacua in which many
complex structure vevs are similar, which allows us to reduce the complexity of the system
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of equations down to a few of them. This selection is implemented by a choice of flux
quanta that partially respects the symmetries of an underlying N = 2 prepotential, and in
this sense our approach is similar in spirit to that of [21]. However, we do not necessarily
require a discrete moduli-space symmetry to implement our analysis, and we do not need
to integrate any field out of the 4d supergravity description. We dub this approach as
an effective reduction of the system of vacua equations, as it is closer to the ansatz-based
philosophy implemented in [31].

More precisely, we develop our analysis based on the type IIB1 scenario of [16], whose
analytical features were further analyzed and developed in [32]. It is thanks to this analytic
control that we are able to get an overall picture of this setup, and propose a general
algorithm to generate large families of flux vacua in the LCS region. Unlike in [32], we do
not focus on choices of flux quanta that correspond to the no-scale aligned vacua of [30].
Indeed, as already pointed out in [16], this flux choice yields a ratio (1.1) strictly larger
than one, and so it is not easy to implement for CY compactifications with h2,1 � 1.
Nevertheless, there are other choices of flux quanta within the type IIB1 scenario that
yield a much smaller ratio even for O(100) flux-stabilized moduli, as we will demonstrate
with explicit examples.

Our constructions are based on the deformed T 6/(Z2×Z2) orbifold analyzed in [33, 34],
which hosts 51 complex structure moduli, and which we dub as (3, 51) Calabi-Yau. An
orientifold of this Calabi-Yau has been considered before in literature in order to find flux
vacua [35, 36], but only at the orbifold limit. Unlike in [35, 36] we are able to build
consistent flux vacua that do not overshoot the D3-brane tadpole, because we allow for
non-vanishing fluxes in the would-be orbifold twisted sector, that moreover stabilize the
corresponding moduli in the LCS regime. This geometry will not only allow us to im-
plement the IIB1 scenario, but also to do so via different reduction ansätze. We explore
in particular reductions with two, four and six effective parameters, which constitute a
huge simplification compared to the initial system of 104 real equations. In this setup,
our algorithm allows to generate large families of flux vacua in the interior of the saxionic
complex structure (CS) cone, and deep enough to be able to neglect exponential correc-
tions, by varying a set of flux quanta that do not contribute to the tadpole. This allows
us to provide counterexamples to some of the statements made in the literature based on
asymptotic limits, like the expectation that Nflux should increase as vacua go deeper into
the interior of the CS cone.

With these results in hand, we evaluate the ratio (1.1) in our constructions and find
that, as expected, they lie in between the values found in [20] and [21]. Remarkably, the
smallest of such values marginally respects the lower bound 1/3 proposed in [13], meaning
that the stabilization of an additional real modulus would violate it. In our case, this
result is due to two separate effects. First, we do not include D7-brane position moduli
in the counting of nstab, even if three-form fluxes generically stabilize such moduli [37–39].
Second, we only consider orientifold geometries that contain standard O3-planes, which
leads to flux quantization conditions demanding even flux quanta [40]. Dropping any of
these two assumptions could easily lead to reducing the value of the ratio (1.1) by a factor
of 2 or 4, violating the proposed bound of 1/3. More generally, these remarks open the
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question on whether the tadpole-to-stabilized moduli ratio is sensitive to the presence of
exotic O3-planes in a Calabi-Yau orientifold compactification, which so far is a rather
unexplored corner of the string Landscape.

The paper is organized as follows: in section 2, we briefly recap some notations and
conventions for type IIB flux compactifications in the LCS regime. In section 3, we review
the IIB1 flux scenario of [16] with special emphasis on the properties derived from the
quadratic superpotential, which provides a simplifying scheme for moduli axio-dilaton and
complex structure moduli stabilization. We also provide our definition of effective reduction
on the number of moduli, and see under which assumptions such reduction can occur
in the IIB1 scenario. In section 4, we gather information about the mirror dual of the
compactification geometry that we investigate in this work, namely the symmetrically
resolved T 6/(Z2×Z2) orbifold with h1,1 = 51. The topological data of this model is useful
to express the LCS prepotential on the mirror side. In section 5, starting from the IIB1
vacuum equations for the compactification space at hand, we apply a reduction ansatz to
effectively reduce the number of complex structure moduli down to two. We then search for
vacua under the constraint that exponential corrections are negligible so as to justify the
LCS approximation, and that the D3-brane tadpole bound is not overshot. In section 6,
a new family of solutions is uncovered in a more complex four-parameter reduction of the
model. Section 7 discusses how our results relate to the tadpole conjecture, and in section 8
we provide our conclusions and outlooks. Several details are relegated to the appendices:
appendix A provides full numerical details about some vacua presented in the paper, while
appendix B makes explicit the six-parameter reduction mentioned earlier.

2 Type IIB flux compactifications

In this section we review the material used to describe the effective behaviour of flux
compactifications of type IIB string theory on a Calabi-Yau 3-fold X3 at large complex
structure (LCS). In order to construct type IIB flux vacua one needs to introduce orientifold
planes with negative D3-brane charge [2, 41], which can be implemented via the standard
O3/O7 projection based on a geometric involution R, such that R : Ω → −Ω and R :
J → J . Nevertheless, the search for flux vacua can be simply formulated in terms of the
complex structure prepotential F for the Calabi-Yau covering space X3, if one assumes that
all harmonic three-forms are odd under the action of R. In this section and the next we
will take such a simplifying assumption, since the specific Calabi-Yau that we will analyze
in the following sections satisfies this property. Our conventions and notation will follow
those of [4] and [32].2

2.1 The complex structure prepotential

In the LCS regime that will be of interest to us in this paper, the complex structure
prepotential F for a Calabi-Yau X3 takes the form

F ≡ −1
6κijkz

izjzk − 1
2aijz

izj + ciz
i + 1

2κ0 + Fexp , (2.1)

2In particular, in our conventions G3 ∧ ∗Ḡ3 = 1
3!G3 · Ḡ3volX6 , where volX6 ≡ i

8 Ω ∧ Ω̄ = 1
3!J

3. Note the
sign differences with respect to the conventions in [2].

– 4 –



J
H
E
P
0
8
(
2
0
2
3
)
0
1
6

where the complex structure fields are written zi, i = 1, . . . , h2,1(X3). The contribution
Fexp is exponentially suppressed in the LCS regime while the polynomial coefficients κijk,
aij , ci and κ0 arise from topological data of the mirror manifold Y3 of the Calabi-Yau X3.
These topological quantities are defined as follows [42]

κijk ≡
∫
Y3
ωi ∧ ωj ∧ ωk , aij ≡ −

1
2

∫
Y3
ωi ∧ i∗ch1(P.D[wj ]) ,

ci ≡
1
24

∫
Y3
ωi ∧ ch2(Y3) , κ0 ≡

ζ(3)χ(Y3)
(2πi)3 = i

ζ(3)
4π3 (h1,1(Y3)− h2,1(Y3)) ,

(2.2)

where the 2-forms ωi, i = 1, . . . , h1,1(Y3) form a basis of H2(Y3,Z), P.D stands for Poincaré
Dual, i∗ for the pushforward of the embedding i of the divisors into the mirror Y3 and even-
tually, ch1 and ch2 denote the first and second Chern classes respectively. The quadratic co-
efficient aij can be expressed from the triple intersection numbers [29] through the relation

aij = −1
2

∫
Y3
ωi ∧ ωj ∧ ωj . (2.3)

The coefficients ci and aij are defined only modulo Z as a consequence of redundancies
when describing the complex structure moduli through a basis of 3-cycles of X3. Thanks to
these redundancies, we will use the equivalent convention of [15, 43] to write the quadractic
coefficient of the prepotential as

aij = −1
2

{
κiij , i ≥ j
κijj , i < j

. (2.4)

From a symplectic basis of 3-cycles {AI , BI}, I = 0, . . . , h2,1 of H3(X3,Z), one can
then express the periods of the Calabi-Yau (3, 0)-form Ω like

Πt ≡
(∫

BI

Ω,
∫
AI

Ω
)

= (FI , XI) , (2.5)

where we have zi ≡ Xi/X0, i = 1, . . . , h2,1 and FI denotes the derivative of the prepotential
with respect to XI . In the gauge X0 = 1, the period vector then reads

Π =


2F − zi∂iF

∂iF
1
zi

 . (2.6)

2.2 The Kähler potential and superpotential

At tree-level, the Kähler potential takes the form

K ≡ Kk +Kdil +Kcs = −2 log(V)− log(−i(τ − τ̄))− log
(
i

∫
X3

Ω ∧ Ω̄
)

= −2 log(V)− log(−i(τ − τ̄))− log(−iΠ† · Σ ·Π) , (2.7)
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where V stands for the volume of the Calabi-Yau X3, τ is the axio-dilaton and the sym-
plectic (2h2,1 + 2)× (2h2,1 + 2) matrix reads

Σ ≡
(

0 1

−1 0

)
. (2.8)

In the LCS regime, the complex structure part of the potential involving the period vector
is given by

Kcs = − log
(
i

6κijk(z
i − z̄i)(zj − z̄j)(zk − z̄k)− 2 Im (κ0)

)
= − log

(4
3κijkt

itjtk − 2 Im (κ0)
)
, (2.9)

where the complex structure fields can be decomposed into axionic and saxionic parts:
zi ≡ bi + iti. In a similar way, we define τ ≡ b0 + it0.

Fluxes threading the compact geometry induce a superpotential W , known as the
Gukov-Vafa-Witten (GVW) superpotential [1]. In order to describe it, we can introduce
the following notation for the flux quanta

N ≡ f − τh with f ≡
(∫

BI F3∫
AI
F3

)
≡


fB0
fBi
f0
A

f iA

 and h ≡
(∫

BI H3∫
AI
H3

)
≡


hB0
hBi
h0
A

hiA

 , (2.10)

which leads to the following compact formulation of the flux superpotential3 [1]

W ≡
∫
X3
G3 ∧ Ω ≡

∫
X3

(F3 − τH3) ∧ Ω = NT · Σ ·Π . (2.11)

This expression can be easily expanded in the LCS regime to yield

W =− 1
6N

0
Aκijkz

izjzk + 1
2κijkN

i
Az

jzk +
(
N j
Aaij +NB

i −N0
Aci
)
zi

− κ0N
0
A −N i

Aci +NB
0 .

(2.12)

Finally, it must be noted that fluxes induce a D3-tadpole Ramond-Ramond charge
in the compact manifold, which must be cancelled by negatively charged objects, like
orientifold planes. It can then be shown that the full covering-space D3-charge Nflux induced
by these fluxes is

Nflux =
∫
X3
F3 ∧H3 = fT · Σ · h . (2.13)

2.3 The vacuum equations

The supergravity scalar potential famously enjoys a no-scale property in the Kähler sector
such that the 4d vacua are in Minkowski spacetime. The vacuum equations are then simply
expressed by requiring the covariant derivatives of the superpotential with respect to the

3Note that we deliberately drop out an overall factor 1/
√

4π.
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axio-dilaton and complex structure fields to vanish: DIW ≡ ∂IW + (∂IK)W = 0, I ∈{
τ, zi

}
. More explicitly, making use of the definitions above, these equations read

DτW =
[
−h− 1

τ − τ̄ (f − τh)
]T
· Σ ·Π = − 1

τ − τ̄ N̄
T · Σ ·Π = 0 , (2.14)

DiW = NT · Σ ·DiΠ = 0 . (2.15)

3 Flux families and simplifying schemes

In this section we briefly review the vacuum equations arising from a flux family which
renders the superpotential quadratic in the axio-dilaton and complex structure moduli.
This flux setup, dubbed IIB1 scenario, has been defined in [16] and extensively investi-
gated in [32]. We also specify the notion of effective reductions in the moduli space, while
emphasizing how it is different from proper truncations [24–30, 44–56].

3.1 Quadratic superpotentials at LCS

The so-called IIB1 setup [16, 32] has been shown to simplify the search for solutions of
no-scale vacua. It is defined by the following flux constraints:

IIB1 flux configuration: f0
A = 0 , h0

A = 0 and hiA = 0 , i ∈ {1, . . . , h2,1} , (3.1)

from where it is easy to check that the flux superpotential W in (2.12) is quadratic at any
point on moduli space on the axio-dilaton and complex structure moduli. In particular, it
takes the form

W = 1
2
~ZtM ~Z + ~L · ~Z +Q , (3.2)

where ~Z ≡ (τ, ~z) and where the (h2,1 + 1)-dimensional matrix M , the vector ~L and the
scalar Q are real flux-dependent quantities:

M ≡
(

0 −~hB t
−~hB Sij

)
, ~L ≡ (−hB0 , fBi + aijf

j
A) , Q ≡ fB0 − cif iA , (3.3)

with Sij ≡ κijkf
k
A. The vanishing fluxes also simplify greatly the expression of the flux-

induced D3-brane charge Nflux, which reads

Nflux = −f iAhBi . (3.4)

Therefore, in this setup, one is able to tune the remaining flux quanta fB0 , hB0 and fBi to
one’s liking, without this choice affecting the tadpole.

Note that a similar flux setup was also used in [57] in the context of achieving small
flux superpotentials when exponentially suppressed corrections are taken into account.
However, in that work a null tree-level flux superpotential is required, i.e., W = 0 at
vacua, which imposes further constraints on the allowed flux quanta.

3.1.1 Vacuum equations

The IIB1 choice of fluxes has many perks when considering the associated vacuum equa-
tions. One nice feature is a decoupling between the axionic and saxionic equations.
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Axions. On the one hand, it is shown that the axions, i.e., the fields b0 ≡ Re (τ) and
bi ≡ Re (zi) gathered into the vector ~B ≡ (b0, bi), obey a very simple linear equation:

M ~B = −~L . (3.5)

When we assume the matrix S to be invertible with the further requirement that H ≡
hBi S

ijhBj 6= 0, then the matrix M has maximal rank and we can invert the relation (3.5).
Moreover, the invertibility of S allows to compute an analytical “block-inverse” for M from
which we deduce the vevs

b0 = hBi S
ijLj − hB0

hBi S
ijhBj

, bi = Sij
(
b0hBj − Lj

)
. (3.6)

Note that symplectic transformations on the fluxes will yield transformations on these fields
due to the monodromy symmetry of the period vector at LCS. These transformations will
act on the bA, A ∈ {0, i} as bA → bA + 1, hence their name.

When the matrix M is singular, the linear relation (3.5) only stabilizes r ≡ rank (M)
axions and h2,1 + 1 − rank (M) constraints on the flux quanta arise. This can be easily
seen as follows [32]: we can diagonalize the matrix M to D ≡ diag(λ0, . . . , λr−1, 0, . . . , 0)
with λ0, . . . , λr−1 representing the r non-zero eigenvalues of the matrix, and where there
are as many zeroes as the dimension of the kernel. Denoting N the change-of-basis matrix,
we have

M = N tDN with N t = N−1 . (3.7)

Defining ~B′ ≡ N ~B and ~L′ ≡ N~L, the axionic system of equations (3.5) becomes

D~B′ = −~L′ . (3.8)

Splitting the h2,1 + 1 indices {0, i} like α ∈ {0, . . . , r− 1} and β ∈ {r, . . . , h2,1}, the axionic
vacuum expectation values and the flux constraints are given by

b′α = −
~L′α

λα
and ~L′β = 0 . (3.9)

Saxions. The saxionic system composed of t0 ≡ Im (τ) and ti ≡ Im (zi) does not gener-
ically enjoy such analytical solutions unless an additional ansatz is imposed [32]. The
general vacuum equations for these fields read

e−Kcs
(
Sijt

j − t0hBi
)

+ 4t0κijktjtk
[
hBl t

l
]

= 0 ,

1
2Sijt

itj + t0hBi t
i = Q′ ,

(3.10)

where we have defined the flux-dependent quantity

Q′ ≡ fB0 − f iAci −
1
2
~LtM+~L , (3.11)

– 8 –
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with M+ denoting the generalized inverse of M . It is defined like M+ ≡ N tD+N where
D+ ≡ diag(λ−1

0 , . . . , λ−1
r−1, 0, . . . , 0) and λi, i ∈ {0, . . . , r − 1} represent the non-zero eigen-

values of M . When M is regular, M+ = M−1 and we can write

Q′ ≡ fB0 − f iAci + (hBi SijLj − hB0 )2

2hBi SijhBj
− 1

2LiS
ijLj . (3.12)

Note that even though this system generically requires the use of some numerical method
to be solved, it is quite an improvement from the more generic vacuum equations, since
half of the real variables (the axions) follow directly from (3.5). Indeed, this system is
composed of h2,1 + 1 equations and variables, so its numerical solution is expected to be
obtained in a far more reduced time than in a more generic flux setup. The following
constraint can be easily derived if both equations in (3.10) are combined:

Q′ = −3t0Im (κ0)eKcshBi ti . (3.13)

We will make use of this relation in the following sections, as its numerical application will
be quite useful.

As a final comment, it is interesting to note that the full system (3.10) can be reworked
into a more manageable form by introducing the following decomposition:

ti ≡ t0vi, vi ∈ R . (3.14)

Indeed, it is straightforward to check that after this change of variables (3.10) becomes[4
3κklmv

kvlvm − 2Im (κ0)
(t0)3

] (
Sijv

j − hBi
)

+ 4κiklvkvl
[
hBmv

m
]

= 0 , (3.15)

t0 =
√

2Q′
Sijvivj + 2hBi vi

. (3.16)

We should remark that the decomposition (3.14) is not an ansatz per se for the saxion
fields ti and is simply a redefinition. However, it will become quite useful for the numerical
search of vacua that we describe in the following subsections.

3.1.2 System of equations close to the LCS point

One of the nice things to consider about the system (3.15)–(3.16) is that it greatly simplifies
close to the LCS point, where

e−Kcs = 4
3κijkt

itjtk − 2 Im (κ0) ≈ 4
3κijkt

itjtk ⇐⇒ |ξ| ≡
∣∣∣∣∣ −3Im (κ0)
2κijkvivjvk(t0)3

∣∣∣∣∣� 1 . (3.17)

The parameter ξ is called the LCS parameter since it indicates proximity with the LCS
point, as long as in addition, all saxions have large vevs. It is easy to check that in that
regime the system of equations becomes

κklmv
kvlvm

(
Sijv

j − hBi
)

+ 3κiklvkvl
[
hBmv

m
]

= 0 , (3.18)

(t0)2
[1

2Sijv
ivj + hBi v

i
]

= Q′ . (3.19)

– 9 –



J
H
E
P
0
8
(
2
0
2
3
)
0
1
6

It is quite interesting to see that (3.18) completely determines all the vi in terms of
only f iA and hBi , i.e., the fluxes which contribute to the D3-tadpole. Therefore, one can
numerically solve (3.18) in terms of this reduced set of fluxes, depending on how large we
want the tadpole of the system to be. On the other hand, it is easy to check that the term
in brackets in eq. (3.19) is identically zero whenever (3.18) is satisfied. As such, t0 is left
as a free parameter of the system and this imposes some conditions upon the fluxes which
come into play within Q′. Then, as long as one is close to the LCS point, the vi found
with (3.18) will be a solid first-order approximation in order to solve the full system (3.10).

3.1.3 Strategy to solve the saxionic system numerically

Taking all of the discussion above into consideration, we propose the following strategy to
get a full solution of the saxion system (3.10) without, in principle, imposing any further
ansatz on the solution:

1. Find tuples of {f iA, hBi } which satisfy the tadpole condition: 0 < Nflux ≤ L∗ where
L∗ is some upper bound not to be overshot. Using these, solve (3.18) in order to get
a zeroth-order approximation to the vi, written vi(0).

2. Assume a target value for the dilaton, which we dub t0target. This initial value must
be such that it corresponds to a region of LCS flux vacua. In practice, this means
that t0target ∈ (t0min, t

0
max), where the bounds are determined as follows:

— t0min is such that ti(0) ≡ vi(0)t
0
min is at the boundary of the stretched complex

structure (CS) cone [17, 58]. For non-simplicial cones like in the example that
we will analyze, this condition can be quite non-trivial.

— t0max is such that the value for Q′ associated to t0target, expressed via (3.13)
and (2.9) as

Q′target ≡
−3Im (κ0)hBi vi(0)(t0target)2

4
3κijkv

i
(0)v

j
(0)v

k
(0)(t0target)3 − 2Im (κ0)

, (3.20)

reaches the value Q′min, defined as the smallest fraction in absolute value4 that
one can get from expression (3.11). Note that Q′min depends on the fluxes
contributing to Nflux, which have been fixed in step 1. Since asymptotically
Q′target ∼ ±1/t0target, a minimal absolute value for Q′target translates into an
upper bound t0max for t0target.5

3. Find the remaining fluxes {fB0 , hB0 , fBi } such that Q′ expressed with (3.11) or (3.12)
is as close as possible to the value Q′target found above.

4At large t0, the sign of Q′ is determined by that of Im (κ0). In the model under study, where we have
few Kähler moduli and a large number of complex structure fields, Q′ will be negative.

5Note that to determine Q′
target, we make use of the zeroth-order values vi(0) but in reality, they are good

approximates of the actual ratios ti/t0 in the full solutions that we will build only when the LCS parameter
is sufficiently small, i.e. for a sufficiently large dilaton vev. However in practice, this requirement is much
less stringent than the lower bound t0min defined above.
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4. Solve the full system for the fluxes f iA, hBi found in step 1 and the remaining fluxes
determined in step 3. If t0target has been appropriately chosen sufficiently large and if
Q′ is indeed tuned close to the targeted value, the exact solution will feature a final
t0 very close to t0target and vi close to the zeroth-order approximation of step 1.

One may wonder why we should take all of these extra steps, instead of just directly
solving the system (3.15)–(3.16) for certain flux tuples. This becomes self-evident when
trying to solve the system by brute force. Indeed, if one wants to make a full search along
the flux lattice and look for solutions over many different tuples of flux quanta (by, for
example, taking random values for fluxes), one will eventually stumble upon the realization
that very few fluxes allow for either solutions with a reasonable tadpole, or within the CS
cone. The algorithm presented above (which is only applicable to the IIB1 family) allows
for an efficient search for solutions within the CS cone, due to the decomposition (3.14),
all the while reducing the search for vacua with flux tuples which are explicitly within the
tadpole bound as a first step.

3.2 Effective reductions vs. truncations of moduli

As mentioned above, the split between axions and saxions in the vacuum equations in the
IIB1 scenario is a nice improvement compared to what a generic choice of fluxes would
yield. However, the system of equations (3.15) and (3.16) involving the saxions is still
(h2,1 + 1)-dimensional, which becomes costly to solve numerically for large h2,1. This is
where effective reductions can help, by reducing the number of variables and equations
to solve.

An effective reduction is characterized by an ansatz on the moduli as well as on the
various fluxes involved in the vacuum equations. The reduction is successful if one can
obtain a reduced number of n equations involving n degrees of freedom. As an example,
in [31] a type IIB flux configuration was proposed together with an ansatz on the moduli
to effectively reduce any model at LCS down to one modulus.

Note that we insist on the denomination of effective reductions to contrast with the
consistent supersymmetric truncations that are abundantly used and studied in the liter-
ature [24–30], even though the philosophy is the same. In the latter case, the truncated
moduli are frozen at some fixed point (usually 0) of a discrete symmetry action on the
moduli space of the geometry under consideration. The truncated moduli disappear from
the effective supergravity action and since they are deep in the interior of moduli space,
getting information about their behaviour is a complicated task [21]. In the case of an
effective reduction, firstly we do not require the presence of a discrete symmetry action on
the moduli space, even though it can of course be the case that such a symmetry exists.
In particular, we apply the reduction only to the saxionic part of the complex structure
fields and assume nothing about the axions. Our flux quanta are also not forced to be
invariant under any symmetry transformation and as we will see, some of them can re-
main completely arbitrary. The flux setup along with the ansatz on the moduli fields only
simplifies the saxionic vacuum equations into those of an effective n-parameter model. In
other words, the reduction ansatz specifies a submanifold of the saxionic moduli space on
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which the search for vacua is restricted. A proper flux choice then ensures that solutions of
the reduced theory automatically give solutions to the full set of equations that the saxions
should satisfy. Secondly, in contrast to what usually happens in truncations at symmetric
points in moduli space, our fields frozen at zero in an appropriate redefined basis sit in
the LCS region of moduli space, where all asymptotic formulas make sense. As such, all
the information about the full set of fields, like for instance their mass matrix, is directly
available.

In the specific case of the IIB1 system of equations (3.15), it is easy to see that simplifi-
cations can occur if the triple intersection numbers and the fluxes enjoy simple symmmetry
properties. More concretely, the whole equation depends on the flux hBi and on contractions
of the intersection numbers which schematically look like κijkAjBk, where Ai represents
either the flux f iA or the real variable vi. Therefore, given some vi living in some n-
dimensional subspace of the whole Rh2,1 (i.e., written in terms of only n variables), as long
as the covectors κijkf jAvk, κijkvjvk and hBi have the same structure of repeated entries,
such that only n of them are independent, we will be able to reduce (3.15) to n equations.

The purpose of the remainder of the paper is to illustrate this idea in a specific setup.
In particular, we review the properties of a specific compactification Calabi-Yau, write
the prepotential at LCS for this geometry, apply the IIB1 scheme and eventually propose
effective reduction ansätze to find solutions with all axio-dilaton and complex structure
moduli stabilized in the LCS regime.

4 A Calabi-Yau with 51 complex structure moduli

In this section we review the key features of the symmetric resolution of a T 6/(Z2 × Z2)
orbifold model with (h1,1, h2,1) = (51, 3), which we dub (51, 3) Calabi-Yau. Upon mirror
symmetry, this manifold maps into a deformation of the T 6/(Z2×Z2) orbifold with opposite
choice of discrete torsion and 51 complex structure deformations [33, 34], which we will
dub as the (3, 51) Calabi-Yau. It is on an orientifold of this second manifold where we want
to study the IIB1 scenario and implement different effective reductions.

The symmetric resolution of T 6/(Z2×Z2) with 51 Kähler moduli has been extensively
studied in the literature [59, 60] among other toroidal orbifolds [61, 62], so that all topo-
logical data of interest is available. Thanks to this information, we are able to express the
relevant Kähler cone and stretched Kähler cone conditions of this manifold, that suffers
from a severe non-simpliciality. This allows us to write the prepotential for the complex
structure sector of the mirror dual (3, 51) Calabi-Yau, and check whether we are in the LCS
reg ion of moduli space where exponentially suppressed corrections can be neglected. As we
will see, the symmetries displayed by the triple intersection numbers of the (51, 3) Calabi-
Yau allow us to define well-behaved reduction ansätze for the IIB1 scenario in the (3, 51)
Calabi-Yau.

4.1 Topological data of the mirror

We gather here the relevant topological numbers for the Kähler sector of the (51, 3) Calabi-
Yau, useful to write the prepotential of the vector multiplet sector either for type IIA string
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theory compactified in this manifold or for type IIB compactified in the mirror, on which
we then focus. We extract the information we need from the references [61, 62], that
investigate resolved orbifolds and [59, 60], that explore this specific Z2 × Z2 model. In
our case, we will focus on the symmetric resolution. The orbifold group is given by two
generators {g1, g2}, whose action over the complex compact coordinates {zi} is

g1 : z2,3 → −z2,3 g2 : z1,3 → −z1,3 g1 ◦ g2 : z1,2 → −z1,2 (4.1)

z1 → z1 z2 → z2 z3 → z3 .

As a consequence of the toroidal identification, there are 16 fixed lines under the action
of each group element (48 in total). These lines intersect along 64 fixed points in which
the blow up is performed. Therefore, the resulting orbifold has h1,1 = 51 (the original 3
untwisted Kähler moduli plus the 48 twisted Kähler moduli associated to the blow up of the
fixed lines) and h2,1 = 3 (the complex structure is completely determined by providing the
modular parameters of the three T 2 factors). A suitable basis for the divisors is given by

{R1, R2, R3} ∪ {Eiα,jβ , i, j = 1, 2, 3, i < j, α, β = 1, . . . , 4} . (4.2)

The Eiα,jβ are the exceptional divisors that arise from the resolution of the orbifold and
are associated to the twisted sector. The Ri are the sliding divisors descending from the
unresolved model and can be expressed in terms of the exceptional divisors and the toric
divisors Diα of the local model:

R1 = 2D1α +
∑
β

E1α,2β +
∑
γ

E3γ,1α ∀α ,

R2 = 2D2β +
∑
α

E1α,2β +
∑
γ

E2β,3γ ∀β ,

R3 = 2D3γ +
∑
β

E2β,3γ +
∑
α

E3γ,1α ∀γ .

(4.3)

With this basis, the Kähler form J is parametrized as

J ≡ riRi − t1α,2βE1α,2β − t2β,3γE2β,3γ − t3γ,1αE3γ,1α . (4.4)

Notice that the conventions for labelling the divisors differ in the literature. We find
useful to make explicit the dictionary between the different notations as follows:

[59] ←→ [60–62]
E1α,2β ←→ E3,αβ

E2β,3γ ←→ E1,βγ

E3γ,1α ←→ E2,αγ

(4.5)
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4.1.1 Triple intersection numbers

Theses numbers are useful to express the cubic and quadratic terms in the prepotential (2.1)
thanks to (2.4). The non-zero intersection numbers are

R1 ·R2 ·R3 = 2 , E1α,2β · E2β,3γ · E3γ,1α = 1 ,
R1 · E2

2β,3γ = −2 , R2 · E2
3γ,1α = −2 , R3 · E2

1α,2β = −2 ,
E2

2β,3γ · E3γ,1α = −1 , E2β,3γ · E2
3γ,1α = −1 , E2

2β,3γ · E1α,2β = −1 ,
E2β,3γ · E2

1α,2β = −1 , E2
3γ,1α · E1α,2β = −1 , E3γ,1α · E2

1α,2β = −1 ,
E3

1α,2β = 4 , E3
2β,3γ = 4 , E3

3γ,1α = 4 .

(4.6)

Since it will be useful in the next paragraph, we also write the self triple intersection of
the divisors Diα which is D3

iα = 8.

4.1.2 Intersection with second Chern class

The intersections of the divisors with the second Chern class ch2(Y3) are useful to express
the linear term in the prepotential. To compute them, we make use of the following
formula [61, 62]

ch2(Y3) · P + P 3 = χ(P ) , (4.7)

where P stands for any divisor and χ(P ) is its Euler characteristic. Finding the intersections
with ch2(Y3) thus amounts to knowing the topology of the divisors. From [59], we read
that the topology of the toric divisors Diα is that of P1 × P1 while the topology of the
exceptional divisors is that of P1 × P1 blown-up in 4 points (we denote this Bl4(P1 × P1)).
We thus have

ch2(Y3) ·Diα = χ(P1 × P1)−D3
iα = 4− 8 = −4 ,

ch2(Y3) · Eiα,jβ = χ(Bl4(P1 × P1))− E3
iα,jβ = 8− 4 = 4 .

(4.8)

From this along with the relations (4.3) and by schematically denoting any exceptional
divisor like E, we deduce

ch2(Y3) ·Ri = 2c2(Y3) ·Diα + 8c2(Y3) · E = −8 + 32 = 24 . (4.9)

Note that according to [61], such an intersection with ch2(Y3) for the Ri is associated to a
K3 topology.

4.2 The prepotential at LCS

We now derive the prepotential describing the complex structure sector of the (3, 51) Calabi-
Yau in the large complex structure regime, mirror to the resolved orbifold described above
in the large volume regime. As explained for instance in [29], we need to identify the
(complexified) Kähler moduli of the (51, 3) CY with the complex structure moduli of the
(3, 51) CY. In terms of the Kähler parameters introduced above, we apply the following
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prescription:
zi, i = 1, 2, 3→ ri , i = 1, 2, 3 ,
zi, i = 4, . . . , 19→ t2β,3γ , γ, α = 1, . . . , 4 ,
zi, i = 20, . . . , 35→ t3γ,1α , α, β = 1, . . . , 4 ,
zi, i = 36, . . . , 51→ t1α,2β , β, γ = 1, . . . , 4 ,

(4.10)

where we order the pairs of indices (β, γ), (γ, α) and (α, β) in lexicographical order: (1, 1),
(1, 2), (1, 3), (1, 4), (2, 1), . . .

We begin with the cubic term of the LCS prepotential. As discussed in [63, 64], the
so-called Yukawa couplings of the cubic terms of the prepotential, i.e., the κijk factors,
have to match the ones obtained when writing the volume of the Calabi-Yau as

V = 1
6κijks

isjsk, (4.11)

where si = {ri, ti}. This means that the triple intersection numbers can be read off
from (4.6), taking into account that odd powers of E divisors will carry an extra negative
sign within their respective intersections. On the other hand, the polynomial corrections to
be added in the LCS prepotential can be computed using the expressions given in section 2.
The quadractic corrections are expressed with (2.4) from the triple intersection numbers.
For the linear coefficients ci, we use the intersections of the divisors with the second Chern
class (4.8) and (4.9) to find

ci = (1, 1, 1, 1/6, . . . , 1/6) . (4.12)

The constant term is determined by the Euler characteristic of the Calabi-Yau, see (2.2).
For this particular example, we find

κ0 = 12iζ(3)
π3 . (4.13)

4.3 Kähler and Mori cones of the mirror

The Kähler cone of a Calabi-Yau compactification is defined as the collection of Kähler
forms J such that all curves, areas and volumes computed with respect to it are positive

KY ≡
{
J ∈ H1,1(Y,R) | vol(W ) > 0 ∀W ∈ W

}
, (4.14)

where W includes all curves, areas and volumes constructible with J . In practice, we will
be mostly interested in exploring a somewhat more constrained version of this cone, namely
the stretched Kähler cone [58], where all of the volumes are required to satisfy vol(W ) > c

with c = O(1), in order to be free from potential exponential corrections. As in [17], we
will dub its mirror as stretched complex structure (CS) cone.

– 15 –



J
H
E
P
0
8
(
2
0
2
3
)
0
1
6

In the symmetric resolution of the blown-up T 6/(Z2×Z2), the volumes to consider are
the following [60] (we translate notations according to (4.5)):

vol(R1R2) = 2r3 , (4.15)

vol(R1E2β,3γ) = 2t2β,3γ , (4.16)

vol(R1D2β) = r3 −
∑
γ

t2β,3γ , (4.17)

vol(D1αE3γ,1α) = r2 −
∑
β

t1α,2β , (4.18)

vol(E2β,3γE3γ,1α) = t2β,3γ + t3γ1α − t1α,2β , (4.19)

vol(R1) = 2r2r3 −
∑
β,γ

t22β,3γ , (4.20)

vol(D1,α) = r2r3 −
∑
γ

r2t3γ,1α −
∑
β

r3t1α,2β +
∑
β,γ

t3γ,1αt1α,2β , (4.21)

vol(E2β,3γ) = 2r1t2β,3γ +
∑
α

[1
2 t

2
2β,3γ + t3γ,1αt1α,2β −

1
2(t23γ,1α + t21α,2β) (4.22)

− t2β,3γt3γ,1α − t2β,3γt1α,2β
]
,

vol(Y3) = 2r1r2r3 −
∑
β,γ

r1t
2
2β,3γ −

∑
α,γ

r2t
2
3γ,1α −

∑
αβ

r3t
2
1α,2β , (4.23)

−
∑
α,β,γ

[
− 1

2 t2β,3γ(t23γ,1α + t21α,2β)− perms (4.24)

+ 1
6
(
t32β,3γ + t33γ,1α + t31α,2β

)
+ t2β,3γt3γ,1αt1α,2β

]
,

and their corresponding cyclic permutations.
The Mori cone is the cone spanned by all effective curves. These curves are char-

acterized by their intersections with the divisors of the basis, that we can read from the
formulas (4.15)–(4.19) and arrange into 51-dimensional vectors. For example, from (4.15),
we read that the curve R1 ·R2 is described by the vector (0, 0, 1, 0, . . . , 0). From (4.19), we
read that the curve E2β,3γ · E3γ,1α with α = β = γ = 1 is described by the vector

(0, 0, 0, 1, 0, . . . , 0︸ ︷︷ ︸
15 times

, 1, 0, . . . , 0︸ ︷︷ ︸
15 times

,−1, 0, . . . , 0︸ ︷︷ ︸
15 times

) . (4.25)

In total, this gives 267 curves that generate the Mori cone. However, a basis of generators
is enough. Meaning, we can remove all curves that can be expressed as linear combinations
with positive coefficients of the others. From [59], the relevant basis of generators6 is given
only by the curves (4.17), (4.18) and (4.19) and their permutations. This gives a basis of
generators with 216 elements. The Mori cone is thus highly non-simplicial in the sense
that it is generated by many more elements than its dimension.

6We ran the algorithm described in [27] to explicitly build the basis of generators by removing positive
linear combinations and we fully agree with the resulting set.
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In order to be safe from exponential corrections, we require volumes of all subvarieties
to be greater than 1 in string units. This means we want to be inside the stretched Kähler
cone defined with a parameter c = 1. From a mirror perspective, we want the complex
structure moduli to be such that the expressions for the various volumes are greater than 1
when replacing the real parts of the Kähler moduli by the saxionic parts of the mirror’s
complex structures.

4.4 Orientifolding, flux quantization and the D3-brane tadpole

In order to construct type IIB flux vacua based on the (3, 51) Calabi-Yau X3, we need to in-
troduce orientifold planes with negative D3-brane charge in the above construction. We do
so via the standard O3/O7 projection based on a geometric involution R, such thatR : Ω→
−Ω and R : J→J . The fixed loci of this involution will host O3-planes and O7-planes, and
we will assume that the Ramond-Ramond charge of the latter is cancelled by a set of D7-
branes, possibly on top of the O7-planes. The remaining RR tadpole condition then reads

Nflux + 2ND3 +QD3 = 0 , (4.26)

where Nflux > 0 is the flux-induced contribution (2.13), ND3 counts the number of D3-
branes in the quotient space X3/R and the D3 charge QD3 contains contributions from the
O3-planes as well as from the D7-branes and O7-planes. When this last charge is negative,
it sets an upper bound on the value of Nflux, if one forbids anti D3-branes or other non-BPS
objects. It follows that the allowed set of flux vacua depends on the value of QD3, which
in turn depends on the orientifold projection.

Simple choices of orientifold projections are those that are defined at the toroidal
orbifold limit T 6/(Z2 × Z2). They are described by a set of discrete choices on the Chan-
Paton degrees of freedom, that are compatible with the choice of discrete torsion that
corresponds to the (3, 51) Calabi-Yau, see e.g. [65] for a discussion. Out of these choices,
we are interested in those that lead to the type IIB orientifold considered in [36], and that
is T-dual to the type I orientifold constructed in [66]. Just like in [36] we will consider
three-form fluxes on top of this orientifold background but, unlike [36], we will not restrict
ourselves to flux vacua that occur at the orbifold limit. Instead, we will also consider
vacua at points in complex structure moduli space in which the collapsed three-cycles of
the orbifold gain a non-trivial size. To do so in the presence of the orientifold projection,
it is important to realize that the full cohomology of twisted three-forms is odd under this
orientifold projection, which means that the projection is compatible with the complex
structure moduli space of the (3, 51) Calabi-Yau.

Given this particular orientifold projection, the precise O-plane content at the orbifold
limit depends on the choice of discrete B-field along the non-trivial two-cycles of the com-
pactification [36]. In the absence of such a B-field, the content amounts to 64 O3−-planes
and three sets of 4 O7−-planes, where the superindex indicates the sign of the charge
and tension compared to the corresponding D-branes. One may then cancel the O7-plane
charge by placing 4 D7-branes plus their orientifold images on top of each O7-plane,7 leav-

7Intersecting D7-brane configurations with worldvolume fluxes may yield vacua with semi-realistic chiral
spectra [36, 67, 68], but such magnetic fluxes increase the value of QD3. Therefore for simplicity we will
not consider them in our setup.
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ing an O3-plane charge that can be cancelled by a combination of D3-branes and three-form
fluxes. In the absence of fluxes, the number of D3-branes in the covering space that cancels
the tadpole is 32, which means that in (4.26) we have

QD3 = −32 =⇒ Nflux ≤ 32 . (4.27)

By continuity, it is easy to argue that the same result will hold when this orientifold
projection is extended to the full complex structure moduli space of the (3, 51) Calabi-
Yau. Indeed, deforming the orbifold geometry by giving a non-trivial vev to the twisted
fields should not change the number of D3-branes that are needed to cancel tadpoles. In
particular it is not expected that the growth of collapsed three-cycles induces curvature
terms on the 7-brane sector that could contribute to QD3 in one way or the other.

Notice that in [36] no flux configuration was found with Nflux ≤ 32. The reason
was the quantization conditions imposed for three-form fluxes in the orbifold limit, which
required that Nflux ≥ 64. In our analysis we will not have to impose such a lower bound
because, unlike in [36], we allow for three-form fluxes switched along the twisted three-
cycles. Indeed, having the above prepotential, we are entitled to include such fluxes as
long as the resulting vacua lie within the LCS regime of the (3, 51) Calabi-Yau manifold.
In the following sections we will see that with these more relaxed constraints and using
certain effective reduction ansätze, one is able to find flux configurations that stabilize most
of the moduli and do not overshoot the D3-brane tadpole (4.27).

Despite our more general framework, there are still certain consistency conditions that
must be observed. In particular, one needs to consider the flux quantization condition
derived by Frey and Polchinski in [40], which states that the three-form flux quanta along
any three-cycle that intersects an even number of O3−-planes must be even. In the setup
described above, in which there is no discrete B-field and there are 64 O3−-planes, this
constraint will apply to any relevant three-cycle, as can be checked in the orbifold limit.
Therefore both NSNS and RR three-form flux quanta must be even, which implies Nflux ∈
4Z, and severely constrains the allowed set of flux vacua. Switching on a discrete B-field
along one or several Kähler moduli will introduce O3+-planes in the configuration, as
discussed in ([36], section 6), and may imply that flux quanta along certain three-cycles
must be odd. However, each of these non-vanishing discrete B-fields will halve the value of
QD3 compared to (4.27), since O3+-planes contribute with a positive charge and tension to
the D3-brane tadpole. Thus, the simplest approach is to focus on finding flux vacua with
even flux quanta and Nflux ≤ 32.

Alternatively, one may consider orientifold projections different from the ones discussed
above, and that are not necessarily compatible with the orbifold limit. An example of
such an O3/O7 projection was given in [59], for the smooth (51, 3) Calabi-Yau manifold
discussed in subsection 4.1, mirror to the one of interest in this paper. In order to specify
the value of QD3 for these alternative orientifold projections one would first have to define
a holomorphic involution R on the smooth (3, 51) Calabi-Yau, the fixed loci hosting O3
and O7-planes and their charges, and finally the topology of the four-cycles wrapped by
the O7-planes. Alternatively, one could find the F-theory four-fold uplift of the orientifold
and compute its Euler characteristic. Since both problems are quite involved in general,
one may instead resort to a lower bound estimate for the D3 charge QD3, widely used in the
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type IIB orientifold literature [15, 69–72], relevant when the D7-brane tadpole is cancelled
locally with SO(8) stacks:

QD3 ≥ −(2 + h1,1 + h2,1) . (4.28)
In our case, this bound translates into QD3 ≥ −56 which in turn sets an upper bound on
the flux-induced contribution

Nflux ≤ 56 . (4.29)
Note that this value matches the one obtained in [59] for the (51, 3) Calabi-Yau manifold
with the alternative orientifold projection defined therein.

The search for flux vacua in a given Calabi-Yau orientifold, like the procedure described
in section 3, mostly depends on the prepotential for the complex structure sector, and only
through the constraints mentioned above on the O-plane content of the compactification.
Therefore one may run a general analysis in the search of flux vacua for the (3, 51) Calabi-
Yau manifold independently of the orientifold projections, using (4.29) as a guideline for
the allowed flux tadpole. Since this more general approach does not specify the nature of
the O3-planes of the compactification, one may consider both even and odd fluxes, knowing
that in order to verify the validity of the flux vacuum one should embed these flux choices in
a specific choice of O-plane content, like the one leading to the more stringent bound (4.27).
In the following sections we will adopt this general philosophy when discussing reduction
schemes and their solutions, although special emphasis will be given to those flux vacua
that are compatible with the orientifold projection leading to (4.27).

5 Reduction to two parameters and stabilization

Now that we have reviewed all the necessary data to define the LCS prepotential for the
(h1,1, h2,1) = (3, 51) Calabi-Yau, we will turn to solve the vacuum equations (3.15)–(3.16)
for some particular setup which allows for an easy numerical treatment, following the
strategy outlined in subsection 3.1.3.

5.1 Reduction ansatz

In order to solve the system of vacuum equations, we propose the following ansatz for sax-
ions and fluxes, inspired by [59] and motivated by the symmetries of the triple intersection
numbers:8

ti ≡ t0vi ≡ (r, r, r, t, . . . , t︸ ︷︷ ︸
48 times

) ,

vi ≡ (vr, vr, vr, vt, . . . , vt︸ ︷︷ ︸
48 times

) ,

f iA ≡ (f rA, f rA, f rA, f tA, . . . , f tA︸ ︷︷ ︸
48 times

) ,

hBi ≡ (hBr , hBr , hBr , hBt , . . . , hBt︸ ︷︷ ︸
48 times

) .

(5.1)

8Note that while in section 4.3 r and t represent Kähler moduli of the mirror (51, 3) Calabi-Yau, here
they represent complex structure moduli of the (3, 51) Calabi-Yau.
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The remarkable feature about this particular choice of fluxes and vevs is that it reduces
the system (3.15) (and thus also the system (3.18) close to the LCS point) to only two
equations.9 Together with eq. (3.16), the whole system reduces to the following three
equations:

0 = −hBr + 4f rAvr − 32f tAvt +
24
[
hBr v

r + 16hBt vt
] [

(vr)2 − 8
(
vt
)2]

8
[
(vr)3 − 24vr (vt)2 + 48 (vt)3

]
− Im (κ0)

(t0)3

,

0 = −
[
hBt + 2f tA(vr − 6vt) + 2f rAvt

]
− 24(vr − 3vt)vt(hBr vr + 16hBt vt)

8
[
(vr)3 − 24vr (vt)2 + 48 (vt)3

]
− Im (κ0)

(t0)3

,

t0 =
(

Q′

3hBr vr + 48vt
[
hBt − 2f tAvr + 6f tAvt

]
+ 6f rA [(vr)2 − 8(vt)2]

) 1
2

. (5.2)

The equations at the LCS point are obtained by taking Im (κ0) = 0 in these expressions.
Note that for this particular restricted choice of fluxes, the flux-induced D3-brane tadpole
reads

Nflux = −3f rAhBr − 48f tAhBt . (5.3)

5.2 Constraints on the solutions

Inserting the ansatz (5.1) into the relevant volumes gives10

VY3 = 2
(
r3 − 24rt2 + 48t3

)
, VE = 2

(
rt− 3t2

)
, VD = (r − 4t)2 ,

Ar = r − 4t , At = t .
(5.4)

These expressions can be understood in terms of the volumes and areas of the mirror (51, 3)
Calabi-Yau. In particular, VY3 stands for the volume of the whole mirror compactification
space, VE and VD are respectively the volumes of its divisors Eiα,jβ and Diα, and the areas
Ar and At are obtained from eqs. (4.17), (4.18) and (4.19). In the (3, 51) Calabi-Yau, these
quantities translate into the quotient of three-cycle volumes by the reference three-cycle
volume.

The stretched CS cone conditions with a parameter c ≥ 1 then take the simple form

c < t <
r − c

4 . (5.5)

which, using the decomposition (3.14), gives

vr > 0 ,

 0 < vt < vr

5 , t0 > c
vt

vr

5 < vt < vr

4 , t0 > c
vr−4vt

. (5.6)

Again by using mirror symmetry, one can interpret these conditions as those sufficient for
exponentially suppressed corrections to be negligible in the search for flux vacua.

9Meaning that in total, the 52 equations for the saxions are composed of 3 and 49 identical equations.
10Notice that there are some overall factors of 2 compared to [59] because we are computing volumes on

the Calabi-Yau covering space.
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Nflux f rA f tA hBr hBt vr(0) vt(0) rank (M) (t0)3 |ξ|
36 −6 −2 2 0 0.589 0.110 52 0.599
48 −8 −2 2 0 0.227 0.029 41 7.07

Table 1. Two numerical solutions found for the two-parameter reduction at LCS. Each solution
is associated with another one featuring opposite fluxes, that we do not write for brevity. We also
indicate the rank of the matrix M , that counts stabilized axions.

5.3 Search for vacua

In the following subsection we will go over the steps described in section 3.1.3 to find
potential tree-level flux vacua for the (3, 51) Calabi-Yau.

5.3.1 Solving the LCS system

Step 1. Guided by (4.29), we generate tuples {f rA, f tA, hBr , hBt } such that the flux-induced
contribution to the tadpole is lower than 56. Then, we try to solve the system of equations
at LCS (3.18) to find vr(0) and vt(0) under the constraints (5.6) displayed above.11 The
solutions found with smallest tadpoles are summarized in table 1. We indicate the rank of
the matrix M , defined in (3.3), as well the value of the product (t0)3|ξ| defined in (3.17),
which is a function of vr(0) and vt(0). Note that both t0 and the LCS parameter ξ are unfixed
at this stage.

5.3.2 Full solutions

Let us now detail the three next steps of the algorithm to get solutions of the full system
from these two first-step candidates. Note that as reviewed in section 3.1.1, the rank of
the matrix M determines how many axionic directions are stabilized. When the rank is
maximal, all axions get a mass and no constraint arise. When the matrix is singular, only
rank (M) axions are stabilized and 52 − rank (M) constraints on the flux quanta arise in
our setup. For the solution with Nflux = 48 in table 1, this means that 11 axions will
remain massless and special care will be required in the following steps to account for the
flux constraints mentioned above.

Step 2. We want to fix the target value for t0 in order to get a small LCS parameter
(e.g. |ξ| ∼ 10−2) and satisfy the stretched CS cone conditions (5.6) with parameter c = 1.
For the solutions at hand and the rather small associated values for (t0)3 |ξ|, the stretched
cone conditions are the most stringent. We thus choose t0target = 1/vt(0) since vt(0) < vr(0)/5
for both solutions. This value corresponds to t0min defined in section 3.1.3 for a stretched
cone with parameter 1. With this choice, we evaluate the target value Q′target from (3.20).
At this step, one can choose to aim for a larger value of t0, to have some room with the
bounds or if one desires to generate solutions inside a more stretched CS cone, i.e. one
defined with a larger parameter c. Actually, to account for the fact than when generating

11Meaning that we impose vr(0) > 0, vt(0) > 0 and if vt(0) > vr(0)/5, we ask vr(0) > 4vt(0). These conditions
ensure positive volumes that can then be tuned to the desired values in the following steps.
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Nflux f rA f tA hBr hBt (fB1 , . . . , fB51, f
B
0 , h

B
0 ) t0 r t

36 −6 −2 2 0 see eq. (5.7) 10.5 6.19 1.16
48 −8 −2 2 0 see eq. (5.8) 38.5 8.74 1.13

Table 2. Two full solutions with Nflux = 36 and Nflux = 48.

the remaining flux quanta, one may obtain a definitive t0 a bit lower than the target, we
increase its value by 15% to have some room.

• For the Nflux = 36 solution, we set t0target = 10.46 and obtain Q′target = −0.304.

• For the Nflux = 48 solution, we set t0target = 39.32 and obtain Q′target = −0.367.

Step 3. We fix all the 53 remaining fluxes {fB0 , fBi , hB0 } by minimizing (Q′ − Q′target)2

over the integers, with Q′ expressed in terms of fluxes with (3.12) when M is invertible
and with (3.11) when it is not. In the singular case, we must additionally impose the
constraints (3.9) on the flux quanta for the axionic vacuum equations to be consistent. The
remaining free fluxes can be fixed efficiently in full generality without further restrictions.

• For our Nflux = 36 example, a flux choice can be

(fB1 , . . . , fB51, f
B
0 , h

B
0 ) = (4, 0,−2, 2,−2,−6,−2, 0, 2,−2, 0,−2, 10,−2, 8, 0,

8,−2,−2, 2, 0, 2,−4, 4, 2, 2,−2, 0, 0,−4, 0, 0,−4, 4,
2,−2,−2,−2, 2,−4,−2, 0, 0,−2, 0, 2, 0,−4, 0, 2,−4,
4,−2) (5.7)

which yields a definitive value Q′ = −0.302.

• For the Nflux = 48 solution, one can easily implement the 11 constraints and tune
the remaining flux quanta to one’s liking. A possible flux tuple is given by

(fB1 , . . . , fB51, f
B
0 , h

B
0 ) = (0, 0, 0, 0,−6,−4,−8,−12,−8, 8, 4, 0, 6, 0,−4,−4,−2,

0, 6, 2,−2,−4, 8, 4, 0,−2,−4,−6,−14, 2, 2,−2, 0, 0,−8,
0,−2,−2,−6, 6, 0,−2, 0,−2, 0, 0,−6, 2,−2,−10, 0) (5.8)

which yields the final value Q′ = −0.375.

Step 4. We now plug all the flux quanta into the full system of equations and solve it
numerically. The table 2 summarizes the flux choices for the two solutions and displays
the final vevs for the saxions, while table 3 shows the relevant volumes and areas of the
unmirrored manifold at the vacua. For a more complete display of the solution with
Nflux = 36, refer to appendix A.2.
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Nflux VY3 VE VD Ar At
36 226 6.30 2.45 1.57 1.16
48 939 12.07 17.91 4.23 1.13

Table 3. The volumes and areas in the vacua displayed above.

5.3.3 Full families of solutions

It is important to realize that the two flux vacua presented above are just specific examples
of the full set of solutions that one obtains by applying the strategy of subsection 3.1.3.
Indeed, the content of table 1 is related to step 1 of our flux vacua search algorithm, and in
our discussion of step 2 above we chose a specific value for t0target close to the lower bound
t0min. Recall however that there is a whole range of values that one can choose for t0target
in step 2 of the algorithm. Varying this value will generate a whole family of flux vacua
associated to the content of table 1, where the flux quanta that vary are those that do not
contribute to the tadpole. In the following we describe how to generate this family of flux
vacua for the two examples discussed above.

To obtain the two full solutions above, the strategy was to aim at a sufficiently large
t0target such that:

• We sit in the stretched CS cone.

• We are deep enough in the LCS region such that the final ratios ti/t0 of the solution
are very close to the zeroth-order values given by vi(0).

We can generate further solutions based on the content of table 1, either by going deeper
inside the CS cone, or on the contrary closer to its boundary. To do this, one simply
needs to repeat the whole procedure outlined above for the two specific solutions, but
now scanning over different values for t0target in step 2. The CS cone depicted in figure 1
illustrates this strategy: the red dots indicate the locations of the points in moduli space
corresponding to saxions obtained from the first-step values vi(0) with t0 = 1. They are
thus the points with coordinates ti = vi(0) and t0 = 1. Note that they are in the CS cone
by construction since we look for positive volumes in step 1, but in general they will not
belong to the stretched CS cone. These points define rays starting from the origin of the
cone, along which we have ti/t0 = vi(0). For increasing values of t0, the lines go deeper
inside the CS cone and eventually reach the stretched cone with parameter c = 1. The first
portions of the red lines are dashed to emphasize that vi(0) is an accurate approximation
of the values of the ratios in actual solutions only if t0 is large enough, as reminded just
above. True solutions coming out of our strategy are thus expected to deviate from the
dashed part but converge towards the solid portion of the red lines.

This picture is precisely what is observed after applying the complete strategy of
subsection 3.1.3 to generate solutions, with t0target chosen in the range (1, t0max) ∼ (1, 800)
for the Nflux = 36 family of solutions, and (1, t0max) ∼ (1, 231) for the Nflux = 48 family. For
the two-parameter reduction at hand, the true CS cone can be faithfully represented in two
dimensions in the (r, t)-plane. Figure 2 shows the locations of the solutions and how they
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Figure 1. The CS cone and its strectched version with parameter c. The first-step results repre-
sented by the red dots define rays coming from the origin along which we have ti/t0 = vi

(0). The
design is inspired by ([15], figure 1).

Figure 2. Plots representing two families of solutions obtained from the first-step results of table 1.
(a) On the left, representation of the (r, t)-plane along with the CS cone shaded in orange and its
stretched version with parameter c = 1 in a darker tone. Full solutions obtained from different
values of t0target are depicted in blue for the Nflux = 36 case and in green for the Nflux = 48 one. As
expected, the solutions quickly converge towards the red lines. The two black circles pinpoint the
specific solutions worked out in subsection 5.3.2. (b) On the right, zoom on the area delimited by
the dashed rectangle on the left figure. Solutions close to the tip of the CS cone (and far from the
stretched cone) feature small deviations from the first-step values vi

(0).

fit inside the CS cone and its stretched version. The solutions reach the stretched cone at
t0min ∼ 9.1 and t0min ∼ 34.2 for the Nflux = 36 and Nflux = 48 families respectively. Note
that outside the stretched cone, some solutions might be viable as well, since exponential
corrections could be small even with c < 1. The discretum of values along each ray
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represents different choices for those fluxes not involved in Nflux, that are tuned to reach
a value as close as possible to Q′target as defined in (3.20). In fact, a lot of different flux
choices can lead to identical values for Q′ in (3.11). Therefore, in figure 2, the points
depicted in the (r, t)-plane are highly degenerate, in the sense that they describe several
solutions that can be obtained from a large number of different choices for the fluxes not
involved in Nflux.

5.3.4 Scalar mass spectra

For the two specific solutions described in section 5.3.2, as it has already been explained, we
know that all axions are stabilized for the Nflux = 36 solutions while 11 directions remain
flat in the Nflux = 48 one. On the other hand, the saxions are expected to be fully stabilized
since they are all involved in the non-linear saxionic system of equations. One can however
check these claims explicitly by computing numerically the scalar mass spectrum for the
vacua under consideration. The easiest way to get the masses is to follow the strategy
outlined in [30]. We compute the matrix Z defined as ZAB ≡ eK/2DADBW and evaluate it
numerically for the solution at hand. Besides, we evaluate the Kähler metric and compute
its inverse, in order to obtain canonically normalized masses in the end. With these two
quantities, we can evaluate ZABKBC̄Z̄C̄D̄K

DC̄ , whose eigenvalues give the fermion masses
m2
λ. Then, we compute the gravitino mass m3/2 ≡ eK/2|W | and express the scalar masses

squared as
µ2
±λ = (m3/2 ±mλ)2 , λ = 0, . . . , h2,1 . (5.9)

In the Nflux = 36 vacuum, we find that all masses are O(1−100) in Planck units except one
mode which is very light (see appendix A.2 for the detailed spectrum). This light mode
is fully expected in the IIB1 scenario from general grounds when a vacuum is close to the
LCS point [16, 32]. It is related to the fact that we can absorb t0 in the saxionic system of
vacuum equations at the LCS point, such that there is a massless mode there. Then, it is
natural to expect vacua quite close to this point to feature a light mode. For the Nflux = 48
vacuum, the numerical computation confirms the presence of 11 massless modes while all
others are O(1−100) in Planck units except one that is light, as expected.

When computing the mass spectra, we are lead to implement numerically the full
prepotential with the 52 complex variables as well as the full superpotential. We have thus
checked explicitly, without any massaging of the vacuum equations, that the solutions we
propose (flux configurations along with axionic and saxionic vevs) are indeed flux vacua.

6 A lower tadpole in a four-parameter reduction

The minimum magnitude of the flux-induced tadpole for solutions arising from the two-
parameter reduction of the model has been shown to be Nflux = 36. This is compatible with
the generic estimate (4.29), but it overshoots the tadpole of the explicit orientifold quotient
that corresponds to (4.27). Motivated to find new solutions with tadpoles compatible
with this bound, in this section we explore a more complex reduction to four parameters.
Notice that playing with fewer flux quanta in the two-parameter case is what enabled us to
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efficiently explore small-tadpole configurations, so that increasing the number of parameters
seems to go in the wrong direction. However a four-parameter reduction, which is still a
great improvement over 51, allows to explore vacua with a more involved flux structure.
There is thus hope that we can uncover smaller tadpoles in this setup by benefiting from
the structure of the vacuum equations, and without introducing too many variables. We
will see that this is indeed the case, and present a solution with Nflux = 32 found via a
four-parameter ansatz. Given the similarities with the two-parameter solutions we will be
more sketchy in our discussion, leaving some numerical details for appendix A.1.

6.1 The ansatz

The model defined in section 4 admits three different prescriptions which reduce it to
four effective complex structure moduli. One such possible choice for a four-parameter
description of the model is given by

ti ≡ t0vi ≡ (r, r, r′, t, . . . , t︸ ︷︷ ︸
32 times

, t′, . . . , t′︸ ︷︷ ︸
16 times

) ,

vi ≡ (vr, vr, vr′
, vt, . . . , vt︸ ︷︷ ︸

32 times

, vt
′
, . . . , vt

′︸ ︷︷ ︸
16 times

) ,

f iA ≡ (f rA, f rA, f r
′
A , f

t
A, . . . , f

t
A︸ ︷︷ ︸

32 times

, f t
′
A , . . . , f

t′
A︸ ︷︷ ︸

16 times

) ,

hBi ≡ (hBr , hBr , hBr′ , hBt , . . . , h
B
t︸ ︷︷ ︸

32 times

, hBt′ , . . . , h
B
t′︸ ︷︷ ︸

16 times

) .

(6.1)

Two other ansätze that lead to a four-parameter description can be constructed from

ti ≡ t0vi ≡ (r, r′, r, t, . . . , t︸ ︷︷ ︸
16 times

, t′, . . . , t′︸ ︷︷ ︸
16 times

, t, . . . , t︸ ︷︷ ︸
16 times

) , (6.2)

and

ti ≡ t0vi ≡ (r′, r, r, t′, . . . , t′︸ ︷︷ ︸
16 times

, t, . . . , t︸ ︷︷ ︸
32 times

) , (6.3)

in such a way that the vectors vi, f iA and hBi have the same structure of repeated entries. All
of the equations to solve and volumes to check that follow from these reductions are exactly
the same, so a solution described with certain saxions {r, r′, t, t′} and flux components
{f rA, f r

′
A , f

t
A, f

t′
A , h

B
r , h

B
r′ , hBt , h

B
t′ } will represent three different potential vacuum families.

With such an ansatz, the various volumes of the mirror geometry in (4.15)–(4.23)
are more complex than in the two-parameter setup. In particular, it is not possible to
summarize the stretched CS cone conditions into a set of few simple inequalities. This
is no big deal and it just means that when checking the candidate solutions at the LCS
point in the first step of our algorithm, we need to go through all volumes and check if
they are positive. With these starting points, the idea will then be the same as before,
illustrated in figure 1, to tune the remaining free fluxes to generate full solutions inside the
stretched cone.
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Nflux f rA f r
′
A f tA f t

′
A hBr hBr′ hBt hBt′ vr(0) vr

′

(0) vt(0) vt
′

(0) rank (M) (t0)3 |ξ|
32 −6 4 0 −2 2 −2 0 0 0.438 0.391 0.086 0.061 43 0.286

Table 4. A solution with positive volumes found for the four-parameter model at LCS.

6.2 A new solution

In the same way as in the previous section for the two-parameter case, we follow here the
four steps of our strategy to find solutions and display the results.

6.2.1 LCS system

Step 1. We generate tuples {f rA, f r
′
A , f

t
A, f

t′
A , h

B
r , h

B
r′ , hBt , h

B
t′ } and restrict to configuration

yielding a flux-induced contribution to the tadpole lower than 32. For each tuple, we solve
the LCS system (3.18) to find vr(0), vr

′

(0), vt(0) and vt′(0), and we plug the solutions into the
volumes to test if they are positive. We found only one configuration passing this filter,12
described in table 4.

6.2.2 Remaining fluxes and solution

We proceed with the rest of the strategy to generate full solutions. The rank of the matrix
M for the case at hand is not maximal such that some axions are left unstabilized by (3.5)
and we will have to take care about flux constraints in the following steps.

Step 2. Note that again, the small value for (t0)3 |ξ| ensures that t0 needs not be very
large to achieve |ξ| � 1, such that the strongest constraints come from the volumes.
More precisely, we take t0target = 22 and from the values displayed in table. 4 we obtain
Q′target = −0.113 using (3.20).

Step 3. We now want to fix all the remaining flux quanta fB0 fBi and hB0 by minimizing
(Q′ − Q′target)2 over the integers, with Q′ expressed in terms of fluxes with (3.11), which
is valid when M is not invertible. The 53 fluxes are however not independent due to the
constraints arising from the axionic system. These constraints can be shown to be

fB36 − fB39 − fB48 + fB51 = 0 , fB36 − fB38 − fB48 + fB50 = 0 ,
fB36 − fB37 − fB48 + fB49 = 0 , fB36 − fB39 − fB44 + fB47 = 0 ,
fB36 − fB38 − fB44 + fB46 = 0 , fB36 − fB37 − fB44 + fB45 = 0 ,
fB36 − fB39 − fB40 + fB43 = 0 , fB36 − fB38 − fB40 + fB42 = 0 ,
fB36 − fB37 − fB40 + fB41 = 0 .

(6.4)

A flux set that minimizes (Q′ −Q′target)2 and satisfies the constraints above can be found
in (A.3), which gives a definitive value Q′ = −0.099.

Step 4. Plugging all the flux quanta in the full system of equations, we find the definitive
solution displayed in table 5.

12As a crosscheck, we also looked for solutions with larger tadpoles and, among others, we recovered as
a special case the two solutions presented in the previous section in the two-parameter case.
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Nflux f rA f r
′
A f tA f t

′
A hBr hBr′ hBt hBt′ fB0 , f

B
i , h

B
0 t0 r r′ t t′

32 −6 4 0 −2 2 −2 0 0 see (A.3) 25.1 11.0 9.80 2.16 1.53

Table 5. A full solution with Nflux = 32.

For this vacuum, the total volume of the mirror Calabi-Yau VY3 , the volume of the
divisors generically denoted VE,D and the areas generically written A of the curves gener-
ating the Mori cone, that can be read from (4.15)–(4.23), are all bigger than 1 and read
(with duplicates removed):

VY3 = 1076 , VE,D = (24.1, 8.24, 5.70, 5.53) , A = (4.88, 2.35, 1.17, 1.53, 2.79) . (6.5)

6.2.3 Mass spectrum

Applying the same techniques as described in section 5.3.4, we can evaluate the scalar
masses at the vacuum. As expected, we find 9 massless modes corresponding to the unfixed
axions due to the rank ofM being only 43. One mode is very light, as expected for solutions
close to the LCS point in the IIB1 setup [32]. Eventually, the other masses are of order
O(0.01−100) in Planck units. The full list of masses is displayed in (A.7).

6.3 Other, more complicated reductions

So far we have explored reductions to effectively two and four complex structure moduli.
However, a six-parameter reduction is also possible, whose main properties are presented in
appendix B. In that particular case, the higher number of variables and flux quanta makes
the numerical search more complicated (though still tractable). Regrettably, the numerical
search over 107 potential flux tuples with Nflux ≤ 32 has not led to any new solution which
had not already been found in the aforementioned reductions.

7 Connection with the Tadpole Conjecture

The solutions described above stabilize a moderately large number of real moduli (2h2,1 +
2 = 104 when M has maximal rank) at LCS, while having a relatively small flux-induced
D3-brane charge. It is thus interesting to see how this relates to the Tadpole Conjecture [13],
whose features we review in what follows.

7.1 Versions of the conjecture

Initially proposed in [13], the Tadpole Conjecture applies to M-theory, F-theory or type
IIB Calabi-Yau compactifications with fluxes. Its general form is the following:

Nflux > αnstab for nstab � 1 with α = O(1) , (7.1)

where nstab counts the numbers of moduli that are stabilized by fluxes. The refined version
of the conjecture [13] further predicts a lower bound on the so-called flux-tadpole constant α,
namely α > 1/3. In the F-theory context, such a linear growth with coefficient 1/3 of the
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flux-induced tadpole in the number of moduli leads to a no-go for stabilizing a large number
of moduli without overshooting the tadpole upper bound set by the Euler characteristic
of the fourfold, estimated to also grow linearly but with a smaller coefficient 1/4. A more
recent refinement distinguishes between a weak and a strong form of the conjecture [21].
The strong form states that the linear scaling of Nflux with the number of stabilized moduli
nstab holds, no matter what this number is. On the contrary, the weak form proposes that
the linear scaling is to be observed only when achieving full moduli stabilization in a given
compactification.

In the following we will use our results to test the strong version of the Tadpole
Conjecture, with particular interest on the ratio Nflux/nstab, that measures how efficient
the fluxes are in stabilizing moduli. Because we mostly care about non-supersymmetric
vacua, it makes more sense that nstab counts the number of real moduli stabilized by fluxes.
Then, in order to match the conventions for α in [13], one needs to compute the flux tadpole
Nflux in the covering space, as we have done in (2.13).

7.2 Regimes of validity

In the quest to prove or challenge the Tadpole Conjecture, two kinds of analysis have
recently tested the proposal in two very different regimes, obtaining results that naively
seem to point in opposite directions. On the one hand, the proposal has been tested in
a large class of asymptotic regimes in complex structure moduli space [19, 20], finding a
strong support of (7.1) that could a priori hint towards a general, mathematical proof of
this statement. In fact, in such asymptotic regimes, one can show that the flux-induced
contribution to the D3-brane tadpole is bounded from below by

Strict asymptotic regime: Nflux > 0.7nstab , (7.2)

which is a stronger statement than the conjectured α = 1/3 value. It is important to
notice that this derivation applies to a specific domain of validity, as it assumes a strict
asymptotic regime, where not only the complex structure moduli grow towards corners in
moduli space, but they do so by following a strict hierarchy among them.

On the other hand, far away from this regime and deep inside the interior of complex
structure moduli space, vacua in F-theory at symmetric points in moduli space were found
to violate the Tadpole Conjecture in its strong form [21]. There, an example has been
worked out with a ratio of the flux-induced tadpole to the number of stabilized moduli
satisfying

A construction at a symmetric point in the deep interior: Nflux
nstab

= 0.003 , (7.3)

which is in strong tension with the α = 1/3 value and even the O(1) estimate in (7.1).
If one concludes that the strongest form of the Tadpole Conjecture is proven true in the

strict asymptotic regime and proven wrong in the deep interior of moduli space, a natural
question is to determine where lies the switch between validity and non-validity of such a
proposal. In this paper, we have investigated the LCS regime, which is a particular case of
asymptotic regime but less stringent than a strict limit, because it does not need to lie in
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Strict asymptotic regime
- Use of sl(2) decomposition

→ Nflux > 0.7 nstab

Large complex structure
- Our vacua with even fluxes
→ Nflux/nstab ≥ 0.337
- With potential lifted D7 moduli
→ Nflux/nstab ≥ 0.1675
- Allow odd flux quanta
→ Nflux/nstab ≥ 0.084

Deep interior

- Vacua at symmetric
loci of moduli space
in F-theory

→ Nflux/nstab = 0.003

Figure 3. An explicit F-theory construction at a symmetric locus and deep inside the interior
of moduli space, displays a very small Nflux/nstab ratio [21], in tension with the conjectured 1/3
bound. On the other side of moduli space, in the strict asymptotic regime, a lower bound 0.7 for this
ratio has been obtained in [19, 20]. In between, in large complex structure regimes with symmetric
fluxes, we have found solutions with O(100) stabilized moduli and moderate flux-induced tadpoles.
Assuming O3−-planes and imposing even flux quanta, the solutions we obtain are in agreement
with the refined Tadpole Conjecture, with a slope very close to the α = 1/3 bound in the case
of our Nflux = 32 solution. As a consequence, any additional modulus stabilized in the D7-brane
sector would violate the bound. An upper estimate on the number of these D7-brane moduli gives
α ∼ 1/6, in clear tension with the bound of the refined conjecture. More speculative solutions,
requiring the presence of exotic O3+-planes compatible with odd flux quanta show a much smaller
ratio α ∼ 1/12, again in tension with the conjectured bound.

any of the growth sectors considered in [19, 20]. In fact, in our effective reductions there is
a large symmetry among flux quanta that results in a lot of vevs being identical, somewhat
analogously to the symmetric points studied in [21]. Therefore, they are asymptotic regimes
that lie far away from the hierarchy of saxionic vevs present in the growth sectors analyzed
in [19, 20]. From this point of view, our analysis lies in between the two regimes explored
in [19, 20] and [21], and one may hope to measure how this intermediate regime interpolates
between the other two in terms of the value for α, as illustrated by figure 3.

The most solid of our solutions are those obtained in section 6, with Nflux = 32 and
compatible with the explicit orientifold projection leading to (4.27), followed by those of
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section 5, with Nflux = 36 and 48 and compatible with the estimate (4.29). These examples
show ratios of the flux-induced tadpole to the number of stabilized moduli as small as

Solutions at LCS with even fluxes: Nflux
nstab

=


0.3368
0.35
0.52 ,

(7.4)

respectively from top to bottom. These values are compatible with the α = 1/3 value of
the refined conjecture, but are much closer to this value than the 0.7 bound derived in the
strict asymptotic regime. They are displayed in green in the LCS region on figure 3. Even
if they are in agreement with the strongest form of the Tadpole Conjecture, note that these
solutions are in direct tension with the expectations raised in [15, 17, 18] in the context of
type IIB flux compactifications, where it is argued that by going deeper inside the CS cone,
the smallest value for Nflux should increase. Indeed, our algorithm allows us to generate
solutions inside a very stretched CS cone by varying the value of t0target without changing
the flux-induced contribution to the tadpole.

7.3 Adding D7-brane moduli

Our counting for nstab above only involves closed-string fields, namely the axio-dilaton and
complex structure moduli. This is motivated by the type IIB version of the Tadpole Con-
jecture proposed in [13], which has separate statements for bulk and for D7-bane position
moduli, even if both sets are quite similar from an F-theory perspective. The reason behind
such a separation seems to be the assumption that each set of moduli is fixed by a different
set of fluxes: bulk moduli are fixed by three-form fluxes, while D7-brane positions by their
worldvolume fluxes.

While D7-brane worldvolume fluxes do generate a superpotential for their positions,
see e.g. [73, 74], bulk three-form fluxes are known to stabilize open string moduli as well. In
particular, they generically stabilize D7-brane position moduli even in the absence of any
worldvolume flux [37–39].13 In a setup with D7-branes on top of O7-planes without any
worldvolume flux,14 it thus makes sense to include their position moduli in the computation
of nstab, because one is fixing more moduli at no tadpole cost. It is the computation of the
ratio Nflux/nstab with this definition of nstab that should match the one defined from the
F-theory perspective.

Let us for instance consider the choice of flux vacua of section 6 with Nflux = 32. This
model is compatible with the Calabi-Yau deformation of the T 6/(Z2 × Z2) orientifold T-
dual to [66]. As discussed in section 4.4, in the orbifold limit one may cancel the D7-brane
tadpole by placing 4 D7-branes plus their orientifold images on top of each of the 12 O7−-
planes, without the need of any worldvolume flux on them. This gives the tadpole (4.27),
and a total of 48 complexified D7-brane position moduli.

13See [75] for the interplay between closed and open string fluxes in a simple F-theory setup, and [76] for
that between three-form fluxes and D7-brane Wilson line moduli stabilization.

14In CY compactifications with three-form fluxes one is always allowed to place D7-branes on top of
O7-planes, because due to the orientifold action the B-field must vanish at that location [76].
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Upon deformation to the (3, 51) Calabi-Yau orientifold, one expects the four-cycles
wrapped by the O7-planes to change their embedding and possibly recombine among them-
selves. However, by continuity one should be able to still cancel their tadpole by placing
D7-branes on top of them, and in such a way that (4.27) is maintained. In particular,
this means that neither the O7-plane nor the D7-brane curvature terms are such that they
contribute to the D3-brane tadpole, as we have assumed in our analysis. One then deduces
that the Euler characteristic of these divisors vanishes, which typically corresponds to a
topology of the form T 2×Σ2, with Σ2 a Riemann surface. Except for the case Σ2 = P1, this
means that the D7-branes wrapped on these divisors will have position moduli and, since
we precisely are in the setup of [39], we expect such moduli to be lifted by the three-form
background fluxes.

A detailed computation of the lifted D7-brane moduli would require a more detailed
analysis of the O7-plane divisors in the (3, 51) Calabi-Yau orientifold that is beyond the
scope of this work. However, based on the generality of the D7-brane moduli-fixing mech-
anism of [39] and the freedom in the choice of flux quanta that lead to the same tadpole,
one can assume that any D7-brane position moduli in the (3, 51) Calabi-Yau orientifold
should be fixed. Then, given the number of D7-brane position moduli in the orbifold limit,
one can estimate that the contribution to nstab could be as large as 96. Combined with
our previous discussion, one finds that for the flux vacua of section 6 the ratio Nflux/nstab
should be in the range

0.1675 ≤ Nflux
nstab

≤ 0.3368 , (7.5)

which essentially challenges the proposed value of 1/3. Indeed, notice that with just a
single D7-brane position stabilized by fluxes one recovers α < 1/3 in (7.1), and therefore
counterexamples to the refined Tadpole Conjecture. It would be interesting to confirm this
expectation from a more detailed analysis, as well as from an F-theory perspective.

The same considerations can be applied to the vacua of section 5 and their F-theory
lift. Of course, in this case the result depends on the choice of orientifold projection leading
to a D3-brane tadpole within the estimate (4.29), although it is easy to see that as long as
there are D7-branes with position moduli, the same tension with the bound α = 1/3 will
exist, at least for the set of flux vacua with Nflux = 36.

An interesting caveat of the above discussion is whether the D7-brane sector gives rise
to non-Abelian gauge groups, that in turn lead to singularities in the F-theory uplift of
these vacua. Indeed, in the orbifold limit of the (3, 51) Calabi-Yau orientifold, pairs of D7-
branes host SU(2) gauge groups, independently of their position. It is not clear whether
this feature remains after a deformation away from the orbifold limit, although of course
one expects that several D7-branes placed on top of an O7-plane host a non-Abelian gauge
group. In this sense, one should stress that the moduli fixing mechanism of [39] also leads
to a discretum of D7-brane positions away from the O7-plane locus, so such a non-Abelian
enhancement need not take place. Again, a detailed study of the 7-brane sector would be
needed in order to have a definite picture.
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Nflux f rA f tA hBr hBt vr(0) vt(0) rank (M) Nflux/nstab

9 −3 −1 1 0 0.589 0.110 52 0.087
12 −4 −1 1 0 0.227 0.029 41 0.129
15 −5 −2 1 0 0.796 0.180 52 0.144
15 −5 −1 1 0 0.143 0.014 52 0.144
18 −3 −1 2 0 1.178 0.220 52 0.173
24 −4 −1 2 0 0.454 0.058 41 0.258
27 −3 −1 3 0 1.776 0.330 52 0.260
30 −5 −2 2 0 1.592 0.360 52 0.288
30 −5 −1 2 0 0.287 0.028 52 0.288
30 −2 −1 −3 1 3.982 0.842 25 0.390
33 −1 −1 −5 1 1.486 0.299 52 0.317

Table 6. Some numerical solutions found for the two-parameter model at LCS without forbidding
odd fluxes. Each solution is associated with another one featuring opposite fluxes, that we do not
write for brevity.

7.4 Odd flux quanta

As mentioned in section 4.4, we imposed all flux quanta to be even to be consistent with
flux quantization [40] in the presence of only O3−-planes. In order to have odd flux quanta,
one must instead consider compactifications with both O3−-planes and O3+-planes. These
latter, more exotic O-planes are the consequence of the presence of a discrete background
for the antisymmetric B-field [77–80]. More precisely, a flux quantum must be odd if the
associated 3-cycle crosses an odd number of exotic planes [36, 40]. However, since the
O3+-planes have positive tension and charge, exchanging regular planes for exotic ones
will increase the D3-charge QD3 to less negative values and thus lower the upper bound
on Nflux. The consistency of the solutions presented below is thus subject to the existence
of an exotic orientifold projection such that the upper bound on the flux-induced tadpole
does not drop below the associated values for Nflux. The lack of exhaustive information
about the orientifold projections we are allowed to consider in our geometry prevents us
from precisely investigate if this is indeed possible or not. Nevertheless, we find important
to point out that, when we apply our algorithm without forbidding odd fluxes, we find
solutions with much lower flux-induced tadpole contributions. Some of these solutions
for the step 1 of the algorithm and in the two-parameter setup are displayed in table 6.
Full solutions, inside the stretched CS cone, can easily be obtained by following the same
procedure as before.

When considering the specific orientifold projection mentioned in section 4.4 which is
compatible with the orbifold limit T 6/(Z2 × Z2), it has been shown that at the orbifold
point, the simplest non-trivial B-field background with rank two does not allow for odd
fluxes [36]. The reason is that the O3-planes distribution is such that any 3-cycle crosses an
even number of exotic planes. Things are expected to change and get more involved if the
rank of the discrete background is at least four. The D3-charge being divided by the rank,
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it would decrease down to −8. This could still be compatible with the solution containing
odd fluxes obtained from the one with Nflux = 32, presented in table 5, by dividing all
quanta by 2, since the tadpole would also drop to Nflux = 8.

Subject to all the precautions already mentioned, this Nflux = 8 solution together with
those presented in table 6 would yield ratios as small as

Solutions at LCS with odd fluxes allowed: Nflux
nstab

=


0.084
0.087
. . . ,

(7.6)

and would therefore provide counterexamples to the refined Tadpole Conjecture at large
complex structure. It would be very interesting to see if these options could be realized.
More generally, it would be interesting to see if the value for the bound α could be dependent
on the content of exotic O3-planes.

8 Conclusions and outlook

In this paper we applied the IIB1 scenario, introduced in [16], to a specific compactifi-
cation geometry. The IIB1 choice of fluxes has been extensively explored in [32] and has
been shown to provide a promising first-step simplifying scheme for moduli stabilization
regardless of the number of scalar fields. One of the interesting features of this flux family
is a nice split between axions and saxions at the level of the vacuum equations. More
specifically, the axions obey a very simple linear system while the saxions satisfy a set of
non-linear relations, decoupled from the axionic vevs. Another interesting property is the
way the various flux quanta are involved in the equations. The axionic linear relations,
together with the saxionic system approximated at large complex structure, only depend
on the fluxes that contribute to the flux-induced D3-brane tadpole. One can thus easily
generate flux tuples constrained by the tadpole bound and quickly check if the axions are
stabilized, reducing the search for vacua to a h2,1 + 1 variables problem instead of twice
that number. The saxionic system remains hard to solve generically if no further simplifi-
cations are assumed, but one can already notice that its structure allows to efficiently look
for vacua in the LCS regime due to the property outlined above. At the LCS point, the
system is h2,1-dimensional and, as already said, it only involves the flux quanta constrained
by the tadpole. If a solution can be found at this level of approximation, the remaining
fluxes can be tuned such that the flux-dependent quantity denoted Q′ is small in absolute
value, which ensures that the full solution is indeed close to LCS and to the first-order
approximation. This provides an efficient way to determine promising flux tuples instead
of performing, e.g., a random search.

In this paper we applied the procedure described above in order to search for vacua
in a model with a moderately large number of complex structure moduli. The specific
Calabi-Yau was chosen due to the structure of the triple intersection numbers of its mirror
dual, which allows for an effective reduction of the number of saxions down to only two,
four or six variables, hence rendering the saxionic system manageable from a numerical
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point of view. Such reduction ansätze make profit of the topological symmetries of the
mirror dual but are different from proper truncations at symmetry points in the moduli
space. The mirror compactification geometry in question was the symmetrically resolved
orbifold T 6/(Z2 × Z2) with h1,1 = 51 [59–62].

The lack of exhaustive information about the possible ways to orientifold our geometry,
and in particular with projections not compatible with the orbifold limit, lead us to use
an estimate for the minimum D3-charge possible [15, 69–72] and thus for the maximum
allowed flux-induced contribution to the D3-brane tadpole. Besides, a more explicit and
stringent bound was derived for a specific orientifold projection consistent with the orbifold
limit, studied in [36]. Fortunately, the analysis of the flux vacua equations is independent
of the orientifold action, provided that the same set of complex structure moduli survive
the projection. Therefore, with these two bounds in mind and following our algorithm, we
found families of solutions of the approximate vacuum equations at the LCS point, that
we then promoted to full solutions in the LCS regime by adequately tuning the other flux
quanta that are not involved in the tadpole. At this step, we also ensured that mirror
volumes and areas were sufficiently big for our vacua to lie inside the stretched complex
structure cone, where the LCS approximation is justified due to negligible exponential
corrections. At the end of the day, the solutions we found stabilize all 2h2,1 + 2 = 104
scalars or a large portion of them and feature rather small flux-induced tadpoles.

We eventually ended our analysis by discussing how our solutions relate to the Tadpole
Conjecture [13]. Assuming flux quanta to be even due to flux quantization in presence of
regular O3−-planes [40], the only solutions that survive the filtering are those with a ratio
of the flux-induced tadpole to the number of stabilized moduli that is in agreement with the
conjectured flux tadpole constant α = 1/3. Some solutions reach values very close to this
bound and are thus smaller than the result α > 0.7 derived in the strict asymptotic corner
of moduli space studied in [19, 20]. The sharp proximity we found in our solutions of the
flux tadpole constant with respect to the refined bound led us to discuss effects that may
imply crossing this threshold. Firstly, in addition to the bulk moduli, three-form fluxes also
have the potential to fix some of the moduli associated to the position of the D7-branes
without requiring the presence of worldvolume fluxes. Accounting for this phenomenon
in our solutions, the flux-tapdole-to-stabilized moduli ratio could be decreased as low as
α ∼ 1/6. Determining whether this is actually the case would demand a detailed analysis
of the divisors in our compactification geometry, which is beyond the scope of this work.
Secondly, if the assumption of even fluxes is relaxed, which would require the existence of
consistent orientifoldings compatible with the presence of exotic O3+-planes, solutions with
a ratio as low as α ∼ 1/12 can be found, which are in sharp tension with the conjecture.
These solutions are however more speculative since we lack explicit information about the
orientifold projections allowed in our geometry and their precise O-plane content.

Our results suggest a picture that can be summarized by figure 3. Regions in com-
plex structure moduli space that correspond to strict asymptotic regimes, hence a strict
hierarchy of saxions vevs, display a flux-tadpole-to-stabilized-moduli ratio above 0.7. Re-
moving the hierarchy of vevs but staying in an asymptotic regime like the LCS region, one
gets closer to the proposed value for the lower bound for this ratio of 1/3 in the refined
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TC, and entering the interior of the moduli space further lowers this bound. It would be
very interesting to confirm this picture by analyzing further setups, and see if a universal
behaviour for this ratio can be obtained. If that was the case, one would have a global
pattern across CS field space indicating how efficient is this moduli stabilization mechanism
by background fluxes. It is also important to stress that the content of figure 3 only applies
to the strong version of the Tadpole Conjecture, and that for the weak version, where full
moduli stabilization is required, a different result could apply. Notice nevertheless that in
this work we have found potential solutions which achieve stabilization of all the complex
structure moduli, for which rank (M) is maximal, i.e. 52 (see tables 1 and 6). Some of those
solutions, when written in terms of even fluxes, yield a tadpole of Nflux = 36 and feature
α ∼ 0.35. On the other hand, allowing the flux quanta to be odd integers reduces those
quantities down to Nflux = 9 and α ∼ 1/12. It thus seems that further investigation along
these lines could help to clarify what the final picture is for both versions of the Tadpole
Conjecture.

In particular, as already mentioned above, getting more information about the com-
pactification geometry studied in this paper would be very enlightening. In particular, a
classification of the possible orientifold projections performed away from the orbifold point
(of which not all of them may possess a well-defined orbifold limit), their O3-planes content
and the associated D3-charge would strengthen the robustness of some solutions uncov-
ered in this paper. Information about the fourfold uplifts and their Euler characteristics
could also be valuable to address these questions. Along these lines, it would also be very
interesting to directly try to apply the strategy followed in this paper with the equivalent
of the IIB1 scenario in F-theory [16]. Working with a known fourfold in F-theory would
settle all the issues regarding the topology of the compactification space raised above. In
addition, solutions found this way would clearly stabilize D7-brane moduli in addition to
the complex structure fields from the IIB perspective and might decrease the values of the
ratio of the flux-induced tadpole to the number of stabilized scalars as mentioned above.

Eventually, it would be insightful to apply our results and procedures to other compact-
ification spaces, extracted for example from the Kreuzer-Skarke database [81], that would
allow for effective reductions inside the IIB1 scenario. Additionally, it would be interesting
to see if our approach could be extended to other moduli stabilization schemes, like the
IIB2 scenario of [16] and its F-theory version. Indeed, it could be that using symmetric
fluxes one could simplify the saxions’ equations in order to solve them explicitly, and clarify
whether this scenario yields counterexamples to the Tadpole Conjecture. Finally, it would
be interesting to extend the computation of the flux-tadpole-to-stabilized-moduli ratio to
other flux compactification schemes that lead to non-supersymmetric Minkowski vacua at
tree level, like those in [82, 83].
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A Two solutions in detail

In this appendix, we give all numerical details about two of the full solutions presented in
the core of the paper. Namely, the solution arising in the four-parameter reduction with
Nflux = 32 and the one achieving full complex structure stabilization in the two-parameter
reduction with Nflux = 36.

A.1 The Nflux = 32 solution

This solutions was found in the four-parameter reduction of our model.

Fluxes f i
A and hB

i .

(f1
A, . . . , f

51
A ) = (−6,−6, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0,−2,−2,−2,−2,−2,−2,−2,−2,−2,−2,−2,
− 2,−2,−2,−2,−2) ,

(hB1 , . . . , hB51) = (2, 2,−2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) .

(A.1)

Constraints and remaining fluxes. With these f iA fluxes, the matrix M defined
in (3.3) has a rank of 43 such that only 43 axions are stabilized by (3.5) while 9 con-
straints arise, as summarized in (3.9). The constraints are given by

fB36 − fB39 − fB48 + fB51 = 0 , fB36 − fB38 − fB48 + fB50 = 0 ,
fB36 − fB37 − fB48 + fB49 = 0 , fB36 − fB39 − fB44 + fB47 = 0 ,
fB36 − fB38 − fB44 + fB46 = 0 , fB36 − fB37 − fB44 + fB45 = 0 ,
fB36 − fB39 − fB40 + fB43 = 0 , fB36 − fB38 − fB40 + fB42 = 0 ,
fB36 − fB37 − fB40 + fB41 = 0 .

(A.2)

The solution presented in the main text then has the following flux choice, which satisfies
the constraints above:

(fB1 , . . . , fB51) = (−2,−2,−4, 2, 0,−4,−2,−2,−6,−2, 0,−8, 2, 0, 4, 0, 8,−4,−2,
0, 6,−4,−2, 0, 8,−4,−6, 0,−8, 2, 2, 4, 6, 10,−2,−6, 2, 2, 2, 6, 14,
14, 14, 2, 10, 10, 10, 2, 10, 10, 10) ,

fB0 = 2 , hB0 = 6 .

(A.3)
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Axions, saxions and volumes. Using (3.9) and going back to the original basis of
axions, we can write all ba as involving linear combinations of 9 parameters. For the sake
of brevity, let us write a particular solution obtained from that system by taking all of the
free parameters to zero:

(b0, . . . , b51) = (4.50,−2.94,−2.94,−2.88,−2.23,−0.651,−0.734,−1.32,
− 0.609, 1.47,−0.609,−1.19, 1.39,−0.0260,−0.609,−1.69,
− 0.359,−1.28, 0.641, 0.0573,−0.766,−0.266, 1.23,
− 0.0156,−1.43,−1.43, 0.568, 0.318,−1.02, 2.98,−0.516,
− 1.27,−0.599, 0.901,−1.10, 1.15,−1.48,−1.16,−0.914,
− 0.789,−0.477,−0.164, 0.0859, 0.211,−0.977,−0.664,
− 0.414,−0.289,−1.35,−1.04,−0.789,−0.664) .

(A.4)

On the other hand the saxions are given by

(t0, . . . , t51) = (25.1, 11.0, 11.0, 9.80, 2.16, 2.16, 2.16, 2.16, 2.16, 2.16, 2.16, 2.16,
2.16, 2.16, 2.16, 2.16, 2.16, 2.16, 2.16, 2.16, 2.16, 2.16, 2.16, 2.16,
2.16, 2.16, 2.16, 2.16, 2.16, 2.16, 2.16, 2.16, 2.16, 2.16, 2.16, 2.16,
1.53, 1.53, 1.53, 1.53, 1.53, 1.53, 1.53, 1.53, 1.53, 1.53, 1.53, 1.53,
1.53, 1.53, 1.53, 1.53) .

(A.5)

With these values, the total volume of the mirror Calabi-Yau VY3 , the volume of the divisors
generically denoted VE,D and the areas generically written A of the curves generating the
Mori cone, that can be read from (4.15)–(4.23), are (with duplicates removed)

VY3 = 1076 , VE,D = (24.1, 8.24, 5.70, 5.53) , A = (4.88, 2.35, 1.17, 1.53, 2.79) . (A.6)

These volumes and areas are all bigger than one, which should ensure the solution to be
safe from exponential corrections.

Mass spectrum. The canonically normalized scalar masses ma, a ∈ {1, . . . , 104}, evalu-
ated numerically at the vacuum are displayed in (A.7). As expected, we observe 9 exactlty
massless modes that correspond to the 9 unstabilized axions. We also note the presence of
a light mode, fully expected from the IIB1 analytics close to the LCS point [32]:

(m1, . . . ,m104) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 9.07× 10−8, 0.0168, 0.0168, 0.0168,
0.0168, 0.0168, 0.0168, 0.365, 0.617, 0.94, 0.94, 0.94, 2.73, 2.73,
2.73, 2.73, 2.73, 2.73, 2.73, 2.73, 2.73, 2.73, 2.73, 2.73, 2.73,
2.73, 2.73, 2.73, 2.73, 2.73, 4.26, 4.26, 4.26, 4.26, 4.26, 4.26,
4.26, 4.26, 4.26, 4.26, 4.26, 4.26, 4.26, 4.26, 4.26, 4.26, 4.26,
4.26, 8.76, 9.68, 12.9, 12.9, 12.9, 12.9, 12.9, 12.9, 13.8, 13.8,
13.8, 13.8, 13.8, 13.8, 13.8, 13.8, 13.8, 13.8, 20.3, 22, 22, 22,
44.6, 57, 62.8, 62.8, 62.8, 62.8, 62.8, 62.8, 103, 127, 135, 135,
135, 135, 135, 135, 169, 169, 169, 192, 200, 280, 280, 280, 319) .

(A.7)
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A.2 The fully stabilized Nflux = 36 solution

This solution has been uncovered in the two-parameter reduction of the model.

Fluxes. The whole fluxes are

(f1
A, . . . , f

51
A ) = (−6,−6,−6,−2,−2,−2,−2,−2,−2,−2,−2,−2,−2,−2,−2,

− 2,−2,−2,−2,−2,−2,−2,−2,−2,−2,−2,−2,−2,−2,−2,
− 2,−2,−2,−2,−2,−2,−2,−2,−2,−2,−2,−2,−2,−2,−2,
− 2,−2,−2,−2,−2,−2) ,

(hB1 , . . . , hB51) = (2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) ,

(fB1 , . . . , fB51) = (4, 0,−2, 2,−2,−6,−2, 0, 2,−2, 0,−2, 10,−2, 8, 0, 8,−2,−2, 2,
0, 2,−4, 4, 2, 2,−2, 0, 0,−4, 0, 0,−4, 4, 2,−2,−2,−2, 2,−4,−2,
0, 0,−2, 0, 2, 0,−4, 0, 2,−4) ,

fB0 = 4 , hB0 = −2

(A.8)

Axions, saxions and volumes. In this case, the matrix M is invertible so that the
axionic vevs are easily obtained from (3.5):

(b0, . . . , b51) = (−21.6, 0.31, 0.0952, 0.595,−1.91, 0.841,−1.08,−0.492,−0.409,
0.841,−1.08, 0.00794, 1.51, 0.258, 0.341,−0.575, 0.00794,−0.242,
− 0.659, 0.925,−0.212,−0.462,−0.212, 0.371, 0.538, 0.288, 1.04,
1.12,−0.546,−1.3, 0.454,−1.46, 0.621, 0.871,−0.379,−0.796,
− 0.712, 0.288, 1.37,−0.379,−0.712,−0.212, 0.371,−0.379,
− 0.462, 0.0377, 0.621, 0.371,−0.796,−0.796,−0.212, 0.538) .

(A.9)

The saxions read

(t0, . . . , t51) = (10.5, 6.19, 6.19, 6.19, 1.16, 1.16, 1.16, 1.16, 1.16, 1.16, 1.16, 1.16,
1.16, 1.16, 1.16, 1.16, 1.16, 1.16, 1.16, 1.16, 1.16, 1.16, 1.16, 1.16,
1.16, 1.16, 1.16, 1.16, 1.16, 1.16, 1.16, 1.16, 1.16, 1.16, 1.16, 1.16,
1.16, 1.16, 1.16, 1.16, 1.16, 1.16, 1.16, 1.16, 1.16, 1.16, 1.16, 1.16,
1.16, 1.16, 1.16, 1.16) .

(A.10)

The relevant volumes and areas of the mirror Calabi-Yau defined in (4.19) then read

VY3 = 566 , VE = 11.6 , VD = 4.53 , Ar = 2.13 , At = 1.57 , (A.11)

and they are all bigger than 1.
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Mass spectrum. The canonically normalized scalar masses ma, a ∈ {1, . . . , 104}, eval-
uated numerically at the vacuum are given below and as expected, all moduli get a mass
and there is one light mode:

(m1, . . . ,m104) = (9.52× 10−6, 4.07, 4.07, 5.71, 5.71, 5.71, 5.71, 5.71, 5.71, 5.71,
5.71, 5.71, 5.71, 5.71, 5.71, 5.71, 5.71, 5.71, 5.71, 5.71, 5.71,
5.71, 5.71, 5.71, 5.71, 5.71, 5.71, 5.71, 5.71, 5.71, 12.4, 12.4,
12.4, 12.4, 12.4, 12.4, 12.4, 12.4, 12.4, 12.5, 20.1, 20.2, 20.2,
20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 31.6, 31.6, 31.6, 31.6,
31.6, 31.6, 31.6, 31.6, 31.6, 31.6, 31.6, 31.6, 31.6, 31.6, 31.6,
31.6, 31.6, 31.6, 31.6, 31.6, 31.6, 31.6, 31.6, 31.6, 31.6, 31.6,
31.6, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 36, 36, 64.2, 64.3,
194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 257) .

(A.12)

B Six-parameter reduction

As explained in the main text, the vacuum equations of motion in our setup enjoy another
possible effective reduction down to six parameters thanks to the ansatz

ti ≡ t0vi ≡ (r, r′, r′′, t, . . . , t︸ ︷︷ ︸
16 times

, t′, . . . , t′︸ ︷︷ ︸
16 times

, t′′, . . . , t′′︸ ︷︷ ︸
16 times

) ,

vi ≡ (vr, vr′
, vr

′′
, vt, . . . , vt︸ ︷︷ ︸

16 times

, vt
′
, . . . , vt

′︸ ︷︷ ︸
16 times

, vt
′′
, . . . , vt

′′︸ ︷︷ ︸
16 times

) ,

f iA ≡ (f rA, f r
′
A , f

r′′
A , f tA, . . . , f

t
A︸ ︷︷ ︸

16 times

, f t
′
A , . . . , f

t′
A︸ ︷︷ ︸

16 times

, f t
′′
A , . . . , f

t′′
A︸ ︷︷ ︸

16 times

) ,

hBi ≡ (hBr , hBr′ , hBr′′ , hBt , . . . , h
B
t︸ ︷︷ ︸

16 times

, hBt′ , . . . , h
B
t′︸ ︷︷ ︸

16 times

, hBt′′ , . . . , h
B
t′′︸ ︷︷ ︸

16 times

) .

(B.1)

Investigating this more generic setup was numerically more challenging but the use of
computer clusters helped us scanning a lot of flux configurations. However, despite the
several tens of millions of candidate configurations explored, with Nflux ≤ 32, none gave
a satisfying solution apart from the already known four-parameter solution presented in
section 6, which as expected arises as a particular subcase.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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