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ABSTRACT: The analysis of type II1B flux vacua on warped Calabi-Yau orientifolds becomes
considerably involved for a large number of complex structure fields. We however show that,
for a quadratic flux superpotential, one can devise simplifying schemes which effectively
reduce the large number of equations down to a few. This can be achieved by imposing the
vanishing of certain flux quanta in the large complex structure regime, and then choosing
the remaining quanta to respect the symmetries of the underlying prepotential. One can
then implement an algorithm to find large families of flux vacua with a fixed flux tadpole,
independently of the number of fields. We illustrate this approach in a Calabi-Yau manifold
with 51 complex structure moduli, where several reduction schemes can be implemented
in order to explicitly solve the vacuum equations for that sector. Our findings display a
flux-tadpole-to-stabilized-moduli ratio that is marginally above the bound proposed by the
Tadpole Conjecture, and we discuss several effects that would take us below such a bound.
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1 Introduction

Our perception of the string Landscape is conditioned by how well we understand the
set of vacua that compose it and, in particular, the equations that describe such vacua.
In this sense, type IIB or F-theory flux compactifications on warped Calabi-Yau (CY)
orientifolds seem like a particularly simple setup. The energy-minimization constraints
that background fluxes impose on the axio-dilaton/complex structure vacuum expectation
values (vevs) can be characterized in terms of a tree-level Kéhler potential and superpo-
tential [1, 2] (see [3-12] for reviews), and the corresponding flux vacuum conditions lead to
a system with the same number of equations as of unknowns.! Algebraically, this points
towards a discrete set of solutions, which is indexed by the set of flux quanta. Since the
number of flux quanta grows with the number of complex structure deformations, this
reasoning would indicate that this sector of the string Landscape is dominated by CY
manifolds with the largest number of such moduli.

The problem of this naive picture is that such fluxes induce D3-brane charge and
tension, measured by the integer Nguy, and this quantity cannot overshoot the negative
charge and tension induced by the geometry of the compactification, or else flux vacua
cannot be found. This additional constraint could in principle modify the above perception
that the discretum of type IIB/F-theory flux vacua should be dominated by Calabi-Yau
manifolds with a large complex structure sector. In fact, it was argued in [13] that quite the
opposite should be true, as a consequence of the Tadpole Conjecture (TC). This proposal
essentially states that if ngan, 2 O(100) is a large number of flux-stabilized moduli, then
the ratio

Nﬁux/nstaby (11)
is bounded from below by 1/3.

'In this paper we do not discuss Kahler moduli stabilization, and the term fluz vacua refers to those
axio-dilaton/complex structure vevs that solve the equations of motion at tree-level in 4d Minkowski.



The difficulty in testing this proposal is that, in general, the set of vacuum equa-
tions becomes intractable for a very large number of moduli. As a consequence, many
of its tests are of numerical nature [13-15], while analytic techniques to address the va-
lidity of the proposal are still being developed. Along these lines, [16] provided a set of
algebraic equations that describe smooth F-theory and type IIB flux vacua in the large
complex structure (LCS) regime, for an arbitrary number of moduli. Using them, one
can see that the value of Ny goes to infinity along some directions in field space, unless
certain flux quanta are set to zero. Guided by this fact, [16] proposed a set of patterns
for vanishing flux quanta which, in the case of type IIB compactifications were dubbed
1IB1 and IIB2 scenarios. While in the second of these setups Npyuy is independent of nggap,
which goes against the TC statement, it was argued in [17-19] that demanding control over
exponentially-suppressed corrections could restore a linear dependence, in line with the TC
proposal. Using asymptotic Hodge structure techniques, this intuition was made precise
for strict asymptotic regimes in complex structure moduli space [20], finding a lower bound
for the ratio (1.1) twice above the proposed value. Such strict asymptotic regimes probe
asymptotic limits along many directions in field space, which points towards a universal
behaviour of the ratio (1.1) as we approach them. However, it is important to stress that
they demand a strict hierarchy between the complex structure vevs, and as such they do
not cover the whole of the LCS region. This leaves open the possibility that the ratio (1.1)
lowers its value at other regions within the LCS regime, as well as on the deep interior of
the complex structure moduli space. In fact, it was shown in [21] that at symmetric loci
in the deep interior of complex structure moduli space one can measure the above ratio to
be two orders of magnitude below the initially proposed value.

Regardless of the validity of the Tadpole Conjecture and/or its refinements, evaluating
the quantity (1.1) in different regions of fields space is interesting per se, as it measures
the efficiency of this moduli stabilization mechanism in them. Indeed, at flux vacua Ngux
measures the energy stored in the flux background, and so the inverse of (1.1) can be
understood as the number of stabilized moduli per flux-energy unit. It is thus a pressing
question to determine if this moduli-stabilization efficiency grows towards the interior of
the moduli space, as the above set of results seem to indicate, since this would have a
direct impact on our perception of the string Landscape. The problem is that the dataset
at the deep interior of moduli space is very scarce, as the type of analysis made in [21]
(see also [22, 23]) is only valid along invariant loci of discrete symmetries acting on the
CY complex structure moduli space; loci that are selected upon choosing fluxes invariant
under such a symmetry [24-30].

In this paper we aim to bridge the gap between the analysis made in [20] and [21],
by analysing flux moduli stabilization in a complex structure region in between these two
regimes, as illustrated by figure 3. We consider flux vacua in the LCS region, so that we
can make use of mirror symmetry techniques to write down equations that describe such
vacua. Even though we are in an asymptotic regime of the CY moduli space, we focus
on regions that are far away from the growth sectors considered in [20], which require
a strict hierarchy between vevs. More precisely, we consider flux vacua in which many
complex structure vevs are similar, which allows us to reduce the complexity of the system



of equations down to a few of them. This selection is implemented by a choice of flux
quanta that partially respects the symmetries of an underlying N' = 2 prepotential, and in
this sense our approach is similar in spirit to that of [21]. However, we do not necessarily
require a discrete moduli-space symmetry to implement our analysis, and we do not need
to integrate any field out of the 4d supergravity description. We dub this approach as
an effective reduction of the system of vacua equations, as it is closer to the ansatz-based
philosophy implemented in [31].

More precisely, we develop our analysis based on the type IIB1 scenario of [16], whose
analytical features were further analyzed and developed in [32]. It is thanks to this analytic
control that we are able to get an overall picture of this setup, and propose a general
algorithm to generate large families of flux vacua in the LCS region. Unlike in [32], we do
not focus on choices of flux quanta that correspond to the no-scale aligned vacua of [30].
Indeed, as already pointed out in [16], this flux choice yields a ratio (1.1) strictly larger
than one, and so it is not easy to implement for CY compactifications with h>! > 1.
Nevertheless, there are other choices of flux quanta within the type IIB1 scenario that
yield a much smaller ratio even for O(100) flux-stabilized moduli, as we will demonstrate
with explicit examples.

Our constructions are based on the deformed T°/(Zy x Z2) orbifold analyzed in [33, 34],
which hosts 51 complex structure moduli, and which we dub as (3,51) Calabi-Yau. An
orientifold of this Calabi-Yau has been considered before in literature in order to find flux
vacua [35, 36], but only at the orbifold limit. Unlike in [35, 36] we are able to build
consistent flux vacua that do not overshoot the D3-brane tadpole, because we allow for
non-vanishing fluxes in the would-be orbifold twisted sector, that moreover stabilize the
corresponding moduli in the LCS regime. This geometry will not only allow us to im-
plement the IIB1 scenario, but also to do so via different reduction ansitze. We explore
in particular reductions with two, four and six effective parameters, which constitute a
huge simplification compared to the initial system of 104 real equations. In this setup,
our algorithm allows to generate large families of flux vacua in the interior of the saxionic
complex structure (CS) cone, and deep enough to be able to neglect exponential correc-
tions, by varying a set of flux quanta that do not contribute to the tadpole. This allows
us to provide counterexamples to some of the statements made in the literature based on
asymptotic limits, like the expectation that Npuy should increase as vacua go deeper into
the interior of the CS cone.

With these results in hand, we evaluate the ratio (1.1) in our constructions and find
that, as expected, they lie in between the values found in [20] and [21]. Remarkably, the
smallest of such values marginally respects the lower bound 1/3 proposed in [13], meaning
that the stabilization of an additional real modulus would violate it. In our case, this
result is due to two separate effects. First, we do not include D7-brane position moduli
in the counting of ngap, even if three-form fluxes generically stabilize such moduli [37-39].
Second, we only consider orientifold geometries that contain standard O3-planes, which
leads to flux quantization conditions demanding even flux quanta [40]. Dropping any of
these two assumptions could easily lead to reducing the value of the ratio (1.1) by a factor
of 2 or 4, violating the proposed bound of 1/3. More generally, these remarks open the



question on whether the tadpole-to-stabilized moduli ratio is sensitive to the presence of
exotic O3-planes in a Calabi-Yau orientifold compactification, which so far is a rather
unexplored corner of the string Landscape.

The paper is organized as follows: in section 2, we briefly recap some notations and
conventions for type IIB flux compactifications in the LCS regime. In section 3, we review
the IIB1 flux scenario of [16] with special emphasis on the properties derived from the
quadratic superpotential, which provides a simplifying scheme for moduli axio-dilaton and
complex structure moduli stabilization. We also provide our definition of effective reduction
on the number of moduli, and see under which assumptions such reduction can occur
in the IIB1 scenario. In section 4, we gather information about the mirror dual of the
compactification geometry that we investigate in this work, namely the symmetrically
resolved T°/(Zy x Zs) orbifold with h''' = 51. The topological data of this model is useful
to express the LCS prepotential on the mirror side. In section 5, starting from the I1IB1
vacuum equations for the compactification space at hand, we apply a reduction ansatz to
effectively reduce the number of complex structure moduli down to two. We then search for
vacua under the constraint that exponential corrections are negligible so as to justify the
LCS approximation, and that the D3-brane tadpole bound is not overshot. In section 6,
a new family of solutions is uncovered in a more complex four-parameter reduction of the
model. Section 7 discusses how our results relate to the tadpole conjecture, and in section 8
we provide our conclusions and outlooks. Several details are relegated to the appendices:
appendix A provides full numerical details about some vacua presented in the paper, while
appendix B makes explicit the six-parameter reduction mentioned earlier.

2 Type IIB flux compactifications

In this section we review the material used to describe the effective behaviour of flux
compactifications of type IIB string theory on a Calabi-Yau 3-fold X3 at large complex
structure (LCS). In order to construct type IIB flux vacua one needs to introduce orientifold
planes with negative D3-brane charge [2, 41], which can be implemented via the standard
03/07 projection based on a geometric involution R, such that R : & — —Q and R :
J — J. Nevertheless, the search for flux vacua can be simply formulated in terms of the
complex structure prepotential F for the Calabi-Yau covering space X3, if one assumes that
all harmonic three-forms are odd under the action of R. In this section and the next we
will take such a simplifying assumption, since the specific Calabi-Yau that we will analyze
in the following sections satisfies this property. Our conventions and notation will follow
those of [4] and [32].2

2.1 The complex structure prepotential

In the LCS regime that will be of interest to us in this paper, the complex structure

prepotential F for a Calabi-Yau X3 takes the form
1 o
F = ——kijpzt2d2F

6

’In particular, in our conventions Gs A xGs = %Gg . vaolxs, where volx, = %Q AQ = %Jg’. Note the

1 o 1
- §aijzlzj + iz + 2H0 + Fexp 5 (2.1)

sign differences with respect to the conventions in [2].



where the complex structure fields are written 2%, i = 1,...,h%(X3). The contribution
Fexp is exponentially suppressed in the LCS regime while the polynomial coefficients x;;p,
ai;, ¢; and kg arise from topological data of the mirror manifold Y3 of the Calabi-Yau X3.
These topological quantities are defined as follows [42]

Kijk = /Y wi Nwj AWy, ajj = —% /Y w; A ixchy (P.D[wj]) ,
’ ’ (2.2)
1 3)x (Y
6= 5 | wihcha(Ys), Ko = C((;;i();) - i(w?’) (R (Y3) — K2 (Y3))

where the 2-forms w;, i = 1,..., h"!(Y3) form a basis of H?(Y3,Z), P.D stands for Poincaré
Dual, i, for the pushforward of the embedding ¢ of the divisors into the mirror Y3 and even-
tually, ch; and chs denote the first and second Chern classes respectively. The quadratic co-
efficient a;; can be expressed from the triple intersection numbers [29] through the relation

Qij = —%

wi ANwj ANwj . (23)
2y,

The coefficients ¢; and a;; are defined only modulo Z as a consequence of redundancies
when describing the complex structure moduli through a basis of 3-cycles of X3. Thanks to
these redundancies, we will use the equivalent convention of [15, 43] to write the quadractic
coefficient of the prepotential as

1 P>
P (2.4)
2 KRijj, 1 <]

From a symplectic basis of 3-cycles {A!, B}, I = 0,...,h*! of H3(X3,7Z), one can
then express the periods of the Calabi-Yau (3,0)-form Q like

= </BI /AI) (Fr. X"), (2.5)

where we have 2/ = X?/X% i =1,...,h*" and F denotes the derivative of the prepotential
with respect to X!. In the gauge X° = 1, the period vector then reads

2F — Zi 8Zf
O F
1

ZZ

2.2 The Kiahler potential and superpotential
At tree-level, the Kéahler potential takes the form
K = Ky + Kai + Kes = —2log(V) — log(—i(r — 7)) — log (z QA Q)
X3

= —2log(V) — log(—i(r — 7)) — log(—ill" - X -I),  (2.7)



where V stands for the volume of the Calabi-Yau X3, 7 is the axio-dilaton and the sym-
plectic (2h%! 4 2) x (2h%! + 2) matrix reads

{01
== (). 28)

In the LCS regime, the complex structure part of the potential involving the period vector
is given by
i

Ko = o (s = (7 = ) ) — 21m (wo))

4 oo
= — log <3/€ijktzt]tk —2Im (/{0)) s (2.9)

where the complex structure fields can be decomposed into axionic and saxionic parts:
28 = b* +4t’. In a similar way, we define 7 = b° + t0.

Fluxes threading the compact geometry induce a superpotential W, known as the
Gukov-Vafa-Witten (GVW) superpotential [1]. In order to describe it, we can introduce
the following notation for the flux quanta

1o hy
F b H. B
N=f—rh with fz(fBI 3); flo and hz(fB] 3); hg . (2:10)
fA, Fy fA fA, Hj hA
fa hia

which leads to the following compact formulation of the flux superpotential® [1]
W;/ GsAQ= [ (F—rH)AQ=NT.S.1I. (2.11)
X3 X3
This expression can be easily expanded in the LCS regime to yield

1
6
— kNG — Nije; + NP .

. 1 o , 4
W = — ~NGkyjrz'z? 25 + §f<cijka42]zk + (Nﬁ,aij + NP — Ngci) z*

(2.12)

Finally, it must be noted that fluxes induce a D3-tadpole Ramond-Ramond charge
in the compact manifold, which must be cancelled by negatively charged objects, like
orientifold planes. It can then be shown that the full covering-space D3-charge Nquy induced
by these fluxes is

Nﬂuxz/ FsANH3=fT.-%-h. (2.13)
X3

2.3 The vacuum equations

The supergravity scalar potential famously enjoys a no-scale property in the Kéhler sector
such that the 4d vacua are in Minkowski spacetime. The vacuum equations are then simply
expressed by requiring the covariant derivatives of the superpotential with respect to the

3Note that we deliberately drop out an overall factor 1 /AT



axio-dilaton and complex structure fields to vanish: D;/W = o;W + (0;K)W =0, I €
{r, zi}. More explicitly, making use of the definitions above, these equations read

1 T 1

_(f—1h)| -2 -O=-

T—T T—T

D,W = |—h— NT.x . 11=o0, (2.14)

DW=NT.%.DII=0. (2.15)

3 Flux families and simplifying schemes

In this section we briefly review the vacuum equations arising from a flux family which
renders the superpotential quadratic in the axio-dilaton and complex structure moduli.
This flux setup, dubbed IIB1 scenario, has been defined in [16] and extensively investi-
gated in [32]. We also specify the notion of effective reductions in the moduli space, while
emphasizing how it is different from proper truncations [24-30, 44-56].

3.1 Quadratic superpotentials at LCS

The so-called IIB1 setup [16, 32] has been shown to simplify the search for solutions of
no-scale vacua. It is defined by the following flux constraints:

IIB1 flux configuration: f3 =0, k% =0 and R4 =0, i€ {1,...,h%'}, (3.1)

from where it is easy to check that the flux superpotential W in (2.12) is quadratic at any
point on moduli space on the axio-dilaton and complex structure moduli. In particular, it
takes the form 1

W:§ZtM2+E-Z+Q, (3.2)

where Z = (7, 2) and where the (h2! + 1)-dimensional matrix M, the vector L and the
scalar ) are real flux-dependent quantities:

0 —hBt - : .

M= (—HB S.: >7 LE(_hgafiB—i_aijfi)? QEfOB_Cif,ZLM (33)
with Sij = Kiji f%. The vanishing fluxes also simplify greatly the expression of the flux-
induced D3-brane charge Ngux, which reads

Nﬂux = _szlth (34)

Therefore, in this setup, one is able to tune the remaining flux quanta f£, hf and f# to
one’s liking, without this choice affecting the tadpole.

Note that a similar flux setup was also used in [57] in the context of achieving small
flux superpotentials when exponentially suppressed corrections are taken into account.
However, in that work a null tree-level flux superpotential is required, i.e., W = 0 at
vacua, which imposes further constraints on the allowed flux quanta.

3.1.1 Vacuum equations

The IIB1 choice of fluxes has many perks when considering the associated vacuum equa-
tions. One nice feature is a decoupling between the axionic and saxionic equations.



Axions. On the one hand, it is shown that the axions, i.e., the fields b = Re(7) and
b' = Re (z) gathered into the vector B = (b°, %), obey a very simple linear equation:

=

MB=—-L . (3.5)

When we assume the matrix S to be invertible with the further requirement that H =
hB S hJB # 0, then the matrix M has maximal rank and we can invert the relation (3.5).
Moreover, the invertibility of S allows to compute an analytical “block-inverse” for M from
which we deduce the vevs

hBSUL; — hf ; g
wziﬁﬁﬁ?i, b= SU (80hF — L) . (3.6)
Note that symplectic transformations on the fluxes will yield transformations on these fields
due to the monodromy symmetry of the period vector at LCS. These transformations will
act on the b4, A € {0,i} as b* — b + 1, hence their name.

When the matrix M is singular, the linear relation (3.5) only stabilizes r = rank (M)
axions and h*! 4 1 — rank (M) constraints on the flux quanta arise. This can be easily
seen as follows [32]: we can diagonalize the matrix M to D = diag(Xo,...,Ar—1,0,...,0)
with Ag, ..., A\-_1 representing the r non-zero eigenvalues of the matrix, and where there
are as many zeroes as the dimension of the kernel. Denoting N the change-of-basis matrix,

we have

M =N!DN with N'=N"1. (3.7)
Defining B’ = NB and L' = N, the axionic system of equations (3.5) becomes
DB =-I'. (3.8)

Splitting the h?! + 1 indices {0,i} like & € {0,...,7—1} and 8 € {r,..., h*'}, the axionic
vacuum expectation values and the flux constraints are given by

I_:/a .

Ve=—="— and IL"=0. (3.9)

Ao
Saxions. The saxionic system composed of t° = Im (7) and #* = Im (z*) does not gener-
ically enjoy such analytical solutions unless an additional ansatz is imposed [32]. The
general vacuum equations for these fields read

e Kee (St — 1OhF ) + 4trjptit* [WPH] =0,

1 (3.10)
5&ﬁﬁ+ﬁ@ﬂ:@ﬁ
where we have defined the flux-dependent quantity
. 1. -
gzﬁﬁ—ﬂq—iﬁMﬂg (3.11)



with M denoting the generalized inverse of M. It is defined like M+ = N!'DTN where
DT = diag()\gl, ce )\;11,0, ...,0)and \;, i € {0,...,r — 1} represent the non-zero eigen-
values of M. When M is regular, M+ = M~ and we can write

(h7SYL; — hg)* 1

— ~L;SYL; . (3.12)

/I — ¢B _ pi .
A T K 2

Note that even though this system generically requires the use of some numerical method
to be solved, it is quite an improvement from the more generic vacuum equations, since
half of the real variables (the axions) follow directly from (3.5). Indeed, this system is
composed of h*! 4 1 equations and variables, so its numerical solution is expected to be
obtained in a far more reduced time than in a more generic flux setup. The following
constraint can be easily derived if both equations in (3.10) are combined:

Q' = —3t%Im (kg)eSe=hPtt . (3.13)

We will make use of this relation in the following sections, as its numerical application will
be quite useful.

As a final comment, it is interesting to note that the full system (3.10) can be reworked
into a more manageable form by introducing the following decomposition:

tt=t%, v eR. (3.14)
Indeed, it is straightforward to check that after this change of variables (3.10) becomes

4 k| 2Im (ro)
{SIlemv v — )

0 \/ 2 _ (3.16)

S;jvivd + 2hBvi

] (Sijvj - hiB> + 4k oot {hﬁvm] =0, (3.15)

We should remark that the decomposition (3.14) is not an ansatz per se for the saxion
fields t* and is simply a redefinition. However, it will become quite useful for the numerical
search of vacua that we describe in the following subsections.

3.1.2 System of equations close to the LCS point

One of the nice things to consider about the system (3.15)—(3.16) is that it greatly simplifies
close to the LCS point, where

—3Im (ko)
25,0 0T 0 (0)3

4 o 4 o
efKCS = g/iijktltjtk —2Im (Ho) ~ §I£ijktltjtk <~ |£’ = <1. (317)

The parameter & is called the LCS parameter since it indicates proximity with the LCS
point, as long as in addition, all saxions have large vevs. It is easy to check that in that
regime the system of equations becomes

Kiim v vlo™ (Sijvj — h?) + 3k vkt [hﬁvm} 0, (3.18)

1 . ,
(t0)2 |:2S7;j1]lvj + htil

Q. (3.19)



It is quite interesting to see that (3.18) completely determines all the v’ in terms of
B

77, i.e., the fluxes which contribute to the D3-tadpole. Therefore, one can

only fi and h
numerically solve (3.18) in terms of this reduced set of fluxes, depending on how large we
want the tadpole of the system to be. On the other hand, it is easy to check that the term
in brackets in eq. (3.19) is identically zero whenever (3.18) is satisfied. As such, ¥ is left
as a free parameter of the system and this imposes some conditions upon the fluxes which
come into play within @’. Then, as long as one is close to the LCS point, the v’ found

with (3.18) will be a solid first-order approximation in order to solve the full system (3.10).

3.1.3 Strategy to solve the saxionic system numerically

Taking all of the discussion above into consideration, we propose the following strategy to
get a full solution of the saxion system (3.10) without, in principle, imposing any further
ansatz on the solution:

1. Find tuples of {f%,hP} which satisfy the tadpole condition: 0 < Ny, < L, where
L, is some upper bound not to be overshot. Using these, solve (3.18) in order to get
a zeroth-order approximation to the v, written 1)7("0).

2. Assume a target value for the dilaton, which we dub tgarget. This initial value must
be such that it corresponds to a region of LCS flux vacua. In practice, this means

that t(t)arget € (t9,,,t9..), where the bounds are determined as follows:

is at the boundary of the stretched complex

— t%. s such that t%o) = véo)t&in
structure (CS) cone [17, 58]. For non-simplicial cones like in the example that
we will analyze, this condition can be quite non-trivial.

— 19 is such that the value for Q' associated to tgarget, expressed via (3.13)

and (2.9) as

—3Im (K’O)htiéo) (t(t)arget)2

Qéarget = 4 ; (320)

§I{ijkvéo)vg0)vé€0) (tgarget)3 —2Im (KO)

/

reaches the value @/, defined as the smallest fraction in absolute value* that

one can get from expression (3.11). Note that @/, depends on the fluxes
contributing to Ngux, which have been fixed in step 1. Since asymptotically
Qtarget ~ £1/t0arger, & minimal absolute value for Q.. translates into an

upper bound t?nax for t?arget.5

3. Find the remaining fluxes {f, hf, fP} such that Q' expressed with (3.11) or (3.12)
is as close as possible to the value Qf, 4 found above.

1At large t°, the sign of Q' is determined by that of Im (ko). In the model under study, where we have
few Kéhler moduli and a large number of complex structure fields, Q" will be negative.

5Note that to determine anrget, we make use of the zeroth-order values Uéo) but in reality, they are good
approximates of the actual ratios t¢/t° in the full solutions that we will build only when the LCS parameter
is sufficiently small, i.e. for a sufficiently large dilaton vev. However in practice, this requirement is much
less stringent than the lower bound t%;, defined above.
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4. Solve the full system for the fluxes f%, h? found in step 1 and the remaining fluxes
determined in step 3. If t?arget has been appropriately chosen sufficiently large and if
Q' is indeed tuned close to the targeted value, the exact solution will feature a final
t? very close to t(t)am;et and v’ close to the zeroth-order approximation of step 1.

One may wonder why we should take all of these extra steps, instead of just directly
solving the system (3.15)—(3.16) for certain flux tuples. This becomes self-evident when
trying to solve the system by brute force. Indeed, if one wants to make a full search along
the flux lattice and look for solutions over many different tuples of flux quanta (by, for
example, taking random values for fluxes), one will eventually stumble upon the realization
that very few fluxes allow for either solutions with a reasonable tadpole, or within the CS
cone. The algorithm presented above (which is only applicable to the IIB1 family) allows
for an efficient search for solutions within the CS cone, due to the decomposition (3.14),
all the while reducing the search for vacua with flux tuples which are explicitly within the
tadpole bound as a first step.

3.2 Effective reductions vs. truncations of moduli

As mentioned above, the split between axions and saxions in the vacuum equations in the
IIB1 scenario is a nice improvement compared to what a generic choice of fluxes would
yield. However, the system of equations (3.15) and (3.16) involving the saxions is still
(h?! 4 1)-dimensional, which becomes costly to solve numerically for large h%!'. This is
where effective reductions can help, by reducing the number of variables and equations
to solve.

An effective reduction is characterized by an ansatz on the moduli as well as on the
various fluxes involved in the vacuum equations. The reduction is successful if one can
obtain a reduced number of n equations involving n degrees of freedom. As an example,
in [31] a type IIB flux configuration was proposed together with an ansatz on the moduli
to effectively reduce any model at LCS down to one modulus.

Note that we insist on the denomination of effective reductions to contrast with the
consistent supersymmetric truncations that are abundantly used and studied in the liter-
ature [24-30], even though the philosophy is the same. In the latter case, the truncated
moduli are frozen at some fixed point (usually 0) of a discrete symmetry action on the
moduli space of the geometry under consideration. The truncated moduli disappear from
the effective supergravity action and since they are deep in the interior of moduli space,
getting information about their behaviour is a complicated task [21]. In the case of an
effective reduction, firstly we do not require the presence of a discrete symmetry action on
the moduli space, even though it can of course be the case that such a symmetry exists.
In particular, we apply the reduction only to the saxionic part of the complex structure
fields and assume nothing about the axions. Our flux quanta are also not forced to be
invariant under any symmetry transformation and as we will see, some of them can re-
main completely arbitrary. The flux setup along with the ansatz on the moduli fields only
simplifies the saxionic vacuum equations into those of an effective n-parameter model. In
other words, the reduction ansatz specifies a submanifold of the saxionic moduli space on
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which the search for vacua is restricted. A proper flux choice then ensures that solutions of
the reduced theory automatically give solutions to the full set of equations that the saxions
should satisfy. Secondly, in contrast to what usually happens in truncations at symmetric
points in moduli space, our fields frozen at zero in an appropriate redefined basis sit in
the LCS region of moduli space, where all asymptotic formulas make sense. As such, all
the information about the full set of fields, like for instance their mass matrix, is directly
available.

In the specific case of the IIB1 system of equations (3.15), it is easy to see that simplifi-
cations can occur if the triple intersection numbers and the fluxes enjoy simple symmmetry
properties. More concretely, the whole equation depends on the flux hf and on contractions
of the intersection numbers which schematically look like mijkAj B where A’ represents
either the flux ff4 or the real variable v'. Therefore, given some v' living in some n-
dimensional subspace of the whole R (i.e., written in terms of only n variables), as long
as the covectors /-@Z-jkfi‘vk, f-@,-jkvjvk and hP have the same structure of repeated entries,
such that only n of them are independent, we will be able to reduce (3.15) to n equations.

The purpose of the remainder of the paper is to illustrate this idea in a specific setup.
In particular, we review the properties of a specific compactification Calabi-Yau, write
the prepotential at LCS for this geometry, apply the IIB1 scheme and eventually propose
effective reduction ansétze to find solutions with all axio-dilaton and complex structure
moduli stabilized in the LCS regime.

4 A Calabi-Yau with 51 complex structure moduli

In this section we review the key features of the symmetric resolution of a T%/(Zs x Z2)
orbifold model with (h!'!, h%!) = (51, 3), which we dub (51,3) Calabi-Yau. Upon mirror
symmetry, this manifold maps into a deformation of the T°/(Zy x Zs) orbifold with opposite
choice of discrete torsion and 51 complex structure deformations [33, 34], which we will
dub as the (3,51) Calabi-Yau. It is on an orientifold of this second manifold where we want
to study the IIB1 scenario and implement different effective reductions.

The symmetric resolution of T /(Zg x Zy) with 51 Kéhler moduli has been extensively
studied in the literature [59, 60] among other toroidal orbifolds [61, 62], so that all topo-
logical data of interest is available. Thanks to this information, we are able to express the
relevant Kéhler cone and stretched Kéahler cone conditions of this manifold, that suffers
from a severe non-simpliciality. This allows us to write the prepotential for the complex
structure sector of the mirror dual (3, 51) Calabi-Yau, and check whether we are in the LCS
reg ion of moduli space where exponentially suppressed corrections can be neglected. As we
will see, the symmetries displayed by the triple intersection numbers of the (51, 3) Calabi-
Yau allow us to define well-behaved reduction ansétze for the IIB1 scenario in the (3,51)
Calabi-Yau.

4.1 Topological data of the mirror

We gather here the relevant topological numbers for the Kéhler sector of the (51, 3) Calabi-
Yau, useful to write the prepotential of the vector multiplet sector either for type IIA string
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theory compactified in this manifold or for type IIB compactified in the mirror, on which
we then focus. We extract the information we need from the references [61, 62], that
investigate resolved orbifolds and [59, 60], that explore this specific Zy X Zg model. In
our case, we will focus on the symmetric resolution. The orbifold group is given by two
generators {g1, g2}, whose action over the complex compact coordinates {z;} is

g1: 23— —223 g2 213 —213 gioga: 12— —212 (4.1)

21— 21 29 — 29 23 — 23 .

As a consequence of the toroidal identification, there are 16 fixed lines under the action
of each group element (48 in total). These lines intersect along 64 fixed points in which
the blow up is performed. Therefore, the resulting orbifold has h'! = 51 (the original 3
untwisted Kéhler moduli plus the 48 twisted Kahler moduli associated to the blow up of the
fixed lines) and h*! = 3 (the complex structure is completely determined by providing the
modular parameters of the three T2 factors). A suitable basis for the divisors is given by

{Rl,RQ,Rg} U {Eia,jﬂ, ,7=1,2,3, i <j, o, = 1,...,4} . (4.2)

The E;, ;s are the exceptional divisors that arise from the resolution of the orbifold and
are associated to the twisted sector. The R; are the sliding divisors descending from the
unresolved model and can be expressed in terms of the exceptional divisors and the toric
divisors D;, of the local model:

Rl = 2D1a + Z E1a72,3 + Z E3’y,1a VOé,
B Y

Ry =2Dy3+ Y FEiags+ Y Fapsy VB, (4.3)
o y

R3=2D3,+> FEagsy+ Y Esyia V7.
5 «

With this basis, the Kéhler form J is parametrized as
J =R — t1a,28 10,28 — t28,3vF28,3y — 137,10 37,1a - (4.4)

Notice that the conventions for labelling the divisors differ in the literature. We find
useful to make explicit the dictionary between the different notations as follows:

[59] — [60-62]
Flazp = Fsap (4.5)
Bapzy = Euipy
E3, 10 — Es o



4.1.1 Triple intersection numbers

Theses numbers are useful to express the cubic and quadratic terms in the prepotential (2.1)
thanks to (2.4). The non-zero intersection numbers are

Ri-Ry-R3=2, Era28 - Eop3y - E3y1a =1,

Ry-E3ps, =-2, Ry-E3 1, =-2, Ry E}, 05 =2,
E22,873'y “FE3y 10 =—1, FEs3.3y - E§%1a =-1, ESB,SW +Eia28 = —1, (4.6)
Esg.3 - E%a’Q/B =1, E?,%la “FEiags =1, E3y14- E%a,Zﬁ =-1,
B} o5 =4, E353, =4, ES 1o,=4.

Since it will be useful in the next paragraph, we also write the self triple intersection of
the divisors D;, which is D}, = 8.

4.1.2 Intersection with second Chern class

The intersections of the divisors with the second Chern class cho(Y3) are useful to express
the linear term in the prepotential. To compute them, we make use of the following
formula [61, 62]

cha(Y3) - P+ P* = x(P), (4.7)

where P stands for any divisor and y (P) is its Euler characteristic. Finding the intersections
with che(Y3) thus amounts to knowing the topology of the divisors. From [59], we read
that the topology of the toric divisors D;, is that of P! x P! while the topology of the
exceptional divisors is that of P! x P! blown-up in 4 points (we denote this Bly(P! x P!)).
We thus have

cho(Y3) - Dijg = x(P* xP) = D3 =4 -8=—4,

chy(Y3) - Eiajg = x(B(P' x PY)) — E}, 5 =8—-4=4.

(4.8)

From this along with the relations (4.3) and by schematically denoting any exceptional
divisor like F, we deduce

chy(Y3) - R; = 2¢5(V3) - Dy + 8co(Y3) - E = —8 + 32 = 24 . (4.9)

Note that according to [61], such an intersection with chy(Y3) for the R; is associated to a
K3 topology.

4.2 The prepotential at LCS

We now derive the prepotential describing the complex structure sector of the (3,51) Calabi-
Yau in the large complex structure regime, mirror to the resolved orbifold described above
in the large volume regime. As explained for instance in [29], we need to identify the
(complexified) Kéhler moduli of the (51,3) CY with the complex structure moduli of the
(3,51) CY. In terms of the Kahler parameters introduced above, we apply the following
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prescription:

)

2 i=1,2,3 1, i=1,2,3,
Zi=4,...,19 >t , ca=1,....,4,
0 205 K (4.10)
21,1220,-“,35—)153%1@, Oc,ﬁZI,...,Zl,
2 i =36,...,51 = tia95, By=1,....4,

where we order the pairs of indices (f3,7), (7, «) and («a, 8) in lexicographical order: (1,1),
(1,2), (1,3), (1,4), (2,1), ...

We begin with the cubic term of the LCS prepotential. As discussed in [63, 64], the
so-called Yukawa couplings of the cubic terms of the prepotential, i.e., the x;;. factors,
have to match the ones obtained when writing the volume of the Calabi-Yau as

1 o
V= gfﬁijkszsjsk, (4.11)

where s° = {r;,t;}. This means that the triple intersection numbers can be read off
from (4.6), taking into account that odd powers of E divisors will carry an extra negative
sign within their respective intersections. On the other hand, the polynomial corrections to
be added in the LCS prepotential can be computed using the expressions given in section 2.
The quadractic corrections are expressed with (2.4) from the triple intersection numbers.
For the linear coefficients ¢;, we use the intersections of the divisors with the second Chern
class (4.8) and (4.9) to find

¢ =(1,1,1,1/6,...,1/6) . (4.12)

The constant term is determined by the Euler characteristic of the Calabi-Yau, see (2.2).
For this particular example, we find

| 12i¢(3)

Ko —

(4.13)

7T3
4.3 Kahler and Mori cones of the mirror

The Kahler cone of a Calabi-Yau compactification is defined as the collection of Kahler

forms J such that all curves, areas and volumes computed with respect to it are positive
Ky = {7 € HY(Y,R) | vol(W) > 0 YW € W}, (4.14)

where W includes all curves, areas and volumes constructible with J. In practice, we will
be mostly interested in exploring a somewhat more constrained version of this cone, namely
the stretched Kéhler cone [58], where all of the volumes are required to satisfy vol(W) > ¢
with ¢ = O(1), in order to be free from potential exponential corrections. As in [17], we
will dub its mirror as stretched complex structure (CS) cone.
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In the symmetric resolution of the blown-up 7°/(Z? x Z?), the volumes to consider are
the following [60] (we translate notations according to (4.5)):

VOl(Rle) = 2’/“3 s (4.15)
Vol(R1Eas,3y) = 2l2p,3 , (4.16)
VOI(R1D25) =1r3— Zt2ﬂ73’7 , (4.17)

v
VOl(DlaEg’y,la) =T9 — Z tloc,QB 5 (418)

B
VOl(E2g 37 E3y.10) = 28,3y + 13v1a — L1028 » (4.19)
vol(Ry) = 2rors — Z tQB 3 5 (4.20)
vol(D1,a) = Tom3 — Z T2t3y,10 — Z r3tia28 + Y t3y1at10,28 (4.21)

v By

1
vol(Eap3,) = 2r1tag 3, + Z { t55.3, + t3v,1at10,28 — > (310 iazs)  (422)

— 128,3v13v,10 — t2,8,3’ytla,26:| ;

vol(Ys) = 2rirars — Y rit3ss, — O oty 10 — O Tsliaos (4.23)
By &Y aof
- Z [ t25,37 t37,1a + tla 25) perms (4.24)
a,Byy

1 3 3 13 tog 30tam 1ot
+ 6( 28,3y T t3y,10 + 1a,25) t 128,3y13v,1at10,28 |

and their corresponding cyclic permutations.

The Mori cone is the cone spanned by all effective curves. These curves are char-
acterized by their intersections with the divisors of the basis, that we can read from the
formulas (4.15)—(4.19) and arrange into 51-dimensional vectors. For example, from (4.15),
we read that the curve Rj - Ry is described by the vector (0,0,1,0,...,0). From (4.19), we
read that the curve Eag 3, - E34 14 With a = 3 =~ = 1 is described by the vector

(0,0,0,1,0,...,0,1,0,...,0,—1,0,...,0) . (4.25)
S——— N——
15 times 15 times 15 times

In total, this gives 267 curves that generate the Mori cone. However, a basis of generators
is enough. Meaning, we can remove all curves that can be expressed as linear combinations
with positive coefficients of the others. From [59], the relevant basis of generators® is given
only by the curves (4.17), (4.18) and (4.19) and their permutations. This gives a basis of
generators with 216 elements. The Mori cone is thus highly non-simplicial in the sense
that it is generated by many more elements than its dimension.

SWe ran the algorithm described in [27] to explicitly build the basis of generators by removing positive
linear combinations and we fully agree with the resulting set.
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In order to be safe from exponential corrections, we require volumes of all subvarieties
to be greater than 1 in string units. This means we want to be inside the stretched Kéhler
cone defined with a parameter ¢ = 1. From a mirror perspective, we want the complex
structure moduli to be such that the expressions for the various volumes are greater than 1
when replacing the real parts of the Kéhler moduli by the saxionic parts of the mirror’s
complex structures.

4.4 Orientifolding, flux quantization and the D3-brane tadpole

In order to construct type IIB flux vacua based on the (3,51) Calabi-Yau X3, we need to in-
troduce orientifold planes with negative D3-brane charge in the above construction. We do
so via the standard O3/O7 projection based on a geometric involution R, such that R :  —
—Q and R : J—J. The fixed loci of this involution will host O3-planes and O7-planes, and
we will assume that the Ramond-Ramond charge of the latter is cancelled by a set of D7-
branes, possibly on top of the O7-planes. The remaining RR tadpole condition then reads

Naux +2Np3 + @Qp3 =0, (4.26)

where Npux > 0 is the flux-induced contribution (2.13), Nps counts the number of D3-
branes in the quotient space X3/R and the D3 charge Qps contains contributions from the
O3-planes as well as from the D7-branes and O7-planes. When this last charge is negative,
it sets an upper bound on the value of Ngy, if one forbids anti D3-branes or other non-BPS
objects. It follows that the allowed set of flux vacua depends on the value of (Jpg, which
in turn depends on the orientifold projection.

Simple choices of orientifold projections are those that are defined at the toroidal
orbifold limit 7% /(Zy x Zs). They are described by a set of discrete choices on the Chan-
Paton degrees of freedom, that are compatible with the choice of discrete torsion that
corresponds to the (3,51) Calabi-Yau, see e.g. [65] for a discussion. Out of these choices,
we are interested in those that lead to the type IIB orientifold considered in [36], and that
is T-dual to the type I orientifold constructed in [66]. Just like in [36] we will consider
three-form fluxes on top of this orientifold background but, unlike [36], we will not restrict
ourselves to flux vacua that occur at the orbifold limit. Instead, we will also consider
vacua at points in complex structure moduli space in which the collapsed three-cycles of
the orbifold gain a non-trivial size. To do so in the presence of the orientifold projection,
it is important to realize that the full cohomology of twisted three-forms is odd under this
orientifold projection, which means that the projection is compatible with the complex
structure moduli space of the (3,51) Calabi-Yau.

Given this particular orientifold projection, the precise O-plane content at the orbifold
limit depends on the choice of discrete B-field along the non-trivial two-cycles of the com-
pactification [36]. In the absence of such a B-field, the content amounts to 64 O3~ -planes
and three sets of 4 O7 -planes, where the superindex indicates the sign of the charge
and tension compared to the corresponding D-branes. One may then cancel the O7-plane
charge by placing 4 D7-branes plus their orientifold images on top of each O7-plane,” leav-

"Intersecting D7-brane configurations with worldvolume fluxes may yield vacua with semi-realistic chiral
spectra [36, 67, 68], but such magnetic fluxes increase the value of Qps. Therefore for simplicity we will
not consider them in our setup.
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ing an O3-plane charge that can be cancelled by a combination of D3-branes and three-form
fluxes. In the absence of fluxes, the number of D3-branes in the covering space that cancels
the tadpole is 32, which means that in (4.26) we have

Qp3 = =32 = Npaux <32, (4.27)

By continuity, it is easy to argue that the same result will hold when this orientifold
projection is extended to the full complex structure moduli space of the (3,51) Calabi-
Yau. Indeed, deforming the orbifold geometry by giving a non-trivial vev to the twisted
fields should not change the number of D3-branes that are needed to cancel tadpoles. In
particular it is not expected that the growth of collapsed three-cycles induces curvature
terms on the 7-brane sector that could contribute to QJps in one way or the other.

Notice that in [36] no flux configuration was found with Ngu, < 32. The reason
was the quantization conditions imposed for three-form fluxes in the orbifold limit, which
required that Np,x > 64. In our analysis we will not have to impose such a lower bound
because, unlike in [36], we allow for three-form fluxes switched along the twisted three-
cycles. Indeed, having the above prepotential, we are entitled to include such fluxes as
long as 