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ABSTRACT: We describe a construction of the two-loop amplitude of four graviton supermul-
tiplets in AdSsxS®. We start from an ansatz for a preamplitude from which we generate the
full amplitude under the action of a specific Casimir operator. The ansatz captures a recent
ansatz of Huang and Yuan and we confirm their result through similar constraints. The form
of the result suggests that all ambiguities are captured by the preamplitude which determines
the result up to tree-level ambiguities only. We identify a class of four-dimensional ‘zigzag’
integrals which are perfectly adapted to describing the leading logarithmic discontinuity to
all orders. We also observe that a bonus crossing symmetry of the preamplitude follows
from the transformation properties of the Casimir operator. Combined with the zigzag
integrals this allows us to construct a crossing symmetric function with the correct leading
logarithmic discontinuities in all channels.

From the two-loop result we extract an explicit expression for the two-loop correction to
the anomalous dimensions of twist-four operators of generic spin which includes dependence
on (alternating) nested harmonic sums up to weight three. We also revisit the prescription
of the bulk-point limit of AdS amplitudes and show how it recovers the full flat-space
amplitude, not just its discontinuity. With this extended notion of the bulk-point limit
we reproduce the scale-dependent logarithmic threshold terms of type IIB string theory
in flat-space.
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1 Introduction

The AdS/CFT correspondence relates bulk AdS scattering amplitudes to correlation func-
tions in a boundary conformal field theory. The nature of bulk dynamics can therefore be
effectively explored by making use of tools from conformal field theory. The archetypal
example of the correspondence is that of N’ = 4 super Yang-Mills theory as the boundary
CFT, describing type IIB superstrings in the AdSsxS® bulk. Many recent works have
explored this theory with much focus on tree-level four-point amplitudes in the bulk and
their one-loop corrections [1-4]. Such bulk amplitudes correspond to a large N expansion
of the correlation function of four half-BPS operators in the conformal field theory.

Here we would like to explore the possibility of extending the analysis to higher loop
order, focussing on two loops as a first example. This may seem a formidable problem,
particularly from the bulk perspective, where already tree-level and one-loop amplitudes
pose significant computational problems [5-14]. However, the end results for tree-level and
one-loop amplitudes, obtained mostly from boundary CFT considerations, actually display
surprising simplicity. In part, this is due to a hidden ten-dimensional conformal symmetry
of the tree-level amplitudes which in turn leads to a significant simplification of the leading
logarithmic discontinuity at all loop orders.

We will focus on the four-point scattering of graviton supermultiplets, or equivalently
the four-point correlation function of four stress-energy multiplets in N' = 4 super Yang-Mills
theory. In [15] it was observed that the one-loop result, first computed in [4], can actually
be simplified significantly with the help of an eighth-order conformal Casimir operator.
This operator was known to simplify the form of the leading logarithmic discontinuity to all
loop orders [16]. It is related to the surprisingly simple form of the tree-level contribution
to the anomalous dimensions of the double-trace operators exchanged in the OPE with
two external half-BPS operators [16, 17]. The simple form of the anomalous spectrum is in
turn related to the ten-dimensional conformal symmetry of the tree-level amplitudes [18].
With the use of the eight-order Casimir the one-loop amplitude can be replaced by a much
simpler preamplitude, whose analytic structure is so tightly constrained that in fact one
does not even require the form of the leading discontinuity to essentially fix it uniquely [15].

Here, in common with the recent work of Huang and Yuan [19], we explore the extension
of the use of this operator to higher loops. In particular we write the amplitude in terms
of a preamplitude from which we obtain the full amplitude by two applications of the
eighth-order Casimir. We observe that the square of the Casimir actually exhibits a simple
transformation under crossing symmetry which allows us to restrict the preamplitude to
be fully crossing symmetric. We describe an anzatz for the preamplitude in terms of
polylogarithmic functions of two variables, including singularities which appear in the
one-loop string corrections to the supergravity amplitude [20]. Then we impose various
OPE predictions arising from known tree-level and one-loop data. Under the further
assumption that the leading discontinuity is manifested by the preamplitude, and imposing
that the amplitude correctly reproduces the two-loop flat-space supergravity amplitude
upon taking the bulk-point limit, we are led to confirm the result of [19]. In particular,
we fix some ambiguities left undetermined in their result and, as a consequence of the



interplay of crossing symmetry with the canonical form of the leading discontinuity (as well
as the conjectured absence of weight 4 functions containing the letter  — &), we provide a
justification for the vanishing of their last free parameter. We also explore certain wider
ansitze and analyse the corresponding freedoms they introduce into the final form of the
two-loop amplitude.

The result we obtain is very suggestive that in fact all ambiguities should also be
included in the form of the preamplitude ansatz, that is to say that any finite contributions
from tree-level and one-loop counterterms should also respect the form of the ansatz given
in terms of the preamplitude, as also happens at one loop. This possibility restricts the
final amplitude to just a handful of ambiguities, which are exactly the expected tree-level
ambiguities consistent with the presence of genus-two contributions from the 9*R?*, 95R4,
¥R and 9'°R? corrections. Notably, the R* term does not appear as an independent
ambiguity, in analogy with its vanishing contribution at genus two.

Furthermore, from our result we extract the two-loop correction to the anomalous
dimensions of the twist-four double-trace operators Og 4 ~ 00O, for generic spin £. In
the supergravity limit (and neglecting 1/ corrections), their dimensions admit a large N
expansion of the form

Ngy=4+10+2 (a’y(l) +a*y? + a4 + 0 (a4)> , (1.1)

where we introduced a = 1/(N? — 1). To order a®, the anomalous dimensions read

oo
(+1)(+6)’
@ _ 1344(0 — 7)(¢ + 14) . 2304(264+7) 1080 500, (1.2)

(=1 +1)2(+6)2((+8) ((+1)3(+6)3 7
V) =3 (S 53— 83251 243C3) +2S a+c1 S +co+ c[()a) + a’?é?ég),
where the tree-level and one-loop contributions 4 and ~v(?) have been derived in [21]
and [4], respectively, while the two-loop contribution 7(3) constitutes a new result.! The
coefficients ¢; are rational functions of spin and Sz = Sz(¢ + 3) are nested harmonic sums,
whose precise definitions as well as an extended discussion of the properties of 4(3) are given
in section 5.
The rest of the paper is organised as follows: the remainder of this section is devoted to
fixing our notation for the (O2020202) correlator and introducing its OPE decomposition.
In section 2, we focus on the leading logarithmic divergence of supergravity correlators to
any loop-order. We notice that its transcendental structure is described by a certain family
of four-dimensional loop-integrals, the so-called zigzag integrals, which are a particular class
of the generalised ladders discussed in [22]. This observation is powerful as it determines
a part of the supergravity correlator at any loop-order, greatly reducing the number of
transcendental functions with undetermined coefficients.

Note that the formula for ) quoted above is strictly speaking only valid for spins £ > 6. This is
because we are able to fix the two-loop amplitude only up to certain tree-level ambiguities which contribute
up to spin £ = 4 in the conformal block expansion.



Next, in section 3 we revisit the bulk-point limit of AdS amplitudes and we show how
known tree-level and one-loop AdS5xS® amplitudes match their flat-space counterparts.
Moreover, the extra x —  singularity of the one-loop string corrections turns out to
be a crucial ingredient which reproduces the logarithmic threshold terms present in the
perturbative expansion of the type IIB string amplitude in flat-space. Extended to two-
loop order, the knowledge of the 10-dimensional two-loop supergravity amplitude gives a
non-trivial constraint for the corresponding AdS correlator.

The main result of our work is described in section 4, where we spell out the details
on the minimal ansatz used as a starting point of our bootstrap approach to the two-loop
supergravity contribution. In particular, we discuss in great detail the basis of transcendental
functions and compare our result to the one recently obtained in [19].

In section 5, we make use of the obtained two-loop correlator to extract from it new
unprotected CFT data, recall also the previous comments around equation (1.2). The result
for the two-loop anomalous dimension extends the previously known terms up to order a>.

Lastly, in section 6 we consider possible natural extensions of the minimal ansatz and
analyse the corresponding additional free parameters in the final result. We then conclude
with a number of open questions.

1.1 Setup: the (02050202) correlator

We consider the four-point correlation function of the stress-tensor superprimary O, which
is a half-BPS single-trace operator of conformal dimension A = 2. Tt is given in terms of
the fundamental scalar fields ®; (i =1,...,6) of the N' = 4 supermultiplet by

Oq(z,y) = y'y’ Tr(®;(x)®;(z)), (1.3)

with »® being an auxiliary so(6) null vector obeying y -y = 0, such that Oy transforms

in the traceless symmetric representation [0,2,0] of the R-symmetry group su(4). In the

context of the AdS/CFT correspondence, this operator is dual to the scalar in the graviton

multiplet of type IIB supergravity on an AdS5xS® background, whereas its higher charge

cousins O, with p > 3 are dual to Kaluza-Klein modes arising from the compact S° factor.?
We are interested in the four-point correlator

(O2(21,y1)Oa(x2, Y2) O2 (3, y3) O2(24, Y4)) = 912934 G (u,v; 0, 7), (1.4)

where g;; = yfj / az?j (with yfj = y;-y;) are propagator factors which account for the conformal
weight and the scaling weights y; of the correlator, such that G depends only on the conformal
and su(4) R-symmetry cross-ratios. These are defined by

2 .2 2 .2
U =TT = x;2x34’ v=(1-2)(1-2)= :13;41‘33’
Li3To4 L13To4 (1.5)
1 il T oyl '
—=yy= : —=1-y)(1-y) = -
o y%3y§4 o 9%3?134

2To be more precise, the exact form of ‘single-particle operators’ O, which are dual to single-particle
states in AdS supergravity in general contains admixtures of multi-trace operators, whose coefficients are
1/N suppressed with respect to the usual single-trace term [16]. For an extensive study of the properties of
these single-particle operators and their free-theory correlators, see [23].



As a consequence of superconformal symmetry the function G is furthermore constrained to
take the form [24, 25]

G(u,v;0,7) = Ggree(u,v;0,7) + Z H(u,v). (1.6)

For convenience, we normalise the correlator by a factor of (N? — 1)2 such that the free
theory contribution is given by

2,2 2
u u u
Gree(u, v;0,7) = 4 (1 +ulo? + ; ) + 16a (ua + 24 UT) . (1.7)
v v v
We call the second contribution to (1.6) the interacting or dynamical part, as it is the only
piece of the correlator which depends on the gauge coupling gyn and hence contains all of
the non-trivial dynamics of the theory. It is of the factorised form shown above with the
factor Z being fixed by the superconformal Ward identities,

-y D)E ) E D)
t= (i)? |

As a feature of the (O2020203) correlator, and more generally for next-to-next-to-extremal

(1.8)

correlators, the function # is then independent of the su(4) variables. Furthermore, it
obeys the crossing symmetries

u2
H(u,v) = %H(u/v, 1/v) = W’H(U,u), (1.9)

placing strong constraints on its functional form which we will exploit in our bootstrap
approach.

We will study the function H in the supergravity regime (reached by first taking N
large with the ‘t Hooft coupling A = g2,;N being held fixed and then taking A to infinity),
where it describes the scattering of four supergravitons in type IIB superstring theory on
AdS5xS°. Ignoring the A-dependence for a moment and focussing only on the supergravity
contributions, H admits the large N expansion

H(u,v) = aHY (u,v) + > HP (u,v) + a®> HO (u,v) + O (a4> , (1.10)

where for convenience we choose to expand in small a, recall the definition a = 1/(N? —1).3

The first term in the expansion is given by the well known tree-level supergravity correlator
HD [8, 26], while the higher-order terms correspond to loop amplitudes in the bulk: the
order a? term H® has been computed in [4]* and is dual to the one-loop AdS amplitude.
Next comes the two-loop correction H®) which is the main object of interest here, and has
recently also been considered in [19].

Let us now comment on the structure of A-dependent terms, which we have omitted
in (1.10). These terms arise due to higher-derivative corrections of the string theory effective
action on AdS5xS®, and in the flat-space limit they are related to analogous terms in the

3In terms of the central charge ¢, one has a = &=

4c”
“See also references [3] and [27].



low-energy expansion of the ten-dimensional four-point scattering amplitude of massless
string states in type IIB string theory. To this end, we will denote a contribution at order
a"\% by H™™). To be consistent with the expansion (1.10), we have #( = H(0),

At tree-level, such terms are given by contact Witten diagrams whose interaction
vertices are higher-derivative corrections to supergravity at genus zero. These vertices are
of the form 92*R* and give rise to the tree-level terms H1#+3) 5 Note that in general these
terms receive higher-genus corrections which contribute to higher orders in a, while still
being ‘tree-level’ in the bulk.%

For instance, the R* vertex receives a genus-one correction R4]genu5_1 at order a2\3.

This gives rise to a term M1

, which happens to be super-leading with respect to the
one-loop supergravity correction #(). As argued for in [37], this super-leading term can
be thought of as a finite counter-term from string theory which regularises the one-loop
supergravity divergence in AdS5xS®. The subsequent terms are then suppressed by powers
of 1/, corresponding to either genus-one corrections to the higher-derivative tree-level
terms H(LFH3) or genuine one-loop contributions induced by their very presence at order a,
which have been addressed in [20, 38, 39].

Similarly, at order a?, there exist genus-two contributions from certain tree-level contact
terms which precede the two-loop supergravity correlator (3). These are the genus-two
corrections to the 9*R* and 9%R* vertices, corresponding to the terms HG=3) and HG—2)
in our notation. Next, at order a3)\%, a new effect takes place: there are two distinct
contributions to H® Y, namely the genus-two correction to the tree-level 8R?* term
and a one-loop contribution involving a supergravity and a R4]genu5_1 vertex. Finally, the
genus-two correction to the 9'R* term is at the same order as two-loop supergravity, and
thus will also contribute to H®).

Lastly, let us remark that the coefficients of some of these super-leading terms have
been computed up to genus three using supersymmetric localisation techniques, see [40, 41]

for more details.

1.2 OPE decomposition and double-trace spectrum

Next, we introduce the OPE decomposition of the (O2020203) correlator. In particular,
we will be interested into its unprotected (or long) part, which receives contributions
from both the free theory and the interacting part and admits a decomposition into
superconformal blocks

(02020503)10ng = 912954 T Y At Gre(, 7). (1.11)
t,0
The sum above runs over all long superconformal primaries with half the twist ¢ = % and

even spin ¢ which are present in the su(4) singlet representation in the OPE of Oy x Os.

"These string corrections have been addressed in [28-32].

5The existence of such contributions ultimately follows from S-duality of type IIB string theory, see
references [33-35] for a study of modular invariance in this context and also the recent work [36] for a new
approach to SL(2,Z) invariance in the context of N'=4 SYM.



The A, are the squared OPE coefficients and the functions Gy ¢(z, ) are related to the
usual four-dimensional conformal blocks by a shift in their dimensions, giving [42, 43]

T o (2) Fia (8) — 7 Fyy g 0(2) Frya (2)

T —x

Gio(,7) = (1) (axz)" , (1.12)
with F,(z) = 2F1 (p, p, 2p; ) being the standard hypergeometric function.

To leading order in the expansion around the supergravity limit introduced above,
the only unprotected operators exchanged in the OPE of 02 x O3 are singlet channel
double-trace operators of even spin ¢. Such operators are constructed from products of
two half-BPS operators, and we denote their classical dimensions by A©) = 2¢ + ¢. Note
that generically there are many such operators with the same quantum numbers, leading to
operator mixing: for a given half-twist ¢, there are ¢ — 1 such operators which we distinguish
by their degeneracy label ¢ = 1,...,¢f — 1. Schematically, the set of degenerate double-trace
operators is given by

Opii = {ozmt—2afc92, 0;039'0, ..., otmﬂafot}. (1.13)

In the supergravity limit, their dimensions A;y; and OPE coefficients A; ¢; = (02020, 4;)?
admit the expansion

Apgi= A 492 (a'ygl) + aQ’yi@) + a?”yi(g) + 0 (a4>) , (1.14)
Ay = A, + aAl, + AT + a*AF) 4+ 0 (a') (1.15)

t7

where we have again suppressed the A-dependence at it is understood that the anomalous
dimensions 'yi(n) themselves depend on ¢ and spin 4.
In the singlet channel and up to order a, the mixing of the operators O; ¢ ; has been fully

resolved [4, 17], leading to a compact expression for their tree-level anomalous dimensions”

(1) _ 20— Dalt+ 04

1.16
i ((+2i—1)g (1.16)
and leading-order OPE coefficients
©  S(t+ L+ )PP+ 1)(2t+L+2) .
= ibii s 1.1
e (2t)!(2t +2¢ + 2)! R be (L17)
where
. 2120 4+ 3+ 4i)[(€+ i + 1)y 1] (¢t + £ 4 4);_4
tli — )
sl § .
(B+e+i),, (1.18)
; 201-0(2 4+ 20)!(t — 2)!(2t — 2i + 2)!
t,1

TR+ DI+ 2 (E—i— DIt —i+ )]

Note that the first factor in equation (1.17) can be thought of as an averaged OPE coefficient
<A£?£)> over the double-trace degeneracies i, since 3\_1 Ry ¢ibr; = 1.

"For a generalisation to double-trace operators in any su(4) channel, see [16].



To conclude this section, let us indicate how the double-trace OPE data introduced
above is encoded within the supergravity correlators across different orders in a. By plugging
in the expansions (1.14) and (1.15) into the superconformal block decomposition (1.11),
one finds

HWD = log! (u) [A(O)’Y(l)} G (z,7)
) [AD 4240505 ] Gy (2,3)
H? = log? (u) [;A@) (7(1))1 Gy (v, %)
)

( ADAD 4 A0y 940 (Vm) c%] Gre (. 7)

[ 2
+1log? (u) |A® 42 (A(l)'y(l) + A(O)'y@)) o + 240 (7(1)> OZ} Gie(x, ),

H® — log? (u) {é A© (,y(l)ﬂ Gt,@ (2, 7)

3
+ log? (u) K (1) n A(0>7<1>7<2>) + 4O (yO) 84 Gry (,7)
[( A@1) L AW 4 A(0>7(3>)

2 3
49 ( A0 ( (1 )) 19 A<0>7<1>7<2>> Op +2A0) (7“)) 62} Gty (z,7)
+1og® (1) [ A® 12 (ADyD 4 A 1 4O,

+2 <A(1> (’y(l)>2 + 2A<0>7<1>7<2>> 93 + 440 (%1))3 ag} Gry (2, 1) .

(1.19)

To facilitate readability, all indices and three kinds of summation have been suppressed:
within each log(u)-stratum, a finite sum over degeneracy labels i = 1,...,t — 1, as well as
two infinite sums over half-twists ¢ and even spins /.

Importantly, note that in the above we have only recorded the contributions from
double-trace operators Oy ¢ ;. At twist 6 and above, triple-trace (and more generally, higher-
trace) operators are expected to contribute and to mix with the double-trace spectrum.
As we will show in section 4.7, consistency of the OPE indeed predicts the presence of
operators beyond just the double-trace spectrum in the logz(u) part of H®) starting from
twist 6.

2 Zigzag integrals: a basis for the leading log

When combining the perturbative expansion in a with the superconformal block decom-
position as shown for the first few orders in equation (1.19), one notices that the leading
logarithmic divergence (or leading log for short) is entirely determined by the tree-level



OPE data of long double-trace operators O ;. To be precise, at any order a”, one has

1~ (0 1)\" _
HO 1, 0) hogriuy = 5 2 2 A1y (1) Gl @), (2.1)
T i=1
(0)
t, 4,1
dimensions v given in (1.17) and (1.16), respectively. The simplicity of these suggest that

which depends only on the leading-order OPE coefficients A,/ . and tree-level anomalous
a pattern will emerge in the resummed form of the leading log. As we will discuss in the
following, this is indeed the case and moreover we can identify a family of four-dimensional
loop integrals, the so-called ‘zigzag’ integrals, which provide the correct functional basis for
the leading log. This observation will later feed into our ansatz for the two-loop correlator
#®), but here we make the more general observation that this structure is present at
any loop-order.

2.1 The operator A® and the leading log

To begin with, it is possible to directly perform the defining sums (2.1) case by case and
thus obtain explicit results for the leading log. These expressions are of the general form

u? (2, 7)

" (u7v)‘10g”(u) = W7

(2.2)
where fl(c:;) (x,Z) is given by a linear combination of HPL’s of transcendental weights up to n
with polynomial coefficients of (combined) degree 12n — 6. However, as realised in [16, 44]
and later explained in terms of a hidden ten-dimensional conformal symmetry [18], one
can greatly simplify these expressions by making use of a certain eighth-order differential
operator denoted by A®). For the relevant case at hand, i.e. the su(4) singlet representation,

this operator can be written in the fully factorised form®?

4
A®) — “735(1 —2)2020%(1 — x)%0%(x — ). (2.3)

(z — )

The key observation made in [16, 44] is that A®) satisfies an eigenvalue equation when
acting on long superconformal blocks uQGM, with its eigenvalue being given (up to a factor
of —2) by the numerator of the tree-level anomalous dimensions 4" from equation (1.16):

A® W2G, o(x,7) = (t — V)4t + 0)1u*Gry(x, 7). (2.4)

Since this numerator is independent of the degeneracy label ¢, one may pull out n — 1 factors
of A® from the sum (2.1) and thus remove n — 1 powers of the numerator from (y1))",

leading to a considerably simpler sum. Explicitly, this leads to

275(n), .~
i(A(S))”—lg(n) (z,7), g(n) (z,%) = M (2.5)

H(TL) (u, 'l))hogn(u) = u2 (x = 11_7)7 ,

8While here we focus on the (O2020203) correlator which contributes only to the singlet-channel, a
generalisation of A® to all su(4) channels [a, b, a] (relevant for four-point correlators of arbitrary external
charges) has been given in [16]. For a beautiful reformulation into one compact formula see [18].

9The properties of A® under crossing transformations are discussed in section 4.2.



where the functions fl(g;) (z,x) contain the same HPL’s as fl(OTg (z,Z) but their coefficient
polynomials have greatly simplified now, with their degrees being reduced from 12n — 6 to
only 10.

A further simplification of the leading log can be achieved by making use of the
observation that the ten-dimensional conformal blocks diagonalise the mixing of double-
trace operators at order a [18]. This is a consequence of the hidden conformal symmetry of
tree-level supergravity correlators, effectively reducing the computation of the leading log
to a single infinite sum over spins. We refer to section 5.5 of [18] for more details. Here we
just quote the form of the result, which reduces the information required to a single-variable
function (™ (z),

(—2)n+2 960T (1 4+ 1)T(1 + 4)ax o Fy (1 + 1,1 4 4; 21 + 8; 2)

n! 1=0,2,4,... L2+ 7)[(1+ 1) !

The function 2™ (z) is related to the function ¢(")(x, Z) appearing in (2.5) via a third-order
differential operator,
9" (2,z) = DO (2) + (x > 7), (2.7)

where D;(,;g) is given by

D) <m >7+1( TT >628 1<m >5382+1<x1‘ >44a32
= - - O ——|——= | = — .
z T—% o\z—z *Tl0\z -z P T o\e—z/) T %"

(2.8)
Note that under the crossing transformation,
, T _ _ x
= = 2.
T =——0, T =——0, (2.9)
the function A and the operator D;(C?’) are both antisymmetric,
My = —h™(@z) DB s DY = DB (2.10)

Some contributions to A (z) (or g™ (x,Z)) turn out to be so simple that closed form
expressions have been found for them for any n. We define the function Ji(x) as a linear
combination of weight k harmonic polylogarithms via

Je(@) = > Hoay0as..1(), Je(@) == > Haas0.1(). (2.11)
CLiZO,l ai:O,l

Note that J; () = —Ji(2') = Hy(z). The function h™ has the form

n

W) = af” (@) + o (@) Hy(2) + Y [ (2)Jk(w) = (@ > 2)] | (2.12)
k=2

with a,(cn) (z) being polynomials in 1/x of degree at most six. The leading terms obey

a[()n)(ac’) = —a(()n) (z) and aln) (z) = agn) (z) so that h(z") = —h(x). We see that B(m) (z) is

organised by terms of transcendental weight & = 0,1,...,n. Since the functions J, for
n > 2 obey
20pJn () = —Jn_1(2) 2 0pJn(2)) = 2(1 — 2)0pJn(2) = —Jp_1(2), (2.13)



it follows that ¢(™) (x,Z) is organised similarly,

9" (@,2) = gy (z,8) + g} (2,2) Hi (2) + (2 © )]

+ i Hg;(g") (2, 2) Jy, () + g™ (2, &) Ty (x,)} t o 9:")} | (2.14)

Here g(()n) obeys g(()n) (/7)) = gén) (z,7) = g(()") (z,z) and ggn) obeys g%n)(az’, 7)) = —ggn) (z,T).

The terms of leading transcendental weight can be written for all n [45],
(_1)n44—n151—n

al™(z) = o ((=6-5" +10" +50) 2% + 3(5" — 25)z +30) . (2.15)

This expression reproduces'® the expression given in [16] for the highest weight contribution
(i.e. the k = n term in (2.14)) to ¢\ (z, %),

Gion (2,8) = [Jn (2) DPall) (2) = Ju (') DPa]) (') | + (w2 7). (2.16)
Note that when the operator DS’) acts on a polynomial in 1/x of degree at most six, the
result is always antisymmetric under (z <> z). For the leading weight term (2.16) it follows
that the explicit symmetrisation actually produces antisymmetric combinations of harmonic
polylogs of the form J,(x) — J,,(Z) and J,(z") — J.(Z),

Ghony (2,8) = [T (@) = Jn ()] DY) (2) = [Jn (2') = T ()] DY (@) (217)

x n

For the lower weight terms (k < n in (2.14)) we generically have different coefficients for
Ji(z), Jp(Z), Ji(2') and Ji(Z'). Note that a closed form has also been found for a;n_)l
in [45].

While these formulae are very explicit and a clear pattern is visible in the HPL’s
which do appear, the origins of these structures were left unexplained. In the following,
we describe a family of four-dimensional loop integrals which give rise to these previously
observed structures.

2.2 The Zigzag integrals

The relevant series are the zigzag series of integrals which obey
270,052 (2,7) = 2V (1 — 2,1 - 7). (2.18)
where the series begins with the one-loop ladder function
ZW(z,z7) = ¢W(x, z), (2.19)

and the solution for all higher L is determined uniquely by imposing single-valuedness.
Because of the extra symmetry of ¢(!) we find Z® = ¢3 but that thereafter the series is
different from the ladder series ¢(™) [46]. The functions Z(™ are antisymmetric under z <+ Z.

10Up to an overall n-dependent prefactor due to differences in conventions.
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T2

T1
Figure 1. Example of a zigzag integral, with integration vertices marked with dots.
Both the ladder series and the zigzag series arise from a more general class of four-

dimensional loop integrals [22]. Given a word m = a; ...ar_; with letters a; € {0, 1}, we
define an L-loop, three-point integral as follows,

L-1 4 4
1 1 d Ty, d Tp
Im(z0, 21, 22) = ﬁ/T 11 ( 7 .2 ) 75 (2.20)
T Loby =1 xbibiﬂxbiai Lbr0%bp1
The integration vertices in the above definition are labelled by 3, for 7 = 1,..., L and

we use the shorthand x?j = (z; — x;)?. If all the a; are zero then the above integral I,
corresponds to the three-point version of the dual of the ladder series.!! If we alternate the
indices m = ajaz...ar—1 = 0101... we get the zigzag series (with an example illustrated

in figure 1),
1 ZW) (2, 7)
I (20, 1, 12) = xi(%lﬁ (2.21)
Here we have used the variables,
z—27:L§27 %:Lg)l (2.22)
(1-2)1-2) a1 (1-2)1-2) =z

Note that the zigzag function is antisymmetric, Z("(z, z) = —Z™(z, ).

The differential equation (2.18) follows from considering the action of the Laplace
operator at the point 25 on both sides of (2.21). Since the Laplace operator acts on a single
propagator in the integral, its action produces a delta-function which localises one loop
integral to produce an (L — 1) loop integral, which is also a zigzag after swapping the points
2o and x1. The differential equation together with the constraint that the function should
be single-valued (in Euclidean kinematics where Z is the complex conjugate of z) uniquely
defines Z(™.

1T e. the limit as the fourth point is taken to infinity of the conformal four-point integral dual to the

L-loop ladder diagram.
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Here we give expressions for the first few zigzags Z(™ in terms of single-valued
polylogarithms [47],
ZW = Ly — Lo,
Z@ = Lo00 — Lo,
Z®) = L9910 — Larao — 23(3La0 + 2L21),
ZW = Lazso — Lasao — 4C3(L23 — L220) — 20¢5La0
7 = Lagg2 — L221920 + 4C3(L2291 — Loznz) + G5(4La1 + 15La20)

(2.23)

441
—12¢3Las — ?@520 + 18(3¢s Lo .

It is worth remarking that the detailed form of the zeta-values appearing above is directly
related to the values of certain vacuum integrals (also called zigzags), whose name mo-
tivates our name for the Z(™, and whose form was conjectured to all loops in [48] and
proven in [49].12

Let us note that one may take many J, derivatives of the zigzag functions and obtain
other single-valued pure transcendental functions. In fact one may take m derivatives
with m < (n — 1), alternating between (—xz0,) and (1 — )0, and obtain another pure

single-valued function of weight 2n — m,

ZM (2, %) = ... (1 — 2)0y(—20,) (1 — )8p(—28,) 2 (2, 7). (2.24)

m derivatives

If we take a further derivative we obtain a sum of two pure functions of weight n with different
rational prefactors. Obviously, the functions ZT(,? ) (x,Z) do not exhibit any symmetry under
x <> x although they may be decomposed into symmetric and antisymmetric parts.

None of the zeta value terms contribute to the leading discontinuity which is therefore
simple to calculate. Indeed the leading logarithmic singularities of the zigzags obey

_1\n+1
o . (2.25)
w(L LY
g (x/’f') log™ (u) n! [Ja(a") = Jn(@)].

These leading discontinuities are exactly what is required to match the leading weight terms
predicted by OPE, as given in (2.17). More precisely, to match the top weight terms in the
leading discontinuity we should include in H™ (u,v) the contribution

1 n—1 5(n _
A G @), (2.26)
where
n — n n n 1
G (2, 7) = (~1)" ! [DPal) (@)] 2¢ >(x, x) bz o). (2.27)

123ee also the recent work [50].
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Recall that Dg(f)a,(f) (x) is actually an antisymmetric function of x and z, as is Z (”), so that
Qtop is symmetric.

Moreover we can also see that taking 9, derivatives of the orientations of the zigzags
given in (2.25) will give single-valued functions whose leading discontinuities will give the
contributions to g™ (x,Z) of the form Jj(z) and Jy(z') for k < n. For 1 <m < n —1
we have

{(_DZLL!MHJn_m(:c’) , m odd

log™ (w) (,1)27'7%1 n—m(x), m even
1 (2.28)
Z(n)(1 1) B {(_DZ!MJn_m(x), m odd
mo\ ) (—pn—mtl /
log™ (u) o Jn-m(2"), m even

Since we have acted with 0, derivatives the contributions of the form J,(Z) from (2.25)
have disappeared. By replacing the Ji(x) and Ji(z') and conjugates in ¢\ (z, Z) by the
appropriate zigzag derivative, one may therefore construct a function which matches the
leading discontinuity to all weights from the zigzags Z(™ and their derivatives. Let us
consider the following combination,

G (2,7) = B’ (g(())( ) (1-2) 0, 4291 (x,2)) <Zn@1(1,1)(wHw’)>+(ﬂfH@}

r T

—n‘z [( k (n) (z f)Z,ETi)n(zk)+($H$'))+($H5)}

+Gi0) (2,7) . (2.29)

where 2z, = 1/x for (n+ k) even and 2, = 1/2’ for (n + k) odd.
If we take the leading discontinuity of this function we obtain g(")(x, z). We may then
include a contribution to #™ (u,v) as follows,

(n) 1 &\ sn),.. - . . . -
H" (u,v) = (A ) G\"(x,x) + terms with no leading discontinuity.  (2.30)

w2

For n = 1,2 the zigzags are related to ladder integrals, as we have seen, and hence for
these values they have additional symmetries under crossing transformations. For n > 3 the
integrals do not exhibit any symmetries under crossing transformations and the six possible
crossing orientations which we may list as,

70 (2, 2), ZMW(1—2,1-2), Z(")< 1,, L > zM (' 7, zM <1, 1), AQ (1, 1),
T l—-2z'1-2x T T

are linearly independent. Moreover, for n > 3 the only orientations which contribute to the
leading log term are those given in (2.25). This makes matching the leading logarithmic
discontinuities with a combination of all orientations of zigzag integrals (which will be
required for crossing invariance of the final answer) straightforward at two loops and beyond.

In summary, we have seen how the leading discontinuity at any loop order admits a
compact expression with powers of the differential operator A®) pulled out. Moreover, we
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have shown that the transcendental structure of the leading log is described solely in terms
of zigzag integrals and derivatives thereof. As depicted schematically in equation (2.30), the
remaining difficulty in determining the full correlator %™ then lies in the construction of
the remaining terms with no contribution to the leading log, which in general will include
transcendental functions beyond the zigzag integrals discussed here. We will address this
task for the two-loop case in section 4.

3 The bulk-point limit of AdSsxS® amplitudes

Let us next discuss the flat-space limit of supergraviton amplitudes on AdS5xS® as described
by the dual CFT correlator H(z,z). In its position space representation considered here'3
this amounts to considering the so-called bulk-point limit: by using sufficiently localised
wave-packets in AdS, one can focus onto a point in the bulk and thus effectively recover the
corresponding scattering process in flat-space. This manifests itself in a singularity of the
correlator G(z, Z;y,y) which is of the form

bpl F(z)

(x —z)P’

H(z,x) (3.1)
for some positive integer power p specified later. As explained in references [58—61], this
is the expected behaviour of holographic correlators with a local bulk dual. Note that
in order to expose this bulk-point singularity, one first needs to analytically continue the
Euclidean correlator to Lorentzian signature before taking the limit & — x. The residue of
the singularity is then directly related to the corresponding (in this case ten-dimensional)
flat-space scattering amplitude A% as a function of the scattering angle,

F(z)
A0 b= 3.2
XS T =g (3.2)
where k, [, m are integers related to the dimension of the effective bulk interaction vertex [59].
The dimensionless parameter x is defined in terms of the Mandelstam invariants s and t, or
equivalently in terms of the scattering angle 8, by

t 1+ cosf
r=14+-="——/.
s 2

(3.3)
For our purposes, the relevant flat-space amplitude A9 is given by the massless four-
particle scattering amplitude of ten-dimensional type IIB string theory, whose low-energy
expansion we will review in the next section.

The above relation (3.2) can be leveraged to put constraints on the AdS correlator
by using knowledge about the corresponding flat-space amplitude. Let us first point out
that in the context of the large N expansion (1.10) of the A/ =4 SYM correlator, in [27] a

13 A similar formulation of the flat-space limit for the Mellin space representation of holographic correlators
has been developed in [51, 52]. This flat-space limit of Mellin amplitudes has proven to be a particularly
useful tool for constraining tree-level string corrections in AdS, see e.g. references [28-32, 53]. A beautiful
formalism adapted specifically to the AdSsxS® case has been proposed in [54], and for discussions of the
flat-space limit for one-loop Mellin amplitudes see references [38, 55-57].
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simpler matching than given by (3.2) has been proposed, namely a relation between the
double-discontinuity dDisc H(z, Z) and the t-channel discontinuity Disc; A0 (z). Therein,
the authors applied it to the one-loop correlator H(?), with later applications to one-loop
string corrections given in [28]. At two-loop order, this simpler matching has been considered
for the leading log of H®) in the works [45, 62], and also the recently proposed two-loop
bootstrap result of [19] imposes this simpler matching.

In contrast, here we will describe how in the bulk-point limit the large N, large A
expansion of H(x,Z) recovers the corresponding low-energy expansion of the full type IIB
string amplitude, not just its discontinuity. In general, one would not expect this to lead to
more constraints for the AdS correlator than the simpler matching performed at the level of
the discontinuities, since the Lorentzian inversion formula of [63] allows one to (in principle)
reconstruct the full correlator from its double-discontinuity.'* However, this statement
holds only modulo terms with vanishing double-discontinuity and finite spin contributions
in the conformal block decomposition. But this is exactly the case for the tree-level string

corrections H(1:m)

with m > 0, which subsequently also appear at loop-order in the form of
finite-spin ambiguities.

Hence, besides providing an explicit test of the relation (3.2) across different orders in
the perturbative expansion, the extended matching proposed here is sensitive to tree-level
contributions and finite-spin ambiguities of loop amplitudes in AdS. Unfortunately, as
we will explain in the following, some of the terms in the low-energy expansion of the
genus-one string amplitude depend on some constant scale p. This prevents us from fixing
the tree-level ambiguities in the one-loop string corrections (2™ which contribute to the
bulk-point limit, since shifting the scale alters the value of the non-analytic terms one would
like to match. Nevertheless, the bulk-point limit of the one-loop correlators H.(2™) sheds
light on the role of functions containing the letter x — z. In particular, we will argue that
the extra logarithmic divergence due to the presence of the letter x — Z is necessary to
recover the scale-dependent logarithmic terms of the form log(%s), which do appear in the
low-energy expansion of the type IIB string amplitude starting from genus-one.

Lastly, moving to genus-two, we will describe a constraint for the bulk-point limit of the
two-loop correlator H®) which comes from matching the two-loop supergravity amplitude
in ten-dimensional flat-space.

3.1 The perturbative expansion of the type IIB string amplitude

Let us begin by assembling the necessary terms in the low-energy expansion of the type 1B
string theory scattering amplitude A1), Its genus-expansion takes the general form

2K

(10) _ .2 n
A K10 9s 64

(Agenus—O + 93 Agenus—l + 93 Agenus—Z +0 (92)) 5 (34)
where k2, = 2577 (/)* and K is an overall kinematic factor depending on 10-dimensional
momenta k; and polarisation vectors &; of the external gravitons. In order to compare with
the bulk-point limit of holographic correlators on the product space AdSsxS%, we need to

1411 analogy with the reconstruction of flat-space amplitudes from their discontinuity up to regular terms.
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restrict A9 to transverse kinematics by taking the momenta of the external gravitons to
lie in AdSs5 and their polarisation vectors along S°, such that k; - ¢ = 0. As shown in [64],
with such kinematics the overall factor K — K 1 becomes proportional to the prefactor
7 of the dynamical part dictated by supersymmetry, recall equations (1.6) and (1.8), and
hence these two factors will cancel in the comparison (3.2). Moreover, we need to express
the flat-space amplitude as a function of the dimensionless parameter z = 1 + %, related to
the scattering angle via (3.3). This is achieved by pulling out the overall scaling with the
center-of-mass energy s from the individual terms in the expansion (3.4). We thus rewrite
the low-energy expansion in the form

K 1
B Gii <(3 ACTE () + 33" (27r29§)g (o's)" A(g’k)(x)) ;o (39)

o's) g=0 k=0

where AS_IO) denotes the 10-dimensional amplitude in transverse kinematics. The first term
is the tree-level supergravity contribution which scales as 1/s3, followed by an infinite tower
of string and higher-genus corrections, all scaling with positive powers of s.

The genus-zero contributions are given by the well-known Virasoro-Shapiro amplitude,
and for the first few orders in o’ one finds

_ 64 2
A(O’ 3) = m, A(O’O) = 2C3, A(O’Q) = % (1‘2 —1‘+1> R A(0’3) = g%l’ (1—33‘),

AOH 5T (1’2—1'—1-1)2, A05) = %Jf(l—x) (:172—:1:+1> ;

3
A06) — >3 .2 (1—x)2+2f—f3 (Sxﬁ—9x5+19x4—23m3—|—19x2—9m+3) ,

(3.6)

where the terms A% with k > 0 correspond to tree-level 9?*R* higher-derivative correc-
tions to the supergravity effective action.

Next, the low-energy expansion of the genus-one contribution Agenus-1 has been worked
out most systematically in [65].1° Putting together the analytic and non-analytic contribu-
tions, we have

ACD = 2 A0 = agiloon (@) A0 0, A0S = Hp (- ),
2 /
ALY — —26%15 {x‘l log (z) + (1 — z)*log (1 — ) — i + 2 ($2 —z+ 1) log ("L:’)] ,
29
AP — 211i55x (1—-xz) (m2 -+ 1) )

~o3” T 212315
+ (1 - 2)* (2227 - 432 + 22) log (1 — z) — i (2% — = + 22)

A416) G o (1— ) G {gp‘l (22:c2 -+ 1) log (z)

5See also the corrections/extensions given in references [66, 67].
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+—(44x6——132x5#—327x4——434x3%—327x2——132$—%44)10g(iif>}, (3.7)

for some dimensionless scales p4 and pg, which are determined by the perturbative string
theory expansion. Note that the contribution to A1) is given by the one-loop supergravity
field theory amplitude A2199P (1) which scales linearly with s.

sugra
Lastly, we move to the genus-two term Agenus-2 where much less is known about its

low-energy expansion. To our knowledge, so far only the first two non-trivial analytic
terms, corresponding to the genus-two corrections of the 9*R* and 9°R?* terms, have been
determined [68-70]:

(;1:2—35—1—1), AZ3) = ! z(1—1x),

1
(2,0) — »(21) _ (2,2) — =
A A 0, A 2715

24135

(3.8)

The precise form of the terms beyond 9°R* is not known, and the only information about
the structure of these super-leading counter-terms to the two-loop supergravity amplitude
comes from studying the compactification of 11-dimensional two-loop supergravity [71].
From those considerations, the next two terms in the expansion are expected to be of the
schematic form
-1 _

ACD 0 5RA|penuss + céléelgf‘zm&l 7 A~ 9ORA| s + Ag\ggnllOOps’ (3.9)

where A(S)Igl}g’f‘p  isa non-analytic contribution similar to the genus-one term A1 from
genus-

equation (3.7), arising due to a one-loop diagram with one supergravity and one R*-vertex.

Finally, the relevant term for us is the contribution A%, which is given by the sum of the

genus-two correction to the tree-level 9'°R* term (whose precise coefficient is not known)

two-loops

and the ten-dimensional two-loop supergravity amplitude Agr,

3.2 The contributions H(™™) in the bulk-point limit

As mentioned earlier, the bulk-point singularity of the CFT correlator can be accessed
only in the Lorentzian regime. The necessary analytic continuation from the Euclidean
correlator H(x,Z) corresponds to a Wick rotation of AdS global time, see e.g. [58]. In terms
of cross-ratios, the prescription is to take x counter-clock wise around 0 and z around 1.
Then, the bulk-point singularity is exposed by taking the limit £ — z. We find that the
terms H(™™) at order a”A~% in the large N, large A expansion around the supergravity
limit diverge as

ppl  Fm) ()

(x —z)P

HOm™) () 7) (3.10)
with the denominator power given by p = 8n + 2m — 1.

For terms H ("™ given entirely in terms of SVHPL’s, which is the case for all tree-level
correlators H™ as well as the one-loop supergravity correction H(29) taking the bulk-
point limit as described above is relatively straightforward. For example, performing the
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analytic continuation and taking the limit & — x for the first few zigzag integrals, one finds

ZW(z, 1) b, 42,
Z® (2, 7) 2L —4r?(Ho () + in Ho(x)), (3.11)

_ bpl .
29 (z,2) % 872 (Haa(x) — im(Ha(x) — o) + fm2Ha(x) — gt .
Then, the last step before comparing with the terms AWkK) from the flat-space string
amplitude is to convert the N' =4 SYM double-expansion in a and 1/) to string theory
quantities gs and o/. Using the usual AdS/CFT relations, we have

1 167%g: (o)! Lo
NS s A PE

a= (3.12)
where L is the AdS radius which we set to one. The first relation in (3.12) gives that
increasing the loop-order in AdS by one corresponds to four powers of o/, and hence the
residues F(™)(z) from (3.10) should be compared with the flat-space contributions A9:*)
withg=n—-1land k=4n+m—T7.

Matching the genus-zero terms. We begin by comparing against the genus-zero terms
AWOF) given in (3.6), whose AdS counterparts H™) have been considered up to order
(a’)? using the Mellin space representation.!® Note that the comparison at tree-level is
in some sense tautological, since precisely the terms which contribute to the bulk-point
limit were fixed using the flat-space limit formulation in Mellin space in the first place.
Nevertheless, this serves as a consistency check and enables us to fix some factors and the
overall normalisation.

Converting the Mellin space results to their position space representation in terms
of linear combinations of D-functions and taking the bulk-point limit using the first line
of (3.11), we find that the precise matching reads'”

1 Fnam) (2)

=n—1,k —
Al )(z) = 22k=3n+9 (2k 4+ 11)! 2k +10(g — 1)k+6

(3.13)

where we recall that k = 4n+m — 7. The above relation between the bulk-point limit of the
correlators H(™™) and the corresponding terms in the flat-space amplitude is in agreement
with the general expectation previously given in equation (3.2).

Matching the genus-one terms. At genus-one, the coefficient of the super-leading
counter-term H (1) is fixed from the flat-space limit alone [40] and hence it matches the
analytic genus-one contribution A1% by construction, in analogy with the tree-level terms
discussed before.

More interesting is the comparison with the non-analytic terms. The first such contri-

bution occurs at order o/ and is the one-loop supergravity amplitude Aggg;ﬁfop(a;), which

Y5Here, we use the results of [32], see also [72] for a manifestly 10-dimensional formulation.
17 As explained below (3.4), the overall kinematic factor K in transverse kinematics cancels against the
factor Z. This cancellation is implicit in equation (3.13).
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can be determined from a field-theory computation as a sum over three orientations of the
massless one-loop box-integral in 10 dimensions, see e.g. appendix D of [27] for an explicit
evaluation. Taking the bulk-point limit of the supergravity correlator H® from [4],'® we
find that it precisely matches the full form of Aggg;goop(x), and not just its discontinuity
as reported in [27]. Note that in the matching one has to set the quadratic divergence
of Aggg;goop(x) to zero since it is the super-leading term A9 which takes the role of the
one-loop counter-term. Furthermore, the one-loop ambiguity a does not contribute to the

13 js sub-leading compared to (z — Z)'® of H®,

bulk-point limit as its denominator (z — )
and we therefore do not get any constraint on « from the bulk-point limit.

The next two non-analytic genus-one contributions are the order (o/)* and (a/)® terms
ALY - A06) given in (3.7). The corresponding AdS correlators H(23) and H(>%) have been
constructed in [20], and it turns out that a function with a new type of singularity is present.
This weight-three function, f©) (z,Z), contains the additional letter x — z and is therefore
beyond the space of SVHPL’s, making the computation of its bulk-point limit more involved.
We use the Mathematica package PolyLogTools [73] to perform the analytic continuations
and, introducing the parametrisation € = x — z, to then carefully take the limit ¢ — 0. We

find that the function f) contributes to the bulk-point limit with
FO@,z) 2 872 (2log(x) + 2log(1 — z) + ir — 3log(e)). (3.14)

Note the appearance of an extra logarithmic divergence parametrised by log(e) due to the
presence of the new letter z — .

Now, we can proceed to check the relation (3.13) between the bulk-point limit of the
correlators H(23), #(25) 19 and the non-analytic genus-one contributions A4, 416 We
find perfect agreement upon identifying the extra logarithmic divergence log(e) from the
function ) with the scale-dependent terms log(%) according to

log(e) ~ % (log(a:) +log(1 — ) — log (%5) + iﬂ) , (3.15)

for a choice of scale u. Besides providing the expected matching, the above identification
can be further justified by checking that both sides of the equation transform equally
under all crossing transformations. Indeed, after recasting (3.15) into the form log(e?) =
log(z) 4+ log(1 —x) — log(%s) + 4w and recalling € = x — Z, one can verify that the proposed
identification is consistent with crossing.

Lastly, note that the dependence of (3.15) on an a priori arbitrary scale u prevents us
from fixing any tree-level ambiguities in the one-loop correlators which might contribute
to the bulk-point limit. Take for example H(®3), which has been fully fixed up to four
ambiguities corresponding to the Mellin amplitudes {1, 09, 03,03}, where o, = s + " + u™.
In the bulk-point limit, or equivalently in the formulation of the flat-space limit for Mellin
amplitudes, only the overall leading powers in the Mellin variables contribute, which in this

¥From the basis of 15 independent SVHPL’s appearing in 7-[(2), only 6 elements contribute to the
bulk-point limit. These are the three orientations of the two-loop zigzag Z )| two orientations of log(u)Z @)
and ZW) itself.

19Besides f(3>, also Z and the two orientations of log(u)Z(l) contribute to the bulk-point limit.
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case is given by the term o3. Now, one can check that in the bulk-point limit the coefficient
of £ is proportional to s*(z? — 2 + 1)? 03, and thus a shift in the scale y in (3.15)
simply corresponds to a redefinition of the coefficient of the ambiguity.

Constraints for H() from matching at genus-two. The leading term at genus two
is of order (o/)? and corresponds to the genus-two correction of the 9*R* term. In AdS,
this contribution has been determined in [41] and one can check that in the bulk-point limit
it correctly reproduces the analytic contribution A2 given in (3.8).

Let us skip forward and focus on the (/) contribution, which is of particular relevance
to us as it provides a non-trivial constraint for the two-loop correlator (). As stated

2,5).

in (3.9), one expects two distinct contributions to Al an analytic contribution from

O1ORY | genus-2 of the form o903 o s° 2(1 —x)(2% — 2+ 1) and a non-analytic contribution due

Atwo—loops

to the two-loop supergravity amplitude Agem

, which is given by the sum over crossing
orientations of the planar and non-planar double-box integral in 10 dimensions, see e.g. [74].
Its finite part has been evaluated in [45], whose result we use to compute the function of
angles Aggg;;wm(x)?o Notably, the 1/€? pole in dimensional regularisation cancels in the
sum of the planar and non-planar integral such that the remaining divergence is only of
order 1/e. This gives rise to a scale-dependent term with a logarithmic contribution of the
form s° log(%s). We find that its coefficient is proportional to (1 — z)(z? — = + 1), which
is in agreement with the expected presence of the analytic contribution since a change in

the scale p simply amounts to a shift in the coefficient of 919R4| genus-2-

two-loops

sugra " has a non-trivial consequence

Note that the scale-dependent contribution to A
for the corresponding AdS correlator. In the bulk-point limit, the two-loop supergravity
correlator H®) maps to the genus-two (o/)® term A% and in order to match the scale-
dependent logarithm we need a non-zero contribution from f®)(z, ) to the bulk-point limit
of H3). We will therefore necessarily need to include the letter « — Z in our ansatz for H(3)
at least to weight 3, in contrast to the one-loop correlator %(® which is given in terms of
SVHPL’s alone. Furthermore, as in the case for the one-loop string correlators discussed
earlier, the dependence of the identification (3.15) on an arbitrary scale p (as well as our
ignorance of the precise coefficient of 810724\ genus-2) Will prevent us from fixing the expected

tree-level ambiguity o203 in the two-loop correlator H ().

4 Bootstrapping the two-loop correlator H )

Before explaining the details of our construction of the two-loop supergravity contribution, it
is useful to first step back and review the known results at preceding orders. The structures
appearing in the tree-level and one-loop correlators, HD and H?), will then guide us to
make an educated ansatz for the two-loop correlator H(3).

4.1 Review of tree-level and one-loop

The derivation of the tree-level correlator H(!) dates back to the early days of the AdS J/CET
correspondence and belongs to the first explicit results of an amplitude on AdS. In our

20We record the explicit expression for A;‘Sg;;o‘)ps () in a file attached to the supplementary material of

this paper. It is given in terms of HPL’s up to weight 4 with rational coefficients.
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conventions, it is given by [8, 26]
H(l) = —16u2b2422. (4.1)

In hindsight, this result can be bootstrapped from the following considerations: the basis
function for the top-weight part is given by the first member of zigzag integrals, Z(!). The
remaining lower-weight basis elements are then simply given by log(u), log(v) and 1. Each
of these four functions is multiplied by a rational coefficient function with denominator
power (z — Z)7. A subtlety at tree-level is that one also has to allow for a (single) power of
v =(1—2)(1 — Z) in the denominator in order to ensure cancellation of certain protected
twist 2 contributions. Finally, requiring crossing symmetry, no unphysical poles at x = x and
cancellation of the twist 2 sector fully fixes H(1) and precisely yields the result given above.

Considerably more involved is the one-loop correlator H(?). Explicitly given in its full
form in position space in [4], it has later been recast in a much simpler form by using the
fact that its leading log can be written as A® acting on a simpler object, as explained in
section 2.1. Remarkably, one finds that this property of the leading log extends to the full
correlator, such that #® can be written as A® acting on a ‘preamplitude’ £ at the
expense of having to add some amount of the tree-level correlator H(1) [15],

2@ _ %A(%@) ey (4.2)

Let us emphasise again that this achieves a remarkable simplification: the coefficient
functions of the transcendental basis elements in () come with maximal denominator
power (z — Z)'°, whereas the corresponding coefficient functions in £ have at most
denominator power (x — )7, with the extra 8 powers being supplied through the action of
the 8-th order differential operator A®). In that regard, the coefficient functions at one-loop
order turn out to be of the same complexity as the tree-level ones.

The basis of transcendental functions appearing in £2 is again consistent with our
previous observations: at top-weight (weight 4 in this case), it is given by the three
independent orientations of the zigzag integral Z(2), completed by all lower-weight functions
with no log®(u) contribution to any channel. In contrast to the tree-level case however,
the bootstrap constraints described above are not sufficient to entirely fix the full one-loop
correlator. Instead, one is left with one remaining free parameter, «, which comes with
a tree-level like function given by u?Dygau, corresponding to a constant Mellin amplitude.
The presence of such a tree-level ambiguity is related to the super-leading counter-term
’R,4|genus_1, and its value is determined within the full type IIB string theory effective action
on AdS5xS®. However, our bootstrap computation is not able to fix it and one has to resort
to other methods. For instance, as shown in [40], it is possible to determine it by using
supersymmetric localisation techniques, yielding the value o = 60.

Interestingly, it is possible to write the one-loop ambiguity « as part of the preamplitude
£ which is a remarkable property of the corresponding D-function. Note that this term
contributes non-analytically with a single spin £ = 0 conformal block to the one-loop
anomalous dimension 7(2), as recorded in equation (B.3) for the twist 4 case. The presence
of the a-parameter at one-loop order will in turn induce a non-analytic spin 0 contribution
to the log?(u)-part of the two-loop correlator.
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4.2 More on A®: symmetries under crossing

As this will become important in what comes next, let us briefly comment on the crossing
properties of the A(®) operator, which we introduced earlier in section 2. For convenience,
we repeat its definition:

4
A® = Y 9201 7)20,82(1 — 2)202(x — 7). (4.3)

(@—7)
Recall that A®) was useful in the context of the leading log of H(™), since pulling out
n — 1 powers of A®) drastically simplifies the leading log. In order for this to be consistent
with the 1 < 2 exchange-symmetry of the OPE decomposition, this operator itself needs
to respect that symmetry. Indeed, one can check that under the corresponding crossing
transformation = — 2/ = %5, the A®) operator (and consequently any power of it) is
left invariant

(a®)" == (A®) (4.4)

Remarkably, an accidental enhancement of crossing symmetry occurs for the case when
k = 2. We find that

(A(g))Q S Zi(A(S))Q’ (4.5)

while no other power of A®) obeys this extra symmetry. As a simple consequence, the
combination u—lz(A(g))2 has the same crossing symmetries as the correlator #H(u,v) itself,
see equation (1.9). This enhancement to full crossing symmetry is particularly useful in
the construction of the two-loop amplitude H®), as it allows the preamplitude (introduced
next) to be made fully crossing invariant from the get go. In contrast, the preamplitude of

the one-loop correlator obeys only the x — 2’ crossing symmetry.

4.3 A minimal ansatz for the two-loop correlator

Based on the fact that (A(S))2 can be pulled out from the leading log, and further motivated
by the simple structure of the one-loop correlator as given in equation (4.2), we start with
the following minimal ansatz for the two-loop correlator,?!

SO

_u2

(A(S))z PO+ aH® + ar 1D, (4.6)

with PG denoting the two-loop preamplitude we would like to compute. Let us point out
that the structure of our minimal ansatz is of the same form as proposed in the recent work
by Huang and Yuan [19], albeit different in some details. We will comment on the precise
differences of the final results in section 4.6.

21'We have found this structure to be the simplest ansatz possible which satisfies all of the imposed
bootstrap constraints (to be discussed below), justifying the name ‘minimal ansatz’. For an exploration of
different modifications of the minimal ansatz, see section 6.
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On general grounds, the two-loop preamplitude is of the form

_ d; d;
PO (z,2) =3 m Qi(w,7),  with pi(e,z) =33 oD, (@"F" +2"F"),
7 n=0m=n

(4.7)

where the Q; are pure transcendental functions (forming the basis Q specified below) with
coefficient polynomials p;(z,Z) containing free parameters a,(f?m. The denominator powers
are given by d; = 7 (d; = 6) when the corresponding function Q;(x,Z) is antisymmetric
(symmetric) under the exchange symmetry = <> Z. This ensures that overall the preamplitude
is a symmetric function of (z, ).

Let us now proceed to specify our basis of transcendental functions. Our basis contains
SVHPL’s built from the alphabet {z,Z,1 —z,1 — Z} up to transcendental weight 6, subject
to the following conditions:

e The functions at weight 6 are constrained by the observations on the leading log
discussed in section 2. At two-loop order, the top-weight part is given by the zizag-
integral Z®) which provides the correct leading-log contribution to H®). In addition,
we include all other weight 6 functions with no further log®(u) contributions in any
orientation and which vanish at z = 2.2? It turns out that these two conditions
constrain the additional weight 6 functions to be antisymmetric.

e For functions of weight w = 0,1,...5, the only selection criterion we impose is the
fact that the OPE predicts the leading logarithmic divergence to be of order log3(u).
Below weight 6, we will thus include all functions (both symmetric and antisymmetric)
with no log*(u) contributions to any channel. Recall that in section 2.2 we argued
that all functions contributing to the leading log are in principle further constrained
to be given by zigzags or derivatives thereof. However, for simplicity we will refrain
from imposing this condition here, at the expense of possibly working with a slightly
wider transcendental basis than necessary. As a consequence, we will find that any
such extra functions have their coefficients set to zero in the final result.

e Lastly, we need to consider the possibility of including functions with the additional
letter  — Z, which goes beyond the space of SVHPL’s. As shown in [20], the one-loop
1/X corrections H(2™) necessarily contain such a function at weight 3, denoted by
G (z,Z) therein.?® In particular, its presence is required because the one-loop string
corrections have finite spin contributions to the leading log, in contrast to the infinite
spin support of 7—[(2)|10g2(u). Now, it is for the same reason that we need to include
it as part of our transcendental basis for H®): the one-loop ambiguity a from H(?)
induces a one-loop like contribution to the two-loop supergravity correlator, which is

22This is a necessary condition for ensuring the cancellation of spurious poles at x = Z discussed later.
Z1n fact, f<3>(ac7 Z) is the unique such new function at weight 3. This is not the case at higher weights
any more, however.
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w|TT Qi(z,x) total
6 — 6 x 2B A0 3% BO) (5B 2 x ¢3log(u)z™M 13
+ - 0
5| — 6 x UGB 3x IO, ¢5z™M 10
+ | 6xTB) 6x1IO), QO 2 xlog(u)(ZM)2, 3 x ¢zlog?(u) | 18
4| - 3 x log?(u)ZWM, 3 x 22 6
+ 6 x TG 2 xlog?(u)log(v), (Z1)? 9
3 — @) 2 x log(u)Zz™ 3
+ 4 x log®(u), 3 x w® 7
2 — zM 1
+ 3 x log?(u) 3
1| - - 0
+ 2 x log(u) 2
0| - - 0
+ 1 1

Table 1. Overview of the basis of transcendental functions Q, ordered by their transcendental weight
w. At each weight, we classify the basis elements according to their symmetry under x <> T exchange,
distinguishing antisymmetric (—) from symmetric (+) functions. The third column explicitly lists
the functions Q;(x, ) together with their number of independent orientations under crossing (e.g.
at weight w = 1, the entry 2 x log(u) means there exist 2 orientations of this basis element, given by
log(u) and log(v) in this case). Finally, in the last column we give the total number of functions in
each category.

exactly of the form of H(%3)

24 We therefore expect £ to contribute at two-loop
supergravity level, in agreement with arguments from the bulk-point limit. On the
other hand, we exclude higher-weight functions with letter z — & for now and revisit

such a possibility later in section 6.1.

The above considerations leave us with a basis of 73 independent functions Q;(x,z). A
schematic overview of the basis Q is presented in table 1, while the precise definitions and
symmetry properties of all the functions are spelled out in great detail in appendix A.
Note that we consider explicit (-values as independent basis elements, such that the free
coefficients a,(f?m in the preamplitude (4.7) are simply rational numbers. Before having
imposed any constraints on P®) our initial ansatz for the preamplitude contains 2308

free parameters.

24Recall there is a similar term at order aS)\%, which is a one-loop counter-term coming from a diagram
containing a supergravity and a R4|genu5,1 vertex. This term is in fact super-leading with respect to the
two-loop supergravity correlator, leading us to anticipate the presence of such a contribution also in HO.
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4.4

Bootstrapping HB): constraints

We now turn to the description of the constraints which the ansatz (4.6) for H(®) needs

to obey. First of all, there are certain constraints which can be imposed directly on the

preamplitude P®):

(1)

As a consequence of the simple transformation properties of (A(B))2 under crossing,
we can take P®) to be fully crossing symmetric:

PO (x,z) =P 7)) =POA - 2,1 -1). (4.8)

We can furthermore impose the matching of the predicted leading log directly on the
preamplitude P®), as discussed in section 2. This amounts to imposing:

P (2,2) =¢O)(2,2) + GO (1 — 2,1 —2) + G (1 -2/, 1 - T)

. 3 . (4.9)
+ terms with no log® v in any channel,

where G®) is the combination of zigzags and derivatives introduced in (2.29). However,
in practice we impose this only for the top-weight part for simplicity and match the
rest against our ansatz.

The full correlator H(3)(u, v) is expected to be non-singular at = Z, as such poles
would be at unphysical locations. Note that since the (repeated) application of A®)
does not create any new poles at x = z, we can directly impose the cancellation of
the 7 explicit poles from the denominators in (4.7) within the preamplitude P®).

At this stage, the ansatz for H(3) obeys the correct crossing symmetries, has no poles at

x = & and by construction matches the correct leading log. However, we are still left with
a total of 82 free parameters (80 from PB) together with a; and az). On the other hand,
there are further constraints which #(®) needs to satisfy:

(4)

Cancellation of all contributions with twists below 4. As in the one-loop case, the
presence of the tree-level expression H(!) in our ansatz is required in order to satisfy
this constraint. This step gives 60 constraints on the free parameters, and in particular
we find that ay is fixed to take the value a1 = —1.

Matching the predicted log?(u) contribution at twist 4. According to the OPE
expansion (1.19), this term is given in terms of one-loop and tree-level OPE data by
the combination
_ 1 «a 1)) 2 0) (1) (2 0 1\3 _
@)= Y (5480 (80) + AD A+ 40) (1)) 0 ) Gaelw ). (410
4

where we have kept only twist 4 contributions. Performing the sum over even spins /¢
we obtain the explicit one-variable function g(Z) recorded in appendix B. Notably, it

contains a non-analytic spin 0 contribution from the one-loop ambiguity a. We find 8
further constraints from this matching, one of which determines as = 5.
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(6) Matching the flat-space contribution A25) - As explained in section 3, the correlator
H®) is mapped to the two-loop supergravity amplitude in the bulk-point limit. We
fix 6 more free parameters by matching against the explicit result for Agggggoops (x)
from reference [45], whilst keeping the ambiguities corresponding to the '9R*|genus 2

correction term.2?

4.5 Bootstrapping HG): results

After having imposed the constraints (1) — (6) described above, we find that the two-
loop correlator H®) is completely fixed up to only 8 remaining free parameters, which all
correspond to tree-level ambiguities. Our final result takes the form
HO) = % (A<8>)2 PO 4 51@ — M), (4.11)
with the tree-level and one-loop correlators given in (4.1) and (4.2), respectively. Due to the
complexity of the coefficient functions p;(z,Z), we record our result for the preamplitude
PB) and also the full correlator H®) (for some choice of ambiguities) in a file attached to
the supplementary material of this paper. We find it remarkable that our highly constrained
minimal ansatz is able to satisfy all of the imposed constraints, and we emphasise that the
only free parameters left are of the form of tree-level contact diagrams.
We observe that not all of the transcendental functions Q;(z,Z) which were included
in the initial ansatz actually contribute to the final result. In the notation of table 1 and

organised by their transcendental weight w, the 10 basis elements with vanishing coefficients
(both in P®) and H®)) read

e w=06: 3xBO 2x( log(u)Z(l),
e w=5 QO 2x log(u)(Z(l))Q7
e w=4: 2x logg(u) log(v).

Note that the functions of weight 4 and 5 listed above all have log3(u) contributions and
the vanishing of their coefficients is a consequence of the observation made in section 2.2
that the leading log is fully captured by the zigzag functions Z(™ and derivatives thereof.
Indeed, one can check that the functions QO log(u)(Z™M)? and log?(u) log(v) can not be
expressed in terms of derivatives of zigzags, and hence they do not appear in the two-loop
correlator. On the other hand, the same argument does not apply to the weight 6 functions
listed above as they do not contribute to the leading log. Currently, we do not have an
explanation for the unexpected vanishing of these particular functions and it would be very
interesting to understand the principle behind this observation.

Let us now turn to remaining tree-level ambiguities in ). Schematically, the 8 free
parameters split into 4 x D and 4 x (3D ,?% whose coefficients we parametrise by d; and e;,

25 As already emphasised in section 3, we perform this matching at the level of the full amplitude, not only
its discontinuity. While this does not result in giving more constraints, being able to match a complicated
expression involving HPL’s of up to weight 4 nevertheless constitutes a highly non-trivial consistency check
between the result for the flat-space amplitude from [45] and our construction of the CFT correlator.

26Recall that we do not allow for explicit ¢-values in the coefficient polynomials. Instead, all ¢-values are
treated as separate basis elements of Q, explaining why D and (3D appear as independent functions.
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with j = 1,2,3,4. Such tree-level ambiguities are best described in terms of their Mellin
amplitudes, and we find they are given by the following linear combinations of monomials

{17 02,03, 0%7 0203}>

d1202—§, d2203+3—72, ds ~ o5 2, d420203—£76, (4.12)
and the other 4 are simply related by e; = (3d;. In fact, these are precisely the expected
ambiguities at this order as they are the ones which contribute to the 810R4| genus-2 term
in AdS. In the conformal block expansion, they contribute to the log(u)-part with finite
spin support for spins £ = 0, 2,4 only, and hence there are no ambiguities with infinite spin
support in our two-loop result (4.11).

Interestingly, as in the one-loop case, these unfixed parameters are all written as part
of the preamplitude P®), which is a non-trivial statement about the corresponding D-
functions. However, note that the Mellin monomial ‘1’ does not appear as an independent
ambiguity in (4.12) since it can not be written as (A(®)? acting on a preamplitude.?” In
light of the vanishing of the R4]genus_2 contribution (both in AdS;xS° and in the flat-space
string amplitude), there is no super-leading two-loop R* counterterm. This is consistent
with u?Dy444 not being an independent ambiguity of the two-loop correlator HOB) and we
speculate that (4.12) indeed gives to most general form of allowed ambiguities.

Lastly, let us mention how the one-loop ambiguity « enters our result for #®). To
this end, we have left it as a free coefficient in our final expression even though its value
is actually fixed.?® As anticipated, we find that o is simply proportional to the one-loop
string correction H (%) (with its tree-level ambiguities fixed to some values). Furthermore,
just like the ambiguities (4.12), it turns out that #(?) can in fact be written as part of the
preamplitude, i.e. H(%3) = u—12(A(8))2 PE3) for some P23). This is surprising as H3) is
really a one-loop amplitude and naively one would expect that only a single power of A®)
could be pulled out.

4.6 Comparison with the results of Huang and Yuan

Let us denote the result obtained in [19] by Hg’%.w Our result for H®) agrees with the
main part of their correlator upon setting their free parameter X = 0. In particular, after
changing to our conventions, we find that both results agree on the precise coefficients of
the HW and H® contributions to H®). The exact difference between our two results reads

our

HB) ’HI(?\)AX:O = % CgH(Q’S) — (% — %) HZ3) 4 (E— and Cgﬁ—ambiguities> )
(4.13)

where the last term stands schematically for the tree-level ambiguities expected from the
O1ORY|genus-2 correction, i.e. terms with Mellin amplitudes {1, 09, 03,03, 0203}. The above

2TThis can be easily seen in the positions space representation: the D-function corresponding to the
Mellin amplitude ‘1’ is u?Dy444 which has denominator power (z — 2_3)13. This is too small as the minimal
denominator power generated by applying (A®)? is (z — z)'7.

28Recall that the localisation computation of [40] yields o = 60.

Here HS\)/ refers to the main part of their amplitude which we take from their ancillary file.
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difference in our respective results is consistent with equation (37) of [19], since (apart from
the usual tree-level ambiguities mentioned before) additional one-loop ambiguities have
been left unfixed.

The condition that the free parameter X’ in their correlator ’HI(%)( is required to vanish
in the comparison (4.13) is explained when considering the corresponding preamplitude
ng/, which we have reconstructed from their expression for the full correlator. We find that
the contribution of X’ is sourced by the presence of new weight 4 functions containing the
letter x — & in the preamplitude 73233),, which are however annihilated once A®) is applied
such that their contributions to the full amplitude HS%/ vanish. Since we have not included
such new functions at weight 4 in our preamplitude, we necessarily find that X = 0 and we
thereby fix their free parameter.

Note that the vanishing of X’ is conjectured in [19], but for a different reason: the
authors state that the condition X = 0 follows from imposing full crossing invariance of
the preamplitude 731%)/, which at first sight seems to be inconsistent with the enhancement
of crossing symmetry for the particular case of (A(s))Q, recall the discussion in section 4.2.
Indeed, we find that PS%, can be made fully crossing symmetric regardless of the value of X
by adding terms which are in the kernel of (A®))2. However, these extra terms come with
log®(u) contributions which would spoil the imposed matching of the leading log at the
level of the preamplitude. In other words, the presence of the free parameter X is excluded
by imposing full crossing symmetry together with matching of the leading log on P®), i.e.
constraints (1) and (2) of section 4.4. Of course, this relies on insisting on a ‘canonical’
form for the leading-log preamplitude as defined by the OPE resummation or, equivalently,
the ten-dimensional conformal symmetry which diagonalises the tree-level mixing problem.

In summary, as shown in equation (4.13), our correlator H®) is in agreement with the
results of [19], up to the following details:

e Due to the absence of weight 4 functions with letter £ — Z in our minimal ansatz, we
determine their free parameter X = 0.

o We fix the one-loop ambiguities present in equation (37) of [19] by carefully tracking
the contribution of the one-loop ambiguity « to order a®. This explains the presence
of the H(®3) terms in the comparison (4.13).

e Some shifts in the tree-level ambiguities are required in the comparison, hence the
presence of the D terms in (4.13). However, note that since we write the ambiguities as
part of the preamplitude, we no longer consider u?Dy444 as an independent ambiguity

in H®,

4.7 Comments on triple-trace contributions to H (3

At some point in the perturbative large N expansion new operators besides the usual
tower of double-trace operators Oy, ; will contribute. It is expected that the next relevant
family of operators is given by triple-trace operators, and arguments for their presence at
two-loop order have been given by considering unitarity cuts of the corresponding flat-space
amplitudes [45, 62] or also directly at the level of AdS diagrams, see, e.g. [75].
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Here, we present an argument based on consistency of the OPE decomposition. In
particular, we will show that there are contributions from new operators in the su(4) singlet
representation to the log?(u) term of H®) starting from twist 6. The argument goes
as follows:

Let us consider the twist 6 log?(u) contribution at two-loop order, which according to
the expansion (1.19) is entirely determined in terms of one-loop and tree-level OPE data.
Now, assuming that only double-trace operators contribute®’ we proceed to resolve the
order a? mixing problem, for which besides H(?) we also need to use information from the
one-loop (02020303) and (O3030303) correlators determined in [15, 44]. The solution
of this one-loop mixing problem yields explicit expressions for ’yéle and Aglgl for:=1,2,
which we then use to compute the double-trace prediction for the twist 6 log?(u) part at
order a3. However, one finds that this does not match the actual result extracted from our
result for %) and we are led to conclude that more operators besides the two double-trace

operators enter the one-loop mixing problem at twist 6.

Based on intuition from large N counting, we presume these additional operators are
given by triple-trace operator which will necessarily mix with the double-trace ones.?!
As a consequence, information about their leading-order anomalous dimension is already

contained within the four-point correlators at one-loop order a?.

Lastly, let us mention that the mismatch between the double-trace prediction for the
twist 6 log?(u) part and the actual expression extracted from H®) is already visible in
the structure of the contributing transcendental functions: the twist 6 contribution to
HB) ’10g2(u) contains terms with up to log3(v) divergences, whereas the twist 4 contribution
due to only double-trace exchanges is found to have at most log2(v) terms, which can
be verified using the expression given in (B.4). This is consistent with the observation
that sums over the double-trace spectrum typically lead to at most logQ(v) divergences
(for example the leading log to all loop orders, see also the discussion in [45]). We thus
interpret the observed log®(v) divergences in the two-loop log?(u) part at twist 6 as a sign
of triple-trace contributions.

39Twist 6 corresponds to t = 3 and there are two degenerate double-trace operators O3z ¢; with i = 1,2,
schematically given by (linear combinations of) 050805 and 038é03, see the discussion above (1.13).

3!'Mixing between operators with different trace-structures has already been observed in the case of
so-called single-particle operators O, [16, 23], which are defined as the N' = 4 half-BPS operators dual to
single-particle states of AdSsxS® supergravity. The first case where half-BPS single-, double- and triple-trace
operators mix is Og, which in the SU(N) theory is of the form (see equation (15) of [23])

O =T+ L1133+ P2Tu2 + B3T22,2,

where Tp, po,...pn () = Tpy () Tpy (z) - -+ Tp,, (x), with Tp(z) = Tr(P(z)?P) being the usual dimension p

single-trace operator. The coefficients f3; are functions of N with large N behaviours 1,2 ~ % and (3 ~ ﬁ,

leading to the pattern that terms with m traces are 1/N suppressed with respect to (m — 1)-trace terms.
In analogy, we expect the triple-trace admixtures to the exchanged, unprotected double-trace operators to

be 1/N suppressed.
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5 Extracting the two-loop anomalous dimension

With the explicit result for H®) at hand, we can proceed to extract new CFT data from
it. In particular, the quantity of physical interest is the correction to the dimension of the
twist 4 double-trace operators Og p ~ 020°O,. Recall that at higher twists mixing between
exchanged operators occurs, with twist 4 being the only case where there exists only one
unique operator for each spin. This fact allows us to unambiguously determine its two-loop
anomalous dimension v, which is encoded in the log(u)-part of the two-loop correlator.

In practice, extracting the two-loop anomalous dimension from H(S)hog(u) for low,
finite spins ¢ is straightforward: after subtracting the derivative terms specified by the
OPE expansion, see equation (1.19), and performing the block decomposition up to some
finite cut-off /.« (keeping twist 4 contributions only), one ends up with the particular
combination of CFT data (Ag?gygg + Aggfyé?e) + Ag?gfyé?g) for spins £ =0, 2,..., fnax. Since
all quantities except v in that combination are known from lower-order calculations, one
can thus solve for v(® spin by spin.

However, obtaining a closed-form expression directly from the above finite spin data is
more difficult. In order to find v as an analytic function of spin, we employ the Lorentzian
inversion formula of [63], whose input is the so-called double-discontinuity dDisc(#®)). In
this formalism, the exact same combination of CFT data as given above is encoded in the
double-poles of the inversion integral. Computing these integrals3? and solving for the
two-loop anomalous dimension, we obtain 7;?4) as an analytic function of £, which agrees
with the finite spin data obtained from the direct OPE expansion described above. For

spins £ > 6, the two-loop anomalous dimension takes the form

75?2 =c3 (S_g — S35 — 251,_2 + 3C3) +cS_o9+c1 51 +co+ C[()a) + Oé’?é?ég), (5.1)

where the ¢; are rational functions of spin and Sz = Sz(¢ + 3) are nested harmonic sums.
For integer arguments and weight-vectors @ containing non-zero integer entries, they are
defined recursively by

™ (sen(ai))k
Sovsanan(m) = 3 G -y, Sp(m) = 1. (5.2)

Note that the coefficient functions ¢; have definite sign under the symmetry ¢ — —¢ — T:
apart from c(()a) which is antisymmetric, all other ¢; are symmetric and can therefore be
expressed in terms of even powers of the Casimir eigenvalue J2, which at twist 4 is given by

J? = (£+3)(£+4). We will elaborate further on this so-called reciprocity principle later on.

32We made use of the method described in appendix C of [27] to recursively simplify the integrals. See
also appendix A of reference [76] for a useful list of results for some inversion integrals.
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The symmetric coefficient functions read

—221184J% (J*—2) (J*—50J° —653592.J*430292416.J° +15169835520 )

O TS (J2=6)2 (JP—12) (J—20) (J>—30) (J?—42) (J2—56) ()2 —72)
B —18432¢5 (J?)
2= (J2—6)%(J2—12)% (J2—20) (J2—30)* (J2—42) (J2—56)> (J2—72) (J2—90) (J2—132)’ (53
5.3
 —27648.J% (J?—2) (J*+525J°+1730258J* — 79817784.J° - 39925126080)
= (J2—6)% (J2—12) (J2—20) (J2—30) (J2—42) (J2—56) (J2—T2) ’
B 38440 (J?)
D=5 (J2—6)° (J2—12)% (J2—20)2 (J2—30)2 (J2—42) (J2—56)? (J2—72) (J2—90) (J2—132)’
where g2(J?) and go(J?) are non-factorisable polynomials given by
g2 (J2) = J% (2372 — 32527"® — 11511408, 4 3632264384,
— 1877561292962 — 46028945140416.J° 4 6505487171987328.J° (5.4)

— 303456834615886848.7° 4 5448093169711196160.J*
— 28725812248908349440.J° + 64442560728268800),

and

% (JQ) = (3363J32 — 1629859730 + 18084577822 — 530500662732.7%6

+ 34917254916536J%* + 5640280310229488.J%2 — 1020874675751115744.J%°
+ 64205146187309426112J'8 — 1998754919048666890368.J 1

+ 32877932476802852450304.J 14 — 274537156441056453513216.7 12

+ 863756354962716443394048.7° + 2400097076662032032956416.7°

— 23573917734820546679930880.J¢ + 46280241034580622311424000.J*

— 4409814873370414546944000.J° — 66814046963069091840000).
(5.5)

The contribution from the one-loop regulator « is, as expected, proportional to the anomalous

dimension induced by the one-loop string correction H(23). We find 5/52(,3) = ﬁvéijg),
(2,3)
N4

with 757" given by [29],

23) _ 16588803 J2 (J? — 2) (J? + 4) (J? + 42)
2T TR = 6) (2 12) (J7 = 20) (2 - 30) (J2 — 42) (J2 — 56)°

Lastly, the antisymmetric contribution c((]a) to the two-loop anomalous dimension takes the

for £ >6. (5.6)

simple form

o) _ 193536(2( + 7)(J* = 160.J2 4 2380)
0o - (JQ _ 6)4(J2 _ 20)2

(5.7)
In the remainder of this section, we comment on some interesting features of v®): we first

point out some subtleties of our formula (5.1) at low values of the spin, before discussing
the reciprocity principle and the large spin limit.
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5.1 Comments on analyticity in spin of v()

While the two-loop anomalous dimension is manifestly finite for spins ¢ > 10, there are
explicit poles for some low values of the spin /. In particular, the coefficient functions
c2 and cg contain the factors (J2 —90) and (J? — 132) in their denominators, giving rise
to (apparent) poles for spins ¢ = 6 and ¢ = 8, respectively. However, it turns out that
the numerator of the combination co S_o + ¢y has a zero at exactly those locations, thus
cancelling the apparent divergences! Let us emphasise that this cancellation is highly
non-trivial, and it depends on the precise spin dependence of the coefficients ¢y and cy.
Note that there are no such spurious poles at higher values of the spin and the formula (5.1)
is manifestly finite for £ > 10.

One can evaluate v(® for spins ¢ = 6,8 by using an analytic continuation of the
alternating harmonic sum S_o(¢ + 3),%? yielding the finite values

(3 _  T75569722924539 = 9368130816¢(3)  409464c
T2,6=6 = 79394167125 1028755 54145 (5.8)
(3) _ 147901898176964147  1161059328((3) 16588« '
T2.6=8 T T170666923100625 1820105 13965

We find that these values, obtained through an analytic continuation of harmonic sums,
are in perfect agreement with the explicit low spin data which we extracted from the OPE
expansion of the log(u) part of #®).

Another interesting feature of the formula for v is the presence of the factor (J% —72)
in the denominator of all 4 coefficient functions ¢;, see equation (5.3). This factor provides
a pole at £ = 5 which is not cancelled any more. Even though this pole is at an unphysical
value of the spin (only operators with even spins are exchanged in the OPE), it prevents
us from analytically continuing below spin 6.3* This is consistent with the presence of the
tree-level ambiguities d;, e; given in equation (4.12), which are left unfixed by our bootstrap
program: being related to the tree-level 9'R* correction, they contribute non-analytically
to the two-loop anomalous dimension precisely for finite spin values £ = 0,2, 4, and 4®) is
expected to be analytic only for £ > 6.

5.2 ~® and the reciprocity principle

For conformal field theories, the reciprocity principle is the general statement that anomalous
dimensions of operators are functions of the conformal spin [78]. This is equivalent to
the statement that the large spin expansion of operator dimensions contains only even
inverse powers of the bare Casimir J? [79]. After taking into account some shifts due to
N = 4 supersymmetry, the relevant expression for the Casimir eigenvalue takes the form

33Taking the analytic continuation of S_o(m) from odd arguments m, see e.g reference [77], one has

S-a(a) = (w0 (52) -0 () - 2.

34Exactly the same phenomenon occurs in the one-loop anomalous dimension given in equation (B.3):
’y<2) has a pole at ¢ = 1, signalling the presence of a non-analytic spin 0 contribution from the one-loop
ambiguity .
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J? = (t+0+1)(t+£+2). When the large spin expansion can be resummed, which is the case
in our setting (up to some finite spin ambiguities), this implies a discrete Zy symmetry of
the operator spectrum under the map ¢ — —¢ — 7(¢,a) — 3, with 7 being the full anomalous
twist of the relevant operator.??

At twist 4, there is a unique operator for each spin, and the above transformation should
leave the dimension Ay of the double-trace operators Oy o ~ 00Oy invariant. Plugging-in
the large N expansion of their full anomalous twist 7(¢,a) = 2(2 + ay() + a?~43 +...) and
expanding to order a3, one finds the relations

2 2
(2 -2 er) = 00082 7 (5.9)

3 ('Yége) - 75?12—7) = 'Yéle) 6475,214—7 + ’Yéze) 5675,114—7 + (’Yéle) )2 7 ’75,115—7'

In words, the antisymmetric contribution to the anomalous dimension at a given order is
entirely determined by lower-order data. One can easily verify that the first two lines are
satisfied by the tree-level and one-loop anomalous dimensions 4" and +(?), respectively.

Remarkably, our result for the two-loop anomalous dimension is in perfect agreement
with the prediction from the reciprocity symmetry: the only antisymmetric contribution to
~3) is given by céa) = %(7%32 - 75?14_7) as recorded in equation (5.7), and indeed we find
that c(()a) satisfies the last line of (5.9).

After subtracting the antisymmetric contribution c(()a), the large spin expansion of the
two-loop anomalous dimension is of the form expected from reciprocity symmetry [79],

) — o ~ Bzﬂ(ﬁ(ﬂ) n ﬁg(l?]g().(‘])) n 64(13%(J)) o

with only even inverse powers of J appearing in the expansion. The leading coefficient (s is

(5.10)

given by
384 9 9
B2 (log (J)) = = (3363 — 45 + 4607 — 864¢3 — 24 (15 + 4 ) (log(J) + ’YE)) , (5.11)

with vg being the Euler-Mascheroni constant.

6 An exploration of wider ansiatze

There are several different possibilities of extending the minimal ansatz (4.6), while still
preserving the general structure with powers of A® acting on simpler preamplitudes which

35 As pointed out in [44], this symmetry should be really thought of as a symmetry of the full operator
spectrum rather than individual operators, as in the generic case the shift symmetry transforms many objects
non-trivially. For example, the tree-level anomalous dimensions vi’? ; of the singlet channel double-trace

operators, recorded in equation (1.16), are mapped into each other according to

(1) (1) )
Vel T Ve, lo—2t—3,0 = Ve, 00—i

In this case, the shift symmetry maps data from the family of operators with degeneracy label i onto the
family with label i’ =t — 4.
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we think is well motivated by properties of the leading log. In this section, we consider two
natural extensions of the minimal ansatz:

1. We address the possibility of including new weight 4 functions with letter x — z in
the preamplitude P®). Previously, we argued that the presence of such a function at
weight 3 is required in order to account for the spin 0 non-analyticity of the log?(u)
twist 4 prediction, and indeed we find the function f® to be an essential part of
our result for %), Here, we explore the additional degrees of freedom due to the
presence of such new functions at weight 4, which a priori are not necessary to match
our bootstrap constraints.

2. The minimal ansatz (4.6) is of particular simplicity in the sense that the one-loop
correction term is exactly given by the one-loop result () itself. An alternative would
be to generalise this term to A®) acting on a more general one-loop like preamplitude
different from £ in (4.2). We explore such an extension in section 6.2.

As we describe in the following, these modifications of the minimal ansatz lead to more free
parameters in the final answer, which are no longer of the form of tree-level ambiguities
only. In general, such additional free parameters will contribute to the two-loop anomalous
dimension 73 with infinite spin support, although at most the coefficient functions ¢y
and cg in (5.1) seem to be affected. In light of that it is all the more remarkable that the
minimal ansatz gets fully fixed up to the expected tree-level ambiguities.

6.1 Including weight 4 functions with letter x — x

At weight 4, there are 3 new functions when including the additional letter x — . Two of
them are simply given by log(u)f®)(z, Z) and log(v) f®) (z, &), while the third one, f*(z, z),
is the unique such function which is fully crossing antisymmetric, just like £ at weight 3.

Including these 3 functions as additional basis elements, we now start with a new
preamplitude P’®) built from an extended transcendental basis Q' containing 76 elements.
This new, wider ansatz is again of the form

WO = % (A<8>)2 PO 4 aaH® 4 a1, (6.1)
We then proceed to impose the same bootstrap constraints described in section 4.4. After
imposing conditions (1) — (3), the new weight 4 functions give rise to 15 additional free
parameters. As before, in the process of imposing the further constraints (4) — (6) the
coefficients of the tree-level and one-loop correction terms get fixed to a; = —1 and ao = 5.
However, we now end up with 12 free parameters in the final result for %', compared to
only 8 ambiguities when starting from the minimal ansatz.
We find that the four additional free parameters contribute to all antisymmetric weight 4
functions together with their lower weight completions.?¢ In the OPE decomposition, they

36However, note that none of these parameters is related to free coefficient X of reference [19]. As explained
in section 4.6, starting from a fully crossing symmetric preamplitude which matches the canonical form of
the leading log as given by the OPE resummation excludes the function X.
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contribute with finite spin support to the 10g2(u)—part for twists 7 > 6, whereas their
contributions to the log(u)-part have infinite spin support starting from twist 4. As a
consequence, they contribute non-trivially to the two-loop anomalous dimension, but we
find their contributions are limited to the coefficient function ¢y, preserving analyticity in
spin for £ > 6.

6.2 Generalising the one-loop term

As another natural extension we consider a generalisation of the one-loop correlator H(2).
The minimal ansatz is thus modified by including a wider one-loop like correction term and
takes the more general form

7‘[”(3) _ 1

7u2

(A(S’)2 PO 4 %A@) PO +aHW, (6.2)

where P®) is the original two-loop preamplitude from (4.7), while the preamplitude P3 s
analogous to (4.7) with different coefficients bg)m which we set to zero for all basis elements
Q; with transcendental weight greater than 4 or contributions to log®(u) in any orientation,
in order not to spoil the matching of the leading log by the first term.

We then impose the bootstrap constraints (1) — (3) on P®) and P separately, with

the modification that P2 is less constrained by crossing symmetry, obeying only

PO (z,7) =P (), (6.3)

8). The other symmetry is

since this is the only symmetry respected by a single power of Al
then imposed in a second step on the full combination #A(s)P(z).
Proceeding to impose the constraints (4) — (6), we find that the coefficient of the

tree-level contribution is fixed to a1 = 4 and we have

W' = iQ (A<8>)2 PO 4 %A(S) PR 44y, (6.4)
U U
with H”®) containing a total of 11 unfixed parameters, 8 of which contribute only to
PG) and these are the expected tree-level ambiguities described in section 4.5. One of
the additional parameters contributes only to P2 and it is proportional to the tree-level
ambiguity 42D 4444, which contributes to the two-loop anomalous dimension only at spin 0.
The other 2 remaining parameters appear in both P and P®): one of them, 8, contributes
non-trivially up to weight 6 (with contributions to the functions A©® and ¢f® at top-
weight) and has infinite spin support in the log?(u)-part for twists 7 > 6. The other
parameter, do, is proportional to a one-loop string correction with finite spin support in the
logz(u)—part. In the two-loop anomalous dimension they both contribute with infinite spin
support: §; contributes to co and ¢y, while o contributes only to ¢y. Again, we find that
both contributions preserve analyticity in spin for ¢ > 6.

Lastly, when combining the two types of generalisations discussed above, i.e. starting
from the extended ansatz (6.2) while at the same time allowing for weight 4 functions
with letter 2 — Z (in both P®) and P(?)), we find 9 additional undetermined coefficients
compared to the minimal ansatz. These comprise the 4 parameters described in section 6.1,
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the 3 from the generalisation (6.2) as well as 2 more independent parameters: one of them
contributes up to weight 6 and has similar properties as the parameter d; described above,
while the second one is due to the fact that the coefficient a; is no longer fixed.

7 Outlook and open questions

We conclude with mentioning some open questions and future directions:

o Recall that the simple structure of the minimal ansatz (4.6) for the two-loop correlator
H®) was motivated by two facts, namely (7) the non-trivial property of the leading
discontinuity allowing (A(®))2 to be pulled out and (i) the observation of reference [15]
that the one-loop correlator (originally constructed without assuming a structure
involving A®)) can actually be written in the simple form given in (4.2). However,
beyond the remarkable fact that this very restrictive minimal ansatz satisfies all
of the bootstrap constraints and leads to a final result with the expected tree-level
ambiguities only, the origin of this structural simplicity remains unclear to us. While
the existence of the operator A(®) and its properties in relation to the leading log are
directly related to the hidden conformal symmetry, the structures we observe at loop
order seem to go beyond the original understanding of this symmetry. It would be
very interesting to investigate whether analogous features, such as the appearance of
lower order correlators for example, are present in similar setups.?”

o We find it suggestive that a similar structure might persist at higher loops. As already
stated in [19], the generalisation of the minimal ansatz to any loop order takes the
simple form

Ho = L (A(s)) L pm) S a4 HD (7.1)
i=1

such that at any order one is only left with determining the preamplitude P which
includes functions up to transcendental weight w = 2n, and the coefficients a; of the
lower-loop results. Crucially, the only growth of complexity in P at higher loop
order is due to the increasing size of the transcendental basis, while the number of free
parameters in their coefficient functions does not increase. Nevertheless, the number
of SVHPL’s grows exponentially with their weight and considering higher loops thus

remains a challenging problem.?®

o For the reasons mentioned above, we expect that bootstrapping higher-loop correlators
will require a better understanding of the basis of transcendental functions. In

370One natural candidate to consider would be the case of the pure AdSs background arising from gauged
N = 8 supergravity.

38Furthermore, recall that the two-loop case considered in this work is exceptional due to the accidental
enhancement of crossing symmetry of (A®)2, which allowed us to start from a fully crossing-symmetric
preamplitude. In general, the preamplitudes are expected to be invariant only under the symmetry = +— z’,
as one can check explicitly in the one-loop case.
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section 2.2, we have taken a first step in that direction by identifying the family of
zigzag integrals which we argue provide a basis for the leading log at any loop-order.
On the other hand, it is clear that there is more to be understood. For example, as
mentioned in section 4.5, we observe that 5 basis elements at weight 6 do not contribute
to the final result, which calls for an explanation. A more systematic insight into
which transcendental functions do contribute at general loop orders would certainly
facilitate the formulation of the most restricted ansatz for the preamplitudes P,

Related to that matter is the occurrence of functions containing the additional letter
x — Z. In section 3 we have argued that such functions are necessary to match
the scale-dependent logarithmic terms of the flat-space type IIB string amplitude.
In particular, such logarithms are present in the super-leading counter-terms to the
supergravity contributions, and we speculate that the precise form of the corresponding
counter-terms at higher-loop orders will put a bound on the maximal allowed weight
of functions with letter z — z.

An interesting immediate generalisation of the results presented here would be to
consider correlators of more general external charges. As shown in [18], the ten-
dimensional conformal symmetry of tree-level supergravity relates the correlator of
arbitrary external charges (0,0,0,0;) to the ‘seed-correlator’ (O2020203) through
the action of a differential operator Dp4rs. While this works beautifully for the
free-theory and tree-level supergravity correlators, at loop order only the leading
log continues to have this property. Nevertheless, as demonstrated for a number
of correlators with low external charges, pulling out Dp,.s at one-loop order still
achieves a great simplification, even though certain tree-level correction terms become
necessary [15]. It would be fascinating to see if a similar approach can be applied to
two- or even higher-loop correlators.

In this work, we have focussed on the position space representation of H®). A
first step to compute the corresponding Mellin amplitude has been already taken
in [45], where the contribution from the leading log H(®) |10g3(u) to the two-loop Mellin
amplitude has been derived. It would be instructive to derive the full Mellin amplitude
and, considering that A®) acts as a complicated shift-operator in Mellin space, to
investigate if the simple structures observe here translate to Mellin space.

(2.3) can in fact be

We made the observation that the one-loop string correction H
written as part of the two-loop preamplitude. In other words, one can pull out (A(®))2
from #(23) even though it is a one-loop correlator and one would thus expect that only
a single A®) can be pulled out. One might wonder if all one-loop string corrections

enjoy this property and what the possible consequences are.

Lastly, it would be interesting to apply the position space bootstrap approach to other
holographic theories beyond supergravity on AdS5xS®. While there has been recent
progress in this direction by constructing one-loop corrections using mainly the Mellin
space formulation, e.g. for M-theory on AdS7;xS* and AdS;xS” [56, 80] or gluon
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scattering on AdSsxS? [57], we believe that the position space methods employed here
will continue to be useful also in different setups,” in particular in other instances
with hidden conformal symmetry. For example, one such case is given by string
theory on AdS3xS? which enjoys a six-dimensional conformal symmetry [81, 82]. To
our knowledge, loop corrections to supergravity have not been constructed for this
background since much less is known about the dual CFT and its spectrum.?® It
would be interesting to investigate whether an analogous operator to A® can be used
to facilitate the construction of loop corrections in that particular case.
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A Details on the basis of transcendental functions

In this appendix we spell out the details on the transcendental functions Q;(x,z) included
in our minimal ansatz as given in equations (4.6) and (4.7). Let us start by introducing the
following derivatives of the zigzag integrals Z(:

V) (2,7) = 2" (2,7) — (z © 7), (A1)

where Z{" (x, ) has been defined in (2.24). The above combinations define pure functions,
of which U@, w6 ¥®) and TG will appear in our basis. In the following, we proceed to
enumerate all elements of our basis Q@ organised by their transcendental weight.

e Weights 0, 1 and 2. Up to transcendental weight 2, all symmetric SVHPL’s can be
written as powers of logarithms of v and v. This includes the basis elements 1 at weight
0, the two orientations of log(u) at weight 1, and three orientations of log?(u) at weight
2. The first antisymmetric function is given by the one-loop box function, which coincides
with the first zigzag Z(1). Altogether, the 7 basis elements up to weight 2 read*!

{Z(l)(x), logQ(u), logz(u/v), log?(v), log(u), log(v), 1}. (A.2)

39For example, exploiting the existence of differential operators, such as A® in our case, is more direct in
the position space formulation compared to Mellin space, where differential operators act as complicated
shift operators on the Mellin amplitude.

49Gee however reference [83], where the double-trace spectrum of tensor multiplets is considered.

“I'Note that, for reasons of brevity, here and below we will suppress the Z-argument and it is understood
that all functions are really two-variable functions of (z,Z). Similarly, when denoting their transformation
properties under crossing, the suppressed variable T is transformed in the same way as its counterpart x, e.g.
in equation (A.3), ZM (1 — x) is short for ZM (1 — 2,1 — 7).
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Recall that Z() is fully crossing antisymmetric:

20 () = —20(1 = z) = -z (;) . (A.3)
e Weight 3. Within the space of SVHPL’s, there are just two antisymmetric weight 3
functions, given by log’s times the one-loop box function. However, as argued in the main
text, we also want to include functions involving the letter x — z. Such functions make
their first appearance at weight 3, with f(3) being the only one at this weight. Hence our
antisymmetric basis elements at this weight read

{FO(x), log(u)2M (), log(v)ZM(x)}. (A4)

Note that f® transforms the as Z() under crossing, obeying a similar equation as (A.3).

On the other hand, the space of symmetric weight 3 functions (including (-values)
is given by 7 independent linear combinations of SVHPL’s. These can be written as 4
orientations of log’s and 3 orientations of the function W% (defined as a symmetric derivative

of Z?), see (A.1)):

{log?’(u)7 logQ(u) log(v), log(u) log2(v), log?’(v), \11(2)(90), \11(2)(95’), \11(2)(1 7@.)}
(A.5)

Note that U2 has the symmetry ¥(2) (z) = \II(Q)(i), such that only 3 independent orienta-
tions exist. Furthermore, (3 is implicitly included as an independent basis element thanks
to the identity

U@ (2) + ¥ () + TP (1 — 2) = 12¢. (A.6)

e Weight 4. There are 6 antisymmetric SVHPL’s at this weight: 3 of them can be written
as log’s times Z(1), while the other 3 are given by orientations of the two-loop ladder integral
which coincides with the zigzag function Z(2). The 6 antisymmetric weight 4 basis elements
are hence given by

{1og2(w)ZM (@), log?(u/v)ZM(x), log?(v)2 M (x),
20(w), 22(), 2201 - )},

and we should recall that Z(?) obeys the crossing relation Z? (z) = —Z® (1).
The symmetric weight 4 functions include 10 SVHPL’s together with (53 times weight 1
functions. However, there are 3 orientations of log*(u) which we can remove from our basis.

The remaining 9 elements can be written as

{TO() Y0, TO (1) 1) T, 100 ) (A8)

log(u) o) Lo (uv) log(u/0). Log(u) og? (v) og(u/v). (2)*},
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with the (-values being implicitly included within the 6 orientation of T®) thanks to
the relations

@) <1> pEc) (;/) ~ T (2) - TO(1 - 2) = 12¢3 log(u),

N (A.9)

1 (3) < 1 > + YO ) = 1O (2) = T (1 — z) = 12¢3log(v).

1—-2z
e Weight 5. At weight 5, there is a total of 12 antisymmetric SVHPL’s. Demanding no
log*(u) contributions in any channel reduces that number to 9 independent functions. We
can write them as 6 orientations of the antisymmetric derivative of Z(3), \T/(?’), together with
3 orientations of a function we denote by II®). There is one more independent element
given by (3Z(), such that the antisymmetric weight 5 basis elements read

{@(3) (11) BB (), @(3)( 1 ) 6 <1> O (2), TO(1 - 2),

T 11—z T
. (A.10)
1O (@), B9 -0, 7O (1), 20},
x
where II®) is defined in terms of the following linear combination of SVHPL’s
) = L3094 La12 — L31,0 + L1200 — L1210 + L2,1,0,0, (A.11)

and obeys the crossing symmetry I1%) (z) = 1) (2).

The space of symmetric weight 5 SVHPL’s is 20-dimensional. However, demanding the
absence of functions with contributions to log*(u) removes 6 degrees of freedom (these are
precisely the six logarithms log™ (u) log™ (v) at weight 5). We thus end up with 14 functions,
to which we need to add (5 and (3 times symmetric weight 2 functions. Altogether, this
gives 18 basis elements which we write as

1 1 1
{09 (5). 90 @), 09 (1), 90 (1), 19 @), 99 (1 - ),

1—=x

) (z), 6 (1 — ), 76 (1> e (), 116 (11) e <1> Q). (A12)
xr

x! —x
2 2
log (u) (2 ()", log(v) (20 (@), Calog? (u), Gslog? (u/v), Gs log2<v>},
where we recognise the 6 orientations of the symmetric derivative of Z() in the first line.
The definitions of II® and Q) in terms of SVHPL’s read
1) = L1995 — Lo12 — Lano+ La21 + L300+ L3.10
+ L1120+ L1121 — L1210+ L2100+ 203(4Loo +9L10),

1454

(A.13)

and
Q) = 2014+ L322+ L113+2L122+L131 —2L220— L2221 — L3190

(A.14)
— L1120+ L1200 — £2,1,00 —2L21,1,0 — 6(3L1 1,

with Q) being fully crossing symmetric, i.e. ) (z) = Q®)(1 —z) = QO)(1).
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Finally, note that (5 is included in the above basis as a consequence of the identity

1® (z) + 1 (1 — z) + 11O @) + 1O (/) + 116 <1ix> +1® Cﬂ) = 36(s.
(A.15)

e Weight 6. At top weight, we expect only antisymmetric functions to contribute, with
the leading log provided by the zigzag Z®). We then also include all antisymmetric weight
6 functions with no log®(u) contribution in any orientation (given by A©®) and B©®) defined
below) as well as (3-values times lower-weight functions (given by ¢3f®) and (3log(u)ZM).
This gives a total of 13 independent functions at weight 6, which we parametrise by

(79 (1), 20, 20 (1), 20(1), 20 ), 290 ),

1—=x

A9 (z), B9 (z), BY(1-2), B9 (2'), GfP, Glog(u) 2V, ¢3log (v) Z“)}-

(A.16)
The functions A® and B®) are defined in terms of SVHPL’s as
A® = L1905 — L1390 —Lo13+ Laoo— L1220+ L1310+ La120— L2210 (A17)
+203(L3+3L20+2L21 — L1100+ L1,1,0) — 15¢L1,
and
BY = L35+ L1235~ Li32+ L312— L1300 — L121,00 (A18)

+2C3(3L12 —5L21+3L100+5L1,1,0) — 9L

Note that A©) is fully crossing antisymmetric, while B(®) obeys one crossing symmetry:

A©) (2) = —AO (1 — g) = —A© (1> . B®(z)=_B© (1> . (A.19)

X X

B The log®(u) prediction at twist 4

While the full log?(u) contribution to the two-loop correlator H(®) is not known due to
mixing of exchanged operators (double-trace and potentially triple-trace contributions),
restricting to the lowest twist allows one to sidestep all these problems as there is only one
unique operator for each spin. The twist 4 contribution to the log? (u) part of HB) can
therefore be determined from lower-order CFT data. Explicitly, keeping only terms of order
x2, it is given by

_ 1 2 3 B
2’g(z) = ) (2 AL (7512 ) + AS) 50 A + AD) (7515) ) 3A> Gay(z,z), (B1)

£ even

with A©) and (! given in equations (1.16) and (1.17), respectively. The twist 4 next-
order CFT data, i.e. the double-trace OPE coefficients Aglg and the one-loop anomalous
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(2)

dimensions v, ;, are given by [4]

1 _ (16 B 64(20 + 9)) ((£+3)?2
) 1344(¢ — 7)(€ + 14) 2304(2¢ + 7) 18«

Yoy = - - 5@ 0> (Bg)
A (=1 +1)2(L+6)2(L+8) (£L+1)3(L+6)3 7T

where here H,, stands for the n-th harmonic number and « parametrises the contribution
of the one-loop ambiguity u?Dy444, which contributes only to spin £ = 0. Note that
the correction to the OPE coefficients (for any twist t) can be simply obtained from the
derivative relation (AS}) = 8t<A§?g)’Yt(,le)> [59], where the angle-brackets (-) denote averaging
over the double-trace degeneracies ¢ = 1,...,t — 1.

We were able to perform the infinite sum (B.1) over even spins ¢ in terms of harmonic
polylogarithms H,(Z), resulting in

384

9(@) =5 (497;2 (46772 —22507+2250) + (11453° —112662° + 270005 — 18000 ) H (7)
X

—~28802° (2 -2) Hp (2) —40 (2~ 1) (692° ~ 712 ~ 45024450 H1 1 ()
+8647° (3 —2) Hy (7) — 832 (437% ~ 4505+ 522) Hy 5 ()
+827 (15127~ 8102+774) Ha ()

+96%> (322—6.%—1—6) (3H13(Z)—Haz2 (%)—2Hs (E)))
—oz-i;i;i (:@ (11:%2—6056+60) +3 (353—12562+3035—20) H, (i”)) :
(B.4)

where the term in the last line is due to the spin 0 non-analyticity of the one-loop anomalous

(2)

dimension 7224 and comes with a single conformal block with ¢ = 0.
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