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1 Introduction and summary

Despite the long history of studying perturbative higher-derivative corrections to the
ten-dimensional effective actions [1, 2], understanding their complete structure, notably
non-linear completions arising form higher-point functions, remains a key challenge for string
theory. While recent years were marked by conceptual and computational breakthroughs
in our ability to compute string amplitudes, a unifying approach or a guiding principle
towards completing the effective action at higher order in the α′ and loop expansion has
not emerged yet. The main outstanding issue is the construction of local effective actions
reproducing the precise amplitude, where a plethora of kinematical structures, intricate
pole-subtraction procedures and field redefinitions complicate any bootstrapping attempt.

In the NSNS sector, a partial set of quintic and some sextic higher-derivative terms in
the Type II effective action have been identified [3–5]. For the Type IIB effective actions,
the authors of [6, 7] completed the quartic couplings for all fields but the four-form tensor
field with anti-self-dual tensor field strength F5. In the absence of the dilaton and the
complex 3-form on the Type IIB side, the full action has been determined in [8, 9]. Here, the
supersymmetric completion of R4 including the F5 field strength [8, 10, 11] has been inferred
from the N = 2 superspace approach of [12]. Particularly noteworthy are applications of
these results to multi D3-brane backgrounds [8] and black-hole solutions with AdS5 × S5

asymptotics in AdS/CFT [9, 13]. Recently a full completion of the NSNS-sector of the
effective action at tree level has been obtained in [14] using constraints imposed by T-duality
invariance, if not directly string theory. However, given that the choice of field basis is
rather unnatural from the point of view of tensor structures like t8 or ε10 appearing in string
vertex operators or superspace integrals, it is hard to make a straightforward comparison,
let alone extend the results to the RR-sector or to 1-loop order.

Up to now, these different developments have not been put together in a systematic
fashion, and no unifying approach towards completing string effective actions has been
proposed. One would hope that a proper framing of effective actions with quantum
corrections in terms of some generalised or super-geometry should emerge and eventually be
helpful in constraining if not predicting the higher-order interactions. So far, the usefulness
of connections with torsion given by the NSNS three-form H3, Ω± = ΩLC ± 1

2H in terms of
the Levi-Civita connection ΩLC, observed at the linearised level [2], has been confirmed at
the non-linear level as well [4, 5]. However it has also been shown that a simple replacement
of ΩLC by a connection with torsion fails to capture the full kinematics of eight-derivative
terms at one-loop and especially at tree-level.

In this paper, we make progress towards developing such an approach by scrutinising
the kinematical structures discovered in [5]. We compare the results of conventional ten-
dimensional (10D) superstring amplitudes with eleven-dimensional (11D) superparticle
amplitudes compactified on a two-torus [15–17], and superspace approaches to Type IIB
N = 2 supergravity [12]. In the effective action, we find that couplings in the maximally
U(1)-violating (MUV) sector of U(1) (or R-symmetry) charge |Qmax| = 2(P − 4) at the
level of P -point amplitudes are captured by simple fundamental higher-dimensional index
structures generalising the well-known t8 or εD tensors. Our results for the 10D action at
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5-point level including the metric and complexified three-form flux G3 (up to ∇G3 terms)
can then be summarised as

L = f0(τ, τ̄)t16R
4 + 3

2
(
f1(τ, τ̄)t18G

2
3R

3 + f−1(τ, τ̄)t18G
2
3R

3
)

+ f0(τ, τ̄) [T (ε10, t8)− t18] |G3|2R3 . (1.1)

The first line encodes the MUV couplings which are nicely repackaged into a single index
structure tN (with N = 16 + 2w for couplings of the form G2w

3 R4−w). In comparison to [5],
this means an extraordinary simplification of the 5-point results.

We have chosen to split the non-MUV sector in (1.1), and write separately the kine-
matical structure T (ε10, t8), which is a function of the standard tensors t8 and ε10 and a
factor of −t18. The latter cannot be written in terms of t8 or ε10, as observed in [5] where
these terms were simply given by the expansion in the full basis of H2R3 terms. Stated
differently, t18 is not directly seen in string amplitudes, given that it is not directly built
into the vertex operators. As we will see, an a posteriori justification of such a split in
the non-MUV sector comes from the fact that the t18 piece plays an important role in
Calabi-Yau threefold reductions to four dimensions.

In Type IIB, SL(2,Z) invariance dictates that the coefficients of higher-derivative
terms are written in terms of modular forms. The appearance of the modular function f0,
the non-holomorphic Eisenstein series of weight 3/2, was first observed in [15, 18], while
other non-holomorphic modular forms fw first appeared in [16, 19], see also [20] for a
more recent discussion. For R4, leading order D-instanton calculations [21, 22] confirmed
this result. Moreover, the amount of supersymmetry in 10D is a powerful tool to relate
various higher-derivative terms in the α′ expansion [23]. While linearised SUSY is powerful
enough to predict the existence of higher-derivative terms, it is incapable of explaining
either the presence of the coefficient functions fw or the tensor structures in the non-MUV
sector. These coefficient functions can be derived, instead, by studying their origin in M-
theory, integrating out towers of winding modes on T 2 of vanishing volume, in a light-cone
worldline formalism for the 11D superparticle [15–17]. We compute such amplitudes in
11D and, besides deriving explicitly the axio-dilaton dependent coefficients, we are able
to reproduce exactly the kinematics in the MUV sector of (1.1), as expected from the
superspace approach.

Going beyond 5 points, we prove that MUV couplings (as well as a specific subset of
non-MUV couplings) of the 3-form, the 5-form, and the metric in the effective action are
given by

LMUV =
4∑

w=0
Cw fw(τ, τ̄) t24G

2w
3 R4−w + c.c. (1.2)

in terms of numerical coefficients Cw and the 6-index tensor R

R = R+ i∇F5 + F 2
5 + |G3|2 . (1.3)

The tensor R is tightly constrained by non-linear supersymmetry by appearing at Θ4

in a (non-linear) scalar superfield. The derivation of (1.2) is based on all the three
aforementioned approaches:
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• superstring amplitudes: up to 5-points, (1.2) essentially reduces to the full first and a
subset of terms in the second line of (1.1). At 6-points, [24] provides the coefficient C2
from tree-level pure spinor amplitudes. Higher amplitudes are in principle available,
but determining the structure of contact terms in (1.2) is currently out of reach.

• superfields: the string kinematics is easily determined from 16-fermion integrals,
thereby making the existence of a single unifying index structure obvious. In princi-
ple, the coefficients Cw can be determined from supersymmetry/geometry following
e.g. [23], but we do not follow this approach here.

• superparticles: the structure of MUV amplitudes of M-theory compactified on T 2 is
actually simple enough not only to reproduce (1.2) kinematically, but also to derive
the fw(τ, τ̄) alongside the Cw from first principles. This proves the higher power of
this approach in determining the MUV effective couplings at any order.

The most significant takeaway message from (1.2) is that it unifies 46 individual tensor
structures in such a way that they are kinematically captured by a single index structure t24.
Indeed, t24 is the largest structure from which all other tensors tN with N < 24 relevant
for this paper can be constructed upon suitable metric contractions. For a given weight w,
we find

1. w = 0: the generalised R4 term corresponding to f0t24R4 was inferred in [8–11] in the
absence of the |G3|2 term. At the level of 5-point contact terms, we found evidence for
the coupling |G3|2 inside R, which is again obtained from f0t24R4 upon expanding
to quadratic order in the 3-form. Given that the relative coefficients inside R are
determined by supersymmetry, we provide further contact with a supersymmetric
completion of the R4 coupling in the presence of a non-trivial G3 background.

2. w = 1: the part f1t24G
2
3R3 reduces at 5 points to the second term in the first line

of (1.1). From the superfield perspective, the replacement R→ R is completely justi-
fied by supersymmetry, even though there might be further higher-order contributions
in the non-MUV sector, just as for |G3|2R3.

3. w ≥ 2: we utilise the 11D superparticle to predict the string coefficients of MUV
amplitudes beyond five points. The w = 2 coefficient C2 matches the predictions
of [24] at the level of six-point pure spinor amplitudes. Moreover, the higher order
coefficients are in agreement with expectations from modular invariance of the Type
IIB superstring.

Our results are reminiscent of the MUV amplitudes computed in [24] based on the spinor
helicity formalism of [25, 26]. It was argued there that general MUV amplitudes appear
without any poles (i.e. they are contact terms), are represented by a superfield which
matches the linearised on-shell superfield of Type IIB supergravity, and violate the U(1) by
2(P − 4) units of charge (see also [27–29]).

We conclude our analysis by two basic lower-dimensional consistency checks of our
findings. When compactifying our proposed 10D action on a K3 to six dimensions, we
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show how several non-trivial cancellations among the various 5-point index structures
ensure consistency with the constraints imposed by N = (2, 0) supersymmetry in 6D.
When reducing the 10D action to four dimensions on a Calabi-Yau threefold we show that
constraints on the (α′)3-corrected flux scalar potential from 4D supersymmetry are also
perfectly matched. Furthermore, we derive the 4D kinetic terms for the hypermultiplet
scalars, in particular the C2/B2-axions, at order (α′)3 at string tree and 1-loop level.

The paper is organised as follows. In section 2 we review the systematics of 8-derivative
terms in the Type IIB effective action with a particular focus on SL(2,Z)-invariance and
sixteen fermionic integrals giving rise to higher-dimensional index structures. Subsequently,
in section 3, we demonstrate that such structures play an outstanding role also for 5-point
contact terms of the form |G3|2R3, G2

3R
3 and G2

3R
3. In section 4, we argue that the entire

eight-derivative action for couplings of the form Gm3 G
n
3R

4−w, w = (m+ n)/2, in the MUV
sector (i.e. for m · n = 0) is determined by a single index structure obtained from a sixteen
fermion integral. Using supersymmetry, these terms can be partially generalised to include
also some non-MUV couplings through replacing R→ R. In section 5 we apply our proposal
for the 10D effective action to compactifications to 6D and to 4D. Finally we list a number
of open question that should hopefully be addressed in the near future in section 6. Some
technical material is collected in five appendices.

2 Type IIB supergravity and its α′-expansion

The classical 10D effective action reads in Einstein frame

S(0) = 1
2κ2

10

∫ (
R− 2PMP

M − |G3|2

2 · 3! −
|F5|2

4 · 5!

)
?10 1 + 1

8iκ2
10

∫
C4 ∧G3 ∧G3 (2.1)

in terms of the complexified fields

τ = C0 + ie−φ , PM = i∇Mτ
2Im(τ) , G3 = 1√

Im(τ)
(F3 − τH3) = G̃3√

Im(τ)
. (2.2)

where the p-form field strengths are defined as

H3 = dB2 , F1 = dC0 , F3 = dC2 , F5 = dC4 −
1
2H3 ∧ C2 + 1

2F3 ∧B2 .

(2.3)

In addition to the standard equations of motion, the 5-form flux must satisfy the self-duality
condition F5 = ?10F5.

The Type IIB fields form representations under SL(2,R)×U(1) with the first being a
global, the second being a local symmetry denoted by QIIB. The various fields have in our
convention U(1)-charges

QIIB(P) = +2 , QIIB(G3) = +1 , QIIB(gMN ) = QIIB(F5) = 0 (2.4)

with the opposite charges for the complex conjugates. The complexified scalars parametrise
the coset (or moduli) space SL(2,R)/SO(2) ∼= SU(1, 1)/U(1) [12, 30–33]. In string theory,
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the U(1) subgroup of SL(2,R) rotating the two supercharges into each other does not leave
the superstring invariant: the S-duality SL(2,Z) group survives [15, 18]. Under SL(2,Z),
the axio-dilaton transforms according to

τ → aτ + b

cτ + d
, ad− bc = 1 . (2.5)

This implies that

G̃3 →
G̃3

cτ + d
, τ2 →

τ2
|cτ + d|2

(2.6)

as well as

P → cτ̄ + d

cτ + d
P , G3 →

(
cτ̄ + d

cτ + d

) 1
2
G3 . (2.7)

More generally, a combination Φ of fields with U(1)-charge QIIB = 2k transforms with
weight k so that

Φ→
(
cτ̄ + d

cτ + d

)k
Φ . (2.8)

The individual contact terms in the effective action must be invariant under these SL(2,Z)
transformations. For higher derivative terms, this highly constrains the coefficient functions
to be appropriate SL(2,Z)-covariant modular forms.

2.1 Perturbative corrections in 10D at order (α′)3

The effective action enjoys a double expansion in terms of gs (worldsheet topologies / loops
in the spacetime theory) and α′ (loops in the worldsheet theory / higher-derivative terms).
Given that α′ parametrises the way string theory deviates from a theory of point-like objects,
it is of critical importance for our understand of quantum gravity.

The low-energy description of superstrings is traditionally obtained from string scat-
tering amplitudes of massless string excitations giving rise to an effective field theory
description in the limit α′ → 0. Below, we argue that other approaches can be equally
effective by employing duality considerations to M-theory and a superspace formalism.

Throughout this paper, we focus on 8-derivative couplings where the bosonic action
can schematically be written as

S(3) ∼
∫
?101

{
R4 +R3

(
G2

3 + |G3|2 +G
2
3 + F 2

5 + . . .
)

(2.9)

+R2
(
|∇G3|2 + (∇F5)2 +G4

3 + . . .
)

+R
(
G6

3 + . . .
)

+
(
G8

3 + |∇G3|4 + . . .
)}

.

To ensure invariance of the individual terms in (2.9) under SL(2,Z) × U(1), each of the
contact terms must be multiplied by an appropriate SL(2,Z) covariant function of opposite
charge. For our purposes, it suffices to consider the modular functions1

fw (τ, τ̄) =
∑

(l̂1,l̂2) 6=(0,0)

Im (τ)
3
2(

l̂1 + τ l̂2
) 3

2 +k (
l̂1 + τ̄ l̂2

) 3
2−k

, QIIB (fw) = −2w . (2.10)

1At higher orders in the α′ expansion, more general modular forms have to be introduced, see [24] for a
recent discussions and for further references.
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These forms have special properties collected in appendix A.1 which are quintessential for our
investigations. By counting the total U(1) charge, we can determine which modular function
needs to be supplemented to each of the terms in (2.9). For instance, the uncharged term R4

is multiplied by f0 which is the non-holomorphic Eisenstein series of weight 3/2 [18, 34–37].
Further constraints on the structure of (2.9) arise from supersymmetry [23, 38].

2.2 The quartic effective action

A complete assessment of string 4-point amplitudes [6, 7] leads to the quartic action2

L(3)
4−pt = α f0 (τ, τ̄)

{
J0 +

(
t8t8 −

1
4ε8ε8

)[
6R2

(
4|∇P|2 + |∇G3|2

)
+ 24|∇P|2|∇G3|2

+ 12R
(
∇P

(
∇G3

)2
+∇P (∇G3)2

)]
+O1

((
|∇P|2

)2
)

+O2

((
|∇G3|2

)2
)}
(2.11)

where

α = (α′)3

3 · 212 . (2.12)

For details concerning the definition of the operators O1 and O2, we refer the reader to [5, 7]
which can also be recovered from an effective 12D lift [39].

The well-known R4 structure is defined as [2, 40, 41]

J0 =
(
t8t8 −

1
4ε8ε8

)
R4 . (2.13)

It is obtained from four closed-string scattering or directly from the worldsheet σ-model.
While at the level of the 4-point amplitude only the t8t8R̃4 part in terms of the linearised
Riemann tensor R̃µνρσ = −2∂[µhν][ρ,σ] is non-vanishing, the additional ε8ε8 piece can already
be inferred from the structure of the 4-point amplitude and directly verified by computing
the odd-odd 5-point function, cf. [4] for a summary. General covariance dictates that in the
purely gravitational sector higher-point graviton amplitudes replace the linearised Riemann
tensor R̃ by the full Riemann tensor.

One can show by computing the r.h.s. of (2.13) explicitly that J0 can be written in
terms of the Weyl tensor CMNPQ as [2, 42]

J0
3 · 28 = −1

4C
MNPQCMN

RSCPR
TUCQSTU + CMNPQCM

R
P
SCR

T
N
UCSTQU . (2.14)

The fact that only the Weyl tensor appears as part of (2.13) is due to the symmetries in
the linearised scalar superfield constructed in appendix B.

2Notice that the last term in the first line of eq. (3.3) in [7] is in fact wrong due to U(1) violation, see in
particular [5] for the corrected result.

– 6 –



J
H
E
P
0
8
(
2
0
2
2
)
2
6
7

2.3 Going beyond four points

Beyond four points, the gravitational part of the action is fixed by general covariance. The
full completion including the anti-symmetric tensors and the axio-dilaton remains however
an open task. Generalised geometry provides a hint in this direction by introducing a
torsionful connection involving the B2-field, cf. section 3.1. However, it is confirmed that
such an approach does not capture the complete string-theoretic result as verified by 1-loop
5-point [3, 43] and 6-point [4] function computations as well as more recently tree level
5-point results [5]. It is therefore desirable to introduce a new ordering principle that
incorporates ideas from supersymmetry and SL(2,Z)-invariance.

The first crucial feature that appears in the higher-point effective action is the presence
of non-U(1)-invariant terms. Indeed, for a given number of P fields, the maximal U(1)
charge satisfies the bound [24]

|QIIB| ≤ 2(P − 4) , (2.15)

which is compatible with the fact that the quartic action (2.11) contains only
U(1)-preserving terms.

Moreover, although the tensor structures t8 and ε10 in (2.13), which are very natural
from the perspective of string amplitudes, seem to be appropriate representations for the
kinematics at 4 points, when one goes to higher points, more fundamental higher-dimensional
tensors, generalising t8, make their appearance in the kinematics.

The higher-derivative action can be constructed from fundamental superspace integrals
as established in the 1980s by the seminal works [12, 44–46]. We provide a review of this
approach in appendix B. The general outcome of this formalism is that the couplings in the
effective action are obtained from a single superspace integral

t3n+2m =
∫

d16Θ(ΘΓ(3)Θ)n(ΘΓ(2)Θ)m , 2n+ 2m = 16 . (2.16)

Here, Γ(3) denotes the anti-symmetric product of 3 SO(1, 9) Γ-matrices and(
ΘΓ(2)Θ

)2
=
(
ΘΓM1M2kΘ

) (
ΘΓN1N2

kΘ
)

(2.17)

so that t3n+2m carries 3n+ 2m indices. The role of such index structures has previously
been discussed in [3, 6, 8, 9, 42, 47, 48], though their direct manifestation for non-trivial
G3 and ∇τ backgrounds in the string effective action remains largely unexplored.

Before we get to that, let us review some established aspects of the linearised superspace
approach. Interestingly, in this formalism the complete kinematics for R4 is obtained from
a single elementary superspace integral

t16R
4 =

∫
d16Θ

[(
ΘΓM1M2kΘ

) (
ΘΓk M3M4Θ

)
RM1M2M3M4

]4
. (2.18)

We find indeed that
J0 = t16R

4 (2.19)

which is consistent with appendix B.2 of [47]. One arrives at a similar result by studying
4-point functions of light-cone supermembrane vertex operators [49] or in the Green-Schwarz
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formalism [18]. Crucially, the above result cannot be extended to the torsionful Riemann
tensor as we show in more detail in section 3.3.

The formalism of [12] already allows to infer additional non-linear couplings. In fact,
the authors of [8, 10] constructed the entire effective action at order (α′)3 for vanishing G3
and ∇τ from a single superspace integral. To this end, one defines the 6-index tensor

R̃M1M2M3M4M5M6 = gM3M6

8 CM1M2M4M5 + i
48∇M1FM2M3M4M5M6

+ 1
768

(
FM1M2M3klFM4M5M6

kl − 3FM1M2M6klFM4M5M3
kl
)

(2.20)

associated with the Θ4-term in the superfield language.3 This term enters the superfield Φ
at order Θ4 in such a way that

Φ ⊃
(
ΘΓM1M2M3Θ

) (
ΘΓM4M5M6Θ

) (
R̃M1M2M3M4M5M6 + . . .

)
(2.21)

where . . . denotes further non-linear terms ∼ |G3|2 or ∼ |P|2. This clearly implies that R̃
as defined in (2.20) is symmetric under the exchange (M1,M2,M3)↔ (M4,M5,M6), anti-
symmetric in (M1,M2,M3) and (M4,M5,M6) and enjoys additional symmetries collected
in section B.2.

After having identified the non-linear piece at order Θ4 in (2.21), it is straightforward
to determine the contribution to the effective action. It is encoded in the integral

t24R̃4 =
∫

d16Θ
[(

ΘΓM1M2M3Θ
) (

ΘΓM4M5M6Θ
)
R̃M1M2M3M4M5M6

]4
⊂
∫

d16Θ Φ4

(2.22)
which was explicitly computed4 in [9] using the results of [42]. For instance, applying the
results of [42], we can show that5

t24R̃4∣∣
gR

= 1
32 · 25 J0 . (2.23)

By expanding (2.22) to higher order in F5, one finds schematically [9, 13]

t24R̃4 = J0 + F 2
5R

3 + (∇F5)2R2 + F 4
5R

2 + F 6
5R+ (∇F5)2 F 2

5R+ (∇F5)4 + F 8
5 . (2.24)

The odd powers of F5 have to be absent because the action is necessarily real.
With regard to 8-derivative terms involving G3 or τ , much less is known about the

structure of the action (2.9). Partial one-loop results for terms like H2
3R

3 at the 5-point
level have been computed [3, 4, 43] with the tree-level counterparts obtained in [5]. The
authors of [51] succeeded in restricting terms of the form (∇φ)2R3 through consistency with
supersymmetry in 4D which is equivalent to the earlier work [52].

3To arrive at (2.20), one uses non-linear SUSY constraints [8, 10] and applies straightforward rules for
the decomposition of Γ-matrices for which we employed the Gamma software package [50]. Afterwards, one
utilises the corresponding projection operators as detailed in appendix B.2. These methods can be employed
in a similar fashion to construct the corresponding expression for |G3|2 which we leave for the future.

4We refer the reader to [13] for the corrected results of [9].
5Notice that our normalisation differs from [42] where they found 34 · 224 on the r.h.s.
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At tree level, the complete 8-derivative action in the NSNS-sector was inferred in [14, 53,
54] upon using constraints of T-duality and double geometry. However, the exorbitant use of
field redefinitions and the missing representation of the final result in terms of fundamental
index structures makes it virtually impossible to compare the results to the other literature
on this subject. This motivates initiating a more unifying approach.

Although RR-sector couplings can be partially inferred from NSNS-sector results
at tree and 1-loop level [5], a concise definition of manifestly SL(2,Z)-invariant quintic
vertices demands a more unifying approach. For instance, one expects further contributions
to (2.20) of the schematic for |G3|2 and |P|2 which would relate a subset of higher derivative
terms |G3|2m|P|2nR4−m−n to the famous R4 structure by means of a single superspace
integral (2.22). We will have more to say about this in section 3.3.

3 Eight-derivative couplings at five points

Throughout this paper, we are particularly interested in the 5-point structure G2
3R

3 together
with its variants |G3|2R3 and G

2
3R

3 which can be treated in a similar fashion. These
couplings contribute e.g. to the leading order (α′)3-correction to the 4D F -term scalar
potential [52, 55, 56]. In this section we discuss them, and in general the full structure arising
at five point, according to the behavior of the various terms under the U(1) R-symmetry.

3.1 Couplings from superstring amplitudes

Up to 5-points and including only R and G3, the effective action up to quadratic6 order in
the flux may be written as [5]

L
(
R,G3, G3

)
= LR(Ω+)4 + L|G3|2R3 + LG2

3R
3+c.c. + LCP-odd (3.1)

where

L|G3|2R3 = αf0

{
−1

2 t8t8|G3|2R3 − 7
24ε9ε9|G3|2R3 + 2 · 4!

8∑
i=1

d̃i|G3|2Q̃i
}
, (3.2)

LG2
3R

3+c.c. = αf1

{
3
4 t8t8G

2
3R

3 − 1
16ε9ε9G

2
3R

3 − 3 · 4!
8∑
i=1

d̃iG
2
3Q̃

i

}
+ c.c. , (3.3)

LCP-odd = 32 · 24α
{
G3 ∧

(
f0X7

(
Ω, G3

)
+ f1X7 (Ω, G3)

)
+ c.c.

}
(3.4)

in terms of (
d̃1, . . . , d̃8

)
= 4

(
1,−1

4 , 0,
1
3 , 1,

1
4 ,−2, 1

8

)
. (3.5)

6The NSNS-sector couplings H2
3 (∇H3)2R have been completely specified at 1-loop where, in addition to

the piece coming from expanding R(Ω+)4, one finds an additional contribution 4/9 ε9ε9H2
3 (∇H3)2R. The

tree-level counterparts could in principle be determined following the procedures outlined in [5]. Obtaining
the equivalent expressions in terms of G3, G3 is slightly more complicated given that the pure NSNS-sector
terms do not fully determine cross terms with the RR 3-form F3 beyond quadratic order. This becomes
already evident at 4-points in [7] which led to a new operator O2((|∇G3|2)2) reducing to t8t8 only in the
pure NSNS- or RR-sector.
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We suppressed indices on the objects Q̃i corresponding to certain 6-index elements of a basis
for R3 to be introduced below, see also appendix A.2 for definitions. The index structure in
the even-even sector is

t8t8G
2
3R

3 = tM1...M8t
N1...N8GM1M2PGN1N2PR

M3M4
N3N4 . . . R

M7M8
N7N8 (3.6)

and the odd-odd sector couplings are [3–5]

ε9ε9G
2
3R

3 = −εPM0...M8ε
PN0...N8GM1M2

N0 GN1N2
M0 RM3M4

N3N4 R
M5M6

N5N6 R
M7M8

N7N8 .

(3.7)

The expressions (3.2) and (3.3) has the rather surprising feature that some contractions
cannot be repacked into the conventional t8t8 or ε9ε9 structures. We argue in the following
that this should not come as a surprise, but rather as a clear indication that more fundamental
index structures are prerequisites to encode the full string kinematics.

The remaining piece LR(Ω+)4 in (3.1) originates from a connection with torsion given by7

(Ω±)M
KL = ΩM

KL ± 1
2e−φ/2HM

KL (3.8)

resulting in the 4-index tensor

R(Ω±)MN
KL = RMN

KL ± e−φ/2∇[MHN ]
KL + e−φ

2 H[M
KPHN ]P

L . (3.9)

In Einstein frame, the R4 contribution is replaced by

LR(Ω+)4 = α f0(τ, τ̄)
(
t8t8 −

1
4ε8ε8

)
R(Ω+)4 . (3.10)

Up to 5-point contact terms, we may expand R(Ω+)4 as usual

LR(Ω+)4 = α f0

(
t8t8 −

1
4ε8ε8

){
R4 + e−2φ(∇H3)4 + 6e−φ(∇H3)2R2

+ 2e−φH2
3R

3 + 6e−2φH2
3 (∇H3)2R+ . . .

}
(3.11)

where the appropriate (anti-)symmetrisation of indices on H3 and ∇H3 is implied. The
identity RM1M2N1N2(Ω+) = RN1N2M1M2(Ω−) due to closure of H3 implies the absence of
odd powers of H3 in the above expansion. Given that all terms are multiplied by f0, i.e. the
string kinematics is equivalent at tree and 1-loop level, we can replace H2

3 and (∇H3)2 by
the corresponding U(1)-preserving combinations8 such that

LR(Ω+)4 = L(3)
4−pt

∣∣
P,P=0+2α f0

(
t̃8t̃8 −

1
4ε8ε8

)
|G3|2R3 + . . . . (3.12)

7In Einstein frame, the torsionful connection and likewise R(Ω+) include additional derivatives with
respect to the dilaton. For the purposes of this paper, we may ignore such terms by treating φ as a constant.

8One needs to take special care of (|∇G3|2)2 since the index structure is O2 rather than t8t8 − ε8ε8/4
in (2.11). Further, we expect that H2

3 (∇H3)2R → |G3|2|∇G3|2R based on the structure of superparticle
amplitudes. One again runs into the aforementioned issue that crossterms between F3 and H3 are not fully
kinematically determined by the pure NSNS expressions. We leave the study of such terms for future works.
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a1 a2 b1 b2 b3 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 d1 d2 d3 d4 d5 d6 d7 d8

−t8t8|G3|2R3

16·4! 0 0 0 0 0 −1
32

1
2
−1
16 0 −1

2
−1
2

1
2 1 −1 1

4 0 0 0 0 0 0 0 0 0

−t̃8 t̃8|G3|2R3

16·4! 0 0 0 0 0 1
64
−1
4

1
32 0 1

4
−1
4
−1
4 0 1

2
1
8
−1
4 0 0 0 0 0 0 0 0

ε9ε9|G3|2R3

192·4!
1
72

1
36

1
4
−1
4

1
2

1
32
−1
2

1
16 0 1

2
1
2
−1
2 0 −1 1

4
−1
2 0 −1

4
−1
2
−1
3 −1 −1

4 2 −1
8

−t18|G3|2R3

8·4!
1
72

1
36

1
4
−1
4

1
2 0 0 0 0 0 0 0 1 −2 1

2
−1
2 1 −1

2
−1
2 0 0 0 0 0

−ε8ε8|G3|2R3

96·4!
1
72

1
36

1
6
−1
6

1
3

1
96
−1
6

1
48 0 1

6
1
6
−1
6 0 −1

3
1
12
−1
6 0 0 0 0 0 0 0 0

Table 1: Decomposition of index structures for |G3|2R3 in the 24 component basis for R3 defined
in appendix A.2.

The quartic terms clearly reproduce (2.11) which was already observed in [6, 7]. Further,
we defined a second9 t8t8 and ε8ε8 index structure

t̃8t̃8|G3|2R3 = tM1...M8t
N1...N8G[M1

N1PG
M2]P

N2R
M3M4

N3N4 . . . R
M7M8

N7N8 , (3.13)
ε8ε8|G3|2R3 = εM1...M8εN1...N8G[M1|N1kG|M2]

k
N2 RM3M4N3N4 . . . RM7M8N7N8 . (3.14)

Before we proceed, let us comment on the role of the object R(Ω+). From the perspective
of generalised geometry, it seems natural to introduce torsion in the form of H3 in order
to capture a big part of the NSNS-sector kinematics. As is evident from the additional
contributions in (3.1), this is clearly not sufficient to specify the complete effective action,
see also section 3.4 and [5]. Furthermore, this approach is not manifestly SL(2,Z) invariant
and might even fail when working with sixteen fermion integrals. Below, we argue that
the terms obtained from (3.10) are actually highly non-trivial from the perspective of the
superfield approach in the sense that such contributions seem to be (at least partially)
associated with non-linear terms at order Θ6 rather than Θ4.

For later convenience, we expand the above kinematical structures into independent
Lorentz singlets that can be built from |G3|2R3. This can be easily determined by utilising
the software package LiE [58, 59] looking for all singlets under SO(1, 9). In appendix A.2,
we define a 24-dimensional basis for R3 based on the conventions in [5] in order to write

L|G3|2R3 =
2∑
i=1

ai |G3|2 S̃i +
3∑
i=1

biG
M1

N1N2G
M2N1N2

W̃ i
M1M2

(3.15)

+
11∑
i=1

ciG
M1M2

N1G
M3M4N1

X̃i
M1M2M3M4

+
8∑
i=1

diG
M1M2M3G

M4M5M6
Q̃iM1M2M3M4M5M6

9In the NSNS sector, the t8t8-combination (3.6) was proposed in [57] to recover supersymmetry in Type
IIA Calabi-Yau compactifications to 4 dimensions, but was also previously obtained in [3] from a covariant
RNS calculation at the 1-loop level. Similarly, (3.13) was found by computing one-loop string amplitudes at
5-points in the light-cone gauge GS formalism in [43] and utilised in [4, 5].

– 11 –



J
H
E
P
0
8
(
2
0
2
2
)
2
6
7

where we implicitly symmetrise G3 and G3. In this basis, we may expand the kinematical
structures appearing in (3.6), (3.7), (3.13) and (3.14) as summarised in table 1.

3.2 The U(1)-violating sector

In general, for maximally U(1)-violating (MUV) processes, substantial progress has been
made in [24, 27, 60] at the level of amplitudes and modular forms. This makes this sector of
the effective action particularly well-behaved. Moreover, one is led to a similar conclusion
by studying superparticle/supermembrane amplitudes in 11 dimensions on a T 2 [15–17, 48]
as we argue in section 3.2.2.

3.2.1 The role of higher-dimensional index structures

In section 2.3, we argued that the notion of higher-dimensional index tensors is natural
from the effective-action point of view, though unnatural from the string amplitude calculus.
In this section, we show that the 5-point action can be dramatically simplified with the
use of these tensors, thereby explaining a subset of relative coefficients. Subsequently, we
provide a microscopic derivation of these results from M-theory loop amplitudes which we
show to agree in the U(1)-violating sector with the linearised superfield expectation.

Specifically, the linearised superfield suggests that the following tensor is expected to
play an outstanding role in the string kinematics at 5 points

t18G
2
3R

3 =
∫

d16Θ
[
(ΘΓM1M2M3Θ)GM1M2M3

]2 [
(ΘΓM1M2

kΘ)(ΘΓM3M4kΘ)RM1M2M3M4

]3
.

(3.16)
In principle, this expression can be computed via the methods of [42]. Instead, we make use
of two independent results available in the literature. First, the authors of [48] expanded t18
in a basis of 26 Lorentz singlets under SO(9). Equivalently, a second way to compute (3.16)
is using the tensor t24 computed in [42] as a generating object for lower-order tensors t24−2n
upon appropriate contraction with n metric factors. We discuss this second option in more
detail in section 3.3. Utilising the results of [48], we may simplify (3.3) drastically by writing

LG2
3R

3+c.c. = 3
2α
{
f1t18G

2
3R

3 + f−1t18G
2
3R

3
}

(3.17)

where in our normalisation

t18G
2
3R

3 = 1
2 t8t8G

2
3R

3 − 1
24ε9ε9G

2
3R

3 − 2 · 4!
8∑
i=1

d̃iG
2
3Q̃

i (3.18)

in terms of the d̃i coefficients (3.5) (and equivalently for G2
3R

3). The overall coefficient 3/2
in eq. (3.17) is expected from tree level 5-point scattering in the pure spinor formalism [24].

The result (3.17) has many striking implications. The definition of t18G
2
3R

3 in (3.18)
resolves the apparent puzzle that some terms ∼ Q̃i in (3.1) do not repackage nicely into
t8t8 or εnεn. Even more interestingly, it captures the entire string kinematics in the MUV
sector. In this sense, the t18 structure (3.16) is arguably a more suitable representation of
the string kinematics at the level of the 5-point effective action. While this has clearly been
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known for many years (at least implicitly in the linearised superfield approach [3]),10 the
above provides the first direct proof that such higher-dimensional index structures appear
in both the MUV and non-MUV (see the next subsection) sectors at the level of 5-point
string amplitudes.

For the MUV terms, we can be even more precise with regard to the overall coefficient.
In fact, the modular forms satisfy (see eq. (A.4))

D0f0 = 3
4f1 , D0f0 = 3

4f−1 (3.19)

which allows us to write

LG2
3R

3+c.c. = 2α
{

(D0f0)t18G
2
3R

3 +
(
D0f0

)
t18G

2
3R

3
}
. (3.20)

3.2.2 A derivation from superparticles

While the index structure t18 naturally appears in the context of the linearised superfield
approximation [3], it is not obvious at all from standard string amplitudes (see however [24]
for MUV amplitudes and references therein). In this part, we show that the t18 structure
appears naturally in superparticle amplitudes in M-theory on 2-tori T 2 [15–17]. The
calculation proceeds similar to the famous derivation of R4 in [15] which matched not only
the well-known 4-graviton kinematics at tree and 1-loop level, but also provided evidence
for modular functions in the Type IIB effective action [18, 35].

In the MUV sector, the only non-vanishing 5-point superparticle amplitude involving
two 3-forms and three gravitons in 9D is given by11

A(SP)
G2

3R
3+c.c. = 1

26π9/2 Γ
(

3
2

)
v0

∫ dt
t

∫
d9p

∑
l1,l2∈Z

e−t(p2+gablalb)

t5Tr
([

2hijRilRjmklkm
]3 [
−
√

2G3P
zRlmn

]2)
(3.21)

in terms of v0 = Vol(T 2). This contribution is associated with superparticles running in
the loop carrying non-trivial KK-charges on the T 2 compensating for the U(1)-charges of
G2

3 to give a real expression.12 Looking at the trace over fermions, we clearly notice the
resemblance with (3.16) in terms of the linearised Riemann tensor in 9 dimensions which
allows us to simplify the expression to

A(SP)
G2

3R
3+c.c. = t18G

2
3R

3

22 Γ
(

3
2

)
v0

∫ dt√
t

∑
l1,l2∈Z

P 2
z e−tgablalb + c.c. . (3.22)

10In essence, the authors of [3] argued that the full kinematics of the NSNS-sector coupling H2
3R

3 obtained
from string scattering amplitudes is not captured by only the index structure t18 appearing in the linearised
superfield calculus. Our results demonstrate that t18 nonetheless plays an important role for the tree level
H2

3R
3 couplings, cf. eq. (3.40) below.

11The normalisation of these amplitudes will be discussed further in section 4.1.
12In general, in the context of superparticle amplitudes, the higher-dimensional index structures tN for

the G-flux naturally arise (even in the non-MUV sector) whenever the superparticles in the loop carry
non-trivial KK-momentum.

– 13 –



J
H
E
P
0
8
(
2
0
2
2
)
2
6
7

In appendix C.2, we show that

∫ dt√
t

∑
l1,l2∈Z

P 2
z e−tgablalb =

4Γ
(

5
2

)
√
v0

f1(τ, τ̄) . (3.23)

The volume scaling implies that the amplitude vanishes in the decompactification limit
v0 →∞. As opposed to U(1)-preserving amplitudes like t16R

4 [15], U(1)-violating effects
such as the above are not present in 11D supergravity [16, 17].

Taking the limit to Type IIB, we find

v0A(SP)
G2

3R
3+c.c.

v0→0−−−−−→ L(SP)
G2

3R
3+c.c. (3.24)

in terms of
L(SP)
G2

3R
3+c.c. = 3

2
(
f1(τ, τ̄) t18G

2
3R

3 + f−1(τ, τ̄) t18G
2
3R

3
)

(3.25)

in agreement with (3.3). We stress that, while the linearised superfield and perturbative
superstring amplitudes typically only see a small subset of terms of the full modular forms
fw, a single superparticle amplitude derives the full fw from first principles. Critically, this
involves also non-perturbative D-instanton contributions which have only recently been
derived for R4 from string field theory [21, 22].

3.3 The U(1)-preserving sector — evidence for non-linear superfields

Let us now move our attention to the U(1)-preserving sector of the five-point effective
action, whose structure turns out to be much more involved. As described in section 3.1,
there is a contribution originating from the torsionful Riemann tensor (3.12) as well as a
remainder given by (3.2). Inspecting the latter, we notice a close resemblance to the MUV
contact terms in (3.3). Indeed, (3.18) is equivalently defined for |G3|2R3 allowing us to
recast (3.2) together with (3.12) in the form

LR(Ω+)4 + L|G3|2R3

∣∣∣∣
5-point

= αf0

(
−t18 −

1
3ε9ε9 + 2t̃8t̃8 −

1
2ε8ε8

)
|G3|2R3 . (3.26)

Contrary to above, there is an odd-odd structure remaining which can in fact be traced
back to the 1-loop NSNS strcture −1/3ε9ε9H2

3R
3 of [4, 43], while t18H

2
3R

3 can only be seen
at string tree level [5]. We will have more to say about this in the next section.

The fact that L|G3|2R3 contains another t18 piece with an overall factor of −1 will in
fact play quite a crucial role in the reductions to 4D in section 5.2. While in the MUV
sector such a term is completely specified by the linearised superfield, we stress that (3.26)
can only be obtained from non-linear terms in the superfield such as through contributions
∼ |G3|2 to (2.20). In this way, we expect a subset of the terms in (3.26) to be related to R4

through (2.22) as we now demonstrate. Ultimately, we will arrive at a similar conclusion
as [3] in the NSNS sector, namely that generating the odd-odd contribution ε9ε9|G3|2R3

from a non-linear superfield requires corrections at order Θ6.
To recapitulate, we observed that the linearised superfield indeed captures the complete

string-theory result in the MUV sector which is encoded by a single superspace integral
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giving rise to the tensor structure t18. Even more importantly, we obtained evidence that
the same tensor also enters in the non-MUV sector of the action in such a way that it
cancels out at 1-loop for H2

3R
3. We expect this to be a clear hint at potential non-linear

couplings in the superfield. Non-linear completions of the superfield (B.6) are given by
(schematically)

∆ ⊃ Θ2G3 + Θ4
(
R+ |G3|2 + . . .

)
+ Θ6

(
∇2G3 +RG3 + . . .

)
+ Θ8

(
RG

2
3 + . . .

)
.

(3.27)

The terms entering at order Θ4 were discussed in section 2.3 for F 2
5 . Clearly, one similarly

expects terms of the form |G3|2 also to enter at this order [8, 10]. They can indeed be
obtained utilising the results of [12]. For now, we work with a general parametrisation
modifying (2.20) in such a way that

RM1...M6 = R̃M1...M6 + 1
768

(
λ1GM1M2M3GM4M5M6 + λ2GM1M2M6GM4M5M3

+ λ3 gM3M6GM1M2kGM4M5
k + λ4 gM3M6GM1M5kGM4M2

k

+ λ5 εk1...k5M2...M6

(
Gk1k2

M1G
k3k4k5 +G

k1k2
M1G

k3k4k5
))

. (3.28)

We generically expect λi 6= 0 for all λi. The symmetries of R are determined e.g. by Fierz
identities implying the absence of double traces, cf. appendix B.2.

The contribution to the effective action may be written as

LR4 = c

∫
d16Θ

[(
ΘΓM1M2M3Θ

) (
ΘΓM4M5M6Θ

)
RM1M2M3M4M5M6

]4
(3.29)

The normalisation constant c is fixed such that we recover J0 at order R4 as defined in (2.13).
We find that (recall (2.23))

t24R4∣∣
gR

= 1
25 · 32J0 ⇒ c = 25 · 32 (3.30)

We are mainly interested in the terms arising to linear order in λi where we find that the
CP-even part is given by

c t24R4 = λ1
25 t18|G3|2R3 − 2λ2 T

(1)
18 |G3|2R3 − 2 (2λ3 + λ4) T (1)

16 |G3|2R3

+ 36λ5
5 T

(2)
18 |G3|2R3 (3.31)

where T (i)
N are certain tensor structures carrying N indices. We summarised the decomposi-

tion of the individual kinematical structures in table 2. We find the following relationships
among the different terms

T
(1)
18 |G3|2R3 = −t18|G3|2R3

8 · 4! − 2T (2)
18 |G3|2R3 ,

T
(1)
16 |G3|2R3 = −t18|G3|2R3

8 · 4! − T (2)
18 |G3|2R3 ,

T
(1)
18 |G3|2R3 = T

(1)
16 |G3|2R3 − T (2)

18 |G3|2R3 . (3.32)
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a1 a2 b1 b2 b3 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 d1 d2 d3 d4 d5 d6 d7 d8

T
(1)
18 |G3|2R3 1

72
1
36

1
4
−1
4

1
2 0 0 0 0 0 2

3 0 1
3 −2 1

6
−1
6 −1 1

2
1
2 0 0 0 0 0

T
(1)
16 |G3|2R3 1

72
1
36

1
4
−1
4

1
2 0 0 0 0 0 1

3 0 2
3 −2 1

3
−1
3 0 0 0 0 0 0 0 0

T
(2)
18 |G3|2R3 0 0 0 0 0 0 0 0 0 0 −1

3 0 1
3 0 1

6
−1
6 1 −1

2
−1
2 0 0 0 0 0

Table 2: Decomposition of leading order flux terms obtained from t24R4 in the 24 component basis
for R3 defined in appendix A.2.

Before we continue, we highlight the following caveat. The λi in (3.28) are not the
only non-linear modifications contributing at the level of the 5-point contact terms in the
non-MUV sector. Terms at order Θ6G3R in (3.27) contribute at the same level. This means
we cannot simply expect the U(1)-neutral sector of eq. (3.1) to be constructable from t24R4

alone. Hence, we can only compare the value of the λi to the string amplitude result and
make a prediction about contributions from higher-order non-linear terms.

From (3.17), we expect to find a term of the form t18|G3|2R3 upon expanding t24R4

which, according to (3.31), is trivially achieved by setting λ1 = −25 and λi = 0 for all other
coefficients. However, we generically expect that all λi are non-vanishing and, given the
identities (3.32), a non-trivial combination of values for the λi can also do the job. In fact,
it turns out that the equation ct24R4 = −t18|G3|2R3 has the solution

λ5 = 5
36

(
24 + 3

4λ1 − λ2

)
, λ4 = −24− 3

4λ1 − λ2 − 2λ3 . (3.33)

Initially, one might hope that by modifying (3.28) accordingly the additional piece
∼ T (ε10, t8)|G3|2R3 (see (3.37) below) can also be reabsorbed into the definition of t24R4.
However, looking at the coefficients collected in table 1, this seems not to be the case. For
instance, ε9ε9|G3|2R3 involves terms with di 6= 0 for i ≥ 4 which cannot arise from t24 as
observed in table 2. In principle, a natural way to extend the linearised superfield (B.6)
would be terms of the form Θ6RG3 with the symmetry properties conjectured in [3].
According to these arguments, one would need terms of the form13

Θ6RG ⊃ ΘΓM1N1P1Θ ΘΓM2N2P2Θ ΘΓM3N3P3Θ
(
a1gP1P2RM1N1[M2N2GM3N3P3]

+ a2gP1P2gM1P3R
p

(N1| [M2N2G|M3)N3] p

)
(3.34)

which would appear as
∆4 ⊃

(
Θ2G3

) (
Θ6RG3

) (
Θ4R

)2
. (3.35)

However, this is beyond the scope of the present work.
13One can argue e.g. for the existence of the former based on the structure of terms found in [12] following

the derivation of Θ4 terms in [10].
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3.4 A new perspective on tree and 1-loop kinematics

To summarise, the structure of 5-point contact terms built from the complex 3-form and the
Riemann tensor in (3.2) and (3.3) is dramatically simplified by introducing t18. Altogether,
we showed that up to five points (3.1), the effective action can be summarised as (ignoring
the terms involving ∇G3)

L = α

{
f0(τ, τ̄) t16R

4 + 3
2
(
f1(τ, τ̄) t18G

2
3R

3 + f−1(τ, τ̄) t18G
2
3R

3
)

+ f0(τ, τ̄) (T (ε10, t8)− t18) |G3|2R3
}

(3.36)

where we defined
T (ε10, t8) = −1

3ε9ε9 + 2t̃8t̃8 −
1
2ε8ε8 (3.37)

and the appropriate (anti-)symmetrisation and contraction of indices is implied.
For later purposes and to make contact with previous work [4, 5, 43], we now extract

the tree and 1-loop kinematics in the respective sectors. In the NSNS-sector one finds after
using the large Im(τ) expansion of fw in eq. (A.6)

f0t18|G3|2R3 − 3
2
(
f1t18G

2
3R

3 + f−1t18G
2
3R

3
) ∣∣∣∣

NSNS
= e−φ

(
f0 + 3

2(f1 + f−1)
)
t18H

2
3R

3

= 4aT e−φ t18H
2
3R

3 , (3.38)

while the corresponding RR-sector expression reads

f0t18|G3|2R3 − 3
2
(
f1t18G

2
3R

3 + f−1t18G
2
3R

3
) ∣∣∣∣

RR
=
(
f0 −

3
2(f1 + f−1)

)
t18F

2
3R

3

= −2eφ(aT − aL)t18F
2
3R

3 . (3.39)

Hence, the structure of terms in (3.17) together with (3.26) is such that in the NSNS-sector

LH2
3R

3

∣∣∣∣
tree

= aTαe−φ (−4 t18 + T (ε10, t8))H2
3R

3 , (3.40)

LH2
3R

3

∣∣∣∣
1-loop

= aLαe−φ T (ε10, t8)H2
3R

3 (3.41)

and in the RR-sector

LF 2
3R

3

∣∣∣∣
tree

= aTαeφ (2 t18 + T (ε10, t8))F 2
3R

3 , (3.42)

LF 2
3R

3

∣∣∣∣
1-loop

= aLαeφ (−2 t18 + T (ε10, t8))F 2
3R

3 . (3.43)

The combination of index structures (3.37) appears universally in all contributions since it
is associated with the U(1)-neutral part of (3.1). Let us further stress that, while t18 plays
a role in both tree and 1-loop kinematics for processes F 2

3R
3, it only appears at tree level
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in the NSNS sector H2
3R

3. The absence of t18H
2
3R

3 at 1-loop has already been observed
in [3]. We showed that this is due to an important interplay of modular forms and the
relative coefficients in the MUV and, in particular, the non-MUV sector. In fact, it turns
out that the difference of tree and 1-loop kinematics at the level of the effective action (and
equally of amplitudes since the pole structure from additional exchange of massless states
are removed) is determined by t18 only since

∆LH2
3R

3 = 1
aT
LH2

3R
3

∣∣∣∣
tree
− 1
aL
LH2

3R
3

∣∣∣∣
1-loop

∼ t18H
2
3R

3 (3.44)

which agrees with the first line of table 2 in [5] by comparing to the corresponding line for
t18 in table 1. We expect this to be special about 5-point amplitudes since the non-MUV
sector is unique in the sense that it consists of terms of vanishing U(1)-charge only.

In the superfield language, the above observation is actually a highly non-trivial
cancellation between linear effects (MUV terms) and non-linear contributions (non-MUV
terms). Indeed, the latter are encoded by

Tnon-lin. = −t18 + T (ε10, t8) , (3.45)

but the linear superfield contributes another t18 such that it precisely cancels out in (3.41).
Hence, separating eqs. (3.40)–(3.43) into linear and non-linear superfield contributions, the
tree (1-loop) kinematics is ∓3 t18 + Tnon-lin. (±t18 + Tnon-lin.) with the upper (lower) sign
for H3 (F3). We see that precisely at 1-loop in the NSNS sector the coefficients conspire to
cancel t18.

In 10 dimensions, t18 contains two CP-odd pieces which we ignored throughout this
section. These CP-odd couplings enter at NSNS tree level (3.40), but not at NSNS 1-
loop (3.41). This is precisely opposite to the expectations of [5] and the terms summarised
in (3.4). From the string world-sheet point of view, the absence of CP-odd couplings at NSNS
tree level is due to missing ε10 contributions from only NSNS emission vertex operators [5].

This apparent issue is resolved by adding an additional CP-odd piece in the non-MUV
sector as in (3.37) ∼ ϑ t8ε10 which must be such that the CP-odd terms in (3.40) cancel, i.e.,(

−4t18
∣∣
CP-odd+ϑ t8ε10

)
H2

3R
3 = 0 . (3.46)

Further, agreement with (3.4) demands(
−t18

∣∣
CP-odd+ϑ t8ε10

)
|G3|2R3 = 32 · 24G3 ∧X7

(
Ω, G3

) ∣∣
lin. in G3

(3.47)

which leads us to conclude

t18|G3|2R3∣∣
CP-odd= 3 · 24G3 ∧X7

(
Ω, G3

) ∣∣
lin. in G3

. (3.48)

We leave a more thorough investigation of CP-odd couplings for the future.

– 18 –



J
H
E
P
0
8
(
2
0
2
2
)
2
6
7

4 Effective action beyond five points

4.1 The maximally U(1)-violating couplings

Restricting our attention to terms involving G3 and R, we conjecture that maximally
U(1)-violating terms are kinematically captured by the linearised superfield in the sense that

Lmax.
G3,R = α

4∑
w=0

Cw fw(τ, τ̄) t16+2wG
2w
3 R4−w + c.c. (4.1)

or more explicitly

Lmax.
G3,R = α

(
C0f0 t16R

4 + C1f1 t18G
2
3R

3 + C2f2 t20G
4
3R

2

+ C3f3 t22G
6
3R+ C4f4 t24G

8
3 + c.c.

)
. (4.2)

The numerical coefficients Cw will be discussed below and α was already defined in (2.12).
This is supported by observations made in [27] and confirmed explicitly for the 5-point
structure G2

3R
3 + c.c. in [5]. The special role of MUV amplitudes is further discussed in [24].

Further evidence is provided by the 11D superparticle calculus for which the relevant vertex
operator contributions lead to 9D kinematical structures of the form

K̃G2n
3 R4−n =

∫
d16θ

((
θΓM1M2M3θ

)
GM1M2M3

)2n [(
θΓM1M2θ

)(
θΓM3M4θ

)
RM1M2M3M4

]4−n
= t16+2nG

2n
3 R4−n (4.3)

and equivalently for the complex conjugates. One might therefore formulate the conjecture:

The effective action for maximally U(1)-violating tensor structures in-
volving G3, G3 and R is fully and equivalently determined by either 11D
superparticle amplitudes or the linearised superfield approximation.

The equivalence to proper string amplitudes to all loop orders has only been confirmed at
5-points, but we expect this to be true up to 8-points where we conjecture f4t24G

8
3 + c.c..

Below, we provide further evidence for higher-point coefficients which would appear at
the level of string 7- and 8-point amplitudes. In contrast, amplitudes with less U(1)
charge receive further contributions from A) other components of the superparticle vertex
operators14 or from B) non-linear completions of the superfield.

The coefficients Cw are such that the pre-factor for MUV terms satisfy [24]

Cwfw = 2wDw−1 . . .D0f0 . (4.4)

As discussed in section 4.4 of [24], one expects up to 6-point tree level closed-string amplitudes

C0 = 1 , C1 = 3
2 , C2 = 15

4 . (4.5)

14One should keep in mind that this calculus might not necessarily capture the full kinematics due
to the light-cone gauge fixing condition. It is hence imperative to make a direct comparison to string
amplitude results.
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One can easily confirm that with this choice and upon applying (A.5) the above identi-
ties (4.4) are indeed satisfied. We therefore claim that

Cw = 2√
π

Γ
(3

2 + w

)
=

Γ
(

3
2 + w

)
Γ
(

3
2

) . (4.6)

While determining the coefficients from the string amplitude perspective seems to be
quite challenging, we can make progress by investigating again superparticle amplitudes.
We limit our attention to amplitudes built from the vertex operator contributions

Vh ⊃ 2hijRilRjmklkm , VG3 ⊃ −
√

2G3P
zRlmn . (4.7)

The left is the vertex operator for the linearised Riemann tensor, while the right is restricted
to contributions involving KK states on the T 2. In terms of KK-charges li, we defined

P z = 1
√
τ2v0

(l1 − τ l2) , Pz̄ = Pz . (4.8)

The contributions to the Type IIB couplings G2w
3 R4−w arise from P -point amplitudes with

P = 4 + w where

v0AG2w
3 R4−w = 24−w 2w

26 Γ
(

3
2

) S(P,w, 0) t16+2wG
2w
3 R4−w (4.9)

in terms of
S(P,w, 0) =

∫ dt
t

tP

t9/2

∑
l1,l2

P 2w
z e−tgablalb . (4.10)

Here, the factor 2P−w arises from the graviton vertex operators and the normalisation
26 Γ

(
3
2

)
is chosen such that the numerical coefficient of R4 is set to C0 = 1. In appendix C.2,

we find that S(P,w, 0) is given by (C.25) which implies

v0AG2w
3 R4−w =

Γ
(

3
2 + w

)
Γ
(

3
2

)√
v0
fw t16+2wG

2w
3 R4−w v0→0−−−−→ αCw fw t16+2wG

2w
3 R4−w (4.11)

as expected from (4.1) and (4.6).

4.2 Non-MUV couplings

The non-MUV couplings are more difficult to determine given the significantly involved
kinematics. However, we may be able to at least determine a particular class of contributions
based on the structure of superparticle amplitudes. Let us define

L(P )
non-MUV =

2(P−4)−1∑
w=0

C(P )
w fw

(
t16+2(m−w) + T16+2(m−w)

)
Gm3 G

m−2w
3 R4+w−m + c.c.

(4.12)
in terms of m = P −4+w. The kinematics is encoded in some tensor structures t16+2(m−w) +
T16+2(m−w) where T16+2(m−w) generalises (3.37). From the superparticle perspective, a
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contribution involving t16+2(m−w) is always guaranteed even at higher points by inspecting
the corresponding vertex operators. In the context of the superfield language, a non-linear
contribution ∼ |G3|2 at order Θ4 equally ensures the presence of a contribution ∼ t16+m+n
upon expanding t24R4, see the conclusions in section 6 and specifically table 3.

We again use the vertex operator contributions defined in (4.7). However, we now pick
up contributions that are non-MUV, namely

v0AGm
3 G

n
R4−(m+n)/2 = 24−(m+n)/2 (−2)m+n

26 Γ
(

3
2

) S(P,m, n) t16+m+nG
m
3 G

n
3R

4−(m+n)/2 (4.13)

in terms of
S(P,m, n) =

∫ dt
t

tP

t9/2

∑
l1,l2

Pmz P
n
z̄ e−tgablalb . (4.14)

These functions can be computed as in the MUV case of appendix C.2. We compute a total
of 10 amplitudes which we summarise in appendix C.3. In the limit v0 → 0, we recover

L(SP)
non-MUV =

8∑
P=5

2(P−4)−1∑
w=0

C(P )
w fw t16+2m−wG

m
3 G

m−w
3 R4−2m+w + c.c. , P = 4 + 2m− w .

(4.15)
in terms of the coefficients

C(P )
w = (2|w|+ 1)(2|w| − 1)CP−4

(2(P − 4) + 1)(2(P − 4)− 1) , |w| ≤ P − 4 . (4.16)

Notice that for MUV amplitudes |w| = P − 4 we recover C(P )
P−4 = CP−4 as expected.

The fact that the coefficients for 10 distinct amplitudes can be summarised by a single
expression (4.16) is quite astonishing and hints at a deeper relationship among the various
terms even in the non-MUV sector.

While we are unable to verify the correctness of the above results from string amplitudes,
it certainly provides evidence for the appearance of the index structures t16+N even in the non-
MUV sector. Again, such effects are sourced by non-linear couplings in superfield language.

5 Five-point contact terms in compactifications

Compactifications allow to test new higher-derivative interactions by checking their consis-
tency with the constraints imposed by lower-dimensional supersymmetry. In turn, these
interactions have interesting implications for lower-dimensional physics.

5.1 K3 reductions and N = (2, 0) supersymmetry in six dimensions

A non-trivial test of the five point couplings concerns K3 reduction to 6 dimensions. For
NSNS sector couplings, these have been previously studied in [4, 5]. Here, we take the
opportunity and provide a further check including the RR-sector by working in terms
of G3 directly. In particular, we highlight several non-trivial cancellations among the
various 5-point index structures of section 3 necessary to ensure consistency with N = (2, 0)
supersymmetry in 6D.

– 21 –



J
H
E
P
0
8
(
2
0
2
2
)
2
6
7

The reduction of IIB supergravity on K3 results in six-dimensional N = (2, 0) super-
gravity coupled to 21 tensor multiplets. As shown in [61], supersymmetry restricts the
four-derivative couplings to be a F -term interaction that is quartic in the tensor multiplets.
In particular, the N = (2, 0) supergravity multiplet receives corrections only starting at the
8-derivative level, just as in the Type II case in 10 dimensions.

The bosonic components of the N = (2, 0) supergravity multiplet are comprised of
a graviton and five self-dual tensors. From the IIB perspective, the graviton and two of
the self-dual tensors come from the spacetime reduction of the 10-dimensional graviton
and G3 with self-dual projection. The other three self-dual tensors arise from reducing the
self-dual F5 on the three self-dual 2-cycles of K3. The bosonic components of a N = (2, 0)
tensor multiplet are comprised of an anti-self dual tensor and five scalars. Of the 21 tensor
multiplets from the reduction, 19 come directly from the reduction of G3 and F5 on the
anti-self-dual 2-cycles of K3 along with the 19 × 3 K3 moduli. The other two tensor
multiplets come from the spacetime reduction of G3 with anti-self dual projection along
with G3 reduced on the three self-dual 2-cycles of K3, the IIB axio-dilaton, K3 volume
modulus, and F5 reduced fully on K3.

For simplicity, we avoid the fields obtained by reducing on the cohomology of K3. We
also disregard six-dimensional scalars since knowledge of the scalar couplings will necessarily
be incomplete in the absence of the full 5-point action involving the axio-dilaton. Thus we
focus only on couplings of the 6D Riemann tensor to G3 and its complex conjugate. These
fields will provide information on the N = (2, 0) supergravity multiplet along with the two
special tensor multiplets.

As in [5], we focus on factorised pieces where a piece
∫

K3 R
2 soaks up four derivatives.

This reduces the eight-derivative couplings in ten dimensions to four-derivative couplings
in six. Schematically, such couplings will take the form R2, G2

3R and G4
3 (with possible

complex conjugates on some of the fields), corresponding to two-, three- and four-point
interactions. Supersymmetry requires the two- and three-point terms to vanish, and restricts
the four-point interactions to the tensor multiplets [61]. Restricted to the NSNS fields only
(i.e., taking G3 → H3), ref. [5] confirmed the vanishing of R2 and H2

3R couplings at both
tree and one-loop level and demonstrated that the one-loop H4

3 coupling is indeed restricted
to the tensor multiplet.15 Decoupling of the gravity sector H4

3 required the combination of
both CP-even and CP-odd four-derivative terms.

Since we only have knowledge of Riemann and G3 couplings up to five points in ten
dimensions, we are unable to probe the quartic G4

3 couplings in six dimensions. At the same
time, it is well established that the quadratic (Riemann)2 couplings automatically vanish for
the IIB combination (t8t8 − 1

4ε8ε8)R4. Hence we restrict the K3 analysis to the three-point
couplings |G3|2R and G2

3R. Here R is shorthand for the Riemann tensor as Ricci terms can
be removed by using the leading order equations of motion, thereby introducing quartic
dilaton and 3-form terms in 6D that no longer contribute to three-point couplings.

15Tree-level H4
3 was not examined in [5] as that would require knowledge of the six-point H4

3R
2 coupling.

On the other hand, the one-loop test was possible because of heterotic/Type II duality.
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The six-dimensional |G3|2R and G2
3R couplings arise from the U(1)-preserving and

MUV sectors, respectively. We start with the ten-dimensional MUV couplings, which are
given by (3.3), or more elegantly by (3.17). These G2

3R
3 couplings are reduced by taking

two of the Riemann tensors to be on K3, leaving G2
3R in six dimensions. In our choice

of basis of R3 as given in appendix A.2, the only coefficient that we are sensitive to is c1
multiplying X̃1

M1M2M3M4
as this is the only term that can yield a factorized form involving

G3 and Riemann. From the decomposition of index structures in table 1, we then deduce
immediately that t18 does not contribute any factorised terms in K3 reductions since c1 = 0.
Thus the three-point MUV couplings G2

3R vanish trivially as required by supersymmetry.
Turning to the U(1)-preserving sector, we need to consider the following CP-even pieces

from (3.36)

L
∣∣
K3 = f0α

{
t16R

4 + 6
(
t8t8 −

1
4ε8ε8

)
|∇G3|2R2 + (T (ε10, t8)− t18) |G3|2R3

} ∣∣∣∣
K3

. (5.1)

As mentioned above, in 6D the (Riemann)2 term in the factorised part of t16R
4 cancel,

leaving us with only the |∇G3|2R2 and |G3|2R3 terms to consider. Furthermore, the t18
term vanishes on K3 for the same reason that its MUV counterpart vanishes.

From the definition (3.37) of T (ε10, t8), we notice by using the coefficients c1 collected
in table 1 that (

2t̃8t̃8 −
1
2ε8ε8

)
|G3|2R3 = 0 + · · · , (5.2)

where · · · denotes Ricci and non-factorised terms. Recall that this is the piece obtained
from generalised geometry. In addition, resorting to table 1, we find the factorised terms
inside ε9ε9|G3|2R3 to be

− 1
3ε9ε9|G3|2R3 = −48RN1N2M1M2 GN1N2

PGM1M2P (Riemann)2 + · · · . (5.3)

We are thus left with

T (ε10, t8) |G3|2R3 = −48RN1N2M1M2 GN1N2
PGM1M2P (Riemann)2 + · · · . (5.4)

Consistency with the lack of three-point interactions in N = (2, 0) supersymmetry requires
that this term vanishes when combined with the factorized |∇G3|2R2 contribution.

We now determine the factorised piece inside |∇G3|2R2. After using the Bianchi identity
for G3, i.e., dG3 = 0 up to axio-dilaton terms, we obtain

6
(
t8t8 −

1
4ε8ε8

)
|∇G3|2R2 = 48

(
∇M1GM2M3M4

) (
∇M2GM1M3M4

)
(Riemann)2 + · · ·

= 48RM1M2M3M4 GM1M2
PGM3M4P (Riemann)2 + · · · , (5.5)

where we integrated by parts in the second line and ignored terms proportional to the
equations of motion for G3. It is now apparent that the factorized piece inside the U(1)-
preserving sector cancels, namely

6
(
t8t8 −

1
4ε8ε8

)
|∇G3|2R2 + T (ε10, t8) |G3|2R3 = 0 + · · · . (5.6)
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In this way, we tested the coefficient −1/3 of ε9ε9 implicit in (5.3) in the non-MUV sector
to which the Calabi-Yau threefold reductions are insensitive.

Finally, note that there are CP-odd couplings in both the U(1)-preserving and MUV
sector that can potentially lead to three-point couplings. However, as shown in [4] and
further discussed in [5], the CP-odd H2

3R coupling involves the Ricci tensor, and hence does
not contribute to the three-point function. The same argument applies for couplings to the
complex three-form G3.

5.2 Calabi-Yau threefold reductions to four dimensions

We now apply our previous results in the context of Calabi-Yau (CY) threefold reductions
to N = 2 4D SUGRA. Given that we identified the relevant 5-point kinematics between
the 3-form and the metric, we are in the perfect position to directly derive for the first time
from 10D the (α′)3-corrected 4D scalar potential in compactifications on CY threefolds X3
with background fluxes.

In the low-energy 4D effective action, 3-form fluxes induce a non-trivial F -term scalar
potential [62]. More precisely, it is determined by a Kähler potential K and superpotential
W through

VF = eK
(
KAB̄ DAW DB̄W − 3|W|2

)
, DAW = ∂AW +KAW . (5.7)

Here, the sum over A includes h1,1(X3) Kähler moduli Tα, h1,2(X3) complex structure
moduli Zi and the axio-dilaton τ . We work with the Kähler potential [63]

K = K(0) − 2 log
(
V + ζ

4f0(τ, τ̄)
)

(5.8)

where K(0) is the Kähler potential on complex structure moduli space

K(0) = − ln(−i(τ − τ̄))− log
(
−i
∫
X3

Ω ∧ Ω
)
. (5.9)

Moreover, the constant ζ is given by [63]

ζ = −χ(X3)
2(2π)3 (5.10)

in terms of the Euler characteristic χ(X3) of X3. In the case of Type IIB flux compactifica-
tions, the superpotential entering (5.7) is the Gukov-Vafa-Witten superpotential [62, 64]
(recall (2.2))

W ≡WGVW(τ, Z) =
∫
X3

G̃3 ∧ Ω3 . (5.11)

This superpotential depends on the axio-dilaton τ through the complexified 3-form flux as
well as on the complex structure moduli Zi, i = 1, . . . , h1,2(X3), due to the presence of the
holomorphic 3-form Ω3 = Ω3(Zi).

Despite many efforts, the derivation of (α′)3 corrections to the 4D flux scalar potential
from first principles is still lacking. It was already noted in [52] that this requires the
presence of both non-MUV and MUV higher derivative terms in 10D of the form |G3|2R3,
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G2
3R

3 and G2
3R

3. One might also expect |∇G3|2R2 to contribute at the same level based on
dimensional grounds [55, 56, 65]. Of course, a major bottleneck has been the construction
of the 10D higher derivative action for G3 up to 5-points which has finally been achieved
through [4–7, 43] and further concretised in this paper.

Below, we show that the structure of the F -term scalar potential (5.7) beyond leading
order depends only on a single 10D kinematical structure, while the relative coefficients
between RR-flux and NSNS-flux contributions can already be identified from 10D SL(2,Z)
invariance. The remaining overall coefficient can only be identified upon constructing the
corrected flux background which is beyond the scope of the current work, though this
should be feasible by employing similar strategies to those of [66, 67]. Instead, we deduce
novel relationships between 4D supersymmetry and the kinematical structure of 10D higher
derivative terms where once again t18 plays a very prominent role. More specifically, we
argue that the absence of RR-flux contributions to (5.7) at order (α′)3 at string tree level
already observed in [52] highly constrains the non-MUV kinematics when put entirely on a
CY threefold. The strategy is as follows: by investigating the form of the corrected scalar
potential (5.7) obtained from (5.8) and (5.11), we trace constraints from 4D supersymmetry
back to the 10D action (3.36).

5.2.1 The 4D perspective

In this first part, we compute (5.7) by plugging in the Kähler potential (5.8) and the
superpotential (5.11). Here, it is convenient to expand VF as follows

VF = VFlux
V2 +

(
α′
)3
V (3) +O

((
α′
)4)

. (5.12)

The first term corresponds to the standard no-scale flux scalar potential given
by [64, 68–70]16

VFlux = 1
2Im(τ)

∫
X3

G̃+
3 ∧ ?6G̃

+
3 = eK(0) (Ki̄DiW D̄W +Kτ τ̄ DτW Dτ̄W

)
(5.13)

in terms of (A)ISD flux ?6G̃
±
3 = ∓iG̃±3 . As explained in [52], the (α′)3 corrections encoded

in V (3) fall into two classes, i.e.,

V (3) = −ζf0(τ, τ̄)
2V3 VFlux + Vζ . (5.14)

The first term simply originates from a 4D Weyl rescaling gE4 = (V + ζf0/4)g4 by expanding
to linear order in ζ.

16To arrive at the r.h.s., one decomposes G̃+
3 in a basis {Ω, χi} of H(3,0) ⊕H(1,2) (see e.g. appendix B

of [71])

G̃+
3 = − 1∫

X3
Ω ∧ Ω

(
Ω
∫

X3

Ω ∧ G̃3 +Kij̄χj

∫
X3

χi ∧ G̃3

)
.

The other term ∼
∫

X3
G3 ∧G3 is cancelled through the integrated Bianchi identity for F5 [62].
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The second term Vζ is more interesting because it is obtained from direct dimensional
reduction of (3.36). Using (A.4) for the 4D axio-dilaton, one finds to linear order in ζ

Vζ = 3ζeK(0)

8V3

{
f0
[
|W|2 − (τ − τ̄)2 |DτW|2

]
+ (τ − τ̄)

[
f−1WDτW − f1WDτW

]}
(5.15)

where the classical Kähler covariant derivative with respect to τ is given by

DτW = (∂τ +K(0)
τ )W = −1

τ − τ̄

∫
X3

G̃3 ∧ Ω . (5.16)

As shown in [52], the coefficient on the right hand side cannot be reproduced by simply
considering the flux kinetic term in the corrected 10D background. It was therefore argued
that additional higher-derivative terms must contribute in the reduction.

To make contact with expressions obtained from direct dimensional reduction, it is even
more instructive to rewrite (5.15) in terms of fundamental integrals using (5.11) and (5.16)
such that

Vζ = 3
8
ζeK(0)

V3

{
f0

[∫
X3

G̃3 ∧ Ω
∫
X3

G̃3 ∧ Ω +
∫
X3

G̃3 ∧ Ω
∫
X3

G̃3 ∧ Ω
]

−
[
f1

∫
X3

G̃3 ∧ Ω
∫
X3

G̃3 ∧ Ω + f−1

∫
X3

G̃3 ∧ Ω
∫
X3

G̃3 ∧ Ω
]}

. (5.17)

The above expressions makes clear the way the three different kinematical structures appear
in the reduction to 4D. In particular, the 10D U(1)-violating terms appear prominently in
the scalar potential as already anticipated in [52]. The U(1)-neutral contribution is obtained
from |G3|2R3 and |∇G3|2R2, but is also affected by backreaction effects from warping.

For the subsequent arguments, it is actually instructive to separate the above integrals
into their NSNS- and RR-flux contributions at tree and 1-loop level. Plugging in the
expansion (A.8) for the modular functions at large Im(τ), we find (ignoring non-perturbative
terms O(e−Im(τ)))

Vζ = ζeK(0)

V3

(
−1

4

){
(−6aT − 2aL) e−2φ0

∫
X3

H3 ∧ Ω
∫
X3

H3 ∧ Ω

+ (−4aL)
∫
X3

F3 ∧ Ω
∫
X3

F3 ∧ Ω + . . .

}
. (5.18)

Here, the tree-level term only depends on NSNS-flux and is in agreement with [52] after
using ξ = ζ(3) ζ. In the subsequent section, we argue that the structure of (5.18) is directly
accessible from our 10D expressions for the NSNS- and RR-flux terms (3.40)–(3.43) derived
in section 3.4.

5.2.2 Dimensional reduction

Beforehand, let us collect all of the relevant pieces potentially contributing to (5.18). Initially,
we write the 10D action as

S = S(0) + αS(3) +O
((
α′
)5) (5.19)
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where S(0) is the classical action (2.1) (setting 2κ2
10 = 1 in what follows). After solving the

equations of motion to order (α′)3, the solutions will be of the form

ϕ = ϕ(0) + α
(
f0ϕ

(1)
0 + f1ϕ

(1)
1 + c.c.

)
+O

((
α′
)5) (5.20)

for ϕ ∈ {g, τ,G3, F5,A}. In particular, in the presence of non-trivial G3, the background
becomes warped as parametrised by A. We provide a few more details on the corrected
background in appendix D.1. In (5.20), we allow backreaction effects that carry non-trivial
U(1)-charge which we expect to appear for G3 and P, though the latter are irrelevant in
our Type IIB background where P vanishes internally.

The scalar potential. For the subsequent discussion, we collect the relevant terms
in (5.19) (after evaluation on the corrected background) contributing to (5.17) in the
following action

SFlux = Sbackreact. + S|∇G3|2R2 + S|G3|2R3 + SG2
3R

3+c.c. . (5.21)

Here, Sbackreact. arises from evaluating the classical action on the corrected background.
Then, the scalar potential can very schematically be written as

M4
P

∫
VF

√
−g(4) d4x = SFlux

∣∣∣∣
X3

(5.22)

where . . .
∣∣
X3

indicates that all legs of each tensor are taken along the internal CY directions.
At the level of the above discussion, we may limit our attention to terms that have the

same form as |G3|2R3 (at least in the reduction) for which we write

Sbackreact. + S|∇G3|2R2 = α

∫ (
f0 δ0|G3|2R3 + f1 δ1G

2
3R

3 + f−1 δ1G
2
3R

3
)
?10 1 (5.23)

in terms of some index structures δ0, δ1. We comment further on the corrected background
and contributions to δ0, δ1 in section D.1. We stress however that their actual form is
completely irrelevant for our argument. We essentially rely on N = 2 supersymmetry in 4D:
we know that in the absence of D-branes and O-planes there are no additional contributions
coming from the above reduction. That is, we argue that all such terms must have the form
given in (5.23).

We know due to 4D supersymmetry that the total contribution from higher-derivative
terms and backreaction effects involving the RR-flux has to vanish at tree level. In particular,
this implies that the reduction of the tree level F 2

3R
3 terms (3.42) has to cancel against

backreaction effects, i.e.,

SFlux

∣∣∣∣
RR, tree, X3

= α

∫
aT eφ (2 t18 + T (ε10, t8) + δ0 + 2δ1)F 2

3R
3
∣∣∣∣
X3

= 0 . (5.24)

Even more importantly, this means that kinematically∫
T (ε10, t8)F 2

3R
3
∣∣∣∣
X3

= −
∫

(2 t18 + δ0 + 2δ1)F 2
3R

3
∣∣∣∣
X3

(5.25)
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and by trivial extension this also holds for H2
3R

3 (it does not matter what the 3-form is
in our background). It is crucial to notice that this kinematical constraint based on the
requirement of 4D N = 2 supersymmetry is the main ingredient for our argumentation. It
relates the complicated kinematics in the non-MUV sector encoded by T (ε10, t8) to t18 as
well as further uknown effects in the reduction through requiring the absence of RR-flux
in the 4D scalar potential.17 Overall, the contribution to the N = 1 4D scalar potential
from (3.40)–(3.43) are given by

SFlux

∣∣∣∣
NSNS, tree, X3

= −6α
∫
aT e−φ

[
t18 + 2

3δ1

]
H2

3R
3
∣∣∣∣
X3

, (5.26)

SFlux

∣∣∣∣
NSNS, 1-loop, X3

= −2α
∫
aLe−φ

[
t18 + 2

3δ1

]
H2

3R
3
∣∣∣∣
X3

, (5.27)

SFlux

∣∣∣∣
RR, tree, X3

= 0 , (5.28)

SFlux

∣∣∣∣
RR, 1-loop, X3

= −4α
∫
aLeφ

[
t18 + 2

3δ1

]
F 2

3R
3
∣∣∣∣
X3

. (5.29)

The relative coefficients are exactly the ones found in 4D in (5.18). In order to derive also
the overall coefficient as well as the structure of terms in (5.18), it remains to show that

α

∫
X3

e−φ
[
t18 + 2

3δ1

]
H2

3R
3 = −ζeK(0)

4V

∫
X3

H3 ∧ Ω
∫
X3

H3 ∧ Ω (5.30)

and equivalently for F 2
3R

3.
Let us highlight the importance of the above result: imposing only the absence of

RR-flux in 4D through (5.24) gave rise to a single relevant kinematical structure depending
on t18 and possible backreaction effects entering in the MUV sector. Stated differently, only
the MUV kinematics is relevant which is a rather unexpected observation from the 10D
point of view. The remaining relative coefficients are fixed through SL(2,Z) invariance.
Clearly, these arguments only apply to the scalar potential, though the non-MUV kinematics
will be checked at the level of 4D kinetic terms for hypermultiplets below.

Having derived the above results, we may actually come back to the MUV expression in
10D (3.17) which must reduce to the second line of (5.17). Using (5.30) for G3, one verifies
that reducing (3.17) together with MUV backreaction effects leads to

α

∫
X3

e−φ
[3

2 t18 + δ1

]
G2

3R
3 = −3ζeK(0)

8V

∫
X3

G3 ∧ Ω
∫
X3

G3 ∧ Ω (5.31)

with −3/8 being precisely the coefficient in (5.17). Let us stress that, if we had not gone
through the argument for NSNS- and RR-flux separately, the kinematic constraints arising
in the reduction would have been totally obscure in the non-MUV sector.

While it will generically be hard to identify δ1 explicitly, reducing t18 should be feasible.
Depending on the result, one might be able to identify δ1 indirectly through (5.31). Naively,

17Clearly, it would have been great to prove the absence from first principles via direct dimensional
reduction, but this is beyond the scope of the present work.
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given that in the MUV sector the complete kinematics is determined by t18 only, one
could speculate that δ1 is kinematically related to t18, i.e., δ1 = a1t18 for some numerical
constant a1.

Clearly, there remain several interesting future directions. For once, the absence of
(2, 1)-form flux in (5.15) (i.e., no couplings involving DZW) as already observed in [52]
requires a delicate cancellation among higher-derivative terms. We essentially reduced this
problem to proving that (5.30) contains no such terms. We leave a derivation of (5.15) as
well as (5.30) from direct dimensional reduction for future works.

The kinetic terms. As a final application of our five-point results, we derive the moduli
space metrics for the hypermultiplets in Type IIB reductions to 4D. Initially, we recall that
the non-chirality of Type IIA implies that both sign combinations of the odd-odd ε8ε8R4

structure appear in the 10D action. In CY threefold reductions to four dimensions, this
implies that the Einstein Hilbert term is corrected as (aT − aL)χ(X3)R(4). Ultimately, this
ensures that the vectormultiplets are only corrected at tree level, while hypermultiplets are
corrected at 1-loop [72]. In contrast, the hypermultiplets in Type IIB are corrected at both
tree and 1-loop level, while the vectormultiplets remain uncorrected, see e.g. [73].

In Type IIB, the hypermultiplet scalars consist of Kähler moduli tα as well as p-form
axions (cα, bα, ρα). Let ωα ∈ H1,1(X3) be a basis of (1, 1)-forms. We express the CY volume
in terms of the Kähler moduli as follows

V =
∫
X3

J ∧ J ∧ J = 1
3!kαβγ t

αtβtγ , kαβγ =
∫
X3

ωα ∧ ωβ ∧ ωγ (5.32)

where we expanded the Kähler form as J = tαωα. Below, we make use of the following

G3 = ωαG
α , Gα = dcα − τ dbα , kα = 1

2kαβγ t
βtγ , kαβ = kαβγ t

γ . (5.33)

In the following, we reduce the relevant higher-derivative terms in (3.36) and (2.11)
together with contributions from the corrected background (D.7), see section D.1 for
details. We partially use the tree level results of [51, 57] and provide the full reduction in
appendix D.2. Overall, we obtain the 4D action

S(4) =
∫ {[

R(4) − VF
]
?4 1− e2φ

(1
2 −

3f0ζ

16V2

)
dτ ∧ ?4 dτ

− i3eφζkα
4V2 dtα ∧ ?4(f1 dτ − f−1 dτ)

+
( 1
V

[1
2kαβ −

kαkβ
V

]
− f0ζ

8V2

[
kαβ − 4kαkβ

V

])
dtα ∧ ?4 dtβ

+ eφ
( 1

2V

[
kαβ −

kαkβ
V

]
− f0ζ

8V2

[
kαβ −

5
4
kαkβ
V

])
Gα ∧ ?4G

β

− 3ζeφkαkβ
64V3

[
f1G

α ∧ ?4G
β + f−1G

α ∧ ?4G
β
]}

. (5.34)

Here, VF is the (α′)3-corrected scalar potential defined in (5.12). The terms without Gα
restricted to tree level are equivalent to [51]. What is left to be done is to find suitable
coordinates to bring the above into a canonical form.
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To match with 4D SUSY, let us first compute the Kähler metric from the Kähler
potential K defined in (5.8), namely

Kαβ = − 2
V

[
kαβ −

kαkβ
V

]
+ ζf0

2V2

[
kαβ − 2kαkβ

V

]
,

Kατ = −ieφ 3f1
8
kαζ

V2 , Kττ = e2φ

2

(1
2 −

3ζf0
16V

)
. (5.35)

Let us ignore all terms ∼ kα in the above action for a moment (these are affected by field
redefinitions). Then we have

S(4) =
∫ {[

R(4) − VF
]
?4 1− 2Kτ τ̄ dτ ∧ ?4 dτ

− 1
4K̃αβ

[
dtα ∧ ?4 dtβ + eφGα ∧ ?4G

β
]}

(5.36)

where
K̃αβ = −2kαβ

V

[
1− ζf0

4V2

]
. (5.37)

Notice that this result is essentially trivial: the terms kαβ at order (α′)3 all come from the
4D Weyl rescaling and as such must all have the same coefficient.

In [57], it was argued that the Type IIA terms ∼ kαkβ dbα ∧ ?4 dbβ cannot be absorbed
into a redefinition of the (universal) hypermultiplet scalar. This led to the prediction of a
tree level −2t8t8H2

3R
3 operator in Type IIA. To make contact with these results, let us

write out (5.34) in terms of NSNS fields at tree and 1-loop level by using (A.6). At tree
level NSNS, we obtain

S(4) ⊃
∫

e−φ
{ 1

2V

[
kαβ −

kαkβ
V

]
− aT ζ

8V2

[
kαβ − 2kαkβ

V

]}
dbα ∧ ?4 dbβ

= −1
4

∫
e−φKαβ

∣∣∣∣
tree

dbα ∧ ?4 dbβ . (5.38)

This is in agreement with the Type IIA analysis of [57] as expected. Looking at NSNS
1-loop, we find

S(4) ⊃ e−φ
(
−aLζ8V2

[
kαβ −

kαkβ
V

])
dbα ∧ ?4 dbβ . (5.39)

This does not match the 4D Kähler metric which is not at all surprising: the 10D NSNS 1-
loop action (3.41) does not contain the −2t8t8 piece which would lead to the 4D replacement
kαkβ → 2kαkβ . The above analysis can be repeated for the kinetic terms for RR C2-axions
to find

S(4) ⊃ −
∫

ζeφ
8V2

[
(aT + aL) kαβ −

1
2 (aT + 3aL) kαkβ

V

]
dcα ∧ ?4 dcβ . (5.40)

Here, both tree and 1-loop result are in disagreement with the 4D Kähler metric.
There are two ways in which this issue could be alleviated. The first option is a suitable

redefinition of the 4D coordinates modifying only the piece ∼ kαkβ . The second possibility
would be additional contributions from a more careful treatment of backreaction effects.
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U(1) 0 2 4 6 8

MUV t24R4 t24G
2
3R3 t24G

4
3R2 t24G

6
3R t24G

8
3

5-point t18|G3|2R3

6-point t20(|G3|2)2R2 t20G
2
3|G3|2R2

7-point t22(|G3|2)3R t22G
2
3(|G3|2)2R t22G

4
3|G3|2R

8-point t24(|G3|2)4 t24G
2
3(|G3|2)3 t24G

4
3(|G3|2)2 t24G

6
3|G3|2

Table 3: 3-form contact terms that are captured by t24 and a suitable definition of R.

6 Open questions and outlook

The main result of this paper is in revealing the structure of the 10D Type IIB effective
action involving G3 and R in the maximally R-symmetry-violating sector. We examined it
with two different approaches, the superfield and the 11D superparticle, and compared our
findings to the expectations from string-theory amplitudes. There are a number of open
questions and venues for further research concerning the ten-dimensional effective actions.

The way how the couplings of the form |G3|2R3, G2
3R

3 + c.c. computed in [5] are
repackaged using elementary tensor structures should motivate the study of non-linear
extensions in the superspace approach of [12].

We have argued that the entire eight-derivative action in the MUV sector for couplings
of the form G2w

3 R4−w is determined by a single index structure obtained from a sixteen
fermion integral. Regarding the non-maximally R-symmetry-violating sectors, we only
provided concrete evidence of the existence of certain kinematical structures and of their
outstanding role in compactifications to lower dimensions, but much work remains to
be done to determine the full effective action. In particular, if we were to replace the
curvature tensor R→ R (defined in (1.3)) as dictated by non-linear SUSY, a whole tower
of kinematical structures listed in table 3 will be generated.18

In section 3.3, we illustrated the way t24R4 contributes at the level of 5-point contact
terms corresponding to the third line of table 3. Fixing the coefficients will however require
a more detailed calculation of the non-linear superfield following [8, 10].

We recall that the tree-level effective action should be T-duality invariant. Imposing
this invariance apparently allows to determine the eight-derivative NSNS action to all
powers in H3 [14]. Moreover, the recent work [74] discusses 5-point structures constrained
by O(d, d) invariance. Comparing these results to ours, which requires the extensive use
of field redefinitions, and eventual use of T-duality as a way of constraining higher-order
interactions, is left to future work.

18Note that here we have collected only various tN as defined by standard fermionic integrals in (2.16).
There are however further contributions similar to the ones listed in table 2 at 5-points.
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We have moved closer to a full completion of the five-point effective action at order
(α′)3. Terms of the form H2

3 (∇H3)2R and their RR counterparts which are in principle
obtainable from the results of [5, 43, 75] have not been analysed here. Moreover, the
relation of the CP-odd couplings (3.4) to the elementary tensor structures used here needs
further clarifications. Finally, the dilaton couplings continue to be a top challenge. In the
MUV sector, dilaton amplitudes were systematically analysed in [24]. The non-MUV part
however remains largely unexplored. In this context, the F-theory lifts along the lines of [39]
could offer a geometric principle underlying these couplings and eventually provide a key to
determining scalar couplings also beyond four points.

Even though the notion of the higher-dimensional tensors we use here is quite established
at the eight-derivative level through e.g. the linearised superfield [12], their role in the
10D effective action in the presence of a non-trivial background with P and G3 remains
to large extent unexplored. Also their generalisation to orders (α′)5 and higher remains
unclear. Given that they correspond to 1/4-BPS and 1/8-BPS interactions as opposed to
1/2-BPS for dimension-8 operators, they are certainly less constrained by supersymmetry.
For instance, while the coefficients of 1/2-BPS and 1/4-BPS interactions satisfy Laplace
eigenvalue equations, the pre-factors of 1/8-BPS terms satisfy an inhomogeneous Laplace
equation instead [76], see also [24] for a more recent discussion. It would be interesting to
understand the appearance of potentially novel index structures at higher orders in α′.
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A Definitions and conventions

A.1 SL(2,Z)-covariant modular forms

Throughout this paper, we make heavy use of special modular forms and their properties.
The relevant functions are all generalisations of the non-holomorphic Eisenstein series of
weight 3/2 denoted as f0(τ, τ̄). More generally, we define

fw(τ, τ̄) =
∑

(l̂1,l̂2) 6=(0,0)

Im (τ)
3
2(

l̂1 + τ l̂2
) 3

2 +w (
l̂1 + τ̄ l̂2

) 3
2−w

. (A.1)

They transform covariantly under SL(2,Z)

fw

(
aτ + b

cτ + d
,
aτ̄ + b

cτ̄ + d

)
=
(
cτ + d

cτ̄ + d

)w
fw(τ, τ̄) . (A.2)
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Further, these functions satisfy

(τ−τ̄) ∂
∂τ
fw =

(
w + 3

2

)
fw+1−wfw , (τ−τ̄) ∂

∂τ̄
fw =

(
w − 3

2

)
fw−1−wfw . (A.3)

More elegantly, this can be written in terms of a covariant derivative Dw where

Dwfw = i

(
τ2
∂

∂τ
− iw2

)
fw = 3 + 2w

4 fw+1 (A.4)

so that (see (2.11) in [24])

fw = 2w−1√π
Γ
(3

2 + w
)Dw−1 . . .D0f0 = 23w+1 (w + 1)!

(2(w + 1))! Dw−1 . . .D0f0 . (A.5)

Last but not least, we expand fw in the large Im(τ)� 1 (small string coupling) regime
where

fw(τ, τ̄) = aT + aL
(1− 4w2) +O

(
e−Im(τ)

)
(A.6)

in terms of

aT = 2ζ(3)Im(τ)
3
2 , aL = 2π2

3 Im(τ)−
1
2 . (A.7)

The first term is associated with closed string tree level [2], whereas the second term with
1-loop effects [77]. The final piece encodes contributions from non-perturbative D-instanton
states [18]. For the lowest order modular functions, we can write

f0 (τ, τ̄) = aT + aL +O
(
e−Im(τ)

)
, f±1 (τ, τ̄) = aT −

1
3aL +O

(
e−Im(τ)

)
. (A.8)

A.2 A basis for R3

As shown in [5], the decomposition of H2
3R

3 requires 24 independent Lorentz singlets. We
therefore introduce a 24-dimensional basis for contractions of H2

3R
3 built from R3 invariants

{S̃i, W̃ i
M1M2

, X̃i
M1M2M3M4

, Q̃iM1M2M3M4M5M6
} transforming reducibly under SO(1, 9) (with

the exception of S̃i). First, there are the following two singlets

S̃1 = RMN
RSRMNOPROPRS , S̃2 = RM NP

QRR MQ
SRN RS

P . (A.9)

One infers that in this basis the 6d Euler density may be written as

Q = 1
12
(
S̃1 + 2S̃2

)
. (A.10)

Furthermore, we define the 2-tensors

W̃ 1
M1M2

= RM1NM2PR
N
QRSR

PQRS , W̃ 2
M1M2

= RM1NPQRM2
NRSRPQ RS ,

W̃ 3
M1M2

= RM1NPQRM1
RPSRN R

Q
S . (A.11)
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There are 11 independent 4-index tensors

X̃1
M1M2M3M4

=RM1M2M3M4RNPQRR
NPQR , X̃2

M1M2M3M4
=RM1M2M3NRM4PQRR

NPQR ,

X̃3
M1M2M3M4

=RM1M2NPRM3M4QRR
NPQR , X̃4

M1M2M3M4
=RM1M3NPRM2M4QRR

NPQR ,

X̃5
M1M2M3M4

=RM1NM3PRM2QM4RR
NPQR , X̃6

M1M2M3M4
=RM1M3NPRM2

N
QRRM4

PQR ,

X̃7
M1M2M3M4

=RM1NM3PRM2
N
QRRM4

PQR , X̃8
M1M2M3M4

=RM1M3NPRM2Q
N
RRM4

QPR ,

X̃9
M1M2M3M4

=RM1NM3PRM2Q
N
RRM4

QPR , X̃10
M1M2M3M4

=RM1M2
NPRM3NQRRM4P

QR ,

X̃11
M1M2M3M4

=RM1M2NPRM3Q
N
RRM4

QPR (A.12)

and another 8 combinations of 6-tensors

Q̃1
M1M2M3M4M5M6 = RM1M4N

PRM2M5P
QRM3QM6

N ,

Q̃2
M1M2M3M4M5M6 = RM1M2N

PRM4M5P
QRM3QM6

N ,

Q̃3
M1M2M3M4M5M6 = RM1M2N

PRM3M4P
QRM5QM6

N ,

Q̃4
M1M2M3M4M5M6 = RM1NM4

PRM2PM5
QRM3QM6

N ,

Q̃5
M1M2M3M4M5M6 = RM1NPQRM2M4

PQRM3M5M6
N ,

Q̃6
M1M2M3M4M5M6 = RM1NPQRM4M5

PQRM2M3M6
N ,

Q̃7
M1M2M3M4M5M6 = RM1NPQRM2

N
M4

QRM3M5M6
P ,

Q̃8
M1M2M3M4M5M6 = RM1M2M4M5RM3NPQRM6

NPQ . (A.13)

B Superfield calculus

B.1 The linearised description

This section closely follows the conventions in appendix C of [24]. Let θi be two sixteen-
component chiral spinors of Spin(1, 9) which we combine into the complex supercharge Θ =
θ1 + iθ2. Linearised effective interactions preserving half of the original 32 supersymmetries
are derived from a constrained superfield Φ(xµ− iΘ̄γµΘ,Θ) which satisfies the holomorphic
condition

DΘΦ = 0 , (DΘ)A = − ∂

∂Θ̄A
, A = 1, . . . , 16 . (B.1)

It is further constrained by
(DΘ)4Φ =

(
DΘ

)4
Φ (B.2)

where
(DΘ)A = ∂

∂ΘA
+ 2i

(
γµΘ̄

)
A
∂µ ,

(
DΘ

)
A

= − ∂

∂ΘA
. (B.3)

The two operators DΘ and DΘ are the (anti-)holomorphic covariant derivatives and com-
mute with

QA = ∂

∂ΘA
, Q̄A = − ∂

∂Θ̄A
+ 2i

(
Θ̄γµ

)
A
∂µ (B.4)

corresponding to the rigid supersymmetries.
The two conditions (B.1) and (B.2) imply that the expansion of Φ in powers of Θ

terminates at Θ8. The scalar superfield components are completely specified by choosing the
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lowest order scalar component. It turns out to be convenient to work in a parametrisation
of scalar fluctuations as τ̂ = iδτ/2τ0

2 for δτ = τ − τ0 [24, 33]. The corresponding superfield
Φ was previously discussed in [10, 12] and is defined as

Φ = τ0
2 + τ0

2 ∆ (B.5)

where τ0
2 ∆ parametrises the linearised fluctuations around a constant, purely imaginary

flat background τ0
2 = g−1

s with (see also eq. (5.26) in [23])

∆ =
8∑
r=0

ΘrΦ(r)

= τ̂ + Θλ+ Θ2G3 + Θ3∂ψ + Θ4(R+ ∂F5)

+ Θ5∂2ψ∗ + Θ6∂2Ḡ3 + Θ7∂3λ∗ + Θ8∂4 ˆ̄τ . (B.6)

Here, λ and ψ are the complex dilatino and gravitino respectively. For our purposes below,
it suffices to note that

Θ2G3 =
(
ΘΓi1i2i3Θ

)
Gi1i2i3 , Θ4R =

(
ΘΓi1i2kΘ

) (
ΘΓk i3i4Θ

)
Ri1i2i3i4 . (B.7)

Terms encoded in Φ(r) have U(1) R-symmetry charge

qr = −2 + r

2 (B.8)

where we assigned charge −1/2 to Θ and −2 to Φ. This leads to

qτ̂ = −2 , qλ = −3
2 , qG3 = −1 , qψ = −1

2 , qR = qF5 = 0 . (B.9)

Even though the linearised approximation gives only partial results for the structure of
terms in the effective action, it is still useful to find and relate various terms in the weak
coupling limit τ0

2 = g−1
1 →∞. Generally, interactions are constructed from a function F[Φ]

of Φ by integrating over the 16 components of Θ, that is,

Slinear =
∫

d10x d16Θ det(e) F[Φ] + c.c. . (B.10)

Here, det(e) is the determinant of the zehnbein and the total expression is invariant under
the rigid supersymmetries. In an expansion in powers of Θ, we find

F[Φ] = F (τ0
2 ) +

∞∑
n=1

1
n!∆

n
(
∂

∂τ0
2

)n
F (τ0

2 ) (B.11)

Substituting this expansion into (B.10) and keeping the terms with Θ16, we recover all the
interactions at order (α′)3

S(3) =
∫

d10x

{
f (12,−12)λ16 + f (11,−11)G3λ

14 + . . .+ f (4,−4)G8
3 + . . .+ f (1,−1)G2

3R
3

+ f (0,0)
(
|G3|2 + |P|2

)
R3 + . . .+ f (0,0)R4 + . . .+ f (−12,12) (λ∗)16

}
. (B.12)
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Here, the modular forms fw = f (w,−w)(τ, τ̄) have holomorphic and anti-holomorphic weights
(w,−w) and are eigenfunctions of the SL(2,Z)-Laplacian [23]. The presence of these
coefficient functions is required by SL(2,Z) invariance, see [24] and references therein. The
functions f (w,−w) carry U(1) charge qfw = 2w (in our convention) and appear generically as∫

d10x det(e) f (w,−w)
P∏
n=1

Φ(rn) . (B.13)

The value w is fixed by the sum of U(1) charges of the Φ(rn):
P∑
n=1

qrn = 8− 2P != −2w (B.14)

where we used that ∑n rn = 16 to ensure the presence of 16 powers of Θ.
As far as the index structures in (B.12) are concerned, one finds contributions like

t16R
4 =

∫
d16Θ

[(
ΘΓi1i2kΘ

) (
ΘΓk i3i4Θ

)
Ri1i2i3i4

]4
,

t18G
2
3R

3 =
∫

d16Θ
((

ΘΓi1i2i3Θ
)
Gi1i2i3

)2 [(
ΘΓi1i2kΘ

) (
ΘΓk i3i4Θ

)
Ri1i2i3i4

]3
.

(B.15)

Several comments are in order. In the linearised approximation, we work in a regime
where we neglect the inhomogeneous part of the modular covariant derivative Dw =
w + 2iτ0

2 ∂τ0
2
, that is,

2iτ0
2 ∂τ0

2
fw � wfw . (B.16)

This is clearly violated for terms in fw that are powers of τ0
2 . In contrast, D-instanton

contributions ∼ (τ0
2 )ne−2π|N |τ0

2 satisfy the above inequality in the limit τ0
2 → ∞. Thus,

the linearised description contains the exact leading multi-instanton effects. In a non-
linearly completed theory, the SL(2,Z) symmetry requires the fw to become the familiar
modular forms. Then, the relative coefficients for interactions of differing U(1) charge can
be computed from supersymmetry.

B.2 Non-linear superfield

The non-linear superfield completion is generally cumbersome in the presence of non-trivial
P and G3 backgrounds. Looking at the Θ4 term in (B.6), it was already proposed in [9]
(and even earlier in [10, 78]) that full graviton and F5 kinematics is encoded in

Θ4R̃ =
(
ΘΓi1i2i3Θ

) (
ΘΓi4i5i6Θ

)
R̃i1i2i3i4i5i6 (B.17)

where R̃ was defined in (2.20). Then, the single index structure

t24R̃4 =
∫

d16Θ
[(

ΘΓi1i2i3Θ
) (

ΘΓi4i5i6Θ
)
R̃i1i2i3i4i5i6

]4
(B.18)

includes tensor contractions of the form (∇F5)nF 2m
5 R4−n−m [9] which are in agreement

with string amplitude calculations [79].
This clearly implies that R̃ as defined in (2.20) enjoys the following symmetries to be

imposed implicitly further below:
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1. Invariance under the exchange of fermion bilinears in (2.21) implies that only the part
of R̃i1i2i3i4i5i6 symmetric under the exchange (i1, i2, i3)↔ (i4, i5, i6) contributes.

2. Anti-symmetry of the Γ-matrices in (2.21) means that we have to anti-symmetrise in
both (i1, i2, i3) and (i4, i5, i6).

3. The fermion bilinears in (2.21) enjoy further Fierz identities which essentially project
onto certain tensor representations. Applying considerations from representation
theory, it turns out that [3]

(16⊗ 16⊗ 16⊗ 16)anti-sym = 770⊕ 1050+ (B.19)

where 770 = [0, 2, 0, 0, 0] and 1050+ = [1, 0, 0, 0, 2] in terms of their Dynkin labels
under D5. We define the following two projection operators

Ti1i2i3 , i4i5i6
∣∣
1050+ = 1

2

{1
2
(
Ti1i2i3 , i4i5i6 − 3 Ti1i2i6 , i4i5i3 − Ti1i2k , i4i5 k gi3i6

+ 2 Ti1i5k , i4i2 k gi3i6
)
± 1

4!εi1i2i3i4i5
k1k2k3k4k5Tk1k2k3 , k4k5i6

}
,

(B.20)

Ti1i2 , i4i5
∣∣
770 = 2

3 (Ti1i2 , i4i5 + Ti1i5 , i4i2)− 1
2Ti1k , i4

k gi2i5 + 1
36Tjk ,

jk gi1i4gi2i5 .

One easily verifies applying the projector onto 770 to the Riemann tensor that

Ri1i2i4i5
∣∣
770= Ci1i2i4i5 (B.21)

which implies that only the Weyl tensor enters (2.20).

Both F5 terms in (2.20) do not contain any 770 piece, though a 1050+ part. For F 2
5 ,

one uses self duality to remove the ε-tensor, thereby finding [9](
Fi1i2i3klFi4i5i6

kl
) ∣∣

1050+= 1
2
(
Fi1i2i3klFi4i5i6

kl − 3Fi1i2i6klFi4i5i3 kl
)

(B.22)

which is already imposed in (2.20). For ∇F5, the 1050+ component is obtained by
imposing

∇kF k i1i2i3i4 = 0 , F5 = ?10F5 . (B.23)

C 11D superparticle amplitudes

We compute 11D amplitudes in the superparticle formalism compactified on a 2-torus [15–
17, 35]. We start from the vertex operator

VG4 = 4k[ICLMN ]

(
ẊI − 2

3R
IJkJ

)
RLMNe−ik·X (C.1)

for the 3-form C3 in terms of 11d indices I, J,K,L, . . . using the conventions of [17] for
the fermion bilinears RIJ ,RLMN . Once we compactify the vertex operator on a T 2, we
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split the 11d indices as {I, J,K,L, . . .} into T 2-indices α, β, . . . = 1, 2 and 9d indices
i, j, k, l, . . . = 0, 3, . . . , 10. Schematically, we distinguish the following types of terms in
the reduction

k[iClmn] → Filmn1 , k[iClm]1 → Film , k[iClm]2 → Hilm , k[iCl]1 2 → Fil (C.2)

where k[iC
(4)
lmn]1 = Filmn1 and Fil is the field-strength tensor of the 9d Type IIB gravi-photon

Ai. We will only be interested in the Type IIB 3-forms F3 and H3 in 9D.
For our purposes (on the Type IIB side), it is more convenient to work with a complex-

ified basis for the two T 2 direction for which G3 is obtained from [17]

k[lCmn]z = 1
√
v0τ2

(
k[lCmn]1 − τk[lCmn]2

)
. (C.3)

This amounts to the following set of vertex operators for G3

VG3 = 3
√

2 k[iCmn]z

(
Ẋi − 2

3R
ijkj

)
Rzmne−ik·X ,

−
√

2 k[lCmn]z

(
Ẋz − 2

3R
zjkj

)
Rlmne−ik·X . (C.4)

Notice that the terms in the first line were not present in [17] which are however important
to provide additional contributions in the U(1)-preserving sector at 5-points.

Next, the 11D graviton vertex operator reads

Vh = hIJ
(
ẊIẊJ − 2ẊIRJMkM + 2RILRJMkLkM

)
e−ik·X . (C.5)

In 9D, we obtain the graviton vertex operator

Vh = hij
(
ẊiẊj − 2ẊiRjmkm + 2RilRjmklkm

)
e−ik·X (C.6)

as well as the axio-dilaton vertex operator

VP = hzz
(
ẊzẊz − 2ẊzRzmkm + 2RzlRzmklkm

)
e−ik·X . (C.7)

C.1 General amplitudes

In this section, we discuss the general form of amplitudes to be encounter below. To begin
with, we stress that there are essentially two classes of amplitudes. If the fields are neutral
under the Type IIB U(1), then the general result can be written as

Aneutral = N1 K̃neutral

(
C +N2

f0(τ, τ̄)
v

3/2
0

)
(C.8)

for some kinematical structure K̃. The constant C generally remains undetermined in
this formalism without a proper microscopic description, but can be determined from e.g.
duality considerations. In contrast, a U(1)-violating combination of fields results in an
amplitude of the form

A(w)
viol. = N K̃viol.

fw(τ, τ̄)
v

3/2
0

. (C.9)
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This is expected simply because there is not associated analogue in 11d and the result must
disappear in the limit v0 →∞!

The factor of v−3/2
0 in (C.8) and (C.9) is reminiscent of the terms coming with α′/R2 =

α′/(r(s)
A )2 in [80] since

g
1/2
B

v
3/2
0

= (r(s)
B )2 = 1

(r(s)
A )2

. (C.10)

Hence, U(1) uncharged amplitudes of the form (C.8) naturally appear with a 1± v−3/2
0 ∼

1±α′/R2 prefactor, whereas charged amplitudes (C.9) only come with a v−3/2
0 ∼ α′/R2 term.

More explicitly, we will be interested in the following types of P -point amplitudes

AP (m,n) = K̃(P )
∫ dt

t
tP
∫

d9p
∑
l1,l2

Pmz P
n
z̄ e−t(p2+gablalb) . (C.11)

For the moment, we keep the index structures in K̃ implicit. Clearly, for m = n, Am,n will
be of the form (C.8). After integrating out the 9d momenta, we obtain

AP (m,n) = π
9
2 K̃(P )S(P,m, n) (C.12)

in terms of
S(P,m, n) =

∫ dt
t

tP

t9/2

∑
l1,l2

Pmz P
n
z̄ e−tgablalb . (C.13)

These functions can be computed systematically for any number of points and KK-momenta.
Throughout this work, we require only the following explicit results

S(5, 0, 0) = C + 4
√
π
f0(τ, τ̄)
v

3/2
0

, S(5, 1, 1) = C −
√
π
f0(τ, τ̄)
v

3/2
0

,

S(5, 2, 0) = 3
√
π
f1(τ, τ̄)
v

3/2
0

, S(5, 0, 2) = 3
√
π
f−1(τ, τ̄)
v

3/2
0

. (C.14)

Here, C is typically a divergent constant which can be identified through duality considera-
tions [15].

With the above formulas, the open task remains to determine kinematical structures. In
contrast to string amplitudes, we do not impose a priori that we compute even/even, odd/odd
or even/odd sector couplings. This comes about naturally from the higher-dimensional
index structures which we define as

t
i1...iN+M

N+M = Tr
(
Ri1i2 . . .RiN−1iNRiN+1iN+2iN+3 . . .RiM−2iM−1iM

)
. (C.15)

In 9 (or any number of odd) spacetime dimensions, index structures tN with N odd are
associated with parity-odd couplings. The reason is simple: if N is even, then there is
a chance to find terms of the form t8t8 or εDεD. However, if N is odd, then there must
be always a single εD of odd dimensions be involved. This is to be contrasted with the
situation discussed in [42]. Here, they provide the decomposition of t24 in 10 dimensions
which involves both parity-even and parity-odd contributions.
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Another comment concerns the situation where the index structure carries torus indices,
that is

tzz̄N = Tr
(
Rzi1i2Rz̄i3i4Ri5i6 . . .

)
. (C.16)

In particular, structures of this type either appear alone as in the case of 1 bµ9 and 4 hµν or
in combination with tN . The latter scenario appears frequently in the amplitudes discussed
below. These instances can be understood from the 11d perspective where one might find
an index structure of the form

tijklmn...N GijkaGlmn
a . . .→

(
tijklmn...N GijkzGlmn

z + tzjkz̄mn...N GzjkaGz̄mn
a + . . .

)
. . . (C.17)

As we will see below, this happens for instance when studying 9d amplitudes for |G3|2R3.

C.2 Maximally U(1)-violating amplitudes

We derive the coefficients for MUV terms in the Type IIB action involving only the 3-form
and the metric. The general 9D superparticle amplitude for such contributions is given by

v0AG2w
3 R4−w = 24−w 2w

26 Γ
(

3
2

) S(P,w, 0) t16+2wG
2w
3 R4−w (C.18)

in terms of
S(P,w, 0) =

∫ dt
t

tP

t9/2

∑
l1,l2

P 2w
z e−tgablalb . (C.19)

One easily verifies that after Poisson resummation

∑
l1,l2

P 2w
z e−tgablalb = vw+1

0
τw2 (2t)2w+1

∑
l̂1,l̂2

(
l̂1 + τ l̂2

)2w
e−gab l̂a l̂b/(4t) (C.20)

For w > 0, the zero winding term with (l̂1, l̂2) = (0, 0) simply drops out. Next, we substitute
t→ (4t̃)−1 gab l̂a l̂b to find

∫ dt
t

tP

t9/2+2w+1 =
∫
tP−

13
2 −2w dt→

∫ (
gab l̂a l̂b

4t̃

)P− 11
2 −2w 1

t̃
dt̃ (C.21)

where we used

dt = −gab l̂a l̂b4t̃2 dt̃ . (C.22)

Putting everything together, we recover

S(P,w, 0) = vw+1
0

τw2 22w+1

( 4
v0

) 3
2 +w ∑

(l̂1,l̂2) 6=(0,0)

(l̂1 + τ l̂2)2w
(
g̃ab l̂a l̂b

)− 3
2−w

∫
t̃

1
2 +we−t̃ dt̃

=
4Γ
(

3
2 + w

)
τw2
√
v0

∑
(l̂1,l̂2) 6=(0,0)

(l̂1 + τ l̂2)2w
(
g̃ab l̂a l̂b

)− 3
2−w . (C.23)
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Since

g̃ab l̂a l̂b =

(
l̂2 + τ l̂1

) (
l̂2 + τ̄ l̂1

)
τ2

, (C.24)

we can use the definition (A.1) for modular forms fw(τ, τ̄) to obtain

S(P,w, 0) =
4Γ
(

3
2 + w

)
√
v0

fw(τ, τ̄) . (C.25)

C.3 Special non-MUV amplitudes

The superparticle amplitudes in the non-MUV sector giving rise to contributions involving
the higher-dimensional index structures t18, t20, . . . are given by

v0AGm
3 G

n
R4−(m+n)/2 = 24−(m+n)/2 (−2)m+n

26 Γ
(

3
2

) S(P,m, n) t16+m+nG
m
3 G

n
3R

4−(m+n)/2

(C.26)
in terms of

S(P,m, n) =
∫ dt

t

tP

t9/2

∑
l1,l2

Pmz P
n
z̄ e−tgablalb . (C.27)

The objects S(P,m, n) can be computed as before. The final expressions will be of the form

v0AGm
3 G

n
R4−(m+n)/2 =

(
v0C∞δw,0 + C(P )

w

fw(τ, τ̄)
√
v0

)
t16+m+nG

m
3 G

n
3R

4−(m+n)/2

(C.28)
where

w = m− n
2 . (C.29)

The first zero winding piece only appears at the U(1)-neutral level m = n which contributes
in the limit v0 →∞ to the 11D M-theory action. However, the constant C∞ is generically
divergent because the superparticle picture does not provide a microscopic description of
M-theory. Such constants can be inferred though e.g. via dualities to Type IIA as discussed
in [15] for R4.

The second term in (C.28) encodes as usual the contributions to the Type IIB effective
action upon taking the limit v0 → 0. Overall, the corresponding coefficients can be expressed
in the following compact way

C(P )
w = (2|w|+ 1)(2|w| − 1)CP−4

(2(P − 4) + 1)(2(P − 4)− 1) . (C.30)

Notice that for MUV amplitudes |w| = P − 4 we recover C(P )
P−4 = CP−4 as expected.

D Details on the reduction to 4D

D.1 Comment on the corrected background

To give some intuition on effects contributing to δ0, δ1, the corrected metric background
in Einstein frame involves an overall Weyl rescaling (see e.g. [51]) which in string frame is
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associated with the corrected dilaton [52], that is,

ds2
10 = eΦ

[
e2Aηµν dxµ dxν + e−2Agmn dym dyn

]
(D.1)

with

Φ = αΦ(1) +O
(
α2
)
, A = A(0) + αA(1) +O

(
α2
)
, gmn = g(0)

mn + αg(1)
mn +O

(
α2
)

(D.2)

In 10D Einstein frame, neither φ nor G3 are corrected at order (α′)3,

φ = φ0 +O
((
α′
)4)

, G3 =
(
α′
)1
G

(0)
3 +

(
α′
)
αG

(1)
3 +O

((
α′
)7)

. (D.3)

From the Bianchi identity for F5, one deduces that also F5 ∼ O((α′)2). The remaining
leading order solutions to the equations of motion can be determined from the results of [51].
From Einstein’s equations, one infers that the internal Ricci tensor receives a correction of
the form

R(1)
mn = −3 · 29 f0(τ, τ̄)∇(0)

m ∇(0)
n Q(0) . (D.4)

Finally, the 10D Weyl rescaling Φ is determined to be

Φ(1) = −3 · 26f0(τ, τ̄)Q(0) . (D.5)

When reducing the classical action (2.1), we perform the Weyl rescaling

gMN = eαΦ(1)
g̃MN . (D.6)

Then, we obtain

S(0)(g) = S(0)(g̃) + α

2κ2
10

∫
Φ(1)

(
4R− 8|P|2 − |G3|2

6

)
?̃101 (D.7)

where S(0)(g̃) is the classical action evaluated on the new metric. The term ∼ Φ(1)|G3|2

contributes to δ0 in (5.23).

D.2 Details on the derivation of 4D kinetic terms

In this section, we provide further details on the reduction to 4D. We reduce (D.7) as well
as the relevant terms in (3.36) and (2.11). For the moment, we ignore terms involving F5
which complement the hypermultiplets in 4D as well as contribute warping terms. They
are known explicitly by means of (2.22) and will be studied in more detail in the future.

For the Einstein Hilbert term, the reduction of (D.7) to 4D leads to∫
X3

4Φ(1)R ?̃101 = −384
[
f02(2π)3χ(X3)R(4) + f0 (Rαβ + 2Iαβ) dtα ∧ ?4 dtβ

− 6Iα dtα ∧ ?4
(
f1P + f−1P

) ]
(D.8)
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where we defined

Iα = −i(2π)3
∫
X3

ωα i
i c3(X3) = (2π)3χ(X3)kα

V
, (D.9)

Rαβ = (2π)3
∫
X3

ωα i̄ ωβ
̄i c3(X3) , (D.10)

Iαβ = (2π)3
∫
X3

ωα i
i ωβ j

j c3(X3) = −kαkβ
V

(2π)3χ(X3) . (D.11)

As observed in [57], Rαβ cancels in the reduction and only integrals of the form Iα, Iαβ

appear which can be evaluated explicitly given that the trace of (1, 1)-forms is constant.
From R4, we obtain in the reduction∫
X3

(
t8t8 ±

1
4ε8ε8

)
R4?̃101 = ±768(2π)3χ(X3)R(4) + 384Rαβ dtα ∧ ?4 dtβ . (D.12)

As a remark, recall that in Type IIA both sign combinations appear giving rise to (aT −
aL)χ(X3)R(4) in the reduction. Ultimately, this ensures that the vectormultiplets are only
corrected at tree level, while hypermultiplets are corrected at 1-loop. In contrast, we find
in Type IIB only a single sign corresponding to t16 defined in (2.19) so that∫

X3

[
4Φ(1)R+ f0t16R

4
]
?̃101 = −1536(2π)3χ(X3) f0R

(4) − 768 f0Iαβ dtα ∧ ?4 dtβ

+ 6 · 384Iα dtα ∧ ?4
(
f1P + f−1P

)
. (D.13)

As we will see below, this implies that the hypermultiplets are corrected at both tree and
1-loop level, while the vectormultiplets remain uncorrected.

Next, let us look at the contribution from the 3-form. The backreaction from the metric
gives rise to ∫

X3
Φ(1) |G3|2

6 ?̃101 = 384eφf0 RαβG
α ∧ ?4G

β (D.14)

in terms of Gα = dcα− τ dbα. From the higher derivative terms, we find from the torsionful
Riemann tensor (essentially equivalent to [57])∫

X3
2f0t̃8t̃8

(
|G3|2R3 + 3|∇G3|2R2

)
= 384eφf0 RαβG

α ∧ ?4G
β (D.15)

as well as from t18 (this is the piece proposed by [57] at NSNS tree level)∫
X3

1
2 t8t8|G3|2R3 = −192eφf0 IαβG

α ∧ ?4G
β
. (D.16)

Altogether, this amounts to

∫
X3

[
−Φ(1) |G3|2

6 + f0

(
2t̃8t̃8 −

1
2 t8t8

)
|G3|2R3

]
?̃101 = 192eφf0 IαβG

α ∧ ?4G
β
. (D.17)
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Notice that Rαβ cancels out exactly which is actually necessary to perform the remaining
integrals explicitly as we will see below. In addition, we also have contributions from the
10D MUV sector which are of the form∫

X3

[3f1
4 t8t8G

2
3R

3 + c.c.
]
?̃101 = −288eφf1 IαβG

α ∧ ?4G
β + c.c. . (D.18)

To complete the argument, we also have to add terms involving the dilaton. At
the 5-point level, contact terms with two dilatons and three gravitons can only be U(1)-
preserving.19 They remain to large extent unspecified, see however [39] for a proposal based
on 12D convariance. Here, we make an ansatz similar to [51] by adding a term proportional
to the 6D Euler density, namely∫

X3

[
−8Φ(1)|P|2 − 3 · 210|P|2Q

]
?̃101 = −1536(2π)3χ(X3) f0 P ∧ ?4P . (D.19)

To summarise, we obtain the 4D action

S(4) = 1
2κ2

10

∫ {(
V − 1536α (2π)3 χ (X3) f0

)
R(4) ?4 1− (VFlux + Vζ) ?4 1

−
(
2V + 1536α (2π)3 χ (X3) f0

)
|P|2 ?4 1 + 6 · 384αIα dtα ∧ ?4

(
f1P + f−1P

)
+
(1

2

[
kαβ + kαkβ

V

]
− 768α f0Iαβ

)
dtα ∧ ?4 dtβ

+
(1

2

[
kαβ −

kαkβ
V

]
+ 192αeφf0 Iαβ

)
Gα ∧ ?4G

β

− 288αeφf1 IαβG
α ∧ ?4G

β + c.c.
}
. (D.20)

Up to this point, we collected all the relevant contributions at the 2-derivative level in
4D. The final step is to perform a Weyl rescaling of the 4D metric to arrive at 4D Einstein
frame. To this end, we define

gµν = eκ/2g̃µν , κ = −2 log (Y) , Y = V − (2π)3 χ (X3) f0
8 (D.21)

and expand to liner order in χ. In string units, we set

`s = 2π
√
α′ = 1 ⇒

(
α′
)3 = 1

(2π)6 , ζ = −χ (X3)
2(2π)3 (D.22)

to arrive at (dropping the tilde on g̃ again) (5.34).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

19In fact, as we will see below, we can turn this argument around by arguing that terms like f2P2R3 in
10D are actually forbidden by 4D SUSY.
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