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1 Introduction and summary

Four-dimensional de Sitter spacetime, dS4, is a vacuum solution to Einstein equations with
a positive cosmological constant, with maximal isometry group, SO(1, 4), which acts as
a positive vacuum pressure. This solution can be interpreted as a FLRW universe with
positively curved spatial slices given by round three-spheres and exponential scale factor.
Current observations show that our universe is described by a cosmological constant with
positive small value, and is expanding with accelerating pace [1, 2], such that at late times
the universe may end in an exponential growth which is characterized by the dS4 geometry.
Early periods of the universe may have been dominated by an inflationary era after the
big bang such that certain problems in cosmology can be understood by means of this
inflationary process [3, 4]; thus, the understanding of de Sitter spacetime has a profound
implication in the study of cosmology of our universe. One consequence of this exponential
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growth is that a static observer inside a dS4 universe does not have access to the whole
spacetime being limited by the existence of a cosmological horizon. Interestingly, this
horizon is a Killing horizon which shares properties with the event horizon of a black hole.
For instance, it has been shown that there is an associated temperature [5] analogue to
Hawking radiation [6], and therefore an entropy that was found by Gibbons and Hawking [7]
which follows the area law [8]. Nonetheless, in contrast with black hole thermodynamics,
these are observer dependent quantities, and due to the lack of access to the asymptotic
boundary, an static observer is limited in constructing observables [9, 10].

The understanding of de Sitter spacetime poses a challenge to quantum gravity, and in
particular to string and M theory, because of complications in constructing stable de Sitter
solutions in supergravity [11, 12], which has stimulated the idea that de Sitter spacetime
may actually belong to an untractable swampland of a string theory landscape [13, 14]. As
a matter of fact, the treatment of asymptotically de Sitter backgrounds in the context of
M-theory has lead to the proposal that the dimension of the Hilbert space of a quantum
theory of gravity is finite [15] given by the exponential of the Gibbons-Hawking entropy.
This implies a problem for the quantization of gravity with Einstein-Hilbert action as a
starting point [9].

In [16] has been shown, using covariant phase-space methods, that the constraint
algebra of general relativity, upon taking a suitable set of boundary conditions, gives
rise to a centrally extended, affine algebra. Particularly, if the boundary consists of a
Killing horizon, it is possible to relate this algebra with one copy of the Virasoro algebra.
Therefore, one can make use of conformal field theory (CFT) techniques in order to describe
underlying degrees of freedom of the horizon. In the case of the black hole horizon, the
Bekenstein-Hawking entropy matches the one of the horizon CFT [17]. Remarkably, this
result can be easily applied to the cosmological horizon of de Sitter space, in which the
Cardy entropy associated to the horizon CFT renders the result obtained by Gibbons
and Hawking. Thus, by examining the asymptotic symmetry algebra of the horizon,
one may obtain non-trivial information about the density of states of a Killing horizon,
which thus extends the statistical mechanical approach to general relativity. Moreover,
computing Gaussian fluctuations, Carlip showed [18] that the density of states acquires
an extra contribution resulting in a logarithmic correction to the entropy of the horizon
CFT. This reproduces the lowest order quantum corrections to black hole entropy that has
been computed using other methods [19, 20]. In this approach, the asymptotic algebra is
constructed by considering diffeomorphisms that preserve the asymptotic structure and
have well defined asymptotic charges associated to them. In this construction, the central
charge appears with a free parameter that can be fixed in order to recover the area law.
This mechanism has been used [21] in the context of the AdS/CFT correspondence such
that the holographic Renyi entropy acquires an extra contribution that imply a logarithmic
divergence in the entanglement limit.

Recently, it has been argued [22–37] by using different approaches, that de Sitter space
corresponds to a maximally entangled state incorporating pairings between disconnected
regions of spacetime, leading to a density matrix with an associated Renyi entropy that is
constant. Therefore, one can interpret the Gibbons-Hawking entropy as the entanglement
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entropy between the entangled regions. In [27, 28], the entanglement between disconnected
Rindler observers has been computed by using a single coordinate patch that contains two
causally disconnected Rindler observers, and considering the reduced density matrix of
one of them. This was achieved by letting Zq act on the doubled Rindler patch so as to
produce an orbifold geometry with two antipodal conical defects.1 The parameter q can
be identified as the replica parameter and the q → 1 limit, referred to as the tensionless
limit, leads back to the smooth de Sitter geometry. This limit is nothing else than the
entanglement entropy limit of the Renyi entropy, which is bigger than the Gibbons-Hawking
entropy due to the presence of both patches considered [27]. Moreover, following [38], a
consistent truncation of this construction onto Liouville field theory gives a q-dependent
central charge that vanishes in the tensionless limit, thus having zero Cardy entropy. The
associated Renyi entropy of the system equals the Gibbons-Hawking entropy in agreement
with previous results.

In this paper, we combine Carlip’s conformal description of the cosmological horizon
by imposing maximal entanglement requiring q-independent Renyi entropy which leaves
one free parameter that can be used to match the entanglement entropy with the Gibbons-
Hawking entropy at the semi-classical level. To this end, we use of the Barnich-Brandt
formalism [39, 40] to compute the asymptotic charges using the Carlip-Silva asymptotic
generators [41, 42]. This preserves the asymptotic structure and produces finite charges
whose algebra yields the same non-trivial central charge as that found by Carlip [41].
Assuming furthermore, the validity of Cardy entropy formula, the Gibbons-Hawking entropy
is recovered upon matching the free parameter. We then consider the quantum corrections
to the Cardy entropy found in [18]. It follows that the Renyi entropy is no longer constant
and diverges in the tensionless limit as a direct consequence of the fact that the central
charge vanishes in this particular point. We also investigate other limits of the corrected
Renyi entropy: the min-entropy limit, which gives the larges eigenvalue of the reduced
density matrix; the max-entropy which gives the dimension of the Hilbert space, and the von
Neumann entropy, that is, the entanglement entropy. We show that the latter now acquires a
UV divergence in agreement with the entanglement area law in quantum field theory (QFT)
due to the short-range interaction near the boundaries of the entanglement region [43].
This divergence arises in the tensionless limit (that as aforementioned, corresponds to
the entanglement entropy limit), allowing us to introduce a UV cutoff giving a physical
interpretation for the orbifold parameter. The IR finite term corresponds to the Gibbons-
Hawking entropy, and we show that the proposed connection between the dimension of the
Hilbert space and the entropy holds beyond the semiclassical order by noticing that the
cutoff goes to infinity in the max-entropy limit.

In [28], it was shown that the large q limit resembles the three-dimensional global dS
geometry with the defects corresponding to the conformal future- and past-infinities I±.
Therefore, the Liouville central charge resembles the one found in [44] of I± by considering
an holographic CFT description of dS in three dimensions. The corresponding Cardy

1In principle, one may assign the two pole separate qN and qS parameters leading to a Thurston’s spindle.
In our work, we take qN = qS = q such that the resulting geometry can be described by means of a single
quotient dS/Zq.
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entropy renders the Gibbons-Hawking entropy. We also consider the logarithmic corrections
to this scheme, showing that in the q → ∞ limit, the resulting min-entropy corresponds
to the three-dimensional de Sitter entropy with the quantum corrections recently found
in [45, 46].

2 Rindler horizons and defects

2.1 Undeformed de Sitter geometry

Global geometry. Global de Sitter spacetime of signature (1, d− 1) and radius `, here
denoted by dSd, is the solution to Einstein’s field equations in d dimensions with cosmological
constant Λ = (d− 1)(d− 2)/(2`2) given by the induced metric ds2 on the hyperboloid

YAY
A = `2 , A = 0, 1, . . . , d , (2.1)

in (d+ 1)-dimensional Minkowski spacetime, viz.

ds2 = −dY 2
0 +

d∑
i=1

dY 2
i . (2.2)

The global geometry is maximally symmetric with isometry group O(1, d − 1), and can
be viewed as a foliation along a global time with the topology of R with space-like leaves
given by round (d− 1)-spheres with two conformal boundaries at Y0 → ±∞, denoted by
I±d , respectively. The intrinsic line-element can be coordinatized as

ds2 = −dT 2 + `2 cosh2(T/`)dΩ2
d−1 , (2.3)

using a global time coordinate T ∈] −∞,+∞[, and the metric dΩ2
d−1 of the round, unit

(d− 1)-sphere.

Causal patches. The exponential inflation prevents a static observer, O, say, often
referred to as a Rindler observer, from communicating with the entire geometry, since upon
emitting light rays, these must return to O prior to having reached half-way across the
spatial slice. The envelop of all such rays forms a causally connected region, RO ⊂ dS,
referred to as a Rindler patch. Each such patch has S2-topology and a metrically bifurcated
boundary

∂RO = H− ∪ (H∞ × R−) ∪H∞ ∪ (H∞ × R+) ∪H+ , H± ∼= H∞ ∼= Sd−2 , (2.4)

where H∞ are the cosmological horizons, with past and future limits H− and H+, respec-
tively, residing as defects inside I±. The interior of RO as well as the branches of its
bifurcated boundary are stabilized by

SO(1, d)R ∼= SO(1, d− 1) , (2.5)

which together with the discrete time-reversal operation makes up the maximal isometry
group O(1, d− 1) of a Rindler patch.
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Euclidean patch. Treating de Sitter path integral in the Euclidean regime, the required
Wick rotation maps each Rindler patch into a round Sd, and the Euclidean field theory has
a Hawking temperature [5]

TH = ~
2π` , (2.6)

with conjugated Gibbons-Hawking entropy [7]

SGH = AH
4~Gd

, (2.7)

where AH is the area of the cosmological horizon, and Gd is Newton’s constant in d

dimensions.

Double Rindler patch. From here on, we will work in four space-time dimensions,
where AH = 4π`2. In order to exhibit entanglement, it is natural to introduce coordinates
adapted to unions RS ∪RN of pair of causally disconnected Rindler patches, which can be
achieved by the embedding [27]

Y0 =
√
`2 − r2 cos θ sinh(t/`) , Y1 =

√
`2 − r2 cos θ cosh(t/`) , (2.8)

Y2 = r cos θ , Y3 = ` sin θ cosφ , Y4 = ` sin θ sinφ ,

where
−∞ < t <∞ , −` < r < ` , 0 ≤ θ ≤ π , 0 ≤ φ < 2π , (2.9)

with N and S tracing out the worldlines (r, θ) = (0, 0) and (r, θ) = (0, π), respectively. The
resulting intrinsic line element, viz.

ds2|RS∪RN = `2(dθ2 +sin2 θdφ2)+cos2 θ

(
−f(r)dt2 + dr2

f(r)

)
, f(r) = 1− r

2

`2
, (2.10)

is a fibration over S2 with fibers above the equator given by points, and fibers above the
strictly northern and southern hemispheres given by radially extended, two-dimensional
Rindler patches, denoted by R2, which are indeed contractible to points. This is illustrated
in figure 1.

We denote the northern and southern fibers by R2±, respectively, such that N ’s
worldline is located at r = 0 in the R+

2 above θ = 0, idem S and θ = π. The stabilizers in
SO(1, 4) of each embedded R2-fiber is given by

SO(1, 4)R±2 = SL(2,R)×U(1) , (2.11)

where the SL(2,R)-factor contains a U(1) subgroup generated by the time-translation vector
field ~∂t, and the U(1)-factor is generated by the rotational vector field ~∂φ.2

2The corresponding isometry group matches the one of the near horizon geometry of an extremal Kerr
black hole, such that the asymptotic symmetry group generators of [47] can be used in order to reproduce
the Gibbons-Hawking entropy [48].
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I+

I−

RN RS

Figure 1. Penrose diagram of de Sitter spacetime with two Rindler observers RN and RS . I±

corresponds to the past and future conformal infinities of the global geometry.

2.2 Orbifolding the horizon

We follow [27, 28], by considering the orbifold

dSq := ̂(RN ∪RS)q/Zq , f = f ∼ g ∼ Zq ⊂ SO(1, 3) , (2.12)

with q-fold, branched cover ̂(RN ∪RS)q with a natural Zq-action via a Killing vector field
~J of length g( ~J, ~J) = 1; as ~J generates a U(1) subgroup of SO(1, 3), the orbifold parameter
can be extended from the positive integers to q ∈ R+. The orbifold fixed points form a
pair (ΣS ,ΣN ) of antipodal, sub-manifolds of co-dimension two, referred to as defects, with
induced R2 metrics. The defects generate δ2-function singularities in the Riemann curvature
two-form [49] proportional to the conical deficit 2π (1− 1/q). A well-posed variational
principle requires to supplement the Einstein-Hilbert action with extra terms localized
at the defects that provide singular stress tensors cancelling the singularities in the bulk
Einstein tensor, such that the field equations hold everywhere, even at the defects [50]. To
treat maximally symmetric defects, it suffices to dress the defects by Nambu-Goto actions
with a q-dependent tension Tqξ , resulting in a total action

Iq = IEH + Idef , Idef =
∑
ξ=N,S

Iξ , (2.13)

Iξ = −Tqξ
∫

Σξ
d2σ

√
−det(g|Σξ) , Tqξ = 1

4G4

(
1− 1

qξ

)
, qN = qS = q . (2.14)

Thus, the smooth de Sitter geometry is recovered in the q → 1 limit, referred as the
tensionless limit. The dressed defects can thus be interpreted [28] as Rindler observers with
mass proportional to 1− q, stretched out into strings (in the direction determined by ~J)
back-reacting to the surrounding geometry. Choosing polar coordinates on S2 such that
~J = ~∂φ, the orbifolded line element

ds2
q = cos2 θ

(
−f(r)dt2 + dr2

f(r)

)
+ `2

(
dθ2 + sin2 θ

q2 dφ2
)
, (2.15)

where the ranges of all coordinates are as before, which thus cover the entire q-deformed,
double Rindler patch, with Rindler defects located at θ = 0 and θ = π, respectively; it
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•

•

H ∼= S2

S2/Zq

•

•

ΣN

ΣS

`q = `/q

Figure 2. The spherical geometry of the cosmological horizon H after the orbifolding deforms to
that of the spindle S2/Zq with radius `q = `/q. The set of fixed points ΣN and ΣS correspond to
the defects located at θ = 0, π respectively, both with induced metric (2.16).

follows that

ds2
q

∣∣
ΣN,S

= −f(r)dt2 + dr2

f(r) . (2.16)

The q-deformed, double Rindler wedge has cosmological horizon given by a bifurcated
Killing horizon S2-topology located at r = ±`, where the Killing vector field ~χ := ~∂t passes
from being time-like to light-like, with q-independent surface gravity, viz.

χ2 := ds2
q(~χ, ~χ) = cos2 θ

`2

(
r2 − `2

)
, κ2 := − lim

χ2→0

∇µχ2∇µχ2

4χ2 = 1
`2
. (2.17)

The orbifolding procedure of the horizon is illustrated in figure 2.

2.3 Semi-classical entropy computation

Using the formalism of appendix A, we assign to each Rindler observer a q-independent
Hamiltonian HR, and a reduced density matrix ρR := e−HR . Introducing a modular
temperature

Tq := q−1 , (2.18)

treated as the conjugate variable of HR, the resulting thermal partition function

ZR := trHR
ρqR = trHR

exp {−qHR} , (2.19)

computed on the q-fold, branched cover Ŝ4
q of the Euclideanized orbifold

S4
q := Ŝ4

q/Zq , (2.20)

can be re-written using the Cardy-Calabrese formula [51]

ZR =
Z[Ŝ4

q ]
Z[S4]q =

(
Z[S4

q ]
Z[S4]

)q
. (2.21)

In the semi-classical approximation,

Z[S4
q ] ≈ exp

{
−1
~
IE [S4

q ]
}
, Z[S4] ≈ exp

{
−1
~
IE [S4]

}
, (2.22)
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where the total Euclidean action

IEq [S4
q ] = − q

16πG4

∫
S4
d4x

√
det(gq) (R− 2Λ) + IEdef =

(
1− 2

q

)
π`2

G4
. (2.23)

It follows that each q-deformed Rindler observer has the modular free energy

Fq := −1
q

logZR ≈
1
~

(
IER [S4/Zq]− IE [S4]

)
= 2

(
1− 1

q

)
π`2

~G4
,

which is the quantity to be identified with the semi-classical entropy obtained by computing
the thermal partition function in reduced phase-spaces attached to various regions of the
Rindler patch. From the exact relation between Renyi entropy and free energy,

Sq =
(

1− 1
q

)−1
Fq , (2.24)

it follows that

Sq ≈
2π`2
~G4

= 2SGH , ∀q > 1 , (2.25)

whose q-independence can be interpreted as that the original pair of Rindler observers
formed a maximally entangled state in agreement with [22, 24, 26–29, 35–37], supporting
the interpretation of that the Gibbons-Hawking entropy is due to entanglement between
causally disconnected Rindler patches.3

3 Near-Horizon algebra and Cardy entropy

3.1 Asymptotic charges

Carlip has shown [16, 41, 52] that general relativity admits classes of asymptotic boundary
conditions near Killing horizons forming modules of centrally extended, asymptotic Virasoro
charges. Under the assumption of modular invariance, the asymptotic charges induce an
entropy obeying the area law.

In what follows, we shall assign the q-deformed Rindler patches classes of boundary
conditions at their cosmological horizons inducing Virasoro modules with finite central
charges for q > 1 fixed up to one free parameter by assumption of maximal entanglement.
These considerations are facilitated by the space-time covariant Barnich-Brandt-Compere
(BBC) formalism [39, 40, 53, 54], which maps algebras of asymptotic Killing vector fields
(AKVs) ~ζ stabilizing spaces of metric fluctuations h in the near-cosmic horizon region
to charges

Q~ζ [h; g] = 1
8πG4

∮
H

k~ζ [h, g] , (3.1)

3In [28], the modular free energy was instead computed by means of a consistent truncation of the total
action to a Liouville theory on the defect, which indeed yields a constant Renyi entropy in the semiclassical
regime as well.
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where H denotes the cosmological horizon, and4

k~ζ [h, g] = −1
4dx

α ∧ dxβεαβµν
[
ζν∇µhρρ − ζν∇σhσµ + ζσ∇νhµσ (3.2)

+ 1
2h

ρ
ρ∇νζµ − hνσ∇σζµ + 1

2h
σν (∇µζσ +∇σζµ)

]
,

is a background-covariant two-form, obeying the centrally extended, Dirac-bracket algebra{
Q~ζ ,Q~ζ′

}
= Q[~ζ′,~ζ] + 1

8πG4

∫
H

k~ζ [L~ζ′g, g] , (3.3)

where L~ζ denotes the Lie derivative along ~ζ. The two-form is a potential of the Noether
three-form [55], which is closed on the entire Rindler patch, including the defect, as a
consequence of the variational principle, which means that the central charge accounts for
those asymptotic degrees of freedom that extend smoothly into the entire Rindler patch
(including the defect).

A family of vectors satisfying the Diff(S1) algebra (or de Witt algebra)

i[~ζm, ~ζn] = (m− n)~ζm+n , (3.4)

and that preserve the asymptotic symmetries of a Killing horizon, has been found in [41, 42]
and have the form of

ζµm = Tmχ
µ +Rmρ

µ . (3.5)

Here χµ is the null vector defined in (2.17), while Rm and Tm are coordinate-dependent
functions obtained by requiring that the structure of the horizon is preserved [16], i.e., χµ
remains null at r = `, and

ρµ = − 1
2κ∇µχ

2 , (3.6)

is a vector normal to the horizon with vanishing norm at the horizon. To obtain the Killing
vectors ~ζ, is enough to assume that, near the horizon, they correspond to conformal Killing
vectors [38, 42], viz.

∇µχν +∇νχµ = O(χ2)gµν +O(χ4) , (3.7)

such that a set of diffeomorphisms ~ζm of (2.10) must satisfy

δζχ
2 = O(χ4) , (3.8)

δζρµ = O(χ2)ρµ , (3.9)

that for (3.5) implies

LχTn + κRn = O(χ2) , ρµ∇µTn = O(χ2)Tn . (3.10)
4Tensorial indices are raised and lowered using the background metric g.
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These asymptotic generators, indeed, satisfy a stronger condition imposed by Carlip [41]

lim
χ2→0

χµχν
χ2 ∇µζ

ν
m = lim

χ2→0
χµ∇µ

(
χνζ

ν
m

χ2

)
− κρµζ

µ
m

χ2 = 0 , (3.11)

guaranteeing that χµ is a Killing vector in the horizon neighborhood. Therefore, the
condition (3.11) can be seen as the horizon analogs to the fall-off conditions that one uses
at infinity to obtain the asymptotic symmetry algebra. Particularly, the previous condition
is satisfied for (3.5) with

Tm = − `
α

exp {im(φ− αt/`)} , Rm = α

lκ
imTm , (3.12)

where α is an undetermined real number, satisfying the de Witt algebra (3.4) and preserving
the asymptotic structure. The α parameter has been chosen in order to reproduce the
horizon entropy in [18, 41, 42, 52, 56]. In the following subsection, we will rescale α by
requiring that the resulting Renyi entropy describe a maximally mixed entangled state as
obtained in [26, 27], such that α depends on the orbifold parameter q, giving a central
charge that resembles the one found in [28].

3.2 Asymptotic Virasoro symmetries

The resulting symmetry group generated by the AKVs (3.5) is given by a single copy of (3.3)
with central extension

1
8πG4

∫
H

k~ζm [L~ζng, g] = −i
(

`2

4qαG4

)
(α2m3 + 2m)δm+n,0 . (3.13)

Thus, promoting the Dirac bracket to a quantum commutator, viz. {·, ·} → 1
i~ [·, ·], and

defining quantum operators

Lm := Qm + 3`2
8G4

α

q
δm,0 , (3.14)

yields a chiral Virasoro algebra

[Lm, Ln] = (m− n)Lm+n + cq
12m(m2 − 1)δm+n,0 , (3.15)

with central charge

cq = 12i lim
r→`
Q~ζm [L~ζ−mg, g]

∣∣
m3 = 3`2

~G4

α

q
. (3.16)

3.3 Maximal entanglement condition

Assuming that the asymptotic charges give rise to a modular invariant thermal quantum
theory, the semi-classical approximation of the corresponding Virasoro partition yields the
Cardy entropy [17]

SC ≈ S
(0)
C := 2π

√
cq∆

6 = π2

3 cqT , (3.17)
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where T , which is the temperature of the chiral modes near the horizon, has been eliminated
by means of

∂SC
∂∆ = 1

T
⇒ ∆ = π2

6 cqT
2 . (3.18)

Viewing the orbifolding procedure as a computation in a quantum theory using replicas, the
Cardy entropy (3.17) is identified as the modular free energy Fq of the degrees of freedom
in the q-deformed near-horizon region. Let us redefine α = 2γ(q− 1), where γ > 0 is a finite
undetermined constant, by requiring that the original pair of Rindler observers formed a
maximally mixed entangled state, that is, that the corresponding Renyi entropy Sq, which
is given by Baez’ formula (2.24), is q-independent. Therefore, the central charge, Cardy
entropy, and Renyi entropy are given by

cq = 6`2
~G4

γ

(
1− 1

q

)
, S

(0)
C =

(
1− 1

q

)
γSGH , S(0)

q = γSGH , (3.19)

respectively. When γ = 1, the above result agrees with previous computations [22, 24,
26, 27, 37]. Therefore, the cosmological horizon of the deformed geometry reduces to that
of the smooth dS geometry, whose thermal properties can thus be interpreted as being
due to the entanglement between the causally disconnected Rindler observers encoded
into the two-dimensional thermal CFT with modes having temperature (C.6) and central
charge (3.16).

4 Logarithmic corrections and UV divergences

4.1 q-dependent bulk cut-offs

Working perturbatively inside the bulk, on a single Wick-rotated Rindler patch, R, the free
energy can be expanded as

ZR ≈ exp
{
−1
~
IEq −

1
2 log det∇

}
, (4.1)

including the semi-classical Gibbons-Hawking entropy and its one-loop correction. By our
hypothesis, the thermal description of the near-horizon entropy is captured by a chiral CFT
with Bunch-Davies temperature and central charge cq given in eq. (3.19). We also recall
that in a thermal replica theory with normalized inverse temperature q, the Renyi entropy
Sq is related via (2.24) to the moduluar, free energy Fq in its turn given by

Fq = −1
q

logZR = SC ; (4.2)

for further details, see appendix A. Including Carlip’s correction to the Cardy entropy [18],
the density of states for a two-dimensional, thermal, chiral CFT can be written as

ρ(∆) ≈
(

c

96∆3

) 1
4

exp

2π

√
c∆
6

 ↔ ρ(T ) ≈ c

144(S(0)
C )−

3
2 exp

{
S

(0)
C

}
. (4.3)
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Using the central charge cq for the asymptotic charges in the near-horizon region, and the
corresponding semi-classical Cardy entropy S(0)

C , both given in (3.19), the logarithmically
corrected Cardy entropy

SC ≈ S
(0)
C − 3

2 logS(0)
C + log

(
c

144

)
=
(

1− 1
q

)
γSGH −

3
2 log

[(
1− 1

q

) 1
3
γSGH

]
, (4.4)

modulo constants, which thus contains a divergent quantum correction in the tensionless
limit. Following section 2.3, we can obtain the modular free energy by inverting (2.24),
which yields the Renyi entropy

Sq = γSGH −
3
2

(
q

q − 1

)
log

[(
1− 1

q

) 1
3
γSGH

]
, (4.5)

with the following limits

SE = lim
q→1

Sq = γSGH −
3
2 lim
q→1

q

q − 1 log
[(

1− 1
q

) 1
3
γSGH

]
, (4.6)

S∞ = lim
q→∞

Sq = γSGH −
3
2 log γSGH , (4.7)

S0 = lim
q→0

Sq = γSGH . (4.8)

As we can see from (4.6), the entanglement entropy acquires an extra divergent term
coming from the 1-loop determinant and a finite term corresponding to the Gibbons-Hawking
entropy as previously computed in different contexts [22, 24, 26–29, 35–37]. The extra
logarithmic divergence can be rewritten as

SE = γ
AH
δ2
q

+ γ
AH

4~G4
, (4.9)

where δq reads as

δ2
q = 2γAH

3

(1− q
q

)
log

[(
1− 1

q

) 1
3 γAH

4~G4

]−1

↔
(

1− 1
q

)
=

δ2
q

2γAH
W0

(
128~3G3

4
γ2A2

Hδ
2
q

)
,

(4.10)

where W0(x) is the Lambert W function. We can see that in the tensionless limit q → 1,

lim
q→1

δq = 0 , (4.11)

giving the divergent area-law of entanglement entropy [43, 57] where δq can be identified
with the UV cutoff appearing in the standard QFT description literature (see appendix A).
Therefore, the cutoff is related to the geometric orbifold parameter which acquires a
physical interpretation in terms of energy scale. The finite contribution corresponds to
the Gibbons-Hawking entropy in agreement with [24, 26, 58]. One can also compare the
result with the one-loop contributions to black-hole entropy obtained in [59] by considering
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conical singularities associated to time coordinate. These conical singularities modifies the
temperature of the black hole giving quantum corrections to the entropy which contains two
divergences; one associated to interactions near the tip of the cone, and other related to UV
divergences. In order to obtain the correct result one needs to match the regulators for both
divergences. In particular, for the presented case, we have only one regulator associated to
both, the UV divergences and the conical defects.

4.2 Dimensionality formulae for large and small q

The limits q → ∞ and q → 0 of the Renyi entropy, referred to, respectively, as the min-
entropy and the max-, or Hartley, entropy, yield information of the dimensionality of the
density matrix ρA [60, 61], namely

S∞ = − log λ1 , (4.12)
S0 = logD , (4.13)

where λ1 is the largest eigenvalue that is active in ρA, and D corresponds to the number of
non-vanishing elements of ρA. In terms of (4.7) and (4.8) we get

λ1 = (γSGH)
3
2 exp{−γSGH} , (4.14)

D = exp{γSGH} , (4.15)

because of the large value of SGH (for example, see [62]) we get λ1 � 1 which is consistent
with the fact that S∞ represents the minimum value of the Renyi entropy, and D � 1 gives
the dimensionality of Hilbert space associated to a single Rindler observer HA such that
it has dimension exp{γS}, as is already proposed in [9, 15] when γ = 1. The limit q → 0
corresponds to the limit in which the cutoff moves to the infrared δ →∞ leading to the
properties of dS spacetime in the IR.

5 Codimension-2 holography in large q limit

In [28], it was observed that in the limit q →∞, the orbifold dSq reduces to global, three-
dimensional de Sitter spacetime (dS3) and the defects are sent to I±3 . Moreover, it was
shown that Liouville theory on Σξ was a consistent truncation at the classical level, and
the associated central charge reproduces the one of (3.19) for γ = 1/2. Upon dimensional
reduction of Newton’s constant, the sum of the central charges of the two Rindler observers
resembles the one appearing in the context of dS/CFT correspondence [44, 63, 64]. As a
matter of fact, this can be viewed as a realization of dS3/CFT2 holography starting from
the higher-dimensional singular spacetime dS4/Zq. Thus, we will extract information of the
two-dimensional CFTs living at the space-like boundaries of three-dimensional de Sitter
space I±. In particular, the quantum corrections to the corresponding two-dimensional
holographic CFT are thus given by the large-q limits of those computed in the previous
section, which remain finite, and have been computed in [18]. The large-q limit of the
embedding coordinates (2.8) is given by

Y0 =
√
`2 − r2 cos θ sinh(t/`) , Y1 =

√
`2 − r2 cos θ cosh(t/`) ,

Y2 = r cos θ , Y3 = ` sin θ , Y4 = 0 , (5.1)
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S2

S2/Zq

•

•

`q = `
q

ΣN

ΣS

q →∞
dS3

z

Figure 3. The q →∞ limit of the geometry corresponds to the zero radius `q limit where the spindle
shrinks to a single traverse dimension between the defects. The resulting geometry corresponds to
global dS3 spacetime.

upon using the Zq action, satisfying the hyperboloid constraint YAY A = `2 for A = 0, . . . , 3,
resulting in the induced line element

ds2 = cos2 θ

(
−f(r)dt2 + dr2

f(r)

)
+ `2dθ2 . (5.2)

As proposed in [27], the double Wick rotation t→ i`ϕ̂, θ → iτ̂/` resembles dS3 in global
coordinates, which in our case the embbeding coordinates lead to the line element

ds2 = −dτ̂2 + cosh2(τ̂ /`)
(
dr2

f(r) + `2f(r)dϕ̂2
)
, τ̂ ∈ R , ϕ̂ ∈ [0, 2π] , (5.3)

where the line element at fixed τ̂ corresponds to a Euclidean R2, that is, a round S2. Thus,
taking r = ` cos φ̂, we get

ds2 = −dτ̂2 + `2 cosh2(τ̂ /`)dΩ̂2
2 , φ̂ ∈ [0, π] , (5.4)

where dΩ̂2
2 = dφ̂2 + sin2 φ̂ dϕ̂2 is the line element of the unit two-sphere. As expected, in

the q → ∞ limit, the minimal surfaces Σξ corresponds to the past and future conformal
infinities I±3 of dS3. The large q limit is illustrated in figure 3.

As in [27], the central charge (3.16) of the defects reproduces the result of Strominger [44]
for dS3, which is

c(ΣN ∪ ΣS)
q→∞
−→ c(I+

3 ∪ I
−
3 ) = 3`

2~G3
, (5.5)

by using the relation G4 = 4`G3, and was shown to reproduce the three-dimensional de
Sitter entropy by taking the large q limit of the modular free energy of the total space given
by the Cardy entropy of both observers,

SC(RN ∪RS)
q→∞
−→ π`

2~G3
. (5.6)

Considering now the quantum corrections of the Cardy entropy on the defects, obtained
in section 4, in the large q limit we get

SC(RN ∪RS)
q→∞
−→ π`

2~G3
− 3 log π`

2~G3
+ const , (5.7)
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giving the recently obtained first quantum correction of three-dimensional de Sitter [45, 46].
In this limit the dual theory becomes non-thermal, as T = q−1 → 0, in agreement with the
interpretation of [27, 65, 66] as dS3 entropy being the Liouville momentum avoiding the
problems pointed out in [67]. A natural generalization of this construction would be the
inclusion of higher co-dimensional defects. This has been explored in Anti-de Sitter space by
considering a causal wedge of AdS with defects generalizing the idea of AdS/CFT [68–71].

6 Conclusions and outlook

In this work, following the ideas of [27, 28], we consider Einstein gravity on the quotient
dS/Zq with Nambu-Goto improvement terms at defects so as to obey the variational
principle [49], such that the smooth de Sitter geometry re-appears in the tensionless limit
q → 1. We find that the cosmological horizon is stabilized by the asymptotic Killing
vector fields of [41, 42], inducing an asymptotic symmetry algebra à la Barnich-Brandt [39]
given by a single copy of the Virasoro algebra with non-trivial central charge. We fix the
q-dependence of the central charge by requiring maxima disorder, resulting in a q-dependent
Cardy entropy. We also choose the remaining free parameter, which was present already
in the construction [41], by demanding constant Renyi entropy, which reproduces the semi-
classical result [27, 28], leading to the conclusion that the Gibbons-Hawking entropy can
be interpreted as the entanglement entropy between causally disconnected Rindler patches.
Following [18], we consider Gaussian fluctuations in the density of states in the thermal CFT
describing the horizon, which results into finite logarithmic corrections for q > 1. In the
q → 1 limit of the Renyi entropy, namely, the tensionless limit, we obtain a divergent von
Neumann entropy satisfying the entanglement area law of QFTs [43]. We regulate the UV
divergence by introducing a cutoff given as a function of the orbifold parameter q, allowing
us to reinterpret this geometric construction in terms of the energy scale of the theory. We
also study the q → 0 limit, in which the cutoff moves into the IR, that gives the logarithm
of the dimension of the associated Hilbert space, and the q →∞ limit which gives the larges
eigenvalue of the reduced density matrix. The former indeed reproduces Bank’s proposal [15]
that a quantum theory of gravity in an asymptotically de Sitter spacetime has a Hilbert
space of finite dimension that equals the logarithm of the Gibbons-Hawking entropy.

We have studied quantum logarithmic corrections of the Cardy entropy of the Liouville
field theory that was obtained in [28] by considering a reduction of the improved Einstein
action to the defects. In the large q limit, the central charges of this model reproduce the
dS3/CFT2 results of [44], in which the central charges of the defects now correspond to those
of the conformal asymptopia, and the corresponding Cardy entropy contains logarithmic
corrections and reproduces those of three-dimensional de Sitter quantum gravity found by
computing the one-loop correction to its partition function on the round three-sphere [45].

It would be interesting to match the results of the current work with those found
in [72], where it was found that the logarithmic correction to entropy is a Noether charge
given in terms of three ingredients: the horizon Euler characteristic, the a-trace anomaly
appearing the quantum corrections of Einstein field equations, and the solution φH to the
uniformization problem for Q-curvature [73]. Particularly, these corrections were computed
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for Schwarzschild and massless topological AdS black holes. In the current work, we show
that the latter corresponds to the double Wick rotation of the static patch in dS spacetime.
Therefore, the solution for φH is the same as in the case of massless, topological black holes,
while the Euler characteristic has opposite sign. Since both are conformally flat backgrounds,
it is possible to obtain information about the trace anomaly on the four-dimensional dS
background using this formalism and comparing with our result.

Finally, similar spacetimes have been recently studied in supergravity with negative
cosmological constant. In particular, the resulting near-horizon geometry of branes wrapping
spindles corresponds to a direct product of the type AdS×Σ where Σ is a spindle [74–76]. For
instance, it is argued that the near-horizon limit of a M2-brane wrapped around a spindle is
described by a well-known classical solution, the Plebanski-Demianski metric [77, 78]. Here,
the tension of the cosmic string produces the acceleration of the black hole [79, 80] which
interplays within the cosmological constant creating a Rindler horizon if the acceleration is
large enough. This second horizon resembles the characteristics of the cosmological horizon
as it disconnects the regions of the spacetime preventing access to the AdS boundary. The
thermodynamics of these spacetimes seems to be well-understood in the regime where the
acceleration is slow and the Rindler horizon vanishes [79, 81–83]. Nevertheless, a consistent
thermodynamic description of the accelerating horizon is still unclear, and one could expect
that using the asymptotic symmetry algebra of this horizon as in section 3 could lead to
a better understanding of accelerating black holes and their holographic description. We
leave this question open for future work.
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A Entropy functions

A key distinguishing feature of quantum mechanics vis-à-vis classical mechanics is the
notion of quantum entanglement, whereby a system built from localizable degrees of
freedom attached to two separate regions, A and B, say, of a manifold, or a set of points, is
assigned a direct-product Hilbert space HA⊗HB , which contains pure quantum states5 given

5In classical mechanics, the system is assigned a direct-product symplectic manifold MA×MB ; probability
distributions on this space can describe mixed classical states in which the values observables in A and B

are correlated, but there is no classical counterpart of quantum entanglement at the level of pure, classical
states, which are given by delta functions; indeed, pure, classical states remain pure as one of the symplectic
manifolds are integrated out. Moreover, defining a pure classical state as a delta-sequence, its von Neumann
entropy tends to minus infinity as the volume of support goes to zero, manifesting a classical “catastrophe”.

– 16 –



J
H
E
P
0
8
(
2
0
2
2
)
2
6
1

by superpositions that correlate observables confined to A and B, that is, the eigenvalues of
operators of the form OA⊗ IdB and IdA⊗OB . Thus, an observer in one of the two regions,
B, say, measuring OB by performing a von Neumann measurement, which eventually
produces a pure state in HA ⊗ HB with fixed eigenvalue of IdA ⊗OB, bears an impact on
the spectrum of OA⊗ IdB in region A (independently of the scale of the spatial separation).

Renyi entropy and modular free energy. Consider the reduced density matrix

ρA := TrHB ρAB , (A.1)

whose spectral properties manifest the degree of entanglement of the original pure state.
These properties are encoded into the spectral function

Sq,A := 1
1− q logZA , ZA := TrHA (ρA)q , Re(q) > 0 , (A.2)

known as the Renyi entropy; when restricted to the strictly positive integers, the parameter
q is referred to as the replica number. The Renyi entropy is q-independent iff the reduced
density matrix describes an equiprobable ensemble, in which case the original state is said to
be maximally entangled (with respect to the separation of the point set into A∪B). The limits

SE,A := lim
q→1

Sq,A , S0,A := lim
q→0

Sq,A , S∞,A := lim
q→∞

Sq,A , (A.3)

are referred to, respectively, as the entanglement, Hartley and minimum entropies of ρA.
From

SE,A = −TrHA ρA log ρA , (A.4)

it follows that the entanglement entropy is the von Neumann entropy of ρA, which serves
as a good measure of the degree of entanglement in the original pure state.6 The Hartley
entropy can be identified as

S0,A := logDA , (A.5)

where DA is the number of non-zero eigenvalues of ρA, that is, the dimension of the subspace
of HA that participates in the entanglement. Assuming that the reduced density matrix
is in the image of the exponential map, viz.

ρA =: exp {−HA} , (A.6)

where HA is referred to as the modular Hamiltonian, one has

S∞,A := lim
q→∞

Sq,A ≡ − log λmax
A , (A.7)

where λmax
A is the largest eigenvalue of HA. The existence of such a Hamiltonian implies

that the Renyi entropy can be identified as

Sq,A =
(

1− 1
q

)−1
FA , FA := −1

q
logZA , (A.8)

6Viewing the reduction operations as processes taking place in a modified, nonlinear version of quantum
mechanics, one may think of quantum dynamics acts as the fundamental source of (entanglement) entropy.
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where FA is thus the free energy of the corresponding thermal system with temperature,
entropy, and thermal energy given by

Tq := q−1 , SA := (1− q∂q) logZA , EA = −∂q logZA , (A.9)

respectively (and one has limq→1 SA = SE,A); this system is often referred to as the modular
system, and FA, Tq, SA and EA as the modular free energy, temperature, modular entropy
and modular energy, respectively. The Renyi and modular entropies are related by

SA = q2∂q

(
q − 1
q

Sq,A

)
. (A.10)

Inverting this relation yields

Sq,A = q

q − 1

∫ q

1

dq̃

q̃2 SA . (A.11)

Cardy-Calabrese formula and orbifolds. In quantum field theories on metric back-
grounds, the modular partition function can be computed by letting ρA ≡ exp{−HA}
represent the foliation of a smooth, Euclidean geometry (MA, ds

2), with MA ⊃ A, generated
by HA in one unit of Euclidean time, with A treated as a co-dimension one Cauchy surface;
this yields the Cardy-Calabrese formula

ZA =
ZA

[
M̂A,q, dŝ

2
]

(ZA [MA, ds2])q , (A.12)

where ZA
[
M̂A,q, ds

2
]
is computed on the q-fold, branched, Euclidean cover geometry

of (MA, ds
2), with (M̂A,1, dŝ

2) ≡ (MA, ds
2), constructed by gluing together q copies of

(MA, ds
2) along A, which yields a branched geometry with a smooth metric dŝ2, and a

natural Zq-action with ramification surface given by the entangling surface ∂A. Thus, the
Renyi entropy

Sq,A = 1
1− q

(
logZA

[
M̂A,q, dŝ

2
]
− q logZA

[
MA, ds

2
])

. (A.13)

In the semi-classical limit, one has

ZA
[
M̂A,q, dŝ

2
]
≈ exp

{
−1
~
IE
[
M̂A,q, dŝ

2
]}∣∣∣∣

Saddle
, (A.14)

where IE is the Euclidean action and the saddle-point requires a suitable boundary condition;
assuming locality, it follows that

IE
[
M̂A,q, dŝ

2
]

= qIE
[
(M̂A,q, dŝ

2)/Zq
]
, (A.15)

where the orbifold geometry

(M̂A,q, dŝ
2)/Zq = (MA, ds

2
q) , (A.16)

that is, it is given by the manifold MA equipped with a non-smooth metric ds2
q with a

conical singularity of co-dimension two at ∂A with a deficit angle 2π(1−q−1). The quantum
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corrections to Renyi entropy contains short-distance divergences inside the bulk, that are
independent of entanglement data, and at the border of the traced-out region, referred to
as the entanglement surface; the latter exhibit universal scaling behaviours leading to area
laws for the entanglement entropy, viz.

SE,A = γ
A(∂A)
δd−2 (1 + o(δ)) , γ ∈ R+ , (A.17)

where δ is a UV cut-off, and γ depends on the field content of the theory.
At high temperature, the highest UV-finite contribution is dominated by the thermal

entropy of the subset A [84], and consdering B to be empty, the entanglement entropy
corresponds to the thermal entropy

SE,A = β〈HA〉+ logZA = β(EA − FA) = Sth,A . (A.18)

q-derivatives. Defining (
∂F

∂x

)
q
≡ F (qx)− F (x)

qx− x
, (A.19)

referred to as q-derivative of F (x), which recovers the standard derivative wehen q = 1, the
Renyi entropy can be seen as the q−1-derivative of the negative free energy [85], viz.

Sq = −
(
∂F

∂T

)
q−1

. (A.20)

This relation can be generalized by considering a re-scaled temperature

T = T0
q
, (A.21)

where we normalize the partition function at T0 as Ẑ(T0) = 1; then

Sq,A = T log Ẑ(T )− q log Ẑ(T0)
T − T0

, (A.22)

which by normalizing T0 = 1 simplifies to eq. (A.8) with F (q) = FA. In other words,
the Renyi entropy amounts to the maximum work that a system in thermal equilibrium
can perform by reducing its temperature by a factor of q−1, divided by the change in
temperature.

Disorder and von Neumnann entropy. The von Neumann entropy has a natural
thermodynamic interpretation as the equilibrium value of a disorder functional. Let us refer
to a set {σξ}Nξ=1 ≡ Σ of N labelled elements, or micro states, as an N -state system. Let
RN+ be the N -dimensional real cone. A map ρ : Σ→ RN+ obeying

N∑
ξ=1

ρ(σξ) = 1 , (A.23)
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is referred to as a macro-state. Each disjoint union Σ = Σ′1 ∪ Σ′2 induces a 2-state system
Σ̌ := {Σ′1,Σ′2}, whose micro states are thus given by the two disjoint subsystems, with a
macro state ρ̌ defined by

ρ̌(Σ′i) =
∑
σ∈Σ′i

ρ(σ) , i = 1, 2 . (A.24)

The disorder functional D : ρ→ R+ is defined by requiring that

D [ρ] = ρ̌(Σ′1)D
[ 1
ρ̌(Σ′1)ρ|Σ

′
1

]
+ ρ̌(Σ′2)D

[ 1
ρ̌(Σ′2)ρ|Σ

′
2

]
+D [ρ̌] . (A.25)

for any disjoint union, that is, the disorder of ρ is given by the weighted contributions from
the two subsystems plus an extra contribution arising due to forming the disjoint union,
referred to as the mixing entropy. The latter is clearly negligible in the large N limit, but
significant after repeated partitions down to a large number of subsystems of size of order
one, and the sole source of entropy in a process setting out from separate micro states. It
follows that

D[ρ] = k
∑
ξ

ρ(σξ) log 1
ρ(σξ)

, (A.26)

where k is an undetermined constant.
Classical thermodynamics amounts to maximizing the disorder in the space of macro-

states while keeping expectation values of observables fixed; in the absence of any constraints,
the extremal macro-state is the equiprobable distribution of micro states, while the presence
of constraints imply that the extremal macro-states are given by Boltzmann distributions
with conjugate variables arising as Lagrange multipliers. An interesting question is thus
how to modify the above notions such that the resulting extremization procedure leads to
Renyi entropy.

B Asymptotic charges

Let M be a manifold with interior M ′ and boundary ∂M admitting a one-parameter
foliation with leafs Σ for a canonical formulation, and denote by Vect(M ; ∂M) the algebra
of vector fields on M that stabilizes ∂M . Let i) g be an on-shell metric that equips ∂M
with an asymptotic structure [g]|[∂M ]; ii) C be a space of classical solutions ĝ := g + h that
are smooth in the interior of M , containing ĝ = g; and iii) K be a Lie algebra represented
by subalgebra of Vect(M ; ∂M), referred to as the AKVs, that stabilizes C. The canonical
formalism [39, 42] assigns the system asymptotic charges

Q̂(ε)
~ζ

[ĝ] =
∮

Σε
k̂~ζ [ĝ] , (B.1)

where ~ζ is the vector field representing ζ ∈ K, and Σε ⊂M
ε→0−→ Σ, that are diffeomorphism

invariant, that is ∫
M

(
(L~v ĝ)µν

δ

δĝµν
+ (L~v~ζ)µ δ

δ(~ζ)µ

)
Q̂(ε)
~ζ

= 0 , (B.2)
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for smooth ~v on M , i.e. ∫
M

(L~v ĝ)µν
δ

δĝµν
Q̂(ε)
~ζ

= −Q̂(ε)
[~v,~ζ]

, (B.3)

such that if
Q̂~ζ := lim

ε→0
Q̂(ε)
~ζ
, (B.4)

are finite, then they are moment functionals for a projective representation of K in C by
means of a Dirac bracket {·, ·}, in which g is treated as a constant background, viz.

{Q̂~ζ , h} := L~ζh . (B.5)

It follows that {Q̂~ζ , ĝ} = L~ζ ĝ − L~ζg, which yields

{Q̂~ζ , Q̂~ζ′} ≡
∫
M

(Q̂~ζ)µν
δ

δĝµν
Q̂~ζ = Q̂[~ζ′,~ζ] −

∫
M

(Lζg])µν
δ

δĝµν
Q̂~ζ′ , (B.6)

upon using (B.3) and when combined with (B.4). Assuming fall-off conditions on h such that

Q̂~ζ [ĝ] = Q̂~ζ [g] +Q~ζ [h; g] , Q~ζ [h; g] :=
∮

Σ
k~ζ [h; g] , (B.7)

where k~ζ [h; g] is linear in h, one has

{Q~ζ ,Q~ζ′} = Q[~ζ′,~ζ] + C(~ζ, ~ζ ′; g) , (B.8)

where the central term

C(~ζ, ~ζ ′; g) = Q̂[~ζ′,~ζ][g] +
∮

Σ
k~ζ [L~ζ′g; g] (B.9)

which is an anti-symmetric bi-linear form on K built from background charges and the
charges of L~ζg treated as fluctuations; as a simple sign check, one has

{Q~ζ , {Q~ζ′ , h}︸ ︷︷ ︸
L~ζ′h

}+ {Q~ζ′ , {h,Q~ζ}︸ ︷︷ ︸
−L~ζh

}+ {h, {Q~ζ ,Q~ζ′}︸ ︷︷ ︸
Q[~ζ′,~ζ]+C

} = L~ζ′{Q~ζ , h} − L~ζ{Q~ζ′ , h} − L[~ζ′,~ζ]h ,

(B.10)

i.e. the algebra is indeed consistent with the Jacobi identity. While the computation of the
central charge is based on self-consistency, the existence of the projective representation
requires a duality relation [39] between the scaling behaviours of elements in C and K in the
asymptotic region, referred to as the asymptotic boundary conditions (ABC). Relaxing the
ABC on C, enlarges Vect(M ; ∂M)C and restricts C∗

Q̂
, where Vect(M ; ∂M)C and C∗

Q̂
, respec-

tively, denote the stabilizer and Q-dual of C in Vect(M ; ∂M); thus, imposing ABC such that

Vect(M ; ∂M)C = C∗Q̂ , (B.11)

yields symplectic spaces of boundary states with finite central charges containing the orbit
of g under the K-action. In a near-horizon geometry, the null Killing vector field ~χ (NKV)
induces an algebra K~χ of AKVs that preserve the NKV, in its turn inducing C~χ = (K~χ)∗

Q̂
.

– 21 –



J
H
E
P
0
8
(
2
0
2
2
)
2
6
1

C Bunch-Davies vacuum

Considering the deformed background (2.15), we can characterize macroscopic thermal
properties of a entangled state that is encoded in the Boltzmann factor exp{−ω/TdS} where
ω corresponds to the energy eigenstate with temperature TdS. Near to the defects, the line
element (2.15)

ds2 ≈ −f(r)dt2 + dr2

f(r) + . . . , (C.1)

and taking the near horizon limit r → `, by considering the dimensionless Rindler coordinates
τ = `t and Υ2 = 2(1− r/`),

ds2 ≈ −Υ2dτ2 + dΥ2 , Υ� 1 . (C.2)

Considering a scalar field [86] on the near-to-defect background (C.1) expanded in eigenstates
with energy ω

Φ(t, r) =
∑
n

φn(r) exp{−iωt} , ω > 0 , (C.3)

and taking the near horizon limit, the mode expansion in terms of the Rindler coordi-
nates (C.2) renders

Φ(τ,Υ) =
∑
n

φn(Υ) exp{−iNτ} , N ≡ `ω , (C.4)

which turns the Boltzmann factor near the horizon to

exp
{
− ω

TdS

}
= exp

{
−N
T

}
, (C.5)

where thus N corresponds to the number of states with temperature

T = 1
2π , (C.6)

referred as the Bunch-Davies vacuum or Euclidean vacuum [86]. We follow to use the
temperature of modes near the horizon (C.6) in the Cardy formula.
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