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find that for Calabi-Yau four-folds all but one representation can be identified with repre-
sentations occurring on two-folds. This allows us to discuss moduli stabilization explicitly
and establish the relevant scaling constraints for the tadpole.

Keywords: Flux Compactifications, F-Theory

ArXiv ePrint: 2204.05331

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP08(2022)237

mailto:mariana.grana@ipht.fr
mailto:t.w.grimm@uu.nl
mailto:d.t.e.vandeheisteeg@uu.nl
mailto:alvaro.herraezescudero@ipht.fr
mailto:e.plauschinn@uu.nl
https://arxiv.org/abs/2204.05331
https://doi.org/10.1007/JHEP08(2022)237


J
H
E
P
0
8
(
2
0
2
2
)
2
3
7

Contents

1 Introduction 1

2 F-theory fluxes and the tadpole conjecture 3
2.1 F-theory flux compactifications 3
2.2 Tadpole conjecture 4

3 Aspects of asymptotic Hodge theory 6
3.1 Strict asymptotic regimes and sl(2)-decomposition 6
3.2 Boundary Hodge decomposition 8
3.3 The strict-asymptotic form of the Hodge star 11
3.4 Explicit sl(2) subspaces on Calabi-Yau four-folds 13

4 Moduli stabilization — general considerations 14
4.1 Self-duality condition 14
4.2 Saxion stabilization 15
4.3 Axion stabilization 16

5 Moduli stabilization — explicit analysis 17
5.1 No moduli stabilization with fluxes in Vrest ⊂ HK3 18
5.2 Vacua with fluxes in Vheavy and Vlight 18

6 The tadpole contribution 22

7 Conclusions 24

A Asymptotic Hodge structures 26

B Bases of sl(2)-representations and ?∞ action 28

C Weak coupling-conifold example 30

D Tadpole contribution and flux quantization 33

1 Introduction

String theory compactifications typically give rise to a large number of massless scalar fields
in the lower-dimensional effective theory. These (moduli) fields correspond to deformations
of the compactification background and are ruled-out by experiments. A very well-studied
setting is that of Calabi-Yau orientifold compactifications of type II string theories, in
particular, type IIB or its non-perturbative completion F-theory. The reason why this
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corner of the landscape is special is because one can turn on three-form fluxes (or four-
form fluxes in the F/M-theory realisation) such that their back-reaction still allows for
a Calabi-Yau geometry, as long as they are self-dual [1–3]. Furthermore, these fluxes
generically lift the moduli corresponding to complex structure deformations of the Calabi-
Yau manifold [2, 4], and have therefore been used at length in string phenomenology.

The in general complicated structure of the moduli space of complex structure de-
formations suggests that turning on flux quanta in a few cycles is enough to generate a
potential capable of stabilizing a large number of moduli. However, this reasoning has been
challenged by the “Tadpole Conjecture” [5, 6], which states that the charge Q induced by
the fluxes needed to stabilize a large number, n, of moduli grows linearly with n. This
growth yields an obstruction on complete moduli stabilization if its slope is larger than the
slope for the linear growth observed for the tadpole. The refined version of the tadpole con-
jecture makes precisely this claim. If this refined version of the tadpole conjecture is true,
then the only phenomenologically-relevant Calabi-Yau manifolds are those with a small
number of complex structure moduli, since large numbers are not amenable to flux-moduli
stabilisation. While the tadpole conjecture suggests a mathematically precise statement,
its proof is extremely challenging and currently wide open. Even in specific situations, such
as e.g. K3×K3 compactifications, any direct proof soon faces technical challenges.

In this work we initiate the first systematic and general approach to establish the tad-
pole conjecture. We collect strong evidence that this conjecture is satisfied for all (strict)
asymptotic limits in moduli space. Moreover, we give the first conceptual argument that
explains the linear scaling of the tadpole with the number of stabilized moduli and the
requirement that one has to consider a large number of moduli. Our approach uses the
powerful machinery of asymptotic Hodge structures [7, 8] and does neither rely on ex-
plicit examples nor on a specific choice of asymptotic limit. Rather, we exploit the fact
that asymptotic Hodge theory provides us with an explicit expression for the Hodge-star
operator acting on four-forms in terms of n moduli that are taken to be in the asymp-
totic region. Requiring the self-duality condition for the fluxes then becomes an explicit,
polynomial equation for the moduli that has been explored before in [9, 10]. The degrees
of these polynomials are fixed by the weights of the flux components under n commuting
sl(2)-algebras characterizing the asymptotic region. We show that there is a one-to-one cor-
respondence between the number of moduli fixed and the number of sl(2)-representations
supported by flux. Each representation yields an independent positive-definite term in the
tadpole cancellation condition such that a scaling of the flux tadpole with the number of
moduli appears to be immediate if the individual terms are lower-bounded.

The crucial task of this work is to establish this scaling of the flux charge and argue for a
lower bound on individual terms arising from fluxes in an sl(2)-representation, thus showing
that the refined Tadpole Conjecture applies. This requires us to understand in detail which
sl(2)-representations can arise in an asymptotic Calabi-Yau four-fold compactification. We
find that the richest structure hereby comes from the presence of the single (4,0)-form,
which accounts for sl(2)-representations with weights reaching from −4 to 4. The remaining
other sl(2)-representations have a maximal weight 2 and match with sl(2)-representations
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found for Calabi-Yau two-folds (K3 surfaces). Since only the number of these K3-type
representations is increasing with the number of moduli, we are lead to study the much
simpler and more constrained problem of examining the tadpole contribution of such shorter
representations. We find that fluxes in these representations have either all n sl(2)-weights
greater or equal to zero, or smaller or equal to zero. The self-duality condition furthermore
forbids purely zero-weight fluxes and relates fluxes with positive and negative weights. Any
asymptotic stabilization thus has to use these K3-type flux pairs which individually fix a
single modulus and contribute to the tadpole with positive powers of fractions of moduli
that become large in the asymptotic regime. Remarkably, this tadpole can be lower-
bounded by a moduli-independent sum of positive terms depending on the number sl(2)-
fluxes times a large parameter ensuring that the moduli are evaluated in the asymptotic
region.1 We complete our argument by providing evidence that the flux terms do not scale
inversely with the number of moduli and most of them are bounded from below by 1/4 in
all examples we worked out.

The paper is organized as follows: in section 2 we introduce the basic features of F-
theory flux compactifications and the Tadpole Conjecture. In section 3 we discuss asymp-
totic Hodge theory and show that there are only very few weights that appear in a generic
four-fold. In section 4 we show how moduli stabilization by self-dual fluxes works in general,
while in section 5 we work out the explicit solution for the representations appearing in a
four-fold. In section 6 we analyze the tadpole, and show how the tadpole conjecture is ver-
ified. We conclude in section 7. In appendix A we provide more details about asymptotic
Hodge structures, and in appendix B we give explicit bases for the sl(2)-representations and
the action of the Hodge star on them. In appendix C we illustrate the concepts introduced
with a two-moduli example, while in appendix D we work out examples that illustrate flux
quantization in the sl(2) basis with a large number of moduli.

2 F-theory fluxes and the tadpole conjecture

In this section we give a brief review of flux compactifications in F-theory. We focus on
the aspects needed for our study of the tadpole conjecture [5, 6], and refer for a more
comprehensive discussion to [11].

2.1 F-theory flux compactifications

We are interested in compactifications of F-theory on Calabi-Yau four-folds in the pres-
ence of four-form fluxes. Such manifolds have to admit a two-torus fibration, which from
the Type IIB perspective encodes the variation of the dilaton-axion field. To study the
resulting four-dimensional effective action we first consider the dual M-theory setting by
compactifying eleven-dimensional supergravity on a resolved four-fold Y4 to obtain a three-
dimensional effective theory. To connect with F-theory one then takes the limit of shrinking

1This parameter, called γ, does not need to be extremely large. It was shown that already for γ & 4
moduli stabilization using asymptotic Hodge theory gives a very good approximation of the situation, where
all corrections are taken into account [10].
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the torus-fiber [11, 12].2 Investigating the impact of corrections in the resulting F-theory
effective actions has been the focus of [13–20].

In the three-dimensional theory and in the absence of fluxes the deformations of the
four-fold give rise to massless scalar fields, which correspond to the h3,1 complex-structure
moduli and h1,1 Kähler moduli of Y4.3 However, when considering a non-trivial four-form
flux G4 ∈ H4(Y4,Z/2), a potential is induced which can be brought into the form [11, 21]

V = 1
V3
(
‖G4‖2 − 〈G4, G4〉

)
. (2.1)

Here V denotes the volume of the four-fold Y4 which depends on the Kähler moduli, and
we have defined the norm and inner product of a real four-form v ∈ H4(Y4,R) as

‖v‖2 =
∫
Y4
v ∧ ?v , 〈v, v〉 =

∫
Y4
v ∧ v , (2.2)

where ? denotes the Hodge-star operator of Y4. The dependence of the potential (2.1) on
the complex-structure moduli is encoded in the Hodge-star operator in the first term, while
the second term is an on-shell contribution obtained using the Bianchi identity for G4.

We are interested in Minkowski minima of the potential (2.1). These are obtained
when G4 is self-dual and primitive [1, 2], which reads in formulas

G4 = ?G4 , J ∧G4 = 0 . (2.3)

Let us emphasize that in the following we consider G4 = ?G4 as a condition in cohomology
and not as a local condition in target space. We furthermore note that the primitive
four-form cohomology decomposes as

H4
prim = H4,0 ⊕H3,1 ⊕H2,2

prim ⊕H
1,3 ⊕H0,4 , (2.4)

and that the Hodge-star operator ? acts on the Hp,q cohomologies by multiplication with
(−1)(p−q)/2. The self-duality condition in (2.3) then implies that the (3, 1)-components
of the four-form flux have to vanish, which can be written as h3,1 equations for the h3,1

complex structure moduli. Generically these equations fix the moduli at some value — but
the tadpole conjecture, to which we turn now, challenges this naïve expectation.

2.2 Tadpole conjecture

The four-form flux G4 induces a D3-brane charge Q (or M2-brane charge in the M-theory
dual picture) that has to be cancelled globally. Defining

Q = 1
2 〈G4, G4〉 = 1

2

∫
Y4
G4 ∧G4 , (2.5)

2Note that we consider the general case in which the F-theory setting can admit non-trivial 7-brane
configurations with non-Abelian gauge groups. In this case Y4 is the smooth Calabi-Yau four-fold obtained
by resolving the gauge theory singularities. The volumes of the resolution cycles are parameterized by
Kähler moduli and are shrunk in the F-theory limit.

3All the h3,1 complex structure moduli lift directly to complex scalars in the four-dimensional F-theory
lift, whereas only h1,1 − 1 Kähler moduli, corresponding to the (1, 1)-cohomology on the base, give rise to
Kähler moduli in four dimensions.
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this leads to the tadpole cancelation condition and inequality

Q+ND3 = χ(Y4)
24 ⇒ Q ≤ χ(Y4)

24 , (2.6)

where χ(Y4) is the Euler number of Y4 and ND3 ≥ 0 denotes the number of space-time
filling D3-(or M2-)branes. For solutions to the equations of motion with self-dual G4
flux the charge Q is always positive. The fact that Q is also bounded from above may
suggest that the number of self-dual flux configurations on a given Calabi-Yau manifold
is finite. However, as we will discuss in detail below, the Hodge star can degenerate
near the boundaries of the moduli space and vacua could accumulate in such asymptotic
regimes [22]. Remarkably, it turns out that one can prove the absence of such accumulation
points and a general finiteness theorem for self-dual flux vacua using asymptotic Hodge
theory and tame geometry [23].4 Although the number of flux configurations is finite, it is
expected to be extremely large. For instance, for the Calabi-Yau four-fold with the largest-
known Euler number the number of vacua has been estimated to be of order 10272000 [27].
We note, though, that this number was obtained by counting lattice sites and does not
take into account any of the intricate structure of the complex-structure moduli space
and of the Hodge-star operator. The tadpole conjecture scrutinizes these estimates even
further as it challenges the idea that full moduli stabilization can be achieved for manifolds
with large h3,1.

The tadpole conjecture [5] postulates that for a large number of moduli there are always
remaining flat directions. To be more precise, the conjecture states that when stabilizing a
large number of complex moduli nstab � 1, the charge induced by the flux grows linearly
with the moduli in the form

Q > αnstab . (2.7)

The refined version of the conjecture then gives a precise lower bound for the slope:

α >
1
3 . (2.8)

If the tadpole conjecture is true, one cannot stabilize a large number of complex structure
moduli within the tadpole bound (2.6), since for a large h3,1 the Euler number behaves as
χ(Y4) ∼ h3,1/4 and one would have

1
3nstab < Q ≤ χ(Y4)

24 ∼ 1
4 h

3,1 ⇒ nstab <
3
4h

3,1 . (2.9)

We note that the tadpole conjecture refers to stabilization of the real and imaginary part of
the complex moduli. If the conjecture is true there is always some left-over moduli space,
and it is a very interesting question (beyond the scope of this paper) to understand its
structure, in particular, if it is compact or not.

4This result is a generalization of a famous theorem [24] about the finiteness of Hodge loci, and captures
finiteness along one-dimensional limits first shown in [25, 26].
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3 Aspects of asymptotic Hodge theory

In this work we are interested in the behavior of the flux-induced charge Q when stabilizing
moduli near the boundary of complex-structure moduli space. A suitable framework for
discussing this question is asymptotic Hodge theory, which we briefly review in the follow-
ing [9]. Let us stress that a boundary in complex-structure moduli space corresponds not
only to the familiar large complex-structure limit, but it includes also the conifold point
and more general degenerations [28]. Our analysis is valid for all of such boundaries. In
appendix C we present a two-moduli example that illustrates the concepts we introduce in
this section, where the asymptotic region we explore is that close to the conifold point and
the weak coupling limit.

3.1 Strict asymptotic regimes and sl(2)-decomposition

The complex-structure moduli space of Calabi-Yau four-folds is parametrized by h3,1 com-
plex scalar fields. Let us consider an asymptotic region in this moduli space and separate
these fields into two groups in the following way

{ti, ζα} , i = 1, . . . , n , α = n+ 1, . . . , h3,1 , (3.1)

where 0 < n ≤ h3,1. The ζα are called spectator fields and will not play any role in our
subsequent discussion, so we will mostly ignore them. The scalars ti correspond to the
coordinates (on the covering space) of the moduli space that parametrize how far away we
are from one of its boundaries. The real and imaginary parts of ti will loosely be called
axions and saxions, respectively,5

ti = φi + i si , si > 0 , i = 1, . . . , n , (3.2)

and the boundary of the moduli space corresponds to the limit si →∞.

Asymptotic regimes. In the near-boundary region we can consider the following two
regimes:

1. The asymptotic regime is characterized by the following condition for the saxions si
with i = 1, . . . , n

si � 1 , (3.3)

which corresponds to dropping corrections O(e2πiti) in, for instance, the Hodge-star
operator.

2. In the strict asymptotic regime the si are ordered according to the hierarchy

s1

s2 > γ ,
s2

s3 > γ , . . . ,
sn−1

sn
> γ , sn > γ , |φi| < δ , (3.4)

5Note that the real parts are not necessarily axions, i.e. they might not have a continuous shift symmetries
even in the leading moduli space metric, such as the intersection of two conifold loci [28].
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where γ � 1 and δ > 0. Dropping polynomial corrections of order O(γ−1) corre-
sponds to the sl(2)-approximation [8], which is the setting where our work will take
place. Note that these inequalities specify a certain hierarchy of field values and
one cannot simply permute indices. In general, using the same coordinates with a
different ordering, and hence a different hierarchy, implies that one probes another
strict asymptotic regime with different properties.

Let us emphasize that the spectator fields ζα are not send to the boundary, however,
quantities such as the Hodge-star operator can still depend on them.

Sl(2)-decomposition. We now turn to the sl(2)-decomposition of the fourth cohomology
of Y4. A pedagogical introduction to this subject can be found for instance in section 3.1
of [10], and more detailed discussions can be found in [7, 8, 29, 30]. We summarize the
main aspects that we will use in the rest of the paper as follows:

• To each boundary of complex-structure moduli space one can associate monodromy
transformations acting on the fourth cohomology of the Calabi-Yau four-fold Y4. If
n saxions si are sent to the boundary, this action can be realized by n commuting
matrices Ti acting on H4

prim(Y4,R). These matrices can always be made unipotent,
that is (Ti − 1)m+1 = 0 for some m ≥ 0, and to each Ti we can associate a so-called
log-monodromy matrix Ni = log Ti. Since the Ti are unipotent it follows that the
Ni are nilpotent (when acting on the fourth cohomology), and we note that the Ni

commute among each other.

• Each nilpotent Ni can be completed into an sl(2)-triple, in which it acts as lowering
operator. However, the choice of weight operator is not unique. Although the Ni

commute with each other, in general the other generators of the sl(2)-triples do not. It
is a non-trivial result of the sl(2)-orbit theorem [8] that for each Ni one can construct
n sets of commuting sl(2)-triples as6

commuting sl(2)-triples: {N−i , N
+
i , N

0
i } , (3.5)

with the standard commutation relations[
N0
i , N

±
j

]
= ±2N±i δij ,

[
N+
i , N

−
j

]
= N0

i δij . (3.6)

• The triples shown in (3.5) can be used to split the vector space H4
prim(Y4,R) in the

following way (see appendix A for technical details)

H4
prim(Y4,R) =

⊕
`∈E

V` , ` = (`1, . . . , `n) , (3.7)

where V` are the eigenspaces of N0
i characterized by N0

i v` = (`i − `i−1)v`, which can
be rewritten as

(N0
1 + . . .+N0

i )v` = `iv` , v` ∈ V` . (3.8)
The indices `i are integers that for Calabi-Yau four-folds are in the range `i ∈
{−4, . . . ,+4}, and E denotes the set of all possible vectors `.

6Here the lowering operator N−i is closely related to Ni, but only N−1 = N1 holds generally.
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• It is instructive to consider the periods of the (up to rescaling) unique, holomorphic
(4, 0)-form Ω of Y4. Its period vector Π admits an expansion in the strict asymptotic
regime (3.4) as

Πsl(2) = et
iN−i ã0 , (3.9)

where we did not display subleading polynomial terms of order 1/γ and exponentially
suppressed corrections. We note that for derivatives of the periods both kinds of
corrections can be essential, as it happens for example for the Kähler metric near a
conifold point (see appendix C). These essential corrections are taken into account
when computing e.g. the asymptotic form of the Hodge star operator. The leading
polynomial term ã0 has a precise location in the sl(2)-decomposition

Re ã0 , Im ã0 ∈ Vd , (3.10)

with d a vector of the form d = (d1, . . . , dn). The di are the largest integers such that
the condition (N−1 + . . . + N−k )dk ã0 6= 0 is satisfied, i.e. ã0 is a highest-weight state.
We also note that 0 ≤ d1 ≤ . . . ≤ dn ≤ 4.

• We can make the above sl(2)-decomposition (3.7) more refined using sl(2) highest-
weight states and their descendants. Let us introduce the subspaces

P` = V` ∩ ker
[
(N−1 )`1−`0+1] ∩ . . . ∩ ker

[
(N−n )`n−`n−1+1] , (3.11)

with `0 ≡ 0. The decomposition (3.7) can then be rewritten as a weight-space
decomposition in the following way

H4
prim(Y4,R) =

⊕
`∈Ehw

`1−`0⊕
k1=0

· · ·
`n−`n−1⊕
kn=0

(N−1 )k1 · · · (N−n )knP` , (3.12)

where we defined the index set for highest-weight states as

Ehw = {` = (`1, . . . , `n) | 0 ≤ `1 ≤ . . . ≤ `n ≤ 4} . (3.13)

To summarize, the elements of H4
prim(Y4,R) are arranged in irreducible representation

of the boundary sl(2)-algebras. This means that all their information is encoded in
the highest-weight subspaces P` (and in the lowering matrices), so that by successively
applying N−i the full primitive four-form cohomology can be obtained.

We already note now that by introducing a boundary Hodge decomposition, we will be
able to break down the index set (3.13) into smaller components (cf. equation (3.21)),
thereby further reducing the set of allowed sl(2)-eigenspaces.

3.2 Boundary Hodge decomposition

In addition to the sl(2)-decomposition introduced above, there is another algebraic struc-
ture associated to the boundary: the boundary Hodge decomposition given by

H4
prim(Y4,C) = H4,0

∞ ⊕H3,1
∞ ⊕H2,2

∞ ⊕H1,3
∞ ⊕H0,4

∞ , (3.14)
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where Hp,q
∞ = Hq,p

∞ . This decomposition is independent of the limiting coordinates ti. From
a more physical perspective one can interpret (3.14) as a charge decomposition, with the
index p of Hp,q

∞ as charge, and its counterpart q fixed by p + q = 4.7 We now discuss the
following aspects:

• We first introduce a Weil operator ?∞ that acts on an element in one of the subspaces
wp,q ∈ Hp,q

∞ as
?∞ wp,q = ip−qwp,q . (3.15)

The Weil operator thus squares to the identity, that is ?2
∞ = 1, and it is independent

of the moduli ti. It also maps the V` appearing in the sl(2)-decomposition (3.7) as

?∞ : V` → V−` . (3.16)

Here we have used that dim V+` = dim V−`, which can be shown using the action of
the sl(2)-triples.

• It is now instructive to split the highest-weight subspaces P` introduced in (3.11) as

P` =
⊕

p+q=`n+4
P p,q` , (3.17)

based on the Deligne splittings associated to the strict asymptotic regime (see ap-
pendix A for more details). For our purposes here it is sufficient to note that this
splitting is correlated with the boundary Hodge decomposition given in (3.14), as
becomes apparent by noting that

e
iN−(n)P p,q` ⊆ Hp,4−p

∞ , p ≥ q , N−(n) ≡
n∑
i=1

N−i . (3.18)

• Combining (3.18) with (3.16), expanding the exponentials and identifying sl(2)-
eigenspaces, we can then show that

?∞

(
n∏
i=1

(iN−i )ki

ki!
vp,q`

)
= i2p−4

n∏
i=1

(iN−i )`i−`i−1−ki

(`i − `i−1 − ki)!
vp,q` , (3.19)

for vp,q` ∈ P p,q` (with p ≥ q), and where ki are any set of integers that give a non-
vanishing contribution on the left-hand side.8 Let us note the similarity of this
relation with the Kähler-form identity ?Jk/k! = Jd−k/(d − k)! on a d-dimensional
Kähler manifold. This identity will prove to be very useful in the study of moduli
stabilization, where we need to identify self-dual fluxes under the Hodge star.

7This operator-based approach has been explored in more detail in [26, 31, 32]: for (3.14) one can
introduce a corresponding charge operator with Hp,q

∞ as eigenspaces; for the sl(2)-triples one can rotate to
a complex basis such that the generators commute with the charge operator. This thereby allows for a
simultaneous decomposition into eigenstates, which — although we do not use these operators explicitly in
this work — is described in this subsection.

8This identity has also appeared before in [33] for the leading term a0 of the periods, where it played an
important role in determining charge-to-mass ratios of BPS states.
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• It is also helpful to correlate the highest-weights given in (3.13) with the charge
decomposition described by (3.17). This refined splitting of indices is given by

Ehw,charge = {(p, q, `) | 0 ≤ p, q ≤ 4 , ` ∈ Eprim, p+ q = `n + 4} . (3.20)

For p = 4 or q = 4 there is one state — ã0 obtained from (3.9) or its conjugate
— spanning the corresponding highest-weight subspace, which can be attributed to
the Calabi-Yau condition h4,0 = h0,4 = 1. The remaining highest-weight states have
1 ≤ p, q ≤ 3 and weights similarly bounded as 0 ≤ `1 ≤ . . . ≤ `n ≤ 2. A more
detailed explanation of this decomposition is given in appendix A. Here we state its
result for (3.20) as

Ehw,charge = {(4, dn, d), (dn, 4, d)} ∪ EK3 , (3.21)

where we defined

EK3 = {(p, q, `) | 1 ≤ p, q ≤ 3 , 0 ≤ `1 ≤ . . . ≤ `n ≤ 2 , p+ q = `n + 4}. (3.22)

The remainder EK3 of highest-weight states are related to (3, 1)-, (2, 2)-, and (1, 3)-
forms in the boundary Hodge decomposition, as can be seen by using (3.18). Rela-
beling these (p, q)-forms by shifting both degrees down by one, we recover a decom-
position reminiscent of the middle cohomology of a Calabi-Yau two-fold, namely a
K3 surface. Likewise, the weights `i are bounded between zero and two. However,
note that (3, 1)-forms are not unique for four-folds, so this situation is analogous to
having multiple copies of K3-like blocks.

• The decomposition (3.21) is one of the key insights for our work on moduli stabi-
lization later in this paper. It tells us that for only one or two sl(2)-representations
the weights lie within the range −4 ≤ `i ≤ 4 that characterizes four-folds, while the
remainder of states have weights restricted as −2 ≤ `i ≤ 2. More concretely, we can
decompose the primitive middle cohomology as

H4
prim(Y4,R) = HΩ ⊕

⊕
`∈EK3

HK3,` , (3.23)

where we defined the subspaces

HΩ =
d1−d0⊕
k1=0

· · ·
dn−dn−1⊕
kn=0

(N−1 )k1 · · · (N−n )kn
(
P 4,dn

d ⊕ P dn,4
d ) ,

HK3,` =
⊕
p,q

(p,q,`)∈EK3

`1−`0⊕
k1=0

· · ·
`n−`n−1⊕
kn=0

(N−1 )k1 · · · (N−n )knP p,q` .

(3.24)

For the first equation in (3.24) we take just the subspace P 4,4
d once in the case that

dn = 4. For the second equation the first sum means that, for a given set of highest
weights `, we take all possible values p, q such that (p, q, `) ∈ EK3. In (3.23) we
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then sum over all blocks of K3 subspaces HK3,` to recover the primitive cohomology
H4

prim(Y4,R), where we suppressed the p, q indices in the summation subscript.
For the purposes of moduli stabilization the majority of fluxes thus comes from the
HK3,`: we will see that fluxes in HΩ can only stabilize few moduli, so at large h3,1

the essence of the problem is captured by the K3 subblocks. We stress that this
splitting of the sl(2)-representations is a general result from asymptotic Hodge theory
about the sl(2)-decomposition of H4

prim(Y4,R); the appearance of these blocks is not
a simplifying assumption we make in this work, but a consequence of the existence
of the boundary structure.

3.3 The strict-asymptotic form of the Hodge star

In this subsection we discuss the action of the Hodge-star operator ? in the strict asymptotic
regime. For rigorous derivations of the relevant formulas we refer to [8, 30], while here we
only state that schematically we have

?
strict asymptotic regime−−−−−−−−−−−−−−−−−−→ ?sl(2) , (3.25)

where ?sl(2) denotes the Hodge-star operator in the strict asymptotic regime. This operator
can be written as the following matrix

?sl(2) = e+φiN−i
[
e−

1
2 log(si)N0

i ?∞ e+ 1
2 log(si)N0

i

]
e−φ

iN−i , (3.26)

where N−i and N0
i are elements of the sl(2)-triplets introduced in (3.5). For later reference

it is worthwhile to look more closely at the sl(2)-approximated Hodge decomposition:

• In analogy to (3.14) we can write down a Hodge decomposition in the strict asymp-
totic regime as

H4
prim(Y4,C) = H4,0

sl(2) ⊕H
3,1
sl(2) ⊕H

2,2
sl(2) ⊕H

1,3
sl(2) ⊕H

0,4
sl(2) , (3.27)

with Hp,q
sl(2) = Hq,p

sl(2). As an example, the sl(2)-approximated period vector Πsl(2) of
the holomorphic (4, 0)-form given in (3.9) spans the subspace H4,0

sl(2).

• There is also a straightforward way to pass between the boundary Hodge structure
Hp,q
∞ and the sl(2)-approximated Hp,q

sl(2). We interpolate by applying the saxion- and
axion-dependent factors in (3.26) as

Hp,q
sl(2) = eφ

iN−i e−
1
2 log(si)N0

i Hp,q
∞ . (3.28)

This identity proves to be useful when lifting a boundary (p, q)-form to a (p, q)-form
in the strict asymptotic regime. To be more explicit, by using (3.18) for a highest-
weight element vp,q` ∈ P

p,q
` (with p ≥ q) we can show with Baker-Campbell-Hausdorff

that9

ei t
iN−i vp,q` ∈ H

p,4−p
sl(2) . (3.29)

9In particular, one can prove that e−
1
2 log(si)N0

i e
iN−

(n) e+ 1
2 log(si)N0

i = eisiN−
i in the strict asymptotic

regime.
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Note that the (4, 0)-form period vector in (3.9) is a special case of this identity with
v4,dn

d = ã0.

Our goal for the rest of this section is to determine the strict asymptotic limit of the
norm defined in (2.2). We first note that for each of the subspaces V` appearing in the
decomposition (3.7), one can introduce a basis {(v`)1, . . . (v`)dimV`

} ∈ V`. To find it, one
can first introduce such a basis for the corresponding highest-weight subspaces, P` and
then find the remaining basis elements by successive application of the N−i , in analogy
with eq. (3.12). This basis can then be normalized such that

〈(v`)i, (v`′)j 〉 = ± δi,j δ`,−`′ , (3.30)

where 〈·, ·〉 is the pairing defined in (2.2), and depending on the particular vector within
each V` the sign can be positive or negative. We then define a norm ‖·‖∞ using the Weil
operator ?∞ as follows

‖v`‖2∞ = 〈?∞v`, v`〉 . (3.31)

The pairing and norms for the basis elements associated with the K3-like blocks are explic-
itly shown in appendix B. Next, we observe that the inner product of two vectors v and v′
satisfies

〈eφiN−i v, eφ
jN−j v′〉 = 〈v, v′〉 , (3.32)

where φi are the axionic parts of the complex-structure moduli. Using the explicit form of
?sl(2) shown in (3.26) one can derive the following expression〈

v`,
[
e−φ

iN−i ?sl(2) e
+φiN−i

]
v`
〉

=
(
s1
)`1 (

s2
)`2−`1

. . . (sn)`n−`n−1 ‖v`‖2∞

=
(
s1

s2

)`1
. . .

(
sn−1

sn

)`n−1

(sn)`n ‖v`‖2∞

≡ κ` ‖v`‖2∞ .

(3.33)

We emphasize that ‖v`‖2∞ is independent of the moduli and, explicitly, κ` is given by

κ` =
(
s1

s2

)`1
. . .

(
sn−1

sn

)`n−1

(sn)`n . (3.34)

Note that from this definition it is obvious that κ−` = (κ`)−1 where −` stands for the
vector with all entries opposite as those of `.

Vheavy, Vlight and Vrest. Before closing this subsection, we want to define three sub-
spaces of H4

prim (Y4,R) which are distinguished by the behavior of their norm in the strict
asymptotic regime. We define Vheavy and Vlight by

Vheavy =
⊕
`

V` , with `1, `2, . . . , `n ≥ 0 and at least one `i > 0 ,

Vlight =
⊕
`

V` , with `1, `2, . . . , `n ≤ 0 and at least one `i < 0 ,
(3.35)
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and Vrest includes all the elements not belonging to Vheavy nor Vlight. The primitive four-
form cohomology splits as H4

prim (Y4,R) = Vheavy ⊕ Vlight ⊕ Vrest , and we come back to
this splitting below.

3.4 Explicit sl(2) subspaces on Calabi-Yau four-folds

The expansion of H4
prim (Y4,R) into sl(2)-eigenspaces shown in (3.7) contains in general

a large number of terms. However, in this section we show that only a small number
of sl(2)-subspaces are populated, which makes possible a very explicit analysis of moduli
stabilization.

Sl(2)-representations I. In a first step we do not consider the sl(2)-representation
coming from the holomorphic (4, 0)-form, i.e. we focus on the subspaces corresponding to
the second part in the set E shown in (3.21). (These correspond to the inner part of the
Deligne diamond (A.11).) According to (3.21) the possible highest weight states for this
part are of the form

P0 , P0 1i , P0 2i , P0 1i 2j , (3.36)

where we employ the notation

P0 1i 2j = P0,...,0,1
i
,...,1,2

j
,...,2 , (3.37)

with i and j denoting the positions at which the first time a 1 or 2 appears. Note that this
includes the possibility i = 1 for which a 0 is absent, i.e. the spaces P do not need to start
with a 0. All the sl(2)-representations can then be obtained by successively applying the
lowering operators N−i , so that the full primitive four-form cohomology (up to the sl(2)
state corresponding to the holomorphic (4, 0)-form) can be decomposed into the following
V` (repeated indices are not summed over)

Vheavy =


V02i = P02i

V01i = P01i

V01i2j = P01i2j

V01i0j = N−j P01i2j

Vlight =


V0−2i = (N−i )2 P02i

V0−1i = N−i P01i

V0−1i−2j = N−i N
−
j P01i2j

V0−1i0j = N−i P01i2j

Vrest = V0 = P0 ⊕ N−i P02i . (3.38)

We mention that a crucial point for what follows is the absence of V` ∈ Vrest with some
positive and some negative `i, that is, Vrest is entirely composed by V0.

Sl(2)-representations II. Let us now present the highest-weight states corresponding
to the sl(2)-representation coming from the holomorphic (4,0)-form. As will become clear
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in section 5, these will not play an essential role in the stabilization of many moduli, but
we display here for completeness. The possible highest-weight spaces are the following

P0 ,

P01i , P02i , P03i , P04i ,

P01i2j , P01i3j , P01i4j , P02i3j , P02i4j , P03i4j ,

P0 1i 2j3k
, P0 1i 2j4k

, P0 1i 3j4k
, P0 2i 3j4k

,

P0 1i 2j3k4l
.

(3.39)

Let us remark that, as opposed to the highest-weight states in equation (3.36), for a given
Calabi-Yau four-fold and for a given strict asymptotic regime (cf. eq. (3.4)) only one of
these (4,0)-form highest-weight states will be present.10 This corresponds to the outer part
of the Deligne diamond (A.11), and it can be directly related to the enhancement chain of
the singularity types associated to the corresponding strict asymptotic regime.

By direct comparison of equations (3.36) and (3.39), we see that the contribution from
the (4,0)-form to the subspaces Vlight, Vheavy and Vrest can be much richer than the one
presented in (3.38). We will not display all the possibilities here since, as mentioned, their
detailed expression will not play a relevant role for our later discussion. They can how-
ever be obtained by applying all possible lowering operators to the corresponding highest-
weight states.

4 Moduli stabilization — general considerations

In this section we discuss complex-structure moduli-stabilization in the strict asymptotic
limit using the framework of asymptotic Hodge theory. We give an overview of the general
structure, but provide a more detailed picture in section 5.

4.1 Self-duality condition

Minkowski minima of the scalar potential (2.1) are obtained when solving the self-duality
condition of the four-form flux G4 shown in equation (2.3). We now bring this condition
into the framework of asymptotic Hodge theory. According to (3.7) we can expand G4
as G4 = ∑

`∈E G` with G` ∈ V`. However, given the form of (3.33), it turns out to be
convenient to define an axion-dependent four-form flux and perform its expansion as [9]

Ĝ4 ≡ e−φ
iN−i G4 , Ĝ4 =

∑
`∈E

Ĝ` , (4.1)

where Ĝ` ∈ V`. Similar redefinitions using the log-monodromy matrices have been used
in [9, 10, 34–38]. Let us stress that in our setting the lowering operators N−i appear,
which in general are valued over the rationals instead of the integers. Note that an integral
shift of the flux quanta can therefore require the axions to wind around multiple times

10Note that by exploring different asymptotic limits for a given CY generally only a subset of the spaces
shown in eq. (3.39) (one for each asymptotic limit) are realized. That is, not necessarily all of them can be
realized in a given CY.
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instead of just once. The self-duality condition (2.3) in the strict asymptotic regime reads
G4 = ?sl(2)G4, which can be rewritten as

Ĝ4 =
[
e−φ

iN−i ?sl(2) e
+φiN−i

]
Ĝ4 . (4.2)

Comparing now with (3.26) and recalling that the N0
i act as N0

i : V` → V` while ?∞ : V` →
V−`, we note that the expression in parenthesis in (4.2) maps V` to V−`. Taking the inner
product with Ĝ` and using the orthogonality condition (3.30) as well as (3.33) we obtain

〈Ĝ+`, Ĝ−`〉 =
〈
Ĝ`,

[
e−φ

iN−i ?sl(2) e
+φiN−i

]
Ĝ`
〉

= κ`‖Ĝ`‖2∞ . (4.3)

Let us emphasize that the axions appear only in Ĝ` and the saxions appear only in κ`. We
furthermore note that the norm ‖ · ‖∞ is positive-definite and that in our conventions the
saxions satisfy si > 0. Hence, (4.3) implies the two relations

〈Ĝ+`, Ĝ−`〉 ≥ 0 , (4.4)

Ĝ+` 6= 0 ⇒ Ĝ−` 6= 0 . (4.5)

We also observe that the pairing 〈Ĝ+`, Ĝ−`〉 is invariant under ` → −`, and so we obtain
from (4.3) the relation 〈Ĝ+`, Ĝ−`〉 = κ−`‖Ĝ−`‖2∞. Multiplying this expression with (4.3)
leads to

〈Ĝ+`, Ĝ−`〉2 = ‖Ĝ+`‖2∞ ‖Ĝ−`‖2∞ , (4.6)

where we used that κ` κ−` = 1. This relation corresponds to the equality in a Cauchy-
Schwarz inequality for the pairing 〈 ?∞ · , · 〉, which can only be satisfied for

Ĝ−` = κ` ?∞ Ĝ+` . (4.7)

The tadpole. Let us now turn to the tadpole contribution of the flux G4 given in (2.5).
In terms of sl(2)-representations this is

Q = 1
2 〈G4, G4〉 = 1

2 〈Ĝ4, Ĝ4〉 = 1
2
∑
`

〈Ĝ+`, Ĝ−`〉 , (4.8)

where we have used (4.6). We can use the self-duality condition, and the properties of the
different sl(2)-weights to give a more explicit expression, as we will see in section 6.

4.2 Saxion stabilization

Let us now discuss the stabilization of the saxions si through the conditions (4.7). (We
address the stabilization of the axions in section 4.3 below.) Taking the ratio between
equation (4.3) and its version with ` → −`, and using 〈Ĝ+`, Ĝ−`〉 = 〈Ĝ−`, Ĝ+`〉 and
κ−` = κ−1

+` , we arrive at

κ` = ‖Ĝ−`‖∞
‖Ĝ+`‖∞

with κ` =
(
s1

s2

)`1
· · ·
(
sn−1

sn

)`n−1

(sn)`n . (4.9)
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As we have seen in (4.5), if Ĝ+` 6= 0 then also Ĝ−` 6= 0. Let us therefore label all non-
vanishing Ĝ` by an index α and define

yi = log si

si+1 , Bα = log ‖Ĝ−α‖∞
‖Ĝ+α‖∞

, (4.10)

together with sn+1 ≡ 1. Note that in the strict asymptotic limit we are considering
(cf. equation (3.4)), all the yi are positive. Taking then the logarithm of equation (4.9)
leads to

`(α)1 y
1 + `(α)2 y

2 + . . .+ `(α)n y
n = Bα , (4.11)

which in matrix notation is expressed as

Aαi yi = Bα . (4.12)

The number of saxions si stabilized by this condition is equal to the rank of A, and in order
to stabilize all saxions we have to require A to be of maximal rank, that is rankA = h3,1.
This implies in particular, that we need to have at least h3,1 non-vanishing pairs (Ĝ+`, Ĝ−`).
The values of the stabilized saxions si are then determined via the relation

yi =
[
A+

]iβ
Bβ , (4.13)

where A+ denotes the pseudo-inverse of A which can be computed for instance through a
singular value decomposition. Note that when rankA = h3,1 and B = 0 we have yi = 0,
which is not compatible with the growth requirement (3.4). We therefore require at least
one κα 6= 1.

4.3 Axion stabilization

Let us now briefly consider the stabilization of the axions φi from a general perspective,
while a more detailed discussion of this question will be given in section 5 below. We first
recall that the axions φi appear in the self-duality condition (4.7) through the relation (4.1),
that is

Ĝ4 = e−φ
iN−i G4 , (4.14)

where N−i are the lowering operators in the commuting sl(2)-triples (3.5). The flux G4 can
be expanded into the sl(2)-eigenspaces V` appearing in (3.7) as

G4 =
∑
`∈E

G` . (4.15)

Now, if G4 has only components G` which are all annihilated by the action of a particular
N−i , then the corresponding axion φi does not appear in (4.14) and will not be stabilized.
Generalizing this argument, we therefore have at most

dim span{N−i G4} (4.16)

linearly independent combinations of axions φi appearing in Ĝ4, which is therefore the
maximal number of axions that can be stabilized through the self-duality condition (4.7).
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5 Moduli stabilization — explicit analysis

After having discussed moduli stabilization from a general point of view in section 4, we
now turn to a more detailed treatment. We are going to make use of the decomposition of
H4

prim (Y4,R) into Vheavy , Vlight and Vrest shown in section 3.4. Let us note that we will
mostly ignore the sl(2)-eigenspaces coming from the irreducible representation(s) of the
(4, 0)-form and focus our attention on those coming from the middle part. As explained
below, the former do not play an important role for large numbers of moduli.

Decomposition using K3-like blocks. Recall from section 3.4 that the highest-weight
subspaces in the sl(2)-decomposition (3.12) can be divided into a one- or two-dimensional
part corresponding to the (4, 0)-form (and its conjugate) with weights 0 ≤ d1 ≤ . . . ≤ dn ≤
4. For all others these are bounded by 0 ≤ `1 ≤ . . . ≤ `n ≤ 2. To be more explicit, for
completeness we restate (3.23) as

H4
prim(Y4,R) = HΩ ⊕

⊕
`∈EK3

HK3,` , (5.1)

where the subspaces on the right-hand side were defined in (3.24). The first piece HΩ
denotes the sl(2)-eigenspaces that descend from the highest-weight state of the (4, 0)-form
and its complex conjugate. The remainder HK3,` (with ` ∈ EK3) is comprised of descendants
of highest-weight states corresponding to (3, 1)-, (2, 2)- and (1, 3)-forms. For the purposes
of moduli stabilization we can stabilize at most four moduli (eight real scalars) via fluxes
in HΩ, since this is the maximum number of different V` that one can populate in this
sl(2)-representation. For any strict asymptotic regime with large h3,1 the majority of
moduli thus has to be stabilized through fluxes in subspaces HK3,`. In the following we will
therefore restrict our attention to fluxes in HK3,`, and comment afterwards on the inclusion
of fluxes in HΩ.

Hodge decomposition of K3-like blocks. For our study of moduli stabilization it is
useful to write out a Hodge decomposition for HK3,` in the strict asymptotic regime as

HK3,` = (HK3,`)3,1
sl(2) ⊕ (HK3,`)2,2

sl(2) ⊕ (HK3,`)1,3
sl(2) . (5.2)

For the self-duality condition on the fluxes (2.3) we can only allow for G4 ∈ (HK3,`)2,2
sl(2).

In particular, we cannot have (4, 0)- or (0, 4)-fluxes coming from these subspaces, so the
vacuum loci will be supersymmetric by construction, i.e. as many axions and saxions will
be stabilized, both with the same mass.11 As a complementary perspective, it is convenient
to rewrite the self-duality condition restricted to HK3,` into an orthogonality condition with
(HK3,`)3,1

sl(2). Recalling (3.29), we can write down a basis for these vector spaces in terms of
the highest-weight states (3.17) as

χ`(ti) = eit
iN−i v3,1+`n

` ∈ (HK3,`)3,1
sl(2) , v3,1+`n

` ∈ P 3,1+`n
` . (5.3)

11One can also include supersymmetry-breaking pieces coming from fluxes in HΩ, as discussed at the end
of section 5.2. These on one hand do not alter the analysis of the vacuum loci, and on the other they can
only fix a handful of moduli, so we do not consider them here.
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The self-duality condition restricted to HK3,` is then implemented by

〈eitiN
−
i v3,1+`n

` , G4〉 = 0 . (5.4)

This gives us a simple set of algebraic equations, holomorphic in the moduli, that we need
to solve to determine the vacuum loci for a given flux G4 ∈ HK3,`.

5.1 No moduli stabilization with fluxes in Vrest ⊂ HK3

We start by considering fluxes in Vrest. As can be seen from equation (3.38), Vrest splits into
P0 and N−i P02i which we discuss in turn. First, P0 is the sl(2)-singlet that is annihilated
by all N−i , which implies for G4 ∈ P0 that

G4 ∈ P0 ⇒ G4 = Ĝ4 . (5.5)

The self-duality condition (4.7) then reads

G4 = ?∞G4 , (5.6)

in particular, it is independent of the axions and saxions. Hence, through such fluxes no
moduli are stabilized. Moreover, the only fluxes in P0 that are self-dual, namely the ones
in P

(2,2)
0 , do not contribute to the potential (see eq. (B.5)). Second, fluxes in Vrest that

are not highest-weight, namely G4 ∈ N−i P02i , are anti-self dual (see equation (B.11)) and
therefore do not satisfy the self-duality condition (4.7). To summarize, fluxes in Vrest do
not stabilize moduli.

Let us note that the situation for the fluxes in Vrest coming from the (4,0)-form can
be slightly more involved, and such fluxes can indeed be used to fix moduli. However,
as emphasized at the beginning of this section, this will not play an important role when
trying to fix many of moduli, since at most four (complex) moduli can be fixed by turning
on these fluxes.

5.2 Vacua with fluxes in Vheavy and Vlight

Let us consider the moduli stabilization including fluxes in Vheavy, given by the spaces
in (3.38). The self-duality condition will relate these fluxes to their counterparts in Vlight,
so we will also introduce these. We will consider the situation where there is flux in each
of these individual subspaces, and then argue that combining them leads to the same
conclusions.

Flux along V01i. We begin by considering a highest-weight four-form flux GR01i
vR01i

+
GI01i

vI01i
∈ V01i = P01i , where we denote by GR,I01i

the two possible flux component along
the V01i space in the basis introduced in eq. (B.6). Note that each V01i has (real) dimension
2, so that we need to allow for both kinds of fluxes. The flux-axion polynomial then reads

Ĝ4 = GR01i
vR01i

+GI01i
vI01i

+
(
GR0−1i

− φiGR01i

)
vR0−1i

+
(
GI0−1i

− φiGI01i

)
vI0−1i

, (5.7)
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where no sum over i is implied and where we have explicitly substituted the ba-
sis elements shown in eq. (B.6). With this flux configuration, the tadpole (4.8) is
Q = GR01i

GI0−1i
−GI01i

GR0−1i
, and the self-duality conditions read

siGR01i
= GI0−1i

− φiGI01i
,

−siGI01i
= GR0−1i

− φiGR01i
.

(5.8)

These equations have solutions whenever at least one of the two pairs of fluxes (GR01i
, GI0−1i

)
or (GI01i

, GR0−1i
) are non-zero. For concreteness, if one considers for instance the former,

the moduli are fixed as12

si =
GI0−1i

GR01i

, φi = 0 , (5.9)

The sign of si is the same as the sign of the tadpole, so that a physical solution (i.e. si > 0)
requires a positive contribution to the tadpole. If both pairs of fluxes are turned on there
is also a solution provided that the tadpole is positive, that is

si =
GR01i

GI0−1i
−GI01i

GR0−1i

(GI01i
)2(GR01i

)2 , φi =
GI01i

GI0−1i
+GR01i

GR0−1i

(GI01i
)2(GR01i

)2 , (5.10)

and the tadpole appears in the numerator of the saxion vev.

Flux along V02i. We consider now the four-form highest-weight flux in V02i = P02i and
its descendants, and use the basis presented in eq. (B.9). The flux-axion polynomial is now

Ĝ4 = G02iv02i +
(
G0 − φiG02i

)
v0 +

(
G0−2i − φiG0 + 1

2(φi)2G02i

)
v0−2i , (5.11)

and the corresponding tadpole reads Q = G02iG0−2i − 1
2G

2
0. The self-duality condition

gives the following equations

(G0 − φiG02i) = −(G0 − φiG02i) =⇒ G0 − φiG02i = 0 ,
G02i

2 (si)2 = G0−2i − φiG0 + 1
2(φi)2G02i .

(5.12)

Note that moduli stabilization requires G02i 6= 0. Without loss of generality, we can use
the axionic shift symmetry to set G0 = 0 and we get the solution

si =
√

2G0−2i

G02i

, φi = 0 , (5.13)

where again a real positive saxion implies a positive tadpole. Note that the general solution
can be obtained from (5.13) by shifting in the axionic field φi → φi + φib, together with
G4 → eφ

i
bN
−
i G4. This yields the general solution

si =

√
2G0−2iG02i −G2

0

G02i

, φi = G0
G0−2i

. (5.14)
12If the other pair is considered, a similar solution is obtained upon exchanging (GR

01i
, GI

0−1i
) →

(−GI
01i
, GR

0−1i
). If any of such pairs is turned on and also the component of the other pair along Vlight, the

result is just a shift in the vev of the axion φi → φi +GI
0−1i

/GR
01i

in the solution in (5.9).
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Flux along V01i2j . Let us finally consider the highest weight flux in V01i2j , together
with its descendants. Using the basis in eq. (B.12), the corresponding flux-axion polyno-
mial reads

Ĝ4 = G01i2jv01i2j +
(
G01i0j − φjG01i2j

)
v01i0j +

(
G0−1i0j − φiG01i2j

)
v0−1i0j

+
(
G0−1i−2j − φiG01i0j − φjG0−1i0j + φiφjG01i0j

)
v0−1i−2j .

(5.15)

The tadpole contribution of these fluxes is Q = G01i2jG0−1i−2j −G01i0jG0−1i0j . Using the
action of ?∞ on the different basis vectors, displayed in (B.14), the self-duality condition
yields the following two equations.

si sj G01i2j =
(
G0−1i−2j − φiG01i0j − φjG0−1i0j + φiφjG01i0j

)
,

− si

sj

(
G01i0j − φjG01i2j

)
=
(
G0−1i0j − φiG01i2j

)
.

(5.16)

Instead of solving these equations directly, it is more practical to switch to the orthogonality
condition (5.4) with the sl(2)-approximated (3, 1)-form. We find that the (3, 1)-form is
given by

χ01i2j =
(
1 + tiN−i

)(
1 + tjN−j

)
v01i2j

= v01i2j + tiv0−1i0j + tjv01i0j + titjv0−1i−2j .
(5.17)

When G01i2j = 0, the equations simplify considerably and we can use the shift symmetry
of the axions to set G01i2j to zero without loss of generality. The solution then reads

sj = −
G01i0j

G0−1i0j

si , φj = −
G01i0j

G0−1i0j

φi , (5.18)

which has physical solutions with positive saxions only when the tadpole is positive.
When G01i2j 6= 0, requiring orthogonality of G4 with χ01i2j then yields13

(G01i2j t
i −G0−1i0j )(G01i2j t

j −G01i0j ) = G01i0jG0−1i0j −G01i2jG0−1i−2j , (5.19)

which can easily be solved for ti = φi + isi or tj = φj + isj by moving the other factor
to the right-hand side. For concreteness, let us write the explicit solution for the case
G01i0j = G0−1i0j = 0 (from which the general case above can also be obtained by exploiting
the shift-symmetries of the axions):

sj =
G0−1i−2j

G01i2j

si

(si)2 + (φi)2 , φj = −
G0−1i−2j

G01i2j

φi

(si)2 + (φi)2 . (5.20)

As before, this is a physical solution with positive saxions only when the signs of the
relevant fluxes are such that the tadpole is positive. Thus, one positive contribution to the
tadpole is able to fix one linear combination of the saxions and of the axions.

13Up to proportionality factors, the real part of this equation corresponds to the first equation in (5.16),
and the imaginary part to the second.
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Flux along all K3-like subspaces. Let us discuss the situation with fluxes along an
arbitrary combination of subspaces in Vheavy and Vlight. Since self-duality conditions for
each subspace decouple, each of the individual equations will have to be satisfied. This
means that there will generically be no solutions, unless the fluxes satisfy certain properties.
For instance, for fluxes in V01i and V02i at the same time, there is a solution only if (5.9)
and (5.13) are satisfied, which implies a relation between the ratios of fluxes appearing in
these equations. On the other hand, these pairs contribute to the tadpole, so tadpole-wise
the most economic way of fixing the modulus ti moduli is having a single pair of fluxes
either of the type V01i or of the type V02i . In order to fix two moduli ti and tj , one can
either use V01i or V02i together with V01j or V02j , or alternatively any of these four together
with V01i2j . Any of these possibilities will fix both moduli in the most economic way
tadpole-wise. We come back to this point in section 6.

Adding fluxes along HΩ. Finally, let us comment on the effect of including the fluxes
in HΩ coming from the sl(2)-representation whose highest-weight state corresponds to the
(4,0)-form (and its complex conjugate). We do not perform a systematic study of moduli
stabilization with all possible flux choices in HΩ here, but we explain instead why it is
not relevant for determining the scaling of the tadpole charge with a large number moduli
stabilized in the strict asymptotic region.

Using the expression (3.26) for the Hodge star it can be seen that at most dn ≤ 4
moduli can appear in the self-duality condition for such fluxes. Thus, a large number of
moduli cannot be stabilized by means of such fluxes, as opposed to the ones in⊕`∈EK3

HK3,`.
Moreover, the fact that the self-duality condition for each subspace decouples implies that
if these fluxes yield equations for some moduli that also appear in the conditions coming
from the K3-like fluxes, they will only be satisfied for compatible flux configurations, but
they will never lower the tadpole. As before, tadpole-wise the most economic way to fix
moduli is by choosing fluxes in such a way that the moduli that appear in the conditions for
the fluxes in HΩ do not appear in the rest. This will still lead to (at least) a linear scaling
of the tadpole with the (large) number of stabilized moduli, coming from the K3-like fluxes.

It is also interesting to consider the effect of supersymmetry breaking introduced by
these fluxes. As mentioned at the beginning of the section, the K3-like fluxes do not induce
any supersymmetry breaking effect, so that fixing moduli using only them always yields
supersymmetric vacua, where both the saxions and their corresponding axions are fixed
and have equal mass. However, this does not mean that our analysis cannot capture non-
supersymmetric vacua. This is the case due to the decoupling of the self-duality conditions
for the different subspaces, which crucially ensures that the inclusion of fluxes in HΩ does
not modify the scaling of the tadpole with the number of fixed moduli. Note, however,
that these supersymmetry breaking fluxes can alter the masses of the moduli, as they can
introduce some mixing at the level of the scalar potential, even though they cannot do it
at the level of the vacuum equations. To sum up, adding fluxes in HΩ does not change the
discussion with respect to the vacuum loci or the scaling of the tadpole with the number
of fixed moduli, but it can change the values of the masses of the moduli, as expected from
the fact that they can break supersymmetry.
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6 The tadpole contribution

In this section we analyze the scaling of the flux-induced tadpole charge Q with the number
of fixed moduli. We compare this with the behavior predicted by the tadpole conjecture [5],
which was introduced in section 2.2.

Linear scaling with h3,1. Let us start by recalling the tadpole contribution of the
flux G4 from equation (2.5) as Q = 1

2
∫
G4 ∧ G4 = 1

2〈G4, G4〉. Using the self-duality
condition (4.7), the property (3.32) and the condition (4.6) we compute

〈G4, G4〉 = 〈Ĝ4, Ĝ4〉 =
∑
`

〈Ĝ+`, Ĝ−`〉 =
∑
`

‖Ĝ`‖∞ ‖Ĝ−`‖∞ . (6.1)

As argued below equation (4.12), if we want to stabilize nstab saxions we need to have
nstab non-vanishing pairs (Ĝ+`, Ĝ−`) and hence the sum (6.1) contains at least 2nstab
non-vanishing positive terms. As shown explicitly in the previous section, this would also
stabilize the corresponding nstab axions. Using then for instance (4.9), we can rewrite (6.1)
in the following way

〈G4, G4〉 =
∑
`

κ`‖Ĝ`‖2∞

=
∑

`∈Vheavy

κ`‖Ĝ`‖2∞ +
∑

`∈Vrest

κ`‖Ĝ`‖2∞ +
∑

`∈Vlight

κ`‖Ĝ`‖2∞

= 2
∑

`∈Vheavy

κ`‖Ĝ`‖2∞ +
∑

`∈Vrest

κ`‖Ĝ`‖2∞ ,

(6.2)

where in the second line we split the sum into contributions coming from the different
subspaces defined in eq. (3.35). In the third line we used κ−` = (κ`)−1 and κ−`‖Ĝ−`‖2∞ =
κ`‖Ĝ`‖2∞ (cf. eq. (4.9)) to pair the contributions from Vheavy and Vlight and make the
summation explicitly in terms of elements of Vheavy. As we saw in section 5.1, fluxes in
Vrest are either anti-self dual, or those in V0 do not fix any moduli. Note that they do
contribute to the tadpole, though. We thus get

Q = 1
2〈G4, G4〉 ≥

∑
`>0

γ
∑

`i‖Ĝ`‖2∞ . (6.3)

Since, again, there should at least be one Ĝ` per moduli stabilized, this sum has at least
nmod terms, confirming the tadpole conjecture. Each term is weighted by a positive power
of γ, which makes moduli stabilization in the asymptotic regime more difficult to achieve
within the tadpole bound, even for a relatively small number of moduli (a similar observa-
tion was made in [39]). Note however that, as mentioned in the introduction, γ need not
be very large: γ & 4 is enough for the sl(2) approximation to reproduce the actual vacua
with high accuracy [10].

Quantization. The norms ‖Ĝ`‖2∞ appearing in (6.3) are in general not integer quantized
and in principle could depend on the spectator moduli. It is therefore not obvious that the
tadpole conjecture (reviewed in section 2.2) is satisfied since — in an extreme situation —
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the norms may scale as ‖Ĝ`‖2∞ ∼ 1/nstab and thereby violate the conjecture. However, we
see no indications of such a scaling:

• In table 1 of appendix D we analyzed four examples with nstab or order 20. For each
of these examples the spectator moduli decouple and the majority (more than 70%)
of norms of the subspaces satisfies ‖G`‖2∞ ≥ 1

4 . Hence, there is no inverse scaling
with the number of stabilized moduli nstab.

• Let us now clarify why our bounds on the norm of G`, as opposed to the norm of
the axion dependent Ĝ` (which are the ones that appear in the definition of the
tadpole, cf. eq. (6.3)), are meaningful. First, note that the pairing that appears in
the definition of the tadpole charge fulfills 〈G4, G4〉 = 〈Ĝ4, Ĝ4〉, whereas this is not
the case for the boundary norm, for which ‖G4‖∞ 6= ‖Ĝ4‖∞ in general (the equality
holds if e.g. all the axion vevs vanish).
Nevertheless, the sum over `’s in equation (6.3) contains at least nstab terms for
which Ĝ` = G` (a single sl(2)-representation fixes a single modulus, see section 5.2)
and the rest, if non-zero, give extra positive contributions.14 Therefore, we can bound
eq. (6.3) as

Q ≥
∑
`>0

γ
∑

`i‖Ĝ`‖2∞ ≥
∑
`′>0

γ
∑

`′i‖G`′‖2∞ , (6.4)

where the summation over `′ indicates that only the fluxes in Vheavy that correspond to
the highest-weight within each sl(2)-representation are included, for which G`′ = Ĝ`′ .

• The parameter γ � 1 parametrizes the strict asymptotic regime, and in [10] it was
found that γ & 4 provides already a good approximation of the moduli space structure
for Calabi-Yau three-folds. This parameter appears in (6.3) as γ

∑
`i , where the sum

is over positive integers taking values one or two. A very conservative estimate
therefore is

γ
∑

`i ≥ γ & 4 . (6.5)

Furthermore, in our analysis in appendix D we found that 70% of the norms ‖G`‖2∞
are larger than 1/4. Using then that for stabilizing nstab moduli there needs to be
nstab terms, we can estimate∑

`>0
‖Ĝ`‖2∞ >

1
4 · 0.7 · nstab . (6.6)

However, our analysis provides only a lower bound on ‖G`‖2 since we determined
the lowest non-zero values for each ‖G`‖2∞ individually but did not account for the
requirement that the corresponding fluxes have to stabilize nstab moduli. (See the
appendix for details on our analysis, in particular the discussion after (D.10)). The
values ‖G`‖2∞ are therefore expected to be much larger.

14Note also that, if an axion dependence is generated for a lower ` that happens to be populated also by
the highest weight state in a different sl(2)-representation, there will be no mixing between the two because
different sl(2)-representations are orthogonal.
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• Combining now the individual results above, we can give the following very conser-
vative estimate for the tadpole charge

Q > 0.7nstab , (6.7)

which is in agreement with the refined version of the Tadpole Conjecture, eq. (2.8)
(i.e. α > 1/3).

7 Conclusions

In this work we have studied the tadpole conjecture in asymptotic regions of complex
structure moduli space by using the powerful tools of asymptotic Hodge theory. Our
analysis was carried out in F-theory compactifications on Calabi-Yau four-folds in which
the complex structure moduli are stabilized by a self-dual four-form flux G4. We were
able to give general evidence that the scaling of the tadpole with the number of stabilized
directions is eminent if the moduli are stabilized in the strict asymptotic regions. These
regions are close to the boundaries of the moduli space at which the Calabi-Yau space
degenerates and one can additionally establish a hierarchy among the moduli values. Let
us stress that apart from this hierarchy constraint our analysis was neither restricted to
specific examples nor to specific asymptotic limits, such as the large complex structure
limit. This generality puts much weight on the collected evidence and one can hope that
the presented arguments are a first step to prove the conjecture in full generality.

Our approach to the tadpole conjecture relied on the remarkable fact that in the strict
asymptotic regimes the (p, q)-decomposition of the middle cohomology splits into repre-
sentations of an sl(2)n algebra with commuting factors. Here the n refers to the number
of fields pushed to the asymptotic regime, which by assumption are the fields that we
aim to stabilize in a vacuum. Switching on fluxes in the sl(2) eigenspaces we found that
the commutativity of the sl(2)s reduces the generally complicated and coupled system of
vacuum equations into a set of constraints that can be analyzed systematically. In par-
ticular, we showed that the Calabi-Yau condition ensures that there is maximally a single
sl(2)-representation with weights reaching from −4 to 4. All other sl(2)-representations
have a maximal weight 2 and can formally be identified with sl(2)-representations found
for Calabi-Yau two-folds (K3 surfaces). For a large number n of fields stabilized in the
asymptotic regime we thus found that merely these K3-type representations are relevant
for stabilization. This has led to additional constraints that ensure, for example, that
when stabilizing nstab scalars the tadpole always admits order nstab terms that grow in
the vacuum expectation values of these fields. These findings give an explanation of the
requirement in the tadpole conjecture to consider a large number of stabilized moduli. In
fact, when considering only few moduli, the larger sl(2)-representations stemming from the
existence of a (4,0)-form, and not being related to K3-representations, can be used to sta-
bilize moduli and escape some of the stringent constraints. While at first counter-intuitive,
we now see that as soon as we consider a large number of fields, we encounter more structure
and constraints. We believe that this feature persists when including corrections.
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Before turning to a brief discussion of the corrections to the strict sl(2)-splitting, let us
stress an important subtle aspect that needs further clarification within our approach. It is
known that the sl(2)-splitting of the flux cannot be generally performed over the integers
but requires to use rational numbers. We have shown that in concrete examples the denom-
inators do not scale with the number of moduli, but note that an abstract analysis of the
largest occurring denominator would require a more sophisticated mathematical argument
which goes beyond the scope of this work. It would be desirable to address this question
together with an in-detail analysis of moduli stabilization of axions φi. The relation of
these two issues arises from the fact that we have implemented the sl(2)-approximation
also in the axion sector and worked with the axion-dependent flux Ĝ4. The latter links ax-
ion monodromies and fluxes and we expect additional constraints to arise from the integral
quantization of fluxes. This highlights an important direction for future work.15

The analysis of this paper concerns the moduli that are lifted in the strict asymptotic
regime, for which we showed that whenever nstab moduli are stabilized by the leading
contributions (i.e. ignoring the corrections), the tadpole grows linearly in the number of
stablized moduli. An interesting challenge for future work is to extend our analysis to
include corrections breaking the sl(2)-splitting and leave the strict asymptotic regime. In
particular, one may want to keep the saxions si large but allow for a stabilization without
a hierarchy among the si. In this case polynomial corrections in the ratios of the si will
no longer be suppressed and play a major role in moduli stabilization. We expect that
as one gets closer to the boundaries, the masses of moduli which are not stabilized in
the strict asymptotic regime are asymptotically vanishing compared to those of moduli
which are stabilized in the strict asymptotic regime. For families of vacua close to the
boundaries, the tadpole should then grow (at least) linearly with the number of moduli
that remain stabilized at a hierarchically higher mass than the rest. Asymptotic Hodge
theory provides powerful tools to systematically include such corrections (see, e.g. [26]).
In the multi-moduli case, however, we expect that such an analysis will quickly get very
involved. Nevertheless, such an extension will be essential to give a definite answer about
the validity of the tadpole conjecture in asymptotic regimes. This extended analysis would
then also cover the linear scenario presented in [41, 42], which might pose a challenge to this
conjecture.16 An important feature of this stabilization scenario is that in the associated
sl(2)-approximation a flat direction remains that then gets lifted after including corrections.

Let us also comment on the prospects of studying moduli stabilization and the tadpole
conjecture in full generality. At first, one would expect that moduli stabilization is generic
in this case, since even switching on a single flux quantum results in a highly non-trivial
self-duality condition with polynomial and exponentially suppressed terms. This complex-
ity is, however, deceiving when incorporating the results of the famous theorem about
Hodge loci by Cattani, Deligne, and Kaplan [24]. Concretely, one can use this mathemat-
ical result to conclude that the locus in complex structure moduli space at which the flux

15In particular, let us stress that this quantization issue has appeared before in [40] in the analysis of the
distance conjecture and weak gravity conjecture.

16Note that it has recently been argued in [10, 43] (see also [44]) that there is no clear structural reason
to expect a counter example from the linear scenario.
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G4 is of type (2, 2) is actually given by algebraic equations. In other words, upon choosing
appropriate coordinates, the moduli stabilization conditions are simply vanishing condi-
tions on polynomials. While it is not known how the dimension of these spaces grows with
the tadpole, it is conceivable from our asymptotic analysis that there is in fact a scaling
with the number of moduli and it would be very interesting to prove such a scaling. Also
allowing for a (4, 0) + (0, 4) piece will, in general, destroy the algebraicity of the vacuum
locus [23]. However, note that this generalization for a Calabi-Yau fourfold results in only
a single complex equation independent of the number of moduli. This might indicate why
in cases with few moduli the tadpole scaling can be violated while eventually it will be
generally present when studying the stabilization of a large number of fields.
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A Asymptotic Hodge structures

In this appendix we provide some background on the algebraic structures that underly
strict asymptotic regimes: the sl(2)-decomposition and the boundary Hodge decomposition.
In particular, we argue for the decomposition of the highest-weight states as described
by (3.21) given in the main text.

Pure Hodge structure. Let us first recall the pure Hodge structure that lives in the
strict asymptotic regime given by (3.27). It is described by a Hodge decomposition of the
primitive cohomology H4

prim(Y4) into (p, q)-form pieces as

H4
prim(Y4) =

⊕
p+q=4

Hp,q
sl(2) , (A.1)

where H̄p,q
sl(2) = Hq,p

sl(2). In order to make the underlying boundary structures more precise,
it is helpful to recast this splitting in terms of a so-called Hodge filtration F p. These vector
spaces collect the (p, q)-eigenspaces of the Hodge decomposition as

F psl(2) =
∑
q≥p

Hq,4−q
sl(2) . (A.2)

This filtration varies holomorphically in the complex structure moduli ti. By the sl(2)-
approximation it can be described as

F psl(2)(t) = et
iN−i F p(n) , (A.3)
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where the limiting filtration F p(n) only depends on moduli not taken to the boundary. For
later reference, let us note that we can generate n other limiting filtrations F p(k) through
the recursion relation

F p(k) = eiN
−
k+1F p(k+1). (A.4)

Mixed Hodge structure. Let us point out that the filtration F p(0) obtained in this way is
precisely the Hodge decomposition associated to the boundary described by (3.14). For the
other limiting filtrations there generically is no notion of a pure Hodge structure; instead
these give rise to mixed Hodge structures, which can be made precise through Deligne
splittings. These first require us to introduce monodromy weight filtrations W`, which are
vector spaces constructed out of the kernels and images of the lowering operators as

W`(N) =
∑

j≥max(−1,`−4)
kerN j+1 ∩ imgN j−`+4 , N = N−(k) = N−1 + . . . N−k , (A.5)

with N−(0) = 0. The Deligne splitting describing the mixed Hodge structure at step k is
then given by

Ip,q(k) = F p(k) ∩ F
q
(k) ∩Wp+q(N−(k)) . (A.6)

We stress that we already specialized to the sl(2)-splitting from the beginning in this paper,
and in general other pieces have to be taken into account in this intersection of vector spaces
altering the conjugation property Ip,q = Iq,p. The weight operators of the sl(2)-triples are
then understood as multiplying an element by its row p+ q as

vp,q ∈ Ip,q(k) : N0
(k)vp,q = (p+ q − 4)vp,q . (A.7)

Of special importance to us are the highest-weight components under the lowering operators
N−(k), which can be defined as

P p,q(k) = Ip,q(k) ∩ ker[(N−(k))
p+q−3] . (A.8)

The Deligne splitting can then be recovered from the highest-weight subspaces and their
descendants as

Ip,q(k) =
⊕
r

(N−(k))
kP p+r,q+r(k) . (A.9)

Allowed weights. Having introduced the Deligne splittings and their highest-weight
decompositions, we are finally in the position to look more closely at the allowed weights
for highest-weight states, i.e. the splitting into the (4, 0)-form part and K3 Hodge structures
given in (3.23). To this end, the crucial relation between the highest-weight subspaces is
given by

eiN
−
k+1P p,q(k+1) ⊆ P

p,q−`k+1+`k
(k) , (A.10)

assuming p ≥ q. Pictorially this relation can be interpreted as follows: a highest-weight
state starting at position (p, q) in the Deligne diamond can only end up in another position
(p, q′) with q′ ≥ q and q′ ≤ p. In other words, only diagonal displacements to right-above
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are allowed, and never across the middle. This rule is rather abstract, so let us draw it
explicitly for the Deligne diamond of a Calabi-Yau fourfold

1

di = 1

di = 2

di = 3

di = 4

h3,1

`i = 1

`i = 2

h2,2 (A.11)

We indicated the (up to rescaling) unique state starting in I4,0
(0) — corresponding to the

leading term ã0 of the (4, 0)-form periods — in blue, while the remainder of the diagram
has been highlighted in red and green. Note also that, in principle, a highest weight state
is allowed to skip in-between steps, e.g. it can move directly from d1 = 1 to d2 = 4. From
this decomposition we see that: (1) there is one state corresponding to the outer blue part
of the diamond, (2) there are h3,1 states that can move up at most two steps in red, and (3)
the remainder of the highest-weight states in green is fixed at I2,2. This matches precisely
with the allowed indices given in (3.21).

B Bases of sl(2)-representations and ?∞ action

We include here some useful explicit expressions and properties the basis vectors for the
subspaces V`, including the explicit action of ?∞ and the lowering operators. Recall that
the pairing 〈· , ·〉 fulfills

〈 · , N−i · 〉 = −〈N−i · , · 〉 . (B.1)

The space P0. The space P0 is formed by P 3,1
0 , P 1,3

0 , and P 2,2
0 , according to their

decomposition in the last Hodge-Deligne diamond. All of them are annihilated by all the
N−i . The former two form a (real) two-dimensional space, P 3,1

0 ⊕P 1,3
0 . A real basis can be

obtained from the real and imaginary parts of the complex basis vector in P 3,1
0 , which we

denote
vR0 , vI0 , (B.2)

with the non-vanishing pairings

〈vR0 , vR0 〉 = −1 , 〈vI0 , vI0〉 = −1 . (B.3)

The action of ?∞ is
?∞ vR0 = −vR0 , ?∞v

I
0 = −vI0 . (B.4)
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The space P 2,2
0 is one dimensional, with the pairing and the action of the boundary

Hodge star on the basis vector given by

〈v(2,2)
0 , v

(2,2)
0 〉 = 1 , ?∞v

(2,2)
0 = v

(2,2)
0 . (B.5)

The spaces generated by P01i. Each of these spaces is a complex space of dimension
two, since it includes both the P 3,2

01i
and P 2,3

01i
in the last Hodge-Deligne diagram associated

to the real splitting. It consists of V01i and V0−1i , each of them of real dimension two. We
can define a real basis by taking the real and imaginary parts of the complex vector that
sits in P 3,2

01i
and applying N−i to each of them separately.

vR01i
, vI01i

, vR0−1i
= N−i v

R
01i

vI0−1i
= N−i v

I
0−1i

, (B.6)

with the following non-vanishing pairings

〈vR01i
, vI0−1i

〉 = 1 , 〈vI01i
, vR0−1i

〉 = −1 . (B.7)

The action of ?∞ on the basis vectors is

?∞v
R
01i

= +vI0−1i
, ?∞v

I
0−1i

= +vR01i
,

?∞v
I
01i

= −vR0−1i
, ?∞v

R
0−1i

= −vI01i
.

(B.8)

The spaces generated by P02i. Each of these spaces has (real) dimension three, and
it consists on V02i ⊕ N−i P02i ⊕ V0−2i as defined in eq. (3.38), where we recall that N−i P02i

includes the part of V0 that is not highest-weight. We introduce the following basis vector
for each of these V`, respectively

v02i , v0 = N−i v02i , v0−2i = (N−i )2v02i . (B.9)

Their non-zero inner products are

〈v02i , v0−2i〉 = 1 , 〈v0, v0〉 = −1 , (B.10)

and the action of ?∞ on each of them takes the form

?∞ v02i = 1
2v0−2i , ?∞v0 = −v0 , ?∞v0−2i = 2 v02i . (B.11)

The spaces generated by P01i2j . In this case, each of these subspaces has (real)
dimension four, and it consists of V01i2j ⊕ V01i0j ⊕ V0−1i0j ⊕ V0−1i−2j (cf. eq. (3.38)).
Introducing the basis vectors

v01i2j , v01i0j = N−j v01i2j , v0−1i0j = N−i v01i2j , v0−1i−2j = N−i N
−
j v01i2j , (B.12)

we obtain the following non-vanishing pairings

〈v01i2j , v0−1i−2j 〉 = 1 , 〈v01i0j , v0−1i0j 〉 = −1 . (B.13)

Finally, the ?∞ operator acts as

?∞v01i2j = +v0−1i−2j , ?∞v0−1i−2j = +v01i2j ,

?∞v01i0j = −v0−1i0j , ?∞v0−1i0j = −v01i0j .
(B.14)
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C Weak coupling-conifold example

In this appendix we consider a simple two-moduli example, where one complex structure
modulus is sent to weak coupling and the other towards a conifold point. The first cor-
responds to Sen’s limit [45] and this modulus can be understood as the axio-dilaton of
Type IIB; the second is the conifold modulus of the Calabi-Yau threefold in this setup.
This example highlights that asymptotic Hodge theory can be applied near any boundary
in complex structure moduli space, allowing us to probe regions away from large complex
structure. More concretely, it illustrates how the sl(2)-decomposition splits into repre-
sentations associated to the (4,0)-form and a K3 subblock. This example demonstrates
the interplay between fluxes in different representations in the stabilization of complex
structure moduli.

Period vector data. We begin by describing the period vector of the (4,0)-form near
such a weak coupling-conifold point. Let us point out that we do not refer to any explicit
geometrical example here, but merely use the typical form of the periods in such a regime.
The leading part of the period vector takes the form

Π =
(

1 + a2z2

8π , az, i− ia2z2

8π ,
iaz(log(z)− 1)

2π ,

τ

(
1 + a2z2

8π

)
, aτz, τ

(
i− ia2z2

8π

)
,
iaτz(log(z)− 1)

2π

)
,

(C.1)

where 0 6= a ∈ R, with the conventions for the conifold periods used in [28]. The axio-
dilaton is denoted by τ = c + is, and the conifold modulus by z = e2πit = e2πi(x+iy). The
period vector can be brought to the standard form of the nilpotent orbit approximation as17

Π = eτN1+tN2(a00 + e2πita01 + e4πita02) , (C.2)

where the log-monodromy matrices Ni are given by

N1 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0


, N2 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0


, (C.3)

and the terms aij in the expansion of the period vector read

a00 =
(
1, 0, i, 0, 0, 0, 0, 0

)
, a01 = a

(
0, 1, 0, − i

2π , 0, 0, 0, 0
)
,

a02 = a2

4π
(
1, 0, −i, 0, 0, 0, 0, 0

)
.

(C.4)

17The terms proportional to a01 and a02 are the exponential corrections to the leading order term, that
we did not display in the main text (see equation (3.9)). These are essential for computing a non-degenerate
Hodge star.
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For later reference, let us write down the expression for the bilinear pairing defined in (2.2)

η =



0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0


. (C.5)

Given this data one has to compute the sl(2) approximation (see details in [9, 10]). The
lowering operators N−1 = N1 and N−2 = N2 in (C.3) are completed into sl(2)-triples by
weight operators

N0
1 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1


, N0

2 =



0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1


, (C.6)

which indeed fulfill the standard commutation relations (3.5). For our purposes we will not
need the raising operators, but in principle one could obtain these by solving the remaining
commutation relations.

Highest-weight states and Hodge decompositions. Having set up the period vector
and sl(2)-algebras, we next study the decomposition of the middle cohomology H4

prim(Y4)
in the strict asymptotic regime under the sl(2)-approximation. We begin with the highest-
weight states (3.11) of the sl(2)-representations. Two highest-weight states are obtained
from a0 and its conjugate, which have weights ` = (1, 1) under N0

1 and N0
1 + N0

2 . The
remaining highest-weight state is given by a01 + i

2πN2a01, which has weights ` = (1, 2).
Altogether we find

P 4,1
11 :

(
1, 0, i, 0, 0, 0, 0, 0

)
,

P 3,3
12 :

(
0, 1, 0, 0, 0, 0, 0, 0

)
,

P 1,4
11 :

(
1, 0, −i, 0, 0, 0, 0, 0

)
.

(C.7)

These sl(2)-representations are completed by considering descendants under the action of
N1, N2, which are given by

N1P
4,1
11 ⊂ V−1−1 :

(
0, 0, 0, 0, 1, 0, +i, 0

)
,

N1P
1,4
11 ⊂ V−1−1 :

(
0, 0, 0, 0, 1, 0, −i, 0

)
,

N1P
3,3
12 ⊂ V−10 :

(
0, 0, 0, 0, 0, 1, 0, 0

)
,

N2P
3,3
12 ⊂ V10 :

(
0, 0, 0, 1, 0, 0, 0, 0

)
,

N1N2P
3,3
12 ⊂ V−1−2 :

(
0, 0, 0, 0, 0, 0, 0, 1

)
.

(C.8)
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Recalling the splitting (3.23) of the sl(2)-representations we then decompose the middle
cohomology into two parts as

H4
prim(Y4,C) = HΩ ⊕HK3 , (C.9)

where we defined the terms

HΩ = P 4,1
11 ⊕N1P

4,1
11 ⊕ P

1,4
11 ⊕N1P

1,4
11 ,

HK3 = P 3,3
12 ⊕N1P

3,3
12 ⊕N2P

3,3
12 ⊕N1N2P

3,3
12 .

(C.10)

Note that HΩ is spanned by vectors with non-vanishing entries in odd positions, while HK3
is spanned by vectors with non-vanishing entries in even positions.

We next consider the Hodge decomposition of these individual terms HΩ and HK3 in
the strict asymptotic regime. As Hodge structure on the (4, 0)-form representations we find

HΩ = H4,0
Ω ⊕H3,1

Ω ⊕H1,3
Ω ⊕H0,4

Ω , (C.11)

with subspaces spanned by

H4,0
Ω :

(
1, 0, i, 0, c+ is, 0, i(c+ is), 0

)
,

H3,1
Ω :

(
1, 0, i, 0, c− is, 0, i(c− is), 0

)
.

(C.12)

and the others determined by complex conjugation. The (4, 0)-form subspace is straight-
forwardly determined as H4,0

Ω = et
iNiP 4,1

11 from the highest-weight subspace according
to (3.29); the (3, 1)-form subspace is spanned by the linear combination of Πsl(2) and
∂τΠsl(2) that is orthogonal to Πsl(2) under the bilinear pairing (which is precisely the one
picked by the Kähler covariant derivative). The other part of the cohomology corresponds
to the K3 block: its Hodge decomposition takes the form

HK3 = (HK3)3,1 ⊕ (HK3)2,2 ⊕ (HK3)1,3 , (C.13)

with subspaces spanned by

(HK3)3,1 :
(
0, 1, 0, −(x+ iy), 0, c+ is, 0, −(x+ iy)(c+ is)

)
,

(HK3)2,2 :
(
0, y, 0, 0, 0, cy + sx, 0, −s(x2 + y2)

)
,(

0, 0, 0, y, 0, s, 0, cy − sx
)
,

(C.14)

and the (1, 3)-form subspace fixed by complex conjugation. Now the (3, 1)-form subspace
is straightforwardly determined as (HK3)3,1 = et

iNiP 3,3
12 from the highest-weight subspace

according to (3.29); the (2, 2)-subspace is determined as the part of HK3 which is orthogonal
to the (3, 1)- and (1, 3)-subspaces under the bilinear pairing. Note that in this example
where the number of moduli is not large, the subspaces HΩ and HK3 have roughly the
same dimensions, while for large moduli the dimension of HΩ is O(1) while the dimension
of HK3 is O(n).
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Putting the above two Hodge decompositions (C.12) and (C.14) together, we can write
the sl(2)-approximated Hodge star operator of the middle cohomology H4

prim(Y4,C) as

?sl(2) =



0 0 c
s 0 0 0 −1

s 0
0 cx

sy 0 c
sy 0 − x

sy 0 − 1
sy

− c
s 0 0 0 1

s 0 0 0
0 − c(x2+y2)

sy 0 − cx
sy 0 x2+y2

sy 0 x
sy

0 0 c2

s + s 0 0 0 − c
s 0

0 x(c2+s2)
sy 0 c2+s2

sy 0 − cx
sy 0 − c

sy

− c2+s2
s 0 0 0 c

s 0 0 0
0 −(c2+s2)(x2+y2)

sy 0 −x(c2+s2)
sy 0 c(x2+y2)

sy 0 cx
sy


. (C.15)

One can verify straightforwardly that ?sl(2) acts as (−1)(p−q)/2 on elements of the subspaces
(HK3)p,q and Hp,q

Ω .

Self-duality conditions and flux vacua. Having constructed the sl(2)-approximation
and corresponding Hodge star operator, we next study the self-duality condition for
the fluxes in the strict asymptotic regime. We treat HΩ of the (4, 0)-form and the
K3 block HK3 individually. Let us denote the four-form flux by a vector as G4 =
(h1, h2, h3, h4, f1, f2, f3, f4). The self-duality condition on the subspace HΩ then reads

− f3 + ch3 − h1s = 0 , f1 − ch1 − h3s = 0 . (C.16)

Note that these constraints can equivalently be obtained by demanding orthogonality under
the bilinear pairing with the (3, 1)-form subspace given in (C.12), since the (4, 0)-form
subspace and its conjugate are self-dual. It is solved by

c = f1h1 + f3h3
h2

1 + h2
3

, s = −f3h1 + f1h3
h2

1 + h2
3

. (C.17)

We next turn to the self-duality condition of the K3 subblock HK3. Recall from (5.4) that
it is most conveniently imposed by demanding orthogonality with the (3, 1)-form subspace.
Taking the (3, 1)-form given in (C.14) we obtain as condition

(h2τ − f2)(h2t+ h4) = h2f4 − f2h4 . (C.18)

The flux quanta here are identified with those in (5.15) as

G12 = h2, G−10 = f2, G10 = −h4, G−1−2 = −f4 . (C.19)

The solution to (C.18) is described by some simple complex function t(τ). In (5.20) this
function parametrized the flat direction of the scalar potential; here these are lifted by the
inclusion of fluxes in HΩ, which fixes τ by (C.17), and thus also t.

D Tadpole contribution and flux quantization

In this appendix we investigate how the quantization of fluxes affects the tadpole for a
few examples. To be precise, we consider Calabi-Yau three-fold geometries near the large
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h1,1 ngen nstab heavy V` ‖G`‖2∞ ≥ 1
4

example 1 70 53 20 21 15

example 2 75 65 20 21 19

example 3 100 47 24 25 21

example 4 100 67 22 23 18

Table 1. In this table we summarize the statistics of our study of geometries with large h1,1: the
number ngen indicates the number of generators we managed to compute for the Kähler cone; the
number nstab gives the number of moduli in which the sl(2)-approximated Hodge star ?sl(2) varies
in the strict asymptotic regime we chose; the next column specifies the number of sl(2)-eigenspaces
V` which are heavy asymptotically; the last column indicates how many out of these heavy V` have
a boundary Hodge norm bounded from below by at least 1/4.

complex structure regime with large h2,1.18 By using mirror symmetry we compute the
relevant data with CYTools [46].

Quantization of sl(2)-eigenspaces. Let us first recall the form of the tadpole in strict
asymptotic regimes as given in (6.3). We want to identify the relevant quantity to check
for flux quantization, and make sure that there are no pieces that can scale inversely with
the number of moduli. We decomposed the tadpole contribution of the fluxes as

〈G4, G4〉 ≥ 2
∑
`>0

γ
∑

`i‖Ĝ`‖2∞ . (D.1)

This sum runs over at least as many terms as the number of stabilized moduli nstab.
Therefore, in order for the tadpole to grow linearly with nstab, we have to require that
each of these terms is order one. The strict asymptotic regime already requires γ � 1,
so the problem at hand reduces to checking whether the boundary norm ‖Ĝ`‖2∞ defined
in (3.31) is of order one. We explicitly derive lower bounds for these coefficients for each
of the heavy sl(2)-eigenspaces V` in a few three-fold examples, given in table 1.

Details of the computation. We now provide some details of how the calculation above
was implemented.

• We compute the relevant topological data of the examples using CYTools. We take
four examples at various large values of h1,1 in the Kreuzer-Skarke dataset [47]. The
intersection numbers of a given geometry are efficiently computed using this program,
as well as the generators of the Mori cone.19 However, for our purposes we need to

18For simplicity we use Calabi-Yau three-folds but we do not expect the quantization issues to be very
different in four-folds, in particular the absence of inverse scaling with the number of moduli, as we will show.

19To be more precise, let us note that it is much easier in practice to compute the Mori and Kähler cone
for the ambient space rather than the Calabi-Yau manifold itself. The Kähler cone of the ambient space is
in general contained in the Kähler cone of the Calabi-Yau manifold, so we thereby restrict our attention to
a smaller portion of the moduli space. We refer to [48–50] for more details on constructions of Calabi-Yau
hypersurfaces in toric ambient spaces.
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know generators ωi of the Kähler cone: in this basis we can expand the Kähler form as
J = tiωi, where sending the saxion Im ti = si to infinity corresponds to the large field
limit to the boundary. The computational cost of dualizing a generic Mori cone to the
Kähler cone scales exponentially with h1,1, and for h1,1 & 20 it becomes essentially
impossible to compute all of these generators.

• Let us first briefly review some key aspects of dualizing a Mori coneM to the Kähler
cone K, and in particular highlight the complications that arise at large h1,1. We write
the generators of the Mori cone as Ma = (Mai) ∈ M, where a labels the generators
and i = 1, . . . , h1,1 the components of this vector. A vector K = (Ki) then lies in the
dual Kähler cone K if it satisfies the conditions

Ma ·K =
h1,1∑
i=1

MaiKi ≥ 0 , (D.2)

for all Mori cone generatorsMa. Computing the dual of a simplicial cone (the number
of generators Ma is equal to the dimension h1,1 of the cone) can be performed very
quickly, even at large dimensions. The complexity of the problem arises when the
Mori cone is non-simplicial, i.e. the number of generators is larger than h1,1. In
practice, geometries in the Kreuzer-Skarke database at large h1,1 have considerably
larger numbers of generators, for instance at h1,1 = 100 there are about 150 − 200
generators. One way the exponential scaling of the computational cost now becomes
apparent is by scanning over all simplicial subcones of M: each of these can be
dualized efficiently, however, we have to consider roughly

(150
100
)
such subcones at

h1,1 = 100.

• In this paper we therefore take a more pragmatic approach, and content ourselves
with determining a subset of the Kähler cone generators. We consider only linearly
independent generators, and denote the number of generators we find for our examples
in the end by ngen. Our method works as follows. We consider a fixed number
of simplicial subcones Msim of the Mori cone M, of order 104, and dualize each
of these individually to a simplicial cone Ksim. Since the subcones we start from
are smaller than the Mori cone Msim ⊂ M, the resulting dual cones are larger
than the Kähler cone K ⊂ Ksim. In other words, most of the generators of Ksim
do not satisfy all conditions in (D.2). However, typically we do encounter some
generators that satisfy (D.2), and we use precisely these rays as generators of the
Kähler cone. In principle one could recover all generators of the Kähler cone K with
this approach, however around h1,1 & 15 the number of subconesMsim is already too
large. Nevertheless, by taking only a small subset of Mori subcones we have been able
to determine a sizeable number of Kähler cone generators for a handful of examples.

• With the relevant geometric data of the Calabi-Yau hypersurface in hand — the in-
tersection numbers and the Kähler cone generators — we proceed and study strict
asymptotic regimes in the large volume limit. These regions are defined by the or-
dering of the saxions si that specify how far we move along the Kähler cone genera-
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tors. For the procedure to construct the sl(2)-approximation in this strict asymptotic
regime we refer to [10] for a pedagogical introduction. One of the main messages we
want to convey here is that the resulting boundary Hodge star operator ?sl(2) need not
depend on all available moduli — there can be some trivial sl(2)-triples (N±i , N0

i ) = 0.
By carefully selecting appropriate orderings of the saxions we were able to find sl(2)-
approximations depending on about nstab ∼ 20 moduli in these moduli spaces with
h1,1 = 70 − 100. Note that there are some technical limitations at play here: even
for a simplicial Kähler cone one would have to consider (h1,1!) different orderings;
moreover, we were not able to identify all Kähler cone generators but only a subset
ngen < h1,1. We expect that a complete description of the full non-simplicial Kähler
cones would enable us to identify asymptotic regimes with nstab much closer to the
actual number of moduli h1,1.

• Given the sl(2)-approximation for a strict asymptotic regime, we proceed and derive
lower bounds for the norms ‖G`‖2∞. We consider real, quantized three-form fluxes G ∈
H3(Y3,Z)∩Vheavy valued in the heavy sl(2)-eigenspaces (see (3.35)). We subsequently
project G onto one of the sl(2)-eigenspaces as G` ∈ V` ⊂ Vheavy. Let us note that the
sl(2)-splitting is generically only realized over the rationals, so for these individual
components of the three-form flux G we have G` ∈ H3(Y3,Q). In order to obtain a
lower bound on ‖G`‖2∞, we rewrite it as a sum over squares of integer flux quanta: the
smallest coefficient in front of these squares then gives a lower bound on the norm.

• Let us elaborate on this rewriting of ‖G`‖2∞ for a moment. We take a normalized basis
v`,a ∈ H3(Y3,R) ∩ V` with a = 1, . . . , dim V`. We represent the 2(h2,1 + 2)× dim(V`)
matrix of basis vectors by B` = (v`,a), satisfying BT

` B` = 1dim(V`). Subsequently we
can represent G` by a dim(V`)-component vector as BT

` ·G` = (G`,a) such that G` =
G`,av`,a. In this basis the boundary norm can be represented by a dim(V`)× dim(V`)
matrix as

(M`)ab = 〈v`,a, ?∞v`,b〉 . (D.3)

The problem at hand then reduces to decomposing this matrix as M` = QT` Q` by a
Cholesky decomposition, with Q` a dim(V`) × dim(V`) matrix: the boundary norm
‖G`‖2∞ simplifies to the Euclidean norm of a vector as

‖G`‖2∞ = |Q ·BT
` ·G`|2 . (D.4)

Expanding G in an integral basis as G = (aI , 0), where I = 0, . . . , h2,1 with aI integral
coefficients, we can then write out this Euclidean norm as

‖G`‖2∞ =
∑
a

ba
(∑
I

naIaI
)2
, (D.5)

with naI ∈ Z such that gcdI(naI) = 1 for each a = 1, . . . , dim(V`), and ba ∈ Q>0.
The lower bound is then given by

‖G`‖2∞ ≥ min(ba) . (D.6)
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• Let us demonstrate the above procedure on an example. We take the sl(2)-eigenspace
V0113 of example 4 in table 1, which can be spanned by the unit vectors e86 and e87
with a 1 in the corresponding positions. The flux G0113 along this basis can be
expanded as

G0113 = 1
3(−a36 − 2a84 + 3a86)e86 + 1

3(−2a36 − a84 + 3a87)e87 . (D.7)

In the basis e86, e87 the Hodge norm reduces to

(M012110)ab =
(

14 −7
−7 14

)
, Q =

(√
14 −7

2
0

√
21
2

)
. (D.8)

The norm then simplifies to

‖G0113‖2∞ = 7
2(a84 − 2a86 + a87)2 + 7

6(2a36 + a84 − 3a87)2 , (D.9)

which has as lower bound
‖G0113‖2∞ ≥

7
6 . (D.10)

Note, however, that this particular bound is not easily saturated. For instance,
by putting only a84 = 1 and all others to zero we also turn on the first square, in
which case ‖G0113‖2∞ = 14/3. This interplay between different squares arises for other
sl(2)-eigenspaces as well. It even shows up between different boundary norms ‖G`‖2∞,
where saturating the lower bound for one coefficient results in another satisfying its
bound marginally.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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