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1 Introduction

Hydrodynamics is believed to be an effective description of a quantum many-body system
in the long distance long time regime. Classical hydrodynamics is formulated as a set
of deterministic partial differential equations (PDEs), which stands for conservation laws
of stress-energy tensor and internal currents. However, classical hydrodynamics does not
capture effects of statistical and/or quantum fluctuations. In stochastic formulation of
hydrodynamics, fluctuations are modelled by random dissipative fluxes (with Gaussian
distributions), added to the stress-energy tensor and internal currents. Resultantly, the
deterministic conservation laws become stochastic Langevin-type PDEs.

Recently, hydrodynamics has been reformulated as a non-equilibrium effective field
theory (EFT) [3–8]1 (see [14] for a pedagogical review) by utilizing Schwinger-Keldysh
(SK) formalism, entirely based on symmetry principles. In contrast to stochastic formula-
tion, hydrodynamic EFT incorporates dissipations and fluctuations in a systematic manner.
Particularly, fluctuation-dissipation theorem (FDT) is implemented as a dynamical KMS
symmetry [4, 5] satisfied by the hydrodynamic effective action. The dynamical KMS sym-
metry acts on dynamical variables of the hydrodynamic EFT. Thus, hydrodynamic EFT
provides an ideal framework for investigating fluctuation effects in a variety of physical
problems, see e.g. [15–21] for recent progress.

1See [9–13] for early attempts on this subject.
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The development of hydrodynamic EFT has been largely inspired by the AdS-CFT
correspondence [22–24], which conjectures that strongly coupled large Nc (the number
of colors) gauge theory is equivalent to a weakly coupled gravitational theory in higher
dimensional asymptotic AdS space. Essentially, deriving hydrodynamic EFT from gravity
amounts to implementing holographic Wilsonian renormalization group [25–29] in dual
gravity. A first successful derivation was presented for a U(1) charge diffusion [1, 30].
While [30] adopted real-time formalism for AdS-CFT correspondence [31–33],2 the work [1]
achieved the goal by proposing a holographic prescription for Schwinger-Keldysh (SK)
closed time contour. The results of [1, 30] are in perfect agreement with that constructed
within the non-equilibrium EFT framework [3]. Recently, the holographic SK contour [1]
attracted a lot of attention in various holographic settings [2, 38–46].

In this work we extend studies of [1, 2] and present a holographic derivation of hydro-
dynamic EFT for a SU(2) isospin charge diffusion,3 using the holographic SK contour [1].
This extension is highly nontrivial, mainly due to nonlinearity of the theory. Indeed, for a
linear bulk theory, in order to consistently cover both ingoing mode (dual to dissipation)
and outgoing mode (dual to fluctuation), the bulk fields inevitably exhibit logarithmic
divergences near the event horizon [1, 2]. When nonlinearities are present, this logarith-
mic behavior near the horizon will bring in technical complications in the derivation of
boundary action, which is one of the main problems we will address in this study. Apart
of this, there is a subtle issue [1] regarding the non-commutativity between hydrodynamic
limit and near horizon limit. In this work, we would like to further explore this point and
develop a more solid way to extract hydrodynamic EFT action on the boundary.

Our study is partly motivated by a recent publication [53], which developed an EFT for
hydrodynamics with global non-Abelian symmetries. Ref. [53] assumes two main approxi-
mations: truncating the effective action to quadratic order in noise variables, and imposing
dynamical KMS symmetry in the classical statistical limit (i.e., ~→ 0).4 While the former
approximation does not completely kill nonlinear interactions between noises and dynam-
ical variables, it does ignore non-Gaussianity in noise. Recently, Jain and Kovtun clarified
importance of non-Gaussian noises in quantifying (non-)universality of hydrodynamics [18]:
non-Gaussian noise does have non-negligible signals in hydrodynamic correlation functions.

The second approximation made in [53] corresponds to ignoring quantum fluctuations.
While this works well from hydrodynamic EFT perspective [3], it becomes unsatisfactory
on holographic side: a clear splitting between quantum fluctuations and statistical fluc-
tuations would be impossible for a holographic field theory [30]. More precisely, for a
holographic theory, the mean free path is ∼ ~/T , which implies that derivative expansion
would unavoidably bear quantum fluctuations [30]. In other words, the large Nc limit of
holography does not necessarily mean classicalization of the boundary system, which is
another conceptual issue we would like to clarify through present study. Hopefully, elab-
oration on this matter will shed light on the imposition of dynamical KMS symmetry at

2This real-time prescription has been used to compute higher-point correlation functions [34–37].
3Classical hydrodynamics with an internal SU(2) symmetry has been considered, for instance, in [47–52].
4Implementation of dynamical KMS symmetry at quantum level has been considered for U(1) charge

diffusion [54, 55] and in formulating an EFT for maximally quantum chaotic system [56–58].
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quantum level for the construction of hydrodynamic EFT for a dissipative fluid, which is
still an open question [4, 5]. In addition, we are interested in understanding to what the
dynamical KMS symmetry proposal [4, 5] corresponds in the dual gravity theory.

Therefore, via holographic technique, we aim at deriving a more comprehensive EFT
for SU(2) isospin charge diffusion, in which the two approximations undertaken in [53]
will be relaxed. Phenomenologically, the present study will be of potential relevance to
the study of QCD plasma in the chiral limit [47, 59]: on the one hand, the global SU(2)
symmetry can mimic flavor symmetry of QCD in two-flavor approximation in a late stage
of RHIC plasma; on the other hand, this study would be insightful in understanding
fluctuations in pion fluid at finite temperature.

Before diving into detailed calculations, we summarize our main results:

• Limited to first order in derivative expansion, we derive the hydrodynamic ef-
fective action for SU(2) diffusion, valid to quartic order in hydrodynamic fields.
We analytically compute all the parameters in the effective action. See equa-
tions (3.39), (3.49), (3.54), and (3.57) (or the more compact ones (3.66)–(3.68)) for
detailed results.

• We reveal that our effective action satisfies dynamical KMS symmetry at the quantum
level, say, both thermal and quantum fluctuations are accounted for in the effective
action, see subsection 3.5.

• We present a holographic interpretation for dynamical KMS symmetry proposed in [4,
5]: under bulk KMS transformation, the bulk fields living on the lower (upper) branch
of the holographic contour will transform in an analogous way as those living on the
forward (backward) branch of the SK contour in boundary theory. See subsection 3.5
for more discussions.

The rest of this paper will be organized as follows. In section 2 we present the holo-
graphic setup: a probe SU(2) gauge field in doubled Schwarzschild-AdS5 geometry. In
addition, we outline basic strategy of deriving boundary effective action from bulk dynam-
ics. Section 3 is the main part of this work. First, we solve classical bulk dynamics in the
partially on-shell sense; then, we compute the partially on-shell bulk action by implement-
ing radial contour integrals, which gives the boundary effective action; finally, we check
dynamical KMS symmetry of our effective action, and explore a holographic interpretation
for it. In section 4, we make a summary and discussions. Appendices A and B supplement
further calculational details.

2 Holographic setup

Notation convention. Throughout this paper, we use the upper-case Latin letters
“M,N, · · · ” to denote bulk spacetime indices, the Greek letters “µ, ν, · · · ” for boundary
indices, the Italic lower-case Latin letters “i, j, · · · ” for spatial coordinates, and the upright
lower-case Latin letters “a, b, · · · ” for SU(2) flavor indices.
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Figure 1. Gravity dual of the SK time contour [1]: complexified radial coordinate and analytical
continuation around the horizon rh.

We consider a non-Abelian SU(2) gauge theory in Schwarzschild-AdS5 geometry, whose
dynamics is described by Yang-Mils action:

S0 = −1
2

∫
d5x
√
−gTr(F 2) = −1

4

∫
d5x
√
−g F a

MNF
aMN , (2.1)

where Yang-Mills field and its field strength are matrix-valued

C = CMdx
M = Ca

M t
adxM , F = dC = FMNdx

M ∧ dxN = F a
MN t

adxM ∧ dxN ,

F a
MN = ∇MCa

N −∇NCa
M + εabcCb

MC
c
N , ta = 1

2τ
a, (2.2)

where τa’s are the Pauli matrices, and repeated indices mean summation. Here, we take
the convention for normalization Tr(tatb) = 1

2δ
ab. In ingoing Eddington-Finkelstein (EF)

coordinate system xM = (r, v, xi), the metric of Schwarzschild-AdS5 geometry is given by

ds2 = gMNdx
MdxN = 2dvdr − r2f(r)dv2 + r2δijdx

idxj , i, j = 1, 2, 3, (2.3)

where f(r) = 1 − r4
h/r

4 with rh the horizon radius (the AdS radius is set to unity).
The Schwarzschild-AdS5 has Hawking temperature T = rh/π, which is identified as the
temperature for boundary theory. In asymptotic AdS space, we also need a counter-term
action [60]

Sct = 1
4 log r

∫
d4x
√
−γF a

µνF
aµν
∣∣∣∣
r=∞

, (2.4)

which is written down based on minimal subtraction scheme. Here, γ is the determinant
of induced metric γµν on the boundary r =∞.

For the purpose of incorporating fluctuation and dissipation in an action principle, the
boundary system shall be placed on the SK time contour [61]. A gravity dual of the SK
time contour is proposed in [1], which complexifies the radial coordinate r of (2.3) and
analytically continues it around the event horizon r = rh, see figure 1.

Here, we explain the basic strategy of deriving hydrodynamic effective action from AdS
gravity. This has been originally formulated in [25] for the problem of stress tensor (see
also [1, 2] for U(1) charge diffusion problem), based on early attempts [27, 28, 62]. The
starting point is the holographic dictionary [23, 24]:

ZCFT = ZAdS. (2.5)
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The CFT partition function ZCFT may be presented as a path integral over gapless modes
(collectively denoted by X) in the low energy EFT:

ZCFT =
∫

[DX]eiSeff [X], (2.6)

where Seff is the desired effective action. The AdS partition function ZAdS is a path integral
over bulk fields,5

ZAdS =
∫

[DC ′M ]eiS0[C′
M ]+iSct , (2.7)

which will be computed in the saddle point approximation, i.e., based on solving classi-
cal dynamics of the bulk Yang-Mills theory (2.1). In (2.7) the primed configuration C ′M
corresponds to no gauge-fixing for the bulk gauge theory.

Thus, in order to obtain Seff from bulk theory we shall identity gapless mode of low
energy EFT, whose gravity dual shall not be integrated out in the gravity partition func-
tion (2.7). This can be achieved by carefully examining gauge symmetry in the bulk, as
illustrated for U(1) case by Nickel and Son [62] (see also [1, 2, 44]). Through a bulk gauge
transformation

C ′M → CM = U(Λ)(C ′M + i∇M )U †(Λ), U(Λ) = eiΛ
ata , (2.8)

a generic configuration C ′M can be brought into any gauge-fixed form CM , for example,
the one with radial component fixed as Cr = 0. The bulk gauge transformation parameter
Λa(xM ) is determined by solving gauge-fixing condition. At the AdS boundary, (2.8) takes
the form:

A′µ(xα)→ U(ϕ)
[
A′µ(xα) + i∂µ

]
U†(ϕ), U(ϕ) = eiϕ

ata , ϕa(xµ) ≡ Λa(r =∞, xµ),
(2.9)

where A′µ is boundary value of C ′µ. Thus, the gravity partition function (2.7) can be
equivalently expressed as a path integral over CM (gauge-fixed configuration) and the
gauge transformation parameter Λ:

ZAdS =
∫

[DΛ][DCµ]eiS0[CM ,Λ]+iSct

'
∫

[Dϕ][DCµ]eiS0[Cµ,ϕ]+iSct , (2.10)

where in the last equality we ignored an overall normalization constant given that this will
not affect results of physical quantities. Once Cµ is integrated out, (2.10) is put into the
desired form of (2.6),

ZAdS =
∫

[Dϕ]eiS0[Cµ[ϕ],ϕ]|p.o.s+iSct , (2.11)

so that the boundary effective action is read off from bulk action

Seff = S0[Cµ[ϕ], ϕ]|p.o.s + Sct. (2.12)
5In the probe limit, it is valid to ignore dynamics of bulk spacetime.
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Here, under the philosophy of [1, 3, 62], we identify ϕ as the gapless mode of low energy
EFT. Note S0[Cµ[ϕ], ϕ]|p.o.s is partially on-shell bulk action to be obtained by plugging
classical solution for Cµ into Yang-Mills action (2.1). It is important to stress that by
partially on-shell, we determine profile for Cµ by solving dynamical equations of motion
(EOMs) only. Particularly, we will leave aside the constraint equation. Such a partially
on-shell formalism was ever invented in [63–67] to resum (linear) all-order derivatives in
off-shell hydrodynamic constitutive relations. Below we elaborate on this point.

Under the variation

Ca
M → Ca

M + δCa
M =⇒ δF a

MN = ∇MδCa
N −∇NδCa

N + εabcδCb
MC

c
N + εabcCb

MδC
c
N , (2.13)

the Yang-Mills action (2.1) varies as

δS0 = −
∫
d5x
√
−g

[
∇M

(
δCa

NF
aMN

)
− δCa

N∇MF aMN + δCa
N ε

abcCc
MF

bNM
]
. (2.14)

Immediately, we read off the bulk EOMs:

∇MF aMN + εabcCb
MF

cMN = 0. (2.15)

Throughout this work, we will take the gauge convention

Ca
r = − Ca

v

r2f(r) , (2.16)

which means in Schwarzschild coordinate system the radial component of bulk gauge field
is fixed to zero [2, 44]. The motivation for taking such a gauge choice is to realize time-
reversal symmetry in a simple way, see [2]. Accordingly, the dynamical components of bulk
EOMs are [2, 25]

∇MF aMi + εabcCb
MF

cMi = 0,

∇MF aMv + εabcCb
MF

cMv − 1
r2f(r)

(
∇MF aMr + εabcCb

MF
cMr

)
= 0. (2.17)

The constraint component of bulk EOMs is

∇MF aMr + εabcCb
MF

cMr = 0. (2.18)

As emphasized below (2.12), we will solve the bulk dynamics in a partially on-shell ap-
proach: the profile of bulk gauge potential Ca

µ will be fixed by solving dynamical compo-
nents of bulk EOMs, say (2.17). The constraint component of bulk EOMs, say (2.18), will
be left aside.

Finally, the AdS boundary conditions are

Cµ(r =∞s, x
µ) = U(ϕs)(Asµ + i∂µ)U†(ϕs) ≡ Bsµ(xα), U(ϕs) = eiϕ

a
s(x)ta , s = 1, 2,

(2.19)
where ϕa

s is the hydrodynamic field associated with SU(2) isospin charge, and Asµ is the
external (background) SU(2) gauge field in the boundary theory. For brevity, in (2.19) we
dropped the prime in A′sµ.

– 6 –
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However, as explained in [1] (see also [2]), the AdS boundary conditions (2.19) are
insufficient to fully determine Cµ. Resultantly, we have freedom to impose

Ca
v (r = rh − ε, xµ) = 0. (2.20)

For a bulk U(1) field, the condition (2.20) has been shown to be equivalent to discontinuity
of ∂rCv at the horizon [2]. We will not elaborate on this point since linearized solution for
Ca
M (which is identical to U(1) case) is sufficient for our purpose.

3 From bulk dynamics to boundary effective action

In this section we solve classical dynamics of the bulk theory, and then compute the partially
on-shell bulk action S0[Cµ[ϕ], ϕ]|p.o.s of (2.12).

3.1 General consideration: linearize Yang-Mills system

The dynamical EOMs (2.17) are nonlinear PDEs and are thus hard to solve analytically.
Instead of solving (2.17) order-by-order in the boundary derivative expansion, we linearize
the bulk Yang-Mills theory:

Ca
M = ξ1C

a(1)
M + ξ2C

a(2)
M + ξ3C

a(3)
M + · · · , F a

MN = ξ1F
a(1)
MN + ξ2F

a(2)
MN + ξ3F

a(3)
MN + · · · ,

where

F
a(1)
MN = ∇MCa(1)

N −∇NCa(1)
M ,

F
a(2)
MN = ∇MCa(2)

N −∇NCa(2)
M + εabcC

b(1)
M C

c(1)
N ,

F
a(3)
MN = ∇MCa(3)

N −∇NCa(3)
M + εabc

(
C

b(2)
M C

c(1)
N + C

b(1)
M C

c(2)
N

)
. (3.1)

At each order in ξ-expansion, the dynamical EOMs (2.17) become a system of linear PDEs.
For instance, at O(ξ1) and O(ξ2), we have

∇MF aMi(1) = 0, ∇MF aMv(1) − 1
r2f(r)∇MF

aMr(1) = 0, (3.2)

∇MF aMi(2) + εabcC
b(1)
M F cMi(1) = 0,

∇MF aMv(2) + εabcC
b(1)
M F cMv(1) − 1

r2f(r)
(
∇MF aMr(2) + εabcC

b(1)
M F cMr(1)

)
= 0. (3.3)

The detailed forms of (3.2) and (3.3) can be found in appendix A. The AdS boundary
conditions (2.19) will be imposed as follows:

Ca(1)
sµ (r =∞s, x

α) = Ba
sµ(xα), Ca(n)

µ (r =∞s, x
α) = 0, n = 2, 3, · · · , s = 1, 2.

(3.4)
Meanwhile, the vanishing horizon condition (2.20) is also imposed perturbatively

Ca(n)
v (rh − ε, xµ) = 0, n = 1, 2, 3, · · · . (3.5)

– 7 –
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The leading order EOMs (3.2) are homogeneous PDEs, which are identical to those of a
free Maxwell field in Schwarzschild-AdS5 geometry. Thus, the leading order solution Ca(1)

M

is essentially the same as that constructed in [2], which will be reviewed in subsection 3.3.
The next-to-leading order EOMs (3.3) form a system of linear inhomogeneous PDEs,

which differ from leading order ones (3.2) by source terms, see appendix A for more details.
Moreover, the source terms are constructed from leading order solution Ca(1)

M . Given that
linearly independent solutions for homogeneous parts of (3.3) have been worked out in [2],
the task of solving (3.3) boils down to looking for a particular solution associated with its
source term. This can be implemented via Green’s function approach [44, 68], which will
be discussed in detail in appendix B.

We turn to the Yang-Mills action (2.1), which is expanded as:

S0 = ξ2S
(2)
0 + ξ3S

(3)
0 + ξ4S

(4)
0 + · · · , (3.6)

where

S
(2)
0 = −1

4

∫
d5x
√
−gF a(1)

MNF
aMN(1),

S
(3)
0 = −1

4

∫
d5x
√
−g 2F a(1)

MNF
aMN(2),

S
(4)
0 = −1

4

∫
d5x
√
−g

[
2F a(1)

MNF
aMN(3) + F

a(2)
MNF

aMN(2)
]
. (3.7)

The quadratic action S
(2)
0 will be similar to that of [2]. The cubic action S

(3)
0 could be

further simplified via integration by part:

S
(3)
0 = −1

2

∫
d5x
√
−g

[
(∇MCa(2)

N −∇NCa(2)
M )F aMN(1) + εabcF

a(1)
MNC

bM(1)CcN(1)
]

= −1
2

∫
d5x
√
−g

[
2∇MCa(2)

N F aMN(1) + εabcF
a(1)
MNC

bM(1)CcN(1)
]

= −1
2

∫
d5x
√
−g

[
2∇M (Ca(2)

N F aMN(1))− Ca(2)
N ∇MF aMN(1) + εabcF

a(1)
MNC

bM(1)CcN(1)
]

= −1
2

∫
d5x
√
−gεabcF

a(1)
MNC

bM(1)CcN(1). (3.8)

Explicitly, using the gauge-fixing (2.16), the cubic order action becomes

S
(3)
0 = −

∫
d5x
√
−gεabc

{
(∂iCa(1)

v − ∂vCa(1)
i ) C

b(1)
v

r4f(r)C
c(1)
i + 1

r4∂iC
a(1)
j C

b(1)
i C

c(1)
j

}
. (3.9)

The quartic order action S(4)
0 of (3.7) could be simplified in the same fashion (3.8). Even-

tually, the quartic order action is cast into

S
(4)
0 = −1

4

∫
d5x
√
−g

[
2εabcF

a(1)
MNC

bM(2)CcN(1) + εabc(∇MCa(2)
N −∇NCa(2)

M )CbM(1)CcN(1)

+Cb(1)
M CbM(1)C

c(1)
N CcN(1) − Cb(1)

M CbN(1)C
c(1)
N CcM(1)

]
, (3.10)

– 8 –
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Figure 2. Witten diagrams for S(2)
0 (first), S(3)

0 (second) and S
(4)
0 (last two). Here, the circle

represents the AdS boundaries, and the region inside the circle is for AdS interior. The straight lines
stand for bulk-to-bulk propagator (connecting two points inside the circle) and bulk-to-boundary
propagator (connecting an interior point and a point on the circle) for bulk SU(2) gauge field
propagating in doubled Schwarzschild-AdS.

where the first two terms involve the next-to-leading order solution Ca(2)
M , and the last two

terms do not. Explicitly, the quartic order action is

S
(4)
0 =−1

4

∫
d5x
√
−g
{
− 2
r4f(r)C

a(1)
v C

b(1)
k

(
Ca(1)
v C

b(1)
k −Ca(1)

k Cb(1)
v

)
+ 1
r4C

a(1)
k C

b(1)
l

(
C

a(1)
k C

b(1)
l −Ca(1)

l C
b(1)
k

)}

−
∫
d5x
√
−gεabc

{
(∂iCa(1)

v −∂vCa(1)
i ) C

b(2)
v

r4f(r)C
c(1)
i + 1

r4∂iC
a(1)
j C

b(2)
i C

c(1)
j

}

− 1
2

∫
d5x
√
−gεabc

{
(∂iCa(2)

v −∂vCa(2)
i ) C

b(1)
v

r4f(r)C
c(1)
i + 1

r4∂iC
a(2)
j C

b(2)
i C

c(1)
j

}
. (3.11)

In obtaining (3.9) and (3.11), we have imposed the leading-order dynamical
EOMs (3.2), but we did not impose the constraint equation (2.18). Moreover, we have
utilized the following two facts: Ca(2)

µ vanishes at the AdS boundaries, see (3.4); leading
order counterpart of the radial gauge choice (2.16).

While the quadratic action S
(2)
0 and cubic action S

(3)
0 involve only the leading-order

solution Ca(1)
µ , the computation of S(4)

0 generally requires the next-to-leading order solution
C

a(2)
µ . In subsection 3.2, we will see that the leading-order solution C(1)

µ is essentially the
bulk-to-boundary propagator. In appendix B, Ca(2)

µ is constructed via Green’s function
method and would be schematically written as

Ca(2)
µ '

∫ ∞1

∞2
dr′G⊥,‖(r, r′, kα)Sa(2)

µ (r′, kα), (3.12)

where G⊥,‖(r, r′, kα) represents the bulk-to-bulk propagator, and the source term
Sa(2)
µ (r′, kα) are quadratic in C

a(1)
µ , see appendix B. Diagrammatically, the perturbative

expansion of bulk action can be drawn as tree-level Witten diagrams, see figure 2. More
precisely, the quadratic action S

(2)
0 and cubic action S

(3)
0 correspond to contact Witten

diagrams, while the quartic action S
(4)
0 contains both contact Witten diagram (the first

two lines of (3.11)) and exchange Witten diagram (the last two lines of (3.11)).
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From subsection 3.2, it will be clear that Ca(2)
M starts from first order in boundary

derivative expansion. This implies, through (3.11), that in practice we do not need to solve
for Ca(2)

M , since in present work we will truncate quartic order action S(4)
0 at first order in

the hydrodynamic derivative expansion. Equivalently, we will only compute contact-type
Witten diagrams (the first three of figure 2).

3.2 Partially on-shell solution: generic structure

Turning to Fourier space:

C
a(n)
M (r, xµ) =

∫
dωdq

(2π)2 e
ikαxαC

a(n)
M (r, kµ), n = 1, 2, · · · , kµ = (ω, q, 0, 0), (3.13)

we further reduce the system of linear PDEs, say (3.2) or (3.3), into a system of linear ordi-
nary differential equations (ODEs). Here, by spatially rotational invariance, we have chosen
the spatial momentum for Fourier modes to be along x-direction, without losing generality.
Then, the bulk gauge field C

a(n)
µ can be classified into two decoupled sub-sectors: the

transverse sector Ca(n)
⊥ with ⊥= y, z versus the longitudinal sector Ca(n)

‖ =
{
C

a(n)
v , C

a(n)
x

}
.

The transverse mode obeys a closed second order ODE (n = 1, 2, · · · ):

∂r
[
r3f(r)∂rCa(n)

⊥

]
+ �⊥

(
∂r;ω, q2

)
C

a(n)
⊥ = Sa(n)

⊥ , (3.14)

where the source Sa(n)
⊥ is built from lower order solutions, with Sa(1)

⊥ = 0, see (A.7).
From (A.6), the symbol �⊥

(
∂r;ω, q2)Ca(n)

⊥ stands for terms containing boundary deriva-
tives of Ca(n)

⊥ , and contains at most one first order radial derivative of Ca(n)
⊥ .

The dynamics for the longitudinal sector is more involved, see (A.6) and (A.7).
Schematically, the dynamical EOMs are (n = 1, 2, · · · )

∂r
[
r3∂rC

a(n)
v

]
+ �v (∂r;ω, q)Ca(n)

‖ = Sa(n)
v ,

∂r
[
r3f(r)∂rCa(n)

x

]
+ �x (∂r;ω, q)Ca(n)

‖ = Sa(n)
x , (3.15)

where, similar to transverse sector, the symbols �v (∂r;ω, q)Ca(n)
‖ and �x (∂r;ω, q)Ca(n)

‖

denote terms having boundary derivatives of Ca(n)
v,x , and contain at most one first order

radial derivative of Ca(n)
v,x . Finally, Sa(n)

v,x are the source terms to be constructed from lower
order solutions, with the leading order Sa(1)

v,x = 0.
In general, solution for (3.14) or (3.15) consists of two parts: generic solution for homo-

geneous parts of (3.14) and (3.15), which will be referred to as homogeneous generic solu-
tion (HGS), and particular solution for the whole inhomogeneous systems (3.14) and (3.15).
First, we consider HGS by ignoring source terms, which has been worked out in section 4
of [2]. We cut the radial contour of figure 1 at the leftmost point r = rh−ε so that the con-
tour is split into upper branch and lower branch. Then, we search for linearly independent
solutions on single copy AdS, i.e., either on the upper branch or on the lower branch of the
contour. For generic values of ω and q, these linearly independent solutions are not known
analytically, and may be classified according to their near-horizon behavior. Resultantly,
on upper (lower) branch of the radial contour, the HGS is simply linear superposition of
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those linearly independent solutions. With HGS at hand, it is straightforward to obtain
particular solution for the whole inhomogeneous system, for instance, by Green’s function
approach. On upper (lower) branch, we sum the HGS and particular solution, forming
inhomogeneous generic solution (IHGS). At the cutting slice r = rh − ε, the IHGS on the
upper branch will be properly glued to the IHGS on the lower branch. Eventually, we
impose AdS boundary conditions. This completes the solving of (3.14) and (3.15).

Finally, we briefly comment on the next-to-leading order solution Ca(2)
µ . From (3.3), it

is direct to check that the source terms Sa(2)
⊥,v,x appearing in (3.14) and (3.15) are at least of

first order in boundary derivative expansion. Given homogenous AdS boundary conditions
for Ca(2)

µ , see (3.4), one can immediately conclude that Ca(2)
µ will be at least of first or-

der in boundary derivative expansion, just as their source terms. Consequently, combined
with (3.11), this observation implies that the contribution from C

a(2)
µ will start from sec-

ond order in boundary derivative expansion, which will be beyond focus of present work.
Since the next-to-leading solution is irrelevant in subsequent calculations, we postpone the
detailed construction of it in appendix B.

3.3 Review of leading-order solution of [2]

In this subsection, we review the leading-order solution comprehensively constructed in [2].
The strategy of solving leading-order counterparts (i.e., with n = 1) of (3.14) and (3.15)
will go under three steps.

First, with the radial contour of figure 1 cut at r =h −ε, we search for linearly inde-
pendent solutions when r varies on the upper branch or lower branch. While this topic has
been widely explored in the literature, a major difference arises due to partially on-shell
approach adopted in this work. Particularly, for the longitudinal modes, one has to include
a new linearly independent solution, referred to as “polynomial solution” in [2], which does
not obey the constraint equation and is thus off-shell. Then, the generic solution on the
upper (lower) branch is simply superposition of the linearly independent solutions.

Second, we will perform a gluing procedure so that the generic solution on the upper
branch will be properly glued with that on the lower branch. Here, the gluing condition is
derived from the requirement that variational problem for S(2)

0 of (3.7) is well-defined at
the cutting slice r = rh − ε, say δS(2)

0 /δC
a(1)
µ

∣∣
r=rh−ε

= 0. Essentially, the gluing condition
tells how the radial derivatives of bulk fields will jump across the cutting slice r = rh − ε.
Here, it is natural to assume that bulk fields Ca(1)

µ are continuous across r = rh − ε. We
refer the reader into [2] for more details.

Finally, superposition constants in the generic solutions will be completely fixed by the
doubled AdS boundary conditions.

Without repeating the details, here we simply write down final results for leading order
solution Ca(1)

µ [2]. For the transverse mode Ca(1)
⊥ ,

C
a(1) up
⊥ (r,kµ)=c⊥(kµ)C ig

⊥ (r,kµ)−h⊥(kµ)C ig
⊥ (r,k̄µ)e2iωζ2(r), r∈ [rh−ε,∞2),

C
a(1) dw
⊥ (r,kµ)=c⊥(kµ)C ig

⊥ (r,kµ)−h⊥(kµ)e−βωC ig
⊥ (r,k̄µ)e2iωζ1(r), r∈ [rh−ε,∞1), (3.16)
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where k̄µ = (−ω, q, 0, 0). C ig
⊥ (r, kµ) and C ig

⊥ (r, k̄µ)e2iωζs(r) represent the ingoing solution
and outgoing solution6 for homogeneous part of (3.14). The functions ζ1,2(r) are

ζs(r) =
∫ r

∞s

dy

y2f(y) , r ∈ [rh − ε,∞s), s = 1 or 2, (3.17)

which has an explicit form:

ζs(r) = − 1
4rh

[
π − 2 arctan

(
r

rh

)
+ log

(
1 + rh

r

)
− log

(
1− rh

r

)]
. (3.18)

The superposition coefficients c⊥, h⊥ are determined by the AdS boundary conditions
(see (3.4)):

c⊥ = 1
2 coth βω2

Ba
a⊥(kµ)

C
ig(0)
⊥ (kµ)

+ Ba
r⊥(kµ)

C
ig(0)
⊥ (kµ)

, h⊥ = Ba⊥(kµ)
(1− e−βω)C ig(0)

⊥ (k̄µ)
, (3.19)

where C ig(0)
⊥ (kµ) is the boundary value of ingoing mode C ig

⊥ (r, kµ). In ingoing EF coordinate
system, the ingoing solution C ig

⊥ (r, kµ) is regular over the entire contour, particularly near
the horizon. Here, we introduced the (r, a)-basis:

Ba
rµ = 1

2
(
Ba

1µ +Ba
2µ

)
, Ba

aµ = Ba
1µ −Ba

2µ, µ = v, x,⊥ . (3.20)

For the longitudinal modes, we have

Ca(1) up
v (r, kµ) = c‖(kµ)C ig

v (r, kµ) + h‖(kµ)C ig
v (r, k̄µ)e2iωζ2(r) + pup

‖ C
pg
v (r, kµ)

+ nup
‖ (kµ)Cpn

v (r, kµ),

Ca(1) up
x (r, kµ) = c‖(kµ)C ig

x (r, kµ)− h‖(kµ)C ig
x (r, k̄µ)e2iωζ2(r) + pup

‖ C
pg
v (r, kµ)

+ nup
‖ (kµ)Cpn

x (r, kµ),

Ca(1) dw
v (r, kµ) = c‖(kµ)C ig

v (r, kµ) + h‖(kµ)e−βωC ig
v (r, k̄µ)e2iωζ1(r) + pdw

‖ Cpg
x (r, kµ)

+ nup
‖ (kµ)Cpn

v (r, kµ),

Ca(1) dw
x (r, kµ) = c‖(kµ)C ig

x (r, kµ)− h‖(kµ)e−βωC ig
x (r, k̄µ)e2iωζ1(r) + pdw

‖ Cpg
x (r, kµ)

+ ndw
‖ (kµ)Cpn

x (r, kµ), (3.21)

where, as for the transverse mode, C ig
v,x and C ig

v,xe
2iωζs(r) are the ingoing and outgoing

solutions, respectively. Cpg
v,x is the pure gauge solutions, which is obtained from a zero

solution by a gauge transformation preserving the gauge condition (2.16). Lastly, Cpn
v,x

represents the off-shell solution which is crucial in exhausting the full basic solutions.
Among the four linearly independent solutions, only Cpg

v does not vanish at the horizon.
Consequently, the condition (3.5) requires to set

pup
‖ = pdw

‖ = 0. (3.22)

6Here, as in [2, 38, 39, 43], the ingoing and outgoing modes are related via time-reversal symmetry.
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The rest superposition coefficients c‖, h‖, nup
‖ , n

dw
‖ are determined by the AdS boundary

conditions (3.4):

c‖ = 1
2G
−1
1

{
2Ba

rx(kµ)Cpn(0)
v (kµ)− 2Ba

rv(kµ)Cpn(0)
x (kµ)

+ coth βω2
[
Ba
ax(ω, q)Cpn(0)

v (kµ)−Ba
av(kµ)Cpn(0)

x (kµ)
]}
, (3.23)

h‖ = (1− e−βω)−1G−1
2

[
Ba
ax(kµ)Cpn(0)

v (kµ)−Ba
av(kµ)Cpn(0)

x (kµ)
]
, (3.24)

ndw
‖ − n

up
‖ = G−1

2

[
Ba
ax(kµ)C ig(0)

v (k̄µ) +Ba
av(kµ)C ig(0)

x (k̄µ)
]
, (3.25)

1
2(ndw

‖ + nup
‖ ) = −G−1

1

[
Ba
rx(kµ)C ig(0)

v (kµ)−Ba
rv(kµ)C ig(0)

x (kµ)
]
− 1

2 coth βω2
×G−1

1 G−1
2 G3

[
Ba
ax(kµ)Cpn(0)

v (kµ)−Ba
av(kµ)Cpn(0)

x (kµ)
]
, (3.26)

where

G1 = Cpn(0)
v (kµ)C ig(0)

x (kµ)− C ig(0)
v (kµ)Cpn(0)

x (kµ),
G2 = Cpn(0)

v (kµ)C ig(0)
x (k̄µ) + C ig(0)

v (k̄µ)Cpn(0)
x (kµ),

G3 = C ig(0)
v (k̄µ)C ig(0)

x (kµ) + C ig(0)
v (kµ)C ig(0)

x (k̄µ). (3.27)

Here, we use the superscript (0) to denote boundary values of various linearly independent
solutions. It is not difficult to verify that G1 6= 0.

Practically, these linearly independent solutions were computed [2] in Schwarzschild
coordinate system, which can be converted to EF coordinate system through:

C ig
⊥ (r, kµ) = C̃ ig

⊥ (r, kµ)eiωζs(r), C ig
‖ (r, kµ) = C̃ ig

‖ (r, kµ)eiωζs(r),

Cpg
‖ (r, kµ) = C̃pg

‖ (r, kµ)eiωζs(r), Cpn
‖ (r, kµ) = C̃pn

‖ (r, kµ)eiωζs(r), (3.28)

where s = 1 when r ∈ [rh − ε,∞1) and s = 2 when r ∈ [rh − ε,∞2). Here, the tilded
functions denote linearly independent solutions in the Schwarzschild coordinate system.

For later calculations, we summarize the hydrodynamic expansion for all linearly inde-
pendent solutions when ω, q � T . It is convenient to introduce a new radial coordinate u:

u = r2
h/r

2 =⇒ C̃µ(r, ω, q)→ C̃µ(u, ω, q). (3.29)

For the transverse mode, we just need the ingoing solution

C̃ ig
⊥ (u, ω, q) = (1− u2)−iω̃/2

{
1 + iω̃ log(1 + u) + 1

24π
2(3ω̃2 − 2q̃2)− 1

4 ω̃
2 log2 2

+1
2 ω̃

2 log(1− u) log 2
1 + u

− 1
4 log(1 + u)

[
2(ω̃2 − q̃2) log u+ ω̃2 log(1 + u)

]
+1

2(q̃2 − ω̃2) [Li2(1− u) + Li2(−u)]− 1
2 ω̃

2Li2
(1 + u

2

)
+ · · ·

}
, (3.30)

where Li2 is the Polylogarithm function, and the tilded frequency and momentum are
dimensionless

ω̃ ≡ ω

2rh
= ω

2πT , q̃ ≡ q

2rh
= q

2πT . (3.31)
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For the longitudinal sector, the ingoing solution and polynomial solution are

C̃ ig
t (u, ω, q) = (1− u2)1−iω̃/2

[
iq̃

1 + u
+ ω̃q̃

1− u2

(
log 2

1 + u
+ u log u

)
+ · · ·

]
,

C̃ ig
x (u, ω, q) = (1− u2)−iω̃/2

{
1 + iω̃ log 1 + u

2 + π2ω̃2

24 − 1
2 ω̃

2 log 1− u
2 log 1 + u

2

−1
4 ω̃

2 log2 1 + u

2 − 1
2 ω̃

2 log u log(1 + u)− 1
2 ω̃

2Li2(1− u)− 1
2 ω̃

2Li2(−u)

−1
2 ω̃

2Li2
(1 + u

2

)
+ · · ·

}
. (3.32)

C̃pn
t (u, ω, q) = 2(1− u) + 2q̃2

[
u log u+ (1 + u) log 2

1 + u

]
+ · · · ,

C̃pn
x (u, ω, q) = −ω̃q̃

{1
4(π2 − 2 log2 2) + log u log 1 + u

1− u + 1
2 log(1 + u) log 4

1 + u

−Li2
(1− u

2

)
+ Li2(−u)− Li2(u)

}
+ · · · . (3.33)

Given that the two limits ε→ 0 and ω̃ → 0 do not commute [1, 2]:

lim
ε→0

lim
ω̃→0

(1− u2)−iω̃/2 6= lim
ω̃→0

lim
ε→0

(1− u2)−iω̃/2, as u→ 1− ε, (3.34)

in (3.30), (3.32) and (3.33), we have kept the overall oscillating factor like (1− u2)−iω̃/2 (if
present) unexpanded in small ω̃. Under this treatment, the leading order solutions (3.16)
and (3.21) would be schematically written as

C
a(1)
⊥ = C⊥(r, ω, q) + [f(r)]iω̃H⊥(r, ω, q),

C
a(1)
‖ = C‖(r, ω, q) + [f(r)]iω̃H‖(r, ω, q) + [f(r)]iω̃/2G‖(r, ω, q), (3.35)

where C⊥,‖, H⊥,‖, and G‖ represent regular parts of the leading order solutions, which
are valid to be expanded in terms of ω̃, q̃ even near the horizon. Essentially, the results
presented in (3.30), (3.32) and (3.33) correspond to hydrodynamic expansion of C⊥,‖,
H⊥,‖, and G‖.

3.4 Boundary effective action: contour integrals

In this subsection, we compute the radial contour integrals in the bulk action (3.6), pro-
ducing the boundary effective action (2.12), which would be expanded in amplitude of Brµ
and Baµ,

Seff = S
(2)
eff + S

(3)
eff + S

(4)
eff + · · · =

∫
d4x

[
L(2)

eff + L(3)
eff + L(4)

eff + · · ·
]
. (3.36)

At each order in amplitude expansion (3.36), we will truncate the action at first order in
hydrodynamic derivative expansion.

Near the two AdS boundaries r = ∞1 and r = ∞2, the contour integrals in S
(2)
0 ,

S
(3)
0 and S(4)

0 suffer from UV divergences, which are exactly cancelled by the counter-term
action like (2.4), added on each AdS boundary:

Sct = 1
4 log r

∫
d4x
√
−γF a

µνF
aµν
∣∣∣∣
r=∞1

− 1
4 log r

∫
d4x
√
−γF a

µνF
aµν
∣∣∣∣
r=∞2

(3.37)

where the extra minus sign for the second term is due to flipping of r-orientation.
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• Quadratic Lagrangian L(2)
eff . Through integration by part, the S(2)

0 of (3.7) is reduced
into a surface term [2],

S
(2)
0 = −1

2

∫
d4x
√
−γnMCa

NF
aMN

∣∣∣∣r=∞1

r=∞2

. (3.38)

which helps to avoid contour integrals. Up to first order in boundary derivative expansion,
the quadratic action S(2)

eff is [1, 2, 30]

L(2)
eff = i

2B
a
avw1B

a
av + i

2B
a
akw2B

a
ak + iBa

avw4∂kB
a
ak +Ba

avw5B
a
rv

+ ∂kB
a
akw7B

a
rv +Ba

akw8∂vB
a
rk, (3.39)

where

w1 = 0 +O(∂2), w2 = 2r2
h

π
+O(∂2), w4 = 0 +O(∂1),

w5 = 2r2
h +O(∂2), w7 = 0 +O(∂1), w8 = −rh +O(∂1). (3.40)

• Strategy of computing L(3)
eff and L(4)

eff . The computation of S(3)
0 and S(4)

0 inevitably
involves contour integrals. Due to presence of branch cuts in the integrands, we advance
by splitting the radial contour as∫ ∞1

∞2
dr =

∫ rh+ε

∞2
dr +

∫
C
dr +

∫ ∞1

rh+ε
dr, (3.41)

where C denotes the infinitesimal circle. First, let us examine the near-horizon behavior
for S(3)

0 and S
(4)
0 . Recall that the leading order solution C

a(1)
v vanishes at the horizon,

and the regular part of the spatial component Ca(1)
i is finite near the horizon. Thus, it is

obvious that the integrands in S
(3)
0 (3.9) and S

(4)
0 (3.11) are finite when r varies on the

infinitesimal circle. Therefore, in both (3.9) and (3.11) contributions from integrals along
the infinitesimal circle will vanish as ε → 0 is taken in the end. Eventually, the contour
integrals in (3.9) and (3.11) reduce into real-variable integrals on the interval [rh + ε,∞),
which we schematically write as,

S3
0 =

∫
d2k1d

2k2d
2k3

(2π)6 δ(2)(k1 + k2 + k3)I(k1, k2, k3)

S4
0 =

∫
d2k1d

2k2d
2k3d

2k4
(2π)8 δ(2)(k1 + k2 + k3 + k4)J (k1, k2, k3, k4) (3.42)

with (for convenience we convert to u-variable by (3.29))

I =
∫ ∞
rh+ε

dr
∑
m

(r − rh)iλmIm(r, k1, k2, k3),

J =
∫ ∞
rh+ε

dr
∑
m

(r − rh)iδmJm(r, k1, k2, k3, k4). (3.43)

Here, Im,Jm are constructed from (essentially products of) regular parts of leading order
solution, cf. (3.35). Importantly, Im and Jm are regular functions, i.e., they does not
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contain singularity over the interval [rh,∞). In (3.43), λm is certain linear combination of
k0

1, k
0
2, k

0
3 while δm is certain linear combination of k0

1, k
0
2, k

0
3, k

0
4, whose exact forms will be

irrelevant in general analysis below.
In general, we have two different treatments in extracting hydrodynamic limits

of (3.43). In Scheme I, we will expand regular functions Im,Jm in terms of four-
momentum, but will keep the oscillating factors (r−rh)iλm, iδm unexpanded; then, once the
radial integrals in (3.43) are done, we need another hydrodynamic expansion. In Scheme
II, we expand both oscillating factors (1 − u)iλm, iδm and regular parts Im,Jm in the hy-
drodynamic limit, and then perform the radial integrals (3.43). Generically, thanks to the
subtlety (3.34), the results obtained within these two schemes would not match. Never-
theless, we observe that up to first order in the boundary derivative expansion, these two
schemes accidentally yield the same results. This observation relies on the fact that both
Im and JM can be represented by Taylor series near the horizon

Im =
∞∑
n=0
I(n)
m (k1, k2, k3)(r − rh)n, Jm =

∞∑
n=0
J (n)
m (k1, k2, k3, k4)(r − rh)n, (3.44)

which is convergent over the whole interval r ∈ [rh,∞]. Then, the task of extracting
hydrodynamic limits of S(3)

0 and S(4)
0 boils down to evaluating the following type integrals

in the hydrodynamic limit

Cn =
∫
dr(r − rh)iλm(r − rh)n (3.45)

Direct calculation gives

Cn
∣∣
Scheme I =

∞∑
l=0

(n+ 1)−l−1(−iλm)lΓ [l + 1,−(n+ 1) log(r − rh)]
Γ(l + 1) ,

Cn
∣∣
Scheme II = (r − rh)iλm+n+1

iλm + n+ 1 (3.46)

which can be shown to be equivalent in hydrodynamic limit. Here, Γ[s] and Γ[s, x] are the
Euler gamma function and incomplete gamma function, respectively.

Therefore, in subsequent calculations, it is valid to simply expand Ca(1)
µ in the hydro-

dynamic limit (including the oscillating factors).
With (3.30), (3.32), and (3.33), we truncate the leading order solution (3.16) and (3.21)

to first order in ω̃ and q̃:

Ca(1) up
v (r, kµ) = [1 + iωζ2(r)] [2Ba

rvF2(r)−Ba
avF2(r)] ,

Ca(1) dw
v (r, kµ) = [1 + iωζ1(r)] [2Ba

rvF2(r) +Ba
avF2(r)] ,

C
a(1) up
i (r, kµ) = [1 + iωζ2(r)]

[
Ba
ri +Ba

ai

(
F1(r)− 1

2

)]
+ 1

2πω̃(2Ba
ri +Ba

ai)F1(r),

C
a(1) dw
i (r, kµ) = [1 + iωζ1(r)]

[
Ba
ri +Ba

ai

(
F1(r) + 1

2

)]
+ 1

2πω̃(2Ba
ri −Ba

ai)F1(r), (3.47)

where r ∈ [rh + ε,∞2) for solutions on the upper branch and r ∈ [rh + ε,∞1) for solutions
on the lower branch. The functions F1,2(r) are

F1(r) = i

2π
[
log

(
r2 + r2

h

)
− log

(
r2 − r2

h

)]
, F2(r) = r2 − r2

h

2r2 . (3.48)
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From (3.9) and (3.11), the leading order solution C
a(1)
µ contributes to S

(3)
0 and S

(4)
0

through itself or its boundary derivatives. Thus, to first order in boundary derivative,
the contributions from iωζs(r)-terms in (3.47) to S

(3)
0 and S

(4)
0 will vanish, due to the

delta-functions in (3.42).
Plugging (3.47) into (3.9) and (3.11), we analytically implement the radial integrals.

Below, we present the final results for S(3)
eff and S(4)

eff .

• Leading order result of L(3)
eff . The cubic effective Lagrangian L(3)

eff starts from first
order in boundary derivative expansion:

L(3)
eff = −4λ1tr

[
B{rvBri∂iBa}v

]
− 4λ2tr

[
Bai∂iB(avBr)v

]
− 4λ3tr[BavBai∂iBav]

− 4λ4tr
[
B{rvBri∂vBa}i

]
− 4λ5tr

[
BrvBai∂vBai + 1

2BavB(ri∂vBa)i

]
− 4λ6tr(BavBai∂vBai)− 4λ7tr

[
B{rkBrl∂kBa}l

]
− 4λ8tr

[
B{rkBal∂kBa}l

]
− 4λ9tr (BakBal∂kBal) . (3.49)

Here, r-,a-indices inside {· · · } and (· · · ) shall be understood as all possible permutations,
and symmetrization, respectively,7 e.g.

A{rra} ≡ Arra +Aarr +Arar, A(ra) = Ara +Aar. (3.50)

The overall factor 4 in (3.49) comes from the fact that 4 tr(tatbtc) = iεabc. Various coeffi-
cients in (3.49) are

λ1 = i log(2rh), λ2 = π

48 , λ3 = i

4 log(2rh),

λ4 = − i2 log(2r2
h), λ5 = − π

12 , λ6 = − iζ(3)
2π2 −

i

8 log(2r2
h),

λ7 = i log(rh), λ8 = π

8 , λ9 = 21iζ(3)
16π2 + i

4 log(rh), (3.51)

where ζ(x) is Riemann zeta function. By dimensional analysis, pieces such as log(rh) etc.
shall be understood as log(rh/L) with L the AdS radius which we set to unity.

• Derivative expansion of L(4)
eff . The quartic effective Lagrangian L(4)

eff starts from
zeroth order in boundary derivative expansion:

L(4)
eff = L(4), LO

eff + L(4), NLO
eff + · · · . (3.52)

For convenience of presentation, L(4), LO
eff may be split into four pieces:

L(4), LO
eff = L1 + L2 + L3 + L4, (3.53)

7Space-time indices v, i inside {· · · } and (· · · ) are not affected.
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where

L1 = χ1,1
(
Ba
rvB

a
rvB

b
riB

b
ai +Ba

rvB
a
avB

b
riB

b
ri

)
+ χ1,2

(
Ba
rvB

a
rvB

b
aiB

b
ai +Ba

rvB
a
avB

b
riB

b
ai

+Ba
avB

a
rvB

b
riB

b
ai

)
+ χ1,3

(
Ba
rvB

a
avB

b
aiB

b
ai +Ba

avB
a
avB

b
riB

b
ai

)
+ χ1,4B

a
rvB

a
avB

b
aiB

b
ai

+ χ1,5B
a
avB

a
avB

b
aiB

b
ai,

L2 = χ2,1
(
Ba
rvB

b
rvB

a
riB

b
ai +Ba

rvB
b
avB

a
riB

b
ri

)
+ χ2,2

(
Ba
rvB

b
rvB

a
aiB

b
ai +Ba

rvB
b
avB

a
riB

b
ai

+Ba
avB

b
rvB

a
riB

b
ai

)
+ χ2,3

(
Ba
rvB

b
avB

a
aiB

b
ai +Ba

avB
b
avB

a
riB

b
ai

)
+ χ2,4B

a
rvB

b
avB

a
aiB

b
ai

+ χ2,5B
a
avB

b
avB

a
aiB

b
ai,

L3 = χ3,1B
a
riB

a
riB

b
rjB

b
aj + χ3,2

(
Ba
riB

a
riB

b
ajB

b
aj +Ba

riB
a
aiB

b
rjB

b
aj +Ba

aiB
a
riB

b
rjB

b
aj

)
+ χ3,3B

a
riB

a
aiB

b
ajB

b
aj + χ3,4B

a
aiB

a
aiB

b
ajB

b
aj ,

L4 = χ4,1B
a
riB

b
riB

a
rjB

b
aj + χ4,2

(
Ba
riB

b
riB

a
ajB

b
aj +Ba

riB
b
aiB

a
rjB

b
aj +Ba

aiB
b
riB

a
rjB

b
aj

)
+ χ4,3B

a
riB

b
aiB

a
ajB

b
aj + χ4,4B

a
aiB

b
aiB

a
ajB

b
aj , (3.54)

where various coefficients are

χ1,1 =−χ2,1 =−log(2rh), χ1,2 =−χ2,2 = iπ

48 , χ1,3 =−χ2,3 =−1
4 log(2rh),

χ1,4 =−χ2,4 =− ζ(3)
16π2 , χ1,5 =−χ2,5 = iπ

192 , χ3,1 =−χ4,1 =log(rh),

χ3,2 =−χ4,2 =− iπ16 , χ3,3 =−χ4,3 = 1
4 log(rh)+ 21ζ(3)

16π2 , χ3,4 =−χ4,4 =− iπ

128 . (3.55)

Similarly, the next-to-leading order result L(4), NLO
eff is also split into four pieces

L(4), NLO
eff = L̃1 + L̃2 + L̃3 + L̃4, (3.56)

where

L̃1 = χ̃1,1
(
Ba
rvB

a
rvB

b
ai∂vB

b
ri −Ba

rvB
a
rvB

b
ri∂vB

b
ai + 2Ba

rvB
a
avB

b
ri∂vB

b
ri

)
(3.57)

+ χ̃1,2
(
−Ba

rvB
a
rvB

b
ai∂vB

b
ai + 2Ba

rvB
a
avB

b
ai∂vB

b
ri

)
+ χ̃1,3

(
−1

2B
a
rvB

a
avB

b
ai∂vB

b
ai

+1
4B

a
avB

a
avB

b
ai∂vB

b
ri −

1
4B

a
avB

a
avB

b
ri∂vB

b
ai

)
+ χ̃1,4B

a
avB

a
avB

b
ai∂vB

b
ai,

L̃2 = χ̃2,1
(
Ba
rvB

b
rvB

a
ai∂vB

b
ri −Ba

rvB
b
rvB

a
ri∂vB

b
ai +Ba

rvB
b
av∂vB

a
riB

b
ri +Ba

rvB
b
avB

a
ri∂vB

b
ri

)
+ χ̃2,2

(
−Ba

rvB
b
rv∂vB

a
aiB

b
ai +Ba

rvB
b
av∂vB

a
riB

b
ai +Ba

rvB
b
avB

a
ai∂vB

b
ri

)
+ χ̃2,3

(
−1

4B
a
rvB

b
av∂vB

a
aiB

b
ai −

1
4B

a
rvB

b
avB

a
ai∂vB

b
ai + 1

4B
a
avB

b
avB

a
ai∂vB

b
ri

−1
4B

a
avB

b
avB

a
ri∂vB

b
ai

)
+ χ̃2,4B

a
avB

b
av∂vB

a
aiB

b
ai,

L̃3 = χ̃3,1B
a
riB

a
riB

b
rj∂vB

b
aj + χ̃3,2

(
∂vB

a
riB

a
riB

b
ajB

b
aj + ∂vB

a
riB

a
aiB

b
rjB

b
aj + ∂vB

a
riB

a
aiB

b
ajB

b
rj

)
,

L̃4 = χ̃4,1B
a
riB

b
riB

a
rj∂vB

b
aj + χ̃4,2

(
∂vB

a
riB

b
riB

a
ajB

b
aj + ∂vB

a
riB

b
aiB

a
ajB

b
rj +Ba

ai∂vB
b
riB

a
ajB

b
rj

)
,
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where various coefficients are

χ̃1,1 = −χ̃2,1 = −π
2β

48 , χ̃1,2 = −χ̃2,2 = − iζ(3)β
16π , χ̃1,3 = −χ̃2,3 = −π

2β

48 ,

χ̃1,4 = −χ̃2,4 = iζ(3)β
32π , χ̃3,1 = −χ̃4,1 = −π

2β

8 , χ̃3,2 = −χ̃4,2 = i21ζ(3)β
16π , (3.58)

where β is the inverse temperature.
We compare our results with recent works on hydrodynamic EFT for charge diffusion,

see e.g. [3, 15, 18, 53–55]. The main novelty of present work could be identified as the
following two aspects:

first, our effective action is more complete in systematically capturing nonlinear inter-
actions among noise variable ϕa

a, as well as nonlinear interactions between noise variable
ϕa
a and dynamical variable ϕa

r . In our effective action Seff , these are represented by terms
cubic and/or quartic in Ba

aµ, which are not considered in [53] (see also [15, 54, 55] for U(1)
diffusion). As pointed out in [3], nonlinear interactions of this type cannot be covered in
stochastic formulation of hydrodynamics. Therefore, it will be interesting to explore non-
negligible signatures, generated by these nonlinear interactions, in hydrodynamic limit of
correlators, following the example of U(1) diffusion [18].

Second, derived within a holographic model, our effective action Seff automatically
accounts for both thermal fluctuation and quantum fluctuation, in contrast with [3, 15, 18,
53] which focused on thermal noise. A quantum hydrodynamic EFT for U(1) diffusion was
considered in [54, 55], which implemented the dynamical KMS symmetry at quantum level.
It would be interesting to clarify consequences of quantum fluctuations based on quantum
hydrodynamic EFT as constructed here by us and in [54, 55].

Finally, our results perfectly pass through various consistency checks:

• Z2-reflection symmetry

Basically, this requires the effective action Seff to satisfy

S∗eff [Ba
1µ(x), Ba

2µ(x)] = −Seff [Ba
2µ(x), Ba

1µ(x)]
⇔ S∗eff [Ba

rµ(x), Ba
aµ(x)] = −Seff [Ba

rµ(x),−Ba
aµ(x)], (3.59)

which implies that the effective Lagrangian must have some complex coefficients.
When field contents are real variables (as in our case), the Z2 reflection symme-
try (3.59) requires that coefficient of a term containing even number of a-type vari-
ables must be purely imaginary, while coefficient of a term containing odd number of
a-type variables must be purely real. This is perfectly satisfied by our results.

• Imaginary part of Seff is non-negative.

This requirement is to ensure that path integral based on effective action Seff is
well-defined. For quadratic Lagrangian L(2)

eff , this is perfectly satisfied: leading order
results of w1, w2 are non-negative, see (3.40). For cubic Lagrangian L(3)

eff , this re-
quirement does not give any constraint. At quartic order, we collect positive-definite
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structures

L(4)
pd = χ1,2B

a
rvB

a
rvB

b
aiB

b
ai + χ2,2B

a
rvB

b
rvB

a
aiB

b
ai + χ1,5B

a
avB

a
avB

b
aiB

b
ai

+ χ2,5B
a
avB

b
avB

a
aiB

b
ai + χ3,2B

a
riB

a
riB

b
ajB

b
aj + χ4,2B

a
riB

b
riB

a
ajB

b
aj

+ χ3,4B
a
aiB

a
aiB

b
aiB

b
ai + χ4,4B

a
aiB

b
aiB

a
ajB

b
aj , (3.60)

where each term (apart of the coefficient) is non-negative for any configuration of
Ba
rµ, B

a
aµ. However, our results for the χ’s in (3.60) are not all positive-definite. It is

important to stress that this does not necessarily mean our results are pathological.
Recall that our procedure of constructing Seff is based on perturbative expansion
around origin of field configuration. Thus, our results are meaningful when Ba

rµ, B
a
aµ

are tiny, in which region we always have
1
2w

0
1B

a
avB

a
av + 1

2w
0
2B

a
aiB

a
ai �

∣∣L(4)
pd
∣∣, (3.61)

which guarantees the path integral to be well-defined. Here, w0
1, w

0
2 are leading order

results for w1, w2, see (3.40). Not surprisingly, the fact that L(4)
pd is not positive-

definite for “big” configuration of Ba
rµ, B

a
aµ implies instabilities of the system, which

we believe are related to those revealed in [69–71]. It is of great interest to explore
the exact relationship, and particularly construct an EFT for the order parameter
associated with phase transitions investigated in [69–71], along the line of [44]. To this
end, dynamical variable in the EFT will be identified with “normalizable modes” of
bulk field Ca

µ, rather than non-normalizable modes employed here. We leave further
investigation on this subject for future work.

• Time-independent diagonal gauge transformation of Bsµ:

B1v → U(~x)B1vU†(~x), B2v → U(~x)B2vU†(~x), (3.62)
B1i → U(~x)B1iU†(~x) + iU(~x)∂iU†(~x), B2i → U(~x)B2iU†(~x) + iU(~x)∂iU†(~x),

where U(~x) = eiα
a(~x)ta is an element of the SU(2) group for the boundary theory.

Equivalently, the above symmetry requirement is

Brv → U(~x)BrvU†(~x), Baµ → U(~x)BaµU†(~x),
Bri → U(~x)BriU†(~x) + iU(~x)∂iU†(~x), (3.63)

which relates certain coefficients in L(3)
eff and L(4),LO

eff :

λ1 = −iχ1,1 = iχ2,1, λ2 = −iχ1,2 = iχ2,2, λ3 = −iχ1,3 = iχ2,3

λ7 = iχ3,1 = −iχ4,1, λ8 = 2iχ3,2 = −2iχ4,2, λ9 = iχ3,3 = −iχ4,3, (3.64)

which are perfectly obeyed by holographic results (3.51) and (3.55).
Indeed, with the help of covariant derivative operator Di ≡ ∂i − i[Bri, ] as invented
in [53], our results could be reorganized into a more compact form:8

L(2)
eff + L(3)

eff + L(4),LO
eff = L̃(2)

eff + L̃(3)
eff + L̃(4),LO

eff , (3.65)
8We have not considered putting L(4),NLO

eff into a form bearing symmetry (3.63) transparently, which
would require some second and third order derivative terms that are beyond scope of present work.
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where

L̃(2)
eff = i

2B
a
avw1B

a
av + i

2B
a
aiw2B

a
ai + i

2DiB
a
aiw3DjBa

aj + iBa
avw4DkBa

ai +Ba
avw5B

a
rv

+Ba
avw6Di∂vBa

ri +DiBa
aiw7B

a
rv +Ba

aiw8∂vB
a
ri +DiBa

ajw9Fa
rij , (3.66)

L̃(3)
eff = −iλ1ε

abcBa
rvB

b
aiDiBc

rv − iλ2ε
abc(Ba

rvB
b
aiDiBc

av +Ba
avB

b
aiDiBc

rv)
− iλ3ε

abcBa
avB

b
aiDiBc

av − 2iλ4ε
abcBa

rvB
b
ai∂vB

c
ri − iλ5ε

abc(Ba
rvB

b
ai∂vB

c
ai

+Ba
avB

b
ai∂vB

c
ri)− iλ6ε

abcBa
avB

b
ai∂vB

c
ai − iλ8ε

abcBa
aiB

b
ajFc

rij

− iλ9ε
abcBa

aiB
b
ajDiBc

aj , (3.67)

L̃(4),LO
eff = χ1,2B

a
rvB

a
rvB

b
aiB

b
ai + (χ1,3 + χ1,4)Ba

rvB
a
avB

b
aiB

b
ai + χ1,5B

a
avB

a
avB

b
aiB

b
ai

+ χ2,2B
a
rvB

b
rvB

a
aiB

b
ai + (χ2,3 + χ2,4)Ba

rvB
b
avB

a
aiB

b
ai + χ2,5B

a
avB

b
avB

a
aiB

b
ai

+ χ3,4B
a
aiB

a
aiB

b
ajB

b
aj + χ4,4B

a
aiB

b
aiB

a
ajB

b
aj , (3.68)

where all the coefficients are constants except for the following ones in L̃(2)
eff

wm = w0
m + w1

m∂v + w2,0
m ∂2

v + w0,2
m D2, m = 1, 2, 5

wn = w0
n + w1

n∂v, n = 4, 7, 8. (3.69)

In order to achieve (3.66), we have utilized those results for second order derivative
terms for quadratic action of [2], namely, the values for w2,0

m , w0,2
m (m = 1, 2, 5), w1

n

(n = 4, 7, 8), and w9. As already noticed in [53], the “building blocks”, say Baµ,
DiBaµ, Brv, DiBrv, ∂vBri, Frij ≡ ∂iBrj − ∂jBri − i[Bri, Brj ], transform in a simple
way under (3.63), schematically (· · · )→ U(~x)(· · · )U†(~x). Thus, the symmetry (3.63)
becomes more manifest for (3.65).

• Dynamical KMS symmetry at quantum level.
The proposal of dynamical KMS symmetry [5] is crucial in formulating non-
equilibrium EFT for dissipative fluids. While it is usually implemented in the classical
statistical limit (i.e., capturing only thermal fluctuations), we find that our effective
action Seff derived from holographic model satisfies dynamical KMS symmetry at
quantum level, which implies the boundary system, although in the large Nc limit,
is actually a quantum system as expected. We defer more details to subsection 3.5.

• Current constitutive relation in the mean-field limit.
With the effective action Seff , we compute the hydrodynamic constitutive relation by
taking mean-field limit [3, 53]:

Jaµ
mf ≡

δSeff
δAa

µ

∣∣∣∣
Baµ=0

. (3.70)

When the SU(2) background electromagnetic field is turned off, the spatial component
of the hydrodynamic current is

Ja i
mf = w0

8∂iµ
a + i(2λ4 − λ1)εabcµb∂iµ

c + χ̃2,1
(
µaµb∂iµ

b − µbµb∂iµ
a
)
, (3.71)
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where the SU(2) chemical potential is defined as [53]

µ ≡ U−1(ϕ)BrvU(ϕ) = Av − iU−1(ϕ)∂vU(ϕ) (3.72)

Before comparing (3.71) with relevant results of [47, 53], we clarify similari-
ties/differences between the models studied in [47, 53] and the one explored here.
Apart of backreaction effect, our holographic model is the same as that of [47]. While
non-Abelian SU(2) symmetry is essential in both [47, 53] and present work, the con-
served non-Abelian charges are identified as spin densities in [53], which is different
from the flavor charges in [47] and this work. Now, we turn to compare our result
with [47, 53]. Our result (3.71) slightly differs from that of [53], particularly on the
structure of the last term. However, (3.71) is fully consistent with [47], which derived
the current constitutive relation by fluid-gravity correspondence.

3.5 Dynamical KMS symmetry: from boundary to bulk

With the effective action Seff [Br, Ba], the partition function of dual boundary theory is
represented as a path integral over gapless modes (for notational simplification we omitted
SU(2) flavor indices):

ZCFT =
∫

[Dϕr][Dϕa]eiSeff [Brµ,Baµ]. (3.73)

The doubling of degrees of freedom, due to usage of SK formalism, guarantees systematic
inclusion of both fluctuations and dissipations in the boundary theory. The information
of state is reflected in coefficients of effective action Seff . It turns out that a path integral
like (3.73) actually corresponds to quantum field theory of a statistical system, in which
both statistical fluctuations and quantum fluctuations are consistently covered.

When the boundary system is in a thermal state, the KMS condition sets important
constraint on the generating functional W = −i logZCFT. The KMS condition can be
expressed in terms of n-point correlation functions (i.e., functional derivatives of W with
respect to external sources Asµ), generalizing familiar FDT to nonlinear case [72, 73] (see
also [3]). Obviously, the KMS condition and the generalized nonlinear FDT are valid at the
full quantum level. Within non-equilibrium EFT framework, KMS condition is guaranteed
by the proposal that non-equilibrium effective action Seff shall satisfy dynamical KMS
symmetry [4, 5]:

Seff [B1µ, B2µ] = Seff [B̂1µ, B̂2µ], (3.74)

where

B̂1µ(−v,−~x) = (−1)ηµB1µ(v, ~x), B̂2µ(−v,−~x) = (−1)ηµB2µ(v − iβ, ~x), (3.75)

where β is the inverse temperature, and (−1)ηµ is the eigenvalue of discrete symmetry
transformation Θ (containing time-reversal T ) acting on Bµ. Physically, the dynamical
KMS symmetry (3.75) plays the role of imposing microscopic time-reversibility and local
equilibrium [4]. Interestingly, it was discovered that by taking classical statistical limit [4,
5], the theory (3.73) can be consistently truncated into a classical statistical theory, in
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which only statistical thermal fluctuations survive. To this end, one restores the Planck
constant ~ by substituting β → ~β in (3.75) and writes

B1µ = Brµ + ~
2Baµ, B2µ = Brµ −

~
2Baµ. (3.76)

Then, taking the limit ~→ 0, one obtains classical statistical limit of the dynamical KMS
symmetry (3.75)

B̂rµ(−v,−~x) = (−1)ηµBrµ(v, ~x), B̂aµ(−v,−~x) = (−1)ηµ [Baµ(v, ~x) + iβ∂0Brµ(v, ~x)] .
(3.77)

In the comprehensive studies of [3–5], it is indeed the classical statistical limit (3.77) that
was implemented for the construction of hydrodynamic EFT for dissipative charged fluids.
Thus, the effective theory constructed in [3–5] covers statistical thermal fluctuations but
ignores quantum ones. Later on, this was refined in [56] which proposed a quantum hy-
drodynamic theory (valid at finite ~ and to all orders in derivatives) for maximally chaotic
systems (see also [54, 55] for the problem of U(1) diffusion).

Now we turn to the effective action Seff derived within a specific holographic model.
While our derivation is carried out in the large Nc limit such that the dual gravity becomes
classical, this does not necessarily mean the dual boundary theory will only capture thermal
fluctuations. Thus, we do not expect our effective action Seff to obey the classical statistical
limit (3.77). Moreover, the derivative expansion adopted in the holographic derivation
corresponds to β-expansion on the boundary theory. Thus, instead of the ~-expansion, it
is reasonable to consider β-expansion of (3.75)

B̂rµ(−v,−~x) = (−1)ηµ
[
Brµ(v, ~x)− i

2~β∂0Brµ(v, ~x) + i

4~
2β∂0Baµ(v, ~x)

]
,

B̂aµ(−v,−~x) = (−1)ηµ
[
Baµ(v, ~x) + iβ∂0Brµ(v, ~x)− i

2~β∂0Baµ(v, ~x)
]
, (3.78)

which reduces into the classical statistical limit (3.77) once ~ → 0 is taken. Given that
our Seff is valid to first order in boundary derivative, in (3.78) we ignored higher powers
in β. The dynamical KMS symmetry (3.78) puts constraints9 among some coefficients in
L(4),LO

eff and L(4),NLO
eff :

χ̃1,1 = −χ̃2,1 = iβ

2 χ1,2, χ̃1,2 = −χ̃2,2 = iβ

2

(
χ1,3 + χ1,4 −

1
4χ1,1

)
,

χ̃1,3 = −χ̃2,3 = iβ

2 χ1,2, χ̃1,4 = −χ̃2,4 = − iβ4 χ1,4, χ̃3,1 = −χ̃4,1 = −iβχ3,2,

χ̃3,2 = −χ̃4,2 = iβ

2

(
χ3,3 −

1
4χ3,1

)
. (3.79)

It is then straightforward to check that our holographic results (3.55) and (3.58) perfectly
satisfy (3.79).10 This implies that effective theory derived from holographic method does

9For quadratic Lagrangian L(2)
eff , dynamical KMS symmetry has been carefully examined in [2] beyond

hydrodynamic limit.
10While KMS-invariance of S

(2)
eff and S

(4)
eff is insensitive to the eigenvalue (−1)ηµ , for the cubic part S

(3)
eff to

be KMS-invariant, we shall think of the eigenvalue (−1)ηµ to be associated with Θ = PT , say (−1)ηµ = +1
for all components, which shall be compensated by transpose of matrix-valued generators ta.
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capture both quantum and thermal fluctuations, as speculated in [30]. Moreover, in con-
trast with the hydrodynamic EFT framework, it is impossible to split quantum and thermal
fluctuations for a holographic theory, as seen from (3.78). More precisely, it is natural to
think of ~-expansion and derivative expansion (i.e., β-expansion) as independent from hy-
drodynamic EFT perspective, the derivative expansion is controlled by the combination
~β for a holographic theory.

Finally, we would like to understand implication of dynamical KMS symmetry (3.75)
on the bulk dynamics, and hopefully give a holographic interpretation of (3.75). Recall that
we work in the saddle-point approximation for the bulk theory. Thus, we are motivated to
examine properties of partially on-shell bulk solution under the KMS transformation (3.75).
Via time-translational operator, we may rewrite the KMS transformation (3.75) as [56]

B̂1µ(−v,−~x) = (−1)ηµB1µ(v, ~x), B̂2µ(−v,−~x) = (−1)ηµe−iβ∂vB2µ(v, ~x). (3.80)

Then, it is direct to check that when boundary theory undergoes KMS transforma-
tion (3.80), the leading order bulk solutions (3.16) and (3.21) transform analogously

Ĉ
a(1) up
M (r,−xµ) = (−1)ηM e−iβ∂vCa(1) up

M (r, xµ),

Ĉ
a(1) dw
M (r,−xµ) = (−1)ηMCa(1) dw

M (r, xµ). (3.81)

Here, the PT -symmetries of the leading order solutions (3.16) and (3.21), extensively
explored in [2], are useful in demonstrating the transformation property (3.81). It is im-
portant to stress that (3.81) is valid to all orders in boundary derivatives. Indeed, (3.81)
amounts to saying that leading order EOMs (3.2) are invariant under the bulk KMS trans-
formation (3.81), which is more transparent as viewed in Schwarzschild coordinate system.

We turn to higher order solution C
a(n≥2)
M , whose dynamical EOMs differ from those

of Ca(1)
M by the source terms, Sa(1)

µ = 0 versus Sa(n≥2)
µ 6= 0. Iteratively, one can show that

under KMS transformation (3.80), the source term Sa(n≥2)
µ changes analogously as (3.81)

Ŝa(n) up
µ (r,−xα) = (−1)ηµe−iβ∂vSa(n) up

µ (r, xα),
Ŝa(n) dw
µ (r,−xα) = (−1)ηµSa(n) dw

µ (r, xα), n = 2, 3, · · · , (3.82)

which, combined with vanishing AdS boundary conditions for Ca(n≥2)
µ , helps to conclude

that under the transformation (3.80), the higher order bulk solution Ca(n≥2)
M changes as

Ĉ
a(n) up
M (r,−xµ) = (−1)ηM e−iβ∂vCa(n) up

M (r, xµ),

Ĉ
a(n) dw
M (r,−xµ) = (−1)ηMCa(n) dw

M (r, xµ). (3.83)

Eventually, we observe a holographic analogue of the dynamical KMS symmetry (3.75)
satisfied by the boundary effective theory (3.74): the bulk action Sbulk = S0 + Sct shall
satisfy the following genuine Z2 symmetry:

Sbulk[Cup
M , Cdw

M ] = Sbulk[Ĉup
M , Ĉdw

M ], (3.84)
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where

Ĉup
M (r,−xµ) = (−1)ηM e−iβ∂vCup

M (r, xµ), Ĉdw
M (r,−xµ) = (−1)ηMCdw

M (r, xµ), (3.85)

Thus, (3.84) and (3.85) are taken as holographic interpretation of dynamical KMS sym-
metry proposal (3.74) and (3.75). The invariance of bulk action under bulk KMS trans-
formation becomes more transparent if one turns to Fourier space, so that the exponential
factor becomes unity due to delta-function of four-momenta.

4 Summary and discussion

In this work we present a holographic derivation of hydrodynamic EFT for SU(2) diffusion.
To first order in derivative expansion, the effective action is analytically computed to
quartic order in the gauge-invariant objects Ba

rµ and Ba
aµ. As a non-Gaussian effective

theory, such an EFT contains a complete list of cubic and quartic interactions. Particularly,
the generalized nonlinear FDT is guaranteed via dynamical KMS symmetry at quantum
level. The dynamical KMS symmetry is found to have a bulk analogue.

The effective action Seff provides a framework to systematically explore phenomenolog-
ical consequences of nonlinear interactions as emphasized in subsection 3.4. One approach
towards this end would be to compute loop diagrams based on the effective action, as
in [15, 18–21]. An alternative way would be to cast the hydrodynamic effective action into
a stochastic differential equation satisfied by dynamical variable ϕr. However, as demon-
strated in [3], the latter approach works perfectly only when terms beyond quadratic order
in ϕa are ignored in the effective action. Physically, this truncation amounts to turning off
non-Gaussian noise, which is usually unavoidable and might be of importance in realistic
systems [3, 18].

It would be interesting to derive Fokker-Planck (FP) type equation for distribution of
the dynamical variable ϕr, which is more suitable for numerical investigation. In contrast
to stochastic Langevin-type equation, the FP equation describes the probability of finding
the system in a certain configuration and is thus fully deterministic. When first order
derivatives in S(3)

eff and S(4)
eff are turned off, this derivation can closely follow the textbook [61]

by making an analog of the hydrodynamic EFT with Hamiltonian formulation of quantum
mechanics. By this analog, the task boils down to looking for “Hamiltonian” H of the
hydrodynamic EFT. A more general method would be to discretize the time and space,
and consider the “restricted” partition function [61], which is identified as the probability of
finding the system in a certain configuration. We leave such a derivation for a future project.

Finally, based on present work it is possible to go beyond classical treatment for the
bulk theory, and consider loop corrections to tree-level Witten diagrams of figure 2. This
corresponds to including finite Nc correction in the boundary EFT [74, 75]. Technically, this
task will boil down to assembling bulk-to-boundary propagator (to be read off from leading
order solution Ca(1)

µ ) and bulk-to-bulk propagator (encoded in bulk Green’s functions G⊥,‖)
using proper vertices. We leave this study as a forthcoming project.
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A Yang-Mills equation in different coordinate systems

In this appendix, we collect explicit forms of bulk Yang-Mills equation in two coordinate
systems: the Schwarzschild versus ingoing EF.

From Schwarzschild coordinate system to ingoing EF one, bulk Yang-Mills field
changes as

C̃t(r, t, ~x) = Cv(r, v, ~x), C̃i(r, t, ~x) = Ci(r, v, ~x),

C̃r(r, t, ~x) = Cr(r, v, ~x) + Cv(r, v, ~x)
r2f(r) , (A.1)

where tilded quantities correspond to those in Schwarzschild coordinate system. The gauge
choice (2.16) taken throughout this work amounts to imposing C̃r = 0 in Schwarzschild
coordinate system. Then, constraint component of bulk Yang-Mills equation is

∇̃M F̃ aMr + εabcC̃b
M F̃

cMr = 0⇔ ∇MF aMr + εabcCb
MF

cMr = 0 (A.2)

while dynamical EOMs are

∇̃M F̃ aMt + εabcC̃b
M F̃

cMt = 0⇔ ∇MF aMv + εabcCb
MF

cMv

− 1
r2f(r)

[
∇MF aMr + εabcCb

MF
cMr

]
= 0,

∇̃M F̃ aMi + εabcC̃b
M F̃

cMi = 0⇔ ∇MF aMi + εabcCb
MF

cMi = 0. (A.3)

Explicitly, the dynamical EOMs (A.3) in Schwarzschild coordinate system are

0 = ∂r
(
r3∂rC̃

a
t

)
+ 1
rf(r)∂k

(
∂kC̃

a
t − ∂tC̃a

k + εabcC̃b
k C̃

c
t

)
+ 1
rf(r)ε

abcC̃b
k

×
(
∂kC̃

c
t − ∂tC̃c

k + εcdeC̃d
k C̃

e
t

)
,

0 = ∂r
[
r3f(r)∂rC̃a

i

]
− 1
rf(r)∂t

(
∂tC̃

a
i − ∂iC̃a

t + εabcC̃b
t C̃

c
i

)
− 1
rf(r)ε

abcC̃b
t

×
(
∂tC̃

c
i − ∂iC̃c

t + εcdeC̃d
t C̃

e
i

)
+ 1
r
∂k
(
∂kC̃

a
i − ∂iC̃a

k + εabcC̃b
k C̃

c
i

)
+ 1
r
εabcC̃b

k

(
∂kC̃

c
i − ∂iC̃c

k + εcdeC̃d
k C̃

e
i

)
. (A.4)
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In ingoing EF coordinate system, (A.3) take the following form

0 = ∂r
[
r3 (∂vCa

r − ∂rCa
v )
]
− r

f(r)∂v (∂rCa
v − ∂vCa

r )− 1
rf(r)

× ∂k
(
∂kC

a
v − ∂vCa

k + εabcCb
kC

c
v

)
− εabc

rf(r)C
b
k

(
∂kC

c
v − ∂vCc

k + εcdeCd
kC

e
v

)
,

0 = ∂r
[
r3f(r) (∂rCa

i − ∂iCa
r )
]

+ ∂r [r (∂vCa
i − ∂iCa

v )]

+ r∂v
(
∂rC

a
i − ∂iCa

r + εabcCb
rC

c
i

)
+ 1
r
∂j
(
∂jC

a
i − ∂iCa

j + εabcCb
j C

c
i

)
+ rεabcCb

r

(
∂vC

c
i − ∂iCc

v + εcdeCd
vC

e
i

)
+ 1
r
εabcCb

j

(
∂jC

c
i − ∂iCc

j + εcdeCd
j C

e
i

)
. (A.5)

When Ca
M is linearized as in subsection 3.1, the dynamical EOMs (A.5) turn into a

system of linear PDEs:

∂r
(
r3∂rC

a(n)
v

)
−∂r

(
r3∂vC

a(n)
r

)
+ r

f(r)∂r∂vC
a(n)
v − r

f(r)∂
2
vC

a(n)
r

+ 1
rf(r)

(
~∂2Ca(n)

v −∂v∂kC
a(n)
k

)
=Sa(n)

v ,

∂r
[
r3f(r)∂rCa(n)

i

]
−∂r

[
r3f(r)∂iCa(n)

r +r
(
∂vC

a(n)
i −∂iCa(n)

v

)]
+r∂r∂vCa(n)

i

−r∂v∂iCa(n)
r + 1

r
∂k
(
∂kC

a(n)
i −∂iCa(n)

k

)
=Sa(n)

i , (A.6)

where the source terms Sa(n)
µ are products of lower order solutions (as well as their deriva-

tives). For the first two orders, the source terms are

Sa(1)
v = Sa(1)

i = 0,

Sa(2)
v = − 1

rf(r)∂k
(
εabcC

b(1)
k Cc(1)

v

)
− εabc

rf(r)C
b(1)
k

(
∂kC

c(1)
v − ∂vCc(1)

k

)
Sa(2)
i = −r∂v

(
εabcCb(1)

r C
c(1)
i

)
− 1
r
∂k
(
εabcC

b(1)
k C

c(1)
i

)
− rεabcCb(1)

r

(
∂vC

c(1)
i − ∂iCc(1)

v

)
− 1
r
εabcC

b(1)
k

(
∂kC

c(1)
i − ∂iCc(1)

k

)
. (A.7)

In parallel, (A.4) are linearized as

∂r
[
r3∂rC̃

a(n)
t

]
+ 1
rf(r)∂k

(
∂kC̃

a(n)
t −∂tC̃a(n)

k

)
= S̃a(n)

t ,

∂r
[
r3f(r)∂rC̃a(n)

i

]
− 1
rf(r)∂t

(
∂tC̃

a(n)
i −∂iC̃a(n)

t

)
+ 1
r
∂k
(
∂kC̃

a(n)
i −∂iC̃a(n)

k

)
= S̃a(n)

i , (A.8)

where for the first two orders the source terms are

S̃a(1)
t = S̃a(1)

i = 0,

S̃a(2)
t = − 1

rf(r)∂k
(
εabcC̃

b(1)
k C̃

c(1)
t

)
− 1
rf(r)ε

abcC̃
b(1)
k

(
∂kC̃

c(1)
t − ∂tC̃c(1)

k

)
,

S̃a(2)
i = 1

rf(r)∂t
(
εabcC̃

b(1)
t C̃

c(1)
i

)
+ 1
rf(r)ε

abcC̃
b(1)
t

(
∂tC̃

c(1)
i − ∂iC̃c(1)

t

)
− 1
r
∂k
(
εabcC̃

b(1)
k C̃

c(1)
i

)
− 1
r
εabcC̃

b(1)
k

(
∂kC̃

c(1)
i − ∂iC̃c(1)

k

)
. (A.9)

– 27 –



J
H
E
P
0
8
(
2
0
2
2
)
2
2
3

B More on partially on-shell solution: beyond leading order

In this appendix we elaborate on generic structure of partially on-shell solution beyond
leading order. Recall that the dynamical EOMs at each order in perturbative expansion
differ by source terms. Therefore, we will take the next-to-leading order correction C

a(2)
µ

as the example, for which the source terms do not vanish.
We start with the transverse mode Ca(2)

⊥ , which satisfies a closed ODE

∂r
[
r3f(r)∂rCa(2)

⊥

]
+ �⊥(∂r;ω, q2)Ca(2)

⊥ = S(2)
⊥ (r, kµ), (B.1)

where the operator �⊥(∂r;ω, q) and the source term can be read off from (A.6) and (A.7)
in appendix A. Via Green’s function method, (B.1) is solved by

C
a(2)
⊥ (r, kµ) =

∫ ∞1

∞2
G⊥(r, r′; kµ)S(2)

⊥ (r′, kµ)dr′, r ∈ (∞2,∞1), (B.2)

where G⊥(r, r′; kµ) is the Green’s function satisfying

∂r
[
r3f(r)∂rG⊥(r, r′; kµ)

]
+ �⊥(∂r;ω, q2)G⊥(r, r′; kµ) = δ(r − r′). (B.3)

Thus, G⊥ is indeed the bulk-to-bulk propagator. In order to uniquely fix G⊥(r, r′; kµ), we
impose two boundary conditions

G⊥(r =∞1, r
′; kµ) = 0, G⊥(r =∞2, r

′; kµ) = 0, (B.4)

which is convenient since Ca(2)
⊥ also vanishes at both AdS boundaries.

The Green’s function G⊥(r, r′; kµ) could be constructed from linearly independent
solutions in (3.16). For convenience, we make linear combination over the two linearly
independent solutions presented in (3.16) and generate two new basis solutions

Y1(r, kµ) = aC ig
⊥ (r, kµ) + C ig

⊥ (r, k̄µ)eiωζ(r),
Y2(r, kµ) = C ig

⊥ (r, kµ) + bC ig
⊥ (r, k̄µ)eiωζ(r), (B.5)

where we have analytically continued the linearly independent solutions of (3.16) so that
they are valid over the entire contour. Accordingly, the function ζ(r) is

ζ(r) =
∫ r

∞2

dy

y2f(y) , r ∈ (∞2,∞1), (B.6)

which is multi-valued. The coefficients a, b in (B.5) are fixed by imposing

Y1(r =∞1) = 0, Y2(r =∞2) = 0, (B.7)

which becomes possible since ζ(r = ∞1) 6= ζ(r = ∞2). Eventually, the Green’s function
G⊥ is

G⊥(r, r′; kµ) = 1
r′3f(r′)W (r′)

[
Y2(r)Y1(r′)θ(r′ − r) + Y1(r)Y2(r′)θ(r′ − r)

]
, (B.8)
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where W (r) is the Wronskian determinant of Y1(r), Y2(r)

W (r) ≡ Y2(r)∂rY1(r)− Y1(r)∂rY2(r) = 2iπ
r3f(r) (B.9)

The step function θ(r− r′) is defined on the radial contour of figure 1, with r > r′ (r < r′)
understood as counter clockwise path-ordered relations.

We turn to the longitudinal sector, which involves a system of two modes Ca(2)
v and

C
a(2)
x . Thus, the above method based on Green’s function should be extended appropriately

to that based on Green’s matrix. We advance by rewriting second order ODEs (3.15) for
C

a(2)
v and Ca(2)

x into a system of first order ODEs:

∂rX(r, kµ) = M(r, kµ)X(r, kµ) + g(r, kµ) (B.10)

where
X =

(
Ca(2)
v , ∂rC

a(2)
v , Ca(2)

x , ∂rC
a(2)
x

)T
(B.11)

The 4 × 4 matrix M and column vector g can be directly read off from second order
ODEs (3.15). For simplicity, we will not report their expressions here. First, we consider
the homogeneous part of (B.10)

∂rX(r, kµ) = M(r, kµ)X(r, kµ) (B.12)

The four linearly independent solutions for (B.12) are presented in (3.21), which we rewrite
here

X1 =
(
C ig
v (r, kµ), ∂rC ig

v (r, kµ), C ig
x (r, kµ), ∂rC ig

x (r, kµ)
)T

,

X2 =
(
C ig
v (r, k̄µ)eiωζ(r), ∂r

(
C ig
v (r, k̄µ)eiωζ(r)

)
, C ig

x (r, k̄µ)eiωζ(r), ∂r
(
C ig
x (r, k̄µ)eiωζ(r)

))T
,

X3 = (Cpg
v (r, kµ), ∂rCpg

v (r, kµ), Cpg
x (r, kµ), ∂rCpg

x (r, kµ))T ,

X4 = (Cpn
v (r, kµ), ∂rCpn

v (r, kµ), Cpn
x (r, kµ), ∂rCpn

x (r, kµ))T , (B.13)

where as for the transverse sector we have analytically continued all the linearly indepen-
dent solutions to the entire radial contour. The linearly independent solutions (B.13) for
homogeneous system (B.12) help to build a fundamental matrix

M0(r, kµ) = (X1, X2, X3, X4) (B.14)

which satisfies
∂rM0(r, kµ) = M(r, kµ)M0(r, kµ). (B.15)

Then, the general solution for the inhomogeneous system (B.10) is

X(r, kµ) = M0(r, kmu)c+M0(r, kµ)
∫ r

∞2
M−1

0 (r′, kµ)g(r′, kµ)dr′, (B.16)

where the column vector c represents the four integration constants, to be determined by
boundary conditions. Here, a subtlety arises from boundary conditions for Ca(2)

v : besides
vanishing conditions at the AdS boundaries, it is also imposed to be zero at the horizon.
Thus, the final solution for longitudinal sector will be piecewise as for the leading order case.
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