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1 Introduction

The Standard Model (SM) of Particle Physics has relished a lot of success owing to a
multitude of very precise predictions about the features of the subatomic world and their
excellent agreement with experiments. The discovery of the Higgs boson [1, 2] elevated
the SM from merely a model to a bona fide theory of fundamental particles. Despite all
these triumphs, SM fails to account for not only the dark sector but also several aspects
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of the visible universe. The most glaring issues have been the observed non-zero masses of
neutrinos, the matter-antimatter asymmetry, along with the inexplicable dark matter and
dark energy that constitute ninety-five percent of the entire universe.

During the last few decades, several ingenious models have been proposed that have
sought to ameliorate our lack of understanding of the subatomic world. Early proposals
that garnered a lot of popularity were radical ideas such as Grand Unified Theories (GUTs)
and Supersymmetry or even an amalgam of the two. Each of these introduces multiple new
degrees of freedom beyond the SM ones, and their symmetry groups contain the SM internal
symmetry SU(3)C ×SU(2)L×U(1)Y as a subset. Contemporary efforts have focused more
on minimal extensions of the SM, where the internal symmetry is left unaltered, while
the number of degrees of freedom is increased by adding one or two fields. A common
underlying feature of all such beyond Standard Model (BSM) proposals is the presence of
multiple energy scales within them, characterized by the hierarchy among particle masses.
The lack of direct experimental detection of BSM resonances necessitates the use of a
framework that can not only translate the interactions of the BSM fields in terms of SM
ones but also enables us to conduct comparisons between different BSM scenarios against
a common backdrop.

Effective Field Theory (EFT) [3, 4] provides us with the necessary set of tools for
studying phenomena that encompass different energy scales. Therefore, it is the most
suitable framework for addressing the contemporary problems in particle physics. EFT
based theoretical and computational tools can enable us to conduct indirect analyses and
adjudge the veracity of various new physics proposals, even in the absence of a compre-
hensive understanding of their Ultra-Violet (UV) origin. In the context of differentiating
between BSM scenarios, the Standard Model Effective Field Theory (SMEFT) is the re-
quired common backdrop; for a detailed review, see [5]. SMEFT incorporates higher mass
(> 4) dimension operators [6–12] and thus accommodates corrections to the SM parameters
and measurables while also providing novel predictions such as flavour violation [13, 14],
non-zero baryon and lepton numbers [15–17], and CP-violation [18, 19] among others.
Specific model-dependent analyses have been conducted within the top-down EFT for-
malism [20–28]. Automated tools such as CoDEx [29], MatchingTools [30], STrEAM [31],
Matchmakereft [32], SuperTracer [33] have made it convenient to conduct such analyses
for a variety of BSM models. At the same time, the bottom-up formalism [34–39] facilitates
model-independent studies that ultimately allow us to enforce constraints on the SMEFT
free parameters, i.e., the Wilson coefficients corresponding to the effective operators.

In [40], we had highlighted a novel approach towards addressing the “inverse problem”,
i.e., pinpointing the valid BSM proposals in the event of the observation of anomalies or
disagreement between SM predictions and experimental results. Employing simple sym-
metry based arguments, we unfolded CP, baryon and lepton number conserving SMEFT
operators of mass dimension-6 to tree- and one-loop-level Feynman diagrams revealing
heavy field propagators. The direct as well as indirect relations between SMEFT operators
of mass dimension-6 and precision observables has been well-documented [41–45]. By cat-
aloguing possible heavy field quantum numbers corresponding to individual operators, we
established direct links between BSM proposals and low-energy observables, thus providing
concrete motivations for specific model-dependent analyses.
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Recently, the SMEFT operators of mass dimension-8 have been garnering a lot of at-
tention within the high energy physics community. In the coming years, as we usher into
the era of higher luminosity at the LHC, operators of mass dimension-6 alone may not be
sufficient to reconcile theoretical calculations with the experimental findings, and inclusion
of the next order i.e., 1/Λ4 suppressed operators will become highly significant. Within
scattering amplitudes, the dimension-8 (D8) operators can intermix with the renormaliz-
able SM interactions to generate interference terms and offer corrections of O(1/Λ4) to
the cross-section of the process under study. This is the same order of correction that the
self-mixing of dimension-6 (D6) operators produces. So, if there is no a priori constraint
preventing the inclusion of O(1/Λ4) corrections, the inclusion of the D8 contributions be-
comes customary [36, 46–49]. Additionally, the D8 operators present certain novel features
which are absent in both the SM as well as the D6 operators. Most notably, vector boson
interactions such as the neutral triple, e.g., ZZγ, Zγγ and quartic gauge boson couplings
e.g., ZZZZ, ZZγγ, γγγγ [9, 50–52] which could serve as evidences for new physics.

Recognising the growing interest in the sub-leading order of SMEFT, we have extended
our approach and studied the links connecting CP-conserving as well CP-violating purely
bosonic operator classes of mass dimension-8 to candidate UV theories. For the sake of
completeness, we have also included CP-violating D6 operators in our discussion. We have
adhered to the notion of minimality outlined in [40], which can be reiterated as follows:

• We have taken into account only those SM extensions where the internal symmetry
remains the same as that of the SM; therefore none of our diagrams involves heavy
vector boson propagators.

• While unfolding the operators into diagrams, preference has been given to those
diagrams that are less varied with respect to the types of vertices as well as with
respect to the variety of heavy propagators within them. This is done with the aim
of ascertaining the allowed heavy field quantum numbers as closely as we can for
a given operator class. We have relaxed this criteria of minimality for cases where
operator unfolding can only be accomplished with more than one heavy propagator
and (or) the external states necessitate the inclusion of a wider variety of vertices.

• For a given operator class, the progression from tree-level to one-loop diagrams and
then to two-loop diagrams becomes necessary when the lower order diagram cannot
provide the links between the particular operator and certain classes of BSM models.
For instance, for operators with H and H† as the external states, only a finite number
of heavy scalars appear through tree-level diagrams, but a wider variety are accessible
if we take one-loop diagrams into account. Similarly, unless SM fermions are present
as the external states in an operator, heavy fermions only emerge through one-loop
diagrams.

It must be emphasized that the notion of minimality differs based on the operator class
and the family of BSM extensions being discussed. For example, while unfolding operators
composed only of the SM scalar and its derivative to reveal heavy scalar propagators, the
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most minimal scenario corresponds to a tree-level diagram. On the other hand, for CP-
violating operators constituted of SM field strength tensors, the most minimal structure is
a two-loop diagram with a pair of heavy fermion propagators.

It must be noted that our discussion is focussed on operator classes instead of individual
operators. While the latter would have been more exhaustive and richer in detail, we
discovered during our analysis that the exact patterns of the diagrams that can be obtained
from the schematic unfolding of operator classes are replicated even when we consider
individual operators of those classes. Although, it must be mentioned that, by limiting
ourselves to the level of operator classes, the specific contributions from heavy fields to
individual SMEFT operators are not explicitly revealed. Also, if one forgoes our concept
of minimality, one may obtain additional heavy field quantum numbers that give rise to
operators of certain classes. Yet, the choice to restrict our focus to operator classes and the
adherence to a pre-defined notion of minimality helps us to determine the BSM origin of
SMEFT operators in a structured manner without having to worry about the vast multitude
of operators at dimension-8. Our approach sufficiently achieves the aim of highlighting a
well-defined rationale for conducting phenomenological analyses on certain SM extensions
based on their links with SMEFT operators and thus with observables.

The structure of the article is as follows: we have started by outlining the building
blocks of our construction, i.e., Lorentz invariant vertices describing interactions between
light SM fields and possible heavy fields in section 2. This is followed by a discussion on
CP-violating D6 operators and their UV roots in section 3. Next, we have conducted an
extensive examination of the bosonic sector at mass dimension-8, in section 4. We have
constructed tree-level, one-loop as well as two-loop diagrams where necessary. Based on
these diagrams we have catalogued heavy field quantum numbers for each sub-class of
operators. At the end of section 4, we have provided comparisons as well as validation
of a subset of our results against recent literature describing similar connections between
SMEFT operators and heavy fields. In section 5, we have provided a commentary on the
common UV origin of D6 and D8 operators while also emphasizing the subtle ways in which
they differ from each other. Through this, we have also underlined the phenomenological
significance of the operators discussed in this article.

2 Fixing heavy field quantum numbers based on fundamental vertices

The first and the most vital step of our systematic procedure of unfolding effective operators
into Feynman diagrams is enumerating the building blocks of these diagrams, i.e., listing
all possible vertices that would in turn constitute those diagrams. In the context of this
work, the following points must be noted:

• Since our focus is entirely on purely bosonic operators, the only possible exter-
nal states are the SM scalar φ ∈ {H, H†} and the field strength tensors Xµν ∈
{GAµν , W I

µν , Bµν}, as well as their dual tensors X̃µν .

• While, many of the operators contain covariant derivatives acting on the fields, we
have not explicitly highlighted them in the diagrams, since their presence does not
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Symbol Represents Symbol Represents

Light (SM) scalar Heavy scalar

Light (SM) fermion Heavy fermion

Field strength tensor 2nd Heavy fermion

Table 1. Representations for tree-level light and heavy propagators of various spins.

φ1

φ2

Φ

(i) V 1

φ1

φ2 φ3

Φ

(ii) V 2

φ1

φ2 Φ

Φ

(iii) V 3

φ

ψ

Ψ

(iv) V 4

φ

Ψ2

Ψ1

(v) V 5

Xµν
Φ

Φ

(vi) V 6

Xµν

Ψ

Ψ

(vii) V 7

Figure 1. Vertices describing interactions between light (SM) and heavy fields. The black lines
denote SM fields, whereas the pink and blue lines denote heavy fields. In V5, two unique colors
have been used to explicitly highlight the presence of two heavy fields.

affect the heavy field quantum numbers. This is one notable departure from the
conventions established in [40], where we had elucidated the symbolic contraction of
Lorentz indices in each diagram.

• The vertices as well as the diagrams have been constructed so as to directly match
the external states of the operators, these should not be confused with low-energy
process diagrams, this is why we have highlighted field strength tensors rather than
the vector bosons and scalar or fermion multiplets rather individual fields in the
diagrams that follow.

The vertices relevant to our discussion have been shown in figure 1 (additional vertices
constituted of the same propagators but not relevant to the diagrams described in this
article have been depicted in appendix C) and the various internal and external lines used
within these have been described in table 1. The heavy field quantum numbers in each case
can be fixed based on symmetry arguments and by using the SU(3)C × SU(2)L × U(1)Y
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quantum numbers of the SM fields, see table 5. We have provided detailed descriptions for
each case below:

1. V1: a trilinear scalar vertex with one heavy and two light fields. In this case, we have
two1 unique possibilities:

(a) φ1 = H, φ2 = H†: since H transforms as (1, 2, 1
2), this implies that the only

possible heavy scalar quantum numbers are Φ ∈ {(1, 1, 0), (1, 3, 0)}.
(b) φ1 = φ2 = H: this implies Φ ∈ {(1, 3, 1)}.2

2. V2: a quartic scalar vertex with one heavy and three light fields. Again, we have two
distinct sub-cases:

(a) φ1 = φ2 = H, φ3 = H†: this implies Φ ∈ {(1, 2, 1
2), (1, 4, 1

2)}.
(b) φ1 = φ2 = φ3 = H: this implies Φ ∈ {(1, 2, 3

2), (1, 4, 3
2)}.

3. V3: a quartic scalar vertex with two heavy and two light fields. With φ1 = H

and φ2 = H†, this vertex is ubiquitous across all models containing a second scalar
apart from the SM Higgs. In this case, the heavy field quantum number can-
not be determined uniquely and it can have arbitrary quantum numbers under
SU(3)C × SU(2)L × U(1)Y , i.e., Φ ∈ {(RC , RL, Y )}. Here, RC , RL denote valid
representations under the SU(3)C and SU(2)L groups respectively and Y refers to
the U(1)Y hypercharge.
A second more elaborate case corresponds to when φ1 = φ2 = H. In that case we
require two heavy scalars, whose quantum numbers must be such so that all four
scalars form an overall singlet. We have not delved any deeper into such cases in the
remainder of this work since this case departs strongly from our notion of minimality.

4. V4: a Yukawa-like vertex with a light scalar, a light fermion and a heavy fermion.
Owing to the rich fermion sector of the SM, there are multiple possibilities and these
have been catalogued in table 2.

5. V5: a Yukawa-like vertex with a light scalar and two heavy fermions.3 Once again,
the quantum numbers of Ψ1 and Ψ2, i.e., (RC1 , RL1 , Y1) and (RC2 , RL2 , Y2) cannot
be fixed exactly but we can impose the following constraints on them:

RC1 ⊗RC2 = 1, RL1 ⊗RL2 = 2, Y1 = Y2 ±
1
2 . (2.1)

1The third possibility φ1 = φ2 = H† simply gives the conjugate of the result of case (b), therefore we
have chosen not to enumerate it.

2The exclusion of Φ ∈ {(1, 1, 1)} can be explained as follows: the interaction between 2 H’s and one such
Φ can be described by the term κ εij H

iHjΦ∗ where κ is the coupling constant, and εij is the completely
antisymmetric rank-2 tensor which is required to construct an SU(2) singlet from the product of two SU(2)
doublets. The product HiHj is symmetric with respect to particle exchange and thus is symmetric in the
indices i, j whereas εij is antisymmetric in the same two indices. As a result of this, the overall term being
a product of a symmetric and an antisymmetric piece vanishes.

3While we have refrained from discussing scenarios with two distinct heavy scalars at the same vertex,
we cannot exclude the similar case involving fermions. This is owing to the fact that CP-violating bosonic
SMEFT operators cannot be generated by a single heavy fermion. We discuss this in more detail in section 3.
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φ ψ Ψ (quantum numbers) φ ψ Ψ (quantum numbers)

H qL {(3̄, 1,−2
3), (3̄, 3,−2

3)} H† qL {(3̄, 1, 1
3), (3̄, 3, 1

3)}

H lL {(1, 1, 0), (1, 3, 0)} H† lL {(1, 1, 1), (1, 3, 1)}

H uR {(3̄, 2,−7
6)} H† uR {(3̄, 2,−1

6)}

H dR {(3̄, 2,−1
6)} H† dR {(3̄, 2, 5

6)}

H eR {(1, 2, 1
2)} H† eR {(1, 2, 3

2)}

Table 2. Lists of heavy field quantum numbers for different choices of the light scalar and light
fermion in the vertex V4.

In the last relation, + or − appears depending on whether φ = H† or H at the vertex.

6. V6 and V7: here, one of the SM field strength tensors (Bµν , W I
µν , G

A
µν) appear as

the lighter field. In this case, we again have the freedom to assign arbitrary quantum
numbers to the heavy field (scalar as well as fermion), except the constraint of non-
triviality imposed on one of the three quantum numbers depending on Xµν :

Xµν ≡ Bµν ⇒ Y 6= 0, Xµν ≡W I
µν ⇒ RL 6= 1, Xµν ≡ GAµν ⇒ RC 6= 1. (2.2)

In each case, the other quantum numbers can assume arbitrary of values.

These vertices form the rudiments of the Feynman diagrams that appear in the next sections
of this article. The forthcoming discussion revolves around tree-level, one-loop diagrams,
as well as two-loop diagrams (where necessary). The following points must be emphasized
regarding the appearance of different diagrams across the various operator classes:

• Tree-level diagrams containing a heavy scalar propagator appear in a small number of
cases and these pinpoint the heavy field quantum numbers exactly. Since the external
states consist of φ’s and (or) Xµν ’s, we do not encounter tree-level diagrams with a
heavy fermion propagator.

• One-loop diagrams composed entirely of a single heavy scalar are ubiquitous across
the (CP-conserving dimension-8) operator classes considered in this work. These
encapsulate a wide variety of heavy fields.

• One-loop diagrams, composed entirely of a single heavy fermion, appear when the
external state consists only of Xµν ’s. These also cover a wide variety of heavy fields
with the quantum numbers constrained by the specific Xµν present at the vertices.

• One-loop diagrams exhibiting light-heavy mixing between an SM fermion and a heavy
fermion are vital in scenarios where the external states contain SM scalars. In these
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cases, the heavy field-quantum numbers can be inferred precisely. In cases such as
for the X4 operator class at dimension-8, where all heavy fermion possibilities are
encompassed by the one-loop diagram consisting of a single heavy fermion, light-
heavy mixing is not necessary to account for additional fermions.

• One-loop diagrams exhibiting mixing between two heavy fermions are necessary to
trace the UV origin of the CP-violating subset of operator classes containing Xµν ’s.
These are also essential to explain the embedding of general heavy fermions with
arbitrary quantum numbers within operators made up of only the SM scalar, its
conjugate and their derivatives because in such cases one-loop diagrams made up of
a unique fermion do not exist.

• Two-loop diagrams with two heavy fermion and one light scalar propagator are un-
avoidable if we attempt to explain the UV origin of CP-violation through operators
of the X3 and X4 classes.

3 CP-violating D6 operators

CP-violation is a critical component of the matter-antimatter asymmetry puzzle [53].
Within the SM, the presence of a phase in the CKM matrix [54] alone is not sufficient to
explain baryogenesis [55–57], additional sources of CP-violation can be described through
the inclusion of the CP-violating effective operators [19]. This motivates the search for
CP-violation at current and future particle collider programs [58, 59]. Any tangible mea-
surement will essentially point towards BSM sources.

3.1 Signature of CP-violation in SMEFT

Extensive studies have been conducted on CP-violation in the context of Higgs physics [60–
62]. Within new physics proposals, CP-violation manifests through interactions of the form:
(a + b γ5) Ψ1Ψ2 φ [63–65]. Processes described by fermion loops containing an overall
odd number of γ5 at the vertices can carry the signature of CP-violation. The γ5 matrix
generates rank-4 Levi-Civita tensors based on the following relation:

2 i σρδ γ5 = εµνρδ σ
µν . (3.1)

Therefore, for the SMEFT operators, the most overt signature of CP-violation is the pres-
ence of an odd number of rank-4 Levi-Civita tensors εµνρσ. Thus, operators containing the
duals of field strength tensors:

X̃µν = 1
2 εµνρσX

ρσ, (3.2)

encapsulate possible sources of CP-violation. Dimension-6 SMEFT operators that hint
towards CP-violation have been listed below, categorized by class:

φ2X2 → QHG̃ : (H†H) (G̃Aµν GAµν), QHW̃ : (H†H) (W̃ I
µνW

Iµν),
QHB̃ : (H†H) (B̃µν Bµν), QHW̃B : (H† τ I H) (W̃ I

µν B
µν),

X3 → QG̃ : fABCG̃Aµν GBνρ GCρµ , QW̃ : εIJKW̃ Iµ
ν W Jν

ρ WKρ
µ . (3.3)
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X1,µν X2,µν

φ1 φ2

Ψ1

Ψ2

Ψ2

Ψ2

(a+ bγ5)(a+ bγ5)

(i)

Ψ1

Ψ2

Ψ2

X2,µν

X1,µνφ1

φ2

(a+ bγ5)

(a+ bγ5)

Ψ1

(ii)

Ψ2

Ψ2 Ψ2

H

Xµν Xµν

(a+ bγ5)
(a+ bγ5)

Ψ1

Ψ2

Xµν

(iii)

Ψ2

Ψ2 Ψ2

H

Xµν Xµν

(a+ bγ5)
(a+ bγ5)

Ψ1

Xµν

Ψ1

(iv)

Figure 2. Unfolding SMEFT operators of mass dimension-6 belonging to (i), (ii) the φ2X2 class
into one-loop and (iii), (iv) the X3 class into two-loop Feynman diagrams involving heavy fermion
propagators. In order to be concise in our discussion, we have only considered a general Yukawa
vertex with the coupling parametrised as a+ b γ5.

It has been established in recent works [63, 64] that while a single heavy fermion in
the loop can lead to the CP conserving counterparts of the operators listed in eq. (3.3),
the CP-violating ones necessitate the inclusion of a second heavy fermion. Also, the degree
of non-triviality increases when we consider CP-violating operators of the X3 class, where
in order to accommodate the γ5 matrix, we require two-loop diagrams with a light scalar
propagator in addition to the heavy fermions.

3.2 Unfolding the φ2X2 and X3 operator classes

The schematic manner in which the operators of the φ2X2 (QHG̃, QHW̃ , QHB̃ and QHW̃B)
and X3 (QG̃, QW̃ ) classes can be unfolded into one- and two-loop diagrams respectively,
involving two heavy fermions (Ψ1 and Ψ2), is shown in figure 2. The quantum numbers of
Ψ1 and Ψ2 can be determined by first identifying the vertices as either V 5 or V 7 and then
simultaneously satisfying the relevant relations - eq. (2.1) or (2.2) at each vertex. These
constraints have been reiterated below:

RC1 ⊗RC2 = 1, Xµν ≡ GAµν ⇒ RC 6= 1,
RL1 ⊗RL2 = 2, Xµν ≡W I

µν ⇒ RL 6= 1,

Y1 = Y2 ±
1
2 , Xµν ≡ Bµν ⇒ Y 6= 0. (3.4)

The requirement of two heavy fermions can be understood based on the presence of
vertices of the V 5 category within each of these diagrams. On top of that, these fermions
must be vector-like because the difference between the couplings of the left- and right-
chiral parts indicates the violation of CP-symmetry. This is why the parametrisation of
the Yukawa coupling constant as (a + b γ5) with a 6= b 6= 0 is necessary. The projection
operators PL, PR or γ5 project out this exact disparity between the left- and right-chiral
sectors. This signature of CP-violation consequently appears within the Wilson coefficients
of the aforementioned SMEFT operators.
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Operator Quantum numbers of VLF pairs References

QHG̃, QG̃ {(RC , 2, Y ), (RC , 1, Y ± 1/2)} [66, 67]

QHW̃ , QHB̃, QHWB̃, QW̃ {(1, 2, Y ), (1, 1, Y ± 1/2)}, {(1, 3, 1), (1, 2, 1/2)} [63, 64, 67]

Table 3. Heavy field representations that have been found to yield CP-violating SMEFT operators
after being integrated out along with the works reporting these connections.

3.3 Validation of the results

As described above, our results correspond to SM extensions containing vector-like fermions
(VLFs). To substantiate our results, we have inspected recent works that shed light on the
physics of UV models containing VLFs. These analyses utilize the top-down procedure of
integrating out the VLFs to obtain the CP-violating D6 SMEFT operators.

Quantum numbers of the heavy fields that beget individual (CP-violating) operators of
the φ2X2 and X3 classes, along with references to the works that have studied them, have
been mentioned in table 3. A quick inspection of the contents of table 3 reveals that the
mentioned heavy field quantum numbers indeed satisfy the constraints outlined in eq. (3.4)
and they thus form a subset of our results.

4 The bosonic sector at D8

The bosonic sector of SMEFT at mass dimension-8 is constituted by operators containing
the SM scalar, its conjugate, their covariant derivative, the field strength tensors corre-
sponding to the gauge groups, and their dual tensors. In our study, we have subdivided
these operators into three broad categories:

1. Those with only φ ∈ {H,H†} and their covariant derivatives as external states.

2. Those with Xµν ∈ {GAµν , W I
µν , Bµν} and their dual tensors as external states.

3. Those containing a mix of scalars, their covariant derivatives, field strength tensors
and their duals.

Each category has further been subdivided based on the number of derivatives. We
have drawn tree-level (where applicable), one-loop and two-loop (where necessary) diagrams
for the various cases, highlighting the heavy field propagators within them. After identify-
ing the vertices appearing in those diagrams, we have shed light on the permitted quantum
numbers for the heavy field(s). On account of the fact, that the covariant derivatives do
not influence the heavy field quantum numbers, we have not provided any symbolic rep-
resentation for them in our diagrams. Also, as opposed to listing diagrams exhaustively,
taking into account every permutation of the external legs, we have opted to be concise in
our presentation by only providing schematic diagrams that encapsulate the information
related to multiple operators.

– 10 –



J
H
E
P
0
8
(
2
0
2
2
)
1
9
0

(i) φ8 (ii) φ6D2 (iii) φ4D4

(iv) φ8 (v) φ6D2

Figure 3. Schematic unfolding of φ8, φ6D2 and φ4D4 classes of D8 SMEFT operators into tree-
level diagrams.

4.1 External states: only φ

This category consists of operators belonging to the φ8, φ6D2 and φ4D4 classes. The
complete list of independent operators has been catalogued in table 6. We have unfolded
these operators, to reveal heavy propagators, in a systematic way starting with tree-level
diagrams then proceeding towards one-loop diagrams of different varieties (based on the
number of heavy propagators within the loops).

4.1.1 Tree-level

Tree-level schematic diagrams corresponding to the φ8, φ6D2 and φ4D4 have been eluci-
dated in figure 3. The set of heavy field quantum numbers can be obtained at the level of
the operator class itself by examining the vertices within the diagrams as described below:

1. Figures 3i, 3ii, 3iii are composed of the vertices: {V 1, V 3}, {V 1, V 3} and {V 3}
respectively. Based on the discussion in section 2, we know that V 3 is ubiquitous in
all scalar extensions of the SM and permits assigning arbitrary quantum numbers to
the heavy field. On the other hand V 1 only permits a finite number of cases, i.e.,

Φ ∈ {(1, 3, 0), (1, 1, 0), (1, 3, 1)}. (4.1)

More concrete connections between specific operators of a given class and distinct
heavy quantum numbers can be inferred based on the arrangement of H and H† at
the vertices, which itself is necessitated by the proper contraction of Lorentz indices
associated with the derivatives accompanying these fields in the operator in the case
of φ6D2 and φ4D4 operators.

2. Figures 3iv, 3v are composed of the vertices {V 2, V 3} and {V 2} respectively. Once
again, while V 3 permits arbitrary quantum numbers for the heavy field, V 2 leads to
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(i) φ8 (ii) φ6D2 (iii) φ4D4

Figure 4. One-loop schematic diagrams revealing heavy scalar propagators enveloped within (i)
φ8, (ii) φ6D2, and (iii) φ4D4 classes of SMEFT operators.

(i) φ8 (ii) φ6D2 (iii) φ4D4

Figure 5. Schematic diagrams revealing light-heavy fermion mixing incorporated within (i) φ8,
(ii) φ6D2, and (iii) φ4D4 classes of SMEFT operators.

only a finite number of cases, i.e.,

Φ ∈
{(

1, 4, 3
2

)
,

(
1, 2, 3

2

)
,

(
1, 4, 1

2

)
,

(
1, 2, 1

2

)}
. (4.2)

4.1.2 Heavy-loop

Figure 4 contains one-loop schematic diagrams corresponding to the φ8, φ6D2 and φ4D4

operator classes, where the entire loop is composed of a distinct heavy scalar. The con-
stituent vertex for each diagram is V 3. The quartic interaction appearing at each vertex of
these diagrams encompasses all possible heavy scalars. Therefore, the quantum numbers,
in this case, remains arbitrary, i.e., Φ ∈ (RC , RL, Y ).

4.1.3 Light-heavy mixing

Figure 5 contains one-loop schematic diagrams corresponding to the φ8, φ6D2 and φ4D4

operator classes, that exhibit mixing between a light (SM) and a heavy fermion. The
constituent vertex for each diagram is V 4. The heavy field quantum numbers can be
uniquely determined based on the choice of the light (SM) fermion as illustrated in table 2.
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(i) φ8 (ii) φ6D2 (iii) φ4D4

Figure 6. Schematic diagrams revealing heavy-heavy fermion mixing incorporated within (i) φ8,
(ii) φ6D2, and (iii) φ4D4 classes of SMEFT operators.

4.1.4 Heavy-heavy mixing

Figure 6 contains one-loop schematic diagrams corresponding to the φ8, φ6D2 and φ4D4

operator classes, that exhibit mixing between two heavy fermions. The constituent vertex
for each diagram is V 5. This is a broader generalization of the case depicted in figure 5 and
accomodates a wide variety of heavy fermion Ψ1,2 extensions of the SM whose quantum
numbers (RC1,2 , RL1,2 , Y1,2) must satisfy eq. (2.1). There have been ample surveys and dis-
cussions around extensions of the SM incorporating such heavy vector-like fermion (VLF)
pairs [18, 68–70]. The embedding of VLF pairs within D8 SMEFT operators hints at the
significance of these operators in the study of associated phenomenology.

4.2 External states: only Xµν

The complete list of independent operators of the X4 class have been catalogued in table 7.
It is noteworthy that unlike its D6 counterpart, i.e., the X3 class which only contains
4 operators, the X4 class consists of a wide variety of operators made up of the SM
field strength tensors GAµν , W I

µν , Bµν as well as their duals. This subdivision has been
vividly elucidated in table 7, through proper nomenclature of the operators based on their
constituents. Since, we have not taken into account SM extensions with additional gauge
bosons, we only come across loop-level diagrams in this case.

Figure 7 shows one-loop as well as two-loop diagrams revealing scalar as well as fermion
propagators. The inclusion of two-loop diagrams is necessitated by the operators with
an odd number of dual field strength tensors (X̃µν), which contain the signature of CP-
violation. These can directly be compared with the contents of figure 2. The allowed heavy
field quantum numbers, for each case in figure 7, can be ascertained as follows:

1. Figure 7i: composed of the vertex V 6. As described in section 2, the heavy scalar
quantum numbers (RC , RL, Y ) can be arbitrary, but subject to one or more of the
following constraints based on the Xµν ’s present within the operator:

Xµν ≡ Bµν ⇒ Y 6= 0, Xµν ≡W I
µν ⇒ RL 6= 1, Xµν ≡ GAµν ⇒ RC 6= 1. (4.3)
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(i) Heavy loop (scalar) (ii) Heavy loop (fermion) (iii) Heavy-heavy mixing

Figure 7. (i), (ii) One-loop and (iii) two-loop schematic diagrams revealing heavy field propagators
enveloped within X4 class of SMEFT operators.

2. Figure 7ii: composed of the vertex V 7. This is similar to figure 7i but with the scalar
loop replaced by a fermion loop. Once again, there is a freedom with respect to
quantum number assignment except for a constraint in the form of eq. (4.3) depending
on the various Xµν ’s involved in the operator. Since this diagram covers all possible
heavy fermion extensions of the SM, we have not separately considered a diagram
displaying light-heavy mixing between an SM fermion and a heavy fermion, which is
more restrictive to the choice of the heavy fermion.

3. Figure 7iii: composed of the vertices - {V 5, V 7}. This is a two-loop diagram exhibit-
ing mixing between two heavy fermions and the SM scalar. Similar to figures 2iii
and 2iv, this diagram is necessary to accommodate SM extensions with a CP-violating
signature. The heavy fermion quantum numbers must satisfy both eqs. (2.1) and (4.3)
depending on the field strength tensor(s) in contact.

4.3 External states: φ and Xµν

This category consists of operators belonging to the φ2X3, φ4X2, φ2X2D2 and φ4XD2

classes. The complete list of independent operators has been catalogued in table 8.

4.3.1 Heavy-loop

Figure 8 contains one-loop schematic diagrams for each of the four operator classes. In
each case, the entire loop is composed of a distinct heavy scalar. The constituent vertices
for each diagram are {V 3, V 6}. While V 3 permits all heavy scalars with arbitrary quantum
numbers Φ ∈ (RC , RL, Y ), the presence of the field strength tensors filters out some of the
possibilities per eq. (4.3).

4.3.2 Light-heavy mixing

Figure 9 contains one-loop schematic diagrams corresponding to the φ2X3, φ4X2, φ2X2D2

and φ4XD2 operator classes, that exhibit mixing between a light (SM) and a heavy fermion.
The constituent vertices for each case are {V 4, V 7} as well as interactions between the SM
fermions and SM field strength tensors. The heavy field quantum numbers can be uniquely

– 14 –



J
H
E
P
0
8
(
2
0
2
2
)
1
9
0

(i) φ2X3 (ii) φ4X2 (iii) φ2X2D2 (iv) φ4XD2

Figure 8. One-loop schematic diagrams revealing heavy field propagators enveloped within (i)
φ2X3, (ii) φ4X2, (iii) φ2X2D2, and (iv) φ4XD2 classes of SMEFT operators.

(i) φ2X3 (ii) φ4X2

(iii) φ2X2D2 (iv) φ4XD2

Figure 9. Schematic diagrams revealing light-heavy fermion mixing incorporated within (i) φ2X3,
(ii) φ4X2, (iii) φ2X2D2, and (iv) φ4XD2 classes of SMEFT operators.

determined by first fixing the light fermion within the loop, which allows us to use the
results of table 2, followed by filtering them out further by imposing eq. (4.3) at the
vertices where the fermions come in contact with the field strength tensors, e.g.,

• If we consider the operator: Q(1)
W 2BH2 ≡ εIJK(H†τ IH)B ν

µW
Jρ
ν WKµ

ρ of the φ2X3 class
and examine the first sub-figure within Figure 9i, we see that the light fermion is
in direct contact with the SU(2)L as well as the U(1)Y field strength tensors. This
filters out those SM fermions that transform trivially under SU(2)L, i.e, uR ∈ (3, 1, 2

3),
dR ∈ (3, 1,−1

3), and eR ∈ (1, 1,−1). Therefore, the fields that participate in light-
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(i) φ2X3 (ii) φ4X2

(iii) φ2X2D2

(iv) φ4XD2

Figure 10. Schematic diagrams revealing heavy-heavy fermion mixing incorporated within (i)
φ2X3, (ii) φ4X2, (iii) φ2X2D2, and (iv) φ4XD2 classes of SMEFT operators.

heavy mixing in the loop are:

(i) ψ = lL ∈
(

1, 2,−1
2

)
, Ψ ∈ {(1, 1, 0), (1, 3, 0), (1, 1, 1), (1, 3, 1)};

(ii) ψ = qL ∈
(

3, 2, 1
6

)
, Ψ ∈

{(
3̄, 1,−2

3

)
,

(
3̄, 3,−2

3

)
,

(
3̄, 1, 1

3

)
,

(
3̄, 3, 1

3

)}
.

(4.4)
On the other hand, focussing on the second sub-figure in figure 9i, since the heavy
fermion is in direct contact with the field strength tensors, there are no restrictions
with respect to the selection of the SM fermion but the heavy field choices are cur-
tailed and fields that are either SU(2)L singlets and (or) carry a zero hypercharge are
excluded. The permitted combinations of light and heavy fields in the loop are:

(i) ψ = lL ∈
(

1, 2,−1
2

)
, Ψ ∈ {(1, 3, 1)} ;

(ii) ψ = qL ∈
(

3, 2, 1
6

)
, Ψ ∈

{(
3̄, 3,−2

3

)
,

(
3̄, 3, 1

3

)}
;

(iii) ψ = eR ∈ (1, 1,−1) , Ψ ∈
{(

1, 2, 1
2

)
,

(
1, 2, 3

2

)}
;

(iv) ψ = uR ∈
(

3, 1, 2
3

)
, Ψ ∈

{(
3̄, 2,−7

6

)
,

(
3̄, 2,−1

6

)}
;

(v) ψ = dR ∈
(

3, 1,−1
3

)
, Ψ ∈

{(
3̄, 2,−1

6

)
,

(
3̄, 2, 5

6

)}
.

(4.5)

While the two diagrams together encompass all the combinations listed in table 2,
such nuances are vital for establishing concrete relations between the effective oper-
ators and the heavy fields.

4.3.3 Heavy-heavy mixing

Figure 10 contains one-loop schematic diagrams corresponding to the φ2X3, φ4X2, φ2X2D2

and φ4XD2 operator classes, exhibiting mixing between two heavy fermions in the loop.
The constituent vertices for each case are {V 5, V 7}. This case permits a plethora of heavy
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field quantum numbers but each of those must satisfy eq. (2.1) as well as eq. (4.3) at
the appropriate vertices. These diagrams are necessary to account for the CP-violating
operators and the heavy fermions have the characteristics of vector-like fermions.

4.4 Validation of the results

Below we provide a discussion on how the results catalogued so far can be validated against
the top-down EFT methodology. We will elucidate how D8 operators made up of the SM
Higgs, its conjugate and their derivatives originate after heavy scalar fields are integrated
out. The starting point for this approach is the following schematic Lagrangian:

L[χ, φ] = B(φ)†χ+ h.c.+ 1
2χ

T (P 2 −M2 −U(φ)
)
χ+O(Φ3), (4.6)

where χ denotes a generic heavy scalar field, φ denotes the light fields collectively but for
simplicity we shall infer it as the SM Higgs boson. Pµ ≡ iDµ and B, U are functions of
the light fields.

Tree-level. Effective operators at tree-level are generated by substituting the classical
solution of the heavy field equation of motion4 (χc) back into the Lagrangian. After the
covariant derivative expansion the effective Lagrangian at tree-level assumes the form [20]:

Lefftree = B†
1
M2B+B†

1
M2 (P 2−U) 1

M2B+B†
1
M2 (P 2−U) 1

M2 (P 2−U) 1
M2B+ . . . (4.7)

The term containing B in the Lagrangian refers to interactions which are linear with respect
to the heavy field but contain multiple light fields. In terms of the terminology established
in this article, these correspond to the vertices V 1 and V 2 shown in figure 1. Only a finite
number of heavy scalar extensions of the SM permit such a term in the Lagrangian [20]
and these are:

Φ ∈
{

(1, 1, 0), (1, 3, 0), (1, 3, 1),
(

1, 2, 1
2

)
,

(
1, 4, 1

2

)
,

(
1, 2, 3

2

)
,

(
1, 4, 3

2

)}
. (4.8)

The term proportional to U in the Lagrangian, on the other hand describes an in-
teraction which is quadratic in both light and heavy fields. This is akin the vertex V 3
and is ubiquitous across all single heavy scalar extensions irrespective to their quantum
numbers. In fact, U(φ) ≡ U(H,H†) = H†H. Based on the various combinations of B and
U , the origin of SMEFT operators through the different terms of eq. (4.7) can be under-
stood. A couple of illustrative examples demonstrating the origin of D8 SMEFT operators
within this formalism have been summarized in table 4. These relations between heavy
field quantum numbers and SMEFT operator classes exactly match the ones established
through tree-level diagrammatic unfolding for the φ8, φ6D2 and φ4D4 operator classes as
part of our analysis.

4The classical solution χc solves the Euler-Lagrange equation:
δL
δχ

∣∣∣∣
χ=χc

= 0.
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Φ Interaction terms Effective operators Op. class

(1, 1, 0) c1 (H†H)︸ ︷︷ ︸
B

Φ,
1
M6 (B† U U B) →

c2
1

M6 (H†H)4 φ8

(H†H)︸ ︷︷ ︸
U

Φ2
1
M6 (B† P 2 U B) →

c2
1

M6(H†H)�(H†H)2 φ6D2

1
M6 (B† P 2 P 2 B) →

c2
1

M6(H†H)[�(H†H)]2 φ4D4

(1, 4, 3
2 )

(HiHjHk)︸ ︷︷ ︸
B

Φ†ijk,
1
M4 (B† U B) →

1
M4 (H†H)4 φ8

(H†iHi)︸ ︷︷ ︸
U

Φ†jklΦjkl + perm.
1
M4 (B† P 2 B) →

1
M4 (H†H)�(H†H)2 φ6D2

Table 4. Origin of D8 SMEFT operators through tree-level integrating out from UV models
containing (i) a real singlet scalar Φ ∈ (1, 1, 0) and (ii) an SU(2)L quadruplet Φ ∈ (1, 4, 3

2 ). Here,
i, j, k, l refer to SU(2) indices and in the last row ”perm.” refers to the possible permutations of
these indices.

One-loop-level. To discuss the integration out of heavy fields at one-loop-level we have
adopted the covariant diagram approach of ref. [71] and we have focussed only on the φ6D2

operator class. Reiterating the fact that Pµ ≡ iDµ and U = (H†H) across single heavy
scalar extensions of SM with arbitrary SU(3)C × SU(2)L × U(1)Y quantum numbers, i.e.,
Φ ∈ (RC , RL, Y ), we can refer to operators of the φ6D2 class as P 2U3 in the language of
ref. [71].

The covariant diagram consisting of only scalar heavy particles in the loop along with
two Pµ insertions and three U insertions is shown below:

U

U

U

i

i

i

i

i

= −i cs (2)2 I[q2]5i tr (U [Pµ , U ] [Pµ , U ]) .

Adjacent to the covariant diagram, we have also noted the corresponding effective oper-
ator using the conventions of ref. [71]. This can be re-written as C(φ6D2)tr (U [Pµ, U ][Pµ, U ]),
and C(φ6D2) = −i cs (2)2 I[q2]5i contributes to the Wilson coefficient. Here, cs depends on
the type of the heavy field in the loop (e.g., cs = 1/2 for real scalar fields.), and

I[q2]5i =
∫

ddq

(2π)d
q2

(q2 −M2
i )5 = 1

12M4
i

. (4.9)

The i in the subscript on the left hand side marks the variety of propagators in the co-
variant diagram. The loop factor I[q2]5i can be evaluated using tools such as PackageX [72].
For a comprehensive discussion, we refer the reader to [71].
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The noteworthy point is that such covariant diagrams can be drawn for any heavy
scalar, hence leading to the same family of SMEFT operators. Thus, our results for the
unfolding of operators consisting of the SM Higgs, it’s conjugate and their derivatives into
one-loop diagrams constituted of a single heavy scalar can be corroborated.

5 Common origin of subsets of D6 and D8 operators

The search for clues of new physics, within D8 SMEFT operators, is slowly becoming a
focal point of contemporary phenomenological as well as experimental research. As we take
the next stride in probing beyond the Standard Model, we must be mindful of the subtleties
as well as overarching patterns evident across operators of different mass dimensions. Even
when restricting ourselves to the purely bosonic operators, a comparison with the results
of [40] reveals clear connections between the UV origin of D6 and D8 SMEFT operators.
In what follows, we have underlined these connections as well as the subtleties involved
when studying operators of dimensions-6 and -8 together.

• Direct comparison between the results for D6 operator classes catalogued in [40] and
section 3 of this work and those of D8, as discussed in section 4 that differ only by
φ2 ≡ (H†H) reveals common UV origin for pairs of D6, D8 classes, e.g.,

(φ6, φ8); (φ4D2, φ6D2); (φ2X2, φ4X2). (5.1)

This is not surprising as the additional φ2 piece is an overall singlet. Therefore, the
pairs of operator classes in eq. (5.1) exhibit successive orders of perturbation theory
and provide corrections to the same SM processes, most notably the electroweak
precision observables. The corrections are weighted by powers of (v/Λ)2n, with n = 1
and 2 for dimensions-6 and -8 respectively.

• On the other hand, operator classes that differ by a single Xµν , which also increases
the mass dimension by 2, do not necessarily share the same origin. For instance, the
X3 class contains only two types of operators, one trilinear in W I

µν and the other
in GAµν . They enforce the constraint of non-triviality of the SU(2)L and SU(3)C
representations of the heavy field respectively. The X4 class not only contains oper-
ators describing self-interactions of Bµν , W I

µν and GAµν but also various mixed cases.
Operators of the latter sub-category impose additional constraints on the heavy field
quantum numbers. This underlines the significance of D8 operators for discriminating
between UV models that furnish similar results at D6.

These associations between D6 and D8 operators and their shared UV origin also serve
to streamline any phenomenological analysis involving them. This is because the Wilson
coefficients of all the operators generated after integrating out a particular heavy field are
functions of the same finite number of parameters, irrespective of whether they belong to
D6 or D8 classes. This way, top-down analyses, informed by the results of this work, can be
extended to account for D8 operators without worrying about an unmanageable number
of free parameters. Such a luxury cannot be ensured in bottom-up analyses, where free
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parameters start to proliferate as the mass-dimension increases. This has been the main
source of scepticism regarding the incorporation of D8 operators for statistical analyses of
experimental data. A few areas where D8 operators have gained a lot of prominence have
been described below:

• Operator classes such as, φ4D4, φ2X2D2, X4, etc. encapsulate vertices relevant for
vector boson scattering (VBS) processes [73–79]. Interactions involving only the
charged electroweak gauge bosons (W+,W−) and those involving charged as well as
neutral gauge bosons (Z, γ) manifest within the SM Lagrangian itself. But, trilinear
and quartic interactions within the neutral sector are scarce. The relevant vertices
are first encountered within D8 operators. A hint of such processes will certainly
widen the scope for new physics.
Also, owing to their common UV origin, D8 operators, (e.g., φ4D4) enveloping such
rare processes will always be accompanied by D6 operators (φ4D2 in this case) that
contribute to observables such as Higgs signal strength (HSS). Therefore, studying
the rare variety of VBS in tandem with HSS could provide better exclusion limits on
the parameter space for the BSM proposal.

• Constraints can be enforced on BSM physics based on electroweak precision data
(EWPD) in terms of the oblique (S, T, U) parameters. The first two receive contri-
butions from D6 operators. The U parameter, on the other hand, receives a vanishing
contribution at D6. It obtains non-zero contributions only at mass dimension-8 [9, 49].
The operator classes that affect these parameters have been highlighted below:

S → φ2X2︸ ︷︷ ︸
D6

, φ4X2︸ ︷︷ ︸
D8

; T → φ4D2︸ ︷︷ ︸
D6

, φ6D2︸ ︷︷ ︸
D8

; U → φ4X2︸ ︷︷ ︸
D8

. (5.2)

Naively, one may assume that the φ4X2 class only serves as the next-order contributor
to observables affected by the φ2X2 operators as suggested by the discourse around
eq. (5.1). But eq. (5.2) elucidates how the D8 classes can be leading order contributors
for certain observables and thus supply novel means of distinguishing between BSM
proposals.

• The unfolding of the CP-violating subsets of operators requires pairs of heavy vector-
like fermions. The signature of the violation is found in Yukawa-like interactions
with a γ5 matrix present at the vertices. This pattern occurs across both D6 and D8
operators as demonstrated in this work. For instance, the VLF pair possessing the
following quantum numbers:

Ψ(1)
L,R ∈ (1, 3, 1) and Ψ(2)

L,R ∈
(

1, 2, 1
2

)
, (5.3)

generate the CP-violating subsets of the φ2X2 and X3 operator classes at D6. Simul-
taneously, these also generate CP-violating operators belonging to the φ4X2, φ2X3,
φ2X2D2 and X4 classes at D8. A scrupulous investigation into the phenomena of
CP-violation would necessitate the inclusion of dimension-8 operators.
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Thus, operators at mass dimension-8 are significant not just as the next order contrib-
utors to SM processes or to bolster the predictions of dimension-6 SMEFT operators but
also as purveyors of novel and esoteric phenomena.

6 Conclusion

In this work, we have assembled a catalogue of admissible quantum numbers for heavy
scalars and fermions that can generate specific subsets of SMEFT operators. We have sub-
jected purely bosonic, CP-violating operators of mass dimension-6 and all purely bosonic
operators of dimension-8 to an elaborate unfolding procedure. It commences with the
identification of Lorentz invariant vertices describing interactions between heavy and light
fields. These vertices are then employed to build tree-level as well as loop-level diagrams
with the same external legs as the SMEFT operator classes. The operation culminates
with the identification of one or more heavy propagators within those diagrams. We have
adhered to a notion of conciseness in our discussion by restricting to descriptions at the
level of operator class in most cases and we have delved into detailed examples only for
a few pertinent scenarios. We have vividly highlighted recurrent patterns across different
operator classes as well as the nuances present within operators with the similar constitu-
tion.

We have validated our findings through direct comparison with the results of top-down
analyses that generate CP-violating SMEFT operators from models containing vector-like
fermions. We have also surveyed how heavy scalar loops can engender SMEFT operators
with bosonic legs within the covariant diagram approach.

By studying the parallels as well as the disparity between the ways in which operators
of dimensions-6 and -8 originate from UV models, we have accentuated the significance of
the latter for current as well as future phenomenological analyses dedicated to the search
for new physics. We have shed light on the firm ties between CP-violation in SMEFT and
extensions of the SM through the inclusion of vector-like fermions. We have also elucidated
the role of dimension-8 operators as the radix of atypical phenomena such as the scattering
of neutral electroweak gauge bosons through trilinear and quartic vertices. We have under-
lined the significance of conducting investigations into these rare phenomena in conjunction
with the study of high precision observables for pinpointing the most appropriate beyond
the Standard Model scenario.
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A The Standard Model field content and Lagrangian

The Standard Model degrees of freedom along with their representations under the SU(3)C
and SU(2)L groups, their respective U(1)Y hypercharges, baryon and lepton numbers and
their spins have been collected in table 5.

Field SU(3)C SU(2)L U(1)Y Baryon No. Lepton No. Spin

H 1 2 1/2 0 0 0

qpL 3 2 1/6 1/3 0 1/2

upR 3 1 2/3 1/3 0 1/2

dpR 3 1 -1/3 1/3 0 1/2

lpL 1 2 -1/2 0 -1 1/2

epR 1 1 -1 0 -1 1/2

GAµ 8 1 0 0 0 1

W I
µ 1 3 0 0 0 1

Bµ 1 1 0 0 0 1

Table 5. Standard Model: gauge and global quantum numbers and spins of the fields. Here,
A = 1, 2, · · · , 8; I = 1, 2, 3; p = 1, 2, 3 and µ = 0, 1, 2, 3 refer to the SU(3), SU(2), flavour and
Lorentz indices respectively.

B Pure bosonic dimension-8 operators

The complete list of purely bosonic SMEFT operators of mass dimension-8 have been
presented in tables 6-8. These were first constructed in [9, 10].

1 : φ8

QH8 (H†H)4

2 : φ6D2

Q
(1)
H6 (H†H)2(DµH†DµH)

Q
(2)
H6 (H†H)(H†τ IH)(DµH†τ IDµH)

3 : φ4D4

Q
(1)
H4 (DµH†DνH)(DνH†DµH)

Q
(2)
H4 (DµH†DνH)(DµH†DνH)

Q
(3)
H4 (DµH†DµH)(DνH†DνH)

Table 6. The dimension-8 SMEFT operators with only the SM scalar, its conjugate and their
derivatives as the building blocks.
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4 : X4, X3X′

Q
(1)
G4 (GAµνGAµν)(GBρσGBρσ)

Q
(2)
G4 (GAµνG̃Aµν)(GBρσG̃Bρσ)

Q
(3)
G4 (GAµνGBµν)(GAρσGBρσ)

Q
(4)
G4 (GAµνG̃Bµν)(GAρσG̃Bρσ)

Q
(5)
G4 (GAµνGAµν)(GBρσG̃Bρσ)

Q
(6)
G4 (GAµνGBµν)(GAρσG̃Bρσ)

Q
(7)
G4 dABEdCDE(GAµνGBµν)(GCρσGDρσ)

Q
(8)
G4 dABEdCDE(GAµνG̃Bµν)(GCρσG̃Dρσ)

Q
(9)
G4 dABEdCDE(GAµνGBµν)(GCρσG̃Dρσ)

Q
(1)
W 4 (W I

µνW
Iµν)(W J

ρσW
Jρσ)

Q
(2)
W 4 (W I

µνW̃
Iµν)(W J

ρσW̃
Jρσ)

Q
(3)
W 4 (W I

µνW
Jµν)(W I

ρσW
Jρσ)

Q
(4)
W 4 (W I

µνW̃
Jµν)(W I

ρσW̃
Jρσ)

Q
(5)
W 4 (W I

µνW
Iµν)(W J

ρσW̃
Jρσ)

Q
(6)
W 4 (W I

µνW
Jµν)(W I

ρσW̃
Jρσ)

Q
(1)
B4 (BµνBµν)(BρσBρσ)

Q
(2)
B4 (BµνB̃µν)(BρσB̃ρσ)

Q
(3)
B4 (BµνBµν)(BρσB̃ρσ)

Q
(1)
G3B dABC(BµνGAµν)(GBρσGCρσ)

Q
(2)
G3B dABC(BµνG̃Aµν)(GBρσG̃Cρσ)

Q
(3)
G3B dABC(BµνG̃Aµν)(GBρσGCρσ)

Q
(4)
G3B dABC(BµνGAµν)(GBρσG̃Cρσ)

4 : X2X′2

Q
(1)
G2W 2 (W I

µνW
Iµν)(GAρσGAρσ)

Q
(2)
G2W 2 (W I

µνW̃
Iµν)(GAρσG̃Aρσ)

Q
(3)
G2W 2 (W I

µνG
Aµν)(W I

ρσG
Aρσ)

Q
(4)
G2W 2 (W I

µνG̃
Aµν)(W I

ρσG̃
Aρσ)

Q
(5)
G2W 2 (W I

µνW̃
Iµν)(GAρσGAρσ)

Q
(6)
G2W 2 (W I

µνW
Iµν)(GAρσG̃Aρσ)

Q
(7)
G2W 2 (W I

µνG
Aµν)(W I

ρσG̃
Aρσ)

Q
(1)
G2B2 (BµνBµν)(GAρσGAρσ)

Q
(2)
G2B2 (BµνB̃µν)(GAρσG̃Aρσ)

Q
(3)
G2B2 (BµνGAµν)(BρσGAρσ)

Q
(4)
G2B2 (BµνG̃Aµν)(BρσG̃Aρσ)

Q
(5)
G2B2 (BµνB̃µν)(GAρσGAρσ)

Q
(6)
G2B2 (BµνBµν)(GAρσG̃Aρσ)

Q
(7)
G2B2 (BµνGAµν)(BρσG̃Aρσ)

Q
(1)
W 2B2 (BµνBµν)(W I

ρσW
Iρσ)

Q
(2)
W 2B2 (BµνB̃µν)(W I

ρσW̃
Iρσ)

Q
(3)
W 2B2 (BµνW Iµν)(BρσW Iρσ)

Q
(4)
W 2B2 (BµνW̃ Iµν)(BρσW̃ Iρσ)

Q
(5)
W 2B2 (BµνB̃µν)(W I

ρσW
Iρσ)

Q
(6)
W 2B2 (BµνBµν)(W I

ρσW̃
Iρσ)

Q
(7)
W 2B2 (BµνW Iµν)(BρσW̃ Iρσ)

Table 7. The dimension-8 SMEFT operators constituted only of field strength tensors.
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5 : φ2X3

Q
(1)
G3H2 fABC(H†H)GAνµ GBρν GCµρ

Q
(2)
G3H2 fABC(H†H)GAνµ GBρν G̃Cµρ

Q
(1)
W3H2 εIJK(H†H)W Iν

µ W Jρ
ν WKµ

ρ

Q
(2)
W3H2 εIJK(H†H)W Iν

µ W Jρ
ν W̃Kµ

ρ

Q
(1)
W2BH2 εIJK(H†τ IH)B ν

µW
Jρ
ν WKµ

ρ

Q
(2)
W2BH2 εIJK(H†τ IH)(B̃µνW J

νρW
Kρ
µ +BµνW J

νρW̃
Kρ
µ )

6 : φ4X2

Q
(1)
G2H4 (H†H)2GAµνG

Aµν

Q
(2)
G2H4 (H†H)2G̃AµνG

Aµν

Q
(1)
W2H4 (H†H)2W I

µνW
Iµν

Q
(2)
W2H4 (H†H)2W̃ I

µνW
Iµν

Q
(3)
W2H4 (H†τ IH)(H†τJH)W I

µνW
Jµν

Q
(4)
W2H4 (H†τ IH)(H†τJH)W̃ I

µνW
Jµν

Q
(1)
WBH4 (H†H)(H†τ IH)W I

µνB
µν

Q
(2)
WBH4 (H†H)(H†τ IH)W̃ I

µνB
µν

Q
(1)
B2H4 (H†H)2BµνB

µν

Q
(2)
B2H4 (H†H)2B̃µνB

µν

7 : φ2X2D2

Q
(1)
G2H2D2 (DµH†DνH)GAµρGAρν

Q
(2)
G2H2D2 (DµH†DµH)GAνρGAνρ

Q
(3)
G2H2D2 (DµH†DµH)GAνρG̃Aνρ

Q
(1)
W2H2D2 (DµH†DνH)W I

µρW
Iρ
ν

Q
(2)
W2H2D2 (DµH†DµH)W I

νρW
Iνρ

Q
(3)
W2H2D2 (DµH†DµH)W I

νρW̃
Iνρ

Q
(4)
W2H2D2 iεIJK(DµH†τ IDνH)W J

µρW
Kρ
ν

Q
(5)
W2H2D2 εIJK(DµH†τ IDνH)(W J

µρW̃
Kρ
ν − W̃ J

µρW
Kρ
ν )

Q
(6)
W2H2D2 iεIJK(DµH†τ IDνH)(W J

µρW̃
Kρ
ν + W̃ J

µρW
Kρ
ν )

Q
(1)
WBH2D2 (DµH†τ IDµH)BνρW Iνρ

Q
(2)
WBH2D2 (DµH†τ IDµH)BνρW̃ Iνρ

Q
(3)
WBH2D2 i(DµH†τ IDνH)(BµρW Iρ

ν −BνρW Iρ
µ )

Q
(4)
WBH2D2 (DµH†τ IDνH)(BµρW Iρ

ν +BνρW
Iρ
µ )

Q
(5)
WBH2D2 i(DµH†τ IDνH)(BµρW̃

Iρ
ν −BνρW̃

Iρ
µ )

Q
(6)
WBH2D2 (DµH†τ IDνH)(BµρW̃

Iρ
ν +BνρW̃

Iρ
µ )

Q
(1)
B2H2D2 (DµH†DνH)BµρB ρ

ν

Q
(2)
B2H2D2 (DµH†DµH)BνρBνρ

Q
(3)
B2H2D2 (DµH†DµH)BνρB̃νρ

8 : φ4XD2

Q
(1)
WH4D2 (H†H)(DµH†τ IDνH)W I

µν

Q
(2)
WH4D2 (H†H)(DµH†τ IDνH)W̃ I

µν

Q
(3)
WH4D2 εIJK(H†τ IH)(DµH†τJDνH)WK

µν

Q
(4)
WH4D2 εIJK(H†τ IH)(DµH†τJDνH)W̃K

µν

Q
(1)
BH4D2 (H†H)(DµH†DνH)Bµν

Q
(2)
BH4D2 (H†H)(DµH†DνH)B̃µν

Table 8. Bosonic dimension-8 operators in the SMEFT containing both field strength tensors and
Higgs boson fields.
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Φ
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Figure 11. Vertices describing interactions between (i) the SM scalar and two distinct heavy
scalars (ii) two SM fermions and a heavy scalar and (iii) an SM fermion and a heavy scalar as well
as a heavy fermion.

C Additional vertices describing interactions of SM and BSM fields

In addition to the fundamental vertices elucidated in figure 1 that form the building blocks
of the diagrams illustrated in this article, there are a few more ways in which the SM fields
can interact with heavy scalars and (or) fermions. These scenarios have been depicted
in figure 11. The reasons behind the exclusion of each of these interactions, as well as
diagrams from our discussion, can be summarized as follows:

1. V 8: such a vertex does not uniquely fix the quantum numbers of the two heavy scalars
Φ1,2 ∈ (RC1,2 , RL1,2 , Y1,2). As a matter of fact, we can only impose the following
constraints on their quantum numbers:

RC1 ⊗RC2 = 1, RL1 ⊗RL2 = 2, Y1 = Y2 ±
1
2 (C.1)

with + or − in the last relation appearing based on whether φ = H† orH is present at
the vertex. Among the operators considered in this work, H and H† appear together.
If the diagrams are unfolded into one-loop diagrams using such vertices, they then
essentially predict a two scalar extension of the SM to describe the origin of the
particular operator. On the other hand, by working with diagrams containing the
vertex V 3, we limit ourselves to the more minimal case of single-particle extensions
of the SM to describe the source of the same operator.

2. V 9: since our focus is on SMEFT operators, the external states are always described
by SM degrees of freedom. This vertex could only be accommodated if we had taken
into account operators composed of SM fermions, but when we restrict ourselves to
the purely bosonic sector, such a vertex offers no contributions to any of the diagrams.

3. V 10: similar to the case of V 9, the exclusion of this vertex from the main discussion is
explained by the absence of SM fermions as external states of the operators considered
in this work.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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