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1 Introduction

The origin and interpretation as well as the observed value of the cosmological constant
presents a puzzle of particle physics and cosmology [1]. In particular the seemingly huge
contribution of zero-point energies is often considered to be a severe fine-tuning problem. It
is therefore suggestive that the cosmological constant is just an integration constant, rather
than a fundamental parameter, in a version of Einstein’s theory where the volume element
√
g is fixed. This has been noticed from time to time [2–7] and has led to a canonical

theory of quantum gravity [8–10].
Unimodular gravity (UG) can be defined by imposing √g = ω as a constraint, where ω

is a nondynamic background volume element. One often chooses √g = 1, hence the name
unimodular gravity. The background volume element breaks the invariance of general rel-
ativity (GR) under general diffeomorphisms to the invariance under volume preserving
diffeomorphisms. Nevertheless, the classical theory is equivalent to Einstein gravity except
for the cosmological constant which now appears as an integration constant. This feature
also arises in a generally covariant theory with a 3-form gauge field, which was obtained
by Henneaux and Teitelboim in an analysis of unimodular gravity as a constrained Hamil-
tonian system [8]. Note that 3-form gauge fields can also contribute to the cosmological
constant by vacuum expectation values of their 4-form field strengths [11–13]. Introducing
further gauge fields also Newton’s constant can become an integration constant [14, 15].

In a theory with invariance only under volume preserving diffeomorphisms the confor-
mal factor of the metric, σ = 1

2 ln (√g), is an ordinary scalar field that can have arbitrary
kinetic term and potential. However, its couplings may be restricted by additional sym-
metries such as scale invariance. In this way it plays a prominent role in Higgs-dilaton
theories; see, for example, [16–19].
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During the past years quantum effects in UG have been studied in detail, and there
has been a still ongoing debate whether or not UG and GR are equivalent as quantum
theories. The investigations include semiclassical calculations [20], the quantum effective
action [21], the renormalization group flow [22–24], the quantum equivalence of UG and
GR [25], quantum corrections to the cosmological constant [26, 27], the path integral in the
Hamiltonian formalism [28–30] and the computation of one-loop divergencies [31]. Recently,
significant progress has been made in the BRST quantization of UG as well as GR in the
unimodular gauge [32–35]. It is perhaps not surprizing that at present there is no consensus
on how to precisely define unimodular quantum gravity, and it is far from clear what the
differences to ordinary quantum gravity are.

In the following we shall attempt to compare the quantum theories of GR and the
two versions of UG. The comparison will be based on the path integral for transition
amplitudes. The main difference is that in UG the cosmological constant enters as a
boundary term, i.e., as a property of states, whereas in GR it is a parameter of the action.
GR and the Henneaux-Teitelboim version of UG are generally covariant. Hence, there is
no notion of time on which wave functions could depend. On the other hand, in UG with
a nondynamical background volume element canonical quantization is possible and wave
functions do depend on time.

The paper is organized as follows. After a general discussion of the path integral and
the Henneaux-Teitelboim action in section 2 we analyze the path integral for unimodular
gravity in sections 3 and 4, with emphasis on the boundary terms. Wave functions are
briefly considered in section 5. We conlude in section 6. BRST quantization of general
relativity in unimodular gauge is discussed in the appendix.

2 The path integral in quantum gravity

A natural starting point for quantizing gravity is the path integal (see, for example, [36, 37]).
To obtain an expression for the amplitude one has to identify dynamical variables and study
their “time evolution”. As a first step one introduces a “time function” t(x) that provides
a foliation of a hyperbolic spacetime manifold M into spacelike 3-surfaces Σt. One can
then define transition amplitudes between states corresponding to different configurations
of the gravitational field on 3-surfaces of different “parametric time” t. For simplicity, we
shall restrict our discussion to compact 3-surfaces.

Einstein’s equations for the gravitational field are obtained from the action1

S[g] =
∫
M
Rε+ 2

∫
∂M

Kε̃ , (2.1)

where gαβ is the metric tensor, R is the Ricci scalar and K is the trace of the extrinsic
curvature. For a region bounded by two hypersurfaces Σ1 and Σ2 the transition amplitude
is formally given by

〈g2; Σ2|g1; Σ1〉 =
∫

[Dg] exp (iS[g]) . (2.2)

1The volume form is given by ε = 1
4!
√
gεαβγδdx

αdxβdxγdxδ, where g = −detgαβ , and εαβγδ is the Levi-
Civita tensor density with ε0123 = 1. ε̃ is the induced volume form on ∂M. We work in units 16πGN = 1.

– 2 –



J
H
E
P
0
8
(
2
0
2
2
)
1
6
7

Here one integrates over all metric fields g that smoothly interpolate between the boundary
fields g1 and g2. If an intermediate 3-surface Σ3 is introduced, one has S[g(23)] +S[g(31)] =
S[g(21)] where g(ij) interpolates between gi and gj on Σi and Σj , respectively. The quantum-
mechanical superposition principle implies

〈g2; Σ2|g1; Σ1〉 =
∫

[Dg3]〈g2; Σ2|g3; Σ3〉〈g3; Σ3|g1; Σ1〉 . (2.3)

The amplitude (2.2) is only a formal expression and its precise physical meaning is not clear
since the “times” t1 and t2 are merely coordinate parameters. Despite much effort it has
not been possible to decompose the metric field into “true dynamical degrees of freedom”
and some “intrinsic time”; for a discussion and references, see [38, 39].

In the following we study the possibility to label the boundary surfaces by values of a
3-form density Aαβγ , which is covariantly constant on a 3-surface. Such a 3-form density
can be sourced by the gravitational field, which is achieved by equating its field strength
to the canonical volume density on M. The corresponding action is obtained from the
Einstein-Hilbert action (2.1) by adding a Lagrange multiplier term,

S[g,A,Λ] =
∫
M

(Rε+ Λ(dA− ε)) + 2
∫
∂M

Kε̃ , (2.4)

where Λ is an auxiliary scalar field. Note that the action is invariant under the gauge
transformation A→ A+dη where η is a 2-form field. The equations of motion are obtained
by varying the action with respect to gαβ , Aαβγ and Λ, which yields

Gαβ = Rαβ −
1
2gαβR = −1

2Λgαβ , (2.5)

∂αΛ = 0 , (2.6)

4∂[αAβγδ] = √gεαβγδ . (2.7)

Eqs. (2.5) are Einstein’s equations with a cosmological term, eq. (2.6) implies that the
scalar field Λ becomes an unspecified cosmological constant λ, and eq. (2.7) identifies the
field strength of A with the canonical volume form. The action (2.4) has been obtained by
Henneaux and Teitelboim from a constrained Hamiltonian analysis of a theory where the
determinant of the metric is treated as an external field [8]. Instead of the 3-form density
A they used the dual vector density, Aαβγ = εδαβγT δ.

On a 3-surface Σt the 3-form density A is given by a constant A(t). To study the time
evolution one has to specify gαβ(t, x) and A(t) on some initial 3-surface Σ1, together with
a constant cosmological term, Λ(t, x) = λ. Einstein’s equations then determine the metric
at some later time t2, and the integrated 3-form density at t2 is given by

A2 = A1 + VM[g] , (2.8)

with
At = A(t)

∫
Σt
d3x
√
h , VM[g] =

∫ t2

t1
dt

∫
Σt
d3x
√
g , (2.9)
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where h is the induced volume density on Σt. By construction, At increases monotonically
with the coordinate time t. This has motivated the interpretation of At as a “cosmic
time” [8–10]; see, however, [40].

Similar to eq. (2.2) we can now consider transition amplitudes where initial and final
states depend on the fields g and A. On the boundary surfaces Σ1,2 the 3-form field A is
covariantly constant and can therefore be specified in terms of the integrals A1,2. Hence,
the transition amplitude takes the form

〈g2,A2; Σ2|g1,A1; Σ1〉

=
∫

[Dg][DA][DΛ] exp (iS[g,A,Λ])

=
∫

[Dg][DΛ]δ(∂αΛ) exp
(
i

(
S[g]−

∫
M

Λε+
∫

Σ2
d3xΛA−

∫
Σ1
d3xΛA

))
, (2.10)

where δ(∂αΛ) ≡
∏
x,α δ(∂αΛ). Because of the δ-function the integration over Λ is restricted

to constant values. Assuming that this constant is fixed by boundary conditions we replace
δ(∂αΛ) by δ(Λ− λ0), which leads to the transition amplitude

〈g2,A2; Σ2|g1,A1; Σ1〉 = exp
(
iλ0(A2 −A1)

) ∫
[Dg] exp (i(S[g]− λ0VM[g]) . (2.11)

Compared to standard GR the amplitude contains a phase factor that is determined by the
boundary conditions, and in the path integral the Einstein-Hilbert action appears with an
undetermined cosmological constant λ0, which is the characteristic feature of unimodular
gravity. Contrary to the classical relation (2.8) the integral includes volumes that are
not related to the boundary terms A1 and A2. To obtain a better understanding of the
boundary conditions we now turn to the Hamiltonian formalism.

3 The path integral in the ADM formalism

In the Arnowitt-Deser-Misner (ADM) [41] formalism one starts from a foliation of the man-
ifoldM with spacelike 3-surfaces Σt. An embedding2 of these 3-surfaces with coordinates
ya, a = 1, .., 3, into the ambient space M is given by functions xα(t, ya), and the matrix
Eαa = ∂xα/∂ya ≡ ∂ax

α provides the push-forward for tangent vectors of Σt to tangent
vectors ofM. The metric induced on Σt reads

hab = gαβE
α
aE

β
b , (3.1)

and the vectorfield Eαt ≡ tα represents the “time flow” that can be decomposed into
components normal and tangential to Σt,

tα = ∂tx
α = Nnα + EαaN

a . (3.2)

2We essentially follow the conventions of the Lecture Notes on General Relativity by M. Blau
(http://www.blau.itp.unibe.ch/GRLecturenotes.html, 2021).
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Here nα is a unit normal vector, nαnα = −1, and N and Na are the lapse function and
the shift vector of the ADM formalism, respectively. The induced metric hαβ = EαaE

β
b h

ab,
lapse function and shift vector determine the metric gαβ of the ambient space as

gαβ = hαβ − nαnβ = EαaE
β
b h

ab − 1
N2 (tα − EαaNa)(tβ − Eβb N

b) . (3.3)

The extrinsic curvature

Kab = EαaE
β
bKαβ , Kαβ = hγαh

δ
β∇γnδ , (3.4)

describes the curvature of Σt in the ambient spaceM, with K = Kα
α = Ka

a = ∇αnα.
The Hamiltonian formalism for GR with a 3-from field Aαβγ , or equivalently the vector

density T α, has previously studied in [21, 28, 40]. In the following discussion the emphasis
lies on the effect of the boundary conditions. In terms of the induced metric hab, the lapse
function N , the extrinsic curvature K, the field T α = (T t, T a) and Λ the Lagrangian
density Lg corresponding to the action (2.4) reads,

Lg =
√
hN(R̃+KabK

ab −K2) + Λ(∂tT t + ∂aT a −
√
hN) . (3.5)

Here R̃ is the Ricci scalar on Σt, which is determined by hab (see, for example, [38]). The
extrinsic curvature depends on the time derivative of the metric ḣab = ∂thab,

Kab = 1
2N (ḣab −D(aNb)) . (3.6)

For the variables hab and T t one obtains the canonical momenta

πab =
√
h(Kab − habK) , πt = Λ . (3.7)

The canonical momenta πa, πΛ, πN and πNa for the variables T a, Λ, N andNa, respectively,
all vanish. This leads to the Hamiltonian density

Hg = πabḣab + πtṪ t − Lg
= N(H+

√
hΛ) +NaHa − Λ∂aT a , (3.8)

where
H =

√
h

(
−R̃+ 1

h

(
πabπab −

1
2π

2
))

, Ha = −2
√
hDb

( 1√
h
πab

)
. (3.9)

The fields N , Na, T a and Λ are Lagrange multipliers. Variation of the Hamiltonian
Hg =

∫
d3xHg with respect to these fields yields the phase space constraints

H+
√
hΛ = 0 , Ha = 0 , ∂aΛ = 0 , ∂aT a −

√
hN = 0 , (3.10)

in agreement with the analysis in [21].
Using eqs. (3.7), (3.8) and (3.10) we can now write down the path integral. The third

of the constraints (3.10) implies that Λ is spatially constant. On the boundary 3-surfaces
Σ1,2 we can therefore specify constants λ1,2. On each 3-surface Σt the field T t can be split
into a zero mode A(t) and a field whose integral over Σt vanishes, T t = A(t)+∂aωa. We can

– 5 –



J
H
E
P
0
8
(
2
0
2
2
)
1
6
7

therefore fix the gauge symmetry of the Lagrangian (3.5), T t → T t−∂aρa, T a → T a+∂tρa,
by the condition ∂aT t = 0. On the boundary surfaces Σ1,2 the 3-metric hab, the constants
At =

∫
d3xT t =

∫
Σt A, and λ can be independently chosen, and the transition amplitude

is given by the functional integral

〈h2,A2, λ2; Σ2|h1,A1, λ1; Σ1〉

=
∫

[Dhab][Dπab][DT t][Dπt][DΛ][DN ][DNa][DT a]δ(πt − Λ)δ(∂aΛ)δ(∂aT t)

× exp
(
i

∫
M
d4x(πabḣab + πtṪ t −N(H+

√
hΛ)−NaHa + Λ∂aT a)

)
. (3.11)

For spatially constant Λ the exponent no longer depends on T a, and integration over the
fields T a yields a constant factor. Performing the integration over πt and replacing δ(∂aΛ)
by [Dλ(t)]δ(Λ− λ(t)), the amplitude becomes

〈h2,A2, λ2; Σ2|h1,A1, λ1; Σ1〉

=
∫

[Dhab][Dπab][DAt][Dλ(t)][DN ][DNa]

× exp
(
i

∫ t2

t1
dtλ(t)Ȧt + i

∫
M
d4x(πabḣab −N(H+

√
hλ(t))−NaHa)

)
. (3.12)

After a partial integration yielding the boundary term [λ(t)At]
∣∣2
1, the integral over At can

be performed which leads to a factor δ(λ̇(t)) in the functional integral. Since λ(t) has to
satisfy the boundary conditions λ(t1,2) = λ1,2 we replace δ(λ̇(t)) by δ(λ(t)−λ1)δ(λ(t)−λ2).
Integrating over the canonical momenta πab we finally obtain,

〈h2,A2,λ2; Σ2|h1,A1, λ1; Σ1〉

= δ(λ2 − λ1) exp (iλ1(A2 −A1))N2N1

∫
[Dg] exp (iS[g]− λ1VM[g]) , (3.13)

where N1,2 are normalization factors related to the boundaries. The amplitude essentially
agrees with eq. (2.11), with the important difference that instead of an unspecified con-
stant λ0 now the boundary values λ1 and λ2 appear. The result is consistent with the one
obtained in [28]. Note that the integral over the metric is not affected by the boundary
conditions A1,2. In particular the integration includes metric fields g interpolating between
h1 and h2 with volumes of arbitrary size.3 The phase factor suggests that A and λ are
conjugate variables with A and λ playing the role of “time” and “energy”, respectively [8].
However, A can take arbitrary positive and negative values and it does not increase mono-
tonically with the parameter time t. Therefore, generically, A cannot be interpreted as a
time parameter.

3The result differs from the path integral obtained in [21] where the integration is restricted to volumes
of some fixed size that is introduced via a gauge fixing condition.
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The amplitude clearly satisfies the superposition principle. Splitting the manifold
M(21) bounded by Σ2 and Σ1 into two regionsM(23) andM(31) separated by Σ3, one has∫

[Dh3]dA3dλ3〈h2,A2, λ2; Σ2|h3,A3, λ3; Σ3〉〈h3,A3, λ3; Σ3|h1,A1, λ1; Σ1〉

= δ(λ2 − λ1) exp (iλ1(A2 −A1))N2(N3)2N1

∫
[Dg(23)][Dh3][Dg(31)]

× exp (i(S[g(23)] + S[g(31)]− λ1(VM[g(23)] + VM[g(31)]))

= 〈h2,A2, λ2; Σ2|h1,A1, λ1; Σ1〉 , (3.14)

where the metric g(ij) interpolates between hi and hj on Σi and Σj , respectively, and the
boundary normalization factors have been fixed to (Ni)−2 =

∫
dAi.

In the semiclassical approximation the exponent in (3.13) is evaluated at a stationary
point satisfying Einstein’s equations,

Rαβ −
1
2gαβR = −1

2λ1gαβ . (3.15)

As a simple example consider the case of positve cosmological constant, λ1 > 0, for which a
solution of Einstein’s equations is given by the FLRW metric gFLRW with an exponentially
growing scale factor. For a foliation with 3-spheres one has

ds2 = −N(t)dt2 + hab(t, ya)dyadyb , hab(t, ya) = a(t)2h̃ab , (3.16)

where a(t) is the scale factor and h̃ab is the well known metric on the unit 3-sphere. Volume
and Ricci scalar of the 3-sphere are given by VΣt = 2π2a(t)3 and R̃ = 6/a(t)2, respectively.
The four-dimensional Ricci scalar is R = 2λ1. In eq. (3.16) a comoving time coordinate has
been chosen, hence the shift vector Na is zero. The presence of the lapse function allows
for reparametrizations of time.

From eqs. (3.6) and (3.7) one obtains for the extrinsic curvature and the canonical
momenta

Kab = ȧa

N
h̃ab , πab = −2 ȧ

N
h̃ab , (3.17)

and using eqs. (3.9) and (3.10) with a cosmological constant λ1 one finds for the Hamiltonian
constraint

H+
√
hλ1 = −6

√
h̃a3

((
ȧ

Na

)2
+ 1
a2 −

λ1
6

)
= 0 , (3.18)

which corresponds to Friedmann’s equation. Einstein’s equations also yield Raychaudhuri’s
equation for the second time-derivative of the scale factor, and the two equations together
have the well-known solution a(τ) =

√
6/λ1 cosh (

√
λ1/6τ), where dτ = N(t)dt determines

the proper comoving time τ . Considering for simplicity times τ �
√

6/λ1, one obtains for
the total volume (a2 ≡ a(τ2)� a(τ1) ≡ a1)

VM =
∫ t2

t1
dt

∫
Σt
d3x
√
g = 2π2

∫ t2

t1
dtN(t)a(t)3 ' 2π2

√
2

3λ1
a3

2 . (3.19)
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With hab(t) determined by a(t), the amplitude (3.13) can be written as

〈a2,A2, λ2; Σ2|a1,A1, λ1; Σ1〉 ∝ δ(λ2 − λ1) exp
(
iλ1(A2 −A1 + VM)

)
. (3.20)

Note that the action for the FLRW metric is given by S[gFLRW] = λ1VM.

4 Unimodular gravity

It is instructive to compare covariant UG with a 3-form density and UG with the constraint
√
g = ω, where ω is some nondynamic background spacetime volume element. In this case

one starts from the Hamiltonian density

Hg = N(H+
√
hΛ) +NaHa − Λω , (4.1)

where H and Ha are again given by eq. (3.9) and Λ is a Lagrange multiplier field. Variation
with respect to Na and Λ yields the constraints

Ha = 0 , N
√
h− ω = 0 . (4.2)

Because N is now fixed to ω/
√
h there is no Hamiltonian constraint. However, a tertiary

constraint follows from the requirement that the time evolution preserves the momentum
constraint. Using the Poisson bracket algebra

{(h−1/2H)(x),Ha(x′)} = ∂a(h−1/2H)(x))δ(x, x′) ,
{Ha(x),Hb(x′)} = Ha(x′)∂bδ(x, x′) +Hb(x′)∂aδ(x, x′) ,

(4.3)

one obtains the constraint

0 =
{
Hg,

∫
d3xξaHa

}
=
{∫

d3x′(ωh−1/2H+N bHb),
∫
d3xξaHa

}
=
∫
d3xξa(ω∂a(h−1/2H− (∂aN b + ∂cN

cδba)Hb −N b∂bHa) .

For arbitary vector fields Na and ξa this implies [8–10]

∂a

( 1√
h
H
)

= 0 . (4.4)

The constraint can be solved by
H+

√
hλ = 0 , (4.5)

where λ is constant, which has to be satisfied on each 3-surface. Therefore we again have
to specify constants λ1,2 on the boundary surfaces Σ1,2.

It is now straightforward to write down the path integral for the transition amplitude
analogous to eq. (3.12),

〈h2, λ2; Σ2|h1, λ1; Σ1〉 =
∫

[Dhab][Dπab][DNa][Dλ(t)]δ(H+
√
hλ(t))

× exp
(
i

∫
M
d4x(πabḣab − h−1/2ωH−NaHa)

)
, (4.6)

– 8 –
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Note that the constraint (4.5) has been implemented for each hypersurface Σt and that the
integration is performed over λ(t), with the boundary conditions λ(t1,2) = λ1,2. Exponen-
tiating the constraint (4.5) by introducing again a Lagrange multiplier N , and shifting N
to N − ω/

√
h one arrives at

〈h2, λ2;Σ2|h1, λ1; Σ1〉

=
∫

[Dhab][Dπab][DN ][DNa][Dλ(t)]

× exp
(
i

∫
M
d4x(πabḣab −N(H+

√
hλ(t))−NaHa + λ(t)ω)

)
. (4.7)

We can now integrate over the canonical momenta πab which yields the amplitude in
Lagrangian form,

〈h2, λ2;Σ2|h1, λ1; Σ1〉

=
∫

[Dg][Dλ(t)] exp
(
iS[g]− i

∫
M
d4xλ(t)(√g − ω)

)
. (4.8)

Contrary to eq. (3.13) the amplitude does not contain a factor δ(λ1 − λ2). Instead a La-
grange multiplier appears for the volume of each 3-surface Σt. Correspondingly, integration
over λ(t) yields a product of δ-functions in the functional integral,

〈h2, λ2; Σ2|h1, λ1; Σ1〉 =
∫

[Dg]
∏
t

δ(N(t)VΣt − Ω(t)) exp (iS[g]) , (4.9)

with
VΣt =

∫
Σt
d3x
√
h , Ω(t) =

∫
Σt
d3xω ≡ Ω(t) . (4.10)

The spatially integrated background volume element Ω(t) depends on the chosen coordinate
system.

The transition amplitude satisfies a Schrödinger equation with respect to the upper
end t2 of the time integration. Using the momentum constraint in eq. (4.2) and the con-
straint (4.5) one obtains for the Hamiltonian appearing in the exponent of (4.7) at the
boundary Σ2,

Hg

∣∣
Σ2

=
∫

Σ2

(
N(H+

√
hλ(t)) +NaHa − λ(t)ω

)
= −λ2Ω(t2) . (4.11)

This yields the Schrödinger equation

i
∂

∂t2
〈h2, λ2; Σ2|h1, λ1; Σ1〉 = 〈h2, λ2; Σ2|Hg

∣∣
Σ2
|h1, λ1; Σ1〉

= −λ2Ω(t2)〈h2, λ2; Σ2|h1, λ1; Σ1〉 . (4.12)

Unruh and Wald obtained this equation for a wave function ψ(t;h, λ), with t playing the
role of a “Heraclitian time parameter” [10]. Note that Ω(t) can be absorbed into a redefined
time variable.
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In the semiclassical approximation the amplitude (4.8) is dominated by the contribu-
tion of stationary points that satisfy the field equations

Rαβ −
1
2Rgαβ = −1

2λ(t)gαβ , ∂αλ(t) = 0 , (4.13)

where the second equation follows from the Bianchi identity. Variation with respect to λ(t)
yields

N(t)VΣt = Ω(t) . (4.14)

Since for stationary points λ(t) is constant, the amplitude is again proportional to δ(λ2 −
λ1). With R = 2λ1, one finds

〈h2, λ2; Σ2|h1, λ1; Σ1〉 ∝ δ(λ2 − λ1) exp
(

2iλ1

∫ t2

t1
dtΩ(t)

)
. (4.15)

Consider now the example of the FLRW metric (3.16). From eqs. (4.10) and (4.14)
one obtains the constraint

2π2N(t)a(t)3 = Ω(t) . (4.16)

Knowing a(t) from the solution of Friedmann’s and Raychaudhuri’s equations, this fixes
the lapse function, and therefore the time coordinate, to N(t) = Ω(t)/(2π2a(t)3). For an
exponential expansion the growth of a(t)3 is compensated by the decrease of N(t) such
that the amplitude is still given by eq. (4.15).

Finally, we compare the result of unimodular gravity with standard general relativity.
Here the transition amplitude reads

〈h2; Σ2|h1; Σ1〉 =
∫

[Dhab][Dπab][DN ][DNa]

× exp
(
i

(∫
M
d4x(πabḣab −N(H+

√
hλ)−NaHa

))
, (4.17)

where λ is now a parameter of the Lagrangian. The characteristic feature of the amplitude
is the Hamiltonian and the momentum constraints that follow from the integration over N
and Na, respectively,

H+
√
hλ = 0 , Ha = 0 . (4.18)

Hence, the amplitude satisfies the differential equation

i
∂

∂t2
〈h2; Σ2|h1; Σ1〉 = 〈h2; Σ2|Hg

∣∣
Σ2
|h1; Σ1〉

=
(∫

Σ2
d3x(NH+NaHa)

)
〈h2; Σ2|h1; Σ1〉 = 0 . (4.19)

This is the well-known feature of the Wheeler-DeWitt equation that in general relativity
wave functions have no time dependence.

In the semiclassical approximation one has to solve Einstein’s equation for a given
cosmological constant λ. The solution gcl yields R = 2λ and an exponentially growing scale
factor with spacetime volume VM ='

√
22π2a3

2/
√

3λ. The corresponding amplitude reads

〈h2; Σ2|h1; Σ1〉 ∝ exp
(
iS[gcl]

)
= exp

(
iλVM

)
. (4.20)
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Unimodular gravity in the Henneaux-Teitelboim form shares features of standard gen-
eral relativity as well as unimodular gravity with a fixed background volume element. As
discussed above, the cosmological term is not a parameter of Lagrangian but appears as
a boundary term, i.e., as a property of states. On the other hand, wavefunctions do not
depend on time. For the amplitude (3.12) the constraints

H+
√
hλ(t) = 0 , Ha = 0 (4.21)

hold on each 3-surface Σt. Hence, as in general relativity, the Hamiltonian on the boundary
surface Σ2 vanishes, Hg

∣∣
Σ2

= 0. This implies for the amplitude

i
∂

∂t2
〈h2,A2,λ2; Σ2|h1,A2, λ1; Σ1〉

= 〈h2,A2, λ2; Σ2|Hg

∣∣
Σ2
|h1,A2, λ1; Σ1〉 = 0 .

(4.22)

This result is analogous to eq. (4.19), with the only difference that in addition to the metric
also the integrated 3-form field A and a cosmological constant λ appear as variables of the
boundary states.

5 Time (in)dependent wave functions

In quantum gravity there is no intrinsic time and therefore no canonical formalism and no
Hilbert space of physical states as in quantum field theory in flat spacetime. One considers
wave functions of the form

ψ[h; Σ] =
∫
C
[Dg] exp

(
iS[g]

)
, (5.1)

where C denotes a class of spacetimes with only one compact spacelike 3-surface Σ as
boundary on which h is the induced metric [37, 39]. The scalar product

(ψ′, ψ) =
∫

[Dh]ψ̄′[h; Σ]ψ[h; Σ] =
∫

(C′,C)
[Dg] exp

(
iS[g]

)
(5.2)

has the geometric interpretation as a sum over all histories which lie in class C to the
past of the surface and in the time reversed class C′ to its future [37]. This product
cannot be interpreted as a scalar product of physical states in a Hilbert space. Only
in the semiclassical approximation the WKB form (4.20) of the transition amplitude is
reproduced. But this is just classical physics and it is far from clear how to extend the
semiclassical approximation to the quantum regime. For the quantum mechanical system
of a homogeneous scalar field in FLRW spacetime the scalar field can be used as a time
variable [42].

Since the interpretation of solutions of the Wheeler-DeWitt equation is very challenging
(see, for example, [1, 10, 39, 43]), UG appeared as an interesting possibility to achieve
a canonical quantization of gravity [9, 10]. Starting from orthogonal eigenstates of the
variables h and λ one can define time-dependent wave functions

ψ[h, λ; Σt] =
∫

[Dh1]dλ1〈h, λ; Σt|h1, λ1; Σ1〉φ(h1, λ1) (5.3)
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by integrating the transition amplitude over initial-state parameters weighted with some
distribution function φ. Like the amplitude (4.8) also the wave functions satisfy a
Schrödinger equation,

i
∂

∂t
ψ[h, λ; Σt] = −λΩ(t)ψ[h, λ; Σt] . (5.4)

For these wave functions one can define a scalar product by integrating over the variables
h and λ,

(ψ′, ψ) =
∫

[Dh]dλφ̄′(h, λ)φ(h, λ) . (5.5)

Hence, normalizable states can be defined such that a probability interpretation of |ψ(t)|2 ≡
(ψ[h, λ; Σt], ψ[h, λ; Σt]) is possible, which is difficult to achieve for solutions of the Wheeler-
DeWitt equation. The transition amplitude of the theory is given by eq. (4.8). As discussed
in the previous section it has the characteristic feature that the cosmological constant enters
as a property of states. On the other hand, the dependence of the time evolution of states
on an arbitrary background volume element appears as a weakness of this modification
of GR [2].

The Henneaux-Teitelboim version of UG is generally covariant. Hence, as discussed
above, wave functions are time independent, as in GR. However, as in UG, the 3-form field
A, sourced by the metric g, leads to the appearance of a cosmological constant as boundary
term. From eqs. (3.13) and (5.1) we infer that the wave function has the form

ψ[h,A, λ; Σ] =
∫
C
[Dµ(Σ′)][Dh′]dA′dλ′[Dg]〈h,A, λ; Σ|h′,A′, λ′; Σ′〉φ(h′,A′, λ′; Σ′)

=
∫
C
[Dµ(Σ′)][Dh′]dA′dλ′[Dg]δ(λ− λ′) exp

(
iS[g]

)
× exp

(
iλ′(A−A′ − VM[g])

)
φ(h′,A′, λ′; Σ′) , (5.6)

where C again denotes a class of spacetimes with final 3-surface Σ and initial 3-surfaces Σ′

over which one integrates with some measure, VM[g] is the volume bounded by Σ and Σ′,
and φ defines the initial states. The wave function satisfies a Schrödinger-type differential
equation,

i
∂

∂A
ψ[h,A, λ; Σ] = −λψ[h,A, λ; Σ] , (5.7)

which is a consequence of the particular form of the action (2.4).4 Note, however, that A
is just the value of the 3-form field A on the 3-surface Σ, with positive or negative values,
which generically cannot be interpreted as a time variable. Only in a stationary-phase
approximation the situation changes. Then S[g] − λVM[g] is evaluated for solutions gcl
of Einstein’s equations with cosmological constant λ. Moreover, stationarity of the phase

4We could have started from an action where the Lagrange multiplier term ΛdA in eq. (2.4) is replaced
by −AdΛ [20], without changing the classical equations of motion. In this case the phase factor in eqs. (2.11)
and (3.13) disappears, the 3-form field can be completely integrated out, the amplitudes in UR and GR are
identical, and the cosmological term is simply a constant determined by initial conditions. This has been
pointed out in [25]. However, in this version of the theory the relation (2.8) of the classical theory cannot
be obtained in a semiclassical approximation of the quantum theory.
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with respect to λ′ yields the relation (2.8) between the boundary terms A, A′ and the
volume VM[gcl],

A′ = A− VM[gcl] . (5.8)

Hence, in this approximation A increases monotonically with the parameter time labeling
the 3-surfaces of the foliation and can therefore be used as a time variable. A solution of
Einstein’s equation determines h′ as function of h and λ, and A′ as function of A, h and
λ. Therefore, in the stationary-phase approximation the wave function becomes

ψ[h,A, λ; Σ] ∼
∫
C
[Dµ(Σ′)] exp

(
iS[gcl]

)
φ(h′[h, λ],A− VM[h, λ], λ; Σ′) . (5.9)

This means that the wave function at ”time” A is obtained by integrating over initial values
at “times” A′ < A.

6 Summary and conclusions

In the previous sections we have compared the path integral for transition amplitudes in
general relativity with the corresponding amplitudes in the two versions of unimodular
gravity, the one with a nondynamical background volume element and the covariant form
with a 3-form gauge field. The amplitude (3.13) for covariant UG agrees with the one of GR
except for a phase factor that depends on the boundary states and the interpretation of the
cosmological constant which is a property of the boundary states rather than a parameter
of the action. On the contrary, the amplitude (4.8) for UG with a background volume form
explicitly depends on the volume form ω. Hence, the two versions of UG generically lead
to different predictions for observables.

As covariant theories wave functions in GR and in covariant UG have no time depen-
dence and satisfy a Wheeler-DeWitt equation, which makes their interpretation challeng-
ing, except for cases where a semiclassical approximation applies. On the other hand, UG
with a background volume form has a time variable that is canonically conjugate to the
cosmological constant. Wave functions do depend on time and satisfy a Schrödinger equa-
tion. It is interesting that in covariant UG the 3-form gauge field integrated over spacelike
hypersurfaces emerges as a “cosmic time” in the semiclassical approximation.

The change of the cosmological constant from a parameter of the action to a property of
states does not solve the cosmological constant problem, but it does change it in a suggestive
way [1], from a question of fine-tuning to a question of initial conditions. In general,
a cosmological initial state is now a superposition of states with different cosmological
constants. It has been suggested that a vanishing or very small cosmological constant
today can be explained in such a framework, based on Euclidean quantum gravity [44–
46] or, alternatively, on unimodular gravity [21, 47]. It is interesting that the additional
fields needed in unimodular gravity occur in higher-dimensional supergravity theories and
in string theory [12, 43, 48].
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A BRST quantization

In this appendix we briefly review gauge fixing for the gravitational field, which we have
ignored in the previous sections. In covariant theories, such as general relativity or the
Hennaux-Teitelboim version of unimodular gravity, this is well known. One may choose,
for instance, the harmonic gauge condition, or de Donder gauge,

Cµ(g) = − 1
√
g
gµν∂λ(√ggνλ) = 0 , (A.1)

together with eight real Faddeev-Popov vector ghosts uµ and ūµ for which the BRST invari-
ance and the unitarity of the physical S-matrix have been explicitly demonstrated [49, 50].

In unimodular gravity with a fixed background spacetime volume element (we choose
√
g = 1) one can choose

C(g) = √g − 1 = 0 (A.2)

as one of four gauge fixing conditions. A complete gauge fixing is achieved by demanding
in addition that the vector field Cµ is the gradient of an auxiliary scalar field [6],

Cµ(g) + ∂µB = 0. (A.3)

From eqs. (A.2) and (A.3) one obtains the gauge fixing Lagrangian5

LGF = 1
2αΛµΛµ − Λµ (Cµ + β∂µB) + 1

2γΛ2 − ΛC , (A.4)

where Λµ and Λ are additional auxiliary fields. The BRST invariant extension of the gauge
fixing Lagrangian requires two scalar ghosts v and v̄ in addition to the eight vector ghosts
uµ and ūµ. The ghost lagrangian reads

LGH = −i(ūµsCµ + βūµ∂µv + v̄sC) , (A.5)

where s is a real, nilpotent antiderivation, and the BRST transformations of all fields are
given by

sgµν = uλ∂λgµν + ∂µu
λgλν + ∂νu

λgµλ ,

suµ = uλ∂λu
µ ,

sB = v , sv = 0 ,
sūµ = iΛµ , sΛµ = 0 ,
sv̄ = iΛ , sΛ = 0 .

(A.6)

Recently, the fields B, v, v̄ and Λ have been identified as a BRST quartet [32] and the
decoupling of BRST quartets in momentum space has been discussed in detail in [33].

Eliminating in eq. (A.4) the Lagrange multiplier fields by their equations of motion
one obtains the gauge fixing Lagrangian

LGF = −α2 (Cµ + β∂µB) (Cµ + β∂µB)− γ

2C
2 . (A.7)

5Compared to [6] we have rescaled β → αβ; moreover, since δ 6= 0 only leads to an uninteresting variation
of the harmonic gauge, we have set δ = 0 for simplicity.
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In the linear approximation around flat space, gµν = ηµν + hµν , the Green’s functions can
be written in a compact form [6]. With ω = (uµ, v) one finds for the ghost propagator
matrix

〈ω(x)ω̄(y)〉 = −
(
ηµν − ∂µ∂ν

� ∂µ
1
β∂µ − 1

β�

)
1
�
δ4(x− y) . (A.8)

Correspondingly, defining for the gravitational field and the auxiliary scalar field ĥ =
(hµν , B), one obtains the propagator matrix

〈ĥ(x)ĥ(y)〉 =

 D
(α)
µνλτ − 1

2β (ηµν − 4
γ (� + γ)∂µ∂ν� )

− 1
2β (ηλτ − 4

γ (� + γ)∂λ∂τ� ) − 1
β2γ (� + γ(3

2 −
1
α))


× i

�
δ4(x− y) ,

with D
(α)
µνλτ = P

(α)
µνλτ + 1

�
(ηµν∂λ∂τ + ηλτ∂µ∂ν)

− 4
γ

(
� + γ

(1
2 + 1

α

)) 1
�2∂µ∂ν∂λ∂τ ,

and P
(α)
µνλτ = 1

2(ηµληντ + ηµτηνλ − ηµνηλτ )

− 1
2

(
1− 2

α

) 1
�

(∂µ∂ληντ + ∂ν∂ληµτ + ∂µ∂τηνλ + ∂ν∂τηµλ) .

(A.9)

Note that ∆(α)
µνλτ (x − y) = P

(α)
µνλτ

i
�δ

4(x − y) is the well-known graviton propagator in
harmonic gauge.

The propagators in eqs. (A.8) and (A.9) involve terms with 1/�2 and 1/�3. The
situation is similar for the propator matrix obtained from the Lagrangian (A.4) for the
fields hµν , B, Λµ and Λ [33]. It is a non-trivial task to count the physical states for such a
system of propagators. In principle one has to rewrite the Lagrangian in terms of simple-
pole fields. An analysis directly in terms of multiple-pole fields leads to the conclusion
that the propagator matrix decribes indeed just two physical graviton states with helicities
±2 [33]. As an alternative, the BRST quantization in unimodular gauge has also been
discussed using ghost systems that include antisymmetric tensor fields [34, 35].
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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