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1 Introduction

Supersymmetric quantum mechanics is a fruitful playground for exploring the consequences
of supersymmetry in a setting which is simpler than quantum field theory. In particular,
since quantum mechanics is a theory with one time dimension and no space dimensions,
almost all complications involving Lorentz structure disappear.1

Despite this apparent simplicity, SUSY-QM exhibits great mathematical depth including
rich connections to geometry and topology. Perhaps the most famous example is the
relationship between the index of a SUSY-QM theory, which encodes information about the
spectrum of bosonic and fermionic ground states, and the Euler characteristic of the target
space on which the quantum-mechanical particle moves [1]. A related well-known example
is the connection between supersymmetric quantum mechanics and Morse theory [2]. For
surveys of supersymmetric quantum mechanics, see [3–8].

In addition to its surprisingly deep mathematical structure, there are at least two senses
in which supersymmetric quantum mechanics is somehow “generic” or “universal”:

1. Such theories encode the worldline dynamics of a supersymmetric particle, like the
Brink-Schwarz superparticle and related models which are pointlike analogues of the
superstring [9, 10]. But in fact, the worldline theory of any spinning particle is (locally)
supersymmetric, even if the target spacetime does not possess any supersymmetries [11–
16]. In some sense, SUSY-QM is relevant for any pointlike particle with spin.

2. Supersymmetric quantum mechanics generically arises as the zero-energy sector of
supersymmetric QFTs. Thus, although SUSY-QM is a simple (0 + 1)-dimensional
theory, it carries information about the vacuum structure of more complicated (d+ 1)-
dimensional theories for d > 0.

Another reason to be interested in SUSY-QM theories is that one such theory describes
the low-energy limit of a collection of D0-branes in type IIA string theory [17, 18]. This
matrix model possesses maximal supersymmetry and descends, via dimensional reduction,
from super Yang-Mills in ten spacetime dimensions [19–21]. An analysis of constraints
arising from maximal supersymmetry in the corresponding SUSY-QM theory has provided
data about terms arising in the effective D0-brane Lagrangian [22–24]. Bound states of
D0-branes (viewed as instantons in D4-branes) required by the IIA/M-theory duality, and
the closely-related bound states of instantons in the maximally supersymmetric 5d gauge
theory, can be analyzed using SUSY-QM on the instanton moduli space as well [25, 26].

These examples illustrate that one can often gain additional insights into phenomena
in (SUSY) quantum field theory by finding their analogues in (SUSY) quantum mechanics.
One particularly interesting topic about which one might hope to learn something using
this strategy is the TT deformation of two-dimensional quantum field theories [27–29]. The
TT operator is constructed from a certain combination of bilinears of the stress tensor Tµν

1In what follows, we will use the phrases “supersymmetric quantum mechanics,” “SUSY-QM,” and
“supersymmetric (0 + 1)-dimensional theory” interchangeably.
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which can be written as

det(Tµν) = 1
2

((
Tµµ

)2
− TµνTµν

)
. (1.1)

Despite the fact that (1.1) involves products of local operators — which are generically
divergent in the coincident-point limit — it was proved in [27] that this combination
unambiguously defines a local operator as the insertion points are brought together (up to
total derivative terms, which can be neglected), and that the resulting operator exhibits
remarkable properties such as factorization. The proofs of these facts only require translation
invariance but not conformal invariance.2 Therefore, this so-called TT operator furnishes a
universal deformation of any translation-invariant 2d quantum field theory.3

At the classical level, this flow is described by the differential equation

∂L(λ)

∂λ
= −2 det

(
T (λ)
µν

)
, (1.2)

where the overall factor of −2 is a choice of conventions. Here the superscript in T (λ)
µν is

meant to emphasize that, at each step along the flow, the stress tensor must be recomputed
from the Lagrangian L(λ) rather than using the stress tensor of the undeformed theory.

The mass dimension of the stress tensor Tµν is equal to d for a theory defined in d

spacetime dimensions. Therefore any product of stress tensors such as those appearing
in (1.1) — and hence the local TT operator defined by their coincident point limit —
has dimension 2d, and is irrelevant. Usually we expect that the addition of an irrelevant
operator to the Lagrangian will turn on infinitely many other operators and lead to a loss of
predictive power. However, contrary to this expectation, the TT deformation is “solvable”
and the deformed theory remains under some analytic control. More precisely, by “solvable”
we mean that certain quantities in a TT -deformed theory can be expressed in terms of the
corresponding quantities in the undeformed (“seed”) theory.

One example of such a controlled quantity is the spectrum of energy levels En(R, λ)
for a TT -deformed theory defined on a cylinder of radius R and which has been deformed
by a total flow parameter λ. This finite-volume spectrum obeys

∂En
∂λ

= En
∂En
∂R

+ 1
R
P 2
n , (1.3)

which is the inviscid Burgers’ equation. Here Pn = Pn(R) is the spatial momentum along
the circular direction, which is quantized and does not flow with λ. If the seed theory enjoys
conformal symmetry, then the flow equation (1.3) can be solved exactly to yield

En(R, λ) = R

2λ


√

1 + 4λE(0)
n

R
+ 4λ2P 2

n

R2 − 1

 . (1.4)

2Here we only discuss the TT deformation for theories on flat spacetimes. A general metric will break
translation invariance and make this analysis more difficult, although one can make some progress in highly
symmetrical cases like AdS2 [30, 31]. For another approach to defining TT on curved 2d spaces using an
auxiliary 3d bulk, see [32].

3See [33–35] for proposed generalizations of the TT operator in higher dimensions. However, above d = 2
there is no known procedure to unambiguously define a local TT -like operator by point-splitting.
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Other quantities in the deformed theory — such as the torus partition function [36–38], the
flat space S-matrix [39, 40], torus one-point functions [41], and (to some degree) correlation
functions [42–52] — can also be related to quantities in the undeformed theory. One
interesting consequence of these results is that the high-energy density of states in a TT -
deformed theory follows Hagedorn rather than Cardy growth, which means that it cannot
be a local quantum field theory and instead shares some properties with string theories.
Connections between TT and little string theory have been discussed in [53, 54].

We will mention one other link between TT and string theory since similar equations
in the supersymmetric setting will appear later in this work. Suppose we deform the seed
theory of a free massless boson φ, beginning from the undeformed Lagrangian

L0 = ∂µφ∂µφ . (1.5)

It was shown in [29] that the solution to the TT flow equation (1.2) with this initial
condition (1.5) is given by

Lλ = 1
2λ
(√

1 + 4λ∂µφ∂µφ− 1
)
, (1.6)

which is the Lagrangian for the Nambu-Goto string in static gauge with a three-dimensional
target space. This provides a separate hint that the TT deformation is related to string
theory, besides the Hagedorn density of states which we mentioned above. We will see
similar square-root-type expressions appearing in the solutions to superspace flow equations
in subsequent sections, for instance in equations (3.34) and (5.36).

The list of references related to TT that we have presented here is necessarily incomplete,
since the collection of work on TT and related deformations now includes hundreds of
papers. We refer the reader to [55] and references therein for a more comprehensive overview
of the subject.

We have argued earlier that it is desirable to learn more about phenomena in field theory,
such as TT , by studying their analogues in (SUSY) quantum mechanics. In particular,
we are interested in a SUSY-QM presentation of the TT operator. Such an endeavor
requires first understanding how the usual 2d TT interacts with supersymmetry, and second
understanding how to dimensionally reduce from (1 + 1)-dimensions to (0 + 1)-dimensions.4

The first of these problems has been studied in some detail. Manifestly supersymmetric
versions of the TT operator has been presented for 2d field theories with (1, 1), (0, 1), (2, 2),
or (0, 2) supersymmetry [58–62]. This formalism was also extended to supersymmetric
versions of the Lorentz-breaking JT deformation in [63], and used to compute correlation
functions for SUSY theories in [46, 49]. A four-dimensional version of the supercurrent-
squared operator was studied in [64] and showed to be related to non-linearly realized
supersymmetry and the Born-Infeld action (for a related study of TT in the N = 2 SUSY-BI
theory, see [65]). This result was later extended to the ModMax theory [66–68] and its
ModMax-BI extension in [69, 70]. A two-dimensional analogue of the non-abelian DBI
action, which is compatible with maximal supersymmetry and defined using TT , was

4Another natural (0 + 1)-dimensional system is a spin chain. For discussions of TT -like deformations in
spin chain models, see [56, 57].
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obtained in [71]. It was also shown that the 2d N = (2, 2) Volkov-Akulov model, related
to spontaneous supersymmetry breaking, is a supercurrent-squared flow in [72]. A similar
result for the 4d Volkov-Akulov model appeared in [64].

The second question, about dimensional reduction, has been addressed in the non-
manifestly supersymmetric context. In [73, 74], it was shown that one can solve for the
spatial component Txx of the two-dimensional stress tensor using the TT trace flow equation,
which holds for deformations of conformally invariant seed theories. Doing this allows
one to dimensionally reduce along the spatial direction and obtain a flow equation for the
Euclidean action SE of the reduced theory, which takes the form

∂SE
∂λ

=
∫
dt

T 2

1
2 − 2λT

. (1.7)

Here T is the single diagonal component of the “stress tensor” (or “stress scalar”) in the
(0 + 1)-dimensional theory. The solution for deformed worldline actions of this form with
canonical kinetic terms, including an arbitrary number of fermionic fields ψi, was also
presented in [73]. This result can be used to understand the deformed versions of a class of
supersymmetric quantum mechanical theories, at least in component form.

However, the additional control provided by supersymmetry is most powerful when the
symmetry is made manifest, for example by a superspace construction that geometrizes the
supersymmetry transformations. Thus it is desirable to have a superfield analogue of this
deformation. The goal of the present paper is to find such an analogue: that is, we wish to
combine the two ingredients described above in order to find a manifestly supersymmetric
version of the dimensionally reduced TT operator for SUSY-QM theories.

In particular, we will obtain versions of the flow equation (1.7) which are presented
directly in superspace. These deformations will be written in terms of superspace Noether
currents, which contain the Hamiltonian and we will typically represent with variables like
Q. For this reason, we will refer to this class of operators as f(Q) deformations.

For N = 2 theories, the corresponding Noether currents Q,Q are complex. Thus we
will also refer to the N = 2 version of the f(Q) operator as the f(Q,Q) deformation. We
will eventually see that it takes the form

∂SE
∂λ

=
∫
dt d2θ

QQ
1
2 − 2λDQ

, (1.8)

where the precise definition of the superfield Q will be given later. For N = 1 theories, we
will present two equivalent forms of the appropriate f(Q) flow,

∂SE
∂λ

=
∫
dt dθ

Q̃θQt
1 + 2λQt

and ∂SE
∂λ

= 1
2

∫
dt dθQθQt , (1.9)

which will likewise be defined later. Due to the second expression in (1.9), the N = 1
version of the f(Q) operator will also be referred to as the QθQt deformation. Although
the two forms of the deformation in (1.9) look very different, we will see that they lead
to the same superspace flow equation for a free scalar. This surprising equivalence holds
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by virtue of a rewriting of the non-supersymmetric deformation (1.7). In particular, for a
certain class of quantum mechanical theories, it turns out that

H2

1
2 − 2λH

= −1
2HT

(Hilb) , (1.10)

where T (Hilb) is the (Euclidean) Hilbert stress tensor computed from the Euclidean La-
grangian H . Therefore it is equivalent to deform by either the rational function of H appear-
ing on the left side of (1.10) (whoseN = 1 superspace version is Q̃θQt

1+2λQt ) or to the simple prod-
uct on the right side of (1.10) (whose N = 1 superspace version is QθQt), as we explain later.

Besides making the supersymmetry of the deformed theory manifest, this procedure
has the additional advantage that the supercharges of the deformed theory continue to act
in the canonical way on superfields, whereas in a component presentation of the deformed
quantum mechanics, the supercharges Qi must be corrected order-by-order in λ.

A final piece of motivation for performing this analysis is the relationship between
certain (0 + 1)-dimensional theories and higher-dimensional gauge and gravity theories. For
instance, the two-dimensional JT gravity theory (which descends via dimensional reduction
from 3d gravity on AdS3 [73, 75, 76]) is related to the Schwarzian theory as suggested
in [77–79]; the Schwarzian itself can be written as the theory of a particle moving on an
SL(2,R) group manifold [80, 81]. JT gravity can also be written in BF variables as a
two-dimensional gauge theory [82, 83], and the interpretation of the TT deformation in this
setting is explored in a companion paper [84]. One would like to understand the action of
TT deformations in all of these related theories, both with and without supersymmetry.
The present work represents one step towards such an understanding, where we study the
manifestly supersymmetric version of the deformation in the simplest member of this family
of related theories, i.e., (0 + 1)-dimensional quantum mechanics.

The layout of this paper is as follows. In section 2, we outline our conventions, review
some salient aspects of previous works in order to make the present manuscript self-contained,
and describe the class of theories we will consider in later sections. Section 3 pursues one
method of obtaining deformed SUSY-QM theories, namely first solving the superspace flow
equation for a simple class of models in 2d and then dimensionally reducing the result to
quantum mechanics. In section 4, we instead dimensionally reduce the supercurrent-squared
operator itself to produce a candidate superspace deformation for theories in (0 + 1)-
dimensions. The main result of our paper is section 5, where we use a Noether procedure
to construct a superspace deformation directly in the superspace of an N = 2 quantum
mechanics theory, and check that this deformation is consistent with the dimensional
reductions of the preceding sections. In section 6, we present an abridged version of this
analysis for theories with N = 1 supersymmetry, including defining two equivalent forms
of the appropriate deformation and comparing the deformed theory of a single scalar to
the dimensional reduction of the corresponding deformed 2d N = (0, 1) theory. Section 7
concludes with a summary of our results and identifies some directions for future research.
We have relegated certain details to appendices, including a change of conventions from
real to complex supercurrents in appendix A and an example of a non-supersymmetric
dimensional reduction of a theory with a potential in appendix B.
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2 Preliminaries

In this initial section, we will lay the groundwork for the analyses in the rest of the paper.

2.1 Conventions

In this subsection, we outline our notation for the superspaces used in the remainder of this
work. Although the main focus of our analysis is on a supersymmetric quantum mechanics
theory in (0 + 1)-dimensions, we will obtain some expressions for TT -type deformations by
dimensionally reducing previous results for (1 + 1)-dimensional supersymmetric theories.
For this reason, we begin with an overview of the conventions for N = (1, 1) supersymmetry
in two spacetime dimensions following [58].

We begin by discussing two-dimensional Lorentzian field theories. We will assume that
such theories have coordinates (t, x), and when we perform dimensional reduction we will
assume that the spatial coordinate x parameterizes a circle with some radius R so that
x ∼ x+R.

It will often be convenient to change coordinates from (t, x) to light-cone coordinates:

x±± = 1√
2

(t± x) . (2.1)

Here we have adopted the bi-spinor convention where a vector index is written as a pair of
spinor indices. The derivatives with respect to the coordinates (2.1) are

∂±± = 1√
2

(∂t ± ∂x) , (2.2)

which satisfy

∂±±x
±± = 1 , ∂±±x

∓∓ = 0 . (2.3)

Spinor indices, which are written with early Greek letters, are raised or lowered with the
epsilon tensor as

ψβ = εβαψ
α , (2.4)

where we take ε+− = 1 so ε−+ = −1, ε+− = −1, ε−+ = 1. For instance, this implies that

ψ− = ψ+ , ψ+ = −ψ− . (2.5)

For two-dimensional theories with N = (1, 1) supersymmetry, we write the Grassmann
coordinates as θ±. The supercovariant derivatives with respect to these anticommuting
coordinates are

D± = ∂

∂θ±
+ θ±∂±± . (2.6)

These satisfy

D±D± = ∂±± , {D+, D−} = 0 . (2.7)

– 6 –
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We will also be interested in discussing theories of supersymmetric quantum mechanics in
(0+1)-dimensions, so next we describe how to perform this reduction and match conventions
between the two theories.

When we reduce from (1 + 1)-dimensional field theory to (0 + 1)-dimensional quantum
mechanics we shall assume that all quantities are independent of the spatial direction x.
Operationally, one can achieve this by setting ∂x ≡ 0 everywhere, which amounts to making
the replacement ∂±± = 1√

2∂t. We will re-scale our time coordinate t to eliminate the factor
of 1√

2 and instead write ∂±± = ∂t
We note that making this replacement leads to expressions which have unbalanced

numbers of + and − indices, like D+ = ∂
∂θ+ + θ+∂t. Although such an expression would

not exhibit the correct properties under Lorentz transformation in a (1 + 1)-dimensional
theory, in our reduced (0 + 1)-dimensional theory, there is no notion of spin nor of Lorentz
symmetry. Performing the dimensional reduction in this way therefore yields a consistent
set of conventions.

It will be convenient to write the superspace of the N = 2 supersymmetric quantum
mechanics theory in complex coordinates, which more closely matches the conventions
in the literature. We first Wick-rotate our time coordinate,5 sending t → it, so that the
supercovariant derivatives are

D± = ∂

∂θ±
− iθ±∂t . (2.8)

Next we perform the change of variables

θ = 1√
2

(
θ+ − iθ−

)
, θ = 1√

2

(
θ+ + iθ−

)
, (2.9)

so that

D = 1√
2

(D+ + iD−) = ∂

∂θ
− iθ∂t , D = 1√

2
(D+ − iD−) = ∂

∂θ
− iθ∂t . (2.10)

The new supercovariant derivatives satisfy the canonical algebra

{D,D} = −2i∂t , (2.11)

with D2 = D2 = 0.
The rotation from real to complex Grassmann coordinates will introduce a factor of i

in the measure, since

dθ dθ = i dθ+ dθ− , (2.12)

but this is compensated by the factor of i arising from the Wick rotation dt→ i dt.
5We will be somewhat cavalier about real versus imaginary time. All formulas in 2d field theory will be

Lorentzian and involve real times t, but upon dimensional reduction to quantum mechanics, we eventually
rotate t→ it in order to match more common conventions. However we will continue to use the symbol t
rather than τ in this context for simplicity.

– 7 –
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Finally, in section 6 we will briefly also discuss the N = 1 version of our deformation. In
N = 1 superspace we have a single anticommuting coordinate θ, along with a corresponding
supercovariant derivative

D = ∂

∂θ
− iθ ∂

∂t
, (2.13)

which satisfies the algebra

{D,D} = −2i∂t . (2.14)

2.2 Review of TT in quantum mechanics

We now recall certain facts about the dimensional reduction of the TT operator from (1 + 1)
dimensions to (0 + 1) dimensions, but without manifest supersymmetry. We follow the
discussion in [73], where these results first appeared.

Although the TT deformation can be defined for any translationally-invariant QFT,
here we restrict to the case of a conformally invariant seed theory with Lagrangian L0. The
flow equation (1.2), which can be written as

∂L(λ)

∂λ
= TµνTµν −

(
Tµµ

)2
, (2.15)

therefore determines a one-parameter family of Lagrangians L(λ) with the initial condition
that L(0) matches the CFT Lagrangian L0. We note that λ has length dimension 2, which
means that there is an effective energy scale Λ set by

Λ = 1√
λ
. (2.16)

Because the seed theory was conformal and hence had no dimensionful parameters, in the
deformed theories the quantity Λ is the only scale in the problem. This means that an
infinitesimal change in Λ is equivalent to an infinitesimal scale transformation of the theory,
and on general grounds we know that the response of the action S(λ) =

∫
d2xL(λ) to such a

scale transformation is controlled by the trace of the stress tensor. We therefore have

Λ d

dΛS
(λ) =

∫
d2xTµµ . (2.17)

On the other hand, by comparing to equation (2.15), we see that by definition the response
of the action S(λ) to a change in λ is given by the integral of the TT operator. That is,

Λ d

dΛS
(λ) = 1√

λ

d

d
(

1√
λ

)S(λ)

= −2λ
∫
d2x

(
TµνTµν −

(
Tµµ

)2
)
. (2.18)

We therefore conclude that

Tµµ = 2λ
((
Tµµ

)2
− TµνTµν

)
, (2.19)

– 8 –
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according to our normalization of TT . We emphasize that this relationship, namely the
trace flow equation, between the components of the stress tensor holds at any point along the
trajectory of TT -flow, without imposing any equations of motion or conservation equations.
We may therefore solve (2.19) for a component of the stress tensor and use the resulting
equation to eliminate this component in the definition of the deformation.

Suppose that our 2d theory has coordinates x and t, where we take x to parameterize
a circular direction.6 We wish to dimensionally reduce along this circle in order to get an
effective deformation in the resulting (0 + 1)-dimensional theory. To do this, it is natural to
solve for the spatial component Txx. Writing out both sides of (2.19) in components yields

T xx + T tt = 2λ
((
T xx + T tt

)2
−
(
T xxTxx + 2T xtTxt + TttTtt

))
, (2.20)

which can be solved to find

T xx = T tt + 4λT xtTxt
−1 + 4λT tt

. (2.21)

In order to dimensionally reduce, we will assume that the mixed component Txt of the stress
tensor vanishes. We would then like to replace the spatial component T xx and write a flow
equation which depends only on the “stress scalar” T ≡ T tt for the (0 + 1)-dimensional
theory. After replacing T xx and setting Txt = 0 in this way, the flow equation for the
Lagrangian becomes

∂L(λ)

∂λ
=

( T tt
−1 + 4λT tt

)2

+
(
T tt

)2
−
(
T tt + T tt

−1 + 4λT tt

)2


=
(
T tt
)2

1
2 − 2λT tt

. (2.22)

We can now assume that T ≡ T tt is independent of the spatial coordinate x and perform
the integral over the x circle. This will introduce an irrelevant length factor, which can be
scaled away. The result is a deformation for the action of the (0 + 1)-dimensional quantum
mechanics theory:

∂SE
∂λ

=
∫
dt

T 2

1
2 − 2λT

. (2.23)

Interpreting the Euclidean Lagrangian as the Hamiltonian, we can evaluate (2.23) in an
energy eigenstate |n〉 to find

∂〈n |H |n〉
∂λ

= (〈n |H |n〉)2

1
2 − 2λ〈n |H |n〉

, (2.24)

or more simply writing En for 〈n |H |n〉,

∂En
∂λ

= E2
n

1
2 − 2λEn

. (2.25)

6Note that [73] uses the symbol τ rather than t to emphasize the Euclidean signature. As discussed in
section 2.1, we will be cavalier about signature and use the symbol t regardless.
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This differential equation has a solution

En(λ) = 1−
√

1− 8λE(0)
n

4λ , (2.26)

which is reminiscent of (1.4). Another perspective on deriving the deformed energy spectrum
is provided by the Wheeler-DeWitt equation (see [85] for 3d and [34] for general dimensions).
Following [34], the Wheeler-DeWitt equation was specialized to JT gravity and dilaton
gravity by [73] at a finite radial cutoff and correctly derived the deformed energy spectrum.7

This analysis of [73] demonstrates that such f(T ) or f(H) deformations in quantum
mechanics are in some sense simple, as energy eigenstates of the undeformed theory remain
energy eigenstates of the deformed theory albeit with shifted eigenvalues. However, we point
out the important caveat that this derivation relied upon the trace flow equation (2.19),
which only holds if the parent 2d theory is conformally invariant. For a quantum mechanical
theory which descends from a non-conformal 2d QFT, such as one with a potential, the flow
equation (2.23) is not equivalent to TT , and it is not obvious that the energy eigenstates
are unchanged; indeed, we will comment in section 7 that a naïve classical analysis suggests
that the eigenstates must be modified due to the presence of poles in the potential.

Since we cannot use the trace flow equation (2.19) in analyzing such non-conformal
theories, our only option is to solve the TT flow equation in two dimensions and then
dimensionally reduce the solution at the end (rather than reducing the TT operator itself).
A simple example of this procedure for a single boson subject to an arbitrary potential is
presented in appendix B.

Our eventual goal will be to find a supersymmetric analogue of this dimensional
reduction procedure for TT , which proceeds by eliminating Txx, directly in superspace.
This will be the subject of section 4. First we will turn to a different piece of motivation for
studying (0 + 1)-dimensional theories of the form considered here.

2.3 Review of relationship to BF theory

In the previous subsection, we have seen that quantum mechanical models which descend
from conformally invariant 2d QFTs can be directly deformed in the (0 + 1)-dimensional
theory using a convenient dimensional reduction of the TT operator that relies upon the
trace flow equation (2.19). We have emphasized that this class of models is special and does
not, for example, include theories of a particle subject to a potential. However, one class of
models for which this deformation is applicable is that of a purely kinetic Lagrangian,

L = 1
2gij(x) ẋi ẋj , (2.27)

for a collection of bosonic degrees of freedom xi. This theory is of course interpreted as a
particle moving on a target space geometry with metric gij and coordinates xi.

Although theories of the form (2.27) are somewhat simplistic, they are especially of
interest in the case where the target space parameterized by the xi is a Lie group G. In this

7For further studies of TT -like flows in dilaton gravity, see [86]. A different perspective on TT and cutoff
geometries using path integral optimization is discussed in [87].
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case, the theory is dual to BF gauge theory with gauge group G [81]. By way of motivation,
we will now review this correspondence, although in the remainder of this work we will not
explore the connections with BF theory further; see [84] for an analysis of TT deformations
from this perspective.

The fields of two-dimensional BF gauge theory are a scalar field φ and a spacetime
gauge field Aµ. We fix a gauge group G and assume that both φ and Aµ take values in the
adjoint representation of G. Writing Tr for the trace in the adjoint, the action (including
boundary term) on a two-dimensional surface M is

SBF =
∫
M
d2x Tr (φF ) + 1

2

∮
∂M

dt Tr (φAt) . (2.28)

The bulk equations of motion are determined from the first term of (2.28); the field φ acts
as a Lagrange multiplier which imposes the flatness condition F = 0. In particular, this
means that the connection Aµ is pure gauge and can be written as

Aµ = g−1∂µg (2.29)

for some group element g ∈ G.
In order to obtain a good variational principle, we must also cousider the boundary

variation of (2.28). Varying with respect to the fields and discarding the bulk equation of
motion term yields

δSBF
∣∣∣
on-shell

= 1
2

∫
∂M

dt Tr (At δφ− φδAt) . (2.30)

To force the boundary term appearing in (2.30) to vanish, we choose the Dirichlet boundary
condition

φ
∣∣
∂M

= At
∣∣
∂M

. (2.31)

Since Aµ transforms as a boundary one-form on ∂M , the constraint (2.31) should be read
as the statement that the one-form φdt is set equal to the one-form Aµ on ∂M .

We now consider the on-shell boundary action arising from imposing this constraint.
Since φ is related to At by (2.31) and Aµ itself is pure gauge according to (2.29), the
boundary term in (2.28) can be written as

SBF
∣∣∣
bdry

= 1
2

∮
∂M

dt Tr
(
(g−1∂tg)(g−1∂tg)

)
. (2.32)

Next we recall that, for a general mapping from a spacetime M to a Lie group G, the
expression g−1∂µg is simply the pullback of the Maurer-Cartan form on G to M .8 By
writing the group element g as the exponential of some linear combination of basis elements
Ti for the Lie algebra g of G,

g = exp
(
xiTi

)
, (2.33)

8The Maurer-Cartan form itself is a push-forward from TgG into g.
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one finds that the expression g−1∂µg can be related to the metric gij on the Lie group G as

gij dx
i dxj = Tr

(
(g−1∂µg)(g−1∂µg)

)
. (2.34)

Therefore the boundary term (2.32) can be expressed as

SBF
∣∣∣
bdry

= 1
2

∮
∂M

dt gij(x) ẋiẋj , (2.35)

where xi are coordinates on G.
The upshot of this discussion is that the boundary term for BF gauge theory with

gauge group G is equivalent to the theory of a particle moving on a Lie group G with the
appropriate metric gij (the Cartan metric tensor induced by the Killing form) and a purely
kinetic Lagrangian.9

Thus, although TT deformations of purely-kinetic (0 + 1)-dimensional theories such
as (2.27) may seem trivial, one might be motivated to study them due to this connection
to two-dimensional BF theory (in addition to the connections to other theories like the
Schwarzian theory, JT gravity, and SYK, which we have already alluded to). In particular,
one might be especially interested in the manifestly supersymmetric versions of these
theories where one expects to have some additional control. We will take this as part of our
motivation for studying the class of theories which we consider in later sections.

2.4 Description of models and deformation methods

In the previous subsections, we have motivated the study of kinetic Lagrangians of the form

S = 1
2

∫
dt gij(x)ẋiẋj , (2.36)

and noted that they can be deformed by the dimensionally-reduced TT operator via

∂SE
∂λ

=
∫
dt

T 2

1
2 − 2λT

. (2.37)

Next we will recall how to embed theories whose bosonic parts take the form (2.36) into
superfields. For concreteness, we will focus on N = 2 supersymmetric quantum mechanics
(i.e., 2 real supercharges or 1 complex supercharge). Consider a collection of N = 2
superfields with expansions

Xi(t, θ, θ) = xi(t) + θ ψi(t)− θψi(t) + θθF i(t) . (2.38)

The superspace action whose bosonic part reduces to (2.36) is simply

S = 1
2

∫
dt dθ dθ gij(X)

(
DX i(t, θ, θ)

)∗
DXj(t, θ, θ) . (2.39)

9For this particle-on-a-group theory, the Hamiltonian can be interpreted as a certain quadratic Casimir
JaJbtr(T aT b) of the target-space group, where J = g−1∂tg. The TT flow can then be viewed as deforming
this Casimir. There is a conceptually similar interpretation of the deformation of 2d Yang-Mills, which is a
quasi-topological theory, as investigated in [88–90].
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By performing the integration over the anticommuting coordinates θ, θ, one can show that
the superspace action (2.39) reduces to the component form

S = 1
2

∫
dt
(
gij ẋ

iẋj + gijF
iF j + 2igijψiψ̇j + ψiψj ẋk (∂kgij + ∂jgik − ∂igjk)

+ ψiψjF k (∂kgij − ∂jgik − ∂igjk)− ψiψjψkψl∂k∂lgij
)
. (2.40)

From (2.40) we see that the equations of motion for the auxiliary fields F i are purely
algebraic. On-shell, they can be eliminated in terms of fermions via the equation of motion

F i = Γijkψjψk , (2.41)

where Γijk are the Christoffel symbols associated with the metric gij . Similarly, it is
convenient to define a covariant derivative ∇t with the property that ψi transform as
vectors:

∇tψj = ψ̇j + Γjlmψ
lẋm . (2.42)

The terms involving four fermions can be written in terms of the Riemann curvature tensor
Rijkl which is computed from the metric gij in the usual way. In terms of these new
quantities, the action can be written more compactly as

S = 1
2

∫
dt

(
gij ẋ

iẋj + 2igijψi∇tψj + 1
2Rikjlψ

iψjψkψl
)
. (2.43)

This theory therefore reduces to the theory of a collection of bosonic degrees of freedom
xi and their fermionic superpartners ψi. The xi are subject to the purely kinetic La-
grangian (2.36) as desired whereas the fermions have both kinetic terms and four-fermion
couplings determined by the Riemann curvature of the target space.

In the remainder of this work, we will restrict our attention to supersymmetric TT -
type deformations of seed theories which take the form (2.39). There are three, naïvely
different, ways in which one could study supersymmetric current-squared deformations of
this (0 + 1)-dimensional theory:

1. Write a flow equation for a (1 + 1)-dimensional field theory which reduces to (2.39)
using the supercurrent-squared operator. Solve this flow equation in the parent (1+1)-
dimensional theory, and only after finding the full deformed solution, dimensionally
reduce the result to quantum mechanics. This will be explored in section 3.

2. Begin with the definition of the supercurrent-squared operator in a (1+1)-dimensional
theory. Apply dimensional reduction to this operator itself, thus defining a deformation
of the (0 + 1)-dimensional theory. We perform this procedure in section 4.

3. Work directly in the superspace of the quantum mechanics theory. Construct a
conserved superfield which contains the Hamiltonian and then define an appropriate
superspace deformation using bilinears in this superfield with the property that this
flow equation reduces to (1.7) after integrating out the anticommuting directions (and
imposing on-shell conditions). This is done in section 5.
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A priori, it is not clear that these three procedures are equivalent, since one might imagine
that the process of performing dimensional reduction does not commute with the process
of deforming by a supercurrent-squared operator. However in following sections we will
provide evidence that the three approaches yield the same deformation on-shell.

3 Dimensional reduction of solution to 2d flow

In this section, we will directly solve the supercurrent-squared flow equation in the 2d, N =
(1, 1) field theory and then dimensionally reduce the result. This is a slight generalization of
the analysis for a single N = (1, 1) superfield whose flow equation was studied in [58, 59, 91].
Although much of this analysis has appeared before, we review it here to make the present
work self-contained and to provide a check on our results in section 5.

3.1 Definition of supercurrents

Consider a general superspace Lagrangian A which depends on a collection of superfields
Φi and their derivatives as

A = A
(
Φi, D+Φi, D−Φi, ∂++Φi, ∂−−Φi, D+D−Φi

)
. (3.1)

A general variation δA of this superspace Lagrangian can be written as

δA=D+

(
δΦi δA

δ(D+Φi)

)
+D−

(
δΦi δA

δ(D−Φi)

)
+∂++

(
δΦi δA

δ(∂++Φi)

)
+∂−−

(
δΦi δA

δ(∂−−Φi)

)
+ 1

2

(
D+

(
δA

δ(D+D−Φi)D−δΦ
i
)

+D−
(
δΦiD+

δA
δ(D+D−Φi)

))
− 1

2

(
D−

(
δA

δ(D+D−Φi)D+δΦi
)

+D+

(
δΦiD−

δA
δ(D+D−Φi)

))
−δΦi

(
− δA
δΦi

+D+
δA

δ(D+Φi) +D−
δA

δ(D−Φi) +∂++
δA

δ(∂++Φi) +∂−−
δA

δ(∂−−Φi)

−D+D−
δA

δ(D+D−Φi)

)
. (3.2)

First, this general variation (3.2) can be used to derive the superspace equations of motion
for each of the Φi. After performing some superspace integrations by parts and collecting
the terms proportional to each δΦi, we find that the overall variation δA will vanish for a
general variation of the superfield Φi if

δA
δΦi

= D+

(
δA

δ(D+Φi)

)
+D−

(
δA

δ(D−Φi)

)
+ ∂++

(
δA

δ(∂++Φi)

)
+ ∂−−

(
δA

δ(∂−−Φi)

)
−D+D−

(
δA

δ(D+D−Φi)

)
, (3.3)

which is exactly the Φi equation of motion. A related calculation can be used to find
the superspace Noether current for spatial translations. Consider a spacetime translation
δx±± = a±± where the parameters a±± are constants. For such a translation, the variations
appearing in (3.2) can be replaced as δA = a++∂++A + a−−∂−−A and likewise for δΦi,
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D±δΦi, and so on. Restricting to the case of on-shell variations, so that we can discard
the term proportional to the superspace equations of motion, one finds that the resulting
equation can be written as

0 = a++ (D+T++− +D−T+++) + a−− (D+T−−− +D−T−−+) , (3.4)

where the components of T are given by

T++− = ∂++Φi δA
δ(D+Φi) +D+

(
∂++Φi δA

δ(∂++Φi)

)
+ 1

2
δA

δ(D+D−Φi)D−
(
∂++Φi

)
− 1

2∂++ΦiD−

(
δA

δ(D+D−Φi)

)
−D+A,

T+++ = ∂++Φi δA
δ(D−Φi) +D−

(
∂++Φi δA

δ(∂−−Φi)

)
− 1

2
δA

δ(D+D−Φi)D+
(
∂++Φi

)
+ 1

2∂++ΦiD+

(
δA

δ(D+D−Φi)

)
,

T−−− = ∂−−Φi δA
δ(D+Φi) +D+

(
∂−−Φi δA

δ(∂++Φi)

)
+ 1

2
δA

δ(D+D−Φi)D−
(
∂−−Φi

)
(3.5)

− 1
2∂−−ΦiD−

(
δA

δ(D+D−Φi)

)
,

T−−+ = ∂−−Φi δA
δ(D−Φi) +D−

(
∂−−Φi δA

δ(∂−−Φi)

)
− 1

2
δA

δ(D+D−Φi)D+
(
∂−−Φi

)
+ 1

2∂−−ΦiD+

(
δA

δ(D+D−Φi)

)
−D−A.

We interpret the superfield T as a conserved superspace supercurrent, since it satisfies the
conservation equations

D+T++− +D−T+++ = 0 , D+T−−− +D−T−−+ = 0 . (3.6)

Writing the superfield equation (3.6) in components reduces to the usual conservation
equation for the stress tensor, ∂µTµν = 0, along with other equations related to this one by
supersymmetry.

3.2 Supercurrent-squared flow for n scalars

Next we define a superspace deformation which is built from bilinears in T . If we write the
superspace Lagrangian as A, so that

S =
∫
d2x d2θA , (3.7)

then the flow equation generated by the supercurrent-squared operator is

∂A(λ)
∂λ

= T (λ)
+++T

(λ)
−−− − T

(λ)
−−+T

(λ)
++− , (3.8)

where the superscript (λ) is meant to emphasize that the supercurrent T (λ) must be re-
computed from A(λ) at each point along the flow, rather than using the supercurrent T (0)

of the undeformed theory, as with the ordinary TT flow.
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To get intuition for the structures in the superspace Lagrangian which will be generated
by this deformation, it is helpful to write out the deforming operator to leading order in λ
in a particular example. We will focus on the 2d field theory whose dimensional reduction
produces an undeformed superspace action of the form (2.39), which is the theory of a
collection of superfields Φi with the superspace Lagrangian

S =
∫
d2x d2θ gij(Φ)D+ΦiD−Φj . (3.9)

Computing the supercurrent components for this theory, one finds

T (0)
++− =

(
∂++Φi

)
gijD−Φj −D+

(
gijD+ΦiD−Φj

)
,

T (0)
+++ = −

(
∂++Φi

)
gijD+Φj ,

T (0)
−−− =

(
∂−−Φi

)
gijD−Φj ,

T (0)
−−+ = −

(
∂−−Φi

)
gijD+Φj −D−

(
gijD+ΦiD−Φj

)
. (3.10)

Therefore, we see that the leading correction to A from the supercurrent-squared flow
equation is A(0) −→ A(0) + λA(1) where

A(1) = T (0)
+++T

(0)
−−− − T

(0)
−−+T

(0)
++−

= −gijgkl
(
∂++Φi

) (
∂−−Φk

)
D+ΦjD−Φl + gijgkl(∂−−Φi)(∂++Φk)D+ΦjD−Φl

− (∂−−Φi)gijD+ΦjD+
(
gklD+ΦkD−Φl

)
− (∂++Φi)gijD−ΦjD−

(
gklD+ΦkD−Φl

)
+D+

(
gijD+ΦiD−Φj

)
D−

(
gklD+ΦkD−Φl

)
. (3.11)

The leading deformation (3.11) contains terms proportional to the undeformed La-
grangian (3.9) in addition to new terms which have more than two fermions. For instance,
terms involving D+ΦiD−ΦjD+ΦkD−Φl will be generated. The full solution for the finite-λ
deformed superspace Lagrangian will therefore take the schematic form

A(λ) = F1(DΦ)2 + F2(DΦ)4 + · · ·+ Fn(DΦ)2n , (3.12)

where each of the functions Fi depends on a collection of Lorentz scalars built from the Φj

and their derivatives, and the expression (DΦ)2k is shorthand for a product of the form
D+Φi1 · · ·D−Φi2n . This expansion is only schematic; for instance, there can be multiple
inequivalent ways of constructing a term (DΦ)2k by changing which fields in the product
are acted on by D+ and which are acted on by D−, and all such inequivalent combinations
can appear in principle. Three examples of Lorentz scalars on which the functions Fi can
depend are

x = λgij(Φ)∂++Φi∂−−Φj ,

y = λgij(Φ)
(
D+D−Φi

) (
D+D−Φj

)
,

z = λ2
(
gij∂++Φi∂++Φj

)
(gmn∂−−Φm∂−−Φn) . (3.13)
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The number n appearing in the highest term of (3.12) is the same as the number of scalars
Φi, since the 2n possible derivatives of the form D±Φi are all fermionic quantities and thus
any term with a product of more than 2n such factors must vanish by nilpotency.

The general flow equation for A(λ) induced by supercurrent-squared will therefore yield
a complicated set of partial differential equations relating the various Fi and their derivatives
with respect to the several independent scalars. We will not undertake an analysis of this
general case here. However, we can make some comments about the most fermionic term in
the action. First note that there is only one independent term that one can write down
involving 2n copies of Φ, which is simply

D+Φ1D−Φ1 · · · D+ΦnD−Φn . (3.14)

This is in contrast to other terms like (DΦ)4 for which a priori it appears that multiple
inequivalent expressions can be written down, like

D+ΦiD−ΦjD+ΦkD−Φl and D+ΦiD+ΦjD−ΦkD−Φl , (3.15)

which need not yield the same contribution when contracted against a general fijkl without
any special symmetry properties.

Next, we claim that — if we are willing to go partially on-shell by imposing one
implication of the equations of motion in the Lagrangian — the function Fn multiplying
the unique term (DΦ)2n can be taken to be independent of the scalar y in (3.13). To see
this, we will begin with the superspace equation of motion (3.3) and then multiply both
sides by the most fermionic term (DΦ)2n. The left side of the equation of motion is δA

δΦi ,
which is a sum of terms of the form

δA
δΦi

=
∑
k

∑
j

∂Fk
∂xj

∂xj
∂Φi

(DΦ)2k + Fk ·
∂(DΦ)2k

∂gnm

∂gnm
∂Φi

 . (3.16)

Here xj are the collection of Lorentz scalars that the coefficient functions Fk can depend on.
This equation is again only schematic and the details of these scalars xj are not important.
The only important point is that every term in (3.16) contains at least two fermions, since
taking the derivative of any term in A with respect to some Φi will not change the number
of fermions in that term. Therefore, when we multiply by the maximally fermionic term
(DΦ)2n, all terms in (3.16) vanish by nilpotency. Similarly, the two terms

∂++

(
δA(λ)

δ(∂++Φi)

)
, ∂−−

(
δA(λ)

δ(∂−−Φi)

)
(3.17)

appearing on the right side of the equation of motion will also vanish when multiplied by
(DΦ)2n. This is because every term in either of (3.17) will be proportional either to some
product D+ΦiD−Φj , or to a factor of the form

(
∂++D+Φi

)
D−Φj , and in either case such

a term is proportional to at least one of the 2n fermions D±Φi.
Dropping these terms that do not contribute, we can write

0 = (DΦ)2n
[
D+

(
δA(λ)

δ(D+Φi)

)
+D−

(
δA(λ)

δ(D−Φi)

)
−D+D−

(
δA(λ)

δ(D+D−Φi)

)]
. (3.18)
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Furthermore, we claim that the only term in the superspace Lagrangian which affects the
right side of (3.18) is the lowest term involving F1. For any term involving four or more
fermions, the three combinations inside the brackets of (3.18) will all contain at least two
fermions and therefore vanish when multiplying (DΦ)2n. The only term which survives is
the one arising from F1, which gives

0 = 2(DΦ)2n (gil(D+D−Φl))
[
F1 + λ

∂F1
∂y

gkmD+D−ΦkD+D−Φm
]
. (3.19)

Thus, when multiplying (DΦ)2n and on-shell, either the combination F1 + y ∂F1
∂y vanishes

or the object gil(D+D−Φl) vanishes. The former cannot hold identically since it fails near
the free theory where F1 = 1. Therefore we conclude that the combination gil(D+D−Φl)
can be set to zero when multiplying (DΦ)2n as a consequence of the equations of motion,
and as a result the scalar y (which is proportional to this combination) can be set to zero
in this context as well. In particular, since we may view the most fermionic term in the
Lagrangian as a Taylor series in y via

Fn(DΦ)2n =
(
Fn
∣∣∣
y=0

+ y · ∂Fn
∂y

∣∣∣
y=0

+ · · ·
)

(DΦ)2n , (3.20)

we see that all terms but the first can be set to zero on-shell. Thus we are free to impose that
the function Fn be independent of y when the equations of motion are satisfied. We note
that this trick of simplifying TT -like flows by going partially on-shell using the superspace
equations of motion was first used in the series of works [59, 61, 64]. In terms of component
fields, imposing this implication of the superspace equations of motion is equivalent to
integrating out the auxiliary fields using their (algebraic) equations of motion.

3.3 Solution for one scalar

Finally we will specialize to a case where we can explicitly solve the flow equation and
dimensionally reduce the result, which will provide a check for the (0 + 1)-dimensional
deformation that we will introduce in section 5. This is the case of a single scalar field Φ.
The undeformed Lagrangian is simply

A(0) = g(Φ)D+ΦD−Φ . (3.21)

Following the definitions (3.13) in the general case, we define

x = λg(Φ)∂++Φ∂−−Φ ,

y = λg(Φ) (D+D−Φ) (D+D−Φ) , (3.22)

and make an ansatz for the finite-λ solution of the form

A(λ) = F (x, y) g(Φ)D+ΦD−Φ . (3.23)

In the case of a single scalar, the two-fermion term D+ΦD−Φ is also the most fermionic
term that one can construct. Therefore, in view of the general result discussed around
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equation (3.20), we can assume that the function F (x, y) is independent of y up to terms
which vanish on-shell.

Next we compute the components of the supercurrents T±±±, T±±∓. Since we will
ultimately drop dependence on the variable y, we will omit any terms proportional to y
in the supercurrents.10 We will also drop terms which that are proportional to D+ΦD−Φ,
since every term in the supercurrents is at least proportional to either D+Φ or D−Φ, and
therefore terms which contain both fermionic quantities will not contribute to bilinears
because they vanish by nilpotency when multiplied against another component of T . For
instance, T++− contains a term

D+

(
∂++Φ δA

δ∂++Φ

)
= D+

(
(∂++Φ)λ∂F

∂x
∂−−Φg(Φ)2D+ΦD−Φ

)
. (3.24)

Although in principle this generates several terms when the D+ acts on each factor, the only
relevant one for bilinears is the term where it acts on D+Φ to give D2

+Φ = ∂++Φ. Every
other term will either be proportional to D+ΦD−Φ or to y and therefore can be ignored.

Using the symbol ∼ to mean “equal up to terms which are either proportional to y or
do not contribute to bilinears,” we find

T++− ∼ (∂++Φ)Fg(Φ)D−Φ + x
∂F

∂x
(∂++Φ)g(Φ)D−Φ− Fg(Φ)∂++ΦD−Φ ,

T+++ ∼ −(∂++Φ)Fg(Φ)D+Φ− x∂F
∂x

(∂++Φ)g(Φ)D+Φ ,

T−−− ∼ (∂−−Φ)Fg(Φ)D−Φ + x
∂F

∂x
(∂−−Φ)g(Φ)D−Φ ,

T−−+ ∼ −(∂−−Φ)Fg(Φ)D+Φ− x∂F
∂x

(∂−−Φ)g(Φ)D+Φ + Fg(Φ)(∂−−Φ)D+Φ . (3.25)

On the other hand, when we ignore dependence on y the λ-derivative of A is simply

∂A(λ)

∂λ
= g(Φ)2(∂++Φ)(∂−−Φ)∂F

∂x
D+ΦD−Φ . (3.26)

Equating this with the combination of supercurrents appearing on the right side of (3.8),
using their expressions (3.25), we arrive at the simple differential equation

0 = ∂F

∂x
+ F 2 + 2xF ∂F

∂x
. (3.27)

The solution is

F (x) = 1
2x
(
−1 +

√
1 + 4x

)
. (3.28)

Therefore the finite-λ solution to the flow equation is on-shell equivalent to

A(λ) = 1
2x
(
−1 +

√
1 + 4x

)
g(Φ)D+ΦD−Φ . (3.29)

For g(Φ) = 1, this solution was first obtained in [59]. It is easy to dimensionally reduce this
result to quantum mechanics. We assume that the superfield Φ(x, t) is independent of the

10The full flow equation, including dependence on y, can be found in [58].
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spatial coordinate x. It is convenient to express the spacetime derivatives ∂±± acting on Φ
in terms of supercovariant derivatives using the algebra D±D± = ∂±±, so that

x = λg(Φ)(D+D+Φ)(D−D−Φ) . (3.30)

Following our conventions for dimensional reduction in section 2.1, we will rotate to complex
supercovariant derivatives defined by

D = 1√
2

(D+ + iD−) , D = 1√
2

(D+ − iD−) . (3.31)

Then one finds that

D+ΦD−Φ = iDΦDΦ ,

D+D+Φ = D−D−Φ = 1
2(DD +DD)Φ ,

D+D−Φ = i

2(DD −DD)Φ . (3.32)

In this notation, the on-shell condition which allows us to set D+D−Φ = 0 in terms which
multiply D+ΦD−Φ means that we can replace DDΦ with DDΦ (and vice-versa) in terms
which multiply DΦDΦ. Therefore we can write x in several on-shell equivalent ways as

x = λg(Φ)
(
DDΦ

)2
= λg(Φ)

(
DDΦ

)2
= λg(Φ)

(
DDΦ

) (
DDΦ

)
. (3.33)

We will choose the last of these rewritings because it is more symmetrical. After dimen-
sionally reducing and absorbing some irrelevant constant factors, we arrive at a deformed
(0 + 1)-dimensional theory with the action

S=
∫
dtdθdθ

1
2λg(Φ)

(
DDΦ

)(
DDΦ

) (−1+
√

1+4λg(Φ)
(
DDΦ

)(
DDΦ

))
g(Φ)DΦDΦ .

(3.34)

4 Reduction of 2d supercurrent-squared operator

In this subsection, we will follow a slightly different strategy. Rather than solving the flow
driven by supercurrent-squared in two dimensions, and then dimensionally reducing the
solution, we will aim to dimensionally reduce the supercurrent-squared operator itself. This
will suggest a supersymmetric version of the f(H) operator which can be applied directly
in the superspace of a (0 + 1)-dimensional theory. Later in section 5 we will see how to
identify this dimensionally reduced operator as a function of certain conserved superfields
that can be obtained from a Noether procedure.

4.1 Trace flow equation

In order to dimensionally reduce supercurrent-squared, we would like to eliminate some
of the components of the superfield T . This process is analogous to that reviewed in
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section 2.2 for the dimensional reduction of the non-supersymmetric TT . In that context,
it was convenient to use the trace flow equation

Tµµ = −2λ
(
TµνTµν −

(
Tµµ

)2
)
, (4.1)

in order to solve for the spatial component Txx of the stress tensor as

T xx = T tt + 4λT txTtx
4λT tt − 1 , (4.2)

where the coordinates of the 2d spacetime (t, x) are related to the light-cone coordinates
by x±± = 1√

2 (t± x). We note that the trace flow equation only holds if the seed theory is
conformal.

Next we will motivate a superspace analogue of this trace flow relation. First we recall
the interpretation of the components in the expansion of the supercurrents T±±±, T∓∓±. It
was argued in [58] that, on-shell, these superfields can be written as

T+++ = −S+++ − θ+T++++ − θ−Z++ + θ+θ−∂++S−++,

T−−− = S−−− + θ+Z−− + θ−T−−−− + θ+θ−∂−−S+−−,

T++− = S−++ + θ+Z++ + θ−T++−− − θ+θ−∂++S+−−,

T−−+ = −S+−− − θ+T++−− − θ−Z−− − θ+θ−∂−−S−++.

(4.3)

Here Tµν is the stress tensor, Sµα is the conserved current associated with supersymmetry
transformations,11 and Zµ is a vector which is associated with a scalar central charge.

Because we will reduce along the spatial coordinate x, it will be convenient to change
from x±± to x, t coordinates. First we want to act with various D operators in order to
construct superfields whose lowest components are stress tensors. If we define

T̃++++ = −D+T+++ , T̃−−−− = D−T−−− ,
T̃++−− = D−T++− , T̃−−++ = −D+T−−+ , (4.4)

then the lowest components of these superfields are simply

T̃++++
∣∣∣
θ=0

= T++++ , T̃−−−−
∣∣∣
θ=0

= T−−−− ,

T̃++−−
∣∣∣
θ=0

= T++−− , T̃−−++
∣∣∣
θ=0

= T++−− . (4.5)

Note that symmetry of the stress tensor implies T̃−−++ = T̃++−−. Another way to see this
is to note that the supercurrents are related to fields of the S multiplet by T++− = χ+,
T−−+ = −χ−, and the S multiplet fields satisfy the constraint D−χ+ = D+χ−. One can
then change coordinates to (t, x) to find

T̃tt = 1
2
(
T̃++++ + 2T̃++−− + T̃−−−−

)
, T̃tx = 1

2
(
T̃++++ − T̃−−−−

)
,

T̃xx = 1
2
(
T̃++++ − 2T̃++−− + T̃−−−−

)
. (4.6)

11Sµα is often called the supercurrent, although we reserve that term for superfields like T±±±.
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The superfield equation whose lowest component is (4.2) is

T̃xx = T̃tt + 4λT̃ 2
tx

4λT̃tt − 1
. (4.7)

This is the desired superspace analogue of the trace flow equation. We will assume that it
holds as an exact superfield expression, at least on-shell. Furthermore, as in the dimensional
reduction of the non-supersymmetric TT operator, we will assume that Ttx = 0 and therefore
T̃tx = 0, which implies that

T̃++++ = T̃−−−− . (4.8)

We note that from this point on, the number of + and − indices in our equations need
no longer match because we are explicitly breaking Lorentz invariance by forcing T̃tx = 0.
However, this is unproblematic since our goal is to single out the x direction for dimensional
reduction, which is also not a Lorentz-invariant procedure.

As a consequence of the condition (4.8), we may write the other components of T̃µν as

T̃tt = T̃++++ + T̃++−− = −D+ (T+++ + T−−+) = D− (T−−− + T++−) ,
T̃xx = T̃++++ − T̃++−− = D+ (−T+++ + T−−+) = D− (T−−− − T++−) . (4.9)

4.2 Rewriting of supercurrent-squared

Next we would like to explain a relationship between the product T̃ttT̃xx and the supercurrent-
squared operator, which holds under our assumptions thus far. To organize this calculation,
it is helpful to list the on-shell constraints relating the various objects created from one
supercovariant derivative acting on one component of T . There are naïvely 8 such objects,
but there are four constraints.

By conservation, D−T+++ = −D+T++− and D+T−−− = −D−T−−+ . (4.10)
By the assumption that T̃tx = 0, we have D+T+++ = −D−T−−− , (4.11)
By symmetry of the stress tensor, D−T++− = −D+T−−+ (4.12)

Therefore there are, in fact, only four independent objects of the form DT after imposing
these conditions. Further, by acting with a second supercovariant derivative and using the
algebra D±D± = ∂±±, {D+, D−} = 0, we obtain the added constraints that

∂++T+++ + ∂−−T−−+ = 0 , ∂++T++− + ∂−−T−−− = 0 ,
∂−−T+++ + ∂++T−−+ = 0 , ∂++T−−− + ∂−−T++− = 0 .

(4.13)

Next recall that, since D± = ∂
∂θ± + θ±∂±±, we can exchange a superspace integral for a

supercovariant derivative, up to a total spacetime derivative. This allows us to write∫
d2x d2θ (T+++T−−− − T−−+T++−)

∼
∫
d2xD+D− (T+++T−−− − T−−+T++−) , (4.14)
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where ∼ means equivalence assuming we can ignore boundary terms. When we write
expressions like those in the last line of (4.14), which involve a superfield expression that is
integrated over the spacetime coordinates d2x but not over the superspace coordinates d2θ,
it is always implied that we mean to take the lowest component of the superfield expression.

When the combination D+D− acts on the combination in parentheses, we generate two
types of terms: (I) terms with both supercovariant derivatives acting on a single superfield
T , and (II) terms involving one supercovariant derivative acting on each factor T . We
claim that all terms of type (I) can be ignored using our constraint equations (4.10)–(4.11)
and (4.13) above, up to integration by parts. We will show this by considering each term
explicitly. The type I terms are∫
d2x

[
(D+D−T+++)T−−−+T+++(D+D−T−−−)−(D+D−T−−+)T++−−T−−+(D+D−T++−)

]
.

(4.15)

The first term in (4.15) can be rewritten as∫
d2x (D+D−T+++)T−−− = −

∫
d2x (D+D+T++−)T−−−

= −
∫
d2x (∂++T++−)(T−−−) . (4.16)

In the first step, we have used the conservation equation D−T+++ = −D+T++−; in the
second step we use the algebra D+D+ = ∂++.

On the other hand, by a similar manipulation the third term can be written as

−
∫
d2x (D+D−T−−+) T++− =

∫
d2x (D+D+T−−−) T++−

=
∫
d2x (∂++T−−−) T++− . (4.17)

In the first step we have used D−T−−+ = −D+T−−− and in the second step we have again
used the algebra D+D+ = ∂++. Therefore, the sum of the first and third terms is∫

d2x
[
(∂++T−−−)T++− + T−−−(∂++T++−)

]
=
∫
d2x ∂++ (T−−−T++−) , (4.18)

which is a total spacetime derivative and can be ignored.
We repeat this procedure for the remaining terms. Using similar arguments the second

term can be written as∫
d2x T+++(D+D−T−−−) = −

∫
d2xT+++(D+D+T+++)

= −
∫
d2xT+++(∂++T+++)

=
∫
d2xT+++(∂−−T−−+) (4.19)
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Likewise the fourth term is on-shell equivalent to

−
∫
d2x T−−+(D+D−T++−) =

∫
d2x T−−+(D−D+T++−)

= −
∫
d2x T−−+(D−D−T+++)

= −
∫
d2x T−−+∂−−T+++ . (4.20)

Adding the second and fourth terms gives∫
d2x

[
T+++(∂−−T−−+) + (∂−−T+++)T−−+

]
=
∫
d2x ∂−− (T+++T−−+) , (4.21)

which is again a total spacetime derivative that we will drop.
The upshot is that all terms which involve two supercovariant derivatives acting on a

single T will drop out, up to equations of motion and total derivatives. Therefore we are
left with∫

d2xd2θ (T+++T−−−−T−−+T++−)

∼
∫
d2x (D−T+++D+T−−−−D+T+++D−T−−−−D−T−−+D+T++−+D+T−−+D−T++−) .

(4.22)

The first and third terms of (4.22) cancel after using the conservation equation (4.10):∫
d2x

(
D−T+++D+T−−− −D−T−−+D+T++−

)
∼
∫
d2x

(
D+T++−D−T−−+ −D−T−−+D+T++−

)
= 0 . (4.23)

We then arrive at the conclusion∫
d2x d2θ (T+++T−−− − T−−+T++−) ∼

∫
d2x (D+T−−+D−T++− −D+T+++D−T−−−) .

(4.24)

We now compare this to the combination

T̃ttT̃xx = (−D+T+++−D+T−−+)(D−T−−−−D−T++−)
=−D+T+++D−T−−−+D+T+++D−T++−−D+T−−+D−T−−−+D+T−−+D−T++−

=D+T−−+D−T++−−D+T+++D−T−−− , (4.25)

where in the last step we have used that the second and third terms in the second line again
cancel after using (4.10)–(4.11):

D+T+++D−T++− −D+T−−+D−T−−− = −D−T−−−D−T++− −D+T−−+D−T−−−
= −D−T−−− (D−T++− +D+T−−+)
= 0 . (4.26)
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In the last step we have used symmetry of the stress tensor (4.12). Therefore, compar-
ing (4.24) to (4.25), we see that on-shell one has∫

d2x d2θ (T+++T−−− − T−−+T++−) ∼
∫
d2x T̃ttT̃xx . (4.27)

If we now impose the superfield analogue of the trace flow relation (4.7), setting T̃tx = 0 as
we have already assumed, then on-shell we can write supercurrent-squared as∫

d2x d2θ (T+++T−−− − T−−+T++−)

=
∫
d2x

T̃ 2
tt

4λT̃tt − 1

=
∫
d2x

D+(−T+++ − T−−+)D−(T−−− + T++−)
4λD+(−T+++ − T−−+)− 1 ,

=
∫
d2xD+D−

[
(T+++ + T−−+)(T−−− + T++−)

4λD+(T+++ + T−−+) + 1

]
,

=
∫
d2x d2θ

(T+++ + T−−+)(T−−− + T++−)
4λD+(T+++ + T−−+) + 1 . (4.28)

In the second step we have used the expressions (4.9) for T̃tt. In the middle step, we have
pulled out an overall pair of supercovariant derivatives; this manipulation relies on the
fact that additional type I terms which may have been generated when two supercovariant
derivatives hit a single factor of T in the numerator all drop out by a similar calculation as
the one presented above, where we saw that such type I terms in (4.15) did not contribute.
There are also no additional terms generated when the supercovariant derivatives act on
the denominator. We will see a simple way to understand why the denominator does not
generate additional terms when we present the interpretation of this combination in terms
of (complex) conserved charges in the dimensionally reduced theory.

4.3 Dimensional reduction and interpretation

We have now written the supercurrent-squared operator in a form which is suitable for
dimensional reduction, since the combination appearing in (4.24) is a function only of T̃tt
and not of any x-components of the supercurrents. We may therefore assume that all
superfields are independent of x and perform the dx integral, which yields a constant. We
then arrive at an expression for a supercurrent-squared operator in the (0 + 1)-dimensional
quantum mechanics theory:∫

dt d2θ
(T+++ + T−−+)(T−−− + T++−)

4λD+(T+++ + T−−+) + 1 . (4.29)

To aid interpretation, we will define the auxiliary quantities

Q+ = T+++ + T−−+ , Q− = T−−− + T++− . (4.30)

These satisfy the conservation equation

D−Q+ +D+Q− = D−T+++ +D−T−−+ +D+T−−− +D+T++− = 0 , (4.31)
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as a consequence of the conservation equations for T . They also obey

D+Q+ = D+T+++ +D+T−−+ = −D−T−−− −D−T++− = −D−Q− , (4.32)

due to the conditions (4.11) and (4.12). In terms of the Q±, the deformation (4.29) is∫
dt d2θ

Q+Q−
4λD+Q+ + 1 . (4.33)

We define the combination under the integral in (4.33) as f(Q+,Q−) = Q+Q−
4λD+Q++1 . This

is a manifestly supersymmetric deformation of the (0 + 1)-dimensional supersymmetric
quantum mechanics theory constructed from objects Q± which satisfy certain conservation
equations and therefore resemble conserved currents.

In order to compare with the common conventions for supersymmetric quantum
mechanics, which use a complex Grassmann coordinate θ, θ rather than θ±, we will now
translate (4.33) into this new notation. The details of this change of variables are described
in appendix A; here we will simply summarize the results. In complex coordinates, the
operator (4.29) is on-shell proportional to∫

dt d2θ
QQ

1
2 − 2λDQ

. (4.34)

Similarly, we call this combination f(Q,Q) = QQ
1
2−2λDQ . The new supercurrents Q and

Q satisfy the conservation equation DQ + DQ = 0 as shown in appendix A. Since the
complex supercovariant derivatives obey the algebra D2 = D2 = 0, one also has DDQ = 0
and DDQ = 0. This presentation makes it more transparent that no additional terms are
generated when the overall D+ and D− derivatives act on the denominator of (4.28). In
complex notation, this is simply the statement that

DD

( 1
4λDQ− 1

)
= DD

( 1
4λDQ− 1

)
= 0 , (4.35)

which is clear since D2Q = DDQ = 0 as we have pointed out.
Because Q,Q contain the single component T of the stress tensor in their component

expansion, the combination (4.33) can be viewed as a manifestly supersymmetric extension
of the deforming operator (1.7), which is now written directly in superspace. This gives a
prescription for deforming any theory of supersymmetric quantum mechanics which descends
via dimensional reduction from a 2d superconformal field theory (we have assumed that the
seed theory in 2d is conformal in order to use the trace flow equation).

One shortcoming of this presentation is that we have not provided any operational
method for computing the objects Q,Q within a given theory of supersymmetric quantum
mechanics. In order to construct these objects using the procedure described in this section,
one would need to lift such a (0 + 1)-dimensional theory to theory in (1 + 1)-dimensions,
construct the supercurrents of this parent theory, and then assemble the appropriate
combination of the supercurrents which appear upon reducing back down to quantum
mechanics. It is of course desirable to have a complementary view of Q,Q which facilitates
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direct computation of these conserved superfields in a (0 + 1)-dimensional theory, ideally
via some Noether procedure which provides an interpretation of these objects as conserved
charges associated with time translations. We turn to this issue next.

5 Direct definition of deformation in 1d

In this section, we will define a manifestly supersymmetric deformation directly in the
superspace of a (0 + 1)-dimensional quantum mechanics theory. We first develop some
formalism for defining a conserved Noether “current,” denoted Q, associated with time
translation invariance. Because the theory has no spatial dimensions, this conserved quantity
is really a charge rather than a current; however we will still use the term “supercurrent”
rather than “supercharge” for this object in order to avoid confusion with the supercharges
Qi which represent the action of the SUSY algebra on superfields.

5.1 Noether currents in N = 2 theories

We will follow the strategy of using a superspace Noether procedure which closely parallels
the discussion of section 3; we note that a similar analysis for supersymmetric quantum
mechanics appeared in [92] for a different class of superspace Lagrangians.

Begin by considering a theory for a collection of real scalars Xi described by the action

S =
∫
dt dθ dθA

(
Xi, DX i, DX i, DDX i, DDX i

)
. (5.1)

Although we have not allowed the superspace Lagrangian A to explicitly depend on the
time derivatives Ẋi = ∂tX

i, such dependence is implicitly allowed since

DDX i +DDX i = −2iẊi (5.2)

according to our conventions for the supersymmetry algebra which are described in sec-
tion 2.1. Therefore, since A depends on both DDX i and DDX i, arbitrary dependence on
Ẋi can also be accommodated.

For the moment, we will make no additional assumptions about the superfields Xi

besides the reality condition
(
Xi
)∗ = Xi. We first consider an arbitrary variation of the

superspace Lagrangian under a field fluctuation δX i:

δA = δX i δA
δX i

+ δ(DX i) δA
δ(DX i) + δ(DX i) δA

δ(DX i)

+ δ(DDX i) δA
δ(DDX i)

+ δ(DDX i) δA
δ(DDX i)

. (5.3)

It will be convenient to re-express (5.3) by writing each term as the derivative of a product,
minus an appropriate correction. For instance,

δ(DX i) δA
δ(DXi) =D

(
δX i δA

δ(DXi)

)
−
(
δX i

)
D

(
δA

δ(DXi)

)
,

δ
(
DDX i

)
δA

δ(DDXi)
=D

(
δA

δ(DDXi)
DδX i

)
+D

(
δX iD

δA
δ(DDXi)

)
−(δX i)DD

(
δA

δ(DDXi)

)
.

(5.4)
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This gives

δA=D

(
δX i δA

δ(DXi)

)
+D

(
δX i δA

δ(DXi)

)
+D

(
δA

δ(DDXi)
DδX i

)
+D

(
δX iD

δA
δ(DDXi)

)
+D

(
δA

δ(DDXi)
DδX i

)
+D

(
δX iD

δA
δ(DDXi)

)
−δX i

(
− δA
δXi +D

(
δA

δ(DXi)

)
+D

(
δA

δ(DXi)

)
+DD

(
δA

δ(DDXi)

)
+DD

(
δA

δ(DDXi)

))
.

(5.5)

One advantage of the form (5.5) is that we can immediately read off the superspace equations
of motion. Suppose we consider a linearized fluctuation δX i around a configuration Xi

which satisfies the equations of motion, and demand that δS =
∫
dt dθ dθ δA = 0. Since the

terms in the first two lines are total superspace derivatives, and the final line must vanish
for any δX i, we obtain the on-shell condition

δA
δX i

= D

(
δA

δ(DX i)

)
+D

(
δA

δ(DX i)

)
+DD

(
δA

δ(DDX i)

)
+DD

(
δA

δ(DDX i)

)
. (5.6)

Next we would like to study the conserved charge associated with time translations t→
t′ = t+ δt. Under such a transformation, the superspace Lagrangian varies as

δA = (δt) ∂tA = i

2 (δt)
(
DDA+DDA

)
, (5.7)

where we have again used the algebra {D,D} = −2i∂t. Meanwhile, each superfield Xi also
transforms as

δX i = (δt)Ẋi = i

2 (δt)
(
DDX i +DDX i

)
. (5.8)

We use these expressions in equation (5.5) and also restrict to the case of on-shell variations,
which means that the equations of motion are satisfied and we can discard the term
proportional to δX i in the final line. This gives

0 = − i2 (δt)
(
DDA+DDA

)
+ (δt)D

(
i

2
(
DDX i +DDX i

) δA
δ(DX i)

)
+ i

2 (δt)D
((
DDX i +DDX i

) δA
δ(DX i)

)
+ i

2 (δt)D
(

δA
δ(DDX i)

D
(
DDX i

))

+ i

2(δt)D
(

δA
δ(DDX i)

D(DDX i)
)

+ i

2(δt)D
((
DDX i +DDX i

)
D

δA
δ(DDX i)

)

+ i

2(δt)D
((
DDX i +DDX i

)
D

δA
δ(DDX i)

)
. (5.9)

To ease notation, we define ηi = DDX i, η̃i = DDX i. After simplifying and collecting
terms, the resulting equation can be written as

0 = i

2(δt)D
[
(ηi + η̃i)

(
δA

δ(DX i) +D

(
δA
δη̃i

))
+ δA
δηi

Dηi −DA
]

+ i

2(δt)D
[
(ηi + η̃i)

(
δA

δ(DX i)
+D

(
δA
δηi

))
+ δA
δη̃i

Dη̃i −DA
]
. (5.10)
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This can be interpreted as a superspace conservation equation of the form

DQ+DQ = 0 , (5.11)

where

Q = (ηi + η̃i)
(

δA
δ(DX i)

+D

(
δA
δηi

))
+ δA
δη̃i

Dη̃i −DA ,

Q = (ηi + η̃i)
(

δA
δ(DX i) +D

(
δA
δη̃i

))
+ δA
δηi

Dηi −DA . (5.12)

We note that there is an overall factor of i multiplying each term in equation (5.10), but
we have chosen to strip off this factor in defining the charges (5.12). From the perspective
of conservation properties, this is of course irrelevant because any scalar multiple of the
combination DQ+DQ still vanishes. Thus we are free to rescale Q and Q by any constant.
However, this means that there will be a relative factor of i when comparing Q, Q to Q+,
Q−, in which case there was no factor of i naturally appearing in the conservation equation.
We will account for this re-scaling when converting between conventions in appendix A.

In summary, the Noether procedure leading to (5.12) provides a direct definition of the
objects Q,Q obtained in (4.33) without relying upon dimensional reduction. Since D2 =
D2 = 0, the superspace conservation equation (5.11) also implies that DDQ = DDQ = 0.
As mentioned above, we note that the supercurrents Q,Q are not to be confused with the
supercharges Q,Q defined by

Q = ∂

∂θ
+ iθ

∂

∂t
, Q = ∂

∂θ
+ iθ

∂

∂t
, (5.13)

which represent the action of the supersymmetry algebra on superfields.

5.2 Definition of f(Q,Q) deformation

To acquire some intuition for the objects Q,Q, it is useful to consider a simple example.
The theory of a single real scalar is described by

L = m

2

∫
dθ dθDX DX . (5.14)

Setting m = 2 for simplicity, the supercurrent Q and its conjugate are given by

Q = − (η + η̃)DX −D(DXDX)
= −η̃DX ,

Q = (η + η̃)DX −D(DXDX)
= ηDX , (5.15)

where we used DDX = −2iẊ −DDX. The component expressions for these charges are

Q = ψ(iẋ− F )− 2iθψψ̇ + θ
(
ẋ2 + 2iF ẋ− F 2

)
+ θθ

(
iψḞ + ψẍ− 3ẋψ̇ − 3iF ψ̇

)
,

Q = ψ(F + iẋ) + 2iθψψ̇ + θ
(
F 2 + 2iF ẋ− ẋ2

)
+ θθ

(
iψḞ − ψẍ+ 3ẋψ̇ − 3iF ψ̇

)
. (5.16)
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We can also compute the highest component of the product QQ. For simplicity, we will set
the auxiliary field to zero using its equation of motion. Then

QQ
∣∣∣
θ2,F=0

= −4ψψψ̇ψ̇ + 3i
(
ψψ̇ + ψψ̇

)
ẋ2 + ẋ4 . (5.17)

We compare this with the Lagrangian of the theory written in components,

L = ẋ2 + i
(
ψψ̇ − ψ̇ψ

)
+ F 2 . (5.18)

To further develop our intuition we focus on the bosonic sector. Settting F = 0 and
ψ̇ = ψ̇ = 0, we have the relation

L2 = QQ . (5.19)

Interpreting the Euclidean Lagrangian as the Hamiltonian, we see that deforming the
bosonic sector by the product QQ is equivalent to a deformation by H2. Next, the lowest
component of DQ is given by

DQ
∣∣∣
θ=θ=0

= −F 2 + 2iF ẋ+ ẋ2 . (5.20)

When the auxiliary field equation of motion is satisfied, the lowest component of DQ is
therefore ẋ2, which is the Hamiltonian for the bosonic degree of freedom.

Using the intuition that QQ has H2 as its top component and DQ has H as its bottom
component, a natural guess for a combination of superfields which has the deforming
operator (1.7) as its top component is QQ

1
2−2λDQ , which suggests the flow equation

∂A
∂λ

= QQ
1
2 − 2λDQ

. (5.21)

This is exactly the form of the deformation (4.33) which we obtained by dimensionally
reducing the supercurrent-squared operator in (1 + 1)-dimensions.

5.3 Solution for one scalar

We now provide evidence that this is on-shell equivalent to the deformation (1.7). In
particular, we will check that the flow (5.21) generates the expected superspace Lagrangian
on-shell for the case of a single real scalar field X. From the expressions (5.15) for the
conserved charges in the free theory, we see that the leading deformation is −ληη̃DXDX.
Motivated by this, we will make an ansatz for the finite-λ solution of the form

A = f(ληη̃)DXDX , (5.22)

with f(y) → 1 − y + O(y2) as y → 0. Using the definition (5.12) we can compute the
conserved superspace charges associated with a Lagrangian of this form, which gives

Q = −(η + η̃)
(
fDX + ληη̃f ′DX + λ2η̃f ′′D(ηη̃)DXDX

)
+ ληf ′DXDXDη̃

+ fηDX − λf ′D(ηη̃)DXDX ,

Q = (η + η̃)
(
fDX + ληη̃f ′DX + λ2ηf ′′D(ηη̃)DXDX

)
+ λη̃f ′DXDXDη

− fη̃DX − λf ′D(ηη̃)DXDX . (5.23)
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The product of these is therefore

QQ = −
(
ηη̃
(
f + f ′ηλ(η + η̃)

) (
f + f ′λη̃(η + η̃

))
DXDX . (5.24)

We now pause to investigate an implication of the superspace equations of motion which
will allow us to simplify this expression for QQ and therefore the flow equation. This will
be the analogue of equation (3.18), which we used to make a similar simplification in the
field theory setting. The equation of motion (5.6) can be written as

0 = D

(
δA

δ(DX)

)
+D

(
δA

δ(DX)

)
+DD

(
δA
δη

)
+DD

(
δA
δη̃

)
, (5.25)

which for our ansatz (5.22) is

0 = D
(
fDX

)
−D (fDX) +DD

(
η̃λf ′DXDX

)
+DD

(
ηλf ′DXDX

)
. (5.26)

Suppose we multiply both sides of equation (5.26) by DXDX. Since (DX)2 = (DX)2 = 0,
several terms vanish by nilpotency, and the surviving contributions are

fηDXDX − fη̃DXDX + λη̃2ηf ′DXDX − λη2η̃f ′DXDX = 0 . (5.27)

It follows that

(
f − λf ′ηη̃

)
(η − η̃)DXDX = 0 . (5.28)

Therefore, either η − η̃ or f − λf ′ηη̃ vanishes when multiplying DXDX. The latter cannot
hold identically unless f(y) = c

y which is not consistent with the boundary condition
f(0) = 1. We conclude that

(η − η̃)DXDX = 0 . (5.29)

In particular this means that, on-shell, we can replace η with η̃ or vice-versa when either is
multiplying DXDX. Making this replacement in the expression (5.24) for the bilinear QQ
gives

QQ = −ηη̃
(
f + 2f ′ληη̃

)2
DXDX . (5.30)

Next, to construct our deforming operator (5.21), we consider the combinations DQ and
DQ (which are of course related by the conservation equation). Any term appearing in these
combinations which is proportional to DX or DX will not contribute to the deformation,
since the function of DQ appearing in (5.21) comes multiplying QQ, which is already
proportional to DXDX. The only terms which we need to retain are therefore

DQ ∼ −ηη̃f − 2λη2η̃2f ′ ,

DQ ∼ ηη̃f + 2λη2η̃2f ′ , (5.31)
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where by “∼” we mean equivalence up to terms proportional to DX or DX, which vanish
when multiplyingDXDX by nilpotency. We have thus found that, on-shell, the combination
of superfields which drives our flow equation can be written as

QQ
1
2 − 2λDQ

= − ηη̃(f + 2ληη̃f ′)2

1
2 + 2ληη̃(f + 2ληηf ′)

DXDX . (5.32)

In terms of the dimensionless variable y = ληη̃, the flow equation then reduces to an
ordinary differential equation for f(y),

f ′(y) = 2 (f(y) + 2yf ′(y))2

1 + 4y (f(y) + 2yf ′(y)) , (5.33)

whose solution is

f(y) = 1
4y
(√

1 + 8y − 1
)
. (5.34)

We therefore conclude that the all-orders solution to the flow equation (5.21) is on-shell
equivalent to the expression

A(λ) = 1
4ληη̃

(√
1 + 8ληη̃ − 1

)
DXDX . (5.35)

In order to facilitate comparison with our earlier analysis, we re-scale λ→ λ
2 and replace

η, η̃ with their explicit expressions. The resulting deformed quantum mechanics theory is

S =
∫
dt dθ dθ

1
2λ(DDX)(DDX)

(
−1 +

√
1 + 4λ(DDX)(DDX)

)
DXDX . (5.36)

We see that this matches (3.34) on the nose after identifying X with Φ and setting the
metric to g(Φ) = 1. The case with a non-trivial metric for the (0 + 1)-dimensional theory
can be treated similarly.

One could also consider flows driven by other operators constructed from Q and Q.
These are supersymmetric versions of the f(H) deformations considered in [73, 74]. From
the perspective of the quantum mechanics theory, there is no distinguished choice of f(H)
since any such function drives a qualitatively similar flow where all energy eigenstates
remain eigenstates and their energy eigenvalues change in a prescribed way. The only reason
for treating the particular f(H) corresponding to TT as special is because of its connections
to interesting deformations of higher dimensional theories.

As an example of a different supersymmetric f(H) deformation, one could instead
study the flow

∂A
∂λ

= QQ , (5.37)

which is analogous to the deformation ∂L
∂λ = H2. If we again restrict to the case of a single

real scalar considered above, and use the result (5.30) which is equivalent to QQ on-shell,
this leads to a differential equation

f ′(y) =
(
f(y) + 2yf ′(y)

)2
, (5.38)

– 32 –



J
H
E
P
0
8
(
2
0
2
2
)
1
2
1

for the function f(y) appearing in the ansatz (5.22). This is a quadratic equation that can
be solved for f ′(y) as

f ′(y) = 1− 4yf(y)−
√

1− 8yf(y)
8y2 . (5.39)

However, we note that this deformation, and flows driven by other functions of Q and Q, will
not be related to the usual two-dimensional TT deformation by dimensional reduction. Only
the operator appearing in (5.21) has this property, and even in that case, the relationship
only holds for deformations of conformal 2d seed theories since the derivation relies on the
trace flow equation.

6 Theories with N = 1 supersymmetry

Thus far we have focused on theories with two real supercharges, such as 2d field theories
with N = (1, 1) supersymmetry or quantum mechanical theories with N = 2 supersymmetry.
However, one could carry out a totally analogous study of theories with only a single real
supercharge. This would be relevant for theories with either N = (0, 1) orN = (1, 0) theories
in two dimensions, which then reduce to theories with N = 1 SUSY in (0 + 1)-dimensions.

We will not carry out an extensive analysis of the three different methods for constructing
a supersymmetric TT deformation in the N = 1 case, as we did in sections 3–5 for N = 2.
However, in this section we will briefly outline some of the ingredients that would go into
such an analysis, and argue that similar results hold.

6.1 Noether currents in N = 1 theories

Consider a theory of a collection of N = 1 superfields Xi in (0 + 1)-dimensions. The N = 1
superspace has a single anticommuting coordinate θ, so the superfields Xi can be expanded
in components as

Xi = xi + iθψi . (6.1)

The supercovariant derivative associated with θ is

D = ∂

∂θ
− iθ ∂

∂t
, (6.2)

which satisfies the algebra

{D,D} = −2i∂t . (6.3)

As a simple example, the free superspace Lagrangian for such a collection of N = 1
superfields is written

A = i

2Ẋ
iDX i . (6.4)
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We now carry out a version of the Noether procedure which was used to obtain expressions
for the supercurrents Q,Q in the N = 2 case. Consider a superspace Lagrangian that
depends on the Xi, their superspace derivatives DX i, and their time derivatives Ẋi:

S =
∫
dt dθA(Xi, DX i, Ẋi) . (6.5)

We note that, unlike in the N = 2 case, the superspace Lagrangian A in (6.5) must be
fermionic so that the action S itself is bosonic. The variation of the superspace Lagrangian
is given by

δA = δX i δA
δX i

+ δ(DX i) δA
δ(DX i) + δẊi δA

δẊi
. (6.6)

The only difference in our Noether procedure is that, rather than specializing to the case of
time translations δX i = (δt)Ẋi as we did for N = 2, we will now consider both translations
along the Grassmann coordinates θ and along time. The reason for this is that we would
like to construct current bilinears, which requires the presence of two current-like objects
such as Q and Q. However, for the N = 1 case, there is only a single current associated
with time translations, and (as we will see shortly) its square does not have TT as its top
component. Similarly, there is a single current associated with superspace translations, but
because this current is fermionic we cannot square it to construct bilinears since the result
would vanish by nilpotency.12

With this motivation, we will again re-express (6.6) using the product rule as before.
Now we must be careful because δ does not commute with D since we are allowing
translations along the θ direction as well. One finds

δA = δX i δA
δX i

+D
(
δX i

) δA
δ(DX i) +

([
δ,D

]
Xi
)( δA

δ(DX i)

)
+ δẊi δA

δẊi

= D

(
δX i δA

δ(DX i)

)
+ ∂t

(
δX i δA

δẊi

)
− δX i

(
− δA
δX i

+D

(
δA

δ(DX i)

)
+ ∂t

(
δA
δẊi

))
+
([
δ,D

]
Xi
)( δA

δ(DX i)

)
. (6.7)

Exactly as before, in equation (5.6), we can read off the superspace equation of motion:

δA
δX i

= D

(
δA

δ(DX i)

)
+ ∂t

(
δA
δẊi

)
. (6.8)

Now consider a combined superspace translation of the form t→ t+ δt, θ → θ + δθ for a
commuting constant δt and a Grassmann constant δθ. The resulting change in the fields is

δX i = (δθ) ∂
∂θ
Xi + (δt)Ẋi . (6.9)

12Another way to see that we need two separate currents is that the superspace Lagrangian for N = 1 is
itself fermionic. Thus we could not have constructed a fermionic current bilinear out of a single conserved
current, since the square of such a current is necessarily bosonic.

– 34 –



J
H
E
P
0
8
(
2
0
2
2
)
1
2
1

Using the definition DX i = ∂
∂θX

i − iθẊi, we can rewrite

∂

∂θ
Xi = DX i + iθẊi , (6.10)

and therefore repackage the variation (6.9) as

δX i = (δθ)DX i + (δt+ i(δθ)θ)Ẋi

= (δθ)DX i + (δt̃)Ẋi , (6.11)

where in the last step we have defined δt̃ ≡ δt+ i(δθ)θ. Likewise the variation δA of the
superspace Lagrangian can be written in the same way:

δA = (δθ)DA+ (δt̃)∂tA . (6.12)

We can also compute the commutator[
δ,D

]
Xi = δ(DX i)−D(δX i)

=
(
(δθ)DDX i + (δt̃)DẊi

)
−D

(
(δθ)DX i + (δt̃)Ẋi

)
= −i(δθ)Ẋi . (6.13)

Substituting these variations into (6.7) and going on-shell so that we can discard the
equation of motion term gives

(δθ)DA+ i(δt̃)DDA = D

(
(δθ)(DX i) δA

δ(DX i)

)
+DD

(
(δθ)(DX i)

(
δA

δDDX i

))
+D

(
i(δt̃)(DDX i) δA

δ(DX i)

)
+DD

(
i(δt̃)(DDX i)

(
δA

δDDX i

))
− i(δθ)Ẋi

(
δA

δ(DX i)

)
, (6.14)

where we have rewritten time derivatives in terms of D using ∂t = iD2. Collecting terms
then gives

0 = −(δθ)
[
D

(
(DX i) δA

δ(DX i) −D
(

(DX i) δA
δ(DDX i)

)
+A

)
+ iẊi

(
δA

δ(DX i)

)]

+ iD

[
(δt̃)(DDX i) δA

δ(DX i) +D

(
(δt̃)(DDX i) δA

δ(DDX i)

)]
− i(δt̃)DDA . (6.15)

It is now tempting to commute the δt̃ past various instances of D in the second line of (6.15)
and define two charge-like objects corresponding to the quantities in brackets, namely

Qθ = (DX i) δA
δ(DX i) − iD

(
(DX i) δA

δẊi

)
+A ,

Qt = −iẊi δA
δ(DX i) +D

(
Ẋi δA

δẊi

)
−DA . (6.16)
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One might then conclude that DQt must vanish and DQθ must be related to the remaining
term iẊi

(
δA

δ(DXi)

)
, giving us one conserved charge and one object which is not conserved

but which has a known source. However this manipulation is not valid because δt̃ itself
depends on θ and therefore does not commute with D. If we first set δθ = 0 and consider
only a finite δt, then δt̃ = δt does commute with the D operator so we can write

0 = (δt)D
[(

(DDX i) δA
δ(DX i) +D

(
(DDX i) δA

δ(DDX i)

)
−DA

)]
, (6.17)

which is interpreted as a conservation equation of the form

DQt = 0 , (6.18)

with Qt defined in (6.16). Next let us set δt = 0 and look at a fermionic translation δθ.
First we must account for the additional terms introduced when commuting δt̃ = i(δθ)θ
past the D operators. Note that

−i(δt̃)DDA = (δθ)θDDA
= (δθ) (−D (θDA) +DA)
= (δθ)D (A− θDA) . (6.19)

Then one finds

(δθ)DQθ = −D
[
(δθ)θ(DDX i) δA

δ(DX i) +D

(
(δθ)θẊi δA

δẊi

)]
+ (δθ)D (A− θDA)

− i(δθ)Ẋi
(

δA
δ(DX i)

)
= (δθ)D

[
θ(DDX i) δA

δ(DX i) −D
(
θẊi δA

δẊi

)
+A− θDA

]
− i(δθ)Ẋi

(
δA

δ(DX i)

)
= (δθ)D

[
θQt − Ẋi δA

δẊi
+A

]
− i(δθ)Ẋi

(
δA

δ(DX i)

)
= (δθ)

(
Qt − θDQt −D

(
Ẋi δA

δẊi

)
+DA− iẊi

(
δA

δ(DX i)

))
. (6.20)

Using the conservation equation DQt = 0, we then have

DQθ = Qt −D
(
Ẋi δA

δẊi

)
+DA− iẊi

(
δA

δ(DX i)

)
. (6.21)

Thus we see that the “charge” Qθ is not an independent quantity but is in fact related to the
time translation charge Qt, as one might expect from the intuition that the supersymmetry
algebra relates successive superspace translations to time translations through D2 = −i∂t.
In particular, Qθ itself is not conserved in general. We can quantify this non-conservation
by acting again on (6.21) with D and using DQt = 0 to write

∂tQθ = ∂t

(
A− Ẋi δA

δẊi

)
− iD

(
Ẋi
(

δA
δ(DX i)

))
. (6.22)
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Therefore one could a modified charge Q̃θ and a correction term Qc by

Q̃θ = Qθ + Ẋi δA
δẊi

−A , Qc = iẊi
(

δA
δ(DX i)

)
, (6.23)

with the property that

∂tQ̃θ +DQc = 0 . (6.24)

6.2 Definition of QθQt deformation and solution for one scalar

To get some intuition for these objects constructed in the preceding subsection, we compute
them for the free theory (6.4):

Qθ = iDX iẊi ,

Q̃θ = iDX iẊi ,

Qc = −1
2Ẋ

iẊi ,

Qt = 1
2Ẋ

iẊi . (6.25)

Note that Qθ, Q̃θ are fermionic and Qt is bosonic, as expected for Noether currents
associated with Grassmann translations and time translations respectively. Therefore the
product QθQt is a fermion and thus an appropriate quantity to add to the Lagrangian as a
deformation. In particular, for the free theory we note that the top component of QθQt is
proportional to (ẋiẋi)2, which is the square of the Hamiltonian. Using this intuition, we
propose an N = 1 version of the SUSY-QM deformation as

∂A
∂λ

= 1
2QθQt . (6.26)

In this proposal we do not divide by the combination 1
2 − 2λQt, as one might expect from

the analogous f(Q,Q) expression in the N = 2 case. This may seem strange because
the form of this deformation is very different than in the preceding cases that we have
considered. However, we will later see that there is an equivalent rewriting of this flow
equation as

∂A
∂λ

= Q̃θQt
1 + 2λQt

. (6.27)

For the class of Lagrangians that we focus on in this work, the solution to the flow
equation (6.27) is identical to the solution of (6.26). We will explore the reason for this
in section 6.3, where we see that there is a simpler way to understand this equivalence by
studying an analogous pair of deformations in the non-supersymmetric setting. For the
moment, however, we will work with the first deformation (6.26).

First, we argue that this is on-shell equivalent to the dimensional reduction of the
supercurrent-squared flow for theories with N = (0, 1) supersymmetry. In particular, we
will solve the flow equation (6.26) for the seed theory of a single free boson and verify that
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it matches the dimensional reduction of the corresponding 2d flow. We make an ansatz for
the finite-λ deformed superspace Lagrangian of the form

A(λ) = i

2f(λẊ2) ẊDX . (6.28)

Next we compute the supercurrents. To ease notation, we define the dimensionless combi-
nation ξ = λẊ2. Then using (6.16) one finds

Qθ = if(ξ)ẊDX ,

Qt = 1
2Ẋ

2f(ξ) + i

2D
(
Ẋ
(
f(ξ) + 2ξf ′(ξ)

)
DX

)
− i

2D
(
f(ξ)ẊDX

)
. (6.29)

Here we have used thatDX is fermionic so (DX)2 = 0. Furthermore, sinceQθ is proportional
to DX, when we construct the combination QθQt, any terms proportional to DX in Qt
will drop out by nilpotency. Therefore we can write

Qt ∼
1
2
(
f(ξ) + 2ξf ′(ξ)

)
Ẋ2 , (6.30)

where “∼” means equality up to terms which will not contribute in the product QθQt. The
flow equation (6.26) therefore becomes

i

2f
′(ξ)Ẋ3DX = i

2 ·
(
f(ξ)

(
f(ξ) + 2ξf ′(ξ)

))
Ẋ3DX , (6.31)

whose solution is

f(ξ) = 1
2ξ
(
1−

√
1− 4ξ

)
. (6.32)

Thus the full solution for the deformed superspace Lagrangian is

A(λ) = i

4λẊ2

(
1−

√
1− 4λẊ2

)
ẊDX . (6.33)

As we mentioned around equation (6.27), the same flow can be acquired by deforming with
another operator

Q̃θQt
1 + 2λQt

, (6.34)

similar to the irrelevant operators used in the previous sections. To see that (6.34) yields
the same flow, we first compute

Q̃θ = Qθ + Ẋ
δA
δẊ
−A

= if(ξ)ẊDX + i

2
(
f(ξ) + 2f ′(ξ)ξ

)
ẊDX − i

2f(ξ)ẊDX

= i(f(ξ) + ξf ′(ξ))ẊDX.

(6.35)

Then using the expression for Qt from (6.30), we have

Q̃θQt
1 + 2λQt

= (f(ξ) + ξf ′(ξ)) (f(ξ) + 2ξf ′(ξ))
1 + ξ (f(ξ) + 2ξf ′(ξ))

iẊ3DX

2 . (6.36)
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The flow equation ∂A
∂λ = Q̃θQt

1+2λQt leads to the following differential equation:

f ′(ξ) = (f(ξ) + 2ξf ′(ξ))(f(ξ) + ξf ′(ξ))
1 + ξ(f(ξ) + 2ξf ′(ξ)) , (6.37)

which has the same solution as in (6.32) from the flow triggered by the operator QθQt,

f(ξ) = 1−
√

1− 4ξ
2ξ . (6.38)

Therefore, the operator Q̃θQt
1+2λQt also triggers the same TT -like flow. Notice that from

Qt = DQ̃θ +Qc, we can express the operator Q̃θQt
1+2λQt in terms of the conserved currents Qc

and Q̃θ, satisfying the conservation equation

∂tQ̃θ +DQc = 0. (6.39)

We now argue that this result is on-shell equivalent to the dimensional reduction of the
solution to the supercurrent-squared flow for the corresponding N = (0, 1) theory in 2d.
The dimensional lift of this theory can be written as

S =
∫
d2x dθD+Φ∂++Φ . (6.40)

A superspace Noether procedure totally analogous to the one that we have used in the
N = (1, 1) analysis of section 3 can also be applied here. The input of this process is a
superspace Lagrangian A(D+Φ, ∂±±Φ). The output is a conservation equation

∂−−S+++ +D+T++−− = 0,
∂−−S−−+ +D+T−−−− = 0,

(6.41)

where S±±+ and T±±−− are superfields given by:

S+++ = δA
δ(∂−−Φ)∂++Φ,

S−−+ = δA
δ(∂−−Φ)∂−−Φ−A,

T++−− = δA
δ(D+Φ)∂++Φ +D+

(
δA

δ(∂++Φ)∂++Φ
)
−D+A,

T−−−− = δA
δ(D+Φ)∂−−Φ +D+

(
δA

δ(∂++Φ)∂−−Φ
)
.

(6.42)

The N = (0, 1) supercurrent-squared flow is defined by

∂

∂λ
A(λ) = S+++T−−−− − S−−+T++−−. (6.43)

Beginning from the seed superspace Lagrangian (6.40), we make an ansatz for the finite-λ
solution:

A(λ) = f(λ∂++Φ∂−−Φ)D+Φ∂−−Φ. (6.44)
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After evaluating the supercurrents, computing the combination of bilinears (6.43), and
simplifying the differential equation, one finds that

x
∂f

∂x
= −xf2 − 2x2f

∂f

∂x
, (6.45)

where x = λ∂++Φ∂−−Φ. The solution is

f(x) =
√

1 + 4x− 1
2x . (6.46)

Thus the full deformed superspace Lagrangian is

A(λ) = 1
2λ∂++Φ∂−−Φ

(√
1 + 4λ∂++Φ∂−−Φ− 1

)
D+Φ∂++Φ . (6.47)

Upon dimensional reduction, we identify the superfield Φ with X and all partial derivatives
∂±±Φ are proportional to Ẋ. Doing this, we see that — up to various constant factors that
can be absorbed into rescalings — the solution (6.47) exactly matches (6.33).

We will not perform the analogue of the analysis in section 4, where we dimensionally
reduced the supercurrent-squared operator itself using the trace flow equation, in this
N = 1 case. However such a procedure should certainly be possible. One would identify a
superfield analogue of the trace flow equation which relates S±±+ and T±±−−, and then use
this to eliminate the appropriate linear combinations of these superfields that correspond
to the x directions. One might even expect the process to be simpler in this case, since the
dimensionally reduced deformation should simply be a bilinear of the form QθQt rather
than a rational function of supercurrents. In particular, it appears T++−− is structurally
similar to Qt, so one might believe that the correct dimensionally reduced deformation
would be some product of T++−− with another superfield that plays the role of Qθ.

We conclude this subsection with a few comments about the relationship between
N = 1 and N = 2 theories.

1. Every SUSY-QM theory with N = 2 SUSY can be viewed as a special case of a
theory with N = 1 supersymmetry. Therefore, one can always write the f(Q,Q)
deformation for a theory with N = 2 supersymmetry and integrate out one of the
fermionic directions to obtain a deformation in N = 1 superspace. The resulting
N = 1 deformation should be on-shell equivalent to the combination QθQt which we
described in this section, since this generates the appropriate supercurrent-squared
flows for N = 1 theories. Evidence for the on-shell equivalence of these two flows in
the case of 2d field theory was given in [58]; the SUSY-QM case should be similar.

2. As pointed out in [93], quantum mechanical theories with N = 1 supersymmetry are
often equivalent to N = 2 theories because they have a hidden second supersymmetry.
In particular, this will be true for any N = 1 theory with a fermion number symmetry.
A second hidden supersymmetry of this form was not present in the case of a single
N = 1 superfield which we considered in this section, but it would be present in other
cases (such as those with an even number of N = 1 superfields). For those theories,
one should be able to present the supercurrent-squared deformation of the theory in
either N = 1 or N = 2 language, and we expect the results to be equivalent on-shell.
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6.3 The HT form of the deformation

We now turn to the question of why our deforming operator in the case of N = 1 su-
persymmetry could be written either as a bilinear QθQt or a rational function of the
form

Q̃θQt
1 + 2λQt

, (6.48)

although these two expressions appear quite different. This equivalence is related to an exact
correspondence between two expressions involving the Hamiltonian which holds for TT -like
deformations of any kinetic seed theory. It will be simplest to discuss this correspondence
in the purely bosonic context first, without any supersymmetry.

To begin, we first point out that there are two natural notions of energy in a theory
of quantum mechanics. The first is the Hamiltonian H of the system. Since we work in
Euclidean signature and interpret the Euclidean Lagrangian as the Hamiltonian, H is the
object which sits under the integral sign in the action:

SE =
∫
dtH . (6.49)

The second notion of energy is the (Euclidean) Hilbert stress tensor T (Hilb). In (0 + 1)
dimensions, there is only a single component of the stress tensor. It is defined by coupling
the theory to a worldline metric gtt, or equivalently an einbein et, and computing

T (Hilb) = − 2√
gtt

δSE
δgtt

= H − 2∂H(gtt)
∂gtt

∣∣∣
gtt=1

. (6.50)

Here by H(gtt) we mean the expression obtained by minimally coupling H to a worldline
metric. Since generically ∂H(gtt)

∂gtt 6= 0, the two notions of energy differ. Thus far we have
been somewhat sloppy and used the symbols H and T interchangeably, for instance in the
deformation (1.7). Although this deformation is written in terms of T , it is more properly
a flow equation for the object H appearing under the integral in the Euclidean action.
Therefore we will be more careful and write

∂H

∂λ
= H2

1
2 − 2λH

, (6.51)

whose solution is

H(λ) = 1
4λ
(
1−

√
1− 8λH0

)
. (6.52)

We recall that (6.51) was derived using the trace flow equation, which means that it is
valid only for theories that descend from CFTs. In particular, it does not hold for theories
with a potential. We now restrict to a particular class of theories for which (6.51) is valid,
which we will refer to as “kinetic seed theories.” Explicitly, we assume that the undeformed
Hamiltonian does not depend on any dimensionful scale but depends linearly on the inverse
metric gtt when coupled to worldline gravity. For instance, the free scalar Hamiltonian

H0(gtt) = ẋ2 = gtt∂tx∂tx (6.53)
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belongs to this class of theories. Since H0(gtt) depends linearly on the metric which is a
scalar, the Hilbert stress tensor (6.50) associated with H(λ) is simply

T (Hilb) = H(λ)− 2 ∂H
∂H0

∂H0(gtt)
∂gtt

∣∣∣
gtt=1

= H(λ)− 2H0
∂H

∂H0
. (6.54)

We now ask whether we can express the right side of the flow equation (6.51) more simply
in terms of H and T (Hilb), rather than simply H. One can verify by explicit calculation
that, for a Hamiltonian of the form (6.52), the operator appearing in the flow is

H2

1
2 − 2λH

=
(√

1− 8λH0 − 1
)2

8λ2√1− 8λH0
. (6.55)

On the other hand, using the expression (6.54) for the Hilbert stress tensor, one can also
compute the combination

HT (Hilb) = H

(
H − 2H0

∂H

∂H0

)
= −

(√
1− 8λH0 − 1

)2
16λ2√1− 8λH0

. (6.56)

Therefore, for this class of theories, we conclude that

HT (Hilb) = −1
2

(
H2

1
2 − 2λH

)
. (6.57)

The upshot of this discussion is that, up to an overall constant which can be absorbed
into the scaling of λ, we are free to deform either by the combination H2

1
2−2λH or by the

combination HT (Hilb). We refer to this latter expression as the HT form of the flow equation
(dropping the superscript (Hilb) for simplicity).

This HT deformation has a simple interpretation.13 From the form (6.50) of the Hilbert
stress tensor, one has

∂H

∂λ
= H2 − 2H ∂H

∂gtt
. (6.58)

This is reminiscent of the form of the inviscid Burgers’ equation (1.3) for the cylinder energy
levels of a TT -deformed CFT in two dimensions, which we repeat:

∂En
∂λ

= En
∂En
∂R

+ 1
R
P 2
n . (6.59)

In the zero-momentum sector, the Burgers’ equation (1.3) admits an implicit solution

En(R, λ) = En(R+ λEn(R, λ), 0) . (6.60)
13In the holographic context, we interpret the addition of the double-trace HT operator as a change in

boundary conditions for the dual BF gauge theory fields. This is discussed in [84].
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This has the interpretation that the theory has effectively been put on a cylinder with an
“energy-dependent radius.” That is, energy eigenstates with different energy eigenvalues see
different effective geometries.

There is no straightforward analogue of the limit Pn = 0 in the quantum mechanical
case, but if we restrict to the case of small energies so that H2 is negligible compared to H ,
the equation (6.58) becomes

∂H

∂λ
≈ −2H ∂H

∂gtt
, (6.61)

which likewise has the implicit solution

H(gtt, λ) = H(gtt − 2λH(gtt, λ), 0) . (6.62)

This has the similar interpretation that different states in the deformed quantum mechanics
theory see different effective energy-dependent metrics. Note that the relative factor of −2
between the rescalings in (6.60) and (6.62) is because the relation (6.57) between HT and
the dimensionally reduced TT operator required us to re-scale λ by a factor of −1

2 .
We now see why there were also two equivalent ways of writing the deformation in the

N = 1 case. On-shell, the quantity Qθ is always proportional to the superspace Lagrangian
A for deformations of a free seed theory, whereas the time translation current Qt contains
the Hilbert stress tensor. Therefore, the top component of their product is proportional to

QθQt
∣∣∣
θ
∼ HT (Hilb) . (6.63)

That is, the bilinear QθQt is the superspace analogue of the HT deformation. On the other
hand, the second form of the deformation

Q̃θQt
1 + 2λQt

, (6.64)

is the N = 1 superspace analogue of the H2
1
2−2λH form of the deformation. The fact that

we obtained square root solutions to the two flows driven by QθQt and Q̃θQt
1+2λQt is therefore

expected, since this is related to the statement that we likewise obtain square roots solutions
in the bosonic sector using either HT or H2

1
2−2λH .

7 Discussion

In this work, we have proposed a manifestly supersymmetric deformation of the superspace
Lagrangian for a theory of N = 2 quantum mechanics, namely

∂A
∂λ

= f(Q,Q) ≡ QQ
1
2 − 2λDQ

. (7.1)

The conserved superfields Q,Q are computed using a Noether prescription, for which we have
given explicit formulas that apply to a class of theories involving scalar superfields Xi. We
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have also performed several non-trivial checks that this superspace deformation is on-shell
equivalent to the dimensional reduction of the N = (1, 1) supercurrent-squared deformation
of two-dimensional field theories, at least for conformally invariant seed theories. For such
conformal seeds, this deformation is therefore a natural candidate for the appropriate
supersymmetric version of TT for (0 + 1)-dimensional theories.

Additionally, we proposed two manifestly supersymmetric deformations for an N = 1
quantum mechanics theory

∂A
∂λ

= 1
2QθQt and ∂A

∂λ
= Q̃θQt

1 + 2λQt
. (7.2)

Although the form of these deformation appear different, we showed that they produce
the same flow equation when applied to the seed theory of a single free scalar. This flow
equation matches the dimensional reduction of the N = (0, 1) supercurrent-squared operator.
We also interpreted the equivalence of these deformations by pointing out an analogous
rewriting which holds for deformations of the bosonic sector of kinetic seed theories, namely
−1

2HT and H2
1
2−2λH .

There remain several directions for future research. We will outline a few of these in the
subsections that follow and make some speculative remarks about what one might expect.

More supersymmetry. Perhaps the most obvious follow-up to this work is to exhibit
a version of our superspace deformation with differing amounts of supersymmetry. For
instance, it should be possible to define deformations of SUSY-QM theories which are
related by dimensional reduction to the supercurrent-squared deformations of theories with
(0, 2) or (2, 2) supersymmetry [61, 62]. The case of an N = 4 SUSY-QM theory which
descends from a N = (2, 2) field theory is perhaps more interesting, since such field theories
are especially well-studied.

It may be that such an analysis is more amenable to a different technique for obtaining
the supercurrents than the one we have used here. In the 2d case, such supercurrents for
theories with N = (1, 1) supersymmetry were straightforward to compute using either
a Noether procedure [58] or via coupling to supergravity [59]. However, in the case of
2d , N = (2, 2) theories, it was more convenient to couple to the appropriate supergravity
rather than employing a Noether approach [61]. From this intuition, one might expect
that the computation of supercharges for deformations of N = 4 SUSY-QM theories might
likewise be easier to perform by coupling to worldline supergravity.

It would also be interesting to understand TT -type deformations in theories with even
more supersymmetry, like N = 8 or maximal SUSY.14 Such an endeavor is complicated by
the absence of a conventional superspace which makes all of the supersymmetries manifest.
One could of course work with a reduced superspace like N = 2 or N = 4 which geometrizes
a subset of the supersymmetry transformations, but the action of the non-manifest SUSY
generators will then be corrected order-by-order in λ after turning on a TT -like deformation.

14Other deformations of QM theories with more supersymmetry, albeit not related to TT , have been
considered in [94–97]. See also [98–100] for discussions of the super-Schwarzian with more SUSY.
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Connections to supersymmetric BF gauge theory. Another direction concerns the
holographic interpretation of these results. We have emphasized that part of the motivation
for considering deformations of (0 + 1)-dimensional theories whose Lagrangians take the
purely-kinetic form

S =
∫
dt gij(X)ẊiẊj , (7.3)

where the Xi are coordinates on a Lie group G, is that such theories are dual to BF gauge
theories with gauge group G. This relationship holds with or without supersymmetry; in
the SUSY case, the dual is a SUSY-BF theory and the quantum mechanics theory admits
an interpretation as a particle moving on a supergroup. In the special case that the gauge
group is an extension of SL(2,R), the dual BF theory is also related to JT gravity [101]
and to other interesting theories such as SYK.

There have been some interpretations offered for the holographic interpretations of the
TT -like deformation of quantum mechanics in these various dual theories, at least in the
non-manifestly-supersymmetric context. For instance, connections to cutoff JT gravity and
to the Schwarzian have been discussed in [73, 74, 102–104], related analyses of the dual
matrix models have been carried out in [50, 105], and a connection to modified boundary
conditions in BF gauge theory is discussed in [84].

It would be very interesting to extend these holographic interpretations to the case
with manifest supersymmetry. In the undeformed case, the correspondence between the
quantum mechanical theory of a particle moving on an SL(2,R) group manifold and the
BF gauge theory with gauge group SL(2,R) is lifted to the supersymmetric setting by
promoting the gauge group to either OSp(1 | 2) for N = 1 SUSY or OSp(2 | 2) for N = 2
SUSY, as is nicely reviewed in section 4.2 of [81]. Here OSp(N | 2p) is the orthosymplectic
supergroup, a particular sub-supergroup of GL(N | 2p), which is the supergroup version of
the general linear group GL(N).15 We focus on the N = 2 case which was the main focus
of this paper.16 This N = 2 supersymmetric BF theory was analyzed in [107, 108], and its
action can be written as

SN=2
BF =

∫
M

STr (ΦF )− 1
2

∮
∂M

STr(ΦAt) , (7.4)

where STr is the supertrace, Φ is the supersymmetric analogue of the scalar φ appearing
in the usual BF Lagrangian LBF = tr(φF ), and F = dA + A ∧A is the field strength of
a supersymmetric gauge connection A . In this N = 2 case, each of A and Φ admit an
expansion in terms of the 8 generators of the osp(2 | 2) Lie superalgebra; these consist of
the usual 3 generators of sl(2,R), along with four fermionic generators, and one additional
bosonic u(1) generator required by supersymmetry.

15In particular, OSp(N | 2p) is the sub-supergroup of GL(N | 2p) which preserves a symmetric bilinear
form on the bosonic elements (analogous to the orthogonal group) and preserves a symplectic form on the
fermionic elements (analogous to the symplectic group); hence the name “orthosymplectic”.

16Various aspects of the N = 1 version of this theory, including its relationship to the super-Schwarzian
and the properties of boundary-anchored Wilson lines, have been studied in [106].
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One would like to understand what modification of the bulk super-BF theory corresponds
to turning on the f(Q,Q) operator in the boundary SUSY-QM theory. We can view this
question as the dimensional reduction of a related query: what has happened to a bulk AdS3
supergravity theory, written in Chern-Simons variables, when the dual supersymmetric field
theory is deformed by supercurrent-squared? The standard intuition from AdS/CFT is that
the addition of a double-trace operator in the field theory corresponds to a modification
of the boundary conditions for the bulk fields [109, 110], although it is not clear that this
intuition should generically apply for irrelevant double-trace deformations as opposed to
relevant (or marginal) operators. In the non-supersymmetric context, it has been argued
that this expectation is indeed correct, and that activating TT in a 2d CFT corresponds to a
rotation of the sources and expectation values in the dual SL(2,R)×SL(2,R) Chern-Simons
theory [111]. A similar rotation of boundary conditions appears in the non-supersymmetric
setting of a 2d BF gauge theory which is dual to a boundary (0 + 1)-dimensional theory [84].
It would be interesting to see whether the deformed super-BF theory, dual to a quantum
mechanics theory deformed by f(Q,Q) likewise admits such an interpretation, perhaps
involving a linear mixing of the coefficient functions multiplying the 8 generators of osp(2 | 2)
in the expansions of Φ and A.

Deformations of multiple scalars; target space geometry. Another avenue for
investigation is seeking solutions to the f(Q,Q) flow equations for theories with multiple
scalars. In this work, we have only managed to find a closed-form result (5.36) for the
deformed theory in the case of a single scalar, and even then, we have only found an
expression which is on-shell equivalent to the full solution since we have imposed one
implication of the superspace equations of motion. But of course the most interesting
examples are the deformed theories of a particle moving on a higher-dimensional manifold,
such as the 3-dimensional SL(2,R) group manifold relevant for the Schwarzian theory. We
have already mentioned in the analysis of the corresponding question for 2d field theories,
around equation (3.12), that solving the flow in this context is much more difficult because
one expects a system of coupled PDEs for the functions multiplying the various two-fermion,
four-fermion, etc. terms in the superspace Lagrangian. However, if one could find a partial
or approximate solution with multiple scalars — perhaps after going partly on-shell, as we
have done here — the result could be quite interesting.

For example, given such a solution, we could ask whether the resulting deformed theory
still admits an interpretation as a point particle moving on some deformed target-space
geometry. One might think not, since our intuition is that the ordinary TT flow in 2d
generates theories which are no longer local QFTs. Analogously, one might expect that
f(Q,Q) deformed SUSY-QM theories exhibit some signature of non-locality. For instance,
the particle whose position is described by the Xi in the undeformed theory could become
delocalized into a “fuzzy particle” over a length scale controlled by λ. It would be interesting
to ask whether other properties of the target manifold can be probed in this case, or if the
target manifold itself is changed.

On the other hand, in the undeformed theory, the Witten index of the theory is controlled
by the Euler characteristic of the target space. Since our f(Q,Q) flow is the supersymmetric
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extension of an f(H) deformation — which does not affect the energy eigenstates but merely
modifies their energy eigenvalues — it seems that this index remains unchanged under our
deformation, which suggests that the target space topology is also unmodified.

There is some evidence that other indices cannot flow under TT -like deformations. For
instance, related indices like the elliptic genus have been shown not to flow under the usual
TT in two dimensions if the seed theory is conformal [37], and the same conclusion seems
likely to hold if the undeformed theory is integrable but not conformal [49]. Nonetheless,
it would be worthwhile to make this intuition precise in the SUSY-QM case, and perhaps
look for other index-like quantities that do flow under f(Q,Q) and which may admit an
interpretation via target space geometry.

Including a potential; vacuum structure. Another puzzle is how one should analyze
TT -like deformations of more general quantum mechanical theories than (7.3), which is
just a collection of scalars with a metric. The most obvious extension is to include a
superpotential, writing

L =
∫
d2θ

(
gij(X) ẊiẊj +W (X)

)
. (7.5)

However, the presence of a superpotential means that this theory does not descend via
dimensional reduction from a CFT in two dimensions; a generic superpotential, such as a
mass term, introduces a scale which breaks conformal invariance. We therefore cannot rely
on the trace flow equation to dimensionally reduce the 2d supercurrent-squared deformation
and argue that the result is on-shell equivalent to the f(Q,Q) deformation of section 5.

Without the trace flow equation, our only available technique for studying this case is to
solve the corresponding flow equation in two dimensions and dimensionally reduce. As a toy
example, we can perform this exercise for the non-supersymmetric theory of a single boson
φ subject to a generic potential V (φ), which is presented in appendix B. One interesting
feature of this procedure is that, at least for small momenta, the effective potential seen by
a particle is schematically modified as

V (φ) −→ V (φ)
1− λV (φ) . (7.6)

Therefore, the potential naïvely appears to diverge when V (φ) is of order 1
λ . This was also

discussed in the context of N = (2, 2) theories in 2d in [61]. We emphasize that this is
a purely classical result concerning the flow equation for the Lagrangian, which does not
necessarily imply anything about the Hilbert space of the deformed theory. A fully quantum
analysis is needed to understand the fate of these poles. However, the possible presence of
poles is quite interesting and hints at a modification of the vacuum structure of the theory.
For the moment, we will allow ourselves to speculate about the physical implications of the
existence of such poles if indeed they persist at the quantum level.

We mention a few explicit potentials by way of examples. For instance, suppose we
begin with the harmonic oscillator potential V0(φ) = m2φ2, where we take m = 1 for
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simplicity. The potential deforms as follows:

-2 -1 1 2
ϕ

1

2

3

4

ϕ2

−→
-2 -1 1 2

ϕ

-6

-4

-2

2

4

ϕ2

1-ϕ2

(7.7)

It is very natural to ask what has happened to the basis of eigenfunctions after applying this
deformation. The undeformed potential is the usual harmonic oscillator, whose eigenstates
are Hermite polynomials. However, the deformed potential has infinite barries at φ = ±1.
One might believe that there is a complete set of eigenfunctions for the deformed potential
which are forced to vanish at φ = ±1. The regions |φ| > 1 seem to have been “cut off” from
the theory by applying this deformation.

Another interesting case to consider is a linear potential V (φ) = φ.

-3 -2 -1 1 2 3
ϕ

-3

-2

-1

1

2

3

ϕ

−→ -3 -2 -1 1 2 3
ϕ

-4

-2

2

ϕ

1-ϕ

(7.8)

Now the change is even more drastic: the undeformed linear potential had eigenstates which
were Airy functions, but they were non-normalizable because the potential was unbounded
below. The deformation has now inserted a hard cutoff at φ = 1. To the left of this
cutoff, the potential is bounded below as V (φ) > −1. Has the TT deformation “cured”
the non-normalizability of the linear potential? If so, is there a relationship between the
undeformed eigenstates (Airy functions) and the eigenstates of the deformed potential?

For a third example, the double-well potential V (φ) =
(
1− φ2)2 deforms as

-2 -1 1 2
ϕ

2

4

6

8

1-ϕ22

−→

-2 -1 1 2
ϕ

-10

-5

5

10

1-ϕ22

1- 1-ϕ22

(7.9)
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Now there is a pole at φ = 0, so the two wells have become separated by an infinite potential
barrier. Again, one might wonder what has happened to the Hilbert space. Is there still a
complete basis of eigenfunctions, but now localized to each of the disconnected wells?

The above examples are presented only in the context of ordinary quantum mechanics
without any supersymmetry. However, one might hope that the presence of some SUSY
might be useful in learning about the fate of the Hilbert space after such a deformation.
For instance, the spectrum of ground states in a supersymmetric theory exhibits a great
deal of structure and one can extract data about it using index-like quantities. Is there
some calculation in SUSY-QM theory which is sensitive to the fact that the two ground
states in the double well (7.9) may have been “cut off” from one another in the deformed
theory? It would be exciting to gain a better understanding of the Hilbert space of these
deformed quantum mechanics theories and to understand whether TT or f(Q,Q) indeed
has effects on the infrared structure of the kind described here.

Relation to supersymmetric SYK. We mention one final future direction, along the
lines of the previously mentioned question about the relationship of this deformation with
super-BF theory, but which is also related to the issue of defining our f(Q,Q) deformation
in quantum mechanics with a potential.

It is well-known that the Schwarzian or particle-on-a-group theory is also related to
the SYK model of Majorana fermions with random all-to-all interactions [112, 113]. The
SYK model has a supersymmetric extension [114–116]; for an (incomplete) collection of
related works on the SYK model and supersymmetry, see [117–131] and references therein.

The application of TT -like deformations in quantum mechanics to the non-super-
symmetric SYK model was carried out in [74] (see also [132]). In that case, after shifting
the ground state energy of the model by a constant E0, it was pointed out that there are
two choices for how to perform the deformation:

1. First perform the average over disorder in the undeformed model, and then deform
the Hamiltonian by the desired TT or f(H) operator.

2. Begin by deforming the Hamiltonian by some f(H) operator and then perform the
disorder average in the deformed theory.

The authors of [74] point out that it is easier to do the former, since if one first deforms the
Hamiltonian then this procedure will introduce higher powers of the disorder which makes
the resulting disorder average difficult. Although the latter provides a microscopic picture
of physics.

It would be interesting to carry out a version of this analysis in the supersymmetric
setting using the techniques developed in the present work. To do this, one should use
a presentation of the supersymmetric SYK action which is written directly in N = 1 or
N = 2 superspace, such as those developed in [114, 133]. For concreteness, let us focus on
the N = 2 case. The degrees of freedom for the N = 2 super-SYK model are packaged into
chiral superfields Ψ,Ψ which obey the constraints

DΨ = DΨ = 0 . (7.10)
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The Lagrangian is a sum of a kinetic F -term plus a holomorphic superpotential:

L =
∫
dθAkin +

(∫
dθApotential + c.c

)
,

Akin = ΨDiΨ Apotential = Ci1···ikΨi1 · · ·Ψik . (7.11)

To study the appropriate TT -type deformation of such a superspace Lagrangian, one would
therefore need to generalize the analysis presented in this work to allow for fermionic
superfields and potentials. One could also attempt to understand deformations of SYK via
the dimensional reductions of appropriate two-dimensional field theories [115, 134], or to
investigate TT -like deformations in related disordered supersymmetric models [135–137].

We hope to return to some of these interesting questions in future works.

Acknowledgments

We would like to thank Per Kraus, Ruben Monten, Mukund Rangamani, Savdeep Sethi, and
Gabriele Tartaglino-Mazzucchelli for helpful discussions. S.E. is supported from the Bhaumik
Institute. C.F. is supported by U.S. Department of Energy grant DE-SC0009999 and by
funds from the University of California. H.-Y.S. is supported from the Simons Collaborations
on Ultra-Quantum Matter, which is a grant from the Simons Foundation (651440, AK).
Z.S. is supported from the US Department of Energy (DOE) under cooperative research
agreement DE-SC0009919 and Simons Foundation award No. 568420.

A Change of coordinates to complex supercharges

In this appendix, we carry out the change of variables to express our SUSY-QM deformation
f(Q+,Q−) of (4.33) in complex coordinates, ultimately arriving at the expression (4.34)
for f(Q,Q). This is a straightforward application of the change of variables described in
equations (2.9)–(2.11) of section 2.1, but because it involves some on-shell manipulations
we have moved the calculation to this appendix to avoid cluttering the main body.

We shift to complex supercovariant derivatives via

D = 1√
2

(D+ + iD−) , D = 1√
2

(D+ − iD−) , (A.1)

and similarly rotate the supercurrents via

Q = 1√
2

(Q− + iQ+) , Q = 1√
2

(Q− − iQ+) . (A.2)

Note that since Q± are fermionic, one has

QQ = 1
2
(
Q2
− − iQ−Q+ + iQ+Q− +Q2

+

)
= iQ+Q− . (A.3)
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Next we compute the supercovariant derivatives. The combination DQ is

DQ = 1
2 (D+ − iD−) (Q− + iQ+)

= 1
2
[
D+Q− + iD+Q+ − iD−Q− +D−Q+

]
, (A.4)

or after using the conservation equation D+Q− + D−Q+ = 0 and the on-shell condition
that D+Q+ = −D−Q−,

DQ = iD+Q+ . (A.5)

Likewise,

DQ = 1
2 (D+ + iD−) (Q− − iQ+)

= 1
2 (D+Q− − iD+Q+ + iD−Q− +D−Q+) , (A.6)

and again this can be written on-shell as

DQ = −iD+Q+. (A.7)

Thus we see that the new complex supercurrents satisfy the conservation equation DQ+
DQ = 0, since

DQ+DQ = iD+Q+ − iD+Q+ = 0 (A.8)

when the equations of motion are satisfied.
We now return to the expression f(Q+,Q−) defining our deformation, which can now

be written in terms of complex coordinates as∫
dt dθ+ dθ−

Q+Q−
4λD+Q+ + 1 =

∫
dt dθ+ dθ−

−iQQ
−4iλDQ+ 1

. (A.9)

We would now like to eliminate the factors of i that have appeared in (A.9). One factor
arises from the change of measure via dθ dθ = i dθ+ dθ−. A second factor arises because, as
pointed out in the discussion below equation (5.12), there is a relative factor of i arising
between the natural expressions appearing in the Noether procedures which define Q,Q as
opposed to Q+,Q−. Therefore, to obtain an appropriate matching, we will re-scale

Q −→ −iQ , Q −→ −iQ . (A.10)

After incorporating these two factors, we find∫
dt dθ+ dθ−f(Q+,Q−) =

∫
dt dθ dθ

QQ
−4λDQ+ 1

. (A.11)

Finally, we scale out an overall factor of 1
2 to write

f(Q+,Q−) ∼ QQ
1
2 − 2λDQ

≡ f(Q,Q) , (A.12)

where ∼ indicates proportionality on-shell (as we have used conservation equations to relate
D+Q+ to DQ). We chose to rescale by this prefactor in order to make the right side more
closely match equation (1.7). This is the form quoted in equation (4.34).
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B Dimensional reduction without trace flow equation

As we have pointed out in the main body of this paper, the deformation (1.7) is very
convenient for deforming quantum mechanical theories that descend from 2d CFTs via
dimensional reduction. However, for theories with a potential, the trace flow equation (2.19)
fails and we cannot use this expression for the reduced TT deformation. In this case, our
only recourse is to directly study the TT -deformed field theory in two dimensions, then
compactify one spatial direction on a circle and truncate to the lowest Fourier mode.

In this appendix, we will obtain the Hamiltonian for such a theory by first solving the
2d flow equation and then performing the circle compactification only at the final step.
Suppose we begin with an undeformed Lagrangian

LE(λ = 0, φ) = 1
2∂

µφ∂µφ+ V (φ), (B.1)

with a positive sign on the potential because we work in Euclidean signature for now. The
deformed Lagrangian at finite λ appears in equation (2.8) of [35] (see also [29]) as

LE(λ, φ) = − 1
2λ

(1− 2λV
1− λV

)
+ 1

2λ

√(1− 2λV
1− λV

)2
+ 2λ

(
∂µφ∂µφ+ 2V

1− λV

)
. (B.2)

Again, here the metric appearing in the ∂µφ∂µφ contraction is δµν because we are in
Euclidean signature. The prescription for rotating back to Minkowski signature is to
multiply the Lagrangian by an overall minus sign, then to invert the sign on the time
derivative of φ, giving

LM (λ, φ) = 1
2λ

(1− 2λV
1− λV

)
− 1

2λ

√(1− 2λV
1− λV

)2
+ 2λ

(
φ′2 − φ̇2 + 2V

1− λV

)
. (B.3)

Here we used φ̇ = ∂φ
∂t and φ′ = ∂φ

∂x . We can study the behavior of LM in a few limits:

LM (λ→ 0, φ) = 1
2 φ̇

2 − 1
2φ
′2 − V (φ),

LM (λ, φ)
∣∣∣
φ̇=φ′=0

= − V (φ)
1− λV (φ) ,

LM (λ, φ)
∣∣∣
V=0

= 1
2λ

(
1−

√
1 + 2λ

(
φ′2 − φ̇2)) ∼ LNambu-Goto. (B.4)

To write this as a Hamiltonian, we will resort to Legendre transform. The conjugate
momentum to φ is

Π = ∂L
∂φ̇

= φ̇√
1− 2λ (1− λV )

(
φ̇2 − φ′2

) . (B.5)

The relation (B.5) can be inverted to find

φ̇ = Π ·
√

1 + 2λ(1− λV )φ′2
1 + 2λ(1− λV )Π2 . (B.6)
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The Hamiltonian is then defined by

H = Πφ̇− L, (B.7)

after replacing all instances of φ̇ with Π using (B.6). This gives

H = φ′2·
√

1 + 2λ(1− λV )Π2

1 + 2λ(1− λV )φ′2

+ 1
2λ(1− λV ) ·

√
1 + 2λ(1− λV )Π2

1 + 2λ(1− λV )φ′2 + V

1− λV −
1

2λ(1− λV ) . (B.8)

The dependence on Π2 is masked by the terms involving square roots. Near λ = 0, (B.8) is

H = 1
2Π2 + 1

2φ
′2 + V (φ) +O(λ), (B.9)

which is the expected Hamiltonian for a scalar field with a potential.
Next we would like to put the coordinate x on a circle of radius R, Fourier-expand

the x-dependence of φ(x, t), and integrate the Hamiltonian H over the circle to obtain a
quantum-mechanical Hamiltonian associated with the modes φ(n)(t). We expand φ(x, t) in
modes as

φ(x, t) =
∞∑
n=0

(
φ(n)
c (t) cos

(2πn
R

x

)
+ φ(n)

s (t) sin
(2πn
R

x

))
. (B.10)

Inserting (B.10) into (B.8) and integrating over the circle would, in principle, leave us
with a Hamiltonian for infinitely many interacting particles φ(n)

c (t) and φ(n)
s in quantum

mechanics. Such an analysis seems intractable in general, so for simplicity, let us restrict to
the zero-momentum sector17

φ(x, t) ≡ φ(t). (B.11)

This gives us a Hamiltonian

H =
√

1 + 2λ(1− λV )Π2

2λ (1− λV ) + V

1− λV −
1

2λ(1− λV ) . (B.12)

For small λ, (B.12) looks like

H = 1
2Π2+V (φ)+λ

(
V (φ)2− 1

4Π4
)

+ 1
4λ

2
(
4V (φ)3+Π4V (φ)+Π6

)
+O(λ3). (B.13)

The leading term is the usual Hamiltonian H = p2

2m + V if we identify p = Π, m = 1. But
this usual Hamiltonian receives an infinite series of corrections, which affect both the kinetic
and potential terms (and mix them). The purely kinetic part of (B.12) reduces to

H
∣∣∣
V=0

= −1 +
√

1 + 2λΠ2

2λ , (B.14)

17Restricting to the zero-momentum sector also allowed us to use the implicit solution (6.60) to the
inviscid Burgers’ equation, which was pointed out in [29].
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which is a (0 + 1)-dimensional analogue of the Nambu-Goto action. If we alternatively set
Π = 0 and consider the pure potential piece, from (B.12) we find

H
∣∣∣
Π=0

= V (φ)
1− λV (φ) . (B.15)

This looks identical to the result of deforming a pure-potential Hamiltonian by the function
f(H) = H2, rather than the more complicated operator (1.7) which is equivalent to TT for
theories that descend from deformations of 2d CFTs. To be explicit, if we consider the flow
equation

∂H

∂λ
= H2 , (B.16)

with initial condition H(0) = H0, then the solution is trivially

H(λ) = H0
1− λH0

. (B.17)

At low momentum where the kinetic term can be neglected and the undeformed Hamiltonian
is approximately the pure potential H = V (φ), this is exactly (B.15). In particular, the
Hamiltonian diverges when V (φ) = 1

λ . This is purely a classical statement about the
solution to an f(H)-type flow equation, which is not necessarily indicative of the structure
of the quantum theory, but we will nonetheless make some speculative remarks about this
pole in section 7.
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