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1 Introduction and summary

There is a widely held belief that UV complete theories of quantum gravity in AdS are dual
to individual non-gravitational quantum mechanical systems on the boundary of AdS [1].
On the other hand, if we consider two copies of such a boundary quantum system, in gravity,
we are instructed to sum over all geometries that end on two copies of such asymptotically
AdS boundary. This includes summing over wormhole geometries connecting the two
boundaries. Those have desirable properties, explaining many non-trivial predictions of the
boundary quantum mechanics from the bulk point of view, like the Page curve [2–4], the
non-decaying behavior of correlation functions [5–7], complexity [8] and the lack of global
symmetries [9, 10]. To explore such features of gravity we seemingly need wormholes.
However wormholes also introduce a tension with the dual quantum mechanics, known
as the factorization puzzle - naively, wormholes imply a nontrivial variance for say the
two-boundary partition function Z(β1, β2) 6= Z(β1)Z(β2), in contradiction with the dual
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quantum mechanics where partition functions are just ordinary numbers. This means that
gravity systems are naively dual to ensembles [2, 3, 6, 11–35], unless something cancels
the variance in this ensemble. Since we believe that UV complete theories are dual to
individual quantum mechanical systems and therefore do factorize, we should identify the
effect that cancels the variance due to wormholes.

In [36] we investigated, in a bottom-up approach, how factorization of UV complete
models trickles down to the low energy EFT. In models that reduce to JT gravity in the IR,
we found that factorization demands the existence of a tiny but universal bilocal correction
(in spacetime), which can counter the variance due to wormholes. Schematically

= 0 , (1.1)

where the wiggly blue line represent the effect of the bilocal correction which makes seem-
ingly disconnected parts of the spacetime interact. The bilocal is universal because the
same interaction results in factorization for all the dilaton gravities obtained by adding
any possible local dilaton potential to JT [37, 38]

I[Ulocal] = −1
2

ˆ
Σ

d2x
√
gΦ(R+ 2)− 1

2

ˆ
Σ

d2x
√
g Ulocal(Φ) + universal bilocal. (1.2)

We find that this bilocal interaction always results in a discrete spectrum in the gravita-
tional path integral of (1.2): in other words, at least in our models, factorization always
implies spectral discreteness. This discrete spectrum of black hole states is determined
entirely by the local dilaton potential Ulocal(Φ).

The construction of such theories gives us the opportunity to make a few widely dis-
cussed concepts in quantum gravity rather concrete, which will be the purpose of this
paper. Our main results are the following:

1. Explicit construction of alpha-states in JT gravity. The baby universe Hilbert
space of any theory can be constructed by acting on a state with no-boundaries,
typically called the Hartle-Hawking state, with boundary creation operators. Alpha-
states are the special states in this space that are eigenfunctions of all such operators,
leading to inner products in the baby universe Hilbert space that factorize. Marolf
and Maxfield [12] constructed such states in a 2d topological model that does not
exhibit any of the rich physics of black holes. One of the achievement in this paper
is to give a concrete geometric construction for all the alpha-states of JT gravity, a
model which has served as a great exploration ground for black hole physics. We find
that each factorizing model of dilation gravity (1.2) can be mapped to an explicit
operator e−Îdeform[Ulocal] (3.9), which is formed from boundary creation operators and
can thus act on the Hartle-Hawking state. When acting on this state, such operators
create the alpha-states of JT gravity

e−I[Ulocal] = e−IJT−Ilocal−Inonlocal ⇔ |α〉 = Nα e−Îdeform[Ulocal]|HH〉 . (1.3)
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Each alpha-state |α〉 is associated to an energy spectrum that is the same as that of
the factorizing dilaton gravity with potential Ulocal. All spectra can be obtained by
choosing suitable potentials Ulocal and, therefore, we obtain a basis of alpha-states
that spans the entire baby universe Hilbert space. Formula (1.3) shows two perspec-
tives on alpha-states in JT. Either an alpha-state provides a complicated prescription
for the path integral where we sum over all geometries that end on the many bound-
aries, present in e−Îdeform[Ulocal]. Alternatively, a more physical picture is that an
alpha-state can be viewed as not including additional boundaries, but as specifying
the spacetime action to I[Ulocal] in (1.2) of a factorizing dilaton gravity theory. The
fact that these two perspectives are the same is a type of open-closed duality that
we shall explain in section 3. Having the exact form of all alpha-states (1.3) allows
to explicitly revisit and shed light on the original proposals of Coleman, Giddings
and Strominger [39, 40]: wormholes can be “integrated-out” by taking an ensem-
ble average over couplings in bulk theories that preserve locality,1 or they can be
“integrated-in” by considering an average in bulk theories where the universal non-
local term is present.2

2. Coexistence of different bulk descriptions yields null states. As described
above, theories with different Ulocal can have identical spectra and can therefore
be thought of as quantum gravities with different actions that have identical non-
perturbative UV completions. In section 4 we present and investigate large classes of
such examples. Denoting the local potentials of two theories with an identical energy
spectrum by U

(1)
local and U

(2)
local, the associated alpha-states will be indistinguishable

by any measurement, which means they are physically equivalent. This causes the
difference of these states to be null (meaning it has zero overlap with all states,
including itself)(

Nα(1)e−Îdeform[U(1)
local] −Nα(2)e−Îdeform[U(2)

local]
)
|HH〉 ∼ 0 . (1.4)

The physical Hilbert space is obtained after quotienting out such null states [12].
This highlights a physical interpretation of null states, which was not obvious in
the multi-boundary description of Marolf and Maxfield. They describe redundancies
in the spacetime action of the gravitational path integral: theories with different
actions can be non-perturbatively equivalent, even if they have different semiclassical
descriptions. For instance, they can even have different black hole solutions:

+ subleading corrections = + subleading corrections,

(1.5)
1Not to be confused with the ensemble average typically discussed in the boundary theory.
2This latter ensemble average turns out to be equivalent to the ensemble typically discussed in the

boundary theory.
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where on the left, we have schematically represented in the semi-classical contribution
to the partition function in theory 1, while on the right we represented it in theory 2.
The meaning of the subleading corrections will be concretely addressed. This is an ex-
plicit example showing that multiple bulk descriptions can coexist. This is a concrete
realization in gravity of this idea put forward in [41] in the context of the SYK model.

3. A quantum mechanical dual for black holes without a chaotic spectrum. In
section 5 we study canonical JT gravity, the factorized version of old-school JT grav-
ity: (1.2) with Ulocal = 0. In the geometric expansion, it only receives contributions
from the disk geometry

Z(β) = + non-perturbative effects , (1.6)

where this geometry captures fluctuations around JT gravity’s black hole saddle.3

Nevertheless, we show via the deformed matrix integral that our version of canonical
JT gravity has a discrete spectrum, instead of a continuous one [42]. This spectrum
is obtained from the following QM problem4

HJT ψ(x, λ) = λψ(x, λ) , HJT = −e−2S0 d2

dx2 + u(x) , ψ(0, λ) = 0 , (1.7)

where u(x) is obtained by solving the JT string equation, which to leading order is√
uI1(2π

√
u) = 2πx. Apart from the crucial Dirichlet boundary condition at x = 0

this is the same QM problem that one considers in the orthogonal polynomials ap-
proach to matrix models [45, 46] (see [44, 47–49] for more recent discussions of this
approach in the context of JT gravity). Surprisingly, since this should be a theory
of black holes [50], this spectrum does not have random matrix level statistics, but
rather, adjacent eigenvalues behave as,5

λi+1 − λi = 1
ρ0,JT(λ) , (1.8)

and are thus (locally) evenly spaced. We also study the null deformations of this
theory in detail in the semiclassical limit and see that they give rise to different
semiclassical bulk descriptions.

3This makes it similar to what [42, 43] call canonical JT gravity. There the disk was defined to be the
sole contribution. The important distinction between our approach and that of [42, 43] is that we have
a matrix integral description which allows us to explore the discreteness of the spectrum and the precise
quantum mechanical dual of the bulk theory.

4This Hamiltonian was also recently discussed in [44], however that paper concerns only the ensemble
averaged version of JT gravity, which does not factorize, nor have a discrete spectrum. The point of [44]
is that in some sense, even within the ensemble, there is a “preferred” spectrum, whereas we are studying
the microscopic theory with that spectrum which can be explicitly determined from the path integral in
the gravitational theory.

5Here, ρ0,JT(λ) is the leading density of stats in JT gravity.
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2 Review of gravity factorized

The idea of [36] was to imagine starting from a factorizing UV complete bulk theory. After
integrating out all degrees of freedom in the decoupling limit of a large near extremal black
hole in such a theory, except for the 2d metric g and the dilaton Φ, one should also obtain
a factorizing theory in 2d. Such a theory is given by JT gravity at leading order in eS0 ,
with S0 the entropy of the black hole

−IJT = 1
2

ˆ
Σ

d2x
√
gΦ (R+ 2) +

ˆ
∂Σ

du
√
hΦ (K − 1) + S0χ(Σ) , (2.1)

however it should also have both local and non-local corrections in its effective action. The
goal of [36] was to find what kind of non-local terms are required in order for this 2d theory
to factorize.

Surprisingly, the only non-local terms that result in a theory that factorizes to all orders
in a genus expansion was universal (it was independent of the detailed spectrum of black
hole microstates that the resulting factorizing theory could have) and unique (other models
do not factorize). Explicitly, the theory factorizes exactly if the non-local interaction is
purely bilocal

−Inonlocal = −1
2 e
−2S0

ˆ ∞
0

db b
ˆ

Σ1

d2x1
√
g1

ˆ
Σ2

d2x2
√
g2 e
−2π(Φ1+Φ2) cos(bΦ1) cos(bΦ2)

= −1
2

ˆ ∞
0

db bOG(b,Φ)OG(b,Φ) , (2.2)

where we introduced a basis of functions OG(b,Φ), insertions of which correspond with
inserting geodesic boundaries in the gravitational path integral [36]

OG(b,Φ) = e−S0

ˆ
d2x
√
g e−2πΦ(x) cos (bΦ(x)) ⇔ b (2.3)

The most general factorizing dilaton gravity has besides this bilocal also a local dilaton
potential, which can be expanded in the same basis

− Ilocal − Inonlocal =
ˆ ∞

0
db bZbrane(b)OG(b,Φ)− 1

2

ˆ ∞
0

db bOG(b,Φ)OG(b,Φ) . (2.4)

As we shall see, the expansion coefficient Zbrane(b) does not influence factorization, or the
fact that the theory becomes discrete. Its role will be to determine the specific discrete
spectrum of the theory and thus encode its “microstructure”.

2.1 Geometric argument

Suppose we compute the partition function in this deformed theory

Z(β) = 1
Z factorized

∑
geometries with
one boundary

ˆ
DgDΦ e−IJT−Ilocal−Inonlocal , (2.5)
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where Z factorized is a normalization factor given by the gravitational path integral performed
on geometries with no asymptotic boundary,

Z factorized =
∑

geometries with
no boundaries

ˆ
DgDΦ e−IJT−Ilocal−Inonlocal . (2.6)

We now expand out Ilocal + Inonlocal, just like one does with interaction vertices when
computing Feynman diagrams in an interacting QFT. The Feynman rules are that we
insert geodesic boundaries with smeared boundary conditions, from expanding out Ilocal

ˆ ∞
0

db bZbrane(b)OG(b,Φ) ⇔ (2.7)

Expanding out Inonlocal gives correlated geodesic boundaries, or correlated branes

−1
2

ˆ ∞
0

db bOG(b,Φ)OG(b,Φ) ⇔ (2.8)

Expanding local interactions, one sums over all possible brane insertions (2.7), schemati-
cally

Z(β) = + ... ((
+ + ... ((

+ + ... ((
x

+ + +
+ bilocal contrib.

(2.9)
It is important to emphasize that one must in principle include disconnected closed space-
times, with no asymptotic boundaries. When only local interactions are present, the par-
tition function is normalized by dividing by such closed spacetimes. However, the bilocal
interactions (2.8) can connect closed universes to universes that have an asymptotic bound-
ary, and we end up with an expansion of the type

Z(β) =
+ + + + ... ((

+ + ... (x (
+ + ... ((

. (2.10)

Crucially, the bilocal can also connect disconnected components of spacetimes with different
asymptotic boundaries, as in (1.1), this is the key mechanism for factorization, as we now
review.

Consider the sum of all connected contributions to the n-boundary gravitational par-
tition function. We can organize this sum by grouping together geometries that share the
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part Σ below

n∑
k=0

∑
σn
k

=
n∑
k=0

(−1)k
(
n

k

)
= 0 .

(2.11)
Here, Σ could contain any number of handles and any numbers of branes that could either
be connected or disconnected. Using the explicit form of the bilocal interaction (2.2), one
finds that one can replace each connected brane homotopic to an asymptotic boundary by
minus a wormhole

= -
(2.12)

From this, the rewriting of the sum as in (2.11) follows and therefore, the connected
contribution to the gravitational path integral vanishes, meaning that the theory factorizes

Z(β1, . . . , βn) = Z(β1) . . . Z(βn) . (2.13)

Applying this cancellation mechanism between wormhole geometries and bilocal in-
teractions, one finds that the computation of the gravitational path integral with a single
asymptotic boundary reduces to only the disk and the spacetime with a single brane (called
half-wormhole in [35, 41])

Z(β) = + non-perturbative corrections. (2.14)

The local dilaton potential Ulocal(Φ) encoded in Zbrane(b) (2.4) enters only through this
half-wormhole.

One might want to argue at this point that adding the bilocal term to the action is
equivalent to an ad-hoc removal of all wormhole geometries.6 We emphasize that this is not
the case. The mechanism is a numerical cancellation between wormhole amplitudes, and
Feynman diagrams for bilocal interactions. Before expanding out the interaction vertices
in (2.5) we just have a non-local interacting field theory and a sum over geometries. The
fact that, in the end, the calculation of expectation values in this theory simplifies to only
two integrals (2.14) is a happy and surprising conclusion. We hope that this effective field
theory which solves factorization provides an exploration ground to understand the origin
of the degrees of freedom that were integrated out, in particular, those responsible for the
bi-local interaction.

6We thank Juan Maldacena for bringing up this point.
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Perhaps more importantly, there is an important difference in formulas between our
theory and the ad-hoc theory with no wormholes. In our case one finds non-perturbative
corrections to (2.14). Indeed, as we now review, the deformation (2.5) has an equivalent
description in the matrix integral [11]. One finds that the spectrum of (2.14) is discrete
because of the bilocal deformation, regardless of the specific form of Zbrane(b). This non-
perturbative effect can, as far as we can tell, not be derived in the ad-hoc theory. We need
wormholes, albeit cancelling ones, and their associated matrix integral description for that.

2.2 Matrix integral argument

Observables in (undeformed) JT gravity can be computed using a matrix integral [11]

ZJT =
ˆ

dH e−LTrVJT(H) =
L∏
i=1

ˆ
C

dλi exp
(
− L

L∑
i=1

VJT(λi) +
L∑
i 6=j

log(λi − λj)
)
, (2.15)

where λi are the random eigenvalues of H. JT gravity is a large L double scaling limit of
this [11], but that does not play an important role in this paper.

The dictionary between gravity and matrix integrals is that inserting boundaries in the
gravitational path integral corresponds with computing expectation values of single-trace
operators in the matrix integral - for instance

Z(β1 ...βn)= 1
ZJT

ˆ
dHTr

(
e−β1H

)
...Tr

(
e−βnH

)
e−LTrVJT(H) =

〈
Tr(e−β1H) ...Tr(e−βnH)

〉
.

(2.16)
In particular, inserting a geodesic boundary in the gravity path integral is dual to insert-
ing [36, 51]

OG(b) = 2
b

Tr cos(bH1/2)−
ˆ ∞

0
dE ρ0,JT(E) 2

b
cos(bE1/2) ⇔ b (2.17)

So the expansion of the deformations in (2.5) corresponds in the matrix integral with
expanding out

e−Ilocal−Inonlocal (2.18)

⇔ exp
(ˆ ∞

0
dbbOG(b)zbrane(b)+ 1

2

ˆ ∞
0

db1 b1
ˆ ∞

0
db2 b2OG(b1)OG(b2)zbrane(b1, b2)

)
,

where the correspondence between the smearing functions zbrane(b) and zbrane(b1, b2) and
the local and nonlocal dilaton potentials, written in terms of OG(b,Φ) as in (2.2) and (2.4),
is to be determined.

Naively this looks trivial, however there is one key subtlety in the dictionary between
gravity and random matrix theory. In the gravitational path integral there are no degen-
erate cylinders (i.e. cylinders of zero surface that end on two geodesics of equal length).
However, in the matrix integral, degenerate cylinders contribute contact terms in the cor-
relators of the operator OG(b).7 Consequently, they give a non-trivial contribution in the

7The matrix integral assigns the first term in 〈OG(b1)OG(b2)〉conn = δ(b1 − b2)/b1 + O(e−2S0 ) to a
degenerate cylinder.
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expansion of (2.18) in the matrix integral (2.15). One should therefore view zbrane(b1, b2) as
a bare brane propagator, while the propagator between branes seen through (2.2) should be
understood as the dressed propagator. The dressed propagator (2.2) is obtained from the
bare propagator zbrane(b1, b2) by resumming the Dyson series of bare propagators connected
via degenerate cylinders

(2.19)

In formulas this becomes

− 1
b1
δ(b1 − b2) = zbrane(b1, b2) +

ˆ ∞
0

db3b3 zbrane(b1, b3)zbrane(b3, b2) + . . . (2.20)

whose solution one finds to be zbrane(b1, b2) = −qδ(b1−b2)/b1 with q →∞. The degenerate
cylinders similarly affect the relation between zbrane(b) (red) and Zbrane(b) (blue), one
obtains the Dyson equation

(2.21)

Plugging in the solution for zbrane(b1, b2) this equation becomes

Zbrane(b) = lim
q→∞

1
1 + q

zbrane(b) ⇒ zbrane(b) = (q + 1)Zbrane(b) . (2.22)

Thus according to (2.18) we should compute observables in the deformed matrix integral

Z factorized =
ˆ

dHe−LTrVJT(H)+(q+1)
´∞

0 db bOG(b)Zbrane(b)− q2
´∞

0 db bOG(b)OG(b) (2.23)

Looking at this one might think that the perturbative expansion in q is horrible, but it
is not, precisely because we can always resum the Dyson series (2.19).8 One then just
recovers the gravitational genus expansion of the previous subsection, as in (2.10).

More importantly, instead of expanding out this matrix integral deformation pertur-
batively, we can enforce the limit q → ∞ directly in the matrix integral action. Because
we are being forced to take the q → ∞ limit in order to match the geometric expansion
in the gravitational path integral, the matrix integral in (2.23) localizes at solutions to
its saddle-point equations. Doing the integrals over b in (2.23), we find that the large q
saddle-point equations can be explicitly written as

∀ i = 1 . . . L : LV ′[Zbrane](λi) = 1
2λi

+ 2
L∑
j 6=i

1
λi − λj

, V [Zbrane] = VJT + Vlocal[Zbrane] .

(2.24)
The local deformation Vlocal of the dilaton potential for generic Zbrane is worked out in
section 4.1, where we need it explicitly. This set of L equations has (typically) a unique
dominant saddle for the L eigenvalues λi. The matrix integral localizes to this saddle, so

8We thank Steve Shenker for emphasizing this point.

– 9 –



J
H
E
P
0
8
(
2
0
2
2
)
0
7
1

when we compute the partition function Z(β) =
〈

Tre−βH
〉
we find the discrete answer

expected of a conventional QM system

Z(β) =
L∑
i=1

e−βλi , (2.25)

where λi are the saddle point of (2.24), these depend on the brane one-point function
through V [Zbrane]. It is important that when computing observables in matrix integrals,
we normalize by Zfactorized from (2.23) before taking q → ∞, such that the q-and λi
dependent one-loop determinants cancel in the expectation value of all observables.

3 Alpha states in JT gravity

In this section we explain how the discrete and factorizing models of dilaton gravity with
deformation Ilocal + Inonlocal (2.5) give rise to the alpha-states of pure JT gravity (the
theory with no deformations). We give explicit expressions for these states in dilaton
gravity variables, but use the non-perturbative matrix integral setup to show that they
indeed form a basis of the baby universe Hilbert space.

Before getting there it will be useful to quickly review the construction of the baby
universe Hilbert space applied in AdS/CFT [12]. The idea is that one can interpret multi-
boundary gravitational path integrals as expectation values of boundary creating operators
in a no-boundary state |HH〉. Explicitly in JT multi-boundary partition functions can be
viewed as

Z(β1 . . . βn) = 〈HH|Ẑ(β1) . . . Ẑ(βn)|HH〉 ∼
∑

geometries with
n boundaries

ˆ
DgDΦ e−IJT , (3.1)

with Ẑ(β) an operator that creates a boundary with usual asymptotic AdS2 boundary
conditions [52–54]. Other boundary conditions [55] have their own operators, they are
linear combinations of Ẑ(β). This is similar to how we compute correlators in QFT in
the path integral by summing over Feynman diagrams (left), or by computing expectation
values of φ̂ in a vacuum by expanding out in creation and annihilation operators (right) [21].
One key difference is that here all creation operators Ẑ(β) are assumed to commute [12].

The states
Ẑ(β1) . . . Ẑ(βk)|HH〉 , (3.2)

span the Hilbert space of baby universes [12] and all gravitational path integrals (3.1) can
be viewed as inner products between two states in this space. Since the Ẑ(β) commute,
they can be simultaneously diagonalized by so-called alpha-states

Ẑ(β)|α〉 = Zα(β)|α〉 . (3.3)

Gravity path integrals (3.1) then indeed naturally acquire the structure of an ensemble
average

Z(β1 . . . βn) = 〈HH|Ẑ(β1) . . . Ẑ(βn)|HH〉 =
∑
α

Pα Z(β1 . . . βn)α , Pα = |〈α||HH〉|2 ,

(3.4)

– 10 –
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and gravitational amplitudes within one alpha-state trivially factorize

Z(β1 . . . βn)α = 〈α|Ẑ(β1) . . . Ẑ(βn)|α〉 = Zα(β1) . . . Zα(βn) . (3.5)

Therefore, formally, the factorization puzzle can be resolved by stating that factorizing
gravity theories should correspond to alpha-states [12]. The difficulty has simply been
shifted to concretely construct the alpha-states in a given model, and to understanding
their gravitational interpretation. We will do so now.9

A second important point in constructing a baby universe Hilbert space is to ensure
that the inner product on it (provided by the gravitational path integral as in (3.1)) is
non-degenerate. This means that if there are null states, they should be quotiented out.
This will be the subject of section 4.

3.1 Constructing alpha-states

Following the results of [36] as reviewed above, it is straightforward to see how we can con-
struct explicit alpha-states. The only thing one has to do is to start with the state without
any boundaries, the Hartle-Hawking state, and act on it such that we create the correlated
geodesics boundaries discussed in section 2. Specifically, we define an operator ẐG(b) in the
baby universe Hilbert space, whose action is to create a geodesic boundary of the type (2.3)

ẐG(b) creates b (3.6)

These operators allow us to construct a more convenient span for the baby universe Hilbert
space than (3.2)

ẐG(b1) . . . ẐG(bk)|HH〉 . (3.7)

We can now construct normalized alpha-states in gravity as follows,

|αH0〉 = NH0e
−Îdeform(H0)|HH〉 , (3.8)

where the normalization NH0 is determined in section 3.2 and Îdeform(H0) is just the de-
formation in the gravity action Ilocal(H0) + Inonlocal (2.4) translated to the baby universe
operator formalism

−Îdeform(H0)=−1
2

ˆ
dbbẐG(b)ẐG(b)+

ˆ
dbbZbrane(b,H0)ẐG(b) ⇔ −Ilocal(H0)−Inonlocal.

(3.9)
This is the explicit realization of the mapping between alpha-states and factorizing theories
of dilaton gravity that we announced in (1.3). The operator ẐG(b) in the second term
creates a single geodesic boundary of length b which is smeared by the function Zbrane(b,H0).
This function is chosen such that the corresponding factorizing theory has a spectrum given

9Eigenbranes are another way to construct alpha-states in JT [14, 15], but their semiclassical inter-
pretation is unclear, and null states are not obvious. The current approach is more intuitive and should
generalize better to higher dimensions.
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by the eigen-energies of a given Hamiltonian H0.10 The operator ẐG(b)ẐG(b) in the first
term creates a correlated set (or an entangled set in the baby universe Hilbert space) of
two geodesic boundary conditions each with length b. Schematically, we can thus represent
|αH0〉 as

|αH0〉 = NH0 exp

 +

 |HH〉 , (3.11)

where the blue line connecting the two branes is given by the integral in (3.9).
To prove that (3.8) are alpha-states it suffices to prove that

〈HH|Ẑ(β1) . . . Ẑ(βn)|αH0〉 = Tr
(
e−β1H0

)
. . .Tr

(
e−βnH0

)
〈HH||αH0〉 . (3.12)

Indeed, because Ẑ(β1) . . . Ẑ(βn)|HH〉 for all values of n and β1,. . . ,βn, span the baby uni-
verse Hilbert space, proving (3.12) for all n is equivalent to proving that |αH0〉 are eigen-
states of Ẑ(β), which is indeed the defining property of alpha-states,

Ẑ(β)|αH0〉 = Tr(e−βH0)|αH0〉 . (3.13)

As discussed in the introduction, inner products in the baby universe Hilbert space
are obtained from the gravitational path integral with boundary conditions associated
to the boundary creation operators evaluated inside the inner-product. For the inner
product (3.12), modulo the NH0 in the alpha-state, the left-hand side is given by the
Euclidean path integral with asymptotic boundaries β1, . . . , βn, closing off smoothly or
ending on any of the boundaries in the alpha-state (3.11). As we saw in section 2, this
path integral is that of the deformed theory (2.5). Thus, we find that

〈HH|Ẑ(β1) · · · Ẑ(βn)|αH0〉 = NH0

ZJT

∑
geometries

with n asymptotic
boundaries

ˆ
DgDΦ e−IJT−Ilocal−Inonlocal . (3.14)

where we normalized |HH〉 such that 〈HH||HH〉 = 1 and

ZJT =
∑

geometries
without asymptotic

boundaries

ˆ
DgDΦe−IJT . (3.15)

Using the fact that this gravitational path integral (3.14) factorizes with the only remaining
contributions being given by disks and half-wormholes as well as the fact that the matrix

10One concrete choice that reproduces the spectrum of a theory with Hamiltonian H0 is [36]

Zbrane(b,H0) = 2
b

Tr cos(bH0
1/2)−

ˆ ∞
0

dE ρ0,JT(E) 2
b

cos(bE1/2) . (3.10)

In section 4 we point out that this choice of Zbrane(b,H0) is not unique, large classes of other functions
Zbrane(b,H0) result in the same spectrum.
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integral yields a theory whose partition function is Z(β) = Tr(e−βH0), we obtain the desired
answer

〈HH|Ẑ(β1) · · · Ẑ(βn)|αH0〉= 〈HH||αH0〉
[(

β1

)
×·· ·×

(
βn

)]

= 〈HH||αH0〉Tr(e−β1H0) · · ·Tr(e−βnH0) . (3.16)

Here the factor 〈HH|αH0〉 (modulo a factor NH0 which is identical on the left and right
in this equation) corresponds to the contribution of closed universes without asymptotic
boundaries, which is (3.14) with n = 0. The factors of 1/ZJT are identical left and right too.

This proves that (3.8) are indeed the alpha-states of JT gravity. Since all possible
resulting spectra can be obtained by appropriately choosing Zbrane(b, H0) through the
explicit construction in (3.10), these alpha-states span the baby universe Hilbert space.11

To summarize, the operators e−Îdeform(H0) used to construct |αH0〉 can each be mapped
to one of the factorizing theories discussed in section 2. In turn, each such theory can be
mapped to a matrix integral deformation that localizes the integral over all matrices to H0.
Thus, we obtain the triality12

BU Hilbert space Îdeform(H0)= 1
2

ˆ
dbbẐG(b)ẐG(b)−

ˆ
dbbẐG(b)Zbrane(b,H0) (3.17)

⇔ dilaton gravity Ideform(H0)= 1
2

ˆ
dbbOG(b,Φ)OG(b,Φ)−

ˆ
dbbOG(b,Φ)Zbrane(b,H0)

⇔ matrix integral qI(H,H0)=−q2

ˆ
dbbOG(b)OG(b)+(q+1)

ˆ
dbbOG(b)Zbrane(b,H0)

where the objects ẐG(b), OG(b,Φ) and OG(b) create geodesic boundaries in the different
languages

BU Hilbert space ẐG(b) creates geodesic boundary of length b (3.18)

⇔ dilaton gravity OG(b,Φ) = e−S0

ˆ
Σ

d2x
√
g(x) e−2πΦ(x) cos(bΦ(x))

⇔ matrix integral OG(b) = 2
b

Tr cos(bH1/2)−
ˆ ∞

0
dE ρ0,JT(E) 2

b
cos(bE1/2) .

3.2 Checking orthogonality

The alpha-states we have just constructed are eigenstates of Ẑ(β) and should thus form a
complete set of states for the baby universe Hilbert space. This means the overlap between
two alpha-states should be a delta function with unit coefficient. Geometrically this is

11One can check that the alpha-states are also eigenstates of ẐG(b). This is a bit subtle due to the ambi-
guity related to the presence of degenerate cylinder. The unambiguous way to check this is to reintroduce
the degenerate cylinders that feature in the matrix integral and carefully take q →∞.

12The matrix integral will be defined further on as
´

dHe−LTrVJT(H)+qI(H,H0).
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subtle to confirm. However, orthogonality can easily be seen directly at the level of the
matrix integral, where the inner product is13

〈αH0 ||α′H0〉 = N ∗H0NH0
′ lim
q,q′→∞

ˆ
dΛ e−L trVJT(Λ)eqI(Λ,H0)+q′I(Λ,H0

′) , (3.19)

where the deformation of the action I(Λ,H0) is

qI(Λ,H0) = q

2

L∑
i 6=j

log(λi − λj) + q

2

L∑
i=1

P (λi, λi)− (q + 1)
L∑

i,j=1
P (Ei, λj) + L

L∑
i=1

VJT(λi) ,

(3.20)
and P (E, λ) given in (4.3) and Ei are the eigenvalues of H0. Let us now take q to infinity
first and then take q′ to infinity. Taking q large localizes the eigenvalue integral Λ to the
eigenvalues of H0 (denoted by Λ0), so we get

lim
q,q′→∞

ˆ
dΛe−LtrVJT(Λ)eqI(Λ,H0)+q′I(Λ,H0

′)= lim
q→∞

(Z factorized
H0 ) lim

q′→∞

(ˆ
dΛeq′I(Λ,H0

′)δ(Λ−Λ0)
)

(3.21)
where Z factorized

H0
is defined in (2.23) for a single-trace deformation that results in a spectrum

associated to the Hamiltonian H0. Now taking q′ large as well, we obtain

〈
αH0 |αH0

′
〉

= N ∗H0NH0
′
limq→∞(Z factorized

H0
) limq′→∞(Z factorized

H0
′ )

Z2
JT

δ(H0 − H0
′)

PJT(H0) , (3.22)

where
PJT(H0) = 1

ZJT
e−LTrV (H0) , ZJT =

ˆ
dΛe−LTrVJT(Λ) . (3.23)

is the (normalized) probability distribution of the original JT matrix integral. To get a
unit coefficient of the delta function we fix the normalisation factor NH0 to be (up to an
irrelevant phase)

NH0 =
√
PJT(H0)ZJT

limq→∞(Z factorized
H0

)
, (3.24)

which thus implies that 〈
αH0 |αH0

′
〉

= δ(H0 − H0
′) . (3.25)

This answer makes a lot of sense, since it means that finding a particular alpha-state in
the Hartle-Hawking state is given by PJT(H0) [12]

| 〈αH0 |HH〉 |2 = |NH0 |2
(

limq→∞(Z factorized
H0

)
ZJT

)2

= PJT(H0) , (3.26)

which is indeed how one should interpret the Hartle-Hawking state. It is the state in the
baby universe Hilbert space that gives the ensemble, i.e. correlators evaluated in that state
are given by the pure JT gravity path integral. Written differently, we have

|HH〉 =
ˆ

dH0

√
PJT (H0)|αH0〉. (3.27)

13Taking q, q′ to not be independent but rather be the same parameter in fact yields similar results.
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3.3 The Coleman-Giddings-Strominger mechanism revisited

In this context, we want to revisit the mechanisms discussed by Coleman, Giddings and
Strominger to account for the effects of wormholes. Our results makes precise how ensemble
averaging can either be used to “integrate out” wormholes, through the mechanism dis-
cussed in our previous paper [36], which we called “fighting ensemble with ensemble”. Alter-
natively, we can “integrate in” wormholes, through the mechanism similar to that discussed
by Coleman, Giddings and Strominger [12, 39, 40, 56], though in our example the distribu-
tion of the required ensemble can be precisely determined and shown to be non-Gaussian.

Integrating out wormholes: fighting ensemble with ensemble. Any factorizing
theory with the universal bilocal can alternatively be written as a bulk ensemble average [36]
over a Hubbard-Stratanovich field Q(b):14

ˆ
DgDΦe−IJT−Ilocal−Inonlocal =

ˆ
DgDΦDQ(b)e−IJT+

´∞
0 dbbQ(b)OG(b,Φ)e

1
2
´∞

0 db(Q(b)−Zbrane(b))2

=
〈ˆ
DgDΦe−IJT+ 1

2
´

d2x
√
gUlocal(Φ,Q(b))

〉
couplings

, (3.28)

where the local dilaton potential is now given Ulocal(Φ, Q(b)) = e−2πΦ ´
db bQ(b) cos(bΦ(x))

and we have to ensemble average over the coupling Q(b) with a Gaussian weight centered
around Zbrane(b).

Thus, all the factorizing theories described in this paper can alternatively be viewed
as Gaussian ensembles of different local bulk theories of dilaton gravity. The integral
over Q(b) then has the role of integrating-out wormholes: while each theory in the en-
semble has wormholes in its geometric expansion, the resulting theory has only disks and
half-wormhole remain in its geometric expansion. Once again, all wormhole contributions
cancel. This implies that each alpha-states can also be viewed, not only to correspond to
a single gravitational theory that is non-local and factorizable, but also as an ensemble
average over bulk theories:

〈ˆ
DgDΦe−IJT+ 1

2
´

d2x
√
gUlocal(Φ,Q(b))

〉
couplings

⇔ |αH0〉=
〈
e
´

dbbQ(b)ẐG(b)
〉
couplings

|HH〉.

(3.29)

Integrating in wormholes: an ensemble average over alpha-states. Alternatively,
we can instead start with the alpha-states, which are described by the factorizing theory
with all wormhole contributions cancelling, and try to integrate-in the wormholes. This
is again given by an ensemble average that is no longer Gaussian, but instead is given
by the JT gravity matrix integral itself. Explicitly, starting with the partition function
ZJT(β1, . . . , βn) = 〈HH|Ẑ(β1) · · · Ẑ(βn)|HH〉 and introducing the resolution of the identity

14Here the Q integral is along the imaginary axis. This is similar to what was obtained in [57] in the
context of SYK.
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1 =
´

dH0|αH0〉〈αH0 | we can write,

ZJT(β1,...,βn)=〈HH|Ẑ(β1)···Ẑ(βn)|HH〉 (3.30)

=
ˆ

dH0PJT(H0)Z(β1,H0)···Z(βn,H0),

=
ˆ

dH0PJT(H0)︸ ︷︷ ︸
Average over
bulk couplings

Factorizing theories with couplings fixed by H0︷ ︸︸ ︷(
β1

Zbrane(b,H0)
)
×···×

(
βn

Zbrane(b,H0)
)
.

Each term in the above expansion is a factorized theory in which all wormholes can be can-
celled, these theories depend via the brane coupling Zbrane(b,H0) on H0. The integral over
H0 can be viewed as an ensemble over couplings in the factorized theories that is needed in
order to “integrate in” the wormholes present in the geometric expansion of ZJT(β1, . . . , βn).
This is the mechanism discussed by Coleman, Giddings and Strominger [39, 40] made pre-
cise in the context in JT gravity.

The results obtained above are not very surprising, because we start with a factorizing
theory from the beginning, so averaging over H0 again should give the usual JT answers
back. From this, one can already infer (3.30). Nevertheless it is amusing to see that using
the matrix integral (together with the degenerate cylinders that cause the appearance of
q) we can derive these results in a very concrete way.

Let us emphasize the difference between the ensemble averages that integrate out (3.29)
and integrate in the wormholes (3.30): while the former is a simple universal Gaussian
path integral (whose origin is the universal form of the bilocal interaction), the latter
is a complicated non-Gaussian matrix integral where we have to consider eS0 couplings.
Integrating-in the wormholes is much more complicated.15

3.4 The baby universe Hilbert space of each factorizing model is one dimen-
sional

We should contrast the description found above for the baby universe Hilbert space of
JT gravity, HJT

BU, with that of the baby universe Hilbert space, Hfactorizing
BU , of the fac-

torizing theories found in [36]. In the latter, for a factorizing theory with some local
deformation Ilocal and the universal bi-local deformation Inonlocal, inner products with the
Hartle-Hawking state |HHfact〉 are computed as

〈HHfact|Ẑ(β1) . . . Ẑ(βn)|HHfact〉
〈HHfact||HHfact〉

= 1
Z factorizing

∑
geometries

with n asymptotic
boundaries

ˆ
DgDΦ e−IJT−Ilocal−Inonlocal

= Tr(e−β1H0) . . .Tr(e−βnH0) , (3.31)
15On a technical level, this is due to the fact that the contribution of geometries of a certain genus in JT

gravity depend on the complicated quotient by the mapping class group that has to be performed in the
gravitational path integral. In contrast, when integrating out the wormholes the form of the mapping class
group for a manifold with wormholes of a given topology is unimportant, as discussed in [36].
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where we suppressed the fact that the definition of |HHfact〉 depends on H0. Consequently,
in contrast to the case of undeformed JT gravity, (3.31) shows that |HHfact〉 is an alpha-
state in Hfactorizing

BU .
Are there other alpha-states or does |HHfact〉 span all of Hfactorizing

BU ? To find the
dimension of Hfactorizing

BU , we can compute the inner-product between two arbitrary states
in this Hilbert space16

〈Ψ1|Ψ2〉 = α†1 · Z · α2 , where |Ψa〉 =
nbdies∑
i=0

αia Ẑ(β)i|HHfact〉 , (3.32)

where nbdies is the maximum number of boundaries involved in the state |Ψa〉 (which can be
taken ∞) and where, for simplicity, we restrict to creating asymptotic boundaries with the
same β. (3.31) implies that the inner-product matrix (whose dimension is nbdies×nbdies) is

Zij = Tr(e−βH0)i+j (3.33)

The rank of Z gives the dimension of Hfactorizing
BU , and the above matrix has rank one, be-

cause it can be written as the square of a vector. Following a similar construction for inner
products of states created by inserting asymptotic boundaries with different βi, one finds
that Hfactorizing

BU is one-dimensional. So |HHfact〉 is the unique state in Hfactorizing
BU , which

is radically different from the infinite dimensional HJT
BU. The factorizing theory with BU

Hilbert space Hfactorizing
BU is associated with one specific alpha-state |αH0〉 in HJT

BU, therefore
Hfactorizing

BU is the subspace of HJT
BU spanned by |αH0〉 = |HHfact〉.

To emphasize, the non-trivial point result is that we find that the dimension of the
BU Hilbert space in the factorizing models of [36] is one dimensional, a property that had
been predicted for UV complete theories in [12, 58].

4 Null states in JT gravity

In the previous section we constructed explicit alpha-states and showed that they form a
complete basis for the baby universe Hilbert space, because they cover the whole ensemble
of random Hamiltonians H0. When constructing any Hilbert space one needs to quotient
by potential null states. However, since we used the matrix integral to show that the alpha-
states (3.8) form a complete basis, there are simply no null states to account for in the
matrix integral. In a sense, they have already been eliminated since each different matrix
in the ensemble has a different spectrum. This leads to the conclusion that the matrix
integral only knows about the Hilbert space after the quotienting has been performed, also
called GNS Hilbert space.

Nevertheless, in situations where we do not have the luxury of considering the matrix
integral or something equivalent as for instance would be the case in higher dimensions,
the question remains whether there is a geometric or perhaps semiclassical understanding
of the null states. In general this is a hard question to answer and hints at the mechanism
emphasized in [41], where it was argued in the context of the GΣ action of SYK that there

16We thank D. Stanford and Z. Yang for useful comments in this direction.

– 17 –



J
H
E
P
0
8
(
2
0
2
2
)
0
7
1

could be multiple bulk descriptions which ultimately give the same physics. In our model
we can make this mechanism very precise by studying two alpha-states that within the
matrix model give the same boundary spectrum, but when going to a geometric picture
or in a naive semiclassical approximation, there is a clear difference between the two. In
fact, we will show that there is an infinite number of geometric theories that give rise to
the same boundary spectrum. Subtracting (or taking the appropriate linear combinations
of) alpha-states associated to theories that have the same spectrum yields null states that
are not part of the baby universe Hilbert space.

4.1 Discreteness implies redundancies

The key to understanding why two superficially different alpha-states give the same bound-
ary spectrum is the discreteness of the spectrum. Namely, this implies that as long as we
localize on the chosen spectrum at large q we can change the deforming operator in the ma-
trix integral to whatever way we wish. A bit more concretely, when we alter Zbrane in such a
way that the localization equations (2.24) remain the same and we do not spoil the stability
of the saddle (i.e. the Hessian around the saddle has the correct sign for all its eigenvalues),
the effect in the matrix integral is absolutely nothing. No observable will change whatso-
ever, we call such changes in Zbrane null deformations. The name of the game is then to
see whether we can translate this change back to an ordinary geometric understanding.

To do so, let us first map out a subset of all the null states and translate those back to
deformations of the Euclidean path integral. To simplify the discussion we consider as our
initial theory JT gravity with just the bilocal deformation turned on, so Ilocal = 0 in (2.4).
Generalizations to cases with non-zero Zbrane as the initial theory are straightforward. We
then consider general deformations around this theory, and seek for deformations that do
not affect the spectrum.

General deformations around the theory with Ilocal = 0 (which we call canonical JT
gravity) correspond with the following insertion in the JT matrix integral

exp
(

(q + 1)
ˆ ∞

0
db bOG(b) δZbrane(b)−

q

2

ˆ ∞
0

db bOG(b)OG(b)
)
, (4.1)

with q →∞ and δZbrane(b) parameterized as17

δZbrane(b) =
ˆ ∞

0
dE δρ0(E) 2

b
cos(bE1/2) . (4.2)

Here δZbrane is actually of the most general form, since b Zbrane(b) needs to be an even
function of b. For this particular deformation to not change anything about the spectrum
δZbrane needs to satisfy some conditions. These conditions can be derived by considering

17The dilaton potential and the genus zero spectral density are linearly related when the latter vanishes
at E = 0 [59, 60]. In those cases δρ0(E) is the change in the genus zero spectral density if one would
not turn on the bilocal. In other cases, the would-be genus zero spectral density ρ0,JT(E) would receive
subleading corrections in the deformation of the action. None of this is relevant in our factorizing models,
where localization determines the discrete spectrum.
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the large q saddle-point equations for the discrete set of eigenvalues λi18

LV ′JT(λi) +
ˆ ∞

0
dE δρ0(E) ∂λP (λ,E)|λ=λi = 1

2λi
+ 2

∑
j 6=i

1
λi − λj

. (4.4)

One can view the second term as introducing a change in the electrostatic potential for the
eigenvalues

L(V ′JT(λi) + δV ′(λi)) = 1
2λi

+ 2
∑
j 6=i

1
λi − λj

. (4.5)

For smooth functions δρ0(E) you recover the standard relation [11, 36, 61] between
changes in the matrix integral potential and changes in the disk spectral density

LδV ′(λ) = 2
 ∞

0
dE δρ0(E) 1

λ− E
. (4.6)

where
ffl
is the principal value integral.

Let us define the eigenvalues λJT i of a matrix HJT to be the solutions of the electro-
statics problem for canonical JT gravity

LV ′JT(λJT i) = 1
2λJT i

+ 2
∑
j 6=i

1
λJT i − λJT j

. (4.7)

Suppose now that we consider deforming this theory by adding fine-tuned changes in the
potential that depend specifically on the λJT i in such a way that the deformation satisfies

LδV ′(λJT i) = 0 , (4.8)

whilst not spoiling the signs of the eigenvalues of the Hessian, then the electrostatics
problem (4.5) has exactly the same solutions λJT i. This means that the large q matrix
integrals with and without these null deformation are equivalent, as they localize onto the
same eigenvalues. In particular all observables calculated in the matrix model at large q
will agree, for instance in both theories

Z(β1 . . . βn) = Tr(e−β1HJT) . . .Tr(e−βnHJT) with or without null deformation . (4.9)

This means that in the large q matrix integral with the bilocal interaction, there is a
vast redundancy in description when specifying the theory by its potential V (λ)

VJT(λ) indistinguishable from VJT(λ) + δVnull(λ) (4.10)

The fundamental reason for this redundancy is that in the large q matrix integral we
are only imposing a discrete set of equations of motion (4.5). For instance, a non-trivial
solution can be obtained by solving (4.6) ∞

0
dE δρ0 null(E) 1

λ− E
= G(λ) , G(λJT i) = 0 . (4.11)

18Here P (λ,E) is a regularized version of 2 log |λ− E| with the regulator only relevant when δρ0(E) has
delta spikes [36]

P (λ,E) = log
((

E
1/2
1 − E1/2

2

)2
+ ε2

)
+ log

((
E

1/2
1 + E

1/2
2

)2
+ ε2

)
, (4.3)

– 19 –



J
H
E
P
0
8
(
2
0
2
2
)
0
7
1

If we find a function G(λ) with zeros on the spectrum λJT i we can invert this relation using
standard methods for singular integral equations [62] provided G decays sufficiently fast
to zero at large λ, from that we can determine a null deformation Zbrane null using (4.2),
which in turn determines a Ilocal null in the dilaton gravity action via (2.4).

We show in section 4.3 that there is one deformation δρ0 null(E) corresponding to the
trivial solution G(λ) = 0. All other null deformations will be immediate consequences of
discreteness, the fact that we can have many nontrivial functions G(λ) that vanish on a
discrete set of points λJT i.

4.2 Null states

In section 3, we have described how HJT
BU can be constructed by acting on |HH〉 with

boundary creation operators and then taking linear combinations of the resulting states,

ẐG(b1) . . . ẐG(bn)|HH〉 . (4.12)

As pointed out by Marolf and Maxfield [12], in this construction of HJT
BU, we need to be

careful to eliminate the linear combinations that have zero norm, i.e. the possible null
states in this construction.

The deformations of the matrix integral that we have described above, that leave
the localization locus invariant, have a natural interpretation in terms of null states. As
mentioned earlier, to appreciate this relation with null states it is essential to distinguish
the large q matrix integral perspective, where degenerate cylinders are included, from the
spacetime path integral, where degenerate cylinders do not exist. In the large q matrix
integral, we are interested in the deformation

qI(H,HJT, s) = −q2

ˆ ∞
0

db bOG(b)OG(b) + (q + 1)
ˆ ∞

0
db bOG(b)Zbrane null(b,HJT, s) ,

(4.13)
with

Zbrane null(b,HJT, s) =
∑
a

sa Z
(a)
brane null(b,HJT) (4.14)

with a labelling all solutions δρ
(a)
0 null of (4.11) that gives the null-state deformation

Z
(a)
brane null(b,HJT), and sa some complex numbers whose range is constrained so as to en-

sure stability of the large q saddle point. In the baby universe Hilbert space language these
correspond via (3.17) with the states

|αHJT , s〉 = NHJT se
−Îdeform(HJT,s)|HH〉 , (4.15)

with

Îdeform(HJT, s) = 1
2

ˆ ∞
0

db b ẐG(b) ẐG(b)−
ˆ ∞

0
db b ẐG(b)Zbrane null(b,HJT, s) (4.16)

The null states |ψ〉 are hence given by differences of alpha-states with different values
of parameters sa

|αHJT , s〉 − |αHJT , s
′〉 is a null-state if s 6= s′ , (4.17)
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or more generally if there are k parameters sa and with Γ denoting the stable deformations
ˆ

Γ
dks f(s)|αHJT , s〉 is a null-state if

ˆ
Γ

dks f(s) = 0 . (4.18)

This is simply because
ˆ

Γ
dks f(s)〈HH|Ẑ(β1) . . . Ẑ(βn)|αHJT , s〉 = Tr

(
e−β1HJT

)
. . .Tr

(
e−βnHJT

) ˆ
Γ

dks f(s) = 0 ,

(4.19)
for all n. Once again, using the fact that Ẑ(β1), . . . , Ẑ(βn)|HH〉 span the Hilbert space, it
then follows that (4.17) and (4.18) are null.

We remark here that even though from the matrix model perspective (as q →∞) the
α-states |αHJT , s〉 do not depend on sa, they will actually lead to inequivalent gravitational
descriptions of the bulk. Said differently, since in gravity we do not consider the degen-
erate cylinders, the parameter q does not appear and the operators with or without null
deformations turned on are different, as in section 4.3.

These null states described here are quite similar to the examples constructed by Marolf
and Maxfield [12] in pure 2d Einstein-Hilbert gravity. In that model one can construct null
deformations analogous to our (4.16) by inserting in the gravity path integral for an alpha-
state the operator

exp
(

i
∞∑
n=1

sn 2πnẐ
)
. (4.20)

These are null deformations because

Ẑ|m〉 = m|m〉 . (4.21)

whose analog we will describe shortly. In both our and their models we can have null
deformations because there is a fundamental discreteness in the spectrum of the theory.
Nevertheless, in our case we will see a rich set of null states that can depend on the exact
details (not only discreteness) of the alpha-states whose null deformations we study.

4.3 Examples of null states and their spacetime interpretation

One benefit that we have, as compared to the simple model of [12], is that we can map
null deformations to changes in the dilaton gravity potential. Indeed, using (3.17) we
see that there are inequivalent dilaton gravity actions associated with our class of matrix
integrals (4.13)

Ideform(HJT, s) = 1
2

ˆ
db bOG(b,Φ)OG(b,Φ)−

ˆ
db bOG(b,Φ)Zbrane(b,HJT, s) , (4.22)

which can be written explicitly in dilaton and metric variables as in (2.2) and (2.4) using

OG(b,Φ) = e−S0

ˆ
d2x
√
g e−2πΦ(x) cos (bΦ(x)) . (4.23)

The change in the dilaton action always involves the bilocal term to ensure factorization
and is universal, but changes to the local dilaton potential itself can be null. This means
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that gravitational path integrals with two potentials related by a null deformation are in-
equivalent perturbatively, but once the matrix model non-perturbative effects are included
they are equivalent.

For instance, if one wants to calculate the semiclassical entropy of the black hole in two
null-related dilaton gravities, one would obtain identical answer to leading order, but they
would start deviating at subleading orders in eS0 . We expand more on this in section 5.4.

A first example: intuitive null operators and null states. A null operator can be
constructed by using the discreteness of the spectrum and inserting,19

e2πikN̂(E1,E2) = exp
(

2πik
ˆ E2

E1

dE ρ̂(E)
)

for k ∈ Z , (4.24)

When acting on any alpha-state we expect this operator gives one because the spectrum
is discretized and consequently the eigenvalues of N̂(E1, E2) are given by N(E1, E2) ∈ Z+.
Consequently, (

e2πikN̂(E1,E2) − 1
)
|αH0〉 ∼ 0 , (4.25)

is null for all H0 for which E1 and E2 do not belong to the spectrum.20

We can now see where this operator comes from in our formalism and whether the null
states that it generates can indeed be though of as those described in section 4.1 and 4.2.
First, to define ρ̂ we take an inverse Laplace transform of Ẑ(β),

ρ̂(E) = ρ0,JT(E) +
ˆ ∞

0
bdbcos(b

√
E)

2π
√
E

ẐG(b) (4.26)

where we remind the reader that ρ0,JT(E) is the leading density of states in JT gravity given
by the disk contribution. If we now insert this in (4.24) we can read off what δZbrane(b)
needs to be by brining the integral over E inside. The constant coming from the smooth
disk density of states will give a constant that is the same for all our alpha-states and can
be factored out. The result for δZbrane(b) is

δZbrane(b) = 2i k sin(b
√
E1)− sin(b

√
E2)

b
. (4.27)

Inverting the relation (4.2) we get a δρ0(E) given by

δρ0(E) = 4i k
√
E

π

[ √
E2

E2 − E
−
√
E1

E1 − E

]
. (4.28)

To check whether this is indeed a null deformation as we have defined it in (4.8), we simply
need to calculate (4.6) and show that it gives a constant shift in the potential. This is indeed

19We thanks Douglas Stanford and Henry Maxfield for bringing this up.
20We should be careful when E1 and E2 are part of the spectrum of H0. In such corner cases, the operator

in (4.25) might not be null depending on the definition of the integral in (4.24). Thus, perhaps it would be
better to call this operator almost null since there is a set of measure zero set of states for which its action
might not result in a null state.
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the case as long as λ 6= Ei, which is always the case since we want to integrate the density
in (4.24) always in between the delta peaks not on top of them and so we always have
δV ′(λJT i) = 0 as required. When k ∈ Z, the state e2πikN̂(E1,E2)|αH0〉 is unit normalized
and thus the general framework described in section 4.1 and 4.2 indeed describes the null
states in (4.25). More generally, we can construct null operators by considering functions of
N̂(E1, E2) that vanish on the integers - since such functions can be constructed by taking
linear combinations of the operators in (4.24) the null states described by such operators
are simply linear combinations of those found in (4.25). However, not all null states can
be obtained from null operators and we give two examples of such cases below.21

A second trivial solution. To get some feeling for the null deformations, we first
consider the case G(λ) = 0 which has solutions [62]

δρ0 null(E) = s
1

E1/2 . (4.29)

Plugging this in (4.11), this gives zero, so that this particular δρ induces a constant shift
of the potential

δV (λ) = constant ⇒ δV ′(λ) = 0 , (4.30)

so there is no change to the saddle point equations and the spectrum on which we localize
is not affected. The brane one-point function associated to this deformation of the matrix
model potential is

Zbrane null(b) = s

ˆ ∞
0

dE 2
b

1
E1/2 cos(bE1/2) = s

δ(b)
b
. (4.31)

In the dilaton gravity action this deformation gives rise to a change of the dilaton potential
of the form

δU(Φ) = s e−S0

ˆ
Σ

d2x
√
g e−2πΦ . (4.32)

Geometrically, this corresponds to the insertion of a gas of cusps. The point is that we
have shown here that non-perturbatively, when we include the bilocal interaction, this gas
of cusps no effects whatsoever on the resulting discrete spectrum.

Following the description in section 4.2, from the deformation (4.32) we find the fol-
lowing null states for example(

NHJT 0, e
− 1

2
´

db b ẐG(b) ẐG(b) −NHJT, s e
− 1

2
´

db b ẐG(b) ẐG(b)+s ẐG(0)
)
|HH〉 ∼ 0 . (4.33)

While the operator acting on |HH〉 is not null, the resulting state is. Such states again have
to be eliminated in order to construct HJT

BU, which practically means we should include only
one of the states (4.15) because all resulting theories have the same spectrum.

21This is the case even when taking k /∈Z. In such a case, (4.25) needs to be modified by multiplying
e2πikN̂(E1,E2) by a normalization factor that is dependent on the specific alpha-state upon which we act.
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Non-trivial null states: the determinant solution. Another example that comes to
mind is by taking GJT(λ) in (4.11) to be the characteristic polynomial of HJT

 +∞

0
dE δρ0 null(E) 1

λ− E
= det(λ− HJT) e−

L
2 VJT(λ) . (4.34)

To get something useful out of this we can use the following fact, proven in section 5
below. To leading order in large L, the characteristic polynomial of HJT equals the ensem-
ble average of the characteristic polynomial of H in the original undeformed JT gravity
ensemble

det(λ− HJT) = 〈det(λ−H)〉JT . (4.35)

The potential term in (4.34) makes for a finite double scaling limit, upon which the de-
terminant reduces to the Baker-Akhiezer function ψJT(λ) of JT gravity (x = 0 in (5.30)
below). The leading order behavior of the Baker-Akhiezer functions can be obtained using
a WKB or disks and cylinders approximation [11, 63] and one finds up to a proportionality
factor (that can be absorbed in the parameter s multiplying the null deformation)

ψJT(λ) ∼ 1
λ1/4 cos

(
π

ˆ λ

0
dE ρ0,JT(E)− π

4

)
, (4.36)

and so  +∞

0
dE δρ0 null(E) 1

λ− E
= 1
λ1/4 cos

(
π

ˆ λ

0
dE ρ0,JT(E)− π

4

)
. (4.37)

Using standard techniques for singular integral equations one can solve for δρ0,null
and deduce from that the explicit null deformation of the dilaton potential. The most
practical way to do so is to write the Baker-Akhiezer function in the Fourier domain, using
a generalization of the Kontsevich [64] integral representation of the Airy function built
to reproduce the WKB approximation above. Inverting (4.37), one finds that at large´ E

0 dM ρ0,JT(M) the approximate null deformation is given by

δρ0 null(E) = s
1

E1/4 sin
(
π

ˆ E

0
dM ρ0,JT(M)− π

4

)
. (4.38)

This can be generalized by inserting polynomial functions of the determinant as left-hand
side in (4.34). One ultimately finds the following null deformations of the dilaton potential
(to leading order)

δU(Φ) = e−S0 Φ
∞∑
a=1

sa sin
(
aπ

ˆ Φ2

0
dM ρ0,JT(M)− π

4

)
e−2πΦ . (4.39)

Turning on these deformations would semiclassically appear to have non-trivial effects (see
section 5.4), but non-perturbatively they do not change the theory at all (as long as we
have the bilocal interaction).
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5 Black holes without quantum chaos

We saw in section 4 that there is a spectrum HJT that is intrinsic to JT gravity: it is
uniquely determined by the matrix integral potential VJT(λ) since it is the spectrum of the
theory of dilaton gravity whose action is

I = IJT + Inon−local . (5.1)

As mentioned in the introduction, due to the lack of a correction to the local dilaton
potential, the geometric expansion in this model, seen in (1.6), only contains the disk
contribution as the half-wormhole contribution vanishes due to Zbrane = 0. Notably this
system does not require fine-tuning ∼ eS0 parameters in the dilaton-gravity action, unlike
the models studied in [36].

We now study the properties of this spectrum HJT, and through this analysis, present
a dual QM description to the bulk theory (5.1).

Let us summarize the main steps that result in this QM description.

1. The spectrum λJT of HJT are the solutions to the electrostatic problem (4.7). We will
prove that (to leading order in large L) the solutions are the zeros of the orthogonal
polynomial PJTL(λ)

LV ′JT(λJT i) = 1
2λJT i

+ 2
L∑
j 6=i

1
λJT i − λJT j

⇔ PJTL(λJT i) = 0 . (5.2)

2. These zeros are approximately evenly spaced with coarse grained spectral density
ρ0,JT(λ), this is called clock behavior, and should be contrasted with the fluctuations
in level spacing in quantum chaotic systems (which follows the Wigner surmise, or
has random matrix statistics [65, 66])

λJT i+1 − λJT i = 1
ρ0,JT(λ) . (5.3)

3. The orthogonal polynomials with respect to the JT potential PJTn(λ) satisfy a recur-
sion relation, which can be written as a matrix equation featuring an ∞ dimensional
matrix Q

λPJT(λ) = Q · PJT(λ) . (5.4)

Imposing the quantization condition (5.2) PJTL(λ) = 0 reduces this to an eigenvalue
equation for the reduction QL of Q to its first L rows and columns, thus the eigenval-
ues of QL are the zeros of PJTL(λ), which in turn (as we saw above) are the spectrum
of HJT. So QL and HJT have identical eigenvalues, and can be identified to leading
order in large L

PJTL(λ) = det(λ−QL) = det(λ− HJT) ⇔ QL = HJT . (5.5)
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4. Upon double scaling [11], orthogonal polynomials become Baker-Akhiezer functions
and the matrix Q becomes the operator Q̂ in the Lax formalism [28, 63, 67–69]. The
recursion relation (5.4) becomes a Schrodinger equation, and crucially (5.2) becomes
a Dirichlet boundary condition which discretizes the spectrum

λψJT(x, λ) = Q̂ ψJT(x, λ) , Q̂ = ĤJT = − 1
e2S0

∂2
x + uJT(x) , ψJT(0, λ) = 0 . (5.6)

The partition function Z(β) = Tr
(
e−βQ̂

)
involves no projection operators, therefore

this QM is a dual description of gravity - unlike when this Q̂ appears in the Lax
description of matrix integrals.

In the remainder of this section we provide more details and interpretation for these steps,
and we drop the subscripts JT for notational comfort.

5.1 Orthogonal polynomials

Let us quickly review some facts about orthogonal polynomials on the real line, but see [67,
68] for more details. Consider polynomials Pn(λ) orthogonal with respect to the measure
e−LV (λ)dλ22

ˆ +∞

−∞
dλ e−LV (λ)Pn(λ)Pm(λ) = δnm , Pn(λ) = 1√

hn
λn + lower degree . (5.7)

We are interested in large L large and in even polynomials V (λ). We can expand λPn(λ)
in Pm(λ) with m ≤ n+ 1, because of the maximal degree of each polynomial

λPn(λ) =
n+1∑
m=0

Qnm Pm(λ) . (5.8)

Because the inner product of λPn(λ) and Pm(λ) is symmetric under exchanging n and m,
Q is symmetric and we have only three terms in the expansion. Moreover the diagonal is
zero, as the integral of λPn(λ)2 vanishes for even potentials, leaving only Qnn+1 = Qn+1n
as nonzero matrix elements. Comparing the terms of highest degree gives finally Qnn+1 =√
hn+1/

√
hn, such that the recursion relation is

λPn(λ) = an+1Pn+1(λ) + anPn−1(λ) , an =
√
hn√
hn−1

. (5.9)

Very explicitly the so-called Jacobi matrix Q reads

Q =



0 a1 0 0 . . .

a1 0 a2 0 . . .

0 a2 0 a3 . . .

0 0 a3 0 . . .
...

...
...

...


. (5.10)

22We take the measure to be normalized such that P0(λ) = 1.
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The polynomials can thus be found recursively from knowledge of an, which in term
can be found recursively from the potential V (λ). Indeed, we obtain the following equation,
sometimes referred to as the discrete string equation [67]

0 =
ˆ

dλ d
dλ
(
Pn(λ)Pn−1(λ)e−LV (λ)

)
=
ˆ

dλ
(
P ′n(λ)Pn−1(λ)e−LV (λ) + Pn(λ)P ′n−1(λ)e−LV (λ) − LV ′(λ)Pn(λ)Pn−1(λ)e−LV (λ)

)
= n

an
− LV ′(Q)nn−1 . (5.11)

In the first and second term we used (5.7) and the definition of an in (5.9) to expand
the derivative of an orthogonal polynomial in terms of orthogonal polynomials of lower
degree as P ′n(λ) = n/anPn−1(λ) + lower degree, then most terms except one cancel using
orthogonality. For the third term we can Taylor expand LV ′(λ) in λ and then use that
powers of Q act as powers of λ on the polynomials (5.8). Since Q depends only on an,
the above is an equation that can be used to solve for the an. For instance when V (x) =
x4/4− t x2/2 this becomes

n

Lan
= −t an + an(a2

n+1 + a2
n + a2

n−1) , (5.12)

which can be solved recursively for an. This is then enough to find the orthogonal polyno-
mials recursively from knowledge of the potential V (λ).

Electrostatics and zeros of orthogonal polynomials. To prove (5.2), we need to
take a different route. The proof follows essentially by deriving a second order differential
equation for orthogonal polynomials, which was achieved by [70, 71]. Though elementary,
the derivation would distract a bit too much from our point, so we simply state the result

P ′′n (λ)−
(
LV ′(λ) + A′n(λ)

An(λ)

)
P ′n(λ) + Sn(λ)Pn(λ) = 0 . (5.13)

The form of Sn(λ) will prove to be irrelevant, and An(λ) is explicitly [70, 71]

An(λ) =
ˆ +∞

−∞
dµV

′(λ)− V ′(µ)
λ− µ

Pn(µ)2 e−LV (µ) . (5.14)

This differential equation can be used to obtain an equation for the zeros of the orthogonal
polynomials [70]. Suppose that λi are the zeros of PL(λ), then the derivatives at those
zeros become

√
hL PL(λ) =

L∏
i=1

(λ−λi) ,
√
hL P

′
L(λi) =

L∏
j 6=i

(λj−λi) ,
√
hL P

′′
L(λi) = 2

L∑
k=1

L∏
i 6=j 6=k

(λj−λi)

(5.15)
Evaluating (5.13) at these zeros (for which the last term vanishes) results in the equation

2
∑
i 6=j

1
λi − λj

= LV ′(λj) + A′L(λj)
AL(λj)

(5.16)
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To leading order in large L we can ignore the second term, which is order one, and the same
is true for the 1/2λi term in (5.2). Therefore to leading order in large L we indeed find that
the solutions to our electrostatics problem (the eigenvalues to which the matrix integral
localizes when we only turn on the bilocal deformation) are the zeros or the orthogonal
polynomial PL(λ) of the original matrix ensemble

2
∑
i 6=j

1
λi − λj

= LV ′(λj) ⇔ PL(λi) = 0 . (5.17)

This means in particular that the zeros of this polynomial match the eigenvalues of
HJT (everything from hereon is implicitly to leading order in large L)√

hL PL(λ) = det(λ− HJT) . (5.18)

Jacobi matrix as the Hamiltonian. Now we want to prove that the spectrum of
HJT matches that of QL. For this we reconsider the recursion relation (5.8) but with
the constraint that PL(λ) = 0. Now we see that the recursion relation closes on the
polynomials P0(λ) . . . PL−1(λ), in particular equation (5.9) fixes PL−1(λ) in terms of just
PL−2(λ), resulting in the matrix equation

λP (λ) = QL · P (λ) , PL(λ) = 0 , (5.19)

where P (λ) is a column with entries P0(λ) . . . PL−1(λ). This is now just a standard eigen-
value problem, searching for the eigenvalues of QL. The L solutions are by construction
the L zeros of PL(λ), so that one can expand this polynomial as√

hL PL(λ) = det(λ−QL) . (5.20)

Up to unitary transformations23 combined with (5.18) this means that the restriction of
the Jacobi matrix to the first L rows and columns is actually the Hamiltonian of the QM
that we are localizing to in the matrix integral, so the Jacobi matrix has an important
physical meaning

HJT = QL . (5.21)

Using the same argument one proves that√
hn Pn(λ) = det(λ−Qn) . (5.22)

We also note that the orthogonal polynomials can alternatively be computed as the
expectation values of determinants in n dimensional random matrix theory, using the same
potential V (λ) √

hn Pn(λ) = 〈det(λ−H)〉n , (5.23)

which means that the eigenvalues of HJT are the typical zeros of the determinant of H in
random matrix theory, which is not the same as the typical eigenvalues of H. Indeed, as
we now discuss, the eigenvalue statistics of HJT is quite atypical for the random matrix
ensemble.

23We care only about eigenvalues of HJT throughout this paper, for some discussion on the gravitational
interpretation of the eigenvectors (or unitary transformations) see [6, 15, 72].
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Figure 1. The spacing distribution P (s) of adjecent energy levels obtained from a Gaussian
Hermitian random matrix at L = 104. The histogram is a function of the difference between adjecent
eigenvalues, denoted by s and we focussed on 1272 eigenvalues E within the bin [−1/10, 1/10]. The
solid blue curve is the infinite L result given by 32s2

π2 e−4s2/π.

5.2 No random matrix statistics

Now that we have a realization of HJT we want to know the properties of its spectrum. The
level density follows to leading order in large L the averaged level density ρ0,JT(λ) in the
original ensemble, we choose to present the proof of this only in the double scaling limit in
section 5.3. Here instead we focus on the correlation between nearby energy levels, which
has more surprising properties. The discussion of this section carries over unmodified to
gravity in the double scaling limit, the only thing that changes really upon double scaling
is the averaged level density.

In GUE random matrix theory there is quadratic repulsion between neighboring energy
levels, which is most clearly visible as a quadratic zero in the so-called Wigner surmise [65,
66] as shown in figure 1.

This plot indicates that eigenvalues repel each other, it is unlikely to find eigenvalues
very close together in quantum chaotic systems. This should be contrasted with Poisson
behavior, where eigenvalues have a certain density but are otherwise uncorrelated, and can
lump together.

Quadratic level repulsion is actually the bell cow of GUE random matrix statistics,
in the literature it is often used as the defining property of quantum chaotic systems [65,
66]. Black holes on the other hand are certainly classically chaotic systems, which are
characterized by Lyapunov growth - exponential sensitivity to changes in initial conditions,
and observations in black hole backgrounds have this property, because early perturbations
get exponentially blueshifted as they fall in black holes [73–80].

It then seems logical to assume that systems which exhibit classical chaos, such as black
holes, also exhibit quantum chaos. This has led to the idea that black holes should have
GUE random matrix level statistics [50]. One way to visualize random matrix level statis-
tics, is to plot the spectral form factor in some microcanonical energy window δ around λ

mSFF(t) =
∑
i,j∈δ

eit(λi−λj) . (5.24)
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Figure 2. Left: microcanonical spectral form factor for GUE as a function of time for a bin of
size 1/10 centered around zero energy. Right: same microcanonical spectral form factor but with
a spectrum obtained from the electrostatics problem (5.2) with a Gaussian potential V = 1/2x2.
We clearly see a huge difference between the plot on the right, not only are there the Poincare
recurrences, but there is no ramp region as well. In both plots we used L = 104 and the bin
contained 1272 eigenvalues. We verified that the recurrence time is indeed 2πρ(0) = 4 × 104 even
if appearing non-uniform in the figure above due to the log-log scale.

We can compare this quantity for a typical draw of random matrix theory with the
spectrum obtained by solving our electrostatics problem (5.2), see figure 2

At early times these are identical, but at exponentially late times they are very dif-
ferent, systems with random matrix statistics have a linear ramp followed by a plateau
starting at t = 2πρ(λ), whereas our system has almost perfect Poincare recurrences at
times t = 2πnρ(λ) and no visible ramp.

The reason for this is that the spectrum of our theory HJT is approximately equally
spaced, on scales where ρ(λ) is approximately constant, and this periodicity is responsible
for the Poincare recurrences. This is already obvious when we consider the electrostatic
problem (5.2). This model has an attractive force coming from the potential and a repulsive
force coming from the bilocal deformation. The potential is a large distance force, saying
how much λi should be packed in some smaller interval. Within those smaller intervals
electrostatic repulsion wins, and the eigenvalues are maximally separated. So locally the
eigenvalues are equally spaced, and globally there is an envelope determined by the poten-
tial. Let us now show this in more detail by studying the distribution of zeros of PL(λ).

Consider the orthogonal polynomials PL(λ) associated with some potential V (λ). The
zeros of PL(λ) are always in some finite region (or set of regions) along the real axis24 and
in particular when L becomes larger, the zeros of PL(λ) become more and more tightly
packed. Let us consider some λ0 and consider a set of zeros λ(j)

0 around this value,

· · · < λ
(−1)
0 < λ0 = λ

(0)
0 < λ

(1)
0 < . . . (5.25)

To study the spacing of these zeros, we follow Lubinsky [81] (see also [82]) and consider
the Christoffel-Darboux kernel associated to the orthogonal polynomials

KL(λ1, λ2) = aL
PL(λ1)PL−1(λ2)− PL−1(λ1)PL(λ2)

λ1 − λ2
. (5.26)

24At least for the potentials that have certain growth properties at large |λ| [67].
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Figure 3. Spacing distribution typical for clock behaviour. The right is a zoom-in of the left plot
that emphasizes the small spread of the distribution. Here we used the electrostatics problem for
a quartic potential V = −1/2x2 + x4, again we used the binsize 1/10 centered around zero and
took L = 104.

This object has two interesting properties. First, if P (λ1) = 0 then KL(λ1, λ2) = 0 if
P (λ2) = 0 and λ1 6= λ2. Second, if λ1 − λ2 ∼ 1/ρ(λ) ∼ 1/L → 0 the Christoffel-Darboux
kernel becomes the sine kernel

lim
L→∞

1
ρ(λ0)KL

(
λ0 + a

ρ(λ0) , λ0 + b

ρ(λ0)

)
= sin π(a− b)

π(a− b) (5.27)

The relation (5.27) holds for any potential and is the manifestation of random matrix
theory universality. The sine kernel vanished for a− b ∈ Z0 and so combining this with the
first property, we see that when we have a zero at λ(j)

0 , then the at large L the next zero
λ

(j+1)
0 lies as

λ
(j+1)
0 − λ(j)

0 = 1
ρ(λ0) (5.28)

Thus the spectrum is locally equally spaced and in the orthogonal polynomial literature it
is called clock behaviour. This rigidity is also clearly visible when we plot the average level
separation, the analogue to the Wigner surmise, see figure 1, where indeed we see this is
highly peeked around 1/ρ(λ0) as shown in figure 3

This leads us to a rather surprising result when we consider the double scaling limit to
gravity. By construction we are studying a theory of black holes, after all we are investi-
gating pure JT gravity with a bilocal interaction turned on. The spectrum HJT described
the exact quantum spectrum of these black holes, and we found that this spectrum has
clock statistics, not random matrix statistics. So there are theories of black holes without
random matrix statistics, which seems to contradict at least superficially the claim of [50].

Some comments are in order.

1. Clock behaviour of the zeros of orthogonal polynomials follows from the sine-kernel
and is thus not only a very universal property, but also a non-perturbative (in L) one.
To see this, notice that the energies a and b are proportional to ρ(λ) ∼ L so we have
an oscillating exponential of L. Furthermore, universality also tells us that when we
go to the gravitational description, i.e. when we double scale, clock behaviour will
persist, the sine kernel is always there [65, 66, 83].
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2. The ramp has an interpretation in gravity as due to a wormhole stretching between
two asymptotic boundaries in ordinary JT gravity (without local or bilocal deforma-
tions) [5, 6, 11]. This computation is a good approximation for a typical member of
the random matrix ensemble. Clearly it is not a good approximation to our canoni-
cal version of JT gravity with only the bilocal turned on, since we see no ramp even
under time averaging. That is fine, because this is an atypical draw from the point of
random matrix theory (even though, in some sense, it is the most likely draw). But
this atypical draw is very natural from the bulk point of view.

3. When adding matter in the probe limit, our theory still gives the Lyapunov growth
of the OTOC, simply because the coarse grained spectrum is the same as in ordinary
JT gravity. The scrambling time scale is too short to distinguish our discretized
spectrum from the continuous one.

4. The argument that black holes are quantum chaotic seems more robust in higher
dimensions, simply because there are more degrees of freedom, so this could be a
pathology of our lower dimensional setup. It is fathomable that the clock behavior
is not robust under such deformations.

5.3 Quantum mechanical dual of canonical JT gravity

We now consider the double scaling limit where one takes L to infinity and scales towards
the spectral edge of the spectrum [11]. The precise double scaling procedure is not very
important, here we will limit ourselves to sketching how different quantities map to one
another and state the corresponding double scaled structures, which we then check gives
the desired answers.

The auxiliary quantum mechanics reloaded. In the double scaling limit orthogonal
polynomials become the Baker-Akhiezer functions of the relevant double scaled matrix
model [84]

Pn(λ)→ ψ(x, λ) , (5.29)

where L−n becomes proportional to a rescaled version of the (now continuous) coordinate
x, and λ has been scaled towards the edge, furthermore we left out prefactors for comfort.
For large eS0 , which replaces L upon double scaling, we have the following approximation
for the Baker-Akhiezer functions (up to normalization that should be fixed later) for λ >
u(x) [44, 63]

ψ(x,λ) = 1
(λ−u(x))1/4 cos

(
eS0

ˆ λ

u(x)
dvF ′(v)(λ−v)1/2 + π

4

)
, x=

√
u

2π I1(2π
√
u) =F(u) ,

(5.30)
where the last expression is the leading approximation to the JT string equation [28]. For
λ > u(x) this function is exponentially decaying. Perhaps the easiest way to understand
the mapping (5.29) is that Baker-Akhiezer functions are by definition expectation values of
determinants in double scaled matrix integrals, just like the orthogonal polynomials (5.23).
This definition leads straight to (5.30) [63, 85].
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Baker-Akhiezer functions satisfy two differential equations (this is the Lax formalism),
one of which is [28, 63]

λψ(x, λ) = Q̂ ψ(x, λ) , Q̂ = − 1
e2S0

∂2
x + u(x) . (5.31)

One recognizes (5.30) indeed as the WKB approximation for the solutions to this
differential equation. To leading order u(x) satisfies x = F(u), in general is a more
complicated function, see section 5.3. The parameter x is the coupling constant t0 of
the KdV hierarchy, which usually is not thought about as physically relevant, all dilaton
gravity models sit at t0 = 0.

The point is that the differential operator Q̂ can be obtained directly by double scaling
the Jacobi matrix Q, in the usual way that difference equations such as (5.9) become differ-
ential equations when n becomes continuous. The constraint PL(λ) = 0, which according
to (5.2) is equivalent to finding the eigenvalues of HJT, gets replaced with a Dirichlet
boundary condition upon double scaling

ψ(0, λ) = 0 . (5.32)

The spectrum of Q̂ with these boundary conditions will then, by construction, reproduce the
spectrum of HJT. This means that we can interpret this QM system as a dual description of
JT gravity with only the bilocal deformation, which we refer to as canonical JT gravity. See
figure 4 for the spectrum, wavefunctions and the potential u(x).25 The partition function
of canonical JT can be computed literally as

Z(β) = Tr
(
e−βQ̂

)
, (5.33)

the spectral form factor is Tr
(
e−β1Q̂

)
Tr
(
e−β2Q̂

)
etcetera. One can check that wavefunctions

for different solutions λi and λj are orthogonal and can be normalized to one on x >

0 using formula (3.37) in [86], which is a continuous version of the Christoffel-Darboux
formula (5.26)

ˆ ∞
0

dxψ(x, λi)ψ(x, λj) = ψ(0, λi)∂xψ(0, λi)− ψ(0, λj)∂xψ(0, λi)
λi − λj

= 0 when λi 6= λj ,

(5.34)
where one uses that ψ(0, λi) = ψ(0, λj) = 0 according to the Dirichlet boundary condi-
tion (5.32).

25The spectrum being given by the zero’s of the Baker-Akhiezer functions also appeared in a recent
work by Clifford Johnson [44] (based on his earlier work [47–49]). There it was noted that this spectrum
is naturally embedded in the matrix integral by studying the probability distribution of the first, second,
etc. eigenvalues of the matrix in the double scaling limit. The peaks of these probability distributions then
coincide (approximately) with the zeros of the Baker-Akhiezer function. It was then argued that on the disk
this discrete spectrum should be present, which at large energy is just the continuous Schwarzian density of
states. Higher genus corrections would then fill in the gaps and produce a continuous spectrum. This is not
what we are doing here. We have the spectrum given by the zeros of the Baker-Akhiezer function to be the
non-perturbative density of states in the sense that when we compute any correlator of ρ(E) in the matrix
integral we get, first of all, a factorizing answer, and second the density is a sum of delta functions on this
spectrum. To get these two features it is essential to deform the matrix integral (and gravity theory) with
the bilocal deformation as shown in [36].

– 33 –



J
H
E
P
0
8
(
2
0
2
2
)
0
7
1

Figure 4. Left: first seven normalized eigenstates ψi(x) and energies of Q̂ for S0 = 5. We also
plotted the potential u(x) in black. The more red the coloring the higher the energy. The left vertical
axis is for Ei and u(x), whereas the right one is for ψi. Right: integrated spectral density n(E) =´ E

0 ρ(E′)dE′ for the first 1500 eigenvalues of HJT (orange dots) and the JT gravity result (blue).

There are several ways to confirm that the clock behavior (5.28) is respected in this
double scaled theory. One is to use that the Christoffel-Darboux kernel reduces to the sine
kernel for nearby energies. Another is to use that ψ(0, λ) according to (5.30) becomes (4.36),
the spacing of zeros follows then from the quasi-periodicity of the cos. The simplest though,
it to simply use Bohr-Sommerfeld quantization for the Schrodinger equation (5.31) with
Dirichlet boundary conditions

π(n+ 1/2) = eS0

ˆ F(E)

0
dx
√
E − u(x) = eS0

ˆ E

0
duF ′(u)

√
E − u , (5.35)

where the x = 0 turning point comes from the hard Dirichlet wall. The coarse grained
density of states is dn/dE, which results in

ρ(E) = dn
dE = eS0

2π

ˆ E

0
du F

′(u)√
E − u

= eS0 sinh 2π
√
E

4π2 , (5.36)

which reproduces indeed the coarse grained spectral density of our canonical JT gravity,
which should be indeed that of the original ensemble.

We stress that the true spectrum of our QM is discrete, this sets it aside from, say,
Schwarzian quantum mechanics [87], but also from the auxiliary quantum mechanical de-
scription of matrix integrals in the Lax formalism, where the same Hamiltonian Q̂ features,
but without Dirichlet boundary conditions. To drive home the point that discreteness is
conserved upon double scaling, consider for instance the fact that double scaling the Her-
mite polynomials results in the Airy function, which does not have a continuum of zeros
(and is the simplest Baker-Akhiezer function).

Path integral formulation. It is straightforward, at least to leading order in eS0 to
write down an action for our quantum mechanical problem, which is describing a particle
moving in a potential u(x). The partition function is

Z(β) =
ˆ
Dx exp

(
−
ˆ β

0
dτ
(
e2S0

4 ẋ2 + u(x)
))

, (5.37)
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where the sum is over periodic paths x(τ + β) = x(τ) and we have the constraint x(τ) > 0
for all τ . This is the way to enforce Dirichlet boundary conditions in path integrals, the
wavefunction must vanish at the boundary, so the particles can never travel beyond x = 0.
One can think of the potential u(x) as being infinite for x < 0.

To leading order in eS0 we can solve this path integral by saddle-point. As there is no
eS0 multiplying the potential, the leading order equation of motion are simply ẍ = 0, so
the unique periodic solutions are constants

x(τ) = x0 , 0 < x0 <∞ (5.38)

Notice that x0 is a parameter of the on-shell solution and we need to integrate over it in
order to sum over all saddles. To leading order we can ignore the effects of the constraint
x(τ) > 0 on the Gaussian fluctuations around the saddle, and we can evaluate u(x) on
shell, so we just need to compute standard Gaussian integrals26

Z(β) =
√
β

ˆ ∞
0

dx0 e
−βu(x0)

ˆ +∞

−∞

∏
n>0

dandbn exp
(
− e2S0π2n2

β2 (a2
n + b2n)

)
(5.39)

After zeta regularization this results indeed in the Laplace transform of (5.36)

Z(β) =
√
β

ˆ ∞
0

dx0 e
−βu(x0) eS0

β
√

4π
= eS0

4
√
πβ

ˆ ∞
0

duF ′(u) e−βu = eS0

4π1/2β3/2 e
π2
β . (5.40)

An alternative way to obtain this is by writing (5.37) as a phase space path integral
(introducing a field p(τ)), and rescaling τ by eS0 such that eS0 stands everywhere where
one usually has 1/~ in QM. Then taking ~→ 0 localizes this phase space path integral to
a classical phase space integral over constants p0 and x0 as explained in [88]. With the
phase space measure dp0 dx0/2π~ one recovers the above answer

Z(β) = eS0

2π

ˆ ∞
0

dx0

ˆ +∞

−∞
dp0 e

−β(p2
0+u(x0)) . (5.41)

So where is the discreteness in this calculation? Even for extremely large eS0 , where
we can certainly trust this saddle-point, our quantum mechanics still has a discrete spec-
trum, which we remind the reader is a direct consequence of the Dirichlet boundary condi-
tions (5.32). This sits in the fact that we have ignored the effects of the constraint x(τ) > 0
on the fluctuations, instead we have essentially solved the path integral with x0 > 0 con-
straints. This path integral will never result in a discrete spectrum, not even if we include
the expansion of u(x) around the saddle-point to arbitrary order in the fluctuations.

So discreteness must trickle in through the constraints that x(τ) > 0 puts on the
integration range in the mode expansion, the allowed integration range of x0, an and bn
in (5.39) becomes a complicated mess, which somehow should organize into a discrete
spectrum. Solving path integrals in quantum field theory with positivity constraints on
the fields is a notoriously difficult problem, this is essentially the reason why string theory

26The
√
β comes from choosing an orthonormal basis for x on the circle, the path integral measure is

then dx0
√
β.
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in Rindler space is hard [89]. It would be interesting to see how discreteness arises directly
in the path integral, without resorting to solving the Schrodinger equation with Dirichlet
boundary conditions in canonical quantization.

Regardless of that subtlety we should note another source for corrections in the eS0 ex-
pansion, which comes from the fact that actually the u(x) that features in the Schrodinger
equation (5.31) is only the solution to x = F(u) to leading order in eS0 . Including correc-
tions, u(x) is the solution to a differential equation∑

k

tkRk[u, eS0 ] = x , (5.42)

with Rk the Gelfand-Dickii differential operators and the tk are known constants for JT [28,
90]. These operators contain derivatives of u w.r.t. to x and so to construct an action that
works to higher orders in eS0 as well, those need to be converted into τ derivatives by using
∂x = (ẋ)−1∂τ . So the Gelfand-Dickii differential operators should be viewed as functions of
(derivatives of) both u and x here Rk[u, x, eS0 ]. We can still write up a quantum mechanics
by introducing a Lagrange multiplier λ(τ) that forces the constraint (5.42)27

I[u, x, λ] =
ˆ β

0
dτ
(
e2S0

4 ẋ2 + u− iλ
(∑

k

tkRk[u, x, eS0 ]− x
))

(5.43)

Before turning to the conclusions let us say a few words about the difference between
our system, and the more familiar appearance of the Schrodinger equation (5.31) in the
matrix integral literature. Usually [28, 63, 67–69] one views this quantum mechanics as
auxiliary, and one does not have the Dirichlet boundary conditions ψ(0, λ) = 0, nor the
interpretation that Q̂ is literally the Hamiltonian of the gravity theory. Instead, the com-
putation of the partition function involves a projector on positive x at one point in time

Z(β) = Tr
(
Π e−βQ̂

)
, Π =

ˆ ∞
0

dx|x〉〈x| . (5.44)

In the path integral formulation this boils down to summing over all periodic paths with
the constraint x(τ0) > 0 for one chosen time τ0. This does not result in a discrete spectrum
in Z(β), moreover we are not computing the partition function of the QM (which has a flat
spectrum), because of the projector. Therefore there is no sense in which the matrix integral
and the auxiliary QM are holographic duals; in our case, products of partition functions
map to partition functions, so we do have a shot at describing a genuine holographic duality.
We comment more on this below.

Aside: non-perturbative effects can imply perturbative corrections in e−S0 ex-
pansion. The geometric expansion of canonical JT gravity only contains the disk. The
corrections to the density of states of this geometry are non-perturbative effects in the orig-
inal matrix integral, namely, as discussed in section 5.2, they are given by the electrostatic
problem whose spacing between eigenenergies are given by the vanishing values of the sine-
kernel (the leading non-perturbative contribution in the spectral density two-point function

27There is also a nontrivial measure on the path integral over u(τ) which compensates the Jacobian from
the delta.
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for λ1 6= λ2). However, the fact that only non-perturbative effects are present (aside from
the disk contribution) does not imply that in the partition function Z(β) = Tre−βHJT there
are no perturbative corrections in an e−S0 expansion.28

In matrix integrals non-perturbative effects can, at least naively, manifest themselves
in observables at perturbative order in e−S0 . For instance, even in the undeformed matrix
integral, in the spectral density correlator non-perturbative effects give rise to a term which
is only suppressed by e−S0 . Indeed 〈ρ(λ1)ρ(λ2)〉 ⊃ ρ0,JT(λ1)δ(λ1 − λ2) ∼ eS0 which has no
geometric origin in the topological expansion (since the leading disconnected geometric con-
tribution scales as e2S0 and the subleading one as well as the leading connected contribution
scales as O(1)). Canonical JT gravity takes this to the extreme. Due to the appearance of
the parameter q from the solution of the Schwinger-Dyson equations reviewed in section 2,
the topological recursion relations are no longer valid once the double-trace deformation
(associated to the bilocal deformation in gravity) are turned on. This is because the start-
ing assumption needed to derive these relations is that the spectrum at the saddle-point
can be approximated by a continuum; with the deformation turned on, this is a bad ap-
proximation since we have q � eS0 . Instead, the spacing in the spectrum that we find
above is given by the values of the energies at which the sine-kernel from the original JT
gravity matrix integral vanishes, from which we find that λ(j+1)

0 −λ(j)
0 ∼ e−S0 in the double

scaled limit. Such small differences nevertheless contribute at perturbative order in e−S0 to
Z(β), which thus has a whole perturbative series in e−S0 that is non-vanishing. Thus the
perturbative corrections in e−S0 are akin to the ∼ eS0δ(E−E′) contribution in the spectral
density correlator - even though they both corrections naively appear perturbative, they
all in fact have a non-perturbative (non-geometric) origin.

5.4 Bulk interpretation of null states

In the previous subsections we focused on the interpretation of the canonical JT theory
by looking at the statistics of the eigenvalues HJT. Here we want to study its semiclassics,
borrowing also some ideas from null states in section 4.

In the canonical JT theory we deform the JT path integral just by a bilocal spacetime
interaction. This causes the genus expansion to collapse to just the disk and from the
matrix integral we know the spectrum is discrete, given by HJT. However, using the null
states, we can equally well describe this theory with a path integral that has both the
bilocal and local deformation turned on. In particular we take the local deformation to be
the one discussed in [36], but now with H0 = HJT,

Zbrane(b,HJT) ⇔ δρ0(E,HJT) = Tr(δ(E − HJT))− eS0

4π2 sinh(2πE1/2) . (5.45)

28We thank Don Marolf for raising this point.
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Figure 5. Metric function G(Φ) as a function of the radial coordinate (equal to the dilaton Φ)
for the potential U(Φ, s0) with s0 = 1 (orange) alongside with the undeformed metric potential
Φ2 −Φ2

h. We used Φh = 0.7 and took the first 1500 eigenvalues of HJT at S0 = 5. The inset shows
a clear difference between the two cases, but on ‘average’ (average over a small Φ window) the blue
and orange curve lie on top of each other.

The contribution of this one-point function to the equations of motion is
ˆ ∞

0
dEδρ0(E,HJT)∂λP (λ,E)|λ=λi=−2

 ∞
0

dE eS0

4π2 sinh(2πE1/2) 1
λi−E

+ 1
2λi

+2
∑
j 6=i

1
λi−λj

=−LV ′JT(λi)+
1

2λi
+2
∑
j 6=i

1
λi−λj

=0 when λi=λJTi, (5.46)

where in the second line we used the relation between the JT disk spectral density and the
JT potential [11, 36]. Notice now that the second line in (5.46) is precisely of the form (4.7),
such that this contribution vanishes when λi = λJT i. In fact, we can multiply Zbrane(b,HJT)
with a parameter s0 and still obtain the same equations of motion and solutions λi = λJT i,
provided 0 ≤ s0 ≤ 1 to ensure stability of the saddle. So turning on (5.45) is another
example of the null deformations discussed in 4.

We now want to understand a bit better what the semiclassical interpretation of this
null deformation is. In particular, we want to compare the case where we only have
the bilocal deformation turned on and the cases where s0 6= 0. Working semiclassically
means that we take only the order one and order e−S0 corrections into account. Thus we
neglect the bilocal, which although important for higher genus corrections, is not important
semiclassically.

The semiclassical physics of general dilaton gravity is most easily understood by going
to a gauge where the dilaton is the radial direction and the metric takes the form [37]

ds2 = G(Φ)dτ2 + dΦ2

G(Φ) (5.47)
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with

G(Φ) =
ˆ Φ

Φh
dΦ′ U(Φ) (5.48)

and Φh determined by demanding smoothness of the solution. For the case at hand the
dilaton potential U(Φ) is given by

U(Φ, s0) = 2Φ + 4πs0e
−S0

ˆ ∞
0

bdb e−2πΦ cos(bΦ)Zbrane(b,HJT)

= 2Φ + (4π)2s0Φe−2πΦ
(
e−S0Trδ(Φ2 − HJT)− sinh(2πΦ)

4π2

)
. (5.49)

In the second line we used the explicit form of Zbrane (5.45) and performed the integrals
over b (and E). From this expression we clearly see that to leading order the dilaton
potential is just the ordinary one, but there are e−S0 corrections to it. It is amusing to see
as well that amongst these null deformations, the one with s0 = 1 has a dilaton potential
which does not have the 2Φ anymore

U(Φ, s0 = 1) = 2Φe−4πΦ + 8π2e−2πΦe−S0
∞∑
i=0

δ(Φ− λ1/2
JT i). (5.50)

Inserting the leading order approximation (5.36) for the spectrum of HJT, the 2Φ reappears.
So this is in some sense a discretization of the JT dilaton potential.

It is also interesting to note that since we can calculate the spectrum HJT numerically,
we can simply plot the metric function G(Φ) with the deformation turned on. See figure 5
for an example at s0 = 1. The most notable feature is that we observe a raggedness of the
metric in the deep IR, but the metric becomes smooth the closer to the boundary we get.

Analytically we have the following slightly draconian formula for G(Φ, s0)

G(Φ, s0) = (1− s0)(Φ2 − Φ2
h)− s0

8π2

(
e−4πΦ(1 + 4πΦ)− e−4πΦh(1 + 4πΦh)

)
+ 8π2s0e

−S0
∑

Φ2>λJTi>0
e−2πλ1/2

JTi − 8π2s0e
−S0

∑
Φ2
h
>λJTi>0

e−2πλ1/2
JTi (5.51)

Consider two regimes: large Φh (large temperature) and the other is small Φh (small
temperature). In the first case we expect no difference with the usual JT results, because
at large temperature we probe the high energy part of the spectrum of HJT, where the
eigenvalues are dense and we can approximately coarse grain.

At small Φh though, the last term on the second line now does not approximate well
the last term on the first line, as we sum over only few (sparse) states. Thus, for small
Φh we see a difference in ADM energy (defined as the subleading piece at large Φ) of the
solution with or without the null deformation.

Another important point that results from this analysis is that null deformations can
change the details of the on-shell solution. For s0 = 0 we just have the normal JT black
hole metric, but as we see in (5.51), for s0 6= 0 there are corrections to it. In other words,
semiclassical physics is not invariant under null deformations. Schematically for the s0 = 1
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and s0 = 0 theories, we can picture this as

Leading
saddle with

null deformation︷ ︸︸ ︷
+ non-perturbative corr. in S0

︸ ︷︷ ︸
+ non-perturbative effects

=

Leading
disk saddle︷ ︸︸ ︷

+ non-perturbative effects ,

(5.52)
where the theory deformed by a null deformation is represented on the left, while canonical
JT gravity is represented on the right. The full answer on both sides is exactly identical as
per the matrix model calculations, but as an expansion, we can shuffle things between the
semiclassical geometries (the drawn disks) and non-perturbative corrections in S0. This
leads to naively different semiclassical physics or simply different black holes geometries that
are equivalent non-perturbatively. This is an explicit example in gravity of the mechanics
that multiple bulk descriptions can coexist [41]. This is a direct consequence of null states
and one of the major points we wanted to make in this work.

6 Conclusion and outlook

In this paper, we have given an explicit geometric description of all states in the baby
universe Hilbert space of JT gravity. We have found that alpha-states can be obtained
from factorizing theories of dilaton gravity which contain non-local terms. Null states on
the other hand can be obtained by studying the redundancies in the UV completion of such
theories and led us to the idea that different semiclassical descriptions of the bulk can be
equivalent non-perturbatively. To explore the properties of such theories, we have focused
on the simplest factorizing theory, that we called canonical JT gravity, a theory which
only has the disk contribution in its geometric expansion. We have found that this theory
can be described by a conventional quantum mechanical Hamiltonian, whose spectrum is
regular and does not exhibit random matrix statistics. This points towards a holographic
duality between a theory of AdS2 quantum gravity, whose action is

Icanonical = IJT + Inonlocal , (6.1)

and a non-gravitational conventional discrete quantum mechanics, whose action is given
by

Iboundary =
ˆ β

0
dτ
(
e2S0

4 ẋ2 + u(x)
)
, (6.2)

where the potential u(x) is determined from the string equations in the original JT matrix
integral.
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Understanding such dualities has a long history in the literature since they are moti-
vated by finding examples of AdS/CFT that are in some sense most applicable in our own
universe: all extremal and near-extremal black hole solutions have an AdS2 near-horizon
region that appears in their decoupling limit. Nevertheless, there has also been an equally
long list of confusions regarding these dualities, some of which are useful to recall. For
instance, in [91] it was pointed out that a CFT1 boundary dual should only capture the
degeneracy of ground states that the black hole has at extremality. However, this assumed
that a thermodynamics mass gap existed between the extremal states, which would have
an exact degeneracy scaling as eS0 , and lightest near-extremal states in all such black holes.
However, computations that showed that JT gravity serves as an effective theory for the
near-horizon region of such black holes [92–95], show that, when accounting for the back-
reaction in the AdS2 region, no gap is present at the predicted energy scale and there
is no large degeneracy among extremal states (at least for non-supersymmetric extremal
and near-extremal black holes [95–98]). Thus, since this gap is absent, the boundary de-
scription should capture the contribution of both the extremal and near-extremal states,
the latter of which explicitly break the SL(2,R) isometry in the near-horizon region [94].
One might consequently hope that instead of some CFT1 that has an SL(2,R) conformal
symmetry, the Schwarzian theory, which is the effective theory that explicitly captures the
breaking of this near-horizon SL(2,R) isometry, provides the appropriate dual description
for such black holes. However, the Schwarzian does not represent the full answer: firstly,
it has a continuous spectrum which is not expected of black hole micro-states in a UV
complete theory, and secondly, it does not capture any non-perturbative corrections from
other geometric contributions to the gravitational path integral. The boundary quantum
mechanics theory discussed in this paper addresses both these issues, albeit in a bottom-up
manner: by accounting for both the non-local interaction resulting from integrating out
UV degrees for freedom and for the non-perturbative corrections that result from a sum
over all topologies, we have found a theory with a discrete spectrum. At the same time,
our theory (6.2) reproduces the results obtained from JT gravity at leading order in e−S0 .

While our paper completes the program of concretely characterizing the baby universe
Hilbert space of JT gravity and points towards a new holographic duality, there are however
numerous open questions, some of which we hope to address in future work.

Completing the holographic dictionary. In our bottom-up construction, we have
integrated out all degrees of freedom with the exception of the 2d metric and dilaton in some
UV complete theory of gravity. In the model that we called canonical JT gravity, we have
chosen for concreteness the local dilaton potential to vanish. However, each near-extremal
black hole whose origin is in a higher dimensional UV complete theory will come with its
own local dilaton corrections — for instance, there is no reason to expect that the local
dilaton corrections for near-extremal black holes in an asymptotically R3,1 × T 6 spacetime
is the same as those for black holes in AdS5 × S5. These corrections will be determined
by performing the dimensional reduction to the near-horizon AdS2 and integrating out all
other degrees of freedom in the theory (such as all matter fields, gauge fields or higher
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derivative interactions).29 Thus, we expect that each higher dimensional UV complete
theory will have its own spectrum of near-extremal black hole micro-states determined by
the corrections, in principle determined by the corrections to the local dilaton potential
in the dimensionally reduced theory. Nevertheless, canonical JT gravity serves as a self-
consistent example that illustrates how discreteness and factorization arise together in
the gravitational path integral, in a manner that we hope is generalizable to the more
complicated examples arising in the dimensional reductions of stringy UV completions.

Additionally, since many interesting observables can be obtained from the insertion of
(gravitationally dressed) matter fields, it would be fruitful to take one step-back, and not
integrate-out some of the matter fields which we know are present in a theory that has
its UV completion in string theory. In particular, it would be interesting to understand
whether the presence of such matter fields, when no longer integrated out, can change the
universal non-local interaction which we had to include in order to get a factorizing answer.

Furthermore, while the mapping between the spectra of the bulk (6.1) and bound-
ary (6.2) theories is clear, the mapping of operators is not. In contrast to higher dimen-
sional examples of AdS/CFT, in quantum mechanics there is no locality to guide us in
finding a mapping between bulk and boundary operators. Nevertheless, one might still
hope that the canonical operators of (6.2), such as x̂ and its conjugate p̂, have a nice
geometric meaning in the bulk.

Conversely, one might hope to determine the boundary meaning of the commonly dis-
cussed diffeomorphism invariant bulk operators. For instance, what boundary operator is
dual to the insertion of bulk probe geodesics? To leading order in e−S0 this should re-
produce the expectation value of Schwarzian bilocals [6, 88, 101–106] which also capture
the effect of inserting such geodesics. Nevertheless, identifying such operators in the the-
ory (6.2) seems difficult even at leading order in eS0 . This is partly because it is difficult to
find even an approximate relation between x(τ) and the Schwarzian mode f(τ) [53, 54, 94].
The difficulty in this identification can be observed by comparing the leading order com-
putation of the thermal partition function using the path integral in section 5.3 to that
in the Schwarzian theory. While in the Schwarzian theory there is a unique saddle and
the factor of 1/β3/2 comes from computing the one-loop correction around this saddle, the
theory in (6.2) has an (approximate) moduli space of saddles that we have to integrate
over in order to reproduce the factor of 1/β3/2.

A related step towards completing the holographic dictionary is in identifying the
meaning of the wavefunctions ψE(x). Such wavefunctions arise in the quantum mechanics
by considering the double-scaling limit of the orthogonal polynomials associated to the
JT matrix integral. In the bulk theory, one can then wonder whether ψE(x) becomes a
Hartle-Hawking wave-function that can be computed using a gravitational path integral.
If so, the boundary conditions needed to specify such a path integral, would consequently
reveal the bulk meaning of x̂.

29Integrating-out gauge fields decomposes the matrix integral description into multiple sectors, each
associated to an irreducible representations of the bulk gauge group [99, 100]. Consequently, we expect the
analysis in this paper to straightforwardly extend to the study of fixed irrep sectors of such black holes.
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Figure 6. Length across the Einstein-Rosen bridge (or the volume of the black hole interior),
including non-perturbative corrections, obtained by using (6.4) for u1 − u2 = β/2 + i t. Left: at
early time our model exhibits a linear growth of the length, as expected in all gravitational theories.
Right: at later times ∼ eS0 , approximate recurrences appear due to the clock behavior of the energy
spacing, for small energy differences. For higher values of β the recurrences become more and more
pronounced, and periods of linear growth and linear decay are more clearly visible. This should be
contrasted with the results found in [8] for theories with a chaotic spectrum for which the noise of
the plateau was much smaller and much more erratic.

Gauge invariant observables. It would be interesting to explore whether the explicit
presence of null states, and their corresponding null deformations, can explicitly affect the
experience of observers in the bulk or boundary theory. To explore this question it is useful
to draw an analogy between the null deformations in gravity and gauge transformations in
gauge theory. In quantum field theory, whenever we find a redundancy in description (gauge
freedom) we are prompted to identify the subset of gauge-invariant (physical) observables:
for instance, in electromagnetism we learn that the field strength F is physical, but not
the gauge field A.

In this analogy, the gauge field configurations corresponds to the space of theories
of quantum gravity. Gauge equivalent configurations correspond to gravitational theories
related by a null deformation. In both cases, redundancies imply that not all observables
that we thought were physical, actually are. For instance, the spacetime action in the
gravitational theory is not gauge invariant since it is affected by null deformations of the
dilaton potential. However, the full path integral over such actions is gauge invariant since
it is insensitive to the action of null deformations. More generally, we want to identify
observables that actually are invariant under the null deformations described in this paper.

In section 5.4, we have explicitly seen that the semiclassical description of the bulk is
not “gauge invariant”, in that there exist null deformations in the theory that change the
leading classical solution but do not affect the ultimate exact spectrum of the theory. So
only observables that can be defined non-perturbatively, in that they receive contributions
from all geometries in the gravitational path integral, could be physical. To emphasize this
point, consider the semiclassical definition of the distance between two boundary points,
determined by their proper times u1 and u2. In the semiclassical description, this distance
sensitively depends on the solution for G(Φ) in (5.47). Since G(Φ) depends on the exact
form of the dilaton potential and thus is sensitive to null deformations, the geodesic distance
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also seems to naively depend on the choice of gauge for the dilaton gravity action. Assuming
that u1 and u2 do not scale in any way with eS0 , an explicit calculation shows that the
classical geodesic distance can change by an e−S0 amount under null deformations of the
dilaton potential.

Nevertheless, we can instead explicitly insert the geodesic distance between the two
boundary points as an operator in the gravitational path integral

〈d(u1, u2)〉β = 1
Z factorized

∑
geometries with
one boundary

ˆ
DgDΦ d(u1, u2) e−IJT−Ilocal−Inonlocal (6.3)

and once again expand the local and non-local dilaton potentials as brane insertions in the
sum over geometries. Then, after some manipulations [8, 36], one finds that the distance
〈d(u1, u2)〉β becomes

〈d(u1, u2)〉β ∼ constant + e−S0
∞∑
i 6=j

e−(u1−u2)Ei−(β−u1−u2)Ej

(Ei − Ej)
(
cosh(2π

√
Ei)− cosh(2π

√
Ej)

) . (6.4)

The answer (6.4) only depends on the energies Ei of the Hamiltonian H0 and, consequently,
is insensitive to null deformations. For convenience we plot this answer (as a function of
Lorentzian time u1−u2 = β/2+it) in figure 6 to emphasize that this observable is explicitly
computable in our model. We thus see that while in the original theory of canonical JT
gravity the saddle-point value of d(u1, u2) is different than that in the null-deformed theory,
the distances between u1 and u2 in both theories are in fact the same when accounting
for all the corrections to the gravitational path integral (due to the subleading non-local
corrections and due to the explicit sum over all geometries).

While invariance under null deformations can be checked on a case-by-case basis, we
do not know of a general way to prove that all diffeomorphism invariant observables (in the
sense of general relativity) are also gauge invariant (in the sense of the null deformations
discussed above). This is because each observable requires a careful non-perturbative
definition at the level of the gravitational path integral. This can be nontrivial, even in the
definition of the distance (6.3) a choice which disallows self-intersecting geodesics in the
measurement of distance has been made. While numerous boundary observables have non-
perturbative definitions (for example, partition functions and correlators of probe matter
fields) little is known about the non-perturbative definition of observables related to the
experience of an in-falling observer (progress in this direction has been made in [107, 108]),
or even observables for static bulk observers (progress in this direction has been made
in [7, 15, 109]). Without understanding whether such observables are gauge invariant in
addition to diffeomorphism invariant, questions related to the faith of an observer crossing
the horizon are impossible to address. This problem is more pronounced for typical states
which can for instance be obtained by evolving a thermofield double state for a time scaling
with eS0 , because of this large time non-perturbative corrections typically become dominant
in the entire eS0 expansion and thus quantities that are not gauge invariant could change
by a wild amount under a null deformation.

– 44 –



J
H
E
P
0
8
(
2
0
2
2
)
0
7
1

In summary, only observables that can be defined non-perturbatively in the matrix
integral are gauge invariant, we need a non-perturbative definition to predict the outcome
of an experiment.30 Semiclassics might be deceptive, especially inside black holes [110].

Acknowledgments

We thank Don Marolf, Henry Maxfield, Steve Shenker, Douglas Stanford and Zhenbin
Yang for valuable discussions. AB was supported by the ERC-COG Grant NP-QFT No.
864583 and thanks the SITP at Stanford for hospitality during part of this project. LVI was
supported by the Simons Collaboration on Ultra-Quantum Matter, a Simons Foundation
Grant with No. 651440. JK is supported by the Simons Foundation. This work was partly
done at the Aspen Center for Physics, which is supported by National Science Foundation
grant PHY-1607611. We furthermore thank the people of Stanford’s SITP, Weizmann and
Aspen Center for Physics for the opportunity to present pieces of this work at a preliminary
stage, and for useful comments.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J.
Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

[2] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, Replica wormholes
and the entropy of Hawking radiation, JHEP 05 (2020) 013 [arXiv:1911.12333] [INSPIRE].

[3] G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole
interior, JHEP 03 (2022) 205 [arXiv:1911.11977] [INSPIRE].

[4] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, The entropy of
Hawking radiation, Rev. Mod. Phys. 93 (2021) 035002 [arXiv:2006.06872] [INSPIRE].

[5] P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity,
arXiv:1806.06840 [INSPIRE].

[6] P. Saad, Late time correlation functions, baby universes, and ETH in JT gravity,
arXiv:1910.10311 [INSPIRE].

[7] A. Blommaert, T.G. Mertens and H. Verschelde, Clocks and rods in Jackiw-Teitelboim
quantum gravity, JHEP 09 (2019) 060 [arXiv:1902.11194] [INSPIRE].

[8] L.V. Iliesiu, M. Mezei and G. Sárosi, The volume of the black hole interior at late times,
JHEP 07 (2022) 073 [arXiv:2107.06286] [INSPIRE].

30Because, obviously, every experiment is by definition computing the expectation value of a gauge-
invariant observable. By definition and by construction it is impossible to do any measurement that detects
a null deformation.

– 45 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9711200
https://doi.org/10.1007/JHEP05(2020)013
https://arxiv.org/abs/1911.12333
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.12333
https://doi.org/10.1007/JHEP03(2022)205
https://arxiv.org/abs/1911.11977
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.11977
https://doi.org/10.1103/RevModPhys.93.035002
https://arxiv.org/abs/2006.06872
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.06872
https://arxiv.org/abs/1806.06840
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.06840
https://arxiv.org/abs/1910.10311
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.10311
https://doi.org/10.1007/JHEP09(2019)060
https://arxiv.org/abs/1902.11194
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.11194
https://doi.org/10.1007/JHEP07(2022)073
https://arxiv.org/abs/2107.06286
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.06286


J
H
E
P
0
8
(
2
0
2
2
)
0
7
1

[9] P.-S. Hsin, L.V. Iliesiu and Z. Yang, A violation of global symmetries from replica
wormholes and the fate of black hole remnants, Class. Quant. Grav. 38 (2021) 194004
[arXiv:2011.09444] [INSPIRE].

[10] Y. Chen and H.W. Lin, Signatures of global symmetry violation in relative entropies and
replica wormholes, JHEP 03 (2021) 040 [arXiv:2011.06005] [INSPIRE].

[11] P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115
[INSPIRE].

[12] D. Marolf and H. Maxfield, Transcending the ensemble: baby universes, spacetime
wormholes, and the order and disorder of black hole information, JHEP 08 (2020) 044
[arXiv:2002.08950] [INSPIRE].

[13] D. Stanford, More quantum noise from wormholes, arXiv:2008.08570 [INSPIRE].

[14] A. Blommaert, T.G. Mertens and H. Verschelde, Eigenbranes in Jackiw-Teitelboim gravity,
JHEP 02 (2021) 168 [arXiv:1911.11603] [INSPIRE].

[15] A. Blommaert, Dissecting the ensemble in JT gravity, arXiv:2006.13971 [INSPIRE].

[16] J. Pollack, M. Rozali, J. Sully and D. Wakeham, Eigenstate thermalization and disorder
averaging in gravity, Phys. Rev. Lett. 125 (2020) 021601 [arXiv:2002.02971] [INSPIRE].

[17] N. Afkhami-Jeddi, H. Cohn, T. Hartman and A. Tajdini, Free partition functions and an
averaged holographic duality, JHEP 01 (2021) 130 [arXiv:2006.04839] [INSPIRE].

[18] A. Maloney and E. Witten, Averaging over Narain moduli space, JHEP 10 (2020) 187
[arXiv:2006.04855] [INSPIRE].

[19] A. Belin and J. de Boer, Random statistics of OPE coefficients and Euclidean wormholes,
Class. Quant. Grav. 38 (2021) 164001 [arXiv:2006.05499] [INSPIRE].

[20] J. Cotler and K. Jensen, AdS3 gravity and random CFT, JHEP 04 (2021) 033
[arXiv:2006.08648] [INSPIRE].

[21] T. Anous, J. Kruthoff and R. Mahajan, Density matrices in quantum gravity, SciPost Phys.
9 (2020) 045 [arXiv:2006.17000] [INSPIRE].

[22] Y. Chen, V. Gorbenko and J. Maldacena, Bra-ket wormholes in gravitationally prepared
states, JHEP 02 (2021) 009 [arXiv:2007.16091] [INSPIRE].

[23] H. Liu and S. Vardhan, Entanglement entropies of equilibrated pure states in quantum
many-body systems and gravity, PRX Quantum 2 (2021) 010344 [arXiv:2008.01089]
[INSPIRE].

[24] D. Marolf and J.E. Santos, AdS Euclidean wormholes, Class. Quant. Grav. 38 (2021)
224002 [arXiv:2101.08875] [INSPIRE].

[25] V. Meruliya, S. Mukhi and P. Singh, Poincaré series, 3d gravity and averages of rational
CFT, JHEP 04 (2021) 267 [arXiv:2102.03136] [INSPIRE].

[26] S.B. Giddings and G.J. Turiaci, Wormhole calculus, replicas, and entropies, JHEP 09
(2020) 194 [arXiv:2004.02900] [INSPIRE].

[27] D. Stanford and E. Witten, JT gravity and the ensembles of random matrix theory, Adv.
Theor. Math. Phys. 24 (2020) 1475 [arXiv:1907.03363] [INSPIRE].

[28] K. Okuyama and K. Sakai, JT gravity, KdV equations and macroscopic loop operators,
JHEP 01 (2020) 156 [arXiv:1911.01659] [INSPIRE].

– 46 –

https://doi.org/10.1088/1361-6382/ac2134
https://arxiv.org/abs/2011.09444
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.09444
https://doi.org/10.1007/JHEP03(2021)040
https://arxiv.org/abs/2011.06005
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.06005
https://arxiv.org/abs/1903.11115
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.11115
https://doi.org/10.1007/JHEP08(2020)044
https://arxiv.org/abs/2002.08950
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.08950
https://arxiv.org/abs/2008.08570
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.08570
https://doi.org/10.1007/JHEP02(2021)168
https://arxiv.org/abs/1911.11603
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.11603
https://arxiv.org/abs/2006.13971
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.13971
https://doi.org/10.1103/PhysRevLett.125.021601
https://arxiv.org/abs/2002.02971
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.02971
https://doi.org/10.1007/JHEP01(2021)130
https://arxiv.org/abs/2006.04839
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.04839
https://doi.org/10.1007/JHEP10(2020)187
https://arxiv.org/abs/2006.04855
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.04855
https://doi.org/10.1088/1361-6382/ac1082
https://arxiv.org/abs/2006.05499
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.05499
https://doi.org/10.1007/JHEP04(2021)033
https://arxiv.org/abs/2006.08648
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.08648
https://doi.org/10.21468/SciPostPhys.9.4.045
https://doi.org/10.21468/SciPostPhys.9.4.045
https://arxiv.org/abs/2006.17000
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.17000
https://doi.org/10.1007/JHEP02(2021)009
https://arxiv.org/abs/2007.16091
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.16091
https://doi.org/10.1103/PRXQuantum.2.010344
https://arxiv.org/abs/2008.01089
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.01089
https://doi.org/10.1088/1361-6382/ac2cb7
https://doi.org/10.1088/1361-6382/ac2cb7
https://arxiv.org/abs/2101.08875
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.08875
https://doi.org/10.1007/JHEP04(2021)267
https://arxiv.org/abs/2102.03136
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.03136
https://doi.org/10.1007/JHEP09(2020)194
https://doi.org/10.1007/JHEP09(2020)194
https://arxiv.org/abs/2004.02900
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.02900
https://doi.org/10.4310/ATMP.2020.v24.n6.a4
https://doi.org/10.4310/ATMP.2020.v24.n6.a4
https://arxiv.org/abs/1907.03363
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.03363
https://doi.org/10.1007/JHEP01(2020)156
https://arxiv.org/abs/1911.01659
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.01659


J
H
E
P
0
8
(
2
0
2
2
)
0
7
1

[29] A. Belin, J. De Boer, P. Nayak and J. Sonner, Charged eigenstate thermalization, Euclidean
wormholes and global symmetries in quantum gravity, SciPost Phys. 12 (2022) 059
[arXiv:2012.07875] [INSPIRE].

[30] H. Verlinde, Deconstructing the wormhole: factorization, entanglement and decoherence,
arXiv:2105.02142 [INSPIRE].

[31] J. Cotler and K. Jensen, Gravitational constrained instantons, Phys. Rev. D 104 (2021)
081501 [arXiv:2010.02241] [INSPIRE].

[32] S. Collier and A. Maloney, Wormholes and spectral statistics in the Narain ensemble, JHEP
03 (2022) 004 [arXiv:2106.12760] [INSPIRE].

[33] P. Betzios, E. Kiritsis and O. Papadoulaki, Interacting systems and wormholes, JHEP 02
(2022) 126 [arXiv:2110.14655] [INSPIRE].

[34] A. Belin, J. de Boer and D. Liska, Non-Gaussianities in the statistical distribution of heavy
OPE coefficients and wormholes, JHEP 06 (2022) 116 [arXiv:2110.14649] [INSPIRE].

[35] P. Saad, S. Shenker and S. Yao, Comments on wormholes and factorization,
arXiv:2107.13130 [INSPIRE].

[36] A. Blommaert, L.V. Iliesiu and J. Kruthoff, Gravity factorized, arXiv:2111.07863
[INSPIRE].

[37] E. Witten, Deformations of JT gravity and phase transitions, arXiv:2006.03494 [INSPIRE].

[38] H. Maxfield and G.J. Turiaci, The path integral of 3D gravity near extremality; or, JT
gravity with defects as a matrix integral, JHEP 01 (2021) 118 [arXiv:2006.11317]
[INSPIRE].

[39] S.R. Coleman, Black holes as red herrings: topological fluctuations and the loss of quantum
coherence, Nucl. Phys. B 307 (1988) 867 [INSPIRE].

[40] S.B. Giddings and A. Strominger, Loss of incoherence and determination of coupling
constants in quantum gravity, Nucl. Phys. B 307 (1988) 854 [INSPIRE].

[41] P. Saad, S.H. Shenker, D. Stanford and S. Yao, Wormholes without averaging,
arXiv:2103.16754 [INSPIRE].

[42] D. Harlow and D. Jafferis, The factorization problem in Jackiw-Teitelboim gravity, JHEP
02 (2020) 177 [arXiv:1804.01081] [INSPIRE].

[43] D. Harlow, Euclidean vs. Lorentzian quantum gravity, talk at KITP, University of
California, Santa Barbara, CA, U.S.A., 14 January 2020.

[44] C.V. Johnson, The microstate physics of JT gravity and supergravity, arXiv:2201.11942
[INSPIRE].

[45] D.J. Gross and A.A. Migdal, Nonperturbative two-dimensional quantum gravity, Phys. Rev.
Lett. 64 (1990) 127 [INSPIRE].

[46] T. Banks, M.R. Douglas, N. Seiberg and S.H. Shenker, Microscopic and macroscopic loops
in nonperturbative two-dimensional gravity, Phys. Lett. B 238 (1990) 279 [INSPIRE].

[47] C.V. Johnson, Nonperturbative Jackiw-Teitelboim gravity, Phys. Rev. D 101 (2020) 106023
[arXiv:1912.03637] [INSPIRE].

[48] C.V. Johnson, Explorations of nonperturbative Jackiw-Teitelboim gravity and supergravity,
Phys. Rev. D 103 (2021) 046013 [arXiv:2006.10959] [INSPIRE].

– 47 –

https://doi.org/10.21468/SciPostPhys.12.2.059
https://arxiv.org/abs/2012.07875
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.07875
https://arxiv.org/abs/2105.02142
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.02142
https://doi.org/10.1103/PhysRevD.104.L081501
https://doi.org/10.1103/PhysRevD.104.L081501
https://arxiv.org/abs/2010.02241
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.02241
https://doi.org/10.1007/JHEP03(2022)004
https://doi.org/10.1007/JHEP03(2022)004
https://arxiv.org/abs/2106.12760
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2106.12760
https://doi.org/10.1007/JHEP02(2022)126
https://doi.org/10.1007/JHEP02(2022)126
https://arxiv.org/abs/2110.14655
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2110.14655
https://doi.org/10.1007/JHEP06(2022)116
https://arxiv.org/abs/2110.14649
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2110.14649
https://arxiv.org/abs/2107.13130
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.13130
https://arxiv.org/abs/2111.07863
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2111.07863
https://arxiv.org/abs/2006.03494
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.03494
https://doi.org/10.1007/JHEP01(2021)118
https://arxiv.org/abs/2006.11317
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.11317
https://doi.org/10.1016/0550-3213(88)90110-1
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB307%2C867%22
https://doi.org/10.1016/0550-3213(88)90109-5
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB307%2C854%22
https://arxiv.org/abs/2103.16754
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.16754
https://doi.org/10.1007/JHEP02(2020)177
https://doi.org/10.1007/JHEP02(2020)177
https://arxiv.org/abs/1804.01081
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.01081
https://online.kitp.ucsb.edu/online/qgravity-c20/harlow/pdf/Harlow_QGravity20Conf_KITP.pdf
https://arxiv.org/abs/2201.11942
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2201.11942
https://doi.org/10.1103/PhysRevLett.64.127
https://doi.org/10.1103/PhysRevLett.64.127
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C64%2C127%22
https://doi.org/10.1016/0370-2693(90)91736-U
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB238%2C279%22
https://doi.org/10.1103/PhysRevD.101.106023
https://arxiv.org/abs/1912.03637
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.03637
https://doi.org/10.1103/PhysRevD.103.046013
https://arxiv.org/abs/2006.10959
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.10959


J
H
E
P
0
8
(
2
0
2
2
)
0
7
1

[49] C.V. Johnson, Quantum gravity microstates from Fredholm determinants, Phys. Rev. Lett.
127 (2021) 181602 [arXiv:2106.09048] [INSPIRE].

[50] J.S. Cotler et al., Black holes and random matrices, JHEP 05 (2017) 118 [Erratum ibid. 09
(2018) 002] [arXiv:1611.04650] [INSPIRE].

[51] A. Goel and H. Verlinde, Towards a string dual of SYK, arXiv:2103.03187 [INSPIRE].

[52] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94
(2016) 106002 [arXiv:1604.07818] [INSPIRE].

[53] J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS2 backreaction and
holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].

[54] K. Jensen, Chaos in AdS2 holography, Phys. Rev. Lett. 117 (2016) 111601
[arXiv:1605.06098] [INSPIRE].

[55] A. Goel, L.V. Iliesiu, J. Kruthoff and Z. Yang, Classifying boundary conditions in JT
gravity: from energy-branes to α-branes, JHEP 04 (2021) 069 [arXiv:2010.12592]
[INSPIRE].

[56] D. Marolf and H. Maxfield, Observations of Hawking radiation: the Page curve and baby
universes, JHEP 04 (2021) 272 [arXiv:2010.06602] [INSPIRE].

[57] B. Mukhametzhanov, Factorization and complex couplings in SYK and in matrix models,
arXiv:2110.06221 [INSPIRE].

[58] J. McNamara and C. Vafa, Baby universes, holography, and the swampland,
arXiv:2004.06738 [INSPIRE].

[59] G.J. Turiaci, M. Usatyuk and W.W. Weng, 2D dilaton-gravity, deformations of the minimal
string, and matrix models, Class. Quant. Grav. 38 (2021) 204001 [arXiv:2011.06038]
[INSPIRE].

[60] E. Witten, Matrix models and deformations of JT gravity, Proc. Roy. Soc. Lond. A 476
(2020) 20200582 [arXiv:2006.13414] [INSPIRE].

[61] E. Brézin, C. Itzykson, G. Parisi and J.-B. Zuber, Planar diagrams, in The large N
expansion in quantum field theory and statistical physics: from spin systems to
2-dimensional gravity, World Scientific, Singapore (1993), p. 567.

[62] R. Estrada and R.P. Kanwal, Singular integral equations, Springer, (2012).

[63] J.M. Maldacena, G.W. Moore, N. Seiberg and D. Shih, Exact vs. semiclassical target space
of the minimal string, JHEP 10 (2004) 020 [hep-th/0408039] [INSPIRE].

[64] M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy
function, Commun. Math. Phys. 147 (1992) 1.

[65] M.L. Mehta and P. Shukla, Two coupled matrices: eigenvalue correlations and spacing
functions, J. Phys. A 27 (1994) 7793.

[66] F. Haake, S. Gnutzmann and M. Kuś, Quantum signatures of chaos, fourth edition,
Springer, Dordrecht, The Netherlands (2018).

[67] B. Eynard, T. Kimura and S. Ribault, Random matrices, arXiv:1510.04430 [INSPIRE].

[68] P. Di Francesco, P.H. Ginsparg and J. Zinn-Justin, 2D gravity and random matrices, Phys.
Rept. 254 (1995) 1 [hep-th/9306153] [INSPIRE].

– 48 –

https://doi.org/10.1103/PhysRevLett.127.181602
https://doi.org/10.1103/PhysRevLett.127.181602
https://arxiv.org/abs/2106.09048
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2106.09048
https://doi.org/10.1007/JHEP05(2017)118
https://arxiv.org/abs/1611.04650
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.04650
https://arxiv.org/abs/2103.03187
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.03187
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.1103/PhysRevD.94.106002
https://arxiv.org/abs/1604.07818
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.07818
https://doi.org/10.1007/JHEP07(2016)139
https://arxiv.org/abs/1606.03438
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.03438
https://doi.org/10.1103/PhysRevLett.117.111601
https://arxiv.org/abs/1605.06098
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.06098
https://doi.org/10.1007/JHEP04(2021)069
https://arxiv.org/abs/2010.12592
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.12592
https://doi.org/10.1007/JHEP04(2021)272
https://arxiv.org/abs/2010.06602
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.06602
https://arxiv.org/abs/2110.06221
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2110.06221
https://arxiv.org/abs/2004.06738
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.06738
https://doi.org/10.1088/1361-6382/ac25df
https://arxiv.org/abs/2011.06038
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.06038
https://doi.org/10.1098/rspa.2020.0582
https://doi.org/10.1098/rspa.2020.0582
https://arxiv.org/abs/2006.13414
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.13414
https://doi.org/10.1142/9789814365802_0036
https://doi.org/10.1007/978-1-4612-1382-6
https://doi.org/10.1088/1126-6708/2004/10/020
https://arxiv.org/abs/hep-th/0408039
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0408039
https://doi.org/10.1007/bf02099526
https://doi.org/10.1088/0305-4470/27/23/022
https://doi.org/10.1007/978-3-319-97580-1
https://arxiv.org/abs/1510.04430
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.04430
https://doi.org/10.1016/0370-1573(94)00084-G
https://doi.org/10.1016/0370-1573(94)00084-G
https://arxiv.org/abs/hep-th/9306153
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9306153


J
H
E
P
0
8
(
2
0
2
2
)
0
7
1

[69] R. Dijkgraaf, Intersection theory, integrable hierarchies and topological field theory, NATO
Sci. Ser. B 295 (1992) 95 [hep-th/9201003] [INSPIRE].

[70] M.E. Ismail, An electrostatics model for zeros of general orthogonal polynomials, Pacific J.
Math. 193 (2000) 355.

[71] Y. Chen and M.E.H. Ismail, Ladder operators and differential equations for orthogonal
polynomials, J. Phys. A 30 (1997) 7817.

[72] A. Blommaert and M. Usatyuk, Microstructure in matrix elements, arXiv:2108.02210
[INSPIRE].

[73] Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096]
[INSPIRE].

[74] S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067
[arXiv:1306.0622] [INSPIRE].

[75] S.H. Shenker and D. Stanford, Multiple shocks, JHEP 12 (2014) 046 [arXiv:1312.3296]
[INSPIRE].

[76] D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051
[arXiv:1409.8180] [INSPIRE].

[77] D.A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly
effect, Phys. Rev. Lett. 115 (2015) 131603 [arXiv:1412.5123] [INSPIRE].

[78] S. Jackson, L. McGough and H. Verlinde, Conformal bootstrap, universality and
gravitational scattering, Nucl. Phys. B 901 (2015) 382 [arXiv:1412.5205] [INSPIRE].

[79] S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132
[arXiv:1412.6087] [INSPIRE].

[80] J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106
[arXiv:1503.01409] [INSPIRE].

[81] D. Lubinsky, A new approach to universality limits involving orthogonal polynomials,
math.CA/0701307.

[82] B. Simon, Fine structure of the zeros of orthogonal polynomials: a progress report, in Recent
trends in orthogonal polynomials and approximation theory, Contemp. Math. 507 (2010)
241.

[83] A. Altland and J. Sonner, Late time physics of holographic quantum chaos, SciPost Phys.
11 (2021) 034 [arXiv:2008.02271] [INSPIRE].

[84] J.M. Maldacena and L. Maoz, Wormholes in AdS, JHEP 02 (2004) 053 [hep-th/0401024]
[INSPIRE].

[85] G.W. Moore, N. Seiberg and M. Staudacher, From loops to states in 2D quantum gravity,
Nucl. Phys. B 362 (1991) 665 [INSPIRE].

[86] K. Okuyama and K. Sakai, Multi-boundary correlators in JT gravity, JHEP 08 (2020) 126
[arXiv:2004.07555] [INSPIRE].

[87] D. Stanford and E. Witten, Fermionic localization of the Schwarzian theory, JHEP 10
(2017) 008 [arXiv:1703.04612] [INSPIRE].

[88] T.G. Mertens, The Schwarzian theory — origins, JHEP 05 (2018) 036 [arXiv:1801.09605]
[INSPIRE].

– 49 –

https://arxiv.org/abs/hep-th/9201003
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9201003
https://doi.org/10.2140/pjm.2000.193.355
https://doi.org/10.2140/pjm.2000.193.355
https://doi.org/10.1088/0305-4470/30/22/020
https://arxiv.org/abs/2108.02210
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2108.02210
https://doi.org/10.1088/1126-6708/2008/10/065
https://arxiv.org/abs/0808.2096
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0808.2096
https://doi.org/10.1007/JHEP03(2014)067
https://arxiv.org/abs/1306.0622
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1306.0622
https://doi.org/10.1007/JHEP12(2014)046
https://arxiv.org/abs/1312.3296
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.3296
https://doi.org/10.1007/JHEP03(2015)051
https://arxiv.org/abs/1409.8180
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1409.8180
https://doi.org/10.1103/PhysRevLett.115.131603
https://arxiv.org/abs/1412.5123
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.5123
https://doi.org/10.1016/j.nuclphysb.2015.10.013
https://arxiv.org/abs/1412.5205
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.5205
https://doi.org/10.1007/JHEP05(2015)132
https://arxiv.org/abs/1412.6087
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.6087
https://doi.org/10.1007/JHEP08(2016)106
https://arxiv.org/abs/1503.01409
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.01409
https://arxiv.org/abs/math.CA/0701307
https://doi.org/10.1090/conm/507/09963
https://doi.org/10.1090/conm/507/09963
https://doi.org/10.21468/SciPostPhys.11.2.034
https://doi.org/10.21468/SciPostPhys.11.2.034
https://arxiv.org/abs/2008.02271
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.02271
https://doi.org/10.1088/1126-6708/2004/02/053
https://arxiv.org/abs/hep-th/0401024
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0401024
https://doi.org/10.1016/0550-3213(91)90548-C
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB362%2C665%22
https://doi.org/10.1007/JHEP08(2020)126
https://arxiv.org/abs/2004.07555
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.07555
https://doi.org/10.1007/JHEP10(2017)008
https://doi.org/10.1007/JHEP10(2017)008
https://arxiv.org/abs/1703.04612
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.04612
https://doi.org/10.1007/JHEP05(2018)036
https://arxiv.org/abs/1801.09605
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.09605


J
H
E
P
0
8
(
2
0
2
2
)
0
7
1

[89] E. Witten, Open strings on the Rindler horizon, JHEP 01 (2019) 126 [arXiv:1810.11912]
[INSPIRE].

[90] B. Eynard, D. Lewański and A. Ooms, A natural basis for intersection numbers,
arXiv:2108.00226 [INSPIRE].

[91] A. Sen, Quantum entropy function from AdS2/CFT1 correspondence, Int. J. Mod. Phys. A
24 (2009) 4225 [arXiv:0809.3304] [INSPIRE].

[92] A. Almheiri and J. Polchinski, Models of AdS2 backreaction and holography, JHEP 11
(2015) 014 [arXiv:1402.6334] [INSPIRE].

[93] A. Almheiri and B. Kang, Conformal symmetry breaking and thermodynamics of
near-extremal black holes, JHEP 10 (2016) 052 [arXiv:1606.04108] [INSPIRE].

[94] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two
dimensional nearly anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857]
[INSPIRE].

[95] L.V. Iliesiu and G.J. Turiaci, The statistical mechanics of near-extremal black holes, JHEP
05 (2021) 145 [arXiv:2003.02860] [INSPIRE].

[96] M. Heydeman, L.V. Iliesiu, G.J. Turiaci and W. Zhao, The statistical mechanics of
near-BPS black holes, J. Phys. A 55 (2022) 014004 [arXiv:2011.01953] [INSPIRE].

[97] L.V. Iliesiu, M. Kologlu and G.J. Turiaci, Supersymmetric indices factorize,
arXiv:2107.09062 [INSPIRE].

[98] J. Boruch, M.T. Heydeman, L.V. Iliesiu and G.J. Turiaci, BPS and near-BPS black holes in
AdS5 and their spectrum in N = 4 SYM, arXiv:2203.01331 [INSPIRE].

[99] L.V. Iliesiu, On 2D gauge theories in Jackiw-Teitelboim gravity, arXiv:1909.05253
[INSPIRE].

[100] D. Kapec, R. Mahajan and D. Stanford, Matrix ensembles with global symmetries and
’t Hooft anomalies from 2d gauge theory, JHEP 04 (2020) 186 [arXiv:1912.12285]
[INSPIRE].

[101] Z. Yang, The quantum gravity dynamics of near extremal black holes, JHEP 05 (2019) 205
[arXiv:1809.08647] [INSPIRE].

[102] T.G. Mertens, G.J. Turiaci and H.L. Verlinde, Solving the Schwarzian via the conformal
bootstrap, JHEP 08 (2017) 136 [arXiv:1705.08408] [INSPIRE].

[103] A. Blommaert, T.G. Mertens and H. Verschelde, Fine structure of Jackiw-Teitelboim
quantum gravity, JHEP 09 (2019) 066 [arXiv:1812.00918] [INSPIRE].

[104] L.V. Iliesiu, S.S. Pufu, H. Verlinde and Y. Wang, An exact quantization of
Jackiw-Teitelboim gravity, JHEP 11 (2019) 091 [arXiv:1905.02726] [INSPIRE].

[105] A. Blommaert, T.G. Mertens and H. Verschelde, The Schwarzian theory — a Wilson line
perspective, JHEP 12 (2018) 022 [arXiv:1806.07765] [INSPIRE].

[106] A. Kitaev and S.J. Suh, Statistical mechanics of a two-dimensional black hole, JHEP 05
(2019) 198 [arXiv:1808.07032] [INSPIRE].

[107] D.L. Jafferis and L. Lamprou, Inside the hologram: reconstructing the bulk observer’s
experience, JHEP 03 (2022) 084 [arXiv:2009.04476] [INSPIRE].

– 50 –

https://doi.org/10.1007/JHEP01(2019)126
https://arxiv.org/abs/1810.11912
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.11912
https://arxiv.org/abs/2108.00226
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2108.00226
https://doi.org/10.1142/S0217751X09045893
https://doi.org/10.1142/S0217751X09045893
https://arxiv.org/abs/0809.3304
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0809.3304
https://doi.org/10.1007/JHEP11(2015)014
https://doi.org/10.1007/JHEP11(2015)014
https://arxiv.org/abs/1402.6334
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1402.6334
https://doi.org/10.1007/JHEP10(2016)052
https://arxiv.org/abs/1606.04108
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.04108
https://doi.org/10.1093/ptep/ptw124
https://arxiv.org/abs/1606.01857
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.01857
https://doi.org/10.1007/JHEP05(2021)145
https://doi.org/10.1007/JHEP05(2021)145
https://arxiv.org/abs/2003.02860
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.02860
https://doi.org/10.1088/1751-8121/ac3be9
https://arxiv.org/abs/2011.01953
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.01953
https://arxiv.org/abs/2107.09062
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.09062
https://arxiv.org/abs/2203.01331
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2203.01331
https://arxiv.org/abs/1909.05253
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.05253
https://doi.org/10.1007/JHEP04(2020)186
https://arxiv.org/abs/1912.12285
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.12285
https://doi.org/10.1007/JHEP05(2019)205
https://arxiv.org/abs/1809.08647
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.08647
https://doi.org/10.1007/JHEP08(2017)136
https://arxiv.org/abs/1705.08408
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.08408
https://doi.org/10.1007/JHEP09(2019)066
https://arxiv.org/abs/1812.00918
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.00918
https://doi.org/10.1007/JHEP11(2019)091
https://arxiv.org/abs/1905.02726
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.02726
https://doi.org/10.1007/JHEP12(2018)022
https://arxiv.org/abs/1806.07765
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.07765
https://doi.org/10.1007/JHEP05(2019)198
https://doi.org/10.1007/JHEP05(2019)198
https://arxiv.org/abs/1808.07032
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.07032
https://doi.org/10.1007/JHEP03(2022)084
https://arxiv.org/abs/2009.04476
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.04476


J
H
E
P
0
8
(
2
0
2
2
)
0
7
1

[108] P. Gao and L. Lamprou, Seeing behind black hole horizons in SYK, JHEP 06 (2022) 143
[arXiv:2111.14010] [INSPIRE].

[109] A. Blommaert, T.G. Mertens and H. Verschelde, Unruh detectors and quantum chaos in JT
gravity, JHEP 03 (2021) 086 [arXiv:2005.13058] [INSPIRE].

[110] A. Almheiri and H.W. Lin, The entanglement wedge of unknown couplings,
arXiv:2111.06298 [INSPIRE].

– 51 –

https://doi.org/10.1007/JHEP06(2022)143
https://arxiv.org/abs/2111.14010
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2111.14010
https://doi.org/10.1007/JHEP03(2021)086
https://arxiv.org/abs/2005.13058
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.13058
https://arxiv.org/abs/2111.06298
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2111.06298

	Introduction and summary
	Review of gravity factorized
	Geometric argument
	Matrix integral argument

	Alpha states in JT gravity
	Constructing alpha-states
	Checking orthogonality
	The Coleman-Giddings-Strominger mechanism revisited
	The baby universe Hilbert space of each factorizing model is one dimensional

	Null states in JT gravity
	Discreteness implies redundancies
	Null states
	Examples of null states and their spacetime interpretation

	Black holes without quantum chaos
	Orthogonal polynomials
	No random matrix statistics
	Quantum mechanical dual of canonical JT gravity
	Bulk interpretation of null states

	Conclusion and outlook

