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1 Introduction

Entanglement entropy in theories with local gauge symmetries is difficult to define. In
order to define entanglement entropy, the surface at a constant time slice is sub-divided
into a region A and its complement Ā. We then require that the Hilbert space of the theory
naturally factorizes as

H = HA ⊗HĀ. (1.1)

Scalar and spinor field theories have local physical excitations and their Hilbert space admits
such factorization. In this factorized Hilbert space, one defines the reduced density matrix
by tracing over HĀ which we denote by ρA = TrĀρ. Then the entanglement entropy of the
region A is given by

S(ρA) = −TrA(ρA log ρA). (1.2)

Theories with gauge symmetries including quantum gravity do not always admit local
gauge-invariant operators and therefore the gauge-invariant Hilbert space does not admit a
natural tensor product structure. For gauge theories, this issue was discussed in [1–16] and
has been summarized recently in [17]. This lack of factorization of the Hilbert space is due
to the presence of a centre of the algebra of operators. The operators belonging to the centre
commute with all others and a unique entropy can be assigned to the centre. This centre
can be chosen in many ways [3]. A choice which arises naturally when one considers the
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extended Hilbert space description of lattice gauge theories is called the electric centre [9].
This non-trivial centre occurs due to the electric Gauss law constraint on physical states.
Similarly, the magnetic Gauss law constraint gives rise to the magnetic centre. Such choices
of centres also exist for scalar field theories on a lattice in which keeping the field itself
fixed on the boundary leads to a non-trivial centre and a contribution to entanglement
entropy. It is also possible to choose the algebra on lattice gauge theories such that the
centre is trivial and therefore there is no entropy associated with it [3]. In this paper, we
will evaluate the entanglement entropy associated with centres that arise naturally from the
Gauss law constraints for linearised gravity. At this point, the reader might wonder, why
is it that we are focused on a quantity that is non-universal and depends on the choice of
the centre. As we will see, the logarithmic coefficient corresponding to the centre obtained
naturally from the Gauss law constraints in linearised gravity coincides with that extracted
from the edge partition function of the massless spin-2 field on the 4-sphere when written in
terms of its Harish-Chandra character. Furthermore, we feel that the techniques developed
in this paper are useful and applicable to other theories with local symmetries.

To begin, let us consider the U(1) theory, since physical states obey the Gauss law
constraint and gauge-invariant operators do not change the electric flux normal to the
entangling surface, the Hilbert space HA as well as HĀ factorizes into superselection sectors
labelled by the electric flux normal to the entangling surface. Then the entanglement
entropy for a theory with U(1) gauge symmetry is given by

S(ρA) = −
∑
E

pE log(pE) +
∑
E

pES(ρEA). (1.3)

Here pE is the probability associated with a given superselection sector labelled by the
electric flux. The first term in this expression is just the Shannon or classical entropy
associated with the superselection sector. This contribution is also referred to as the
entanglement entropy of edge modes and its contribution is non-extractable. That is, this
entropy cannot be distilled into a number of Bell pairs [16]. This term is the entanglement
contribution of the electric centre. In [7, 8, 16], the entanglement entropy of electromagnetic
edge modes was evaluated for a spherical entangling surface of a U(1) theory in 4-dimensions
and it was shown that it is captured by the partition function of a massless scalar on S2.

As mentioned earlier, the main aim of this paper is to evaluate the contribution of
the entanglement entropy of the edge modes of the linearised graviton. This theory can
be treated as a quantum field theory of spin-2 particles and therefore the question of
whether local subsystems exist in the full quantum theory of gravity does not arise. In
a certain gauge the linearised graviton hµν , can be algebraically related to the curvature
which is gauge-invariant and it generates the algebra of gauge-invariant operators of this
theory. In [18], this approach was used to evaluate the logarithmic term in the entanglement
entropy of linearised graviton across a spherical entangling surface. The Gauss law of the
theory implies that the Hilbert space decomposes as a sum of superselection sectors similar
to (1.3). We will show that the superselection sectors in this case are labelled by the normal
components of the Riemann tensor on the sphere. Using this we will evaluate the classical
non-extractable contribution of the entanglement entropy of the edge modes of the graviton.
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A particularly direct method of evaluating the entropy of the edge modes for the
Maxwell theory involves constructing the probability distribution pE of the superselection
sectors using the two-point function of the normal component of the electric field on the
sphere. This was developed in [16]. We revisit this computation before we proceed to
the graviton. In [16], the Maxwell theory was quantised in cartesian coordinates. We
find it convenient to expand the U(1) field in vector spherical harmonics, fix gauge and
quantise the theory following [14, 18]. Then we show that the radial component of the
electric field on the sphere is directly related to one of the two canonical momenta. This
allows us to evaluate the two-point function of the electric field on the sphere and compute
the contribution of the edge modes. We show that indeed the logarithmic coefficient of
the entanglement entropy of the edge modes or the electric centre is obtained from the
corresponding coefficient of the partition function of the massless scalar on the sphere
S2. To demonstrate the utility of this approach, we generalise the computation to the
U(1) theory in arbitrary even d-dimensions. We show that the logarithmic coefficient of
the non-extractable contribution to the entanglement entropy can be obtained from the
corresponding coefficient of the partition function of a massless scalar on Sd−2. Recently it
has been shown that the partition function of the vector on Sd when written as an integral
over the Harish-Chandra character naturally decomposes into a sum of contributions from
bulk and edge characters [19]. We observe that the contribution from the edge characters
precisely coincides with that non-extractable entanglement entropy corresponding to the
superselection sectors determined by the Gauss law.

We then consider the linearised graviton, we first demonstrate that the Gauss law of
gravity implies that the certain normal components of the Riemann tensor to the entangling
surface labels the superselection sectors. These components have one time direction, one
radial direction and the rest arbitrary, there are 6 such components. Then we briefly review
the quantization of the graviton developed in [18]. Here the field hµν is expanded in terms
of tensor harmonics and under an appropriate gauge choice leads to a pair of canonical
coordinates and momenta. We show that among the 6 components of the Riemann tensor,
only two are algebraically or locally related to the canonical coordinates. We choose these
components of the curvature tensor to label the superselection sectors and evaluate their
two-point function on S2. From this we evaluate the contribution of the superselection
sectors to the non-extractable entanglement entropy. We see that the logarithmic coefficient
of the classical entanglement of the superselection sectors labelled by each of the 2 Riemann
tensors are equal and given by −8/3. Since the 2 Riemann tensors are independent labels
of the superselection sectors, their sum represents the complete contribution of the edge
modes due to the centre obtained due to the Gauss law constraints. Then we observe
that just as in the U(1) case, we see that the logarithmic term of this contribution of
both the superselection sectors of the graviton −16/3, agrees with the term from edge
mode partition function of the massless spin-2 field on S4. Here the edge mode partition
function is identified by writing the spin-2 partition function on S4 as an integral over its
Harish-Chandra character.

The organisation of the paper is as follows. In section 2 we re-visit the evaluation of
the classical entropy of the superselection sectors for the U(1) theory. This is first done in
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4d and then in arbitrary even dimensions. In section 3, we evaluate the contribution of the
superselections sectors or in other words the electric centre to the logarithmic coefficient of
the entanglement entropy of the linearised graviton across a spherical surface. Section 3.2
contains the evaluation of the 6 components of the curvature which must obey the Gauss
law. The explicit computation reveals only 2 of these are locally related to the algebra of
gauge-invariant operators in a sphere. Section 4 contains our conclusions. The appendix A,
compares the two-point function of the radial components of the electric field on S2 evaluated
in the Coulomb gauge evaluated in [16] with that evaluated using the expansion in vector
harmonics and the gauge introduced in [14, 18]. This paper uses the latter gauge which is
more suited to the spherical symmetry of the problem and which can be generalised for
the graviton.

2 U(1) edge modes

In this section we begin with the review of the approach of [16] to evaluate the contribution
of the entanglement entropy of the superselection sectors of the U(1) gauge field in even d
dimensions. Since we work with a spherical entangling surface it is convenient to use the
methods of [14, 18] to quantize the system.

2.1 Entanglement from correlators on the sphere

Consider the U(1) theory with the action given by

S = −1
4

∫
ddxFµνF

µν , (2.1)

and the spherical entangling surface Sd−2. We restrict our attention to even d since our
focus is to obtain the logarithmic coefficient of the entanglement entropy. All physical states
satisfy the Gauss law constraint

∂µFµ0 = 0. (2.2)

This implies that the normal component of the electric field F0r has to match across
the entangling surface. Gauge-invariant operators like Wilson lines acting inside the
entangling region A or those outside in Ā cannot change this electric field. This leads to
the factorisation of the density matrix into superselection sectors labelled by the normal
component of the electric field. The classical contribution to the entanglement entropy from
these superselection sectors is given by

Sedge(ρA) = −
∑
E

p(E) log p(E), (2.3)

where pE is the probability associated with a given superselection sector.
The U(1) theory is free and therefore p(E) is a Gaussian functional of the normal

component of the electric field given by

p[Er] = N exp
[
−1

2

∫
dd̂xdd̂x′Er(x)G−1

rr′(x, x
′)Er′(x′)

]
. (2.4)
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Here x, x′ are coordinates on the d̂ ≡ d−2 sphere, Sd̂. Grr′(x, x′) is the two-point correlator
of the radial component of the electric field on the sphere which is defined by

Grr′(x, x′) = 〈0|F0r′(x)F0r′(x′)|0〉, (2.5)

and its inverse satisfies the equation∫
dd̂x′′Grr′′(x, x′′)G−1

r′′r′(x
′′, x′) = δd̂(x− x′). (2.6)

Note that the two-point function in (2.5) are evaluated on the entangling sphere, the labels
r, r′, just refers to the fact the correlator is between the radial components at angular
locations x, x′, on the sphere. The integrals in (2.4) and (2.6) are over the sphere Sd̂

Evaluating the classical contribution we get

Sedge(ρA) = − logN +
∫
dd̂xdd̂x′Grr′(x, x′)G−1

r′r(x
′, x). (2.7)

Using (2.6), we see that the term involving the integrals is divergent∫
dd̂xdd̂x′Grr′(x, x′)G−1

r′r(x
′, x) =

∫
dd̂xδd̂(0). (2.8)

We can regulate the delta function by introducing a cut-off ε, this cut off is a short distance
cut off along the angular directions on surface of the sphere. Therefore we can write

∫
dd̂xdd̂x′Grr′(x, x′)G−1

r′r(x
′, x) = Rd̂Vol(Sd̂)

εd̂
. (2.9)

Here R is the radius of the entangling surface and Vol(Sd̂) is the volume of the unit Sd̂

sphere. This term is proportional to the area and does not contribute to the logarithmic
term which is proportional to log R

ε . Let us now study the term N . From the condition∫
DEr p[Er] = 1, (2.10)

we obtain
logN − 1

2 log
(
detG−1

rr′
)

= 0. (2.11)

We have defined the measure of the functional integral by the following integral∫
DEr exp

[
−1

2

∫
dd̂xE2

r (x)
]

= 1. (2.12)

Therefore the contribution to the entanglement of the superselection sectors is given by

Sedge(ρA) = 1
2 log detGrr′

∣∣∣∣
log coefficient

. (2.13)

Here we have implicitly assumed that is it only the logarithmic contribution to Sedge we are
interested in.
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The two-point function of the electric field with both the electric fields on the same
sphere diverges, as we will see subsequently. To regulate this divergence we consider the
correlator where the radial component of the electric fields lie on two spheres of radius r
and r′ = r + δ

Grr′(r, r′;x, x′) = 〈0|F0r(r, x)F0r′(r′.x′)|0〉. (2.14)

We have introduced r, r′ in the arguments of the Greens function to make it explicit that
the electric field correlator involves insertion on spheres of different radii. We need to take
δ → 0 such that

δ � ε, (2.15)

where ε is the short distance cut-off on the sphere.
Therefore we look for the leading divergence in (2.14) when δ → 0 and use its coefficient

in (2.13) to obtain the logarithmic term proportional to log r
ε . In the section 2.3 we will

evaluate the two-point function of the radial component of the electric field in the angular
momentum basis on Sd̂. We show that in the δ → 0 limit, the two-point function admits
the expansion

lim
δ→0
〈`λ|Grr′(r, r + δx, x′)|`′λ′〉 = `(`+ d− 3)

4πrd

(
log r

2

δ2

)
δ`,`′δλ,λ′ +O(δ0). (2.16)

Here ` labels the eigen value of the Laplacian of scalars, and λ refers to all the other
quantum numbers of the scalar harmonics on Sd̂. Note that `(`+ d− 3) is the eigenvalue
of the scalar Laplacian on Sd̂. Then substituting the coefficient of the leading divergence
in (2.16) we see that the coefficient to the entanglement entropy of the superselection sectors
is given by coefficient of the logarithmic divergence of the one-loop determinant of the
massless scalar on Sd̂. Since the cut off on the surface of the sphere is ε, this divergence is
proportional to log R

ε .

2.2 The Maxwell theory in d = 4

In this section, we first briefly discuss the method introduced by [18] to quantise the photon
in spherical coordinates. We introduce the covariant notation for the vector harmonics
which enables evaluation of field strengths easily, this notation will be carried over to the
discussion of the graviton. After fixing gauge and setting up the canonical commutation
relations for the gauge-invariant conjugate variables, we evaluate the two-point function of
the radial component of the electric field

We first expand the vector potential Aµ as follows

Aµ =
∑
`,m

(
A0(`,m)(r, t)Y 0

lm,µ +Ar(`,m)(r, t)Y r
`m,µ +Ae(`,m)(r, t)Y e

`m,µ +Am(`,m)(r, t)Y m
`m,µ

)
,

(2.17)
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here the greek subscript refers to the component of the covariant vectors which are defined
as follows

Y 0
`m = {Y`m(θ, φ), 0, 0, 0} , (2.18)
Y r
`m = {0, Y`m(θ, φ), 0, 0} ,

Y e
`m = r√

`(`+ 1)

{
0, 0, ∂Y`m(θ, φ)

∂θ
,
∂Y`m(θ, φ)

∂φ

}
,

Y m
`m = r√

`(`+ 1)

{
0, 0,− 1

sin θ
∂Y`m(θ, φ)

∂φ
, sin(θ)∂Y`m(θ, φ)

∂θ

}
.

Y`m(θ, φ) are scalar spherical harmonics with ` = 0, 1, 2 · · · and −` ≤ m ≤ `. In (2.18)
wherever derivatives of the spherical harmonics occur it is understood that ` = 1, 2, · · · .
We have converted the conventional vector harmonics used in [18] which are vectors whose
inner product is defined by the dot product using Krönecker delta to covariant vectors.
This makes it easy to apply the methods of covariant tensor calculus rather than vector
calculus. The metric is the flat space metric written in polar coordinates

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2). (2.19)

Raising and lowering indices as well as covariant derivatives are defined with respect to
this metric. It is also useful to introduce covariant orthonormal vectors in the directions of
vectors in (2.18).

t̂ = {1, 0, 0, 0}, (2.20)
r̂ = {0, 1, 0, 0},

ê = Y e
lm

|Y e
`m|

, |Y e
`m|2 = gµνY e

`m;µY
e
`m;ν ,

m̂ = Y m
`m

|Y m
`m|

, |Y m
`m|2 = gµνY m

`m;µY
m
`m;ν ,

where the metric gµν is given in (2.19). Projections of tensors along these directions are
defined as follows, consider a covariant tensor Tµνρ, then

Têm̂r̂ = êµm̂ν r̂ρTµνρ. (2.21)

Similar definitions apply for other projections. The reality of the vector potential implies
the following reality property of the coefficients of the expansion in (2.17).

(−1)mA∗0,(l,m) = A0,(l,−m), (−1)mA∗r,(l,m) = Ar,(l,−m), (2.22)

(−1)mA∗e,(l,m) = Ae,(l,−m), (−1)mA∗m,(l,m) = Am,(l,−m).

Let us also expand the gauge transformation in terms of spherical Harmonics by

χ =
∑
`,m

χ`m(r, t)Y`m(θ, φ). (2.23)
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Then the gauge field transforms as

Aµ =
∑
`,m

([
A0(`,m)(r, t) + χ̇`m(r, t)

]
Y 0
`m;µ +

[
Ar(`,m)(r, t) + ∂rχ`m(r, t)

]
Y r
`m;µ (2.24)

×
[
Ae(`,m)(r, t) + χ`m(r, t)

r

]
Y e
`m;µ +Am(`,m)(r, t)Y m

`m;µ)
)
.

Here the superscript ‘ ˙ ’ refers to partial derivative with respect to time. As in [18] we
choose the gauge such that the longitudinal component of the gauge field Ae;`m vanishes for
every `,m. Evaluating the field strengths in this gauge we obtain

Ft̂r̂ =
∑
`,m

(Ȧr;`m − ∂rA0;`m)Y`m (2.25)

Ft̂m̂ =
∑
`,m

Ȧm;`m|Y m
`m|,

Ft̂ê = −
∑
`,m

√
`(`+ 1)
r

A0;`m|Y e
`m|,

Fr̂ê =
∑
`,m

√
`(`+ 1)
r

Ar;`m|Y e
`m|,

Fr̂m̂ = −
∑
`,m

∂r(rAm;`m)
r

|Y m
`m|,

Fêm̂ =
∑
`,m

√
`(`+ 1)
r

Am;`mY`m.

Expanding the gauge field in the action (2.1) for d = 4 and using the orthogonality
properties of spherical harmonics we obtain

S = −1
4

∫
r2drdΩFµνFµν =

∑̀
`,m=−`

∫
drL`m,

L`m = 1
2
[
r2Ȧr(`,m)Ȧ

∗
r(`,m) + r2Ȧm(`,m)Ȧ

∗
m(`,m) − `(`+ 1)Ar(`,m)A

∗
r(`,m)

− `(`+ 1)Am(`,m)Am(`,−m) − |Am(`,m) + r∂rAm(`,m)|2 + r2∂rA0(`,m)∂rA
∗
0(`m)

− r2Ȧr,(`m)∂rA
∗
0(`m) − r

2Ȧ∗r(`m)∂rA0(`m) + `(`+ 1)A0(`,m)A
∗
0(`,m)

]
. (2.26)

The sum over ` in (2.26) is understood to run from either ` = 0, 1 · · · or ` = 1, 2, · · ·
depending on the whether the mode corresponds to scalar or vector harmonics. The
canonical conjugate momenta to Ar and Am for m = 0, 1 · · · are given by1

πr ∗(`,m) = ∂L`

∂Ȧ∗r(`,m)
= r2

[
Ȧr(`,m) − ∂rA0(`,m)

]
, πm ∗

(`,m) = ∂L`

∂Ȧ∗m(`,m)
= r2Ȧm(`,m). (2.27)

As a step towards quantization of the modes Ar and Am we obtain the wave equations as
well as the solutions satisfied by these modes and their conjugate variables.

1We have taken the contribution of both positive and negative values of m and used the reality properties
in writing the canonical momenta. This removes the factor of 1/2. For m = 0, the field is real.

– 8 –



J
H
E
P
0
8
(
2
0
2
2
)
0
6
5

The mode Ar. From the action in (2.26), we obtain

r2(Är(`,m) − ∂rȦ0(`,m)) + l(l + 1)Ar(`,m) = 0, (2.28)

which can also be written as

π̇r ∗(`,m) + `(`+ 1)Ar(`,m) = 0. (2.29)

We can eliminate A0(`,m) using the constraint

∂rπ
r ∗
(`,m) + `(`+ 1)A0(`,m) = 0. (2.30)

This leads a closed equation for Ar

r2(Är(`,m) − ∂2
rAr(`,m)) + `(`+ 1)Ar(`,m) = 0. (2.31)

We can solve this equation by expanding in Fourier modes in time and then solving the
radial equation. The solution for a particular Fourier mode labelled by k which is regular
at the origin can be written as

Ar(`,m) = e−iktar(`,m)(k)
√
rJ`+ 1

2
(|k|r). (2.32)

Here a`,m is the integration constant and J`+ 1
2
refers to the Bessel function. The equation

πr(`m) can be obtained using the definition in (2.27)

πr ∗(`,m) = r2
(
−ike−ikta`,m(k)

√
rJ`+ 1

2
(|k|r)− ∂rA0(`m)

)
, (2.33)

= r2
(
−ike−iktar(`,m)(k)

√
rJ`+ 1

2
(|k|r) + 1

`(`+ 1)∂
2
rπ

r ∗
(`,m)

)
.

In the second line we have used the constraint in (2.30) to eliminate A0. Therefore the
equation πr(`,m) is an in-homogenous second order equation in the radial coordinate. The
general solution is given by

πr ∗(`,m) = c1r
`+1 +c2r

−`+ar(`,m)(k)e−ikt
 i2−`− 1

2 `(`+ 1)k`
√
kΓ
(
`+ 3

2

) r`+1 − i`(`+ 1)
√
r

k
J`+ 1

2
(|k|r)

 .
(2.34)

Demanding that the solution be regular at the origin yields c2 = 0 since ` ≥ 1,2 for these
modes. Further demanding that the solution be well defined at infinity fixes c1 and yields

πr ∗(`,m) = − i`(l + 1)
k

ar(`,m)(k)e−ikt
√
rJ`+ 1

2
(|k|r). (2.35)

The classical solutions in (2.32) and (2.35) allow us to write the mode expansion of the
fields Ar(`,m), π

r
(`,m) as follows

Ar(`.m)(r, t) = 1√
2

∫ ∞
0

kdk
(
ar(`,m)(k)e−ikt + (−1)ma†r(`,−m)(k)eikt

)√
rJ`+ 1

2
(kr), (2.36)

πr ∗(`,m)(r, t) = `(`+ 1)√
2

∫ ∞
0

dk
(
−iar(`,m)(k)e−ikt + i(−1)ma†r(`,−m)(k)eikt

)√
rJ`+ 1

2
(kr).

2For ` = 0, using (2.30) and demanding that the solution vanish at infinity we see πr(`,m) = 0.
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This form for the mode expansion respects the reality condition (2.22). Let us also write
the mode expansion

πr(`,m)(r, t) = `(`+ 1)√
2

∫ ∞
0

dk
(
ia†r(`,m)(k)eikt − i(−1)mar(`,−m)(k)e−ikt

)√
rJ`+ 1

2
(kr).

(2.37)
We can now promote Ar, πr to be operators which implies that a`,m, a†`,m are operators.
The equal time canonical commutation relation of these conjugate variables is given by

[Ar(`,m)(r, t), πr(`′,m′)(r
′, t)] = iδl,l′δm,m′δ(r − r′). (2.38)

Using the mode expansion in (2.36), it can be seen that this commutation relation implies
the following commutation relations between the creation and annihilation operators

[ar(`,m)(k), a†r(`′,m′)(k
′)] = 1

`(`+ 1)δ(k − k
′)δ`,`′δm,m′ . (2.39)

All other commutation relations are trivial. To show (2.39) holds, we substitute the
expansion (2.36) in (2.38) and use the closure relation, see [20], section 11.2,∫ ∞

0
kdkJ`+ 1

2
(kr)J`+ 1

2
(kr′) = 1

r
δ(r − r′). (2.40)

The mode Am. From the action (2.26), the equations of motion for the mode Am is
given by

r2(∂2
rAm(`,m) − Äm(`,m)) + 2r∂rAm(`,m) − `(`+ 1)Am(`,m) = 0. (2.41)

The solution for each Fourier mode in time which is regular at the origin is given by

Am(`,m) = am(`,m)(k)r−
1
2 e−iktJ`+ 1

2
(|k|r). (2.42)

From the definition of the canonical conjugate momentum in (2.27), the corresponding
Fourier mode is

πm ∗
(`,m) = −ikam(`,m)(k)r−

1
2 e−iktJ`+ 1

2
(|k|r). (2.43)

Using the solutions in (2.42) and (2.43) we can write the mode expansion as

Am(`.m)(r, t) = 1√
2

∫ ∞
0

dk
(
am(`,m)(k)e−ikt+(−1)ma†m(`,−m)(k)eikt

)
r−

1
2J`+ 1

2
(kr), (2.44)

πm∗
(`,m)(r, t) = 1√

2

∫ ∞
0

kdk
(
−iam(`,m)(k)(kr)e−ikt+i(−1)ma†m(`,−m)(k)eikt

)
r−

1
2J`+ 1

2
(kr).

We also have

πm
(`,m)(r, t) = 1√

2

∫ ∞
0

kdk
(
ia†m(`,m)(k)eikt − i(−1)mam(`,−m)(k)e−ikt

)
r−

1
2J`+ 1

2
(kr).

(2.45)
We can promote the fields Am, π

m to operators by promoting am(`,m)(k), a†m(`,m)(k) to
operators. Then the canonical commutation relations

[Am(`.m)(r, t), πm
(`′,m′)(r

′, t) = iδ(r − r′)δ`,`′δm,m′ , (2.46)

imply that the commutation relations

[am(`,m)(k), a†m(`′,m′)(k
′)] = δ(k − k′)δ`,`′δm,m′ . (2.47)
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Electric correlator on the sphere and edge entanglement. We proceed to evaluate
the two-point function of the radial component of the electric field. Examining the compo-
nents of the field strengths in (2.25) and using the definition of the canonical momenta (2.27),
we see that the electric field Ft̂r̂ is related to the momentum πr

Ft̂r̂ =
∑
`,m

(Ȧr;`m − ∂rA0;`m)Y`m(θ, φ), (2.48)

=
∑
`,m

πr ∗(`,m)(r, t)
r2 Y`m(θ, φ).

Using the mode expansion in (2.36), we can proceed to evaluate the two-point function of
the electric field

〈0|Ft̂r̂(t, r, θ, φ)Ft̂′r̂′(t, r
′, θ′, φ′)|0〉 = (2.49)

1
2(rr′)

3
2

∑
`,`′,m,m′

`(`+ 1)`′(`′ + 1)
∫ ∞

0
dkdk′

[
J`+ 1

2
(kr)J`′+ 1

2
(k′r′)

×(−1)m′〈0|ar(`,m)(k)a†r(`′,m′)(k
′)|0〉Y`,m(θ, φ)Y`′,−m′(θ′, φ′)

]
.

Using the commutation relations in (2.39), we obtain

〈0|Ft̂r̂(t, r, θ, φ)Ft̂′r̂′(t, r
′, θ′, φ′)|0〉 = (2.50)

1
2(rr′)

3
2

∑
`,m

`(`+ 1)
∫ ∞

0
dkJ`+ 1

2
(kr)J`′+ 1

2
(k′r′)Y`,m(θ, φ)Y ∗`,m(θ′, φ′).

We perform the integral using the identity in [21], see page 696 equation 3 of 6.612∫ ∞
0

dkJ`+ 1
2
(kr)J`+ 1

2
(kr′) = 1

π
√
rr′

Q`

(
r2 + r′2

2rr′

)
. (2.51)

Where Qν(z) is the Legendre function of second kind which can be written in terms of the
hypergeometric function [21], see page 1024 equation 2 of 8.820

Qν(z) =
Γ
(

1
2

)
Γ(ν + 1)z−ν−1

2F1
(
ν+2

2 , ν+1
2 ; 1

2(2ν + 3); 1
z2

)
2ν+1Γ

(
ν + 3

2

) . (2.52)

Therefore the corrrelator is given by

〈0|Ft̂r̂(t, r, θ, φ)Ft̂′r̂′(t, r
′, θ′, φ′)|0〉 =

∑
`,m

`(`+ 1)
2π(rr′)2Q`

(
r2 + r′2

2rr′

)
Y`,m(θ, φ)Y ∗`,m(θ′, φ′).

(2.53)
In equation (A.12) of [16], this correlator was evaluated in the Coloumb gauge. The
authors evaluated the electric field correlator in Cartesian coordinates, transformed to polar
coordinates and then decomposed the answer in spherical harmonics. The answer for each
harmonic was not obtained in closed form unlike the result in (2.53). In the appendix A, we
compare our result with their result and show that our closed form result for each ` agrees
with the expansion found in [16].
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From the discussion in section 2.1, we see that we need the 2-point functions on the
sphere, in the limit that the two-points have the same radial position. Therefore let us take

r′ = r + δ, δ → 0. (2.54)

In this limit, the Legendre function of the second kind can be expanded as

lim
δ→0

Q`

(
r2 + (r + δ)2

2r(r + δ)

)
= 1

2 log
(
r2

δ2

)
+ log 2−H` +O(δ), (2.55)

where H` refers to the Harmonic number. Note that the leading divergence is independent
of `. Substituting this limit in the correlator (2.53), we obtain

lim
δ→0

Grr(r, r + δ;x, y) = 1
4πr4 log

(
r2

δ2

) ∑
`≥1,m

`(`+ 1)Y`,m(θ, φ)Y ∗`,m(θ′ φ′), (2.56)

where we retain only the leading term in the δ → 0 limit. Thus the correlator is diagonal in
the angular momentum basis and the diagonal elements are given by

lim
δ→0
〈`,m|Grr(r, r + δ)|l′m′〉 = `(`+ 1)

4πr4 log
(
r2

δ2

)
δ`,`′δm,m′ . (2.57)

As mentioned earlier, we see that the correlator is proportional to the Laplacian of the
massless scalar on S2. From (2.13), we see that the edge mode contribution to the
entanglement is obtained by evaluating the log-determinant of this operator. The coefficient
which is proportional to the log(R/ε) where R is the radius of the entangling sphere and ε
is a cutoff on the sphere, can be obtained from

Sedge(ρA) = 1
2

∞∑
`=1

(2`+ 1) log
[
`(`+ 1)

]
. (2.58)

Here we are ignoring all terms which are proportional which grow as the area R2/ε2 and
retained the term which contains the logarithmic coefficient to the entanglement entropy.

We can use the standard methods to evaluate the determinant of the scalar Laplacian
to obtain the contribution to the entanglement entropy from the edge modes. The free
energy of the of the massless scalar or the 0-form is given by

− 1
2 log(det∆S2

0 ) = −1
2

∞∑
`=1

(2`+ 1) log(`(`+ 1)). (2.59)

Then using the methods of [19, 22] we can write the Harish-Chandra character integral
representation of the free energy. This is given by

− 1
2 log det(∆S2

0 ) =
∫ ∞

0

dt

2t
1 + e−t

1− e−tχ
dS
(1,0)(t), (2.60)

where χdS(2,0)(t) is the SO(1, 2) Harish-Chandra character of the 0-form in the ∆ = 1
2 + iν

representation with iν = 1
2 . This character is given by

χdS(1,0)(t) = 1 + e−t

1− e−t . (2.61)
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Therefore, the result for the free energy is

− 1
2 log det(∆S2

0 ) =
∫ ∞

0

dt

2t
1 + e−t

1− e−t
1 + e−t

1− e−t . (2.62)

In the character integral representation the coefficient of the log(Rε ) term to the free energy
is easy to read out. It is given by the coefficient of the t−1 term of the integrand in (2.62)
which is 1

3 . Therefore, the logarithmic contribution of the edge modes to the entanglement
entropy is given by

Sedge(ρA) = 1
2 log det(∆S2

0 ), (2.63)

= −1
3 log R

ε
.

We see that this result agrees with that evaluated in [16]. Here we emphasize that this
entanglement is the contribution of the electric centre of the local alegbra as discussed
in [3]. This resulted from our choice of labelling the superselection sectors using the electric
Gauss law.

Magnetic correlator on the sphere and edge entanglement. As discussed in [3],
the entanglement entropy of the centre of the algebra depends on the choice centre. We
can also consider the case where the superselection sectors are labelled by the magnetic
field, the magnetic centre. The magnetic field satisfies the condition

∇iBi = 0. (2.64)

Following the same arguments as that for the electric field, this implies that the radial
component of the Br̂ must agree across the entangling surface. Therefore the field strength
Fêm̂ = Br̂ labels superselection sectors. The arguments in section 2.1, then imply that
we would need the two-point function of the magnetic field on the sphere to evaluate the
entanglement entropy of the edge modes.

From (2.25), we see, that the magnetic flux is given by

Fêm̂ =
∑
`,m

√
`(`+ 1)
r

Am;`mY`m. (2.65)

Using the mode expansion in (2.44), the two-point function of the magnetic field is given by

〈0|Fêm̂(t, r, θ, φ)Fê′m̂′(t, r′, θ′, φ′)|0〉 = (2.66)
1

2(rr′)
3
2

∑
`,`′,m,m′

√
`(`+ 1)`′(`′ + 1)

∫ ∞
0

dkdk′
[
J`+ 1

2
(kr)J`′+ 1

2
(k′r′)

×(−1)m′
〈
0|am(`,m)(k)a†m(`′,m′)(k

′)|0
〉
Y`,m(θ, φ)Y`′,−m′(θ′, φ′)

]
.

Using the commutation relations in (2.47), we get

〈0|Fêm̂(t, r, θ, φ)Fê′m̂′(t, r′, θ′, φ′)|0〉 = (2.67)
1

2(rr′)
3
2

∑
`,m

`(`+ 1)
∫ ∞

0
dkJ`+ 1

2
(kr)J`′+ 1

2
(k′r′)Y`,m(θ, φ)Y ∗`,m(θ′, φ′).
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Then using the identity (2.51), we obtain

〈0|Fêm̂(t, r, θ, φ)Fê′m̂′(t, r′, θ′, φ′)|0〉 =
∑
`,m

`(`+ 1)
2π(rr′)2Q`

(
r2 + r′2

2rr′

)
Y`,m(θ, φ)Y ∗`,m(θ′, φ′).

(2.68)
Comparing (2.53) and (2.68) we see that they are identical. Following the same steps as in
the case of the electric superselection sectors, we see that the logarithmic contribution to
entanglement entropy when the magnetic field labels superselection sectors is given by

Sedge(ρA)|magnetic = 1
2 log det(∆S2

0 ), (2.69)

= −1
3 log R

ε
.

Thus the entanglement entropy of the magnetic centre coincides with that of the electric
centre. This is due to the electric magnetic duality of the U(1) theory. In general choice of
different centres can result in different entanglement associated with the centre. In [3] it was
shown in lattice gauge theory one could choose a trivial centre resulting no entanglement
entropy of the centre.

2.3 U(1) theory in arbitrary even d

In this section we generalise the discussion to arbitrary even d. Let us expand the gauge
potential as

Aµ =
∑
`,λ,m

(
A0(`,λ,m)(r, t)Y 0

`λm,µ +Ar(`,λ,m)(r, t)Y r
`λm,µ (2.70)

+Ae(`,λ,m)(r, t)Ŷ e
`λm,µ +A~m(`,λ,m)(r, t)Y ~m

`λm,µ

)
,

where the d dimensional covariant vectors are defined as

Y 0
`λm = {Y`λm(Ω), 0, · · · 0}, (2.71)
Y r
`λm = {0, Y`λm(Ω), 0, · · · 0},

Y e
`λm = r√

`(`+ d̂− 1)
{0, 0, ∂iY`λm(Ω)},

Ŷ ~m
`λm = {0, 0, Y ~m

`λm(Ω)}.

Y`λm are scalar spherical harmonics on Sd̂, l is the principal quantum number, m the
azimuthal quantum number and λ refers to the rest of the d̂− 2 quantum numbers. It is
important to note that the azimuthal quantum number can take values both in the positive
and negative values in the set of integers. These harmonics can be found in [23]. The
principal quantum number takes values ` = 0, 1, · · · . The variable Ω refers to all the angles
on the sphere Sd̂. We work with the metric

ds2 = −dt2 + dr2 + r2dΩ2, (2.72)

where the metric on sphere is the conventional round metric. The partial derivative in
the definition of Y e

`λm refers to derivative in the angular directions of the sphere. Finally
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Y ~m
`λm(Ω) refers to the other d̂− 1 vector harmonics on Sd̂. The properties of both the scalar

and vector harmonics can be found in [23]. From the construction3 of these harmonics we
see that they obey the property

Y`λm(Ω)∗ = (−1)mY`λ−m(Ω). (2.73)

Then the reality of the vector potential implies that we have the relations

A∗0(`,λ,m)(r, t) = (−1)mA0(`,λ,m)(r, t), (2.74)

A∗r(`,λ,m)(r, t) = (−1)mAr(`,λ,m)(r, t).

Following the same discussion as in the case of 4d, we can fix gauge so that Ae = 0. It is
sufficient to focus on the components A0 and Ar to obtain the entanglement entropy of the
superselection sectors corresponding to the electric field. The action for these components
derived from the Maxwell action is given by

S =
∑̀

lλm=−`

∫
drL`λm, (2.75)

L`λm = 1
2
[
rd̂Ȧr(`,λ,mȦ

∗
r(`,λ,m) +rd̂∂rA0(`,λ,m)∂rA

∗
0(`,λm)

−rd̂Ȧr(`,λ,m)∂rA
∗
0(`,λ,m)−r

d̂Ȧ∗r(`,λm)∂rA0(`,λ,m) +`(`+ d̂−1)rd̂−2A0(`λm)A
∗
0(`,λ,m)

]
.

The canonical conjugate momentum to Ar is given by

πr ∗(`,λ,m) = rd̂(Ȧr(`,λ,m) − ∂rA0(`,λ,m)). (2.76)

Using the constraint for A0, we can write

∂rπ
r ∗
(`,λ,m) + `(`+ d̂− 1)A0(`,λ,m) = 0. (2.77)

Eliminating A0, we obtain the equation of motion for the k-th Fourier mode Ar, which is
given by

∂2
rAr(`,λ,m) + d̂− 2

r
∂rAr(`,λ,m) +

(
k2 − `(`+ d̂− 1) + d̂− 2

r2

)
Ar(`,λ,m) = 0. (2.78)

The solution which is regular at the origin is given by

Ar(`,λ,m) = e−iktar(`,λ,m)r
− d̂−3

2 J
`+ d̂−1

2
(|k|r), (2.79)

where ar(`,λ,m)(k) is the integration constant. The equation for the momenta can be obtained
by using the definition in (2.76), eliminating A0 and substituting for Ar from (2.79). This
results in

πr ∗(`,λ,m) = rd̂
(
−ike−iktar(`,λ,m)(k)r−

d̂−3
2 J

`+ d̂−1
2

(|k|r) + 1
`(`+ d̂− 1)

∂r
(
rd̂−2∂rπ

r ∗
(`,λ,m)

))
.

(2.80)
3The scalar harmonics are products of associated Legendre functions of the first kind and a phase. The

phase and one of the associated Legendre functions can be grouped to form the spherical harmonic on S2.
The property of these functions under conjugations can be obtained from this observation.
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The solution to this differential equation is given by

πr ∗(`,λ,m) = c1r
d̂−1+`+c2r

−` (2.81)

+ar(`,λ,m)(k)e−ikt
 i2−

(
`+ d̂−1

2

)
`(`+ d̂−1)k`+

d̂−3
2

Γ
(
`+ d̂+1

2

) r`+d̂+1− i `(`+ d̂−1)r
d̂−1

2

k
J
`+ d̂−1

2
(|k|r)

 .
` ≥ 1 for these modes, regularity at the origin results in c2 = 0 and demanding that the
solution is well behaved at infinity determines c1 giving

πr ∗(`,λ,m) = −i`(`+ d̂− 1)
k

ar(`,λ,m)(k)e−iktr
d̂−1

2 J
`+ d̂−1

2
(|k|r). (2.82)

Using the classical solutions (2.79) and (2.82) for each Fourier mode, we can write
down the mode expansions

Ar(`,λ,m)(r, t) = 1√
2

∫ ∞
0

kdk
(
ar(`,λ,m)(k)e−ikt + (−1)ma†r(`,λ,−m)(k)eikt

)
r−

d̂−3
2 J

`+ d̂−1
2

(kr),

πr ∗(`,λ,m)(r, t) = `(`+ d̂− 1)√
2

×
∫ ∞

0
dk
(
−iar(`,λ,m)(k)e−ikt + i(−1)ma†r(`,λ,−m)(k)eikt

)
r
d̂−1

2 J
`+ d̂−1

2
(kr).

(2.83)

This form for the mode expansion respects the reality condition (2.74). Let us also write
the mode expansion

πr(`,m)(r, t) = `(`+ d̂−1)√
2

∫ ∞
0

dk
(
ia†r(`,λ,m)(k)eikt− i(−1)mar(`,λ,−m)(k)e−ikt

)
r
d̂−1

2 J`+ 1
2
(kr).

(2.84)
The equal time commutation relation of the fields Ar, πr is given by

[Ar(`,λ,m)(r, t), πrr(`′,λ′,m′)(r, t)] = iδ`,`′δλ,λ′δm,m′δ(r − r′). (2.85)

These relations together with the mode expansions (2.83), (2.84) imply the following
commutation relations between the creation and annihilation operators

[ar(`,λ,m)(k), a†r(`′,λ′,m′)(k′)] = 1
`(`+ d̂− 1)

δ``′δλ,λ′δm,m′ . (2.86)

Electric field correlators on Sd̂. The electric field is related to the canonical momentum
by

Ft̂r̂ =
∑
`,λ,m

(
Ȧr(`,λ,m) − ∂rA0(`,λ,m)

)
Y`λm(Ω), (2.87)

=
∑
`,λ,m

πr ∗(`,λ,m)

rd̂
Y`λm(Ω),
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where we have used (2.76). Proceeding as in the case of d = 4, we evaluate the two-point
function of the radial electric field

〈0|Ft̂r̂(t, r,Ω)Ft̂′r̂′(t, r
′,Ω′)|0〉 =

∑
`,λ,m

`(`+ d̂− 1)
2π(rr′)

d
2
Q`

(
r2 + r′2

2rr′

)
Y`,λ,m(Ω)Y ∗`,λ,m(Ω′).

(2.88)
The result is a generalisation of that seen for the case of d = 4 in (2.53), we see that the
correlator is proportional to the Laplacian of the scalar or the 0-form on the sphere Sd̂.
We can take the coincident limit in the radial direction. From the leading divergence we
evaluate the contribution of the edge modes to the entanglement entropy. The logarithmic
coefficient is given by

Sedge(ρA) = 1
2

∞∑
l=1

g`,d log(`(`+ d̂− 1)), g`,d = (2`+ d− 3)Γ(`+ d− 3)
`!Γ(d− 2) , (2.89)

where g`,d are the degeneracies of the Laplacian of the 0-form on Sd̂. Note that the ` = 0
mode is not counted, and therefore the logarithmic coefficient entanglement entropy of
the edge modes coincides precisely with that of the free energy of the 0-form. Using the
methods of [19, 22], the partition function of the 0-form can be written in terms of its
Harish-Chandra characters

− 1
2 log det(∆Sd̂

0 ) =
∫ ∞

0

dt
2t

1 + e−t

1− e−tχd̂,0. (2.90)

Here χd̂,0 is the SO(d̂, 1) Harish-Chandra character of the 0-form in the ∆ = d̂−1
2 + iν

representation with iν = d̂−1
2 which is given by

χdS
d̂,0(t) = 1 + e−(d̂−1)t

1− e−(d̂−1)t
. (2.91)

Therefore the logarithmic coefficient of the entanglement entropy is obtained from the 1/t
coefficient of the integrand in

Sedge(ρA) = 1
2 log det(∆Sd̂

0 ), (2.92)

= −
∫ ∞

0

dt

2t
1 + e−t

1− e−t
1 + e−(d̂−1)t

1− e−(d̂−1)t
.

2.4 The U(1) theory on spheres and entanglement of edge modes

In this section we consider the representation of the partition function the U(1) theory on
the even d dimensional sphere in terms of the Harish-Chandra character as constructed
in [19, 22]. We show that the contribution to the partition function from the edge character
coincides with the contribution of the superselection sectors to the entanglement entropy.
After gauge fixing, the partition function of the U(1) theory on Sd can be written as

logZ1[Sd] = −1
2 log(detT∆Sd

1 ) + 1
2 log(det′∆Sd

0 ). (2.93)
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Here ∆1 is the Laplacian on 1-forms and the subscript T refers to the fact that the
determinant is evaluated over transverse 1-forms. The prime in the second term is to denote
that the determinant ignores the zero mode of the scalar. In [22] it was shown that the
partition function of p-forms can be written in terms of Harish-Chandra characters. Using
these results we get

−1
2 log(detT∆Sd

1 ) =
∫ ∞

0

dt

2t
1 + e−t

1− e−t
(
χdS(d−1,1)(t)− χ

dS
(d−3,0)(t)

)
, (2.94)

χdS(d−1,1)(t) = (d− 1)e
−(d−2)t + e−t

(1− e−t)d−1 , χdS(d−3,0)(t) = e−(d−3)t + 1
(1− e−t)d−3 ,

−1
2 log(det′∆Sd

0 ) =
∫ ∞

0

dt

2t
1 + e−t

1− e−tχ
dS
(d−1,0)(t), χdS(d−1,0)(t) = e−(d−1)t + 1

(1− e−t)d−1 .

From this representation of the one loop partition function of the 1-form, we see that it can
be written as a contribution from bulk and edge characters as

−1
2 log(detT∆Sd

1 ) =
∫ ∞

0

dt

2t
1 + e−t

1− e−t (χbulk(t)− χedge(t)), (2.95)

χbulk(t) = χdS(d−1,1)(t)− χ
dS
(d−1,0)(t),

χedge(t) = χdS(d−3,0)(t).

Note that the edge character is the Harish-Chandra character for the 0-form on a sphere
of d − 2 = d̂ dimensions. Comparison with (2.92), we see that its contribution to the
logarithmic coefficient of the free energy of the U(1) theory on Sd including the sign agrees
precisely with that the of the entanglement entropy of the edge modes.

3 Graviton in d = 4 dimension

In this section we evaluate the contribution of the edge modes to the logarithmic coefficient
of the entanglement entropy of gravitons across a spherical surface in d = 4. Our discussion
will closely follow that of the U(1) theory. The Lagrangian for the theory of linearized
gravitons is given by

L = −∂µhµν∂αhαν + 1
2∂

αhµν∂αh
µν + ∂µh

µν∂νh
α
α −

1
2∂αh

µ
µ∂

αhνν . (3.1)

This Lagrangian admits the gauge symmetry

δhµν = ∂µξν + ∂νξµ. (3.2)

In the linearized theory, the curvature is gauge-invariant. It is given by

Rµνρσ = 1
2(∂ν∂ρhµσ − ∂µ∂ρhνσ + ∂µ∂σhνρ − ∂ν∂σhµρ). (3.3)

The equations of motion from the action (3.1) are the Einstein equations

Rµν −
1
2ηµνR = 0. (3.4)
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In the case of the Maxwell field, the Gauss law resulted in superselection sectors.
To obtain a gauge-invariant characterization of the superselection sectors in gravity it is
convenient to think of the Riemann curvature (3.3) as a field strength of a U(1) gauge
potential. Consider the gauge potential constructed out of the graviton

Aµαβ = 1
2(∂βhµα − ∂αhµβ). (3.5)

Under the gauge symmetry (3.2) the potential transforms as an U(1) gauge field

δAµαβ = ∂µλαβ , λαβ = 1
2(∂βξα − ∂αξβ). (3.6)

The Riemann curvature can then be written as a field strength of this U(1) gauge field.

Rµναβ = ∂µAναβ − ∂νAµαβ . (3.7)

Indeed in [24], the components R0i0j where i, j are spatial indices were identified as the
electric fields while Bij = 1

2εilmR
lm
0j were identified as magnetic fields.

We show that the Riemann curvature R0µαβ obeys a similar Gauss law as that in
electrodynamics once the Hamiltonian constraint together with the on shell conditions are
satisfied. The Gauss constraint or the Hamiltonian constraint in gravity are the following

R0i = 0, (3.8)

R00 + 1
2R = 0. (3.9)

Consider the Bianchi identity in linearised gravity,

∂λRµναβ + ∂µRνλαβ + ∂νRλµαβ = 0. (3.10)

Contracting µ and α we obtain

∂λRνβ + ∂µRνλµβ − ∂νRλβ = 0. (3.11)

We choose β to be in the time direction and ν, λ to be space like. Then the Hamiltonian
constraint (3.8) implies that we obtain the following constraint that must be satisfied by
the curvature

∂µR0µij = 0. (3.12)

Now choose ν, β in (3.11) to be in the time direction then the Hamiltonian constraint (3.9)
together with the on shell conditions imply

∂µR0µ0i = 0. (3.13)

The equations (3.12) and (3.13) are analogous to the Gauss law constraint of electro-
dynamics. As we have seen that these fields are field strengths of a U(1) gauge potential.
Therefore the same argument that led to the labelling of superselection sectors by the radial
component of the electric or magnetic field applies to these curvature components. Thus
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we conclude that superselection sectors are labelled by the components R0r̂ij , R0r̂0j of the
Riemann tensor.

In the next sub-sections we will quantize the linearise graviton following the methods
of [18]. We decompose the graviton in terms of spherical tensor harmonics and fix gauge
and obtain the algebra of gauge-invariant observables. We will show that the among the
6 components R0r̂ij , R0r̂0i, only the components R0r̂0r̂ and R0r̂êm̂ where ê, m̂ are angular
directions are locally related to the canonical coordinates. We then choose these components
to label the superselection sectors and evaluate their entanglement entropy. Since both
R0r̂0r̂ and R0r̂êm̂ label the superselection sectors, we would need to sum their contribution
to the entanglement entropy of the edge modes. It is important to note that both these
superselection sectors arose from the Hamiltonian constraints (3.8), (3.9) of gravity.

3.1 Lagrangian in terms of tensor harmonics

In this section, we expand the graviton in terms of tensor harmonics and decompose the
Lagrangian in (3.1) in terms of these modes and fix gauge. We follow the methods of [18]
with the difference that we write the tensor harmonics in terms of covariant tensors rather
than cartesian tensors. This allows us to apply the methods of tensor calculus.

The spin-2 field is first written as

hµν = (hT )µν + (ĥv)µν + (hs)µν , (3.14)

where hT is the tensor mode which is purely spatial, hv is the vector mode which is non-zero
when one index is temporal and one spatial, while hs is non-zero only when both indices
are temporal. The gauge transformation parameter is similarly decomposed as

ξµ = (ξv)µ + (ξs)µ. (3.15)

Here ξv has only spatial components and ξs has only temporal components.

The tensor mode. We use tensor harmonics as a basis of symmetric tensors to expand
the tensor mode hT as follows

(hT )µν =
∑

J,s,`,m

hJ,s(`,m)(T
J,s
`,m)µν , (3.16)

where T J,s(`,m) is the tensor harmonics constructed out of the vector harmonics. The covariant
form of the tensor harmonics are given by4

(T 0l
`m)µν = r̂µ ⊗ Y r

`m,ν , (T 0t
`,m)µν = Y`m(θ, φ)√

2
(δµ,0δ0,ν − δµ,1δ1,ν + gµν) ,

(T 1e
`,m)µν =

√
2[r̂µ ⊗ Y e

`,m,ν ]S , (T 1m
`,m)µν =

√
2[r̂µ ⊗ Y m

`,m;ν ]S ,

(T 2e
`,m)µν =

√
2

(l − 1)(l + 2)

[r∇µY e
`,m,ν

]S
+ 1√

2
(T 1e
`,m)µν +

√
l(l + 1)

2 (T 0t
`,m)µν

 ,
(T 2m
`m )µν =

√
2

(l − 1)(l + 2)

{[
r∇µY m

`,m,ν

]S
+ 1√

2
(T 1m
`,m)µν

}
. (3.17)

4We define [Vµ ⊗Wν ]S = 1
2 (Vµ ⊗Wν + Vν ⊗Wµ).
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The covariant form of the vector harmonics and the unit orthonormal vectors are given
in (2.18) and (2.20) respectively. Here for the mode J = 0 we have l ≥ 0, J = 1, l ≥ 1
and J = 2, we have l ≥ 2. Under the gauge transformation the tensor mode of the field
transforms as

(hT )µν =
∑

J,s,`,m

hJ,s(`,m)(T
J,s
`,m)µν + 2

∑
s,`,m

[
ξs(`,m)∇µY

s
`m,ν + Y s

`m,µ ⊗ ∂rξs(`,m)r̂ν
]S
, s = r, e,m

(3.18)

Here we have also decomposed the vector gauge parameter ξv whose index takes values in
the spatial directions in terms of vector harmonics.

(ξv)µ =
∑
s,`,m

ξs(`,m)Y
s
`m,µ. (3.19)

Using the properties of vector and spherical harmonics, one can express the gauge trans-
formed variable h′T in terms of modes hJ,s(`,m) and gauge parameters ξs(`,m).

(h′T )µν =
∑
`,m

(
h0l

(`,m)+2∂rξr
(`,m)

)
(T 0l
`,m)µν+

(
h0t

(`,m)+ 2
√

2
r
ξr

(`,m)−
√

2`(`+1)
r

ξe
(`,m)

)
(T 0t
`,m)µν

+
(
h1e

(`,m)+
√

2`(`+1)
r

ξr
(`,m)+

√
2∂rξe

(`,m)−
√

2
r
ξe

(`,m)

)
T 1e

(`,m)

+
(
h2e

(`,m)+
√

2(`−1)(`+2)
r

ξe
(`,m)

)
T 2e

(`,m)+
(
h2m

(`,m)+
√

2(l−1)(l+2)
r

ξm
(`,m)

)
(T 2m
`,m)µν

+
(
h1m

(`,m)+
√

2∂rξm
(`,m)−

√
2
r
ξm

(`,m)

)
(T 1m
`,m)µν . (3.20)

Note that ξm
(`,m) allows us to cancel the coefficient of T 2m

(`,m), for all ` and m. It is clear from
thsi tranformation, that we can also use ξm and ξr to eliminate two modes out of h0l

(`,m),
h0t

(`,m) and h1e
(`,m). Following [18], we fix gauge so that one linear combination of these fields

remains. We call this linear combination the mode hte(`,m) Thus fixing gauge we can expand
the tensor mode as

(hT )µν =
∑
`,m

h0l
(`,m)(T

0l
`,m)µν + hte(`,m)

(
α(T 0t

`,m)µν + β(T 1e
`,m)µν + γ(T 2e

`,m)µν
)

+ h1m
`,m(T 1m

`,m)µν ,

(3.21)

where α, β and γ are some constants.

The vector mode. The vector mode (ĥv)µν is first written as

(ĥv)µν = [(hv)µ ⊗ t̂ν ]S , (3.22)

where t̂ is the covariant vector given in (2.20). We expand the vector hv in terms of vector
harmonics given in (2.18).

(hv)µ =
∑
s`m

h0s
(`,m)(t, r)Y

s
`,m,µ(θ, φ). (3.23)
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Let also expand the scalar gauge transformation parameter as

(ξs)µ =
∑
`,m

ξ0
(`,m)(t, r)Ylm(θ, φ)(t̂)µ. (3.24)

Under the gauge transformation, the vector mode transforms as

(h′v)µ =
∑
`,m

(
h0r

(`,m) + ξ̇r
(`,m) + ∂rξ

0
(`,m)

)
Y r
`,m,µ +

(
h0e

(`,m) + ξ̇e(`,m) +
ξ0

(`,m)
r

)
Y e
`,m,µ

+
(
h0m

(`,m) + ξ̇m
(`,m)

)
Y m
`,m,µ. (3.25)

The gauge transformation allows us to choose ξ0
(`,m) such that h′0e(`,m) vanishes for all ` and

m. Using this gauge choice the vector mode can be written as

(hv)µ =
∑
`m

h0r
(`,m)Y

r
`,m,µ + h0m

(`,m)Y
m
`,m,µ. (3.26)

The scalar mode. Finally the scalar mode is also expanded in terms of spherical har-
monics

(hs)µν =
∑
`,m

h00
(`,m)Y`,m(θ, φ)t̂µ ⊗ t̂ν . (3.27)

We now substitute the tensor harmonic expansion of hµν in the Lagrangian given
in (3.1). The Lagrangian can be written in two parts [18].

∫
d3xL =

∑̀
`,m=−`

∫ ∞
0

dr
(
L(1)
`,m + L(2)

`,m

)
, (3.28)

where L(1) contains only the fields h1m
(`,m) and the non-dynamical modes h0m

(`,m). The second
part L(2)

`,m involves the fields h0l
(`,m) and hte(`,m) together with the Lagrange multipliers h0r

(`,m)
and h00

(`,m). To write the Lagrangian explicitly in terms of the modes we use the following
reality property of the tensor harmonics

T̂ J,s ∗`,m = (−1)mT̂ J,s`,−m. (3.29)

Then the reality of the tensor hµν leads to the following reality conditions obeyed by the
modes.

h1m
(`,−m) = (−1)mh1m∗

(`,m), hte∗(`,m) = (−1)mhte∗(`,m), (3.30)

h0l
(`,−m) = (−1)mh0l∗

(`,m), h0t
(`,−m) = (−1)mh0t∗

(`,m). (3.31)

The Lagrangian L(1) and its equations of motion. The Lagrangian L(1) is given by

L(1)
(`,m) = r2

2 ḣ
1m
(`,m)ḣ

1m∗
(`,m) −

(`− 1)(`+ 2)
2 h1m

(`,m)h
1m∗
(`,m) + r2∂rh

0m
(`,m)∂rh

0m∗
(`,m)

+ `(`+ 1)h0m
(`,m)h

0m∗
(`,m) +

√
2ḣ1m∗

(`,m)

(
rh0m

(`,m) − r
2∂rh

0m
(`,m)

)
. (3.32)
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Here ` runs from 1, 2, · · ·∞. Note that though the cross term between h0m and h1m appears
complex, the sum over m from −` to ` in (3.28) ensures the reality of the full Lagrangian.
The canonical conjugate momentum to h1m by varying the Lagrangian with respect to ḣ∗1m

(`,m)

π1m∗
(`,m) =

∂L(1)
(`,m)

∂ḣ1m∗
(`,m)

= r2ḣ1m
(`,m) +

√
2(rh0m

(`,m) − r
2∂rh

0m
(`,m)). (3.33)

Let us discuss the modes ` ≥ 2 first. From the Lagrangian (3.32) we obtain

r2ḧ1m
(`,m) +

√
2(rḣ0m

(`,m) − r
2∂rḣ

0m
(`,m)) + (`− 1)(`+ 2)h1m

(`,m) = 0, (3.34)

which can also be written as

π̇1m∗
(`,m) + (`− 1)(`+ 2)h1m

(`,m) = 0. (3.35)

The mode h0m can be eliminated by the constraint equation which is given by

√
2
(
∂rπ

1m∗
(`,m) +

π1m∗
(`,m)
r

)
= −2(`− 1)(`+ 2)h0m

(`,m). (3.36)

Finally we get the equation of motion only in h1m
(`,m) variable

r2(ḧ1m
(`,m) − ∂

2
rh

1m
(`,m)) + `(`+ 1)h1m

(`,m) = 0. (3.37)

We solve this equation of motion by expanding it in Fourier modes in time first and then
solve the radial equation. The solution which is regular at the origin is given by

h1m
(`,m)(t, r) = e−ikta1m(`,m)(k)

√
rJ`+ 1

2
(|k|r). (3.38)

Here a1m(`,m)(k) is the integration constant and J`+ 1
2
(|k|r) is the Bessel function. The

equation of π∗1m
(`,m) can be obtained from (3.33)

π1m∗
(`,m) = r2

(
−ike−ikta1m(`,m)(k)

√
rJ`+ 1

2
(|k|r)

)
+
√

2(rh0m
(`,m) − r

2∂rh
0m
(`,m))

= r2
(
−ike−ikta1m(`,m)(k)

√
rJ`+ 1

2
(|k|r)

)
+
r2∂2

rπ
1m∗
(`,m) − 2π1m∗

(`,m)
(`− 1)(`+ 2) ). (3.39)

In the second line we have used the constraint equation (3.36) to eliminate h0m
(`,m) from the

equation of motion. Therefore the equation for π1m∗ becomes an in-homogenous second
order equation in the radial coordinate. The general solution is given by

π1m∗
(`,m)(r, t) = c1r

l+1 + c2r
−l

+ (`− 1)(`+ 2)a1m(`,m)(k)e−ikt
 ir2−`− 1

2 (kr)`
√
kΓ
(
`+ 3

2

) − i
√
rJ`+ 1

2
(|k|r)

k

 . (3.40)
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Demanding that the solution be regular at the origin yields c2 = 0 since ` ≥ 2 for these
modes. We further demand the regularity of the solution at infinity which fixes c1 and
we obtain

π1m∗
(`,m)(r, t) = − i(`− 1)(`+ 2)

k
a1m(`,m)(k)e−ikt

√
rJ`+ 1

2
(|k|r). (3.41)

For ` = 1, the equations of motion (3.36) leads to the following solution

π1m∗
(1,m) = c

r
, (3.42)

where c is a constant. Regularity at the origin implies that we have c = 0 leading to

π1m∗
(1,m) = π1m

(1,m) = 0. (3.43)

The Lagrangian L(2) and its equations of motion. We use the reality conditions to
express the Lagrangian of the hte mode in terms of field variables

L(2)
(`,m) = r2

2
(
β2−α2 +γ2

)
ḣte(`,m)ḣ

te∗
(`,m)−

√
2r2αḣ0l

(`,m)ḣ
te∗
(`,m) + r2

2
(
α2−γ2

)
∂rh

te
(`,m)∂rh

te∗
(`,m)

+
√

2αrhte(`,m)∂rh
0l∗
(`,m) +h0l

(`,m)h
0l∗
(`,m) +

(
β2−

√
`(`+1)

2 αβ−
√

(`−1)(`+2)
2 βγ

)
hte(`,m)h

∗te
(`,m)

+
√

2
(
`(`+1)

2 α−
√
`(`+1)β+

√
(`−1)`(`+1)(`+2)

2 γ

)
h0l

(`,m)h
te∗
(`,m) +`(`+1)h0r

(`,m)h
0r∗
(`,m)

+h0r∗
(`,m)

[
4rḣ0l

(`,m)−2
√

2αr2∂rḣ
te
(`,m)−

√
2
(

2α+
√
`(`+1)β

)
rḣte(`,m)

]
+h00∗

(`,m)

[
−2r∂rh0l

(`,m)

−(`(`+1)+2)h0l
(`,m) +

√
2αr2∂r∂rh

te
(`,m) +

√
2
(

3α+
√
`(`+1)β

)
r∂rh

te
(`,m)

+ 1√
2

(
−(`−1)(`+2)α+4

√
`(`+1)β−

√
(`−1)`(`+1)(`+2)γ

)
hte(`,m)

]
. (3.44)

Here as shown in [18], ` = 2, 3, · · · , the Lagrangian for the ` = 1 mode vanishes.
Let us use the constraints to simplify the Lagrangian. Varying the action with respect

to h00∗
(`,m) we obtain the constraint

− 2r∂rh0l
(`,m) − (`(`+ 1) + 2)h0l

(`,m) +
√

2
(

3α+
√
`(`+ 1)β

)
r∂rh

te
(`,m) +

√
2αr2∂r∂rh

te
(`,m)

+ 1√
2

(
−(`− 1)(`+ 2)α+ 4

√
`(`+ 1)β −

√
(`− 1)`(`+ 1)(`+ 2)γ

)
hte(`,m) = 0. (3.45)

The field h0r
(`,m) is non-dynamical, we can eliminate it using its equations of motion which is

given by

`(`+ 1)h0r
(`,m) +

[
4rḣ0l

(`,m) − 2
√

2αr2∂rḣ
te
(`,m) −

√
2
(

2α+
√
`(`+ 1)β

)
rḣte(`,m)

]
= 0.

(3.46)
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Solving for h0l using (3.45) will in general result in non-local terms. To obtain a local
Lagrangian we follow [18]. The remaining gauge freedom allows the ansatz

h0l
(`,m) = ahte(`,m) + br∂rh

te
(`,m). (3.47)

Substituting (3.47) in (3.45) we obtain

√
2
(
α−
√

2b
)
r2∂r∂rh

te
(`,m) +

(
3
√

2α+
√

2`(`+ 1)β − (`(`+ 1) + 4)b− 2a
)
r∂rh

te
(`,m)

1√
2

(
−(`− 1)(`+ 2)α+ 4

√
`(`+ 1)β −

√
(`− 1)`(`+ 1)(`+ 2)γ

− a
√

2(l(l + 1) + 2)
)
hte(`,m) = 0. (3.48)

Demanding that the coefficients vanish at each order in derivatives in the above equation
we obtain

a =
√

2
`(`+ 1)β −

√
(`− 1)(`+ 2)

2`(`+ 1) γ,

b =
√

2
`(`+ 1)β +

√
2

(`− 1)`(`+ 1)(`+ 2)γ,

α = 2√
`(`+ 1)

β + 2√
(`− 1)`(`+ 1)(`+ 2)

γ.

. (3.49)

The equation (3.46) and (3.47) together with (3.49) implies that the Lagrangian L(2) can
be written only in terms of hte. This is given by

L(2)
`,m = γ2

2
(
r2ḣte(`,m)ḣ

te∗
(`,m) − r

2(∂rhte(`,m))(∂rh
te∗
(`,m))− `(`+ 1)hte(`,m)h

te∗
(`,m)

)
. (3.50)

The canonical conjugate momentum to hte is given by

πte∗(`,m) = ∂L(2)

∂ḣte∗(`,m)
= γ2r2ḣte(`,m). (3.51)

The equation of motion is then given by

r2(ḧte(`,m) − ∂
2
rh

te
(`,m))− 2r∂rhte(`,m) + `(`+ 1)hte(`,m) = 0. (3.52)

We solve this equation of motion by expanding it in Fourier modes in time first and then
solve the radial equation. The solution which is regular at the origin is given by

hte(`,m)(t, r) = ate(`,m)(k)r−
1
2J`+ 1

2
(|k|r)e−ikt. (3.53)

We use (3.51) to write the Fourier modes of the momentum which is given by

πte∗(`,m) = −ikγ2ate(`,m)(k)r
3
2J`+ 1

2
(|k|r)e−ikt. (3.54)

Here ate(`,m)(k) is the arbitrary integration constant for the classical solution.
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3.2 Curvature and the gauge fixed modes

We have shown that the superselection sectors are in principle labelled by the 6 curvature
tensors of the form R0r̂ij , R0r̂0i, where i, j are spatial directions. In this section by explicitly
evaluating these curvature components using the gauge discussed in section 3.1, we will see
only 2 are related locally to the canonical coordinates π1m and hte. The gauge choice is
adapted to the spherical symmetry of the problem. It is known that though gauge fixing
converts a gauge field to a physical quantity, locality depends on the gauge choice [3]. To
evaluate the curvatures we use Mathematica. It is first convenient to write the linearized
curvature in terms of covariant derivatives. This and the writing the tensor harmonics as
covariant tensors (3.17) and covariant vectors (2.18) allows us to use tensor calculus to
evaluate the curvature.

Rµνρσ = 1
2[∇ν∇ρhµσ −∇µ∇ρhνσ +∇µ∇σhνρ −∇ν∇σhµρ]. (3.55)

We substitute the tensor, vector and scalar mode decomposition given in (3.14) (3.21), (3.23)
and (3.27) respectively in the expression of the curvature tensor (3.55) and use Mathematica
to simplify the calculation.5

Rt̂r̂êm̂. Consider Rt̂r̂êm̂ which is obtained by taking appropriate projections with con-
travariant unit vectors

Rt̂r̂êm̂ = t̂µr̂ν êρm̂σRµνρσ. (3.56)

Substituting the expansions of the metric in terms of its tensor, vector and scalar modes,
we obtain

Rt̂r̂êm̂ =
∑̀

`,m=−`

(
2h0m

(`,m)(t, r)− 2r∂rh0m
(`,m)(t, r) +

√
2rḣ1m

(`,m)(t, r)
)

2r2

√
`(`+ 1)Y`m(θ, φ)

=
∑
`m

√
`(`+ 1)

2
π1m∗

(`,m)
r3 Y`m(θ, φ). (3.57)

Here though the sum over ` runs from ` = 2, · · ·∞, since from (3.43) we see that the ` = 1
component π1m∗

(1,m) vanishes. Note that Rt̂r̂êm̂ is a gauge-invariant observable and it is related
to the canonical momentum of the mode h1m

(`,m) without any radial derivative. Therefore
this relation is local in the radial co-ordinates and the curvature component can be used to
label superselection sectors.

Rt̂r̂t̂r̂. To evaluate Rt̂r̂t̂r̂, we use the vacuum Einstein equation

Rr̂r̂ = 0. (3.58)

5The Mathematica notebook can be found in the supplementary material of this paper.
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From the equation of motion, we relate the curvature component Rt̂r̂t̂r̂ to other curvature
components which are easy to evaluate

Rt̂r̂t̂r̂ = gθθRθrθr + gφφRφrφr

=
∑
`m

[
2r∂rh0l

(`,m)(t, r) + h0l
(`,m)(t, r)`(`+ 1)

r2 −

√
2α
(
2∂rhte

(`,m)(t, r) + r∂2
rh

te
(`,m)(t, r)

)
r

− β
√

2`(`+ 1)

(
hte(`,m)(t, r) + ∂rh

te
(`,m)(t, r)

)
r2

]
Y`,m(θ, φ). (3.59)

In the last line we substitute the mode expansion of hµν . At this stage, this component of
the curvature tensor appears to be non-local in r. But using the gauge choice in (3.47) we
relate h0l

(`,m) as a function of hte(`,m). Finally we replace a, b and α in terms of β and γ given
in (3.49) to obtain

Rt̂r̂t̂r̂ = −
∑
`,m

γ
√

(`− 1)`(`+ 1)(`+ 2)hte(`,m)(t, r)Y`,m(θ, φ)
√

2r2 . (3.60)

Here l runs from ` = 2, 3, · · · . It is interesting to note that, imposing the gauge condi-
tion (3.47) removes the apparent non-locality of the curvature tensor Rt̂r̂t̂r̂. This relation
also tells us the canonical coordinate hte is gauge-invariant in our gauge choice. Therefore
this curvature component can also be used to label super-selection sectors for a spherical
entangling surface.

Rt̂r̂t̂m̂. Evaluating this curvature component using the same methods we obtain

Rt̂r̂t̂m̂ =
∑
`,m

1√
2(`(`+ 1))

(
ḧ1m

(`,m) −
√

2∂rḣ0m
(`,m)

)
|Y m
`,m(θ, φ)|. (3.61)

Since it involves terms containing time derivatives, we can use the we use the equation of
motion and the constraint given in (3.34) and (3.36) to simplify the expression. Note that
the curvature component is proportional to the norm of the vector harmonics Y m

`,m(θ, φ).
We finally obtain

Rt̂r̂t̂m̂ = −
∑
`,m

1√
2`(`+ 1)

(1
r
∂rh

1m
(`,m) + (`− 1)(`+ 2) + 1

r2 h1m
`,m

)
|Y m
`,m(θ, φ)|. (3.62)

We observe that the expression of the curvature tensor involves the radial derivative acting
on the field. Therefore it does not belong to the local algebra of observables that contribute
to the entanglement entropy of a spherical entangling surface.

Rt̂r̂r̂m̂. This curvature component is given by

Rt̂r̂r̂m̂ =−
∑
`,m

1
r2
√

2`(`+1)

[√
2h0m

(`,m)−
√

2r∂r(r∂rh0m
(`,m))+2rḣ1m

(`,m)+r2∂rḣ
1m
(`,m)

]
|Y m
`,m(θ,φ)|

=−
∑
`,m

1
r2
√

2`(`+1)
∂rπ

1m∗
(`,m)|Y

m
`,m(θ,φ)|. (3.63)
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To obtain the second line we have used the definition of the conjugate momentum π1m
(`,m)

in (3.33). The radial derivative on the conjugate momentum indicates that this curvature
component also does belong the local algebra of observables in a sphere.

Rt̂r̂r̂ê. We now evaluate the curvature tensor Rt̂r̂r̂ê

Rt̂r̂r̂ê =
∑
`,m

−(−h0r
(`,m) +r∂rh

0r
(`,m))

r2 +
ḣ0l

(`,m)
r
− β

r
√

2`(`+1)
(2ḣte(`,m) +r∂rḣ

te)

 |Y e
`,m(θ,φ)|.

(3.64)

The expression involves the non-dynamical field h0r
(`,m) which can be replaced by the

constraint equation given in (3.46). We also use the gauge condition (3.47) to substitute
for h0l

(`,m) and finally we obtain

Rt̂r̂r̂ê

=
[
−γ
√
`2 +`−2

r
√

2`(`+1)
∂rh

te
(`,m)−

(
2γ√

2`(`+1)(`2 +`−2)
+ β√

2`(`+1)

)
∂rḣ

te
(`,m)

]
|Y e
`,m|

=
[
−γ
√
`2 +`−2

r
√

2`(`+1)
∂rh

te
(`,m)−

(
2γ√

2`(`+1)(`2 +`−2)
+ β√

2`(`+1)

)
∂r

(
πte∗(`,m)
γ2r2

)]
|Y e
`,m|.

(3.65)

Again, the curvature component involves the radial derivatives acting on fields even after
using the local gauge condition. We do have the freedom to set term containing the
derivative of the canonical momentum πte∗ to zero be choosing a suitable β. However there
will still remain the term containing the derivative of hte. Therefore we conclude that this
component of the curvature also does not belong to the local algebra of observables in the
sphere and cannot be used to label superselection sectors.

Rt̂r̂t̂ê. The last of the 6 curvature components is Rt̂r̂t̂ê. We use the vacuum Einstein
equation Rri = 0 to evaluate it, where i denotes the angular coordinates on S2.

Rt̂r̂t̂̂i = gabRâr̂b̂̂i. (3.66)

Therefore we write

Rt̂r̂t̂ê = êkRt̂r̂t̂k̂

= eθgφφRφrφθ + eφgθθRθrθφ. (3.67)

Substituting the expansion of hµν in (3.17), we obtain

Rt̂r̂t̂ê =
(
h0l

(`,m)(t, r)
r2 −α

∂rh
te
(`,m)√
2r
−
√

2
`(`+1)

βhte(`,m)
r2 − (`+1)(`−2)√

`(`+1)
γ
∂rh

te
(`,m)(t, r)

2r

)
|Y e
`,m|.

(3.68)
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We now we use the relation (3.49) to eliminate h0l

Rt̂r̂t̂ê =
[
−γ

(
`2 + `− 2

)
2r
√
`(`+ 1)

∂rh
te
(`,m)(t, r)− γ

√
(`− 1)(`+ 2)
`(`+ 1)

hte(`,m)(t, r)√
2r2

]
|Y e
`,m|. (3.69)

This is again contains a radial derivative which cannot be eliminated by further choice of β
and γ. Therefore this component does not belong to the algebra of local observables in a
sphere and cannot be used to label superselection sectors.

The explicit evaluation of the curvature components leads us to conclude that our of
the 6 components that satisfy the Gauss law, only 2 of them, Rt̂r̂êm̂ and Rt̂r̂t̂r̂ are related to
the algebra of local observables in a sphere. We therefore proceed to evaluate the two-point
functions of these components on the sphere to obtain the contribution of superselection
sectors to the entanglement entropy.

3.3 Quantization of the modes

We first need to quantize the canonical coordinates (h1m, π1m) and (hte, πte). We have found
the solutions to the wave equations of these modes in section 3.1. We use these solutions to
promote these coordinates to operators and impose canonical commutation relations.

The mode h1m
(`,m). The classical solution obtained for the Fourier mode of h1m

(`,m) and
π1m

(`,m) from the equation of motion in (3.38) and (3.41) respectively implies the following
mode expansion of these fields.

h1m
(`,m)(t, r) = 1√

2

∫ ∞
0

kdk
(
a1m(`,m)(k)e−ikt + (−1)ma†1m(`,−m)(k)eikt

)√
rJ`+ 1

2
(|k|r)

π1m∗
(`,m)(t, r) = (`− 1)(`+ 2)√

2

∫ ∞
0

dk
(
−ia1m(`,m)(k)e−ikt + i(−1)ma†1m(`,−m)(k)eikt

)
×
√
rJ`+ 1

2
(|k|r). (3.70)

Here ` ≥ 2, the mode expansion obeys the reality condition given in (3.30). Let us also give
the mode expansion of π1m

(`,m)

π1m
`m(t, r) = (`− 1)(`+ 2)√

2

∫ ∞
0

dk
(
ia†1m(`,m)(k)eikt − i(−1)ma1m(`,−m)e

−ikt
)√

rJ`+ 1
2
(|k|r).

(3.71)

We now promote the variables h1m
(`,m) and π

1m
(`,m) to the operators which implies a1m

(`,m) and
a†1m

(`,m) are also operators. The equal time commutation relation of the conjugate operators
are given by

[h1m
(`,m)(t, r), π

1m
(`′,m′)(t, r

′)] = iδ(r − r′)δ``′δm,m′ . (3.72)

From the mode expansions given in (3.70) one can see the equal time commutation relation
yields the commutation relation of creation and annihilation operators.

[a1m(`,m)(k), a†1m(`′,m′)(k
′)] = δ(k − k′)δ``′δm,m′

(`+ 2)(`− 1) . (3.73)
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All other commutation relations are trivial. To show the commutation relation of creation
and annihilation operator we substitute the mode expansion (3.70) in (3.72) and use the
closure relation of the Bessel function given in (2.40).

The mode hte
(`,m). From the classical solution of the equation of motion (3.53) and (3.54),

we write the mode expansion of hte(`,m) and πte(`,m)

hte(`,m)(t, r) = r−
1
2

√
2

∫ ∞
0

dk
(
ate(`,m)(k)e−ikt + (−1)ma†te(`,−m)(k)eikt

)
J`+ 1

2
(|k|r) (3.74)

πte∗(`,m)(t, r) = γ2r
3
2

√
2

∫ ∞
0

kdk
(
−iate(`,m)(k)e−ikt + (−1)mia†te(`,−m)(k)eikt

)
J`+ 1

2
(|k|r).

We have used π∗te(`,m) = γ2r2ḣte(`,m) to write the momentum mode expansion. The mode
expansion of πte(`,m)

πte(`,m) = γ2r
3
2

√
2

∫ ∞
0

kdk
(
ia†te(`,m)(k)eikt − (−1)miate(`,−m)(k)e−ikt

)
J`+ 1

2
(|k|r). (3.75)

Now one promotes the variables hte(`,m) π
te
(`,m) to operators and imposes the equal time

commutation relation.

[hte(`,m)(t, r), π
te
` (t, r′)] = iδ(r − r′)δ``′δmm′ . (3.76)

This implies the commutation relation of creation and annihilation operators.

[ate(`m)(k), a†te(`′,m′)(k
′)] = δ(k − k′)δ``′δm,m′

γ2 . (3.77)

3.4 Entanglement entropy of the edge states

We compute the two-point function of the normal components of the curvature tensors
which label the super-selection sector. As we have seen in section 3.2, only the curvature
components Rt̂r̂êm̂ and Rt̂r̂t̂r̂ are related locally to the algebra of gauge-invariant operators
in a sphere.

Two-point function of Rt̂r̂êm̂. From (3.57) we see that Rt̂r̂êm̂ is related to the momen-
tum field π1m∗

Rt̂r̂êm̂ =
∑̀

`,m=−`

√
`(`+ 1)

2
π1m∗

(`,m)
r3 Y`m(θ, φ). (3.78)

The sum over ` runs from ` = 2, 3, · · · . Substituting the mode expansion of π1m∗ from (3.70)
and using the canonical computation relations (3.73) we compute the two-point function
of Rt̂r̂êm̂
〈0|Rt̂r̂êm̂(t, r, θ, φ)Rt̂′r̂′ê′m̂′(t, r

′, θ′, φ′)|0〉 = (3.79)
1

2(rr′)
5
2

∑
`,`′,m,m′

(`+ 2)(`− 1)(`′ + 2)(`′ − 1)
(
`(`+ 1)`′(`′ + 1)

) 1
2

×
∫ ∞

0
dkdk′

[
J`+ 1

2
(kr)J`′+ 1

2
(k′r′)

×(−1)m′〈0|a1m(`,m)(k)a†1m(`′,m′)(k
′)|0〉Y`,m(θ, φ)Y`′,−m′(θ′, φ′)

]
.
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Using the commutation relations in (3.73), we obtain

〈0|Rt̂r̂êm̂(t, r, θ, φ)Rt̂′r̂′ê′m̂′(t, r
′, θ′, φ′)|0〉 = (3.80)

1
2(rr′)

5
2

∑
`,m

(`+ 2)(`− 1)`(`+ 1)
∫ ∞

0
dkJ`+ 1

2
(kr)J`′+ 1

2
(k′r′)Y`,m(θ, φ)Y ∗`,m(θ′, φ′).

We now use the identity (2.51) to perform the integral over Bessel function and obtain

〈0|Rt̂r̂êm̂(t, r, θ, φ)Rt̂′r̂′ê′m̂′(t, r
′, θ′, φ′)|0〉 = (3.81)

1
2πr3r′3

∑
`m

(`+ 2)(`− 1)`(`+ 1)Q`

(
r2 + r′2

2rr′

)
Y`m(θ, φ)Y ∗`m(θ′, φ′).

We need the two-point functions at the same radial point. In this limit, the expansion of the
Legendre function of the second kind is given in (2.55). Substituting that in the expression
of the two-point function and keeping only the leading term we obtain

lim
δ→0

Grr(r, r + δ;x, y) = 1
4πr6 log

(
r2

δ2

) ∑
`≥2,m

`(`+ 1)(`− 1)(`+ 2)Y`,m(θ, φ)Y ∗`,m(θ′ φ′).

(3.82)

Two-point function of Rt̂r̂t̂r̂. The second curvature component locally related to the
canonical coordinate is Rt̂r̂t̂r̂ which is given by (3.60)

Rt̂r̂t̂r̂ = −
∑̀

`,m=−`

γ
√

(`− 1)`(`+ 1)(`+ 2)hte(`,m)(t, r)Y`,m(θ, φ)
√

2r2 . (3.83)

The sum over ` again runs from ` = 2, 3 · · · . Using the mode expansion of hte in (2.53), we
compute the two-point function of Rt̂r̂t̂r̂

〈0|Rt̂r̂t̂r̂(t, r, θ, φ)Rt̂r̂t̂r̂(t, r
′, θ′, φ′)|0〉 = (3.84)

γ2

2(rr′)
5
2

∑
`,`′,m,m′

(
`(`+ 1)(`− 1)(`+ 2)`′(`′ + 1)(`′ − 1)(`′ + 2)

) 1
2

×
∫ ∞

0
dkdk′

[
J`+ 1

2
(kr)J`′+ 1

2
(k′r′)

×(−1)m′〈0|ate(`,m)(k)a†te(`′,m′)(k
′)|0〉Y`,m(θ, φ)Y`′,−m′(θ′, φ′)

]
.

Using the commutation relations in (3.77), we obtain

〈0|Rt̂r̂t̂r̂(t, r, θ, φ)Rt̂′r̂′ê′m̂′(t, r
′, θ′, φ′)|0〉 = (3.85)

1
2(rr′)

5
2

∑
`,m

(`+ 2)(`− 1)`(`+ 1)
∫ ∞

0
dkJ`+ 1

2
(kr)J`′+ 1

2
(k′r′)Y`,m(θ, φ)Y ∗`,m(θ′, φ′).

We now use the identity (2.51) to perform the integral over Bessel function and obtain

〈0|Rt̂r̂t̂r̂(t, r, θ, φ)Rt̂′r̂′ê′m̂′(t, r
′, θ′, φ′)|0〉 = (3.86)

1
2π(rr′)3

∑
`,m

(`+ 2)(`− 1)`(`+ 1)Q`

(
r2 + r′2

2rr′

)
Y`m(θ, φ)Y ∗`m(θ′, φ′).
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We need the two-point functions at the same radial point. In this limit, the expansion of the
Legendre function of the second kind is given in (2.55). Substituting that in the expression
of the two-point function, we obtain the leading contribution to be given by

lim
δ→0

Grr(r, r + δ;x, y) = 1
4πr6 log

(
r2

δ2

) ∑
`≥2,m

`(`+ 1)(`− 1)(`+ 2)Y`,m(θ, φ)Y ∗`,m(θ′ φ′).

(3.87)
From (3.81) and (3.86) we see that the correlators coincide. This is expected since the

theory of linearised graviton, satisfying vacuum Einstein equations are invariant under the
‘electric-magnetic’ duality [24, 25]

R̃µνρσ = 1
2ερσαβR

αβ
µν . (3.88)

Entanglement of the superselection sectors. From the discussion in section (2.13),
to determine the logarithmic coefficient of the entanglement entropy of the superselection
sectors we see that we need to evaluate the log-determinant of the leading contribution
of the radial coincident Green’s function. Therefore, from (2.13) and (3.82) or (3.87), the
entanglement entropy of the superselections sectors determined by the curvature components
Rt̂r̂êm̂ or Rt̂r̂t̂r̂ is given by

Sedge(ρA) = 1
2

∞∑
`=2

(2`+ 1) log
[
`(`+ 1)(`− 1)(`+ 2)

]
. (3.89)

Note that the correlators in (3.82) or (3.87) are diagonal in scalar spherical harmonic basis.
The diagonal elements are independent of the quantum number m, this implies that each
eigen value contributes with a multiplicity of (2`+ 1) to the log-determinant.

To evaluate the coefficient of the logarithmic divergence we open up the logarithm and
write each term using the identity6

− log(y) =
∫ ∞

0

dt

t
(e−yt − e−t). (3.90)

Using this representation of the logarithm, we obtain

Sedge(ρA) = −
∫ ∞

0

dt

2t

∞∑
`=2

(2`+ 1)
(
e−(l−1)t + e−`t + e−(`+1)t + e−(`+2)t − 4e−t

)
. (3.91)

The last term involves the sum over degeneracies

g =
∞∑
`=2

(2`+ 1). (3.92)

To perform this sum we resort to ‘dimensional regularization’ which was introduced in [26],
for more details see around equation 2.7 of [22]. Here one performs the sum of degeneracies

6This method of studying the sums involved in the log-determinant can also be used to obtain the
logarithmic contribution of the U(1) theory.
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of scalar harmonics in sufficiently negative dimensions for which the sum is convergent and
then continues the result analytically to positive dimensions. This results in

∞∑
`=2

(2l + 1) = −4. (3.93)

Substituting this result and performing the rest of the sums in (3.91), we obtain

Sedge(ρA) = −
∫ ∞

0

dt

2t

(
e−t(1 + e−t)(1 + e−2t)(5− 3e−t)

(1− e−t)2 + 16
)
. (3.94)

One can easily extract the coefficient of the logarithmic divergence from this representation
by examining the coefficient of the 1/t term in the integrand. We obtain7

Sedge(ρA)|log coefficient = −8
3 . (3.95)

As we have discussed earlier the Gauss of gravity or the Hamiltonian constraints (3.8),
(3.9) results in the equations (3.12), (3.13) which determine the superselections sectors.
Note that these constraints are on the same footing as the physical state condition (2.2) in
the U(1) theory. We need to sum the contributions arising from all possible superselection
sectors arising out of the conditions (3.12), (3.13). We have demonstrated that only 2 of
these curvatures can be written locally in the gauge invariant observables on the sphere.
Therefore we need to sum the contributions to the entanglement entropy from the Gauss law
which constrains the curvature components Rt̂r̂êm̂ and Rt̂r̂t̂r̂. This leads to the conclusion
that the logarithmic coefficient of the gravitational edge modes for a spherical entangling
surface is given by

Sgravitational edgemodes(ρA)| = −16
3 log R

ε
. (3.96)

Again we emphasize that this contribution resulted from our choice of the centre in which
the superselection sectors are labelled by the curvature components Rt̂r̂êm̂ and Rt̂r̂t̂r̂. It will
be interesting to study the linearised graviton theory in more detail, so that we can prove a
trivial centre can be chosen just as in the case of the U(1) theory [3].

We compare the coefficient of the edge modes of the linearized graviton to the edge
partition function of the massless spin-2 theory on S4. This was evaluated in [19]8 and is
given by the following integral over the Harish-Chandra character

logZ2[S4] =
∫ ∞

0

dt

2t
1 + q

1− q ([χ̂bulk,2]+ − [χ̂edge,2]+) , (3.97)

[χ̂bulk,2]+ = 10q3 − 6q4

(1− q)3 , q = e−t,

[χ̂edge,2]+ = 10q2 − 2q3

(1− q) .

7We have also performed this computation using the methods of [19] and obtained the same result.
8These can be read out from equations 5.8 and 5.11 of [19]. Note that the last term in 5.11 does not

contribute to the logarithmic coefficient.
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Extracting the contribution of the edge character to the logarithmic coefficient we find

logZ2[S4]
∣∣∣
log coefficient, edge

= −16
3 . (3.98)

Just as in the U(1) case, for the graviton, the logarithmic coefficient of edge partition
function of the graviton on the sphere agrees with that of the superselection sectors of the
graviton. It will be interesting to understand the relationship between the contribution
of superselection to the entanglement entropy to that of the edge partition function on
spheres further. One direction would be to extend the methods in this paper to higher spin
fields. The coefficient from the edge partition function obtained from the Harish-Chandra
character of a massless spin-s field in d = 4 dimension is given by − s4

3 [27].

4 Conclusions

The extractable entanglement or the bulk entanglement of the linearised graviton across
a spherical surface was first evaluated in [18]. Decomposing the spin-2 field into tensor
harmonics it was shown that the algebra of gauge-invariant operators is equivalent to two
scalars fields with their ` = 0 and ` = 1 modes removed. The logarithmic coefficient
is given by −61

45 . Furthermore, considering the spin-2 field on hyperbolic cylinders and
evaluating the entanglement entropy also reproduces this coefficient [27].9 However an
evaluation of the contribution of the superselection sectors to the entanglement entropy
of the linearized graviton was missing in the literature. In this paper we have used the
method of decomposing the spin-2 fields into tensor harmonics and fixing a gauge which
respects the spherical symmetry of the problem developed in [18] to evaluate the logarithmic
coefficient of the edge modes or the superselection sectors resulting from the Gauss law
of gravity. One crucial ingredient in the calculation was to determine which among the
curvature components satisfying the Gauss law of gravity were locally related to the algebra
of gauge-invariant operators in the sphere.

Our choice of superselection sectors resulting from the Gauss law picks out a centre
for the algebra of local operators for the graviton. It would be interesting to develop
the extended Hilbert space definition of entanglement entropy defined for gauge theories
in [1, 2, 6, 9, 10] in detail for the linearized graviton to determine which choice of centre
results from the extended Hilbert space definition. Here the general methods developed in
gravity to define subregions by [28–30] would be useful.

The methods developed in this paper can be extended to other fields and to other
dimensions. In particular it would be interesting to study the contribution of the edge modes
of p-forms in arbitrary even dimensions using this approach and verify if their contribution
to the logarithmic coefficient agrees with that from the edge Harish-Chandra character of
the sphere partition function. As we have seen in this paper this agreement is true for the
U(1) fields in arbitrary even dimensions. Similar questions can be addressed for higher spin
fields as well.

9Indeed, we have verified that even the Rényi entropies of two scalar fields with their ` = 0 and
` = 1 modes removed also precisely coincides with that evaluated from considering the spin-2 field on the
hyperbolic cylinder.
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Finally, the entanglement entropy of non-abelian gauge fields contains an additional
edge term. This additional term is tied to the fact that irreducible representations of the
superselection sectors in the non-Abelian theories have dimensions greater than unity [6, 12].
Recently, the authors of [31] studied the Hayward term in gravity and suggested that the
Hayward term corresponds to the edge entanglement associated with the above additional
contribution in the graviton theory. This occurs in the full non-linear theory. It would be
interesting to study this further using the methods of [28–30].

A Electric correlator in the Coulomb gauge

The two-point functions of the electric field on sphere gauge-invariant and therefore it
should not depend on gauge choices. In [16], the two-point function of the electric field was
evaluated in the Coulomb gauge, i.e, A0 = 0 and ∇. ~A = 0. In this paper we have chosen a
different gauge which is A′e(`,m) = 0 for all ` and m. Here Ae is the component of the vector
field obtained by taking the projection

Ae
(`,m) = eµAµ,(`,m). (A.1)

In this appendix we would like to compare the two-point obtained in equation A.12 of [16]
with what we obtain in (2.53). Equation A.12 [16] reads

Grr′ = 1
π2(r2 + r′2)2

∞∑
`=0

(4`+ 1)
{ ∞∑
n=0

(
1− α2

α
n− α

)
2n!!

(2n− 2`)!!
(2n+ 1)!!

(2n+ 2`+ 1)!!α
2n
}
P2`

+
∞∑
`=0

(4`+ 3)
{ ∞∑
n=0

(
1− α2

α
n− 3α2 − 1

2α

)
(2n+ 2)!!
(2n− 2`)!!

(2n+ 1)!!
(2n+ 2`+ 3)!!α

2n+1
}
P2`+1.

(A.2)

Here P` is the Legendre polynomial related to the spherical harmonics by the following
relation

P`(cos γ) =
∑̀
m=−`

4π
2`+ 1Y`m(θ, φ)Y ∗`m(θ′φ′), (A.3)

where γ is the angle between the unit vectors determined by the angular coordinates on the
sphere. α is related to the radial coordinates r and r′ by the following relation

2rr′

r2 + (r′)2 = α. (A.4)

Note that equation (A.2) is a series in α for every `, while the expression in (2.53) is a
closer function of α.

To compare the two correlators we expand (2.53) around α = 0 and compare it
with (A.2) for each ` values. Expanding the two pint function given in (2.53) around α = 0,
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we obtain

〈0|Ft̂r̂(t, r, θ, φ)Ft̂′r̂′(t, r
′, θ′, φ′)|0〉 =∑

`,m

Y`m(θ, φ)Y ∗`m(θ′, φ′)α`√
π(rr′)2

[
α2−`−2`(`+ 1)Γ(`+ 1)

Γ
(
`+ 3

2

) + α32−`−3`(`+ 1)2(`+ 2)Γ(`+ 1)
(2`+ 3)Γ

(
`+ 3

2

)
+ α52−`−5`(`+ 1)2(`+ 2)(`+ 3)(`+ 4)Γ(`+ 1)

(2`+ 3)(2`+ 5)Γ
(
`+ 3

2

)
+ α72−`−6`(`+ 1)2(`+ 2)(`+ 3)(`+ 4)(`+ 5)(`+ 6)Γ(`+ 1)

3(2`+ 3)(2`+ 5)(2`+ 7)Γ
(
`+ 3

2

) + · · ·
]
. (A.5)

Now we are in a position to compare the series in α for each value of ` with (A.2).

` = 0. Both correlators vanish at ` = 0.

` = 1. We substitute ` = 1 in (A.5) and obtain

〈0|Ft̂r̂(t, r, θ,φ)Ft̂′r̂′(t, r
′, θ′,φ′)|0〉|`=1 = Y1m(θ,φ)Y ∗1m(θ′,φ′)

π(rr′)2

(
α2

3 + α4

5 + α6

7 + α8

9 + · · ·
)
.

(A.6)

From (A.2) we obtain

Grr′ |`=1 = Y1m(θ, φ)Y ∗1m(θ′, φ′)
π(rr′)2

(
α2

3 + α4

5 + α6

7 + α8

9 + · · ·
)
. (A.7)

Similarly we have checked the expansion for ` = 2 to ` = 5

〈0|Ft̂r̂(t, r, θ, φ)Ft̂′r̂′(t, r
′, θ′, φ′)|0〉|`=2

= Y2m(θ, φ)Y ∗2m(θ′, φ′)
π(rr′)2

(
2α3

5 + 12α5

35 + 2α7

7 + 8α9

33 + · · ·
)

= Grr′ |`=2. (A.8)
〈0|Ft̂r̂(t, r, θ, φ)Ft̂′r̂′(t, r

′, θ′, φ′)|0〉|`=3

= Y3m(θ, φ)Y ∗3m(θ′, φ′)
π(rr′)2

(
12α4

35 + 8α6

21 + 4α8

11 + 48α10

143 + · · ·
)

= Grr′ |`=3. (A.9)
〈0|Ft̂r̂(t, r, θ, φ)Ft̂′r̂′(t, r

′, θ′, φ′)|0〉|`=4

= Y4m(θ, φ)Y ∗4m(θ′, φ′)
π(rr′)2

(
16α5

63 + 80α7

231 + 160α9

429 + 160α11

429 + · · ·
)

= Grr′ |`=4. (A.10)
〈0|Ft̂r̂(t, r, θ, φ)Ft̂′r̂′(t, r

′, θ′, φ′)|0〉|`=5

= Y5m(θ, φ)Y ∗5m(θ′, φ′)
π(rr′)2

(
40α6

231 + 40α8

143 + 48α10

143 + 80α12

221 · · ·
)

= Grr′ |`=5. (A.11)
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