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1 Introduction

Following the work of Pestun [1], there has been a plethora of exact results obtained using
the technique of supersymmetric localization [2], in various dimensions and with various
amounts of supersymmetry (see [3] for a collection of reviews and references). These
exact results are mostly for partition functions of supersymmetric field theories on curved
manifolds and/or for expectation values of supersymmetry-preserving non-local operators,
such as Wilson loops, ’t Hooft loops, integrated local operators, etc. Such observables
generally depend on only a few of the parameters that define the theory. For instance, in
three dimensions, the smallest amount of supersymmetry where such exact computations
are possible isN = 2, corresponding to four real supercharges in flat space. The dependence
of the partition function on the parameters of the supersymmetric background was studied
in [4, 5]. Particularly relevant to the present work are gauge theories coupled to matter
placed on round or squashed three-spheres [6–10], where the partition function depends on
the squashing, the real masses, and the Fayet-Iliopolous (FI) parameters.

Since the observables mentioned above only depend on a limited set of parameters,
they capture only a limited amount of information. On the other hand, quantum field
theories possess much richer classes of observables. Of particular interest are the local
operators, which are the central object of study in the conformal bootstrap program (for
reviews, see [11–15]). In general, correlation functions of local operators at separated
points are not supersymmetric, and therefore it is not possible to directly calculate them
using supersymmetric localization. In some cases, however, correlation functions of certain
local operators can be determined using supersymmetric localization inputs, provided that
the symmetries of the theory are restrictive enough to fix the position-dependence of the
correlation functions of interest up to a few undetermined parameters. This is the case, for
example, for the two-point functions of conserved currents or of the stress-energy tensor
in 3d N = 2 superconformal field theories (SCFTs) [4, 16].1 Another example is the four-
point function of stress tensor multiplet operators in holographic theories in three and four
dimensions [18–22].

The goal of this paper is to study a new case in which one can calculate certain cor-
relation functions of local operators directly using supersymmetric localization. We study
correlators of Higgs and Coulomb branch operators of N = 4 supersymmetric theories on
a squashed three-sphere. In [23–26], it was noticed that all 3d N = 4 superconformal field
theories contain topological 1d sectors comprised of “twisted” 1/2-BPS operators (i.e. 1/2-
BPS operators whose R-symmetry indices are contracted with certain space-dependent
polarization vectors).2 In particular, when such operators are inserted on a line, their
correlation functions are topological in the sense that they depend only on the ordering
of the operators on the line and not on the separation between the insertions. These 1d
topological sectors provide a deformation quantization of the Higgs or Coulomb branch of

1See also [17] for computations of Coulomb branch operators in N = 2 SCFTs in 4d.
2These 1d topological sectors are 3d analogs of the chiral algebra sector of 4d N = 2 and 6d (2, 0) SCFTs

introduced in [23] and [27] , respectively.
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these theories, as was further studied in [25, 28, 29].3 In [26, 32, 33], it was shown that in
3d N = 4 SCFTs constructed as infrared limits of gauge theories coupled to hypermultiplet
matter, the 1d sectors can be accessed using supersymmetric localization. For instance, in
the Higgs branch case studied in [26], it was shown that, after a conformal map to S3, the
3d theory localizes to a 1d theory on a great circle of S3. This 1d theory can be written as
a topological gauged quantum mechanics, with the matter fields being anti-periodic scalars
on the circle. After gauge fixing, the topological gauged quantum mechanics can be equiv-
alently recast as a 1d Gaussian theory coupled to a matrix model. This 1d theory can be
further modified by introducing real mass and/or FI parameters for the 3d theory on S3.
While the FI parameters retain the topological nature of the 1d theory, in the presence of
the real mass parameters, some of the correlation functions acquire a (relatively simple)
position dependence.

In this paper, we take these constructions one step further and show that the 1d sec-
tors mentioned above persist on a squashed three-sphere.4 For the more general case of
N = 2 theories, it is known that there are several kinds of squashed sphere backgrounds,
distinguished by the different choices of couplings that are required to preserve supersym-
metry. Before discussing the explicit N = 4 backgrounds, let us briefly review the various
backgrounds with less supersymmetry that have appeared in the literature.

There are two main background metrics that have been referred to as “squashed”
three-spheres in the literature5 [5, 9, 10, 36–38]: 1) a metric with su(2) × u(1) isometry,
also referred to as a “biaxially squashed three-sphere,” obtained by writing the S3 metric
as a Hopf fibration and changing the length of the Hopf fiber; an ellipsoid with u(1) ×
u(1) isometry obtained by embedding a round S3 into R4 and contracting two of the
directions. By turning on various background fields, one can complete these metrics into
N = 2-preserving backgrounds. Depending on the background fields, and consequently on
the superalgebra being preserved, the partition function may or may not depend on the
squashing parameter b. Indeed, restricting ourselves to the su(2)× u(1)-invariant metrics,
one can either preserve an su(2)×psu(1|1) superalgebra, in which case the partition function
does not depend on b, or one can preserve su(2|1)×u(1), in which case the partition function
does have non-trivial b dependence. See also table 1.

Moving on to the case of interest in this work, the N = 4 preserving squashed sphere
backgrounds are much less studied, and in this work we focus on extending the su(2)×u(1)-
invariant metric to anN = 4 background.6 A standard way of constructing supersymmetric
field theories in curved space is to couple a flat space theory to off-shell conformal or
Poincaré supergravity, and give the supergravity fields expectation values that preserve
supersymmetry [39–41]. For N = 2 theories on a squashed three-sphere, the values of
the supergravity fields that correspond to a supersymmetric squashed three-sphere were

3See [30, 31] for the relation of deformation quantization to the VOAs associated to 4d N = 2 SCFTs.
4In [34], a similar extension for theories with hypermultiplets coupled to background vector multiplets

was discussed from a slightly different point of view, using equivariant cohomology. To illustrate their
analysis, ref. [34] discussed a 1d sector of N = 4 theories on S1 × S2.

5A two-parameter family of deformed sphere metrics was also studied in [5, 35].
6It would be interesting to investigate the same questions for the u(1) × u(1)-invariant metric. We will

leave this topic for future investigations.
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Superalgebra Supersymmetry b-dependence of partition function
su(2)× u(1) N = 0 Yes
su(2|1)× u(1) N = 2 Yes
su(2)× psu(1|1) N = 2 No
su(2|1)× psu(1|1) N = 4 Noa
psu(2|2)× u(1) N = 4 Yesb

Table 1. The various squashed sphere backgrounds with su(2)×u(1) isometry. In the third column
we indicate whether the partition function of the given background has a non-trivial dependence
on the squashing parameter.
a After introducing real mass and Fayet-Iliopolous parameters, the superalgebra gets extended to
(su(2|1) n R)× su(1|1). The partition function in this case does depend on b, but this dependence
is very simple and can be rescaled away.
b The partition function is independent of b for theories with vector multiplets and hypermultiplets,
but it does depend non-trivially on b for twisted hypermultiplets. One can introduce real mass
parameters only for hypermultiplets, in which case the superalgebra gets extended to su(2|2)×u(1).
In the presence of these real mass parameters, the partition function is still independent of b for
theories with vector multiplets and hypermultiplets.

identified in [4]. In the recent work [42], the authors started with N = 2 supergravity in
4d and constructed supersymmetric theories on a squashed three-sphere by performing a
circle reduction. They identified a family of backgrounds that generically preserve N = 2
supersymmetry, but for special values of the parameters the symmetry is enhanced to either
su(2|1)×psu(1|1) or psu(2|2)×u(1), thus corresponding to 3d N = 4 theories on a squashed
three-sphere. The downside of this dimensional reduction approach, however, is that one
cannot easily construct 3d theories with twisted vector and twisted hypermultiplets.

Inspired by the work of [42], we construct N = 4 theories on a squashed three-sphere
by starting with N = 4 off-shell conformal supergravity [43–45] coupled to matter and
giving appropriate expectation values to the fields in the supergravity multiplet. As also
found in [42], we construct two backgrounds preserving su(2|1) × psu(1|1). In particular,
the N = 4 conformal supergravity has su(2)H × su(2)C R-symmetry, but our backgrounds
preserve only a u(1)H × u(1)C Cartan subalgebra. The two su(2|1)× psu(1|1) backgrounds
can be related by mirror symmetry, which interchanges the roles of u(1)H and u(1)C . In
addition to the su(2|1)×psu(1|1)-preserving backgrounds, we also find two psu(2|2)×u(1)-
preserving backgrounds, similarly related by mirror symmetry, as expected from [42].

After constructing these backgrounds, we then study the 1d protected sectors in the
su(2|1)×psu(1|1) case. In particular, we show that for a given su(2|1)×psu(1|1)-preserving
background, there exist two 1d sectors (the two sectors get trivially interchanged if we
consider the other su(2|1)× psu(1|1)-preserving background) where operators are inserted
along a geodesic circle of the squashed sphere. In the following we will denote these 1d
theories by TH and TC , as they are related to the u(1)H and u(1)C R-symmetry, respectively.
For gauge theories built out of vector multiplets and hypermultiplets, TH contains “Higgs
branch operators” while TC contains “Coulomb branch operators,” just as on the round
sphere [26, 32, 33]. Following an argument similar to the one in [26], we further show
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that the 1d sector TH is described by a rather trivial modification of the gauged quantum
mechanics from the round sphere case.

As a preview, for a 3d gauge theory with gauge group G and a hypermultiplet trans-
forming in representation RH of G, the partition function of the 3d theory can be written as

ZS3
b
(m) = 1

|W|

∫
h

dσ∆b(σ)Z1d(σ) , (1.1)

where |W| is the order of the Weyl group of the gauge algebra g = Lie(G), and h is the
Cartan subalgebra of g. The one-loop determinant ∆b is given by

∆b(σ) = 1
brkG

det′adj 2 sinh πσ
b
, (1.2)

with the determinant being taken in the adjoint representation7 and rkG being the rank
of the gauge group. Finally, the partition function of the 1d Gaussian theory is given by

Z1d(σ) =
∫ ∏

I

DZI exp
{

4πr
∫

dα
(
bZI∂αZI + ZI (σaT a)I JZJ

)}
. (1.3)

In this formula, α ∈ [0, 2π) is the one-dimensional coordinate parameterizing a circle on the
squashed sphere, ZI and ZI are anti-periodic bosonic fields8 related to the hypermultiplet
scalars, T a are the generators of the Lie algebra g which act in the appropriate representa-
tion RH . One can use this 1d theory to calculate correlation functions of gauge-invariant
products of ZI . Rescaling ZI → 1√

b
ZI and σ → bσ yields a 1d theory independent of b.

The above results can straightforwardly be extended to include FI and real mass parame-
ters, as will be described in more detail in the main text. Performing the Gaussian integral
over the hypermultiplet fields, one obtains the matrix model for a squashed sphere, whose
independence of b was noticed in [42, 46].

The remainder of the paper is organized as follows. In section 2, we start by introducing
the N = 4 squashed sphere backgrounds, study the supersymmetry algebra they preserve,
and formulate the QFTs we will study in these backgrounds. Having defined the QFTs
of interest we proceed to show how one can construct two one-dimensional sectors within
such QFTs. In section 3, we present a cohomological construction of these sectors. In
section 4, we use supersymmetric localization to derive an explicit description of the 1d
TH sector of 3d theories constructed from vector multiplets coupled to hypermultiplets.
Next, in section 5, we again take a more general perspective to show that for any N = 4
QFT on the squashed sphere real mass deformations correspond to deformations of the 1d
TH sector.9 We end with a discussion of our results in section 6. Conventions and several
technical details are relegated to the appendices.

2 N = 4 theories on the squashed sphere

Let us start by explaining how to formulate N = 4 supersymmetric quantum field theo-
ries on a squashed three-sphere. As mentioned in the Introduction, a general procedure

7The prime indicates that the Cartan elements are excluded.
8The indices are raised and lowered with an anti-symmetric tensor εIJ .
9After the release of this paper, [47] appeared. This reference overlaps with our section 5.
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to construct supersymmetric QFTs on curved manifolds is to consider the action and su-
persymmetry variations of the matter multiplets coupled to off-shell supergravity, and
subsequently freeze the fields in the Weyl multiplet to supersymmetric configurations [39–
41]. The choice of off-shell supergravity theory determines whether a background with
the desired properties exists and at the same time limits the possible terms in the matter
Lagrangians one can write down.

As mentioned in the Introduction, in this work we are interested in considering QFTs
on the squashed sphere, where the metric preserves an su(2)×u(1) isometry. In particular,
we choose the metric of the squashed sphere to be

ds2
3 = r2

4

dθ2 + sin2 θdφ2 +
(
b+ b−1

2

)2

(dψ + cos θdφ)2

 . (2.1)

In this expression, b is the squashing parameter with b = 1 corresponding to the round
sphere, r is the radius of the sphere, and the angles φ and ψ obey the periodic identifications
φ ∼ φ + 2π, ψ ∼ ψ + 4π, while the range of θ is [0, π]. This metric, combined with
appropriate choices for the other supergravity background fields, can be coupled to a variety
of matter multiplets. In this work we will focus on theories built out of hypermultiplets
and vector multiplets, as well as their twisted analogs. The details about the structure of
such multiplets will be reviewed below.

In the remainder of this section we will introduce several ways to couple our background
to such matter fields where the possible matter coupling are constrained by the choice of
off-shell supergravity theory. In the following list we summarize the various possibilities as
well as their limitations.

• Conformal supergravity (consisting of a Weyl multiplet) [43–45]: we will introduce
supersymmetric backgrounds for the Weyl multiplet for which the metric takes the
form (2.1). These backgrounds preserve either an su(2|1)×psu(1|1) or psu(2|2)×u(1)
superalgebra. In conformal supergravity one is limited to considering only confor-
mal matter on these backgrounds. In particular, one can consider kinetic terms for
hypermultiplets and twisted hypermultiplets as well as mixed abelian Chern-Simons
terms. However, one cannot consider non-conformal terms such as Yang-Mills (YM)
terms for dynamical vector multiplets, and for this reason such a background will not
be sufficient for our purposes.

• Conformal supergravity with a compensating vector multiplet : in this theory, we will
still be able to find the su(2|1)×psu(1|1) and psu(2|2)×u(1)-preserving backgrounds
mentioned above, even after giving non-zero values to the fields in the compensating
multiplet. In addition to the interactions allowed in the previous bullet point, we will
now also be able to add Yang-Mills terms for the vector multiplets, but not for the
twisted vector multiplets.

• Conformal supergravity with a compensating twisted vector multiplet : this case is
mirror dual to the previous one and hence we will again be able to find the su(2|1)×
psu(1|1) and psu(2|2) × u(1)-preserving backgrounds mentioned above, even after

– 5 –
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giving non-zero values to the fields in the compensating multiplet. In addition to the
interactions allowed in the first bullet point, we will now be able to add Yang-Mills
terms for the twisted vector multiplets, but not for the vector multiplets.

• Conformal supergravity with both a compensating vector and twisted vector multi-
plet: this theory only contains the su(2|1)× psu(1|1)-invariant squashed sphere as a
background. In addition to the interactions allowed in the first bullet point, we will
now be able to add Yang-Mills terms for both vector multiplets and twisted vector
multiplets.

• Additional background vector and twisted vector multiplets: for any of the theories
in this list we can add additional background vector or twisted vector multiplets
that couple to global symmetries of the matter theory. By giving supersymmetry-
preserving expectation values to the fields in these vector multiplets, one can intro-
duce real mass parameters and FI parameters. Such additional parameters result in
various central extensions of the supersymmetry algebra.

One shortcoming of these constructions is that they do not include N = 4 non-abelian
gauge theories with Chern-Simons interactions, such as the ones in [48–52]. For such
theories there is currently no off-shell description available, and hence they fall outside of
the class of theories that can be studied using our methods.

2.1 N = 4 Weyl multiplet and squashed sphere backgrounds

2.1.1 Weyl multiplet

N = 4 conformal supergravity is obtained by promoting the 3d N = 4 superconformal
symmetry to a local symmetry. The 3d N = 4 superconformal group is OSp(4|4) whose
maximal bosonic subgroup is given by SO(4)R × USp(4). The associated gauge fields
together with some auxiliary fields form the N = 4 Weyl multiplet [43–45].10 The field
content of this multiplet is given by11

Bosons : eµ
a , bµ , Vµ

i
j , Ṽµ

p
q , C , D ,

Fermions : ψipµ , χip .

eµ
a is the vielbein while bµ, Vµij , and Ṽµ

p
q are the gauge fields for dilatations and the

SU(2)H and SU(2)C factors of the SO(4)R ' SU(2)H × SU(2)C R-symmetry, respectively.
ψipµ are the Poincaré supersymmetry gauge fields, and in addition there are the auxiliary
spinors χip and scalars C and D. The indices µ, ν, . . . and a, b, . . . are curved and tangent
space indices, respectively, while i, j, . . . and p, q, . . . are SU(2)H and SU(2)C fundamen-
tal indices. More details on our conventions as well as on the Weyl multiplet and its
supersymmetry variations can be found in appendices A and B.

10We use the conventions of [43].
11In addition there are also gauge fields fµa and φµip for special conformal symmetries and supersymme-

tries. However, these satisfy curvature constraints and can be expressed as composite fields in terms of the
other fields in the Weyl multiplet.
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When looking for supersymmetric backgrounds, it is convenient to set the values of all
fermions to zero, hence the supersymmetry variations of all bosonic fields automatically
vanish. In order for the background to preserve supersymmetry, we then need to require
the fermionic variations to vanish as well:

δψipµ = 0 , δχip = 0 . (2.2)

The explicit form of these equations is given in appendix B, which we reproduce here for
reader’s convenience. We have

δψipµ = 2Dµεip − γµηip = 0 ,

δχip = 2 /DCεip +Dεip + 1
2
/G
i
jε
jp − 1

2
/̃G
p
qε
iq + 2Cηip = 0 ,

(2.3)

where G and G̃ are the field strengths associated to V and Ṽ , respectively, and εip and
ηip are the parameters for the Poincaré and conformal supersymmetry transformations,
respectively. D is the superconformal covariant derivative which acts on the supersymmetry
parameter ε as

Dµεip =
(
∂µ + 1

4ω
ab
µ γab + 1

2bµ
)
εip + 1

2Vµ
i
jε
jp + 1

2 Ṽµ
p
qε
iq . (2.4)

We are now ready to describe the backgrounds of interest. As already mentioned, the
metric takes the form (2.1), for which we choose the following vielbein:

e1 = −r2 (sinψdθ − sin θ cosψdφ) ,

e2 = r

2 (cosψdθ − sin θ sinψdφ) ,

e3 = −r2
b+ b−1

2 (dψ + cos θdφ) .

(2.5)

For the remaining fields, we find two backgrounds presented in turn below.

2.1.2 su(2|1)× psu(1|1)-invariant background

The first background corresponds to the following values for the Weyl multiplet fields:

V i
j = − i2V (σ3)ij , Ṽ p

q = − i2 Ṽ (σ3)pq ,

C = − i

2r
(
b− b−1

)
, D = −b

2 − b−2

2r2 , (2.6)

bµ = 0 ,

where

V = − 2
br

b− b−1

b+ b−1 (dψ + cos θdφ) , Ṽ = 2b
r

b− b−1

b+ b−1 (dψ + cos θdφ) . (2.7)

With these choices, eqs. (2.3) are obeyed provided that

2Daεip = γaη
ip , ηip = i

r

[1
2
(
b+ b−1

)
εip + b−1γ3(σ3)ijεjp + b γ3(σ3)pqεiq

]
. (2.8)
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When b = 1, these equations simplify, and one recovers the conformal Killing spinor equa-
tion on the round sphere, which has eight linearly-independent solutions. When b 6= 1, on
the other hand, the equations (2.8) have six linearly-independent solutions given by

ε21 = ξ , ε12 = −iξ̃ , ε11 =
(
ζ1
0

)
, ε22 =

(
0
ζ2

)
, (2.9)

where the spinors ξ and ξ̃ are defined as

ξ =
(
i
√
b 1

1 − i√
b

)
g−1

(
ξ1
ξ2

)
, ξ̃ =

(
− i√

b
1

1 i
√
b

)
g−1

(
ξ̃1
ξ̃2

)
, (2.10)

where g parameterizes an SU(2) element given by

g =
(

cos θ2e i2 (φ+ψ) sin θ
2e i2 (φ−ψ)

− sin θ
2e− i

2 (φ−ψ) cos θ2e− i
2 (φ+ψ)

)
. (2.11)

In formulating this background we chose a particular embedding of U(1)H ×U(1)C in
SU(2)H ×SU(2)C . However, we could have replaced (σ3)ij and (σ3)pq by a different choice
of Cartan elements. Furthermore, upon inspection of the solution above, one can see that
the SU(2)H and SU(2)C vector fields appear in a symmetric way. Indeed, analogous to the
background introduced above, we can define a mirror dual background by performing the
interchange

Vµ
i
j ↔ Ṽµ

p
q , C ↔ −C , D ↔ −D . (2.12)

Before moving on to the next squashed sphere background let us justify the title of this
subsection and show that the supersymmetry transformations of this background generate
the superalgebra su(2|1)×psu(1|1). A general supercharge is defined by a spinor parameter
εip, as in (2.9), but from this equation it is not immediately clear what the superalgebra is.
In order to illustrate this more explicitly, let us introduce the following set of supercharges,

Q
(l+)
1 : ε (ξ1 = i) , Q

(l−)
1 : ε

(
ξ̃1 = 1

)
,

Q
(l+)
2 : ε (ξ2 = i) , Q

(l−)
2 : ε

(
ξ̃2 = 1

)
,

Q(r+) : ε (ζ1 = 1) , Q(r−) : ε (ζ2 = 1) ,

(2.13)

where the parameters denoted between the brackets indicate the values of the non-zero
parameters in the spinors (2.9)–(2.10). As our superalgebra is constructed as a subalgebra
of the N = 4 superconformal algebra, we can compute the (anti-)commutation relations
using theN = 4 superconformal algebra, given in detail in appendix C. Using eq. (C.7), one
can straightforwardly show that all the supercharges (2.13) are all nilpotent. Furthermore,
the supercharges with superscript (l±), together with the generators J lαβ and Rl generate
an su(2|1) algebra with the non-zero (anti-)commutation relations given by[

J li , J
l
j

]
= iεijkJ

l
k ,

[
J lαβ , Q

(l±)
γ

]
= 1

2
(
εαγQ

(l±)
β + εβγQ

(l±)
α

)
,[

Rl, Q(l±)
α

]
= ±Q(l±)

α ,
{
Q(l+)
α , Q

(l−)
β

}
= −4i

r

(
J lαβ + εαβR

l
)
.

(2.14)
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In these equations we introduced the SU(2)-triplet Ji ≡ −1
2ε
βγ(σi)αγJαβ . Similarly, the

supercharges with superscript (r±) together with the generators Jr and Rr generate a
psu(1|1) algebra with commutation relations[

Jr, Q(r±)
]

= ±1
2Q

(r±) ,
[
Rr, Q(r±)

]
= ±Q(r±) ,{

Q(r+), Q(r−)
}

= −4i
r

(Jr +Rr) .
(2.15)

The generators J lαβ and Jr generate the su(2)×u(1) isometries of the squashed sphere and
act on gauge-invariant operators, O, as

J liO = −LvliO , JrO = −LvrO , (2.16)

where Lv denotes the Lie derivative with respect to the Killing vector v. In our coordinates,
the Killing vectors take the form

vl1 = i
(

sinφ∂θ + cosφ (cot θ ∂φ − csc θ ∂ψ)
)
, (2.17)

vl2 = i
(

cosφ∂θ − sinφ (cot θ ∂φ − csc θ ∂ψ)
)
, (2.18)

vl3 = i ∂φ , (2.19)

vr = 2i
b+ b−1 ∂ψ . (2.20)

To define the action of the R-symmetries on the other hand, it is useful to define the Cartan
generators of the SU(2)H × SU(2)C R-symmetries as

H = 1
2(σ3)ijHj

i , C = 1
2(σ3)pqCq

p , (2.21)

whose action on gauge invariant operators is defined in (C.4). In terms of these generators,
the left and right R-symmetry, Rl and Rr, can be written as

Rl = 1
2(b+ b−1)

(
bH− 1

b
C
)
, Rr = 1

2(b+ b−1) (H + C) . (2.22)

2.1.3 psu(2|2)× u(1)-invariant background

To construct the second background, we start from the same metric (2.1) and vielbein (2.5).
However, in this case, we complete the supersymmetric background with different choices
for the other background fields in the Weyl multiplet, namely

V i
j = 0 , Ṽ p

q = − i2 Ṽ (σ3)pq ,

C = − i

2r
(
b+ b−1

)
, D = −

(
b+ b−1)2

2r2 , (2.23)

bµ = 0 ,

where
Ṽ = 2

r

(
b− b−1

)
(dψ + cos θdφ) . (2.24)
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With these choices, all supersymmetry variations (2.3) vanish provided that

2Daεip = γaη
ip , ηip = i

r

[1
2(b+ b−1)εip + (b− b−1)γ3(σ3)pqεiq

]
. (2.25)

When b = 1 the second term in the expression for ηip vanishes, and we again recover the
conformal Killing spinor equation on the round sphere. In this case, however, for non-zero
b 6= 1, these equations still allow for eight independent supercharges given by

ε21 = ξ , ε12 = −iξ̃ , ε11 = ξ̂ , ε22 = −î̃ξ , (2.26)

where the spinors ξ and ξ̃ were defined in (2.10), and, similarly, ξ̂ and ̂̃ξ are given by the
same expressions but with independent constants ξ3, ξ4 and ξ̃3, ξ̃4.

As anticipated in the title of this subsection, the supersymmetry algebra preserved by
this background is given by psu(2|2) × u(1). To clarify the structure of this superalgebra
let us again introduce a set of supercharges Qiα and Q̃iα,

Q1
1 : ε (ξ1 = i) , Q2

1 : ε
(
ξ̃1 = i

)
,

Q1
2 : ε (ξ2 = i) , Q2

2 : ε
(
ξ̃2 = i

)
,

Q̃1
1 : ε

(
ξ̃3 = 1

)
, Q̃2

1 : ε (ξ3 = 1) ,

Q̃1
2 : ε

(
ξ̃4 = 1

)
, Q̃2

2 : ε (ξ4 = 1) ,

(2.27)

in an analogous fashion to (2.13). Together with the su(2) × su(2)H generators, Jαβ and
Hi

j , these supercharges generate the psu(2|2) algebra, whose non-zero (anti-)commutation
relations are given by

[Ji, Jj ] = iεijkJk ,
[
Hi

j ,Hk
l

]
= δkjHi

l − δilHk
j , (2.28)[

Jαβ , Q
i
γ

]
= 1

2
(
εαγQ

i
β + εβγQ

i
α

)
,

[
Hi

j , Q
k
α

]
= δkjQ

i
α −

1
2δ

i
jQ

k
α , (2.29)[

Jαβ , Q̃
i
γ

]
= 1

2
(
εαγQ̃

i
β + εβγQ̃

i
α

)
,

[
Hi

j , Q̃
i
α

]
= δkj Q̃

i
α −

1
2δ

i
jQ̃

k
α , (2.30){

Qiα, Q̃
j
β

}
= −4i

r

(
εijJαβ + εαβε

ikHj
k

)
, (2.31)

where the Killing vectors vi corresponding to Ji are identical to those of the first background
and given, together with the additional u(1) Killing vector, in (2.17). The action of the
su(2)×su(2)H×u(1) generators on gauge invariant operators is identical as for the previous
case and defined in (2.16) and (C.4), respectively. Similar to the previous case we can also
consider the mirror dual background in this case by interchanging the role of SU(2)H
and SU(2)C and performing the mirror map (2.12) on the background fields in the Weyl
multiplet.

2.2 Matter multiplets

Having identified two N = 4 supersymmetric squashed sphere backgrounds, the next ques-
tion is how to write down actions for dynamical fields in these backgrounds. In order
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to do so, let us briefly review the multiplets one can use in 3d N = 4 theories. In this
paper we will be interested in theories with vector multiplets, twisted vector multiplets,
hypermultiplets, and twisted hypermultiplets.12

The components of vector and twisted vector multiplets are given by

Vector multiplet V Twisted vector multiplet Ṽ
Bosons: Lpq , Y i

j , Aµ , L̃ij , Ỹ p
q , Ãµ ,

Fermions: Ωip Ω̃ip .

The vector multiplet consists of two triplets of scalars, Lpq and Y i
j , a gauge field Aµ, and

a gaugino, transforming, respectively, in the (1,3), (3,1), (1,1), and (2,2) representations
of SU(2)H × SU(2)C . In the non-abelian case, all these fields transform in the adjoint
representation of a classical Lie group. The twisted vector multiplet has identical field
content to the vector multiplet, with the only difference being that the SU(2)H indices
are interchanged with the SU(2)C ones. The bosonic fields satisfy the following reality
conditions

A†µ = Aµ , (Lpq)† = Lqp ,
(
Y i

j

)†
= −Y j

i , (2.32)
as well as

Ã†µ = Ãµ ,
(
L̃ij
)†

= L̃j i ,
(
Ỹ p

q

)†
= −Ỹ q

p . (2.33)
The components of nh (ungauged) hypermultiplets and ñh (ungauged) twisted hyper-

multiplets are given by:

hypermultiplets HI Twisted hypermultiplets H̃Ĩ

Bosons: ziI , z̃pĨ ,

Fermions: ζIp ζ̃ Ĩi ,

where the index I = 1, · · · , 2nh and Ĩ = 1, · · · , 2ñh are fundamental indices of USp(2nh)
and USp(2ñh), respectively. In a gauge theory, a subgroup of USp(2nh) and/or USp(2ñh)
could be gauged under vector multiplets and twisted vector multiplets, respectively. The
complex scalars ziI transform as doublets under SU(2)H , while the fermions ζIp transform
as doublets under SU(2)C . The fields of the twisted hypermultiplets have similar properties,
with SU(2)H and SU(2)C interchanged.

While the hypermultiplet scalars ziI are individually complex, complex conjugation
relates them to one another. The reality conditions on the scalars are given by

(ziI)∗ = εIJzi
J , (2.34)

where εIJ is an antisymmetric rank-two invariant tensor of USp(2nh). For concreteness,
one can take εIJ to be of the form

εIJ =


iσ2 0 0 · · ·
0 iσ2 0 · · ·
0 0 iσ2 · · ·
...

...
... . . .

 . (2.35)

12In addition, one could add a number of (twisted) half-hypermultiplets but we will not consider this
possibility in this work. However, our framework can in principle be extended to include these cases.
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Similarly, the twisted hypermultiplet scalars z̃pĨ obey the reality conditions

(z̃pĨ)∗ = εĨ J̃ z̃p
J̃ . (2.36)

2.3 Conformal matter actions

Having reviewed the multiplets, we are now ready to write down various terms in the action.
However, since so far we have discussed only a conformal supergravity background without
the addition of compensator multiplets, we are restricted to the following conformal actions:

• Kinetic terms for hypermultiplets coupled to a vector multiplet,

• Kinetic terms for twisted hypermultiplets coupled to a twisted vector multiplet,

• Mixed abelian Chern-Simons terms.
The bosonic part of the kinetic term in the action of the hypermultiplets HI coupled

a vector multiplet V is given by

Shyp[HI ,V] = −1
2

∫
d3x
√
g εIJ

(
DµziIDµziJ −

1
4zi

IziJ
(
−1

2R+D − C2
)

+ 1
2zi

ILpq
J
KL

q
p
K
Lz

iL + i zi
IY i

j
J
Kz

jK

+ iζ
pI /DζJp + iζ

I
pL

p
qζ
qJ + zIi Ωip

ζJp

)
,

(2.37)

where the covariant derivative acting on the hyperscalars is given by

DaziI ≡ ∂aziI + 1
2zj

IVa
j
i − iAaIJzJi . (2.38)

In the kinetic term (2.37), we wrote the vector multiplet fields explicitly as 2nh × 2nh
matrices acting in the representation in which the ziI transform.

The kinetic term in the action for twisted hypermultiplets coupled to a twisted vector
multiplet is analogous as the one for hypermultiplets and can be obtained by interchanging
the hyper and vector multiplet fields with their twisted counterparts, while at the same
time performing the mirror map (2.12) on the background fields in the Weyl multiplet.

Finally, the mixed Chern-Simons term between an abelian vector multiplet and an
abelian twisted vector multiplet is given by [53]

SBF ∝
k

4π

∫
A ∧ dÃ+ k

2π

∫
d3x
√
g i

(
ΩipΩ̃ip + 1

2Y
i
jL̃

j
i + 1

2L
p
qỸ

q
p

)
. (2.39)

2.4 Non-conformal actions, real masses and FI parameters

So far, we have introduced a collection of conformal actions. However, this will not suffice
for our purposes. In the following we will consider dynamical vector multiplets with a
Yang-Mills action. This action is non-conformal in three dimensions, and hence in order to
construct it we will need to introduce additional background compensator vector and/or
twisted vector multiplets. A second application of adding background multiplets is that
they allow us to introduce real masses and/or FI terms. The background values for these
multiplets depend on the chosen background for the Weyl multiplet, and hence we will
again treat the two backgrounds separately.
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2.4.1 su(2|1)× psu(1|1)-invariant background

Let us first consider an abelian background vector multiplet, Vbk =
{
Lbk

p
q, Ybk

i
j , Abk,Ωip

bk

}
.

As we will explain now, such a multiplet can be either coupled to a conserved current
multiplet made out of the dynamical fields or it can be used to construct a supersymmetric
Yang-Mills action.

In either case, one should give the fields in Vbk supersymmetry-preserving expectation
values. As usual, we start by giving vanishing expectation values to the fermions, Ωip

bk = 0.
In order to ensure that the background is supersymmetric, we then need to require that
the supersymmetry variation for the gaugino Ωip

bk vanishes,13

δΩbk
ip = /DLbk

p
qε
iq − 1

2Fbk abγ
abεip + Ybk

i
jε
jp + CLbk

p
qε
iq + Lbk

p
qη
iq = 0 , (2.40)

where Fbk is the field strength associated to the gauge field Abk. In the su(2|1)× psu(1|1)
background, this equation is solved for the following values of the background fields in the
abelian vector multiplet14

Lbk
p
q = µ

r
(σ3)p q , Abk = µ

r

b−1 − b
b−1 + b

(dψ + cos θdφ) , Ybk
i
j = iµ

b r2 (σ3)ij , (2.41)

where µ is an arbitrary parameter. In the non-abelian case, the vector multiplet fields
as well as the parameter µ become Lie algebra-valued. This background preserves all
supersymmetries and hence the full su(2|1)× psu(1|1) superalgebra.

Analogously, one can construct a background for an abelian twisted vector multiplet
Ṽbk =

{
L̃bk

i
j , Ỹbk

p
q, Ãbk, Ω̃ip

bk

}
that again preserves the full su(2|1) × psu(1|1) algebra.

The supersymmetry preserving background values for the fields in the twisted multiplet
are given by

L̃bk
i
j = µ̃

r
(σ3)i j , Ãbk = µ̃

r

b− b−1

b+ b−1 (dψ + cos θdφ) , Ỹbk
p
q = i b µ̃

r2 (σ3)pq , (2.42)

for an arbitrary parameter µ̃. In the non-abelian case, the parameter µ̃ as well as the
twisted vector multiplet fields are Lie algebra-valued.

A first application of such background (twisted) vector multiplets is that they allow
us to construct the Yang-Mills action for dynamical vector multiplets V or twisted vector
multiplet Ṽ. The construction of the Yang-Mills action for a dynamical vector multiplet in a
general N = 4 supersymmetric background is discussed in more detail in appendix B.2 and
crucially involves coupling the Weyl multiplet to an abelian compensating vector multiplet
V0. This coupling gauge fixes part of the conformal symmetries and hence allows us to
consider non-conformal actions. Specifying to the su(2|1) × psu(1|1)-invariant squashed
sphere background, we can put the background values of the compensating vector multipet

13For a non-abelian vector multiplet this supersymmetry variation should be supplemented with an extra
term proportional to the commutator of two Lpqs, the full non-abelian supersymmetry variations are given
in (B.13).

14The background (twisted) vector multiplets are valued in the Cartan of the flavor symmetry group G

(G̃). However, to simplify the notation we often suppress the flavor indices I, J, . . . (Ĩ , J̃ , . . . ).
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to be V0 = Vbk as given in (2.41). After an appropriate rescaling, one then obtains the
following Yang-Mills action,

SYM[V] = 1
g2

YM

∫
d3x
√
g

{
DµLpqDµLqp + FµνF

µν − Y i
jY

j
i

+ 3b2 − b4 − 1
b2r2 LpqL

q
p −

(
b− b−1

) 3− 2b2
2br2 [(σ3)pqLqp]2

+ i

br
(σ3)j i(σ3)qpLpqY i

j −
1
4 [Lpq, Lrs] [Lqp, Lsr]

+ iΩip /DΩip + 1
2br (σ3)j i(σ3)qpΩ

ipΩjq − Ωip [Ωiq, L
q
p]
}
.

(2.43)

Similarly, by coupling the Weyl multiplet to an abelian compensator twisted vector multi-
plet one can construct the Yang-Mills action for a twisted vector multiplet. The resulting
action is related to the Yang-Mills action above through mirror symmetry.

The second application involving background vector and twisted vector multiplets is
to introduce real masses and Fayet-Iliopolous terms that can be obtained by coupling these
multiplets to conserved current multiplets. Just as there are two types of vector multiplets
(vectors and twisted vectors) in 3d N = 4 theories there are two types of conserved current
multiplets, namely conserved current multiplets J = (J ij ,Ξip, ja,Kp

q) that couple to
vector multiplets, and twisted conserved current multiplets J̃ = (J̃ ij , Ξ̃ip, j̃a, K̃p

q) that
couple to twisted vector multiplets. An example of a conserved current multiplet J can
be obtained from an abelian twisted vector multiplet Ṽ via

J ij = L̃ij , Ξip = Ω̃ip , ja = 1
2εabcF̃

bc , Kp
q = Ỹ p

q , (2.44)

with F̃ the field strength associated to the gauge field Ã. From this equation we see that
the conserved current is simply the Hodge dual of the field strength of a twisted vector.
For this reason we will sometimes denote such conserved current multiplet as J = ∗Ṽ. The
relations in (2.44) can be used to determine the supersymmetry transformation rules of
the current multiplet from those of the twisted vector multiplet (B.14) as given in (B.24).
From these transformation rules, one can deduce that the supersymmetric coupling of a
general conserved current multiplet J to a vector multiplet V takes the form

Scurrent[V,J ] =
∫
d3x
√
g

[
Aµj

µ + iΩipΞip + i

2Y
i
jJ

j
i + i

2L
p
qK

q
p

]
. (2.45)

In the non-abelian case, the only modification to (2.45) is that one should take the trace
of the expression in the square bracket. Note that (2.45) is already included in the kinetic
term for the hypermultiplets in (2.37) when one expands the latter to linear order in the
vector multiplet fields. In this case, quadratic terms in the vector multiplet fields are also
required in order to preserve supersymmetry. Again, we can write analogous expressions
for twisted background vector multiplets. Similar to (2.44), the twisted conserved current
multiplet, J̃ = ?V, is given by

J̃pq = Lpq , Ξ̃ip = Ωip , j̃a = 1
2εabcF (A)bc , K̃i

j = Y i
j , (2.46)

– 14 –



J
H
E
P
0
8
(
2
0
2
2
)
0
5
9

and the coupling to the twisted vector multiplet takes the form analogous to (2.45),

Stwisted current[Ṽ, J̃ ] =
∫
d3x
√
g

[
Ãµj̃

µ + iΩ̃ipΞ̃ip + i

2 Ỹ
p
qJ̃

q
p + i

2 L̃
i
jK̃

j
i

]
. (2.47)

In the presence of flavor symmetries, with global symmetry group GF acting on the hy-
permultiplets, one can introduce real mass parameters m valued in the Cartan of the Lie
algebra of GF by coupling the hypermultiplets to a background vector multiplet with back-
ground values (2.41) with µ = m. In other words, instead of considering Shyp[HI ,V], where
V is a dynamical vector multiplet, one considers

Shyp
[
HI ,V + Vbk

∣∣
µ=m

]
. (2.48)

Similarly, for every U(1) factor in the dynamical gauge group G one can introduce Fayet-
Iliopolous parameters ζ corresponding to background twisted vector multiplets in the Car-
tan of the flavor symmetry group taking the values (2.42) with µ̃ = ζ. Explicitly, for an
abelian multiplet V, the FI term in the action is

SFI[V] =Stwisted current[Ṽbk
∣∣
µ̃=ζ , ∗V]

=
#U(1)’s in G∑

k=1
ζk

∫
d3x
√
g

(
b− b−1

b+ b−1 j̃
3 − b

2r (σ3)pqJ̃qp + i

2(σ3)ijK̃j
i

)
.

(2.49)

Note that, in contrast to theories on flat space, where the FI parameters transform in the
(3,1) of SU(2)H × SU(2)C , on the squashed sphere only the component ζ = (σ3)ijζj i,
corresponding to the choice of the SU(2)H Cartan preserved by the background, can be
turned on. Analogously, only a single SU(2)H ×SU(2)C component of the real mass terms,
m = (σ3)pqmq

p can be turned on the squashed sphere.
Once more, one can construct a twisted analog to the previous discussion. When the

theory contains flavor symmetries G̃F acting on the twisted hypermultiplets, one can intro-
duce real mass terms m̃ valued in the Cartan of the Lie algebra of G̃F and for every abelian
factor in dynamical twisted gauge group G one can introduce twisted FI parameters ζ̃ cor-
responding to background vector multiplets in the Cartan of the twisted flavor symmetry
group. The couplings are identical to the above and can be obtained by interchanging the
roles of the vector and twisted vector multiplets and those of conserved current and twisted
conserved current multiplets.

Introducing background (twisted) vector multiplets preserves the full supersymmetry
algebra. However, coupling them to (twisted) conserved current multiplets introduces
additional central charges in the algebra. From the Jacobi identity, it is clear that the only
central charges one can add are given by{

Q(l+)
α , Q

(l−)
β

}
= −4i

r

(
J lαβ + εαβR

l + εαβZ
l
)
,{

Q(r+), Q(r−)
}

= −4i
r

(Jr −Rr − Zr) .
(2.50)

All the other commutators in (2.14) and (2.15) remain identical and hence the resulting
centrally extended algebra is given by (su(2|1) n R)× su(1|1), with central charges Z l and
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Zr. As shown in appendix C, adding background vector multiplets modifies the supersym-
metry algebra. In line with the central extensions, the supersymmetry algebra acquires an
additional gauge transformation with gauge parameter λQ (see (C.11)). A simple compu-
tation using the expression of λQ and λQ̃ shows that the central charges appearing in (2.50)
are related to the real masses and FI parameters as follows,

Z l = i

2(b+ b−1)

(
bm− 1

b
ζ

)
,

Zr = i

2(b+ b−1) (m+ ζ) .
(2.51)

In these formulae, m = maT
a
F is valued in the Cartan of the Lie algebra of the flavor

symmetry, where T aF are the generators of GF acting in the appropriate representation.
The FI parameter ζ = ∑

a ζat
a acts non-trivially only on operators charged under the

topological symmetry, where ζa are the FI parameters and the ta represent the appropri-
ate topological charges. Similarly, when the theory contains twisted hypermultiplets and
twisted vector multiplets, an analogous modification of the supersymmetry algebra takes
place with parameter λQ̃. In this case the central charges are given by

Z l = i

2(b+ b−1)

(
b ζ̃ − 1

b
m̃

)
,

Zr = i

2(b+ b−1)
(
ζ̃ + m̃

)
,

(2.52)

where in this case m̃ = m̃aT̃
a
F is valued in the Cartan of the twisted flavor symmetry group

G̃F , and the FI parameters are given by ζ̃ = ∑
ζ̃at̃

a, where t̃a are the twisted topological
charges for the twisted topological symmetry. When both twisted and regular background
multiplets are present, the central charges Z l and Zr are simply given by the sums of the
two expressions above.

2.4.2 psu(2|2)× u(1)-invariant background

In the psu(2|2)×u(1)-preserving squashed sphere background presented in section 2.1.3, one
cannot find any supersymmetry-preserving configuration for a background twisted vector
multiplet. For a background vector multiplet Vbk = {Lbk

p
q, Ybk

i
j , Abk, Ωip

bk} on the other
hand, the following configuration preserves the full supersymmetry algebra

Lbk
p
q = µ

r
(σ3)pq , Abk = µ

r

b− b−1

b+ b−1 (dψ + cos θdφ) , Ybk
i
j = 0 , (2.53)

where µ is an arbitrary parameter valued in the Lie algebra of the flavor symmetry. Anal-
ogous to the previous background, we can use this background vector multiplet to derive
a Yang-Mills action for the dynamical gauge fields or to add real masses for the flavor
symmetries GF acting on the hypermultiplets. In this case it will, however, not be possible
to add Yang-Mills terms for dynamical twisted vector multiplets, nor will we be able to
add FI terms.
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Using the general formulae derived in appendix B.2, we can construct a supersymmetric
Yang-Mills action for dynamical vector multiplets in this background. The abelian Yang-
Mills action in this case is given by

SYM[V] = 1
g2

YM

∫
d3x
√
g

{
DµLpqDµLqp + FµνF

µν − Y i
jY

j
i

+ (b− b−1)2

r2

(
−LpqLqp + [(σ3)pqLqp]2

)
− 1

4 [Lpq, Lrs] [Lqp, Lsr]

+ iΩip /DΩip − Ωip [Ωiq, L
q
p]
}
.

(2.54)

In the presence of flavor symmetries GF , acting on the hypermultiplets, we can again add
real masses m by coupling our background to a background vector multiplet valued in
the Cartan of the Lie algebra of the GF , with µ = m. These real masses again manifest
themselves as central extensions of the supersymmetry algebra. From the Jacobi identity
we find that the possible central charges can only appear in the {Q,Q} commutators and
are given by{

Qiα, Q
j
β

}
= εαβε

ijZ1 ,
{
Q̃iα, Q̃

j
β

}
= εαβε

ijZ2 , (2.55){
Qiα, Q̃

j
β

}
= −4i

r

(
εijJαβ + εαβε

ikHj
k + εijεαβZ3

)
, (2.56)

where the other (anti-)commutators remain identical as before. The resulting supersym-
metry algebra is given by

(
psu(2|2) n R3) × u(1).15 Using the expression of λQ in (C.11)

we can relate these central charges to the real mass parameter m as follows:

Z1 = 0 , Z2 = 0 , Z3 = m. (2.57)

As before, the real mass parameter m = maT
a
F takes value in the Cartan of the Lie algebra

of the flavor symmetry. Therefore, we see that the real mass corresponds to turning on
one of the three central charges and the resulting centrally extended superalgebra is given
by su(2|2)× u(1). It would be interesting to better understand what the additional central
charges represent in the QFT and if they can be turned on by further deforming the theory.

3 One-dimensional sectors from cohomology

In the next two sections, we will focus on the centrally-extended (su(2|1) n R) × su(1|1)-
invariant squashed sphere.16 Having described the N = 4 squashed sphere background
and its preserved supersymmetry algebra, we now look for protected 1d sectors, similar
to those on the round sphere [26]. We will find two such theories, where one is related to
the u(1)H R-symmetry and will therefore be denoted by TH while the other 1d theory is
related to u(1)C R-symmetry and will be denoted by TC .

15This enlarged psu(2|2) n R3 algebra is a contraction of the exceptional superalgebra D(2, 1;α), with
α→ 0 [54]. The triplet of central charges is the contraction of the additional su(2) factor.

16An analysis of the psu(2|2)× u(1) background is left for future work.
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For the round sphere, a cohomological construction of these sectors was given in [26].
Even though their results were phrased in terms of a centrally extended s̃u(2|1)×s̃u(2|1) su-
persymmetry algebra, a closer examination reveals that the construction of each protected
sector relies only on the existence of a particular su(1|1) subalgebra, which is not contained
in any N = 2 subalgebra.17 Such an su(1|1) subalgebra exists on the squashed sphere too,
so we can proceed analogously to the round sphere case. The following supercharges inside
our (centrally extended) (su(2|1) n u(1)) × su(1|1) superalgebra are associated to the 1d
TH theory:

QH1 = Q
(l+)
1 −

√
bQ(r−) , QH2 = Q

(l−)
2 +

√
bQ(r+) , (3.1)

while the following ones are associated to the 1d TC theory:

QC1 = Q
(l−)
1 − 1√

b
Q(r−) , QC2 = Q

(l+)
2 + 1√

b
Q(r+) . (3.2)

Let us start by focusing on theories built exclusively out of vector and hypermultiplets.
As we will see momentarily, in these cases the 1d theories will be related to the Higgs and
Coulomb branches of the theory, respectively. Individually, each of these supercharges is
nilpotent, but their sums, QH = QH1 + QH2 and QC = QC1 + QC2 , satisfy the following
non-trivial anti-commutation relations{

QH ,QH
}

= 8
r

(iPβ + iC + b ζ r) , (3.3){
QC ,QC

}
= 8
r

(
iPβ + iH + mr

b

)
. (3.4)

In these equations, Pβ = −i∂β denotes a translation in the angle β = 1
2 (ψ − φ). In the

following discussion it will also be useful to introduce the translation Pα = −i∂α in the
angle α = 1

2 (ψ + φ). Note that from the metric (2.1), the squared norms of the vectors ∂α
and ∂β are

‖∂α‖2 = ‖∂ψ + ∂φ‖2 =
r2 cos2 θ

2(1 + 6b2 + b4 + (b2 − 1)2 cos θ)
8b2 ,

‖∂β‖2 = ‖∂ψ − ∂φ‖2 =
r2 sin2 θ

2(1 + 6b2 + b4 − (b2 − 1)2 cos θ)
8b2 ,

(3.5)

and therefore the circle parameterized by α shrinks at θ = π, while the one parameterized
by β shrinks at θ = 0.

A local operator O belongs to the equivariant cohomology of QH or QC only if it is
annihilated by the right-hand side of (3.3) or (3.4),(

QH/C
)2
O = 0 . (3.6)

Hence, we see that such operators should be invariant under the translation Pβ or, in other
words, they should be inserted along the circle at θ = 0 parameterized by the angle α. In

17A similar situation occurs in 4d, where the construction of the VOA relies entirely on the existence of
a particular su(1|1) subalgebra within the N = 2 supersymmetry algebra [55, 56].
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addition, they should be invariant under C and ζ or H and m, respectively. Next, we can
define the twisted translations

P̂H = Pα + H ,

P̂C = Pα + C ,
(3.7)

and note that the left-hand side of the following expressions,

iP̂H + m

rb
= 1

4

{
QH ,−Q(l−)

2 + 1
b3/2

Q(r+)
}
,

iP̂C + b m̃

r
= 1

4
{
QC ,−Q(l−)

1 + b3/2Q(r−)
}
,

(3.8)

are QH - and QC-exact, respectively. By the Jacobi identity, it follows that the twisted
translations are closed with respect to the supercharges QH and QC , respectively, and
hence can be used to translate cohomology classes along the circle parameterized by α. To
characterize the equivariant cohomology we can therefore restrict ourselves to operators
inserted at α = 0 and translate them using the twisted translation (3.7) to obtain the
cohomology classes at α 6= 0. Therefore, the cohomology classes of both QH and QC form
two distinct 1d theories that we will denote by TH and TC . Furthermore, whenever m or
ζ vanishes on some operators, the twisted translation on these operators is QH - or QC-
exact and, therefore, the correlation functions between these operators will be topological.
In this case the OPE is independent of the distance between the operators, but crucially
it can depend on the ordering along the circle parameterized by α. For operators which
have non-zero eigenvalues for m and ζ, respectively, the correlation functions are no longer
topological, but as we will see below, the α-dependence remains very simple.

The discussion above shows that any local operators in the equivariant cohomology of
QH or in that of QC must be inserted at θ = 0. However, we have not shown whether
there are any non-trivial operators in these cohomologies, which is a question that we now
turn to.

3.1 Local operators in the QH-cohomology

As already suggested by the choice of superscript H, the 1d TH theory containing the
operators in the QH -cohomology are related to the Higgs branch of gauge theories with
hypermultiplets and vector multiplets. As a first example, let us consider a theory of free
hypermultiplets HI , possibly coupled to non-trivial background gauge fields. From the
supersymmetry transformations, summarized in appendix B, it is now easy to see that the
following linear combination, inserted at θ = α = 0,

ZI(0) ≡ 1√
2

(
zI1(0) + zI2(0)

)
, (3.9)

is QH -invariant. Translating this operator using the twisted translation defined above we
find that the operator

ZI(α) = 1√
2

(
e
i
2αzI1(α) + e−

i
2αzI2(α)

)
, (3.10)
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inserted on the θ = 0 circle parameterized by α, is also invariant under QH . One can then
consider polynomials in ZI(α), which are also QH -invariant.

More generally, if we consider a gauge theory where part of the USp(2nh) flavor symme-
try of the free hypermultiplets is gauged, the QH -invariant operators are still polynomials
in the ZI , but one should restrict to gauge-invariant polynomials only. In general, it is
non-trivial to argue that such operators are not QH -exact, but this fact will become clear
in the next section where we compute their correlation functions.

3.2 Local operators in the QC-cohomology

In this paper we are mostly interested in studying the TH theory. However, let us briefly
give some details on the local operators in the QC-cohomology composing the TC theory.
As the subscript C suggest, this sector is related to the Coulomb branch of a theory
with vector and hypermultiplets. We can proceed analogous as for the TH theory and
observe, using the supersymmetry variations for the vector multiplet, that the following
linear combination, inserted at θ = α = 0 is QC-invariant:

L(0) = 1
2
(
L1

1(0)− L2
2(0) + L1

2(0)− L1
2(0)

)
. (3.11)

The corresponding twisted translated operator is given by,

L(α) = 1
2
(
L1

1(α)− L2
2(α) + e

i
2αL1

2(α)− e−
i
2αL2

1(α)
)
. (3.12)

For these operators one can straightforwardly extend the analysis we will perform in the
next sections and compute their correlation function using the 1d theory TC . This is,
however, not the whole story for the Coulomb branch as apart from the vector multiplet
scalars, the Coulomb branch chiral ring also contains monopole operators that contribute to
the 1d protected algebra. In addition, this sector contains a variety of line defect operators
called vortex loops, which through mirror symmetry are related to Wilson loops. In this
work we will not further consider the TC theory but instead focus on the 1d TH theory.
The analogous 1d TC theory on the round sphere was studied in detail in [32, 33] and we
expect a similar story to survive on the squashed sphere.

3.3 Gauge theories with twisted multiplets

In this section, we have so far mainly dealt with gauge theories built out of vector and
hypermultiplets. However, as discussed in the previous section such multiplets have twisted
analogs for which we can go through the exact same analysis. Therefore, before we continue
to study the 1d TH theory for theories with vector and hypermultiplets in more detail, let
us briefly comment on their twisted analogs.

As explained above, the 1d TH theory is related to the u(1)H R-symmetry while the 1d
theory TC is related to the u(1)C R-symmetry. For theories built out of regular multiplets,
these subscripts are conveniently chosen since the 1d sectors provide respectively a defor-
mation quantization of the Higgs branch and Coulomb branch chiral ring of the 3d theory.
For the twisted multiplets on the other hand, the theory TC is related to the twisted Higgs
branch, while the theory TH is related to the twisted Coulomb branch.
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To illustrate this let us consider a theory of free twisted hypermultiplets H̃Ĩ , possibly
coupled to non-trivial background twisted gauge fields. In this case, it follows from the
supersymmetry variations for the twisted hypermultiplet that the following linear combi-
nation of twisted hyperscalars, inserted at θ = 0 along the circle parameterized by α, is
QC-invariant,

Z̃ Ĩ(α) = 1
2

(
e
i
2αz̃Ĩ1(α) + e−

i
2αz̃Ĩ2(α)

)
. (3.13)

Hence, in this case the theory TC consist of the twisted translated fields Z̃ Ĩ and polynomials
thereof. When part of the USp(2ñh) flavor symmetry of the twisted hypermultiplets is
gauged, these polynomials are furthermore constrained to be gauge invariant.

Analogously, in theories with twisted vector multiplets we can introduce the following
twisted translated operators,

L̃(α) = 1
2
(
L̃1

1(α)− L̃2
2(α) + e

i
2αL̃1

2(α)− e−
i
2αL̃2

1(α)
)
, (3.14)

that are QH -invariant and thus constitute (part of) the 1d TH theory. For theories built out
of twisted vector and hypermultiplets we thus find that the theory TC is very similar to the
TH theory for theories with untwisted multiplets. Indeed, in the next section we will show
that the results for the twisted Higgs branch theory are analogous to the regular Higgs
branch theory and we will explicitly compute the correlation functions of operators of the
form (3.13). Similar to the previous subsector, we find that the twisted vector multiplet
scalar constitutes part of the theory TH , but as in the untwisted case this is not the full
story, and in order to describe the full 1d theory one has to include monopole operators.

4 The TH sector of gauge theories

Having described the local operators in the 1d sectors, we continue in this section with a
more detailed study of the TH sector. In particular, we will derive explicit formulae for
computing correlation functions in the 1d Higgs branch sector of 3d gauge theories with
vector multiplets and hypermultiplets. We will also comment on the inclusion of twisted
vector multiplets and twisted hypermultiplets.

4.1 Free massive hypermultiplets

Let us begin with a single hypermultiplet HI , I = 1, 2 of mass m. The mass is obtained
by coupling the hypermultiplet to a background vector multiplet Vbk taking the values
in (2.41), with µIJ = m(σ3)IJ chosen in the σ3 direction without loss of generality. The
action is just (2.37):

Shyp[HI ,Vbk
∣∣
µIJ=m(σ3)IJ

] . (4.1)

As explained in section 3.1, the operators in the 1d theory are products of the ZI(α) defined
in (3.10). Since the 3d theory is quadratic, it should therefore be possible to calculate the
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correlators of ZI(α) (or of products thereof) using Wick contractions. To do that, one
would first need to determine the two point function

GiI jJ(x, x′) ≡ 〈ziI(x)zjJ(x′)〉 , (4.2)

where x = (θ, φ, ψ) and x′ = (θ′, φ′, ψ′) are two points on the squashed sphere, and then
set θ = θ′ = 0 and contract (4.2) with the functions of position in (3.10) to determine the
two point function in the 1d theory:

GIJ(α12) = 〈ZI(α1)ZJ(α2)〉 = ui(α1)uj(α2)GiI jJ(α1, α2) , ui(α) ≡ 1√
2

(
e
iα
2

e−
iα
2

)
, (4.3)

where by GiI jJ(α12) we mean GiI jJ evaluated at two points with θ = 0 and angular
coordinates α1 and α2, respectively, and α12 ≡ α1 − α2.

In principle, the two-point function GiI jJ(x, x′) can be computed by inverting the
kinetic operator in the action, as follows. After integration by parts in (2.37), the scalar
part of the action takes the form

S = −1
2

∫
d3x
√
g ziIMiI

jJz
jJ , (4.4)

with

MiI
jJ(x) = −(DµDµ)IJ −

1
4

(
−1

2R+D − C2
)
δIJ + 1

2L
p
q
I
KL

q
p
K
J + i Y i

j
I
J , (4.5)

where we should plug in the background values of all the fields. In terms of the differential
operator M, the Green’s function G can be obtained as the solution to the equation

MiI
jJ(x)GjJkK(x, x′) = − δikδ

I
K√

g(x′)
δ(3)(x− x′) . (4.6)

Formally, one can solve this equation by first diagonalizing MiI
jJ(x). If λ~n are the eigen-

values and φiI~n (x) are the corresponding eigenfunctions, as in

MiI
jJ(x)φjJ~n (x) = λ~nφ

iI
~n (x) , (4.7)

then the Green’s function is

GiI
jJ(x, x′) = −

∑
~n

φiI~n (x)φjJ~n (x′)∗
λ~n

. (4.8)

Here, ~n is a multi-index labeling the eigenvalues and eigenvectors. This sum, however, is
in general difficult to evaluate for arbitrary x and x′, but we will nevertheless be able to
use this formula to evaluate the 1d theory two-point function (4.3).

Let us proceed to solve the eigenvalue problem (4.7). The squashed sphere (2.1) has
SU(2)×U(1) isometry, so it should be possible to write the operator MiI

jJ in terms of the
SU(2) quadratic Casimir C2 and the U(1) generator T

C2 = LvliLvli = −∂2
θ − cot θ∂θ −

1
sin2 θ

(
∂2
φ + ∂2

ψ − 2 cos θ∂φ∂ψ
)
, T = −2i∂ψ , (4.9)
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where vli are the Killing vectors in (2.17). An explicit examination of (4.5) gives

r2MiI
jJ =

4C2 −
(

1− b2
1 + b2

)2

T 2 + b2(2 + 4m2 + b2)
(1 + b2)2

 δijδIJ
+ 2 (1− b2)

(1 + b2)2T
(
(σ3)ijδIJ + 2i bm δij(σ3)IJ

)
− 4i bm

(1 + b2)2 (σ3)ij(σ3)IJ .

(4.10)

The eigenfunctions and eigenvalues of MiI
jJ can be determined as follows. To simplify

notation, let us introduce the embedding coordinates

w1 = cos θ2 e
i
2 (φ+ψ) , w2 = sin θ

2 e
i
2 (−φ+ψ) . (4.11)

It is straightforward to check that
(
w1
w2

)
and

(
−w̄2
w̄1

)
form doublets under SU(2) — hence

they have SU(2) spin ` = 1/2 and C2 = `(`+ 1) = 3/4 — and have T charges +1 and −1,
respectively. By taking tensor products of these SU(2) doublets, one can construct simul-
taneous eigenfunctions of C2 and T , with eigenvalues `(`+ 1) under C2 and T eigenvalues
ranging from −2` to 2` in even steps. A complete basis of normalizable functions on the
squashed sphere can thus be labeled as ψ`m`n, with ` ∈ 1

2Z≥0 and m` = −`,−` + 1, · · · , `
labeling the SU(2) quantum numbers, and n = −2`,−2`+2, · · · , 2` being the charge under
T . There is a unique such function for every `,m`, n. The eigenvalues and eigenfunctions
of MiI

jJ are then labeled by the quantum numbers (`,m`, n), as before, and also by the
eigenvalues ± under (σ3)ij and (σ3)IJ . The eigenvalues of MiI

jJ are easy to read off
from (4.10) by replacing C2 → `(` + 1) and T → n, as well as (σ3)ij → s1 ∈ {±} and
(σ3)IJ → s2 ∈ {±}:18

λs1s2`,m`,n
= 4
r2

[
`+ b2 − 2ibs1s2m+ (1− b2)s1n

2(b2 + 1)

] [
`+ 1− b2 − 2ibs1s2m+ (1− b2)s1n

2(b2 + 1)

]
,

(4.12)

with the corresponding eigenfunctions being

(φ++
`,m`,n

)iI = ψ`m`nδ
i
1δ
I
1 , (φ+−

`,m`,n
)iI = ψ`m`nδ

i
1δ
I
2 ,

(φ−+
`,m`,n

)iI = ψ`m`nδ
i
2δ
I
1 , (φ−−`,m`,n)iI = ψ`m`nδ

i
2δ
I
2 .

(4.13)

We can then combine (4.3) and (4.8) to compute the 1d two-point function

GIJ(α12) = ui(α1)uj(α2)
∑
~n

φiI~n (α1)φjJ~n (α2)∗
λ~n

, (4.14)

where the φiI are evaluated at θ = 0 and angular coordinates αi. Note that when θ = 0,
we have w2 = 0 and w1 = eiα, so the only eigenfunctions that contribute to the sum (4.3)
are those that do not vanish when w2 = 0. As mentioned above, one can construct

18The multi-index ~n appearing in (4.7)–(4.8) is ~n = (`,m`, n, s1, s2).
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all eigenfunctions as polynomials in wi and w̄i, and one can show that the normalized
eigenfunctions that do not vanish when w2 = 0 are

fp,q = 1 + p+ q

r3π2(b+ b−1)

q∑
k=0

(−1)k
(
p

k

)(
q

k

)
wp−k1 w̄q−k1 wk2 w̄

k
2 , (4.15)

with ` = (p+ q)/2 and n = p− q.
Performing the sums in (4.14) is rather onerous, but the resulting Green’s function is

given by19

GIJ(α12) ≡ 〈ZI(α1)ZJ(α2)〉 =
(
i

sgnα1212 − tanh πmσ3
b

8πbr e
mσ3
b
α12

)I
J
, (4.16)

where 12 is the 2 × 2 identity matrix. Note that the final answer only depends on b in a
very simple way and is therefore closely related to the round sphere result [26].

While this formula was derived for a single hypermultiplet, it is straightforward to gen-
eralize it to nh free hypermultiplets. This theory has an USp(2nh) flavor symmetry, which
can be coupled to a background vector multiplet that can be given the supersymmetry-
preserving values in (2.41) with µ = maT

a
F , where T aF are the USp(2nh) generators. In this

case, the two point function is

GIJ(α12) ≡ 〈ZI(α1)ZJ(α2)〉 =

i sgnα1212nh − tanh πmaTaF
b

8πbr e
maT

a

b
α12

I
J

, (4.17)

where now 12nh is the 2nh× 2nh identity matrix. To derive (4.17), we can first perform an
USp(2nh) transformation to putmaT

a
F in block diagonal form, with each block proportional

to σ3. Then we can use the result (4.16) for each hypermutiplet.
Before moving on to discussing gauge theories, let us ask whether it is possible to

write down a 1d theory that reproduces the two-point function (4.17). Since the two-point
function (4.17) is the same as that in [26] with extra factors of b sprinkled around, it is not
hard to see that the 1d theory that reproduces (4.17) has partition function

Z1d =
∫ 2nh∏

I=1
DZI exp

{
4πir

∫
dα
(
bZI∂αZI + ZIma(T a)IJZJ

)}
. (4.18)

To show this, note that the Green’s function (4.17) obeys

−8πir(b12nh∂α −maT
a)IJGJK(α) = δIKδ(α) , (4.19)

which is the equation that follows from (4.18). An alternative path to reaching this 1d
action was described in [34] by explicitly using equivariant localization of the 3d action.

19At coincident points, we take GIJ(0) = −i tanh πmσ3
b

8πbr δIJ .
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4.2 Gauge theories

Next, let us consider the 1d sector of gauge theories with dynamical vector multiplets and
hypermultiplets. The dynamical vector multiplets gauge a subgroup G of the USp(2nh)
symmetry of nh free hypermultiplets. Within USp(2nh), the commutant of G is the flavor
symmetry group GF , for which one can turn on real mass parameters maT

a
F as above. In

this case, the action is simply

S[V,H] = Shyp[HI ,V + Vbk
∣∣
µ=maTaF

] + SYM[V] . (4.20)

Using the supersymmetry variations (see appendix B), one can show that the Yang-
Mills action SYM can be written as

SYM = δ+δ−

(
i

2g2
YM

(σ3)j i(σ3)qp
∫

d3x
√
gTr

{
ΩipΩjq − 2LpqY i

j

})
, (4.21)

where δ+ is the supersymmetry transformation associated to QH and δ− the transformation
associated to the supercharge obtained from QH by flipping the relative sign between
the two terms. From this relation it immediately follows that the Yang-Mills action is
QH -exact. An immediate consequence of this fact is that correlation functions of the 1d
operators will be independent of the Yang-Mills coupling.

Owing to the fact that the Yang-Mills action is positive-definite, we can take gYM → 0,
and in this limit the dynamical vector multiplet localizes on configurations on which SYM
vanishes. These configurations are nothing but the supersymmetric backgrounds (2.41) we
found in section 2.4, namely

V = Vbk
∣∣
µ=σ , (4.22)

where σ lies within the Lie algebra of G. The entire contribution from the vector multiplet
comes from the one-loop determinant of fluctuations of the vector multiplet fields around
the configurations (4.22), which we now turn to.

4.3 One-loop determinants

In this subsection, we determine the one-loop determinant of fluctuations of a dynami-
cal vector multiplet with action SYM[V] expanded around the supersymmetric configura-
tion (4.22), as well as the one-loop determinant of fluctuation of a hypermultiplet coupled
to a background vector multiplet which is given the supersymmetric profile Vbk

∣∣
µ=σ. The

first computation is relevant for the localization of the dynamical vector multiplet, while
the latter will be useful for determining an action for the 1d sector of general gauge theories.
We will start with the hypermultiplet because we have already computed the eigenvalues
of the scalar fluctuations in (4.12).

Given that the N = 4 gauge theories we study here are particular cases of N = 2
theories, and that general N = 2 theories on the squashed sphere were studied in [9, 10],
we can determine the one-loop determinants from appropriately combining these N = 2
results. On general grounds, the N = 2 R-symmetry is the diagonal linear combination of
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the U(1)H and U(1)C Cartans of SU(2)H and SU(2)C , respectively, normalized such that
the R-charges of the highest weight states of SU(2)H or SU(2)C fundamentals are equal to
1/2. The difference of the two Cartans is a flavor symmetry F from the N = 2 point of
view. Thus, we have the following decompositions:

N = 4 multiplets N = 2 multiplets

nH Hypers : −→
[
2nH Chirals : (z1I , ζI2) w/ (R,F ) = (1/2, 1)

]
(ziI , ζIp)

ñH Twisted hypers : −→
[
2ñH Chirals : (z̃1Ĩ , ζ̃ Ĩ2) w/ (R,F ) = (1/2,−1)

]
(z̃pĨ , ζ̃ Ĩi)

Vector : −→
[
Vector : (L12, Y 12, Aµ,Ω11,Ω22) w/ F = 0

]
(Lpq, Y ij , Aµ,Ωip) ⊕

[
Chiral : (L11,Ω21, Y 22) w/ (R,F ) = (1,−2)

]
Twisted vector : −→

[
Vector : (L̃12, Ỹ 12, Ãµ, Ω̃11, Ω̃22) w/ F = 0

]
(L̃ij , Ỹ pq, Ãµ, Ω̃ip) ⊕

[
Chiral : (L̃11, Ω̃21, Ỹ 22) w/ (R,F ) = (1, 2)

]

(4.23)

A potential challenge is that there are two SU(2)×U(1)-preservingN = 2 backgrounds:
the one in [9] has the property that the partition function is independent of the squashing
parameter b, while for the background in [10] the partition function depends non-trivially
on b. Our N = 4 background corresponds to the latter, as can be seen from matching
the form of the hypermultiplet scalar eigenvalues (4.12) to the eigenvalues of the scalars
in the N = 2 chiral multiplets given in [10].20 (Nevertheless, as we will see, the partition
functions of our N = 4 theories will be independent of b when the flavor mass parameters
and FI parameters are set to zero, and will have a very simple dependence on b when they
are not.)

The one-loop determinants for N = 2 chiral and vector multiplets were computed
in [10]. Let us consider a chiral multiplet transforming in representation R′ ⊗ R′F of a
product G′ ×G′F of gauge and flavor symmetries,21 coupled to both dynamical and back-
ground vector multiplets. The dynamical and backgrounds vector multiplets are restricted
to supersymmetric configurations parameterized by constant values σ′ of a scalar in the
vector multiplet and real mass parameters m′. Here, σ′ and m′ belong to the Cartans of
the Lie algebras g′ of G′ and g′F of G′F , respectively. For a chiral multiplet of R-charge R,
the one-loop determinant is [10]

∆R
′,R′F

chiral (R, σ′,m′) =
∏

(ρ′,ρ′F )∈(WR′ ,WR′
F

)

1

sb

(
(b+b−1)(ρ′·σ′+ρ′F ·m′−i(1−R))

2

)
(4.24)

20It is also straightforward to check that the eigenvalues in (4.12) do not match the eigenvalues in [9] in
that the relative coefficient of `(`+ 1) and n2 is different in that case.

21We use primes here to denote properties of the N = 2 theory.
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where WR denotes the set of weights of the representation R. Here, sb is the double sine
function defined as

sb(x) ≡
∏

m,n≥0

mb+ nb−1 + b+b−1

2 − ix
mb+ nb−1 + b+b−1

2 + ix
. (4.25)

For an N = 2 vector multiplet, one can write a similar formula in terms of a product over
the roots of g′. Denoting by W ′adj the set of roots, we have

∆N = 2 vector(σ′) =
∏

ρ′∈W ′adj

sb

(
(b+ b−1)(ρ′ · σ′ − i)

2

)
. (4.26)

For a hypermultiplet that decomposes as a chiral in representation (R⊗RF )⊕(R⊗RF )
of G×GF and which has flavor charge F under the U(1) flavor symmetry mentioned above,
we have

ρ′ = ρ ρ′F = (F, ρF ) , for chiral in R⊗RF ,
ρ′ = −ρ ρ′F = (F,−ρF ) for chiral in R⊗RF .

(4.27)

By matching the scalar eigenvalues we identify

σ′ = 2σ
b+ b−1 , m′ =

( 2mF

b+ b−1 ,
2m

b+ b−1

)
, mF ≡

i(b− b−1)
4 , (4.28)

so that we have

ρ′ · σ′ = 2ρ · σ
b+ b−1 , ρ′ ·m′ = 2ρ ·m

b+ b−1 + i

2
b− b−1

b+ b−1 f .
(4.29)

From the N = 2 point of view, the term proportional to the charge F corresponds to a real
massmF for this flavor symmetry that is needed in order to preserve N = 4 supersymmetry
(See also [42]). We can plug (4.29) into (4.24) with appropriate values for R and F .

A hypermultiplet consists of two chiral multiplets with equal charges (R,F ) = (1
2 , 1)

but opposite ρ→ −ρ. The resulting one-loop determinant is given by:

∆hyper(σ) =
∏

(ρ,ρF )∈(WR,WRF )

1
sb
(
ρ · σ + ρF ·m− i

2b

)
sb
(
−ρ · σ − ρF ·m− i

2b

)
=

∏
(ρ,ρF )∈(WR,WRF )

1
2 cosh(π ρ·σ+π ρF ·m

b )
,

(4.30)

where the second equality can be derived from the definition (4.25) of the double sine
function. Similarly, for a twisted hypermultiplet we have a factor with (R,F ) = (1

2 ,−1)
and another factor with the same values of (R,F ) but ρ→ −ρ:

∆twisted hyper(σ) =
∏

(ρ,ρF )∈(WR,WRF )

1
sb
(
ρ · σ + ρF ·m− ib

2

)
sb
(
−ρ · σ − ρF ·m− ib

2

)
=

∏
(ρ,ρF )∈(WR,WRF )

1
2 cosh(πb ρ · σ + πb ρF ·m) ,

(4.31)
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An N = 4 vector multiplet is a direct sum of an N = 2 vector multiplet and an adjoint
chiral multiplet with (R,F ) = (1,−2). For an N = 2 vector with F = 0, from (4.26)
and (4.28) we obtain

∆N = 2 vector(σ) =
∏

α∈W ′adj

sb

(
σ − i(b+ b−1)

2

)

=
∏

α∈W ′adj

√
4 sinh(πbα · σ) sinh

(1
b
πα · σ

)
.

(4.32)

For an N = 2 chiral with (R,F ) = (1,−2), we have

∆adj chiral(σ) =
∏

α∈Wadj

1
sb
(
α · σ − i(b−b−1)

2

) = 1
brkG

∏
α∈W ′adj

√√√√sinh
(

1
bπα · σ

)
sinh(πbα · σ) , (4.33)

where rkG is the dimension of the Cartan subalgebra of G. Multiplying (4.32) and (4.33)
we obtain the contribution from an N = 4 vector multiplet:

∆N = 4 vector(σ) = 1
brkG

∏
α∈W ′adj

2 sinh
(1
b
πα · σ

)
. (4.34)

For a twisted vector multiplet, we need to replace the adjoint chiral of (R,F ) = (1,−2)
with an adjoint chiral with (R,F ) = (1, 2). This simply gives the reciprocal of (4.33), so
in the end we find

∆N = 4 twisted vector(σ) = brkG
∏

α∈W ′adj

2 sinh (πbα · σ) . (4.35)

4.4 A 1d theory for the Higgs branch

We can now put all these ingredients together in order to write down a succinct description
of the 1d Higgs branch theory of 3d gauge theories with vector multiplets and hypermul-
tiplets. In the general case, the squashed sphere partition function of these theories is

ZS3
b

= 1
|W|

∫
h
dσa ∆b(σ)Z1d , ∆b(σ) ≡ 1

brkG

∏
α∈W ′adj

2 sinh
(1
b
πα · σ

)
(4.36)

where the integration is over the Cartan h of the Lie algebra g = Lie(G), |W| is the order of
the Weyl group of g, and, as above, Z1d is given by the contribution of the hypermultiplet

Z1d(σ,m) =
∏

(ρ,ρF )∈(WR,WRF )

1
2 cosh

(
π
b (ρ · σ + ρF ·m)

) . (4.37)

However, Z1d can be written as the one-dimensional Gaussian theory in (4.18), namely

Z1d(σ,m) =
∫ 2nh∏

I=1
DZI exp

{
4πir

∫
dα
(
bZI∂αZI + ZI(σaT a +maT

a
F )IJZJ)

)}
,

(4.38)
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provided that the integration contour of the path integral is over a middle-dimensional
integration cycle, as in the round sphere case discussed in [26]. In line with the previous
discussions, for every U(1) factor in the gauge group, we can introduce an FI term, which
leads to an additional insertion of e−8π2 i b ζ σ in (4.36).

The advantage of writing the partition function as a one-dimensional Gaussian theory
coupled to a matrix model is that in this formulation we get access to a much wider range
of observables. Indeed, the one-dimensional theory can now be used to calculate correlation
functions of the twisted Higgs branch operators inserted along the circle parameterized by
α as follows,

〈O1(α1) · · · On(αn)〉b,m = 1
ZS3

b
|W|

∫
h

dσ∆b(σ) 〈O1(α1) · · · On(αn)〉σ Z1d(σ,m) , (4.39)

where 〈· · · 〉σ denotes the correlation function computed in the 1d theory. Since the latter
is Gaussian we can simply compute these correlation functions using Wick contractions
with the propagator GIJ(α1 − α2) computed in (4.17).

Note that the dependence on b of the correlation functions can be removed after field
redefinitions. In particular, after redefining m→ bm and Z → 1√

b
Z, then after the change

of variables σ → b σ in (4.36) and (4.39) the entire b dependence drops out. Thus, if we
did not perform these redefinitions and change of variables, we would conclude that the b
dependence can be inferred from the scaling dimensions ∆i of the 3d operators from which
the Oi originate:

〈O1(α1) · · · On(αn)〉b,m = b
∑n

i=1 ∆i

(
〈O1(α1) · · · On(αn)〉1,m

∣∣∣∣
m→m/b

)
. (4.40)

As was shown in [26], it is possible to interpret this one-dimensional Gaussian theory,
coupled to a matrix model as a gauge-fixed gauged quantum mechanics. This can be seen
by rewriting the partition function (4.36) as follows. First, we rewrite the integral as an
integral over the full Lie algebra instead of the Cartan. Doing so we introduce an additional
Vandermonde determinant and remove the factor |W|. Noting then that,

2 sinh
(
π
bα · σ

)
α · σ

= C
∞∏
n=1

(
n2 + α · σ

b

)
, (4.41)

where C is a divergent α ·σ-independent normalization factor. It then immediately follows,
analogous to [26], that we can rewrite (4.36) as

ZS3
b

=
∫ dσ

b
Z1d(σ)

∫
D′cD′c̃ exp

[
−
∫

dα c̃ ∂α
(
∂α + α · σ

b

)
c

]
. (4.42)

However, this additional factor can simply be interpreted as the Faddeev-Popov ghost
action [57] corresponding to a gauge fixing condition ∂αAα = 0 for a 1d gauge field A,
solved by Aα = σ/b. Combining the above, we find that when the real masses and FI
parameters vanish, our theory is described by a gauge-fixed version of the following gauged
quantum mechanics

ZS3
b

=
∫
DADZI exp

[
4πir b

∫
dαZIDαZI

]
, Dα ≡ ∂α +Aα . (4.43)
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In particular, what this formulation teaches us is that(
ZIR(T )ZI

)
(α) = 0 , for all T ∈ g (4.44)

up to contact terms. When non-trivial real masses and FI parameters are turned on, the
covariant derivative gets modified to Dα = ∂α + Aα + mr

b and the path integral acquires
an extra factor exp

[
−8π2 i b

∫
TrζA

]
. In addition, in the presence of non-vanishing FI

parameters, the right hand side of (4.44) receives a contribution proportional to the FI
parameters.

4.5 Theories with twisted vector and hypermultiplets

One can now go through the same steps to derive the 1d theory for a gauge theory with
twisted vector multiplets and twisted hypermultiplets. In this case the partition function
takes the form

Z̃S3
b

= 1
|W̃|

∫
h
dσ̃a ∆̃b(σ̃)Z̃1d , ∆̃b(σ̃) ≡ b|G̃|

∏
α̃∈W ′

ãdj

2 sinh (πbα̃ · σ̃) , (4.45)

where |W̃| is the order of the Weyl group of the gauge algebra g̃ = Lie(G̃) associated to the
dynamical twisted vector multiplets.The 1d partition function of a twisted hypermultiplet
is

Z̃1d =
∏

(ρ̃,ρ̃F )∈(W
R̃
,W
R̃F

)

1
2 cosh(πb ρ̃ · σ̃ + πb ρ̃F · m̃) . (4.46)

where m̃ are the real mass parameters. The resulting theory (4.45) differs from (4.36)
only in the replacement b → 1/b, and thus everything we mentioned above also holds in
this case, provided one makes such a replacement. In particular, the 1d partition function
appearing in (4.45) can be written as

Z̃1d =
∫ 2nh∏

I=1
DZ̃I exp

{
4πir

∫
dα
(1
b
Z̃I∂αZ̃I + Z̃I(σ̃aT̃ a + m̃aT̃

a
F )IJ Z̃J)

)}
, (4.47)

and the b dependence is as in (4.40), with b→ 1/b.

5 Mass deformations of the 1d theory

So far, we described a cohomological construction for the one-dimensional theories, TH and
TC , in section 3, and then, in section 4, we discussed in detail the resulting TH theory
arising in 3d theories containing either vector and hypermultiplets or twisted vector and
twisted hypermultiplets. However, the cohomological construction in section 3 applies
beyond this class of examples. In this section, we return to this more general setup and
comment on some additional properties of the 1d theories present for any 3d N = 4 QFT
in the su(2|1) × psu(1|1) squashed sphere background, irrespective of their Lagrangian
descriptions.22

22A similar argument to the one presented in this section was derived independently in [47].
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In particular, we show that real mass deformations in the 3d theory are equivalent, up
to QH -exact terms, to analogous deformations in the 1d TH sector. Abstractly, a real mass
deformation is obtained by coupling a conserved current multiplet J to a background vector
multiplet Vbk which is given the supersymmetry-preserving expectation values in (2.41),
with µ = m:

S3d
m = m

∫
d3x
√
g

[
b−1 − b
b−1 + b

j3 − 1
2br (σ3)ijJ j i + i

2 (σ3)p qKq
p

]
. (5.1)

We will show that

S3d
m = S1d

m + (QH -exact term) , (5.2)

where
S1d
m = πmr2

∫ π

−π
dα
[
J1

1 − eiαJ1
2 + e−iαJ2

1 − J2
2
]
. (5.3)

What this means is that insertions of S3d
m into correlation functions of supersymmetric

operators are equivalent to insertions of S1d
m .23 One can argue for the validity of (5.2) in

theories with vector multiplets and hypermultiplets using the explicit description of the
1d theory, but not in the more general class of N = 4 theories that also include non-
Abelian Chern-Simons interactions. Eq. (5.2) was used in [19, 21, 58–60] and checked
in a perturbative weak-coupling expansion in ABJM theory in [61]. It is analogous to
the equivalence between deformations of the S4 partition functions by the integrated top
component of a chiral multiplet and the insertion of the bottom component of the chiral
multiplet at the North and South poles of the sphere [17, 62]. In the supersymmetric
background of section 2.1.2, the SUSY parameter ε corresponding to the QH supercharge is

ε11 =
(√

b , 0
)
, ε12 =

e i2 (φ−ψ) sin θ
2√

b
,
√
be

i
2 (φ+ψ) cos θ2

 ,

ε22 =
(
0 ,−
√
b
)
. ε21 =

−√be− i
2 (φ+ψ) cos θ2 ,

e− i
2 (φ−ψ) sin θ

2√
b

 .

(5.4)

What we would like to show is that the integrand of (5.1) is a QH -exact term, namely
ε̄′ipδΞip for some coefficients ε′ip, plus a total derivative everywhere away from the circle at
θ = 0. It is important that such a relation should fail precisely at θ = 0, because otherwise
S3d
m would be QH -exact and therefore its insertion in supersymmetric correlators would

produce a vanishing result.
Using the supersymmetry variations of the conserved current multiplet, given in (B.24)

one can show that it is possible to write

S3d
m =

∫
d3x
√
g
[
ε̄′ipδΞip −Dµ(ε̄′ipγµεjpJ ij)

]
, (5.5)

23An analogous equivalence holds when a theory which has a twisted flavor symmetry G̃F is deformed
by a twisted real mass parameter m̃ by coupling the twisted conserved flavor current multiplet J̃ to a
background twisted vector multiplet Ṽ.
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provided that the following three conditions are obeyed,

−iε̄′ipγcεip −Acbk
∣∣
µ=m = 0 , ε̄′iqε

ip − i

2Lbk
p
q

∣∣
µ=m = 0 ,

−Dµ

(
ε̄′ipγ

µεjp
)
− Cε̄′ipεjp + ε̄′ipη

jp − i

2Y
bk j

i = 0 .
(5.6)

A bit of algebra shows that all these conditions are satisfied if one chooses

ε̄′11 =
(

0,−2i
√
be−iψm csc θ
b2 + 1

)
, ε̄′12 =

(
0,− ib

3/2e−i(φ+ψ)/2m sec θ
b2 + 1

)
,

ε̄′21 =
(

0, i
√
bei(φ−ψ)/2m csc θ

b2 + 1

)
, ε̄′22 = (0, 0) .

(5.7)

Because ε̄′ipδΞip is by definition QH -exact, we can then write

S3d
m = −

∫
d3x
√
g Dµ

(
ε̄′ipγ

µεjpJ ij
)

+ (QH -exact term) . (5.8)

One can explicitly check that ε̄′ipγµεjp is not a smooth vector field over the entire S3
b — if it

were, then, as mentioned above, S3d
m would be QH -exact. The vector field ε̄′ipγµεjp fails to

be smooth precisely along the θ = 0 circle, but it nevertheless stays bounded everywhere.
To perform the integration in (5.8), it is thus useful to split the integration range into two
regions:

S3d
m = −

∫
θ>θ0

d3x
√
gDµ

(
ε̄′ipγ

µεjpJ ij
)
−
∫
θ<θ0

d3x
√
gDµ

(
ε̄′ipγ

µεjpJ ij
)

+ (QH -exact term),
(5.9)

for some θ0 > 0. In the limit θ0 → 0, the second term vanishes because ε̄′ipγµεjp is bounded.
Applying Stokes’ theorem to the first integral, we obtain

S3d
m = − lim

θ0→0

∫
θ = θ0

d2x
√
hnµε̄

′
ipγ

µεjpJ ij + (QH -exact term) , (5.10)

where h is the determinant of the induced metric on the θ = θ0 surface, and nµ is the
outward pointing unit normal. Taking θ0 → 0 and performing the integral over the angle
β parameterizing the shrinking circle, the deformation term becomes

S3d
m = πmr2

∫ π

−π
dα
[
J1

1 − eiαJ1
2 + e−iαJ2

1 − J2
2
]

+ (QH -exact term)

= S1d
m + (QH -exact term) .

(5.11)

Hence, S3d
m and S1d

m differ only by a QH -exact term, which is what we set out to prove.

6 Discussion

In this paper we studied the correlation functions of a particular sector of operators in
N = 4 QFTs on the squashed sphere. The main results are summarized as follows:
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• We formulated N = 4 squashed sphere backgrounds, preserving either a su(2|1) ×
psu(1|1) or a psu(2|2)× u(1) superalgebra, and described how to put gauge theories
containing vector and hypermultiplets on these backgrounds.

• For the su(2|1) × psu(1|1)-invariant N = 4 theories, we found two protected one-
dimensional sectors, TH and TC . When the N = 4 theories have Lagrangian de-
scriptions in terms of vector multiplets and hypermultiplets, the TH and TC sectors
are related to the Higgs and Coulomb branches of these theories, analogously to the
one-dimensional sectors found on the round three-sphere [26, 32, 33].

• For N = 4 gauge theories with matter hypermultiplets, we used supersymmetric
localization to derive an explicit description of the TH sector. Even though all the
intermediate steps were greatly complicated by the introduction of the squashing,
the end result is remarkably similar to the round sphere case, and, after appropriate
rescalings, the dependence on the squashing parameter b can be removed entirely.

• We showed that for any theory on the squashed sphere, irrespective of Lagrangian
description, real mass deformations of the full theory are translated into deformations
of the one-dimensional theory.

There are various questions we leave open for future research. First of all, it would be
interesting to investigate whether there exists a more fundamental reason for the trivial
b-dependence of correlation functions in the TH sector that we observed in this work.
In particular, it would be interesting to see whether such a trivial b-dependence extends
beyond the class of theories we studied here and/or to the TC sector. A possibility is that
such a trivial b-dependence is required by supersymmetric Ward identities, in which case
it is plausible that a general proof would be available.

In this work, we focused on gauge theories with vector and hypermultiplets, but the
general framework developed in section 3 can be applied to a wider range of theories,
such as the Chern-Simons matter theories discussed in [48], ABJ(M) theory [49, 50], and
generalizations thereof [51, 52]. The main difficulty to studying such theories using super-
symmetric localization is that at present there is no formulation of such theories where the
algebra of the needed supercharges closes off-shell. Nevertheless, there is no obstruction
that we are aware of to obtaining such an off-shell formulation.

As already mentioned in the main text, one can consider other N = 4 supersymmetric
backgrounds and investigate whether they admit protected sectors. While in this paper we
studied squashed sphere backgrounds with SU(2)×U(1) isometry, it would be interesting
to see whether such a large isometry group was necessary for preserving the 1d sectors.
One could also investigate, for instance, a squashed sphere with just U(1)×U(1) isometry.
Another interesting case is the S2×S1 case discussed in [34] for free hypermultiplets coupled
to background vector multiplets.

– 33 –



J
H
E
P
0
8
(
2
0
2
2
)
0
5
9

Index type Range Meaning
µ, ν, ρ, . . . 1, 2, 3 Spacetime indices
a, b, c, . . . 1, 2, 3 Tangent bundle indices
i, j, k, . . . 1, 2 SU(2)H indices
p, q, r, . . . 1, 2 SU(2)C indices
α, β, . . . 1, 2 Spinor indices
I, J,K, . . . 1, 2, . . . , 2nh Fundamental USp(2nh) indices
Ĩ , J̃ , K̃, . . . 1, 2, . . . , 2ñh Fundamental USp(2ñh) indices

Table 2. The various types of indices used in this paper. The labels nh and ñh denotes the number
of hypermultiplets and twisted hypermultiplets respectively.
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A Conventions

In this appendix we collect our conventions and notation. We employ a plethora of indices
all of which are summarized in table 2 together with their respective meanings.

We will work exclusively in three-dimensional Euclidean signature where we choose
the γ matrices as follows

γ1 = σ1 , γ2 = σ2 , γ3 = σ3 . (A.1)

The Pauli matrices σa are given by the standard expressions

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.2)

The charge conjugation matrix C = iσ2 and the complex conjugation matrix B = αCT are
defined such that

γTa = −CγaC−1 , γ∗a = BγaB
−1 . (A.3)

In Euclidean three-dimensional space one cannot consistently define a reality condition to
define Majorana spinors. We will introduce the following ‘conjugate’ spinor

λ̃ = λTC , (A.4)

which after Wick rotation to Lorentzian signature becomes the Majorana conjugate of the
Lorentzian spinor. Both the spinorial and SU(2)H/C indices are raised and lowered with
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the SU(2)-invariant tensor εij , εpq or εαβ . We use the NW-SE convention for contracting
both spinorial and SU(2)H/C indices, and hence we have

εijε
jk = −δki , ε12 = ε12 = 1 . (A.5)

The symplectic indices are raised and lowered with the symplectic form εIJ or εĨ J̃ following
the same NW-SE convention.

B 3d N = 4 conformal supergravity

In this appendix we collect some useful facts about N = 4 conformal supergravity in 3d.
We use the conventions of [43], and we will summarize their results for the supersymme-
try transformations and conformal actions for hypermultiplets and vector multiplets. In
addition, we give some more details on how one can gauge fix the conformal action for the
vector multiplets using a compensator vector multiplet in order to obtain the Yang-Mills
action on the squashed sphere.

B.1 Supersymmetry variations

The field content of the 3d N = 4 Weyl multiplet is given by

Bosonic : eµ
a , bµ , Vµ

i
j , Ṽµ

p
q , C , D ,

Fermionic : ψipµ , χip .
(B.1)

The Poincaré and conformal supersymmetry transformations of the fields are24

δψipµ = 2Dµεip − γµηip , (B.3)

δχip = 2 /DCεip +Dεip − 1
2
/̃G
p
qε
iq + 1

2
/G
i
jε
jp + 2Cηip , (B.4)

δeµ
a = ε̄ipγ

aψipµ , (B.5)

δbµ = 1
2 ε̄ipφ

ip
µ −

1
2 η̄ipψ

ip
µ + λaKeµa , (B.6)

δVµij = ε̄jpφµ
ip − 2Cε̄jpψµip − ε̄jpγµχip + η̄jpψµ

ip − trace , (B.7)
δAµpq = ε̄iqφµ

ip + 2Cε̄iqψµip + ε̄iqγµχ
ip + η̄iqψµ

ip − trace , (B.8)

δC = 1
2 ε̄ipχ

ip , (B.9)

δD = ε̄ip /Dχ
ip − η̄ipχip . (B.10)

24Note that the sign of the field strengths of the R-symmetry background fields in the supersymmetry
variation for χ are opposite to those in [43]. One can check that this is indeed the correct sign in our
conventions by checking the supersymmetry algebra on the R-symmetry gauge fields, i.e.

[δ1, δ2]Vµij = ξaGaµ
i
j − 2∂µvij − Vµikvkj + Vµ

k
jv
i
k − trace . (B.2)

The first term gives the correct covariant general coordinate transformation, and it would have been absent
with the original sign.
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In these equations, G and G̃ denote the field strengths of V and Ṽ , respectively, and the
covariant derivative of ε is defined as

Dµεip =
(
∂µ + 1

4ω
ab
µ γab + 1

2bµ
)
εip + 1

2Vµ
i
jε
jp + 1

2 Ṽµ
p
qε
iq . (B.11)

Further, from the curvature constraints on finds

fµ
a = Rµ

a − 1
4eµ

aR . (B.12)

In 3d N = 4 supergravity, vector and twisted vector multiplets have the following
components

Vector multiplet V Twisted vector multiplet Ṽ
Bosonic: Lpq , Y i

j , Aµ , L̃ij , Ỹ p
q , Ãµ ,

Fermionic: Ωip Ω̃ip .

Their supersymmetry variations are given by

δΩip = /DLpqεiq −
1
2Fabγ

abεip + Y i
jε
jp + CLpqε

iq + Lpqη
iq − 1

2 [Lpq, Lqr] εir ,

δLpq = 2ε̄iqΩip − δpq ε̄irΩir ,

δAµ = ε̄ipγµΩip + Lpq ε̄ipψµ
iq ,

δY i
j = 2ε̄jp /DΩip − Lpq ε̄jpχiq − 2Cε̄jpΩip − η̄jpΩip + ε̄jp

[
Ωiq, Lpq

]
− trace ,

(B.13)

and

δΩ̃ip = /DL̃ijεjp −
1
2 F̃abγ

abεip + Ỹ p
qε
iq − CL̃ijεjp + L̃ijη

jp − 1
2
[
L̃ij , L̃

j
k

]
εkp ,

δL̃ij = 2ε̄jpΩ̃ip − δij ε̄kpΩ̃kp ,

δÃµ = ε̄ipγµΩ̃ip + L̃ij ε̄ipψµ
jp ,

δỸ p
q = 2ε̄iq /DΩ̃ip + L̃ij ε̄jqχ

ip + 2Cε̄iqΩ̃ip − η̄iqΩ̃ip + ε̄iq
[
Ω̃jp, L̃ij

]
− trace ,

(B.14)

where F and F̃ are the field strengths of A and Ã respectively, and the covariant derivatives
on L and L̃ are defined as

DµLpq = ∂µL
p
q + 1

2 Ṽµ
p
rL

r
q −

1
2 Ṽµ

r
qL

p
r ,

DµL̃ij = ∂µL̃
i
j + 1

2Vµ
i
kL̃

k
j −

1
2Vµ

k
jL̃

i
k .

(B.15)

Finally we also consider hypermultiplets and their twisted relatives. Their field content
is given by

hypermultiplet HI Twisted hypermultiplet H̃Ĩ

Bosonic: zi
I , z̃p

Ĩ ,

Fermionic: ζIp ζ̃ Ĩi ,
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A set of nh hypermultiplets consists of 2nh scalars ziI and 2nh fermions ζIp, where I =
1, . . . , 2nh. Similarly, a ñh twisted hypermultiplets consists of scalars z̃pĨ and fermions ζ̃ Ĩi,
with Ĩ = 1, . . . , 2ñh but they transform in the opposite way under the SU(2)H × SU(2)C
R-symmetry. The supersymmetry variations are given by

δzi
I = 2ε̄ipζIp , (B.16)

δζIp = /DziIεip −
1
2Czi

Iεip + 1
2zi

Iηip , (B.17)

δz̃p
Ĩ = 2ε̄ipζ̃ Ĩi , (B.18)

δζ̃ Ĩi = /Dz̃pĨεip + 1
2Cz̃p

Ĩεip + 1
2 z̃p

Ĩηip , (B.19)

where the covariant derivatives are given by

DaziI = ∂azi
I − 1

2z
I
jVa

j
i , (B.20)

Daz̃pĨ = ∂az̃p
Ĩ − 1

2 z̃q
Ĩ Ṽa

q
p . (B.21)

The fields in the hypermultiplet transform in the fundamental representation of USp(2nh).
When we consider hypermultiplets coupled to a background vector multiplet gauging a
subgroup of USp(2nh), the fields in the hypermultiplet transform in the appropriate rep-
resentation R of the gauge group G. In this case an additional term proportional to the
gauge field has to be added to the covariant derivative (B.20), namely

DaziI = ∂azi
I − 1

2z
I
jVa

j
i − iAaIJziJ , (B.22)

Daz̃pĨ = ∂az̃p
Ĩ − 1

2 z̃q
Ĩ Ṽa

q
p − iÃaĨ J̃ z̃p

J̃ , (B.23)

where we also wrote the analogous equation for the twisted hypermultiplets gauged under
a twisted vector multiplet. Finally, in the main text we introduced the conserved multiplet
J = ?Ṽ and its twisted version J̃ = ?V in eqs. (2.44) and (2.46). The supersymmetry
variations for these multiplets can be obtained from those of the twisted vector and vector
multiplet, respectively, and are given by

δJ ij = 2ε̄jpΞip − δij ε̄kpΞkp ,
δΞip = /DJ ijεjp − ijcγcεip +Kp

qε
iq − CJ ijεjp + J ijη

jp ,

δja = −iε̄ipγacDcΞip − iη̄ipγaΞip ,
δKp

q = 2ε̄iq /DΞip + J ij ε̄iqχ
jp + 2Cε̄iqΞip − η̄iqΞip − trace ,

(B.24)

and
δJ̃pq = 2ε̄iqΞ̃ip − δpq ε̄iqΞiq ,
δΞ̃ip = /DJ̃pqεiq − ij̃cγcεip + K̃i

jε
jp − CJ̃pqεiq + J̃pqη

iq ,

δj̃a = −iε̄ipγacDcΞ̃ip − iη̄ipγaΞ̃ip ,
δK̃i

j = 2ε̄jp /DΞ̃ip + J̃pq ε̄jpχ
iq + 2Cε̄jpΞ̃ip − η̄jpΞ̃ip − trace .

(B.25)
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B.2 Lagrangians and gauge fixing

The Lagrangian of a collection of nh hypermultiplets charged under a vector multiplet is
given by

Shyp[HI ,V] =− 1
2

∫ √
gεIJ

(
DµziIDµziJ + 1

4zi
IziJ

(1
2R−D + C2

)
+ 1

2zi
ILpq

J
KL

q
p
K
Lz

iL + i zi
IY i

j
J
Kz

jK

+ iζ
pI /DζJp + iζ

I
pL

p
q
J
Kζ

qK + zi
IΩip

ζJp

)
.

(B.26)

Similarly, the Lagrangian for ñh charged twisted hypermultiplets is given by

St.hyp[H̃Ĩ , Ṽ] =− 1
2

∫ √
gε̃
Ĩ J̃

(
Dµz̃pĨDµz̃pJ̃ + 1

4 z̃p
Ĩ z̃pJ̃

(1
2R+D + C2

)
+ 1

2 z̃p
Ĩ L̃ij

J̃
K̃
L̃j i

K̃
L̃
z̃pL̃ + i z̃p

Ĩ Ỹ p
q
J̃
K̃
z̃pK̃

+ iζ̃iĨ /Dζ̃ J̃i + iζ̃i
Ĩ L̃ij

J̃
K̃
ζ̃jK̃ + z̃i

ĨΩ̃ipζ̃ J̃p

)
.

(B.27)

Here, we introduced the skew-symmetric USp(nh)-invariant tensor εIJ and USp(ñh)-inva-
riant tensor ε̃

Ĩ J̃
. For concreteness we can take these rank-two tensors to be

εIJ = ε̃
Ĩ J̃

=


iσ2 0 0 · · ·
0 iσ2 0 · · ·
0 0 iσ2 · · ·
...

...
... . . .

 . (B.28)

These action are invariant under the full osp(4|4) algebra. Hence the action for hypermulti-
plets on the squashed sphere is simply obtained from the flat space action by covariantizing
all derivatives and inserting the additional mass terms given by the second term on the
first line.

For the vector multiplets we will be interested in a Yang-Mills kinetic term. The
Yang-Mills action, however, does not preserve the full superconformal group, and it cannot
simply be inferred from the flat space action. To construct the non-conformal YM action
for the vector multiplets we will use the tools of superconformal tensor calculus (see [63, 64]
for a review). The strategy we will follow is to start with conformal supergravity coupled
to a set of vector multiplets and gauge fix the unwanted conformal symmetries by adding
an additional abelian compensator vector multiplet. Starting from a conformal action
for nv + 1 vector multiplets we can then obtain the non-conformal action for nv vector
multiplets by fixing the background values of the additional compensator vector multiplet.

Let us very briefly describe the various steps in this process. Starting from conformal
supergravity we gauge fix the special conformal transformations by setting bµ = 0. Since,

– 38 –



J
H
E
P
0
8
(
2
0
2
2
)
0
5
9

all elementary fields, except bµ itself, transform trivially under special conformal transfor-
mations, this gauge is automatically preserved. In order to fix the remaining symmetries we
introduce an additional compensator vector multiplet V0. To fix the SU(2)C R-symmetry
to its Cartan subalgebra we set

L0
p
q = m(σ3)pq . (B.29)

In addition, we set Ωip
0 = 0, which fixes the special conformal supersymmetry transfor-

mations. However, to preserve this gauge choice we have to accompany every Poincaré
supersymmetry transformation by a conformal supersymmetry transformation with the
following field dependent parameter

ηip = 1
2m

/F 0(σ3)pqεiq −
1
m

(σ3)pqY0
i
jε
jq − Cεip . (B.30)

The supergravity theory thus obtained will be a SU(2)H × U(1)C gauged N = 4 Poincaré
supergravity theory, and the Poincaré supersymmetry transformations act as δ = δε + δη
where η is determined by (B.30). In a similar fashion we can add an additional compensator
twisted vector multiplet to gauge fix the SU(2)H symmetry to its Cartan. This will be
necessary when we want to construct a YM action for twisted vector multiplets but we will
not discuss this in detail.

Having discussed the gauge fixing, we can now continue to construct the YM action.
To do so we start from the following conformal action for nv + 1 vector multiplets [43],

Svec = 1
g2
YM

∫ √
gFΣΛ

(
DµLpqΣDµLqpΛ + Lpq

ΣLqp
Λ
(1

2R+D + C2
)

− FµνΣFµνΛ + Y i
j
ΣY j

i
Λ
)
,

(B.31)

where Σ,Λ = 0, 1, · · · , nv. The zeroth vector multiplet corresponds to the compensating
vector multiplet and the function FΣΛ(L) = ∂2F

∂LΣ∂LΛ is a function of the vector multiplet
scalars Lpq that can be obtained as the second derivative of the prepotential F , which in
turn encodes the geometry of the scalar manifold. The dependence of F on the abelian
compensating multiplet is fully determined and we can write it as

F = 2m2FABLpqALqpB − L0
r
sL0

s
r

L0rsL0sr
, (B.32)

where A,B = 1, . . . , nv and the minus sign reflects the fact that L0 belongs to a compen-
sator vector multiplet. Using this expression for the prepotential we can determine the
functions FΣ,Λ as follows,

FAB = FAB , (B.33)

FA0 = − 1
2m2FABL

p
q
BL0

q
p , (B.34)

F00 = − 1
4m2FAB

(
Lpq

ALqp
B − 3

2m2L
p
q
AL0

q
pL

r
s
BL0

s
r

)
. (B.35)
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Substituting these expressions in the conformal action (B.31) we obtain the non-conformal
Yang-Mills action

SYM[V] = 1
g2
YM

∫ √
gFAB

(
DµLpqADµLqpB + Fµν

AFµνB − Y i
j
AY j

i
B

+ Lpq
ALqp

B
[1

2

(1
2R+D + C2

)
+ 1

4m2

(
F0µνF

µν
0 + Y0

i
jY0

j
i

)]
(B.36)

− 1
m2

(
Lpq

AL0
q
p

) (
Lrs

BL0
s
r

) [1
4

(1
2R+D+C2

)
− 3

8m2

(
F0µνF

µν
0 +Y0

i
jY0

j
i

)]

+ 1
2m2

(
Y i

j
AY0

j
i

) (
Lpq

BL0
q
p

))
,

Finally, we can now insert the values for the compensator background vector multiplet
for the respective background which reproduces the bosonic part of the Yang-Mills ac-
tions (2.43)–(2.54) quoted in the main text.

In this work we are mainly interested in theories built out of vector and hypermulti-
plets. However, one can also consider theories with twisted hypermultiplets and twisted
vector multiplets. To write down a twisted Yang-Mills term for dynamical twisted vector
multiplets one can proceed analogous as for the untwisted vector multiplet. In addition to
the gauge fixing procedure introduced above one needs to add an additional compensator
twisted vector multiplet to gauge fix the SU(2)C to its Cartan. After this one can start
from an analogous conformal action as (B.31) and substitute the background values of the
compensator twisted vector multiplet to obtain the twisted Yang-Mills action. We will not
go through this procedure in detail but simply state the resulting action:

SYM[Ṽ] = 1
g̃2
YM

∫ √
gF̃AB

(
DµL̃ijADµL̃j iB + F̃µν

AF̃µνB − Ỹ p
q
AỸ q

p
B

+ L̃ij
AL̃j i

B
[1

2

(1
2R−D + C2

)
+ 1

4m̃2

(
F̃0µνF̃

µν
0 + Ỹ0

p
qỸ0

q
p

)]
− 1
m̃2

(
L̃ij

AL̃0
j
i

) (
L̃kl

BL̃0
l
k

) [1
4

(1
2R−D+C2

)
− 3

8m̃2

(
F̃0µνF̃

µν
0 +Ỹ0

p
qỸ0

q
p

)]

+ 1
2m̃2

(
Ỹ p

q
AỸ0

q
p

) (
L̃ij

BL̃0
j
i

))
,

(B.37)
which can equivalently be obtained from the untwisted action (B.37) through the mirror
map (2.12).

C Supersymmetry algebra

This appendix discusses in some detail the N = 4 superconformal algebra and how its
generators act on local operators. Although the main application in this paper is to non-
conformal theories for which the conformal symmetry is broken, it is nonetheless very useful
to study the action of the full superconformal algebra. In particular, the backgrounds in-
troduced in the main text all preserve some N = 4 subalgebra of the N = 4 superconformal
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algebra and hence the action of this superalgebra can be inferred from the action of the
full superconformal algebra.

The three-dimensional N = 4 superconformal group is given by OSp(4|4) which con-
tains the maximal bosonic subgroup SO(4)R × USp(4). The spacetime symmetries are
generated by translation, special conformal transformations, Lorentz transformations and
dilatations with generators

Pa , Ka Mab , D . (C.1)

The dilatation operator acts on a field with Weyl weight w as

Dφ = wφ , (C.2)

while the generators of Lorentz transformations acts on fermions as

Mabχ = 1
2γabχ . (C.3)

In addition to the conformal symmetries, the bosonic part of the algebra contains the
R-symmetry SO(4)R ' SU(2)H × SU(2)C . We denote its generators by Hi

j and Cp
q,

respectively, and use conventions where they act on the fundamental representation as

Hi
jφ
k = δkj φ

i − 1
2δ

i
jφ
k , Cp

qφ
r = δrqφ

p − 1
2δ

p
qφ

r . (C.4)

With these definitions, the covariant derivative with respect to the standard superconformal
gauge fields becomes

Dµ ≡ ∂µ + 1
2ω

ab
µ Mab − bµD− fµaKa + 1

2Vµ
i
jHj

i + 1
2 Ṽµ

p
qCq

p + fermions . (C.5)

By adding 8 Poincaré supercharges Qipα , Q̃α ip and eight conformal supercharges Sαip, S̃α ip
we obtain the full N = 4 superconformal algebra. The supersymmetry generators act on
an operator O (without spacetime indices) as

δO =
(
ε̃ipQip + η̃ipSip

)
O . (C.6)

The supersymmetry parameters ε and η are anti-commuting hence the commutator of two
variations is related to the anti-commutator of two supercharges and given by

[δ1, δ2] = δcgct(ξ) + 1
2λ

abMab + λaKKa + λDD + vijHj
i + ṽpqCq

p , (C.7)

where δcgct(ξ) is a covariant general coordinate transformation which is given by δcgct(ξ) =
ξµDµ when acting on a scalar field. The coefficients in (C.7) are given by various spinor
bilinears defined in terms of the supersymmetry parameters as follows

ξµ = 2ε̃2ipγµεip1 ,
λab = ε̃2ipγ

abηip1 + η̃2ipγ
abεip1 ,

λcK = η̃2ipγ
cηip1 + i

2ε
abcε̃2ip

(
Gab

i
jε
jp
1 + G̃ab

p
qε
iq
1

)
,

λD = −ε̃2ipηip1 + η̃ip2 ε1ip ,

vij = −ε̃2jpηip1 − η̃2jpε
ip
1 + 2Cε̃2jpεip1 − trace ,

ṽpq = −ε̃2iqηip1 − η̃2iqε
ip
1 − 2Cε̃2iqεip1 − trace .

(C.8)
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Our solutions preserve either the superalgebra su(2|1) × psu(1|1) or psu(2|2) × u(1) and
therefore the parameters (C.8) should be restricted to lie in this subalgebra. In addition, as
described in the previous appendix, whenever we perform a supersymmetry transformation
in our non-conformal theory it should be accompanied by a conformal supersymmetry
transformation with field dependent supersymmetry parameter (B.30).

C.1 Central extensions of the supersymmetry algebra

When the theory contains flavor symmetries GF or gauge symmetries G, we can couple
our background to background vector and twisted vector multiplets valued in the Cartan
of GF or G, respectively. Adding such background multiplets corresponds to adding real
masses or FI terms, respectively. In an N = 4 superconformal theory, these additional
parameters would break part of the superconformal symmetries. However, they preserve the
full supersymmetry algebras of the squashed sphere backgrounds introduced in section 2,
and, as already mentioned in the main text, they correspond to central extensions of it.

For our purposes it will suffice to consider abelian symmetries only, in which case we
will denote the generators of the global and gauge symmetries by Q and Q̃, respectively.
These generators are defined such that in the abelian case they act on a field φ of charge
+1 as

Qφ = Q̃φ = φ . (C.9)

In the presence of background (twisted) vector multiplets, we have to modify the covariant
derivative to include a connection term involving the abelian symmetry generator Q or its
twisted analog Q̃,

Dµ = ∂µ + 1
2ωµ

abMab − bµD− fµaKa + 1
2Vµ

i
jHj

i + 1
2 Ṽµ

p
qCq

p

− iAµQ− iÃµQ̃ + fermions .
(C.10)

In addition to modifying the covariant derivative, this has the effect of centrally extending
the supersymmetry algebra. This effect can be observed as additional gauge transforma-
tions in the commutator of two supersymmetries:

[δ1, δ2] = δcgct(ξ) + 1
2λ

abMab + λaKKa + λDD + vijHj
i + ṽpqCq

p + λQQ + λQ̃Q̃ . (C.11)

The parameters λQ and λQ̃ can be read off from the commutator acting on vector in an
abelian (twisted) vector multiplet,

[δ1, δ2]Aµ = ξaFaµ + ∂µ
(
2Lpqε2 ipε1iq

)
, (C.12)

[δ1, δ2] Ãµ = ξaF̃aµ + ∂µ
(
2L̃ijε2 ipε1jp

)
. (C.13)

The first term on the right-hand sides of these equations represents a covariant general
coordinate transformation, while the second terms represent a gauge transformation with
parameters

λQ = 2Lpq ε̃2ipε1iq , λ
Q̃

= 2L̃ij ε̃2ipε1jp . (C.14)

– 42 –



J
H
E
P
0
8
(
2
0
2
2
)
0
5
9

When a hypermultiplet or twisted hypermultiplet is charged under a vector multiplet with
gauge charges qI for the fields ziI and ζIp (and equivalently, twisted gauge charges q̃

Ĩ
for

z̃p
Ĩ and ζ̃iĨ) the supersymmetry transformations (B.16) are modified to include a gauge

transformation:
δzi

I = 2ε̄ipζIp ,

δζIp = /DziIεip −
1
2Czi

Iεip + 1
2zi

Iηip + qIL
p
qzi

Iεiq ,

δz̃Ĩp = 2ε̄ipζ̃ Ĩi ,

δζ̃ Ĩi = /Dz̃pĨεip + 1
2Cz̃p

Ĩεip + 1
2 z̃

Ĩ
pη

ip + q̃
Ĩ
L̃ij z̃p

Ĩεjp .

(C.15)
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