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Abstract: It is well-known that at tree-level the d = 5 Weinberg operator can be gen-
erated in exactly three different ways, the famous seesaw models. In this paper we study
the related question of how many phenomenologically consistent 1-loop models one can
construct at d=5. First, we discuss that there are two possible classes of 1-loop neutrino
mass models, that allow avoiding stable charged relics: (i) models with dark matter candi-
dates and (ii) models with “exits”. Here, we define “exits” as particles that can decay into
standard model fields. Considering 1-loop models with new scalars and fermions, we find in
the dark matter class a total of (115+203) models, while in the exit class we find (38+368)
models. Here, 115 is the number of DM models, which require a stabilizing symmetry,
while 203 is the number of models which contain a dark matter candidate, which maybe
accidentally stable. In the exit class the 38 refers to models, for which one (or two) of the
internal particles in the loop is a SM field, while the 368 models contain only fields beyond
the SM (BSM) in the neutrino mass diagram. We then study the RGE evolution of the
gauge couplings in all our 1-loop models. Many of the models in our list lead to Landau
poles in some gauge coupling at rather low energies and there is exactly one model which
unifies the gauge couplings at energies above 1015 GeV in a numerically acceptable way.
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1 Introduction

It is well-known that the Weinberg operator, OW, [1] can be generated at tree-level in
exactly three different ways [2], the famous seesaw mechanisms [3–9]. The smallness of
the observed neutrino masses has also motivated many papers on radiative neutrino mass
models, starting with the classical papers [10–13]. For a recent review on loop models
for neutrino mass, see [14]. One interesting question to ask then naturally is: how many
possibilities actually exist to generate OW at 1-loop level? We will explore this question in
the current paper.

Partial answers to our question already exist in the literature, starting with [2]. Ref. [15]
worked within a diagrammatic approach: construct all possible topologies and from there
derive all possible diagrams that can lead to OW. Ref. [15] found a total of only four
diagrams, descending from two topologies, which can yield “genuine” neutrino mass models,
see figure 1.1 Here, “genuine” models are defined as models for which at n-loop level all
contributions to OW with n-1 loops or less (can) vanish, i.e. the list of diagrams in these
constructions do not contain self-energies and other loop diagrams that are guaranteed
to be only corrections or subdominant to lower order contributions. Using these criteria
ref. [15] then provides lists of all 1-loop models up to electro-weak triplets. Note also
that [19] lists 1-loop neutrino mass models with dark matter candidates up to electro-weak
triplets.

An alternative approach to the problem is based on effective field theory. Here, one
first constructs all lepton number violating operators, starting with OW and up to the
desired dimension, allowed by the SM field content and symmetries. Ref. [20] lists all
∆(L) = 2 operators up to dimension d = 11, see also [21]. “Opening up” or “exploding”
the operators in all possible ways, together with adding the appropriate numbers of Higgses

1A similar approach was followed in [16, 17] for 2-loop models and in [18] for 3-loop models.
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Figure 1. The four different 1-loop diagrams that can lead to genuine neutrino mass models [15].
Top line: T-I-1 (left) and T-I-2 (right), bottom T-I-3 (left) and T-3 (right).

to close loops, then, in principle, also allows a systematic construction of neutrino masses
models [22].

None of the above papers, however, gives a “complete” list of 1-loop models. While
ref. [15] provided a partial list of 1-loop neutrino mass models, here we aim at giving the
complete list of phenomenologically consistent models. Of course, all models for neutrino
mass should be able to reproduce experimental neutrino data, see for example [23], while at
the same time obey upper limits on charged lepton flavour violation searches [24]. However,
there are also other criteria that a successful model should fulfill and our main concern
here is to avoid problems with cosmology.

Consider the following, very basic observation: in loop models of OW the particles
internal to the n-loop diagram always couple in pairs to some external SM field, compare
figure 1. If all particles in the loop are fields beyond the SM (BSM) and there are no other
interactions in the model for the BSM fields than those appearing in the loop diagram, the
corresponding model will have some accidental symmetry (in the simplest case a Z2). The
lightest of the loop particles (LLP) will then be absolutely stable.

Stable BSM fields, however, might lead to drastic changes in cosmology, in particular
if they are electrically charged (and/or coloured). Experimental searches for stable charged
relics put severe bounds on their abundance in the mass range M ∼ [1, 105]GeV, see for
example [24–27]. To avoid problems with cosmology, (at least one of) the BSM particles in
1-loop models should therefore be able to decay to SM fields — unless the lightest of them
is electrically neutral. This simple consideration limits the number of allowed, electrically
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charged BSM particles, see section 2.1, and thus one can have only a finite set of 1-loop
neutrino mass models.

Electrically neutral BSM particles, on the other hand, can be candidates for dark
matter in the form of WIMPs. Thus, one can construct 1-loop models of neutrino mass in
which the lightest loop particles is a WIMP candidate, instead of decaying to SM fields.
One can write down an infinite number of electro-weak multiplets, that contain one neutral
state. However, the list of phenomenologically acceptable multiplets for WIMP candidates
is rather short. To the best of our knowledge, this was first discussed in [28] and the
subject has very recently been reconsidered in [29, 30], see also [31] and [32]. Note that the
recent papers [29, 30] allows a larger list of acceptable multiplets than [28]. The possible
connection between dark matter in SU(2) representations larger than triplets and loop
models of neutrino mass has been discussed before in [33–37]. We will discuss more details
in section 2.2.

We thus will discuss two types of loop models not disfavoured by cosmology:2 (i) “exit”
models, i.e. models in which there are no stable particles in the loop and (ii) dark matter
models, i.e. models in which one of the loop particles can be a good WIMP candidate.
For both cases we construct the complete list of models. We find that there are (38+368)
exit models, while in the dark matter class there are a total of (115+203) models. In the
exit class the 38 refers to models, for which one (or more) of the internal particles in the
loop is a SM field, while the 368 models contain only fields beyond the SM. The 115 is the
number of DM models, which require an additional symmetry to give an acceptable WIMP
candidate, while 203 is the number of models which contain a dark matter candidate, which
maybe accidentally stable.

The rest of the paper is organized as follows. In the next section we discuss the
concrete criteria applied in the construction of our models. Subsection 2.1 deals with
models in the exit class, while 2.2 discusses the dark matter class. In section 3 we then
turn to RGE evolution of the SM gauge couplings. Since many of our models contain
large SU(2) and/or coloured multiplets, Landau poles at rather low energies appear in
many of these constructions. Interestingly in our long list of models there is exactly one
variant, which leads to a near-perfect unification of the gauge couplings at a scale of
roughly mG ' 1017 GeV. In section 4, we summarise briefly our results and discuss how
our lists would change, modifying or dropping some of the assumptions that went into their
construction. The complete lists of models are relegated to the appendix.

2 Setup and models

Following [15] in our discussion we will concentrate on models with scalars and fermions.
For models with new gauge vectors, the standard model gauge symmetry has to be extended
and that symmetry needs to be broken to the SM. This implies that the scalar sector of
the model needs to be discussed as well. This is beyond the scope of our present work.
We will, however, briefly discuss loops with vectors in section 4. Note that models with
new vectors will not require any additional diagram, beyond those shown in figure 1. This

2Somewhat fuzzily we call these “phenomenologically consistent” models, see discussion in section 4.
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Name S,a S1 S2 ϕ Ξ Ξ1/∆,a,b Θ1,c Θ3,c

Irrep (1, 1, 0) (1, 1, 1) (1, 1, 2)
(
1, 2, 1

2

)
(1, 3, 0) (1, 3, 1)

(
1, 4, 1

2

) (
1, 4, 3

2

)

Name ω1 ω2 ω4 Π1 Π7 ζ

Irrep
(
3, 1,−1

3

) (
3, 1, 2

3

) (
3, 1,−4

3

) (
3, 2, 1

6

) (
3, 2, 7

6

) (
3, 3,−1

3

)

Name Ω1 Ω2 Ω4 Υ Φ
Irrep

(
6, 1, 1

3

) (
6, 1,−2

3

) (
6, 1, 4

3

) (
6, 3, 1

3

) (
8, 2, 1

2

)
aThe field does not appear in the list of valid 1-loop decompositions of OW.
bRef. [38] uses the symbol Ξ1. In neutrino physics this field is usually denoted as ∆ (seesaw type-II).
cThree Higgses.

Table 1. Scalar “exits”: scalar bosons that can couple to a pair of standard model fields.

section is divided into two parts. We will examine first models with exits, before turning
to dark matter models.

2.1 Exit models

In this subsection we will discuss the construction of models that contain no new stable
particle, i.e. “exit” models. In this case, all particles in the neutrino mass loop can be
charged and/or coloured. No new symmetry, beyond those of the SM, is needed to make
these models genuine, if we also demand that the particle content of a given model does
not generate OW at tree-level. Thus, from our list of models in this class we delete all
possible constructions containing either F1,1,0 = NR, F1,3,0 = Σ or S1,3,1 = ∆.3 Here and
elsewhere in this paper, we use the notation F or S to denote fermions or scalars, with the
subscript showing the transformation properties and quantum numbers for the SM gauge
group, SU(3)C × SU(2)L × U(1)Y . Alternatively, for compactness, we use the notation
introduced in [38], see also tables 1 and 2.

We can divide the exit class of models into two sub-classes: (i) the model contains at
least one SM field in the loop. In this case the model by construction does not contain
any stable BSM particles. And (ii) all particles appearing in the loop are BSM fields. In
that case, there must be at least one particle among the BSM fields, which can decay to
SM fields. A list of all BSM scalars that can decay to SM fields at tree-level are given
in table 1. This table coincides with table 1 in reference [38]. Ref. [38] arrived at this
table from a completely different consideration, namely, from the construction of all tree-
level completions for the d = 6 SM effective field theory (SMEFT). The lists coincide
simply because in both cases a BSM field must appear linearly in at least one term of the

3One can avoid the tree-level generation of OW also using an additional (discrete) symmetry. Models
with additional symmetries can contain NR, Σ and ∆, they are discussed in the next subsection. Here, we
only mention that one can construct, in principle, an additional 78 1-loop models in the exit class using
these fields. We disregard all of them in the following as “non-genuine”.

– 4 –



J
H
E
P
0
8
(
2
0
2
2
)
0
2
3

Name N ,a E ∆1 ∆3 Σ,a Σ1

Irrep (1, 1, 0) (1, 1,−1)
(
1, 2,−1

2

) (
1, 2,−3

2

)
(1, 3, 0) (1, 3,−1)

Name U D Q1 Q5 Q7 T1 T2

Irrep
(
3, 1, 2

3

) (
3, 1,−1

3

) (
3, 2, 1

6

) (
3, 2,−5

6

) (
3, 2, 7

6

) (
3, 3,−1

3

) (
3, 3, 2

3

)
aField does not appear in the list of ordinary genuine 1-loop decompositions of OW, since it mediates
tree-level seesaw type-I/III. Symbols are again taken from [38].

Table 2. Fermion exits: new vector-like fermions that can couple to standard model fields.

Lagrangian. That term will allow to generate a d = 6 operator in SMEFT at tree-level
and, at the same time, is responsible for the decay of the BSM field. In the table we give
the quantum numbers of the scalars in the order SU(3)C × SU(2)L × U(1)Y and also the
symbols proposed in [38].

A few comments are in order. First of all, S does not appear in the list of genuine
1-loop exit models, we include it in the table only for completeness.4 Second, the field
Ξ1/∆ does also not appear in our list of “genuine” exit models, since ∆ is the mediator of
the tree-level seesaw type-II. This field has been denoted as Ξ1 in [38], but in the neutrino
physics community it is more commonly known as ∆.5 Also note that all scalars in the
table can decay to SM fermion pairs, except S, S1 and Ξ, which decay to pair of Higgses.
Finally, Θ1 and Θ3 will decay to three Higgses. Particularly interesting, from the point
of view of model building, is Θ3, since this quadruplet scalar appears in the only genuine
tree-level model [40, 41] for the operator O7,W = (H†H) ·OW.

Table 2 contains all BSM fermion fields that can couple to a SM fermion plus a Higgs.
In the mass eigenstate basis, in addition to decays to the physical Higgs and a SM fermion,
these fields will also decay to a SM fermion plus a gauge boson. Again, we include F1,1,0 =
N and F1,3,0 = Σ for completeness, although model constructions involving these fields are
not included in our lists of genuine exit models, since they generate tree-level seesaws. There
are five fields which have quantum numbers coinciding with some SM fermion. However,
all fields in table 2 should be understood as vector-like fields (or self-conjugate Majorana
fields, in case of N and Σ). We do not write the vector-like partners explicitly.

Given these lists of all possible BSM fields, that can decay directly to standard model
particles via renormalisable interactions at tree-level, we can construct all possible 1-loop
neutrino mass exit model variants, using the diagrams in figure 1. The task is in principle
straight-forward, albeit tedious. We use our own code written in Mathematica to automa-
tise the systematic generation of neutrino mass models. The diagrams in figure 1 can be
represented as adjacency matrices by giving numbers to all the vertices. Each entry of the
matrices will then correspond to a field in the diagram, i.e. entry (i, j) will be the field

4All 1-loop diagrams with S will either contain N or Ξ1/∆ and thus are eliminated as non-genuine.
5We also note that the fields ω1, ω4, Π1, Π7 and ζ are known in the literature as scalar “leptoquarks”.

In the notation of the classic paper [39], these are called S0, S̃0, S̃1/2, S1/2 and S1, respectively.

– 5 –



J
H
E
P
0
8
(
2
0
2
2
)
0
2
3

# Fields # Fields # Fields
1 LF1,1,1F1,2,3/2S1,1,1 2 LeRF1,2,3/2S1,1,1 3 LF1,3,1F1,2,3/2S1,1,1

4 LF1,1,1S1,1,1S1,2,1/2 5 LeRS1,1,1S1,2,1/2 6 LF1,3,1S1,1,1S1,2,1/2

7 eRF1,2,1/2F1,2,3/2S1,1,1 8 eRF1,2,1/2S1,1,1S1,2,1/2 9 QF3,1,−1/3F3,2,−5/6S3,1,−1/3

10 QF3,1,−1/3F3,2,−5/6S3,3,−1/3 11 QdRF3,2,−5/6S3,1,−1/3 12 QdRF3,2,−5/6S3,3,−1/3

13 QF3,3,−1/3F3,2,−5/6S3,1,−1/3 14 QF3,3,−1/3F3,2,−5/6S3,3,−1/3 15 QF3,3,−1/3F3,4,−5/6S3,3,−1/3

16 QF3,1,−1/3F3,3,2/3S3,2,1/6 17 QdRF3,3,2/3S3,2,1/6 18 QF3,3,−1/3F3,1,2/3S3,2,1/6

19 QF3,3,−1/3F3,3,2/3S3,2,1/6 20 QF3,3,−1/3F3,3,2/3S3,4,1/6 21 QF3,1,−1/3S3,2,1/6S3,1,−1/3

22 QF3,1,−1/3S3,2,1/6S3,3,−1/3 23 QdRS3,2,1/6S3,1,−1/3 24 QdRS3,2,1/6S3,3,−1/3

25 QF3,3,−1/3S3,2,1/6S3,1,−1/3 26 QF3,3,−1/3S3,2,1/6S3,3,−1/3 27 QF3,3,−1/3S3,4,1/6S3,3,−1/3

28 uRF3,2,7/6F3,2,1/6S3,1,2/3 29 uRF3,2,7/6F3,2,1/6S3,3,2/3 30 uRF3,2,7/6F3,3,5/3S3,2,7/6

31 uRF3,2,7/6S3,2,7/6S3,1,2/3 32 uRF3,2,7/6S3,2,7/6S3,3,2/3 33 dRF3,2,1/6F3,2,−5/6S3,1,−1/3

34 dRF3,2,1/6F3,2,−5/6S3,3,−1/3 35 dRF3,2,1/6F3,3,2/3S3,2,1/6 36 dRF3,2,1/6S3,2,1/6S3,1,−1/3

37 dRF3,2,1/6S3,2,1/6S3,3,−1/3 38 HF1,3,1S1,4,3/2

Table 3. 1-loop neutrino mass models for which some internal field can be a SM fermion. For
discussion, see text.

connecting vertices i and j. The power of this approach is twofold: (i) the contraction of
all fields along a row or column should contain always a singlet, and (ii) with adjacency
matrices one can then use tools from graph theory, for instance, to delete isomorphic di-
agrams. The external fields are already known, so once given the quantum number for
one of the fields in the loop, the rest can be computed. This can be actually done for a
general set of quantum numbers for the starting field (seed). As the external particles are
colour blind, all the particles in the loop will have the same SU(3)C representation as the
seed, while SU(2)L and hypercharge can be obtained by systematically solving the set of
equations for each vertex, i.e. for each row/column of the adjacency matrix. Note that one
should keep track of the several possibilities for the products of SU(2) representations, for
example, a representation r times a doublet gives two possible representations r±1, where
only those representations larger than 1 are possible. Numbers can then be systematically
given to the free charges of the seed to get a complete list of models, to which we apply
our genuineness criteria and further classify them, as explained in the text. Chirality is
also being tracked along the fermion line to afterwards check whether any of the internal
fermions may be a SM fermion. It is worth noticing a slight subtlety in this approach
first shown in [18]: the antisymmetric contractions of SU(2) implies that some couplings
with identical particles vanishes exactly, for example, the coupling of two identical SU(2)
doublets (like two Higgses) to a singlet. Diagrams with such couplings should be removed.6

The resulting lists are given in table 3 and in the appendix. The tables in the appendix
are divided first into the four diagrams of figure 1. The models are then ordered first with
respect to the scalar exits in table 1, then w.r.t. fermions as in table 2 and then sub-divided
again into increasing number of exits that occur in each diagram.

6Even if this is a local feature of SU(2), diagrams with such non-local (effective) couplings may also
vanish if, for example, the identical particles get a VEV, which is the case of the SM Higgs.
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We will discuss now a few, particular cases found in those tables. A subset of the
models appearing in the diagrams T-I-2 and T-I-3 use fermions, with quantum numbers
and couplings identical to one of the standard model fermion. In these cases, either one
or two of the internal particles can be identified with SM quarks or leptons. These are
particularly simple models, in the sense that fewer BSM fields are needed than in all other
cases. We have identified a total of 38 possibilities in this special sub-class and list all of
them in table 3. Note that in case there are two SM fields in the diagram, as for example in
model #5, there are two more models (in this example #4 and #8) in which one of the two
SM fields could also be a new, vector-like particles. These are counted in this table as extra
models, since they contain a different number of degrees of freedom, see also section 3.

A number of the models listed in table 3 have appeared in the literature before. For
example, model #5 is the famous Zee-model [10]. Models #23 and #24 are leptoquark
models [42]. These are based on the idea to break lepton number in LQ models via LQ-
Higgs interactions [43]. Note that supersymmetry with R-parity violation generates the
same diagrams [44] with scalars that have the same quantum numbers as in the Zee model
and the LQ model #23 of table 3. The particle content of models #11,#12 and #17,
appeared first in tables 6 and 7 of [45], 1-loop neutrino masses in this setup were discussed
then in [46].

Model #38 is special, first because it is the only model in this class based on T-3.
Also, while this model is technically a “genuine” 1-loop model in the sense, that there is
no tree-level d = 5 neutrino mass, this model generates actually a tree-level d = 7 mass.
The model was first discussed in [41]. Whether the tree-level d = 7 or the 1-loop d = 5
contribution is numerically more important, depends essentially on the mass scale of F1,3,1
and S1,4,3/2. If these particles are heavier than, roughly Λ ' 2TeV, the loop tends to
dominate, while for lighter masses the tree-level contribution is more important.

All models with only BSM particles in the loop are given in the appendix. We note,
that all models in the diagram class T-I-1 will also have a contribution to the neutrino
mass matrix via diagram T-3. In principle, one can find all T-3 models from the models in
T-I-1, eliminating simply the “middle” scalar, compare with figure 1. Since the number of
degrees of freedom in T-3 and T-I-1 models are different, however, we count these models
as different.

Even though the size (and number) of the representations is limited in the exit class,
very exotic states appear in our lists. For example, a model with Θ3 allows SU(2) repre-
sentations up to 6-plets. As one can see from the tables, there are many models that have
more than one exit particle in the diagram. In fact, there are several models in which all
particles in the loop are one of the particle in the exit lists and this is possible within any
of the four diagrams. Since none of the fields in these tables are singlets, one can expect
interesting phenomenology at the LHC, if the mass scale of the BSM particles is around
the electro-weak scale. A complete study of possible LHC signals is, however, beyond the
scope of our present work.

2.2 Dark matter models

In this subsection we will discuss 1-loop neutrino mass models containing a WIMP dark
matter candidate. The classical proto-type for this class of models is the scotogenic
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F1,1,0 ≡ N c
R

×

S1,2,1/2 S1,2,1/2

L L

H H

F1,4,1/2

×

S1,5,0 S1,5,1

L L

H H

Figure 2. Two examples of dark matter models. To the left the original scotogenic model [47]; to
the right an accidentally stable DM model, see text.

model [47], see figure 2 (left). Models in the DM class can again be sub-divided into
two sub-classes: (i) models that need a stabilizing (discrete) symmetry and (ii) models
in which the DM candidate maybe accidentally stable [28], for an example see figure 2
(right). We will call these two classes (i) DM-E (since at least one of the particles in these
models has quantum numbers coinciding with one of the exit particles) and (ii) DM-A (for
accidental).

The division into these two classes can be easily understood. Consider the scotogenic
model. The particle content of this model is such, that without any additional symmetry,
beyond the gauge symmetries of the SM a tree-level type-I seesaw would exist and the loop
particles would be unstable, i.e. they will decay to SM fields (a right-handed neutrino can
decay to SM Higgses or gauge bosons plus SM leptons, for example). Ref. [47] solves these
“problems” with the simple assumption that all particles in the loop transform odd under
a new Z2 symmetry. The lightest of the NRi and S1,2,1/2 is then absolutely stable. On
the other hand, for larger SU(2)L multiplets as DM candidates, the model might have an
accidental Z2 symmetry, like in the example model shown in figure 2 (right). For this model
it is easy to see that SU(2)L dictates that, at the renormalisable level, the particles in the
loop always couple in pairs to SM fields. Thus, the model has an accidental Z2 and the
LLP is stable automatically. We could call this an “accidental dark matter candidate” [48],
in [28] this was named “minimal dark matter”.

Note, that this reasoning assumes that there are no other BSM fields present in the
model beyond those appearing in the 1-loop diagram. Consider again the example model
figure 2 (right). If we add to this model a S1,3,0, for example, then the vector-like fermion
can decay to a SM L plus a S1,3,0, while the latter decays to two Higgses and this extended
model will have no DM candidate — unless we postulate an additional symmetry, which
would put this model back into the first subclass. Thus, for the DM candidate to be
accidental DM, there should be no particle from the exit class in the diagram and we
always have to assume in our model constructions implicitly that there are no other BSM
particles in the model, beyond those appearing in the 1-loop diagram. Otherwise, the
model will belong to DM class (i) DM-E.

However, at this point we would like to stress that for us DM-E and DM-A are just
a convenient classification scheme, dividing the model lists into those models with “small”
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and “large” SU(2) representations. For us, a model is specified from the particle content
and the interactions of a given 1-loop neutrino mass diagrams. Nevertheless, any of the
models may allow interactions beyond those appearing in the diagram and those addi-
tional interactions may put in danger the stability of the DM candidate. This issue has
been discussed in several references [35–37]. See in particular [37], where it was shown
that Yukawa interactions connecting the fermions of the neutrino mass diagram with their
vector-like partners to the scalar DM candidates, S1,n,0, are always possible. These inter-
actions (together with those in the neutrino mass diagram) induce loop decays of the DM
candidate. In essence, the stability of the DM can be interpreted as an upper limit on this
new coupling. Adding a symmetry by hand, allows to eliminate this problem, of course,
but the stability of the DM could no longer be considered accidental.

The above arguments about the stability of accidental dark matter are valid strictly
speaking for interactions at the renormalizable level. One can always add some discrete
symmetry to a model in our DM-A class and then our two subclasses are simply separating
models containing potential exits from models which don’t. However, in order to construct
our lists of DM-A models, we need to identify all possible WIMP DM candidates first
and here different DM-A candidates have to fulfill different theoretical constraints. The
question of which electro-weak multiplets can be good dark matter candidates has been
recently discussed in detail in two papers [29, 30]. Reference [29] treats all possible DM
candidates with Y = 0, while [30] discusses the case Y 6= 0. The following discussion draws
heavily from the results of these two papers.

Let us start with the case Y = 0. For multiplets with Y = 0 radiative corrections
will generate a small mass splitting among the members of the multiplet and the sign of
this splitting is such that the neutral member of the multiplet is the lightest particle [28].
Also, for multiplets with Y = 0, the neutral member of the multiplet does not couple to
the Z-boson. Thus, all DM candidates with Y = 0 are usually “safe” from existing direct
detection (DD) constraints, the best limits are currently from XENON-1t [49]. However,
as stressed in [29], the situation will change in the next years and all multiplets (S/F )1,n,0
with n ≥ 3 might be ruled out by future DD experiments, such as DARWIN [50].

The authors of [29] then calculated the relic density, including the effects of Sommer-
feld enhancement and bound state formation. The conclusion from this work is that all
(S/F )1,n,0, with n = 3, · · · , 13 can give the correct relic density and are consistent with
DD constraints. To this list, we also have to add the singlets (S/F )1,1,0 for completeness.

Whether these DM candidates are accidental DM or need a stabilizing symmetry,
however, depends on assumptions about possible non-renormalizable operators and also on
whether the DM is scalar or fermion. For scalars, there always exists a d = 5 operator of
the form OS5 ∝ 1

ΛS
3H†H. This operator will lead to 1-loop DM decays and, for a coefficient

of order one, Λ needs to be larger than the Planck scale, to guarantee a sufficiently long-
lived DM. Thus, ref. [29] concludes that all S1,n,0 (n odd) need a stabilizing symmetry.7

For fermions, the corresponding operators are d = 6 for n ≤ 5 or d = 7 for n > 5.

7Of course, unless the UV model that generates this operator is completely specified, the coefficient, c,
of the operator is arbitrary. For c� 1 the stability of the DM looks accidental.
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In particular for n > 5 the resulting decay widths are sufficiently small, that the DM
candidate is effectively stable, i.e. such fermions are “good” accidental DM, even if one
takes into account NROs.

The discussion of the DM candidates with Y 6= 0 [30] follows along similar lines, but
is slightly more involved. First of all, different from the case Y = 0, for multiplets with
Y 6= 0 electro-weak radiative corrections do not guarantee that the neutral member of
the multiplet is the lightest particle. In addition, multiplets with Y 6= 0 are strongly
constrained by DD limits, since the coupling of the DM to the Z-boson has typically gauge
strength. Thus, Y 6= 0 DM candidates must be inelastic dark matter, see below.

Again, we divide the discussion of the Y 6= 0 DM candidates into different sub-cases.
We start with scalars with Y = 1/2, i.e. S1,2n,1/2 (n = 1, 2 . . . ). For scalars with quantum
numbers S1,2n,1/2 one can always write down the following quartic terms:

V ∝ λ5(S†1,2n,1/2(T a)Sc1,2n,1/2)((Hc)†(σa/2)H) + λ+(S†1,2n,1/2(T a)S1,2n,1/2)(H†(σa/2)H).
(2.1)

After EWSB, these terms generate a mass splitting between the neutral and charged com-
ponents of the multiplets and for sufficiently small DM mass one can always guarantee that
the neutral state is the lightest, by the correct choice of λ+. Importantly, the term propor-
tional to λ5 splits the neutral component of the multiplet into its real and imaginary part.
Only the lighter of the two is the DM candidate and for sufficiently large mass splitting,
m0, the DD scattering through the Z0-boson diagram is kinematically forbidden, since the
coupling is of the form Z0 − Re(S0) − Im(S0). Such a near-degenerate system of dark
matter accompanied by a slightly heavier partner is known in the literature as “inelastic
dark matter”.8

The scalar potential, however, also admits terms of the form (S1,2n,1/2)2S†1,2n,1/2H
†.

These terms generate a decay width for S1,2n,1/2 to SM Higgses and gauge bosons at 1-loop
level. Since these interactions are not suppressed by a large energy scale, S1,2n,1/2 can
never be accidentally stable, although it is stable at tree-level for n > 2.

Consider next F1,2n,Y (n = 1, 2 . . . ). Different from the scalar case, for fermions the
mass splittings in the charged and the neutral sector, splitting in the neutral sector, as
well as decay widths, appear only once terms at the non-renormalizable level are taken
into account, see again [30]. The condition that a sufficiently large m0 be generated, to
have inelastic DM, leads to an upper bound on the new physics scale of the corresponding
operator. If this upper bound is smaller than the mass of the DM candidate, required to
give the correct relic density, the model clearly is inconsistent. This consideration rules
out all F1,2n,Y for Y > 1/2 as good DM candidates, except F1,3,1 and F1,5,1. F1,2n,1/2, on
the other hand, are good accidental DM candidates, since the conditions of having a large
enough half-live and sufficiently large m0 can be simultaneously fulfilled for a wide range
of new physics scales. (Here, “new” meaning beyond the fields defining the model.)

Finally, there are two more possible scalars that are consistent with the constraints
discussed above: S1,3,1 and S1,5,1. Larger representations, S1,n,1, n > 5, as well as larger

8Numerically the mass splitting has to be only order O(100) keV, because WIMPs move slowly through
the galaxy.
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hypercharges are ruled out by the same argument discussed above for F1,2n,Y . For S1,3,1
and S1,5,1 only a “small” window in parameter space remains, where a large enough m0 can
actually be generated. At the same time, S1,3,1 and S1,5,1 can decay via “fast” interaction
terms S1,3,1HH and S†1,5,1HH(H†H). Thus, a symmetry is needed in case of S1,3,1 and,
while S1,5,1 is technically in the DM-A class, making it stable via a symmetry is probably
the preferred situation.

Technically, F1,3,1 and S1,3,1 belong in our list of DM-E models, while F1,5,1 and S1,5,1
belongs to the class DM-A. However, for all of these four states new physics in the ultra-
violet is needed for a consistent DM model. And the scale of this extra physics has to exist
not too far above the DM mass. This is different from all the Y = (1/2) (and Y = 0)
candidates. We thus include models with these DM candidates in our counting, but in the
appendix these models are separated off into their own table(s).

Most importantly, multiplets larger than n = 13 are excluded as WIMP candidates,
because the cross section necessary to reproduce the relic density would violate unitarity
bounds [29, 30]. This criterium is weaker than the one used originally in [28]. The authors
of [28] argued that all multiplets that lead to a Landau pole in the running of α2 below the
GUT scale should be excluded from the list of valid candidates. Thus, the list of acceptable
multiplets stops at F1,5,0 and S1,7,0 in [28]. In our scanning for valid models, we follow the
weaker criterium of [29, 30] and consider multiplets up to n = 13.

In the appendix we give the full list of models in the dark matter class. There are
four sets of tables, one for DM-E models, one for DM-A models and another two tables for
the exceptional candidates with Y = 1 separating again exit models and accidental DM.
Note that it is impossible to separate models into lists for Y = 0 and Y = 1/2 candidates,
because they mostly appear in the same models. Having no criterium to decide, which of
the particles in the loop is the lightest, the models listed in the tables guarantee only that
at least one DM candidate is present in the model, but do not specify which is the true
DM in case there are more than one candidate.

Because of the SU(2) contraction rule, n× 2 = {(n+ 1), (n− 1)}, the models contain
multiplets up to 15-plets. Most of these models have Landau poles in the evolution of the
gauge couplings, at energies very close to the mass scale of the particles in the loop, as we
are going to discuss in the next section.

3 Renormalization group running

In the previous section we have discussed the criteria for the construction of viable models.
While there is only a finite number of these “phenomenologically acceptable” models, still
we found more than 700 models in total. This number could be much further reduced, if
we apply the additional requirement, that all models remain perturbative up to some large
energy scale, say, for example, the grand unification scale, mG. Note that RGE running
of gauge couplings in a selected sample of 1-loop neutrino mass models has been studied
also in [51]. Perturbativity, however, is clearly a condition expressing only a theoretical
preference and thus there is a certain amount of arbitrariness in the formulation of the
exact boundary conditions to be used. Most importantly, in the discussion in this section
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we will assume that the new physics scale, where our BSM particles live, is of the order
of the electro-weak scale. Unless noted otherwise, mNP = 1TeV. Our motivation for this
choice is simply that for larger values of mNP, there will not be any chance to test the
models via observables outside the neutrino sector itself, in particular there won’t be any
signals at the LHC. Also, our calculations are done at 1-loop order and thus numbers
quoted below should be understood as rough estimates only.

Consider the well known 1-loop solution of the renormalisation group equations, run-
ning from a scale t0 to t is described by:

α−1
i (t) = α−1

i (t0)− bi
2π log

(
t

t0

)
(3.1)

where i = 1, 2, 3 represents the U(1)Y , SU(2) and SU(3) couplings and the β-functions,
bi, contain the contributions of the SM particles plus the new fields integrated-in at the
new physics scale, denoted here as mNP = 1TeV. Any αi may diverge at an energy scale
ΛLPi = t0 Exp

[
2π
bi
α−1
i (t0)

]
, which we call the “Landau pole”. Clearly, with increasing bi,

ΛLPi will become lower, and larger multiplets give larger contributions to the bi.
We have calculated this running for all our models. Let us discuss exit models first.

In tables 5–7 in the appendix we highlighted with * all models where at least one of the
ΛLPi is small, i.e. ΛLPi < 100TeV. 53 models in the exit class fullfill this criterion. Note,
in this set of low LPs models there are usually SU(3)-sextets, octets or triplet(s), some of
them with large hypercharges. In figure 3, we show the numerical value for the Landau
poles for a number of models. Here, we show only those models which have the lowest
ΛLPi for a given exit particle. The numbers above the points refer to the specific model
following the enumeration in the tables in the appendix. The topology containing most
of the models with low LPs is T-I-3 (since it contains three fermions) while T-3 has the
fewest “endangered” models. Of all the models, there is only one, where the minimal LP
occurs in α1 (ΛLP1).

In the tables in the appendix we have also marked all models, in which no Landau
pole appears below the GUT scale (chosen to be mG ' 1015 GeV). There are a total of 57
of such “safe” models in the exit class. Thus, applying this strict criterion, would allow
eliminating 87% of our 368 exit models.

We would also like to stress, of all the 368 models containing scalar or/and fermionic
exit, there is only one, where the gauge couplings unify at a scale large enough to avoid
constraints from proton decay. Figure 4 shows the running of the gauge couplings for this
model. The model is marked in table 6 with a purple dagger †, it is model number 211. It
belongs to diagram T-I-2 and contains 2 scalar and 2 fermionic exits: (D,Q1,Π1, ω1). We
note in passing that we have found 8 additional models, in which we observe a quantitatively
acceptable unification of the gauge couplings, but at a rather low scale, where one would
expect to have too short proton decay half-lives. Note however, that the authors of [52]
recently discussed a mechanism to sufficiently suppress proton decay rates, even if the
unification scale is below our (conservative) cutoff of mG = 1015 GeV. We have not worked
out, whether such a suppression would work quantitatively in any of our 8 low-unification

– 12 –



J
H
E
P
0
8
(
2
0
2
2
)
0
2
3

33

65

56

129,130

159,164

153,154

254

227 229 231 221 224

259

264

225

241

237

333

T-I-1 T-I-2 T-I-3 T-3

ζ ΥΦ ζ ΥΦ Θ1 Θ3 ζΩ1 Ω2 Ω4 ΥΦQ7 T1 T2 Υ

103

104

105

106

Λ
L
P
[G

e
V
]

Figure 3. The fields shown on the x-axis correspond to the scalar/fermionic exit associated with
the set of models where some Landau pole occurs at a low energy, ΛLPi

< 100TeV. The points
represent the model(s) with the minimal LP and colours blue, magenta and black if such minimal
LP correspond to ΛLP1 , ΛLP2 or ΛLP3 , respectively. The number above each point refers to the
specific model as listed in the tables in the appendix.

models, since it depends on the details of the GUT model building, which is beyond the
scope of our present work.

For completeness, we also checked the 38 models containing SM fermions, see table 3.
Of these, 29 models do not have Landau poles below mG = 1015 GeV. Also, in this class
there are 4 models that give quantitatively good unification of gauge couplings but in all
cases at energies below 1015 GeV.

Now we turn to models containing a DM candidate, shown in tables 8–10 of the
appendix. As could be expected, models with large SU(2) multiplets DM fields lead also
to Landau poles ΛLP2 fairly below the GUT scale, as depicted in figure 5. In this figure, we
show only the “extreme” models, i.e. those in which the LP scale takes either its minimal
or maximal value for a given DM n-plet. (All other models for that DM n-plet have LPs
in between the values shown.) Large DM representations, i.e. n ≥ 7, lead ΛLP2 values in
the ballpark of a few TeVs for almost all topologies. Choosing a larger mNP would give
also larger values for ΛLPi . Of course, however the LPs are always only a factor of a few
above the new physics scale.

For T-3, fewer new particles are needed, resulting in smaller bi coefficients. Thus,
the LPs appear at relatively larger energies. If we were to impose the criterion of having
scenarios free of LPs below mG, the list of acceptable models would stop at n = 5, thus
eliminating most of the DM models. However, as discussed in section 2, in our scanning
for valid models, we followed the weaker criterion of [29].
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Figure 4. Running of the gauge couplings for the model (D,Q1,Π1, ω1) from the T-I-2 class.
This model unifies at a scale of mG ' 1017. In this plot all BSM fields are added at a scale of
mNP = 1TeV.

Also in the DM class we found some models which unify the gauge couplings. In total,
there are 8 DM models with a quantitatively acceptable gauge coupling unification, but in
all of these models the unification scale lies below mG < 1015 GeV.

For the running of the gauge couplings, we have considered all the extra fields, including
the DM candidates, to have a common mass of mNP = 1TeV. For DM models this choice
may not be completely realistic in the following sense: for a given representation one can
calculate a mass scale, at which the chosen DM candidate would have the correct relic
density to reproduce the measured DM abundance [29]. If we chose those values of the
DM mass as mNP, we obtain different numerical values for ΛLP2 . In table 4 we show the
corresponding values of the WIMP thermal masses (Mχ), taken from [29], for each DM
representation and also the LP values for topology T-I-1. (For the rest of the topologies,
the value of the LP is simply re-scaled by a multiplicative factor with respect to the values
of figure 5.) The numerical values in the table differ, of course, from the values shown in the
figure, but the principle observation remains unchanged: Landau poles appear at relatively
low energies and thus most DM models would be excluded, if we require perturbativity up
to the GUT scale.

In summary, the requirement that models remain perturbative up to some large energy
scale (GUT scale) would exclude a large number of models from both, the exit and the
DM class, if the new physics scale is of the order of mNP ∼ 1TeV.

4 Discussion

In the current paper we have attempted to give an answer to the question: how many 1-
loop models for neutrino masses can be constructed at d = 5? We have presented complete
lists of models based on certain selection criteria. Given the assumptions spelled out in
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Figure 5. For each topology and electro-weak DM representation, we show the models with the
minimal (magenta points) and maximal (blue points) SU(2)-Landau pole ΛLP2 and its specific
values. In the running of the gauge couplings all the additional fields beyond the SM are added at
the scale mNP = 1TeV. The numbers above the points refer to the specific model as listed in the
DM tables in the appendix. All model numbers refer to DM-A in table 9, except the ones associated
to 3-plet DM (and also model 71 of T-I-3) which belong to DM-E in table 8.

DM n-plet Mχ Min ΛLP2

3 2.5TeV 3× 106 TeV
5 15.4TeV 9× 102 TeV
7 54.2TeV 3× 102 TeV
9 117.8TeV 3× 102 TeV
11 199TeV 4× 102 TeV
13 338TeV 5× 102 TeV

Table 4. SU(2) n-plet WIMP thermal masses, for which the relic abundance of dark matter would
be correctly reproduced and energy scale of the Landau pole, ΛLP2 . In the running of the gauge
couplings, all the extra fields up to the SM are added at the Mχ scale.
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detail in section 2, we have found a total of 724 1-loop neutrino mass models: 406 in the
exit class and 318 in the dark matter class. While these are certainly uncomfortably big
numbers, especially compared to the fact that there are only three tree-level seesaws, many
of these models could actually be excluded in the future.

For the dark matter class, future DD experiments, such as DARWIN [50], will either
finally detect WIMP dark matter or exclude most of the larger SU(2) multiplets [29, 30]
as DM candidates. From our 318 DM models only 109 would survive non-observation of
DM in DARWIN.

Also, there are theoretical considerations, such as perturbativity up to some large
energy scales, that we have discussed in section 3. Conservatively, we have listed all
possible models in our tables. However, if we require our new physics scale, at which the 1-
loop neutrino mass is generated, to be around the electro-weak scale and add the condition
that all gauge couplings remain perturbative up to the GUT scale, only 57 models (out
of 406) in our exit class survive. Similarly, in the DM class only 59 out of the whole
318 would survive this constraint, eliminating in particular all models with representations
larger than 5-plets.

Two important assumptions on model building were used in all our constructions: (i)
use only scalars and fermions as BSM fields; and (ii) avoid stable charged relics. Both
of these assumptions can be questioned. Let us discuss 1-loop models with vectors first.
Note that very few 1-loop models with gauge vectors do exist in the literature, a few
examples are [53–55]. The two main problems with gauge vectors are that: (a) for many
of the vectors, which appear in the 1-loop diagrams, it is not even possible to find a
phenomenologically consistent or interesting gauge group [56]; and (b) complete gauge
models in many cases also contain the ingredients for a tree-level seesaw, thus loops are
most likely only a sub-dominant contribution to the neutrino mass in these constructions.

Disregarding these problems in the construction of valid gauge models, however, our
automated diagram-based approach allows us, of course, to search also for valid 1-loop
neutrino mass diagrams with vectors instead of scalars. From the list of valid “exit”
vectors, see table 3 of [38], one can show that there are a total of 499 vector models in the
exit class, out of which 34 models contain either one or two SM fermions. Two examples
are shown in figure 6. The example on the left is from the diagram class T-I-2, while the
one on the right is from T-I-3. Both diagrams have vector LQs as internal particles. Let’s
have a closer look to the diagram on the left first. The quantum numbers of the vectors
are the same as in the scalar LQ model of table 3, model #23, except the hypercharge
Y = 2/3 of the second vector in the diagram. Thus, the diagram contains uR instead of
dR, but is otherwise very similar to the corresponding scalar LQ model. Many, but not all
of our scalar models can be “vectorized” by such simple replacements.

The two examples shown in figure 6 can also serve to discuss the main problems one
encounters in the construction of neutrino mass models based on extended gauge theories.
Consider the model shown in the figure on the right. The vector in this diagram, V3,1,2/3,
can be generated from the adjoint of SU(4), when the Pati-Salam (PS) group [57], is broken
to the standard model. Both, Q and uR are of course present in Pati-Salam as members
of the 4 and 4. However, the F3,2,7/6 is not part of a minimal PS model and thus another
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Figure 6. Two example 1-loop diagrams with vectors instead of scalars. For a discussion see text.

multiplet containing this fermion has to be added to complete the particle content of this
1-loop model. On the other hand, the 4 necessarily contains a F1,1,0, i.e. a right-handed
neutrino. Since the 1-loop diagram necessarily violates lepton number, it seems reasonable
that the model also generates a Majorana mass term for NR. This could, for example, occur
if the PS is first broken to the left-right group, which is then broken by a right-triplet to
the SM group. The model then could generate the 1-loop diagram shown, but also has
a tree-level seesaw to which the loop diagram would be only a minor correction in large
parts of the parameter space. In other words, according to our criteria, in this setup the
1-loop diagram would not be considered “genuine”. This problem — the presence of NR

or also other tree-level seesaws — occurs in many of the popular gauge groups, in which
the SM group could be embedded. While it seems possible to construct a full model along
the lines just discussed, in which the tree-level seesaw is sub-dominant (or absent entirely
at tree-level), the model building required clearly is beyond our minimalistic approach to
neutrino masses.

A second problem with vector diagrams is demonstrated by the diagram on the left of
figure 6. Here, no BSM fermion appears, but two different vectors are needed to complete
the diagram. Again, V3,1,2/3 appears in the adjoint of SU(4). The other vector, V3,2,1/6,
appears, for example, in flipped SU(5) [58]. Flipped SU(5) has no NR, so no tree-level
seesaw type-I, but it induces proton decay and the “vector leptoquark” V3,2,1/6 of the 1-
loop diagram has also diquark couplings in this setup. Thus, when V3,2,1/6 is interpreted
as the gauge vector of flipped SU(5), its mass must lie at the grand unification scale. This
mass scale is too large to generate the atmospheric neutrino mass scale with perturbative
couplings from a 1-loop diagram. The problem is exacerbated by the fact, that the diagram
needs two vectors. Thus, one would need to identify a group — or semisimple group [59]
— which contains both, the Pati-Salam group and the SU(5), plus suitable model building
to avoid proton decay and many other constraints in this extended theory. Finally, we
would like to stress again, that for most of the exit vectors [38] it was shown in [56], that
no suitable gauge group can be constructed at all, since they can not lead to models which
contain the SM particle content.

Our second main assumption is to avoid stable charged relics. For the models in
the exit class, one can actually question the validity of this criterion. From experimental
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data the absence of stable charged particles is established only for a certain mass window,
roughly M ∼ [1, 105]GeV [24, 25]. 1-loop models for neutrino mass, however, can fit the
observed data even for considerably more massive BSM states in the loop, roughly up
to 10(12−13) GeV for perturbative couplings. Such ultra-heavy particles would decouple
very early in the history of the universe and therefore not be produced in any measurable
quantities.9 Thus, there is a window of parameter space for 1-loop neutrino mass models,
where this criterion is not supported by experimental data. Clearly, we have disregarded
this possibility. We note in passing, that such models would use, of course, even larger
multiplets than what we have considered and thus Landau poles would exist in these
constructions always not far above the mass scale of the BSM states.

For the dark matter models, on the other hand, the two most important constraints
for valid WIMP candidates are (i) unitarity bounds on the annihilation cross section in
the early universe and (ii) limits by direct detection experiments. Here we followed [29]
and [30]. While unitarity bounds put a definitive upper limit on the size of the SU(2)
multiplet, that can be a good WIMP candidate, the argument (ii) is slightly more fragile.
We have considered models with Y = 0 DM candidates, as well as inelastic DM candidates.
However, one could think about cooking up other ways to avoid the DD constraints and
we have simply disregarded this possibility.

In summary, we provide “complete” lists of possible 1-loop models for neutrino masses.
We have considered two possible classes of models, which can be consistent with cosmology:
“Exit” models, with no stable particles in the loop and dark matter models, which assume
that the lightest particle in the loop is neutral, stable and can be in agreement with known
constraints. In the appendix we give the lists of all possible models, consistent with these
assumptions. It would be interesting to study, whether some of these models can lead to
phenomenology at colliders, say the LHC or FCC, that has not already been covered in
previous work, see for example [14, 42, 60–68].

A Complete lists of 1-loop neutrino mass models

Here we give tables containing the 1-loop neutrino mass models as discussed in the previous
sections. The models are divided in tables for each of the four 1-loop neutrino mass
diagrams: T-I-1, T-I-2, T-I-3 and T-3, see figure 1. For each diagram, the models are
classified into two large classes: “exit” (tables 5, 6, 7) and dark matter (tables 8, 9, 10)
models. The exit models have been ordered in the tables from top to bottom by models
with 1 exit to models with 4 exits. To identify the exits particles we have used the notation
of ref. [38], shown in tables 1 and 2. The DM models have been separated in four class
of models: models with exits that need a stabilizing symmetry to give an acceptable DM
candidate (DM-E: table 8), models in which the DM is stable due to an accidental symmetry
(DM-A: table 9) and another two cases for exceptional candidates with Y = 1 which are
separated again in exit DM models (DM-E exceptional: table 10) and accidental DM
models (DM-A exceptional: table 10). See section 2 for discussion.

9It is even conceivable such states are not produced at all, if the reheat temperature of the universe is
sufficiently below the mass of these BSM states.
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T-I-1 Exit

1 (S1,2,5/2, S1,3,3,S2, F1,2,5/2) 2 - (S2, S1,2,5/2, S1,2,3/2, F1,1,2) 3 (S2, S1,2,5/2, S1,2,3/2, F1,3,2)
4 (Θ1, S1,5,1, S1,5,0, F1,4,1/2) 5 (Θ1, S1,5,1, S1,5,0, F1,6,1/2) 6 (S1,5,1, S1,6,3/2,Θ1, F1,5,1)
7 (S1,5,0,Θ1,Θ1, F1,5,0) 8 (S1,5,0,Θ1, S1,6,1/2, F1,5,0) 9 (S1,3,2, S1,2,5/2,Θ3, F1,3,2)
10 (S1,3,2, S1,4,5/2,Θ3, F1,3,2) 11 (S1,3,2, S1,4,5/2,Θ3, F1,5,2) 12 (Θ3, S1,3,2, S1,5,1, F1,4,3/2)
13 (Θ3, S1,5,2, S1,5,1, F1,4,3/2) 14 (Θ3, S1,5,2, S1,5,1, F1,6,3/2) 15 (S1,5,2, S1,4,5/2,Θ3, F1,3,2)
16 (S1,5,2, S1,4,5/2,Θ3, F1,5,2) 17 (S1,5,2, S1,6,5/2,Θ3, F1,5,2) 18 (S1,5,1,Θ3, S1,6,1/2, F1,5,1)
19 (S3,2,−11/6, S3,3,−7/3, ω4, F3,2,−11/6) 20 (ω4, S3,2,−11/6, S3,2,−5/6, F3,1,−4/3) 21 (ω4, S3,2,−11/6, S3,2,−5/6, F3,3,−4/3)
22 (S3,1,5/3, S3,2,13/6,Π7, F3,1,5/3) 23 (S3,1,5/3, S3,2,13/6,Π7, F3,3,5/3) 24 (Π7, S3,3,5/3, S3,3,2/3, F3,4,7/6)
25 (S3,3,5/3, S3,2,13/6,Π7, F3,1,5/3) 26 (S3,3,5/3, S3,2,13/6,Π7, F3,3,5/3) 27 (S3,3,5/3, S3,4,13/6,Π7, F3,3,5/3)
28 (S3,4,1/6, S3,3,2/3, ζ, F3,4,1/6) 29 (S3,4,1/6, S3,5,2/3, ζ, F3,4,1/6) 30 (S3,2,−5/6, S3,3,−4/3, ζ, F3,4,−5/6)
31 (S3,4,−5/6, S3,3,−4/3, ζ, F3,4,−5/6) 32 (S3,4,−5/6, S3,5,−4/3, ζ, F3,4,−5/6) 33 * (ζ, S3,4,1/6, S3,4,−5/6, F3,5,−1/3)
34 (S6,2,5/6, S6,3,4/3,Ω1, F6,2,5/6) 35 - (Ω1, S6,2,5/6, S6,2,−1/6, F6,1,1/3) 36 (Ω1, S6,2,5/6, S6,2,−1/6, F6,3,1/3)
37 (S6,2,−1/6,Ω1, S6,3,−2/3, F6,2,−1/6) 38 (S6,2,−7/6, S6,3,−5/3,Ω2, F6,2,−7/6) 39 - (Ω2, S6,2,−1/6, S6,2,−7/6, F6,1,−2/3)
40 (Ω2, S6,2,−1/6, S6,2,−7/6, F6,3,−2/3) 41 (S6,2,11/6, S6,3,7/3,Ω4, F6,2,11/6) 42 (Ω4, S6,2,11/6, S6,2,5/6, F6,1,4/3)
43 (Ω4, S6,2,11/6, S6,2,5/6, F6,3,4/3) 44 (S6,2,5/6, S6,3,4/3,Υ, F6,2,5/6) 45 * (S6,2,5/6, S6,3,4/3,Υ, F6,4,5/6)
46 (S6,4,5/6, S6,3,4/3,Υ, F6,2,5/6) 47 * (S6,4,5/6, S6,3,4/3,Υ, F6,4,5/6) 48 * (S6,4,5/6, S6,5,4/3,Υ, F6,4,5/6)
49 (S6,2,−1/6,Υ, S6,3,−2/3, F6,2,−1/6) 50 * (S6,2,−1/6,Υ, S6,3,−2/3, F6,4,−1/6) 51 - (Υ, S6,2,5/6, S6,2,−1/6, F6,1,1/3)
52 (Υ, S6,2,5/6, S6,2,−1/6, F6,3,1/3) 53 (Υ, S6,2,5/6, S6,4,−1/6, F6,3,1/3) 54 (Υ, S6,4,5/6, S6,2,−1/6, F6,3,1/3)
55 (Υ, S6,4,5/6, S6,4,−1/6, F6,3,1/3) 56 * (Υ, S6,4,5/6, S6,4,−1/6, F6,5,1/3) 57 (S6,4,−1/6,Υ, S6,3,−2/3, F6,2,−1/6)
58 * (S6,4,−1/6,Υ, S6,3,−2/3, F6,4,−1/6) 59 * (S6,4,−1/6,Υ, S6,5,−2/3, F6,4,−1/6) 60 (S8,1,1, S8,2,3/2,Φ, F8,1,1)
61 (S8,1,1, S8,2,3/2,Φ, F8,3,1) 62 (Φ, S8,1,1, S8,3,0, F8,2,1/2) 63 (Φ, S8,3,1, S8,1,0, F8,2,1/2)
64 (Φ, S8,3,1, S8,3,0, F8,2,1/2) 65 * (Φ, S8,3,1, S8,3,0, F8,4,1/2) 66 (S8,3,1, S8,2,3/2,Φ, F8,1,1)
67 (S8,3,1, S8,2,3/2,Φ, F8,3,1) 68 (S8,3,1, S8,4,3/2,Φ, F8,3,1) 69 - (S8,1,0,Φ,Φ, F8,1,0)
70 (S8,1,0,Φ,Φ, F8,3,0) 71 (S8,3,0,Φ,Φ, F8,1,0) 72 (S8,3,0,Φ,Φ, F8,3,0)
73 (S8,3,0,Φ, S8,4,1/2, F8,3,0) 74 (S3,4,7/6, S3,3,5/3, S3,3,2/3, Q7) 75 (S3,5,−1/3, S3,4,1/6, S3,4,−5/6, T1)
76 (S3,3,2/3, S3,4,7/6, S3,4,1/6, T2) 77 (S3,5,2/3, S3,4,7/6, S3,4,1/6, T2)

78 - (S1,2,3/2, S1,3,2,S1,∆3) 79 (Θ1, S1,5,1,Ξ, F1,4,1/2) 80 (Ξ,Θ1,Θ1, F1,5,0)
81 (S1,5,1,Θ3,Θ1, F1,5,1) 82 - (S3,2,−5/6, S3,3,−4/3, ω1, Q5) 83 (Π1, S3,3,2/3, ζ, F3,4,1/6)
84 (S3,3,2/3, S3,4,7/6,Π1, T2) 85 (Π7, S3,1,5/3, S3,3,2/3, Q7) 86 (Π7, S3,3,5/3, S3,3,2/3, Q7)
87 (S3,3,2/3,Π7, S3,4,1/6, T2) 88 (S3,4,1/6, S3,3,2/3, ζ, Q1) 89 - (S3,2,−5/6, S3,3,−4/3, ζ, Q5)
90 (S3,4,−5/6, S3,3,−4/3, ζ, Q5) 91 (ζ, S3,4,1/6, S3,2,−5/6, T1) 92 (ζ, S3,4,1/6, S3,4,−5/6, T1)
93 (S6,2,−1/6,Υ,Ω2, F6,2,−1/6) 94 (S6,2,5/6,Ω4,Υ, F6,2,5/6)

95 - (S1, S1,2,3/2, ϕ, E) 96 - (S1, S1,2,3/2, ϕ,Σ1) 97 - (S1,5,1,Θ3,Θ1,Σ1)
98 - (Π1, S3,3,2/3, ω1, Q1) 99 - (ω1,Π1, S3,2,−5/6, D) 100 - (ω1,Π1, S3,2,−5/6, T1)
101 (Π7, S3,3,5/3, ω2, Q7) 102 - (S3,2,−5/6, ω4, ζ, Q5) 103 - (Π1, S3,3,2/3, ζ, Q1)
104 - (S3,3,2/3,Π7,Π1, U) 105 (S3,3,2/3,Π7,Π1, T2) 106 - (ζ,Π1, S3,2,−5/6, D)
107 (ζ,Π1, S3,2,−5/6, T1) 108 (ζ,Π1, S3,4,−5/6, T1)

109 - (ϕ,S1,Ξ,∆1) 110 - (ω2,Π7,Π1, U) 111 - (ω2,Π7,Π1, T2)
112 - (Π1, ω2, ζ, Q1)

Table 1: TI-1 models with scalar and fermionic exits. The four main cells represent the models with 1,2,3,4 exits. The *
(−) represents the models where: One of the Landau pole scales is very low, i.e Λ1 or λ2 or Λ3 < 100 TeV (All Landau
pole scales, larger than mNP , are very large Λ1,2,3 > 1015 GeV)
Table 5. T-I-1 models with scalar and fermionic exits. The four horizontal divisions represent the
models with 1, 2, 3 and 4 exit fields. The * and “−” represent the models where one of the Landau
pole scales is very low, i.e. Λ1,2,3 < 100TeV, and where there is no Landau pole up to 1015 GeV.
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T-I-2 Exit

113 (F1,1,2, F1,2,5/2, S1,2,5/2,S2) 114 (F1,3,2, F1,2,5/2, S1,2,5/2,S2) 115 (F1,4,1/2, F1,5,1, S1,5,1,Θ1)
116 (F1,6,1/2, F1,5,1, S1,5,1,Θ1) 117 (F1,4,1/2, F1,5,0, S1,5,0,Θ1) 118 (F1,5,0, F1,6,1/2,Θ1, S1,5,0)
119 (F1,4,3/2, F1,3,2, S1,3,2,Θ3) 120 (F1,4,3/2, F1,3,2, S1,5,2,Θ3) 121 (F1,4,3/2, F1,5,2, S1,3,2,Θ3)
122 (F1,4,3/2, F1,5,2, S1,5,2,Θ3) 123 (F1,6,3/2, F1,5,2, S1,5,2,Θ3) 124 (F1,5,1, F1,4,3/2,Θ3, S1,5,1)
125 (F1,5,1, F1,6,3/2,Θ3, S1,5,1) 126 (F3,1,−4/3, F3,2,−11/6, S3,2,−11/6, ω4) 127 (F3,3,−4/3, F3,2,−11/6, S3,2,−11/6, ω4)
128 (F3,4,7/6, F3,3,5/3, S3,3,5/3,Π7) 129 * (F3,4,−5/6, F3,5,−1/3, ζ, S3,4,−5/6) 130 * (F3,5,−1/3, F3,4,1/6, S3,4,1/6, ζ)
131 (F6,1,1/3, F6,2,5/6, S6,2,5/6,Ω1) 132 (F6,2,−1/6, F6,1,1/3,Ω1, S6,2,−1/6) 133 (F6,2,−1/6, F6,3,1/3,Ω1, S6,2,−1/6)
134 (F6,3,1/3, F6,2,5/6, S6,2,5/6,Ω1) 135 (F6,1,−2/3, F6,2,−1/6, S6,2,−1/6,Ω2) 136 (F6,2,−7/6, F6,1,−2/3,Ω2, S6,2,−7/6)
137 (F6,2,−7/6, F6,3,−2/3,Ω2, S6,2,−7/6) 138 (F6,3,−2/3, F6,2,−1/6, S6,2,−1/6,Ω2) 139 (F6,1,4/3, F6,2,11/6, S6,2,11/6,Ω4)
140 (F6,2,5/6, F6,1,4/3,Ω4, S6,2,5/6) 141 (F6,2,5/6, F6,3,4/3,Ω4, S6,2,5/6) 142 (F6,3,4/3, F6,2,11/6, S6,2,11/6,Ω4)
143 (F6,1,1/3, F6,2,5/6, S6,2,5/6,Υ) 144 (F6,2,−1/6, F6,1,1/3,Υ, S6,2,−1/6) 145 (F6,2,−1/6, F6,3,1/3,Υ, S6,2,−1/6)
146 * (F6,2,−1/6, F6,3,1/3,Υ, S6,4,−1/6) 147 (F6,3,1/3, F6,2,5/6, S6,2,5/6,Υ) 148 * (F6,3,1/3, F6,2,5/6, S6,4,5/6,Υ)
149 * (F6,3,1/3, F6,4,5/6, S6,2,5/6,Υ) 150 * (F6,3,1/3, F6,4,5/6, S6,4,5/6,Υ) 151 * (F6,4,−1/6, F6,3,1/3,Υ, S6,2,−1/6)
152 * (F6,4,−1/6, F6,3,1/3,Υ, S6,4,−1/6) 153 * (F6,4,−1/6, F6,5,1/3,Υ, S6,4,−1/6) 154 * (F6,5,1/3, F6,4,5/6, S6,4,5/6,Υ)
155 (F8,2,1/2, F8,1,1, S8,1,1,Φ) 156 (F8,2,1/2, F8,1,1, S8,3,1,Φ) 157 * (F8,2,1/2, F8,3,1, S8,1,1,Φ)
158 * (F8,2,1/2, F8,3,1, S8,3,1,Φ) 159 * (F8,4,1/2, F8,3,1, S8,3,1,Φ) 160 (F8,1,0, F8,2,1/2,Φ, S8,1,0)
161 (F8,1,0, F8,2,1/2,Φ, S8,3,0) 162 * (F8,2,1/2, F8,3,0, S8,1,0,Φ) 163 * (F8,2,1/2, F8,3,0, S8,3,0,Φ)
164 * (F8,3,0, F8,4,1/2,Φ, S8,3,0) 165 (∆3, F1,1,2, S1,3,2, S1,2,3/2) 166 (∆3, F1,3,2, S1,3,2, S1,2,3/2)
167 (Q5, F3,1,−4/3, S3,3,−4/3, S3,2,−5/6) 168 (Q5, F3,3,−4/3, S3,3,−4/3, S3,2,−5/6) 169 (Q5, F3,3,−4/3, S3,3,−4/3, S3,4,−5/6)
170 (Q7, F3,3,5/3, S3,3,5/3, S3,4,7/6) 171 (T1, F3,4,1/6, S3,4,1/6, S3,5,−1/3) 172 (F3,4,−5/6, T1, S3,5,−1/3, S3,4,−5/6)
173 (T2, F3,4,7/6, S3,4,7/6, S3,3,2/3) 174 (T2, F3,4,7/6, S3,4,7/6, S3,5,2/3) 175 (F3,4,1/6, T2, S3,3,2/3, S3,4,1/6)
176 (F3,4,1/6, T2, S3,5,2/3, S3,4,1/6)

177 - (∆3, F1,1,2,S2, S1,2,3/2) 178 (∆3, F1,3,2,S2, S1,2,3/2) 179 (F1,4,1/2, F1,5,0,Ξ,Θ1)
180 (F1,4,1/2,Σ1, S1,5,1,Θ1) 181 (∆3, F1,3,2, S1,3,2,Θ3) 182 (Σ1, F1,4,3/2,Θ3, S1,5,1)
183 (Q5, F3,1,−4/3, ω4, S3,2,−5/6) 184 (Q5, F3,3,−4/3, ω4, S3,2,−5/6) 185 (F3,4,1/6, T2, S3,3,2/3,Π1)
186 (Q7, F3,1,5/3, S3,1,5/3,Π7) 187 (Q7, F3,1,5/3, S3,3,5/3,Π7) 188 (Q7, F3,3,5/3, S3,1,5/3,Π7)
189 (Q7, F3,3,5/3, S3,3,5/3,Π7) 190 (T2, F3,4,7/6,Π7, S3,3,2/3) 191 (T1, F3,4,1/6, S3,4,1/6, ζ)
192 (F3,4,−5/6, T1, ζ, S3,2,−5/6) 193 (F3,4,−5/6, T1, ζ, S3,4,−5/6) 194 (Q1, T2, S3,3,2/3, S3,4,1/6)
195 (T2, Q7, S3,4,7/6, S3,3,2/3)

196 - (E,∆3, S1,2,3/2,S1) 197 - (Σ1,∆3, S1,2,3/2,S1) 198 - (Q5, D, ω1, S3,2,−5/6)
199 (Q5, T1, ω1, S3,2,−5/6) 200 - (Q1, U, S3,3,2/3,Π1) 201 (Q1, T2, S3,3,2/3,Π1)
202 (T1, F3,4,1/6,Π1, ζ) 203 (U,Q7,Π7, S3,3,2/3) 204 (T2, Q7,Π7, S3,3,2/3)
205 - (Q5, D, ζ, S3,2,−5/6) 206 (Q5, T1, ζ, S3,2,−5/6) 207 (Q5, T1, ζ, S3,4,−5/6)
208 (T1, Q1, S3,4,1/6, ζ)

209 - (∆1, E,S1, ϕ) 210 - (∆1,Σ1,S1, ϕ) 211 † (D,Q1,Π1, ω1)
212 (T1, Q1,Π1, ω1) 213 (U,Q7,Π7, ω2) 214 - (Q1, U, ω2,Π1)
215 (Q1, T2, ω2,Π1) 216 (T2, Q7,Π7, ω2) 217 - (D,Q1,Π1, ζ)
218 (T1, Q1,Π1, ζ)

Table 2: TI-2 models with scalar and fermionic exits: The model † unifies at a scale of mG = 1017 GeV .

Table 6. T-I-2 models with scalar and fermionic exits: the model † unifies at a scale of mG '
1017 GeV.
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T-I-3 Exit

219 (F1,5,0, F1,4,1/2, F1,4,1/2,Ξ) 220 (F1,4,1/2, F1,5,1, F1,5,0,Θ1) 221 * (F1,6,1/2, F1,5,1, F1,5,0,Θ1)
222 (F1,4,3/2, F1,3,2, F1,5,1,Θ3) 223 (F1,4,3/2, F1,5,2, F1,5,1,Θ3) 224 * (F1,6,3/2, F1,5,2, F1,5,1,Θ3)
225 * (F3,5,−1/3, F3,4,1/6, F3,4,−5/6, ζ) 226 (F6,1,1/3, F6,2,5/6, F6,2,−1/6,Ω1) 227 * (F6,3,1/3, F6,2,5/6, F6,2,−1/6,Ω1)
228 (F6,1,−2/3, F6,2,−1/6, F6,2,−7/6,Ω2) 229 * (F6,3,−2/3, F6,2,−1/6, F6,2,−7/6,Ω2) 230 (F6,1,4/3, F6,2,11/6, F6,2,5/6,Ω4)
231 * (F6,3,4/3, F6,2,11/6, F6,2,5/6,Ω4) 232 (F6,1,1/3, F6,2,5/6, F6,2,−1/6,Υ) 233 * (F6,3,1/3, F6,2,5/6, F6,2,−1/6,Υ)
234 * (F6,3,1/3, F6,2,5/6, F6,4,−1/6,Υ) 235 * (F6,3,1/3, F6,4,5/6, F6,2,−1/6,Υ) 236 * (F6,3,1/3, F6,4,5/6, F6,4,−1/6,Υ)
237 * (F6,5,1/3, F6,4,5/6, F6,4,−1/6,Υ) 238 * (F8,2,1/2, F8,1,1, F8,3,0,Φ) 239 * (F8,2,1/2, F8,3,1, F8,1,0,Φ)
240 * (F8,2,1/2, F8,3,1, F8,3,0,Φ) 241 * (F8,4,1/2, F8,3,1, F8,3,0,Φ) 242 (F1,1,2, F1,2,5/2,∆3, S1,3,2)
243 (F1,3,2, F1,2,5/2,∆3, S1,3,2) 244 (F1,3,2, F1,4,5/2,∆3, S1,3,2) 245 (F1,4,3/2, F1,3,2,Σ1, S1,2,3/2)
246 (Σ1, F1,4,3/2, F1,4,1/2, S1,5,1) 247 (F3,1,−4/3, F3,2,−11/6, Q5, S3,3,−4/3) 248 (F3,3,−4/3, F3,2,−11/6, Q5, S3,3,−4/3)
249 (F3,3,−4/3, F3,4,−11/6, Q5, S3,3,−4/3) 250 (F3,1,5/3, F3,2,13/6, Q7, S3,1,5/3) 251 (F3,1,5/3, F3,2,13/6, Q7, S3,3,5/3)
252 (F3,3,5/3, F3,2,13/6, Q7, S3,1,5/3) 253 (F3,3,5/3, F3,2,13/6, Q7, S3,3,5/3) 254 * (F3,3,5/3, F3,4,13/6, Q7, S3,3,5/3)
255 * (F3,4,1/6, F3,5,2/3, T1, S3,4,1/6) 256 (F3,4,−5/6, F3,3,−4/3, T1, S3,2,−5/6) 257 (F3,4,−5/6, F3,3,−4/3, T1, S3,4,−5/6)
258 * (F3,4,−5/6, F3,5,−4/3, T1, S3,4,−5/6) 259 * (T1, F3,4,1/6, F3,4,−5/6, S3,5,−1/3) 260 (F3,4,7/6, F3,3,5/3, T2, S3,4,7/6)
261 * (F3,4,7/6, F3,5,5/3, T2, S3,4,7/6) 262 * (T2, F3,4,7/6, F3,4,1/6, S3,3,2/3) 263 * (T2, F3,4,7/6, F3,4,1/6, S3,5,2/3)
264 * (F3,4,1/6, T2, F3,5,−1/3, S3,4,1/6)

265 (F1,1,2, F1,2,5/2,∆3,S2) 266 (F1,3,2, F1,2,5/2,∆3,S2) 267 (F1,4,1/2,Σ1, F1,5,0,Θ1)
268 (F1,4,3/2, F1,3,2,Σ1,Θ3) 269 (F1,4,3/2, F1,5,2,Σ1,Θ3) 270 (F3,1,−4/3, F3,2,−11/6, Q5, ω4)
271 (F3,3,−4/3, F3,2,−11/6, Q5, ω4) 272 (F3,4,7/6, F3,3,5/3, T2,Π7) 273 * (T1, F3,4,1/6, F3,4,−5/6, ζ)
274 (∆3, F1,3,2, E, S1,2,3/2) 275 (∆3, F1,1,2,Σ1, S1,2,3/2) 276 (∆3, F1,3,2,Σ1, S1,2,3/2)
277 (Q5, F3,3,−4/3, D, S3,2,−5/6) 278 (T2, F3,4,7/6, Q1, S3,3,2/3) 279 (Q5, F3,1,−4/3, T1, S3,2,−5/6)
280 (Q5, F3,3,−4/3, T1, S3,2,−5/6) 281 (Q5, F3,3,−4/3, T1, S3,4,−5/6) 282 (Q7, F3,3,5/3, T2, S3,4,7/6)
283 (T2, Q7, F3,4,1/6, S3,3,2/3) 284 (F3,4,1/6, T2, T1, S3,4,1/6)

285 (∆3, F1,3,2,Σ1,Θ3) 286 (F3,4,1/6, T2, T1,Π1) 287 (Q7, F3,1,5/3, T2,Π7)
288 (Q7, F3,3,5/3, U,Π7) 289 (Q7, F3,3,5/3, T2,Π7) 290 (T1, Q1, F3,4,−5/6, ζ)
291 (T1, F3,4,1/6, Q5, ζ) 292 - (U,Q7, Q1, S3,3,2/3) 293 (Q1, T2, T1, S3,4,1/6)
294 (T2, Q7, Q1, S3,3,2/3)

295 - (E,∆3,∆1,S1) 296 - (Σ1,∆3,∆1,S1) 297 - (D,Q1, Q5, ω1)
298 (T1, Q1, Q5, ω1) 299 - (U,Q7, Q1, ω2) 300 (T2, Q7, Q1, ω2)
301 (Q1, U, T1,Π1) 302 (Q1, T2, D,Π1) 303 (Q1, T2, T1,Π1)
304 - (D,Q1, Q5, ζ) 305 (T1, Q1, Q5, ζ)

T-3 Exit

306 (F1,2,5/2,S2, S1,3,3) 307 (F1,4,1/2,Ξ, S1,5,1) 308 (F1,5,1,Θ1, S1,6,3/2)
309 (F1,5,0,Θ1,Θ1) 310 (F1,5,0,Θ1, S1,6,1/2) 311 (F1,3,2,Θ3, S1,2,5/2)
312 (F1,3,2,Θ3, S1,4,5/2) 313 (F1,5,2,Θ3, S1,4,5/2) 314 (F1,5,2,Θ3, S1,6,5/2)
315 (F1,5,1, S1,6,1/2,Θ3) 316 (F3,2,−11/6, ω4, S3,3,−7/3) 317 (F3,1,5/3,Π7, S3,2,13/6)
318 (F3,3,5/3,Π7, S3,2,13/6) 319 (F3,3,5/3,Π7, S3,4,13/6) 320 (F3,4,1/6, ζ, S3,3,2/3)
321 (F3,4,1/6, ζ, S3,5,2/3) 322 (F3,4,−5/6, ζ, S3,3,−4/3) 323 (F3,4,−5/6, ζ, S3,5,−4/3)
324 (F6,2,5/6,Ω1, S6,3,4/3) 325 (F6,2,−1/6, S6,3,−2/3,Ω1) 326 (F6,2,−7/6,Ω2, S6,3,−5/3)
327 (F6,2,11/6,Ω4, S6,3,7/3) 328 (F6,2,5/6,Υ, S6,3,4/3) 329 * (F6,4,5/6,Υ, S6,3,4/3)
330 * (F6,4,5/6,Υ, S6,5,4/3) 331 (F6,2,−1/6, S6,3,−2/3,Υ) 332 * (F6,4,−1/6, S6,3,−2/3,Υ)
333 * (F6,4,−1/6, S6,5,−2/3,Υ) 334 (F8,1,1,Φ, S8,2,3/2) 335 (F8,3,1,Φ, S8,2,3/2)
336 (F8,3,1,Φ, S8,4,3/2) 337 - (F8,1,0,Φ,Φ) 338 (F8,3,0,Φ,Φ)
339 (F8,3,0,Φ, S8,4,1/2) 340 (Q7, S3,3,2/3, S3,1,5/3) 341 (Q7, S3,3,2/3, S3,3,5/3)
342 (T1, S3,2,−5/6, S3,4,1/6) 343 (T1, S3,4,−5/6, S3,4,1/6) 344 (T2, S3,4,1/6, S3,4,7/6)

345 - (∆3,S1, S1,3,2) 346 - (E,ϕ, S1,2,3/2) 347 - (Σ1, ϕ, S1,2,3/2)
348 - (Σ1,Θ1, S1,2,3/2) 349 (F1,5,1,Θ1,Θ3) 350 - (Q1, ω1, S3,3,2/3)
351 - (Q5, ω1, S3,3,−4/3) 352 (Q7, ω2, S3,3,5/3) 353 (T2,Π1, S3,4,7/6)
354 - (D,S3,2,−5/6,Π1) 355 - (T1, S3,2,−5/6,Π1) 356 (T1, S3,4,−5/6,Π1)
357 (T2, S3,4,1/6,Π7) 358 - (Q1, ζ, S3,3,2/3) 359 - (Q5, ζ, S3,3,−4/3)
360 (F6,2,−1/6,Ω2,Υ) 361 (F6,2,5/6,Υ,Ω4)

362 - (∆1,Ξ,S1) 363 - (Σ1, ϕ,Θ3) 364 - (Σ1,Θ1,Θ3)
365 - (Q1, ζ, ω2) 366 - (Q5, ζ, ω4) 367 - (U,Π1,Π7)
368 - (T2,Π1,Π7)

Table 3: TI-3 and T-3 models with scalar and fermionic exits.

Table 7. T-I-3 and T-3 models with scalar and fermionic exits.
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T-I-1 DM-E

1 (S1,2,1/2, S1,3,1, S1,1,0, F1,2,1/2) 2 (S1,1,0, S1,2,1/2, S1,2,1/2, F1,1,0) 3 (S1,1,0, S1,2,1/2, S1,2,1/2, F1,3,0)
4 (S1,2,1/2, S1,1,1, S1,3,0, F1,2,1/2) 5 (S1,3,0, S1,2,1/2, S1,2,1/2, F1,1,0) 6 (S1,3,0, S1,2,1/2, S1,2,1/2, F1,3,0)
7 (S1,3,0, S1,2,1/2, S1,4,1/2, F1,3,0) 8 (S1,2,1/2, S1,3,1, S1,3,0, F1,2,1/2) 9 (S1,2,1/2, S1,3,1, S1,3,0, F1,4,1/2)
10 (S1,4,1/2, S1,3,1, S1,3,0, F1,2,1/2) 11 (S1,4,1/2, S1,3,1, S1,3,0, F1,4,1/2) 12 (S1,4,1/2, S1,5,1, S1,3,0, F1,4,1/2)
13 (S1,3,0, S1,4,1/2, S1,4,1/2, F1,3,0) 14 (S1,3,0, S1,4,1/2, S1,4,1/2, F1,5,0) 15 (S1,4,1/2, S1,3,1, S1,5,0, F1,4,1/2)
16 (S1,5,0, S1,4,1/2, S1,4,1/2, F1,3,0) 17 (S1,5,0, S1,4,1/2, S1,4,1/2, F1,5,0) 18 (S1,5,0, S1,4,1/2, S1,6,1/2, F1,5,0)
19 (S1,3,1, S1,4,3/2, S1,2,1/2, F1,3,1) 20 (S1,3,1, S1,4,3/2, S1,4,1/2, F1,3,1) 21 (S1,3,1, S1,4,3/2, S1,4,1/2, F1,5,1)
22 (S1,5,1, S1,4,3/2, S1,4,1/2, F1,3,1) 23 (S1,5,1, S1,4,3/2, S1,4,1/2, F1,5,1) 24 (S1,1,1, S1,2,3/2, S1,2,1/2, F1,1,1)
25 (S1,1,1, S1,2,3/2, S1,2,1/2, F1,3,1) 26 (S1,3,1, S1,2,3/2, S1,2,1/2, F1,1,1) 27 (S1,3,1, S1,2,3/2, S1,2,1/2, F1,3,1)
28 (S1,3,1, S1,2,3/2, S1,4,1/2, F1,3,1) 29 (S1,4,1/2, S1,5,1, S1,5,0, F1,4,1/2) 30 (S1,4,1/2, S1,5,1, S1,5,0, F1,6,1/2)
31 (S1,5,1, S1,6,3/2, S1,4,1/2, F1,5,1)

T-I-2

32 (F1,1,0, F1,2,1/2, S1,2,1/2, S1,1,0) 33 (F1,2,1/2, F1,3,0, S1,1,0, S1,2,1/2) 34 (F1,2,1/2, F1,3,0, S1,3,0, S1,2,1/2)
35 (F1,1,0, F1,2,1/2, S1,2,1/2, S1,3,0) 36 (F1,3,0, F1,4,1/2, S1,2,1/2, S1,3,0) 37 (F1,2,1/2, F1,3,0, S1,3,0, S1,4,1/2)
38 (F1,3,0, F1,4,1/2, S1,4,1/2, S1,3,0) 39 (F1,4,1/2, F1,5,0, S1,3,0, S1,4,1/2) 40 (F1,4,1/2, F1,5,0, S1,5,0, S1,4,1/2)
41 (F1,2,1/2, F1,1,1, S1,1,1, S1,2,1/2) 42 (F1,2,1/2, F1,1,1, S1,3,1, S1,2,1/2) 43 (F1,2,1/2, F1,3,1, S1,1,1, S1,2,1/2)
44 (F1,2,1/2, F1,3,1, S1,3,1, S1,2,1/2) 45 (F1,4,1/2, F1,3,1, S1,3,1, S1,2,1/2) 46 (F1,2,1/2, F1,3,1, S1,3,1, S1,4,1/2)
47 (F1,4,1/2, F1,3,1, S1,3,1, S1,4,1/2) 48 (F1,4,1/2, F1,5,1, S1,3,1, S1,4,1/2) 49 (F1,4,1/2, F1,3,1, S1,5,1, S1,4,1/2)
50 (F1,4,1/2, F1,5,1, S1,5,1, S1,4,1/2) 51 (F1,6,1/2, F1,5,1, S1,5,1, S1,4,1/2) 52 (F1,3,0, F1,4,1/2, S1,4,1/2, S1,5,0)
53 (F1,5,0, F1,6,1/2, S1,4,1/2, S1,5,0)

T-I-3

54 (F1,1,0, F1,2,1/2, F1,2,1/2, S1,1,0) 55 (F1,3,0, F1,2,1/2, F1,2,1/2, S1,1,0) 56 (F1,1,0, F1,2,1/2, F1,2,1/2, S1,3,0)
57 (F1,3,0, F1,2,1/2, F1,2,1/2, S1,3,0) 58 (F1,3,0, F1,2,1/2, F1,4,1/2, S1,3,0) 59 (F1,3,0, F1,4,1/2, F1,4,1/2, S1,3,0)
60 (F1,5,0, F1,4,1/2, F1,4,1/2, S1,3,0) 61 (F1,2,1/2, F1,1,1, F1,3,0, S1,2,1/2) 62 (F1,2,1/2, F1,3,1, F1,1,0, S1,2,1/2)
63 (F1,2,1/2, F1,3,1, F1,3,0, S1,2,1/2) 64 (F1,4,1/2, F1,3,1, F1,3,0, S1,2,1/2) 65 (F1,2,1/2, F1,3,1, F1,3,0, S1,4,1/2)
66 (F1,4,1/2, F1,3,1, F1,3,0, S1,4,1/2) 67 (F1,4,1/2, F1,3,1, F1,5,0, S1,4,1/2) 68 (F1,4,1/2, F1,5,1, F1,3,0, S1,4,1/2)
69 (F1,4,1/2, F1,5,1, F1,5,0, S1,4,1/2) 70 (F1,6,1/2, F1,5,1, F1,5,0, S1,4,1/2) 71 (F1,3,0, F1,4,1/2, F1,4,1/2, S1,5,0)

T-3

72 (F1,2,1/2, S1,1,0, S1,3,1) 73 (F1,1,1, S1,2,1/2, S1,2,3/2) 74 (F1,3,1, S1,2,1/2, S1,2,3/2)
75 (F1,3,1, S1,2,1/2, S1,4,3/2) 76 (F1,2,1/2, S1,3,0, S1,1,1) 77 (F1,2,1/2, S1,3,0, S1,3,1)
78 (F1,4,1/2, S1,3,0, S1,3,1) 79 (F1,4,1/2, S1,3,0, S1,5,1) 80 (F1,3,1, S1,4,1/2, S1,2,3/2)
81 (F1,3,1, S1,4,1/2, S1,4,3/2) 82 (F1,5,1, S1,4,1/2, S1,4,3/2) 83 (F1,5,1, S1,4,1/2, S1,6,3/2)
84 (F1,1,0, S1,2,1/2, S1,2,1/2) 85 (F1,3,0, S1,2,1/2, S1,2,1/2) 86 (F1,3,0, S1,2,1/2, S1,4,1/2)
87 (F1,4,1/2, S1,5,0, S1,3,1) 88 (F1,3,0, S1,4,1/2, S1,4,1/2) 89 (F1,5,0, S1,4,1/2, S1,4,1/2)
90 (F1,5,0, S1,4,1/2, S1,6,1/2) 91 (F1,5,1, S1,6,1/2, S1,4,3/2)

Table 8. DM models with exits (DM-E) which need a stabilizing symmetry to give an acceptable
WIMP candidate.
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T-I-1 DM-A

1 (S1,5,0, S1,6,1/2, S1,6,1/2, F1,5,0) 2 (S1,5,0, S1,6,1/2, S1,6,1/2, F1,7,0) 3 (S1,6,1/2, S1,5,1, S1,5,0, F1,4,1/2)
4 (S1,6,1/2, S1,5,1, S1,5,0, F1,6,1/2) 5 (S1,6,1/2, S1,5,1, S1,7,0, F1,6,1/2) 6 (S1,6,1/2, S1,7,1, S1,5,0, F1,6,1/2)
7 (S1,6,1/2, S1,7,1, S1,7,0, F1,6,1/2) 8 (S1,6,1/2, S1,7,1, S1,7,0, F1,8,1/2) 9 (S1,7,0, S1,6,1/2, S1,6,1/2, F1,5,0)
10 (S1,7,0, S1,6,1/2, S1,6,1/2, F1,7,0) 11 (S1,7,0, S1,6,1/2, S1,8,1/2, F1,7,0) 12 (S1,7,0, S1,8,1/2, S1,8,1/2, F1,7,0)
13 (S1,7,0, S1,8,1/2, S1,8,1/2, F1,9,0) 14 (S1,8,1/2, S1,7,1, S1,7,0, F1,6,1/2) 15 (S1,8,1/2, S1,7,1, S1,7,0, F1,8,1/2)
16 (S1,8,1/2, S1,7,1, S1,9,0, F1,8,1/2) 17 (S1,8,1/2, S1,9,1, S1,7,0, F1,8,1/2) 18 (S1,8,1/2, S1,9,1, S1,9,0, F1,8,1/2)
19 (S1,8,1/2, S1,9,1, S1,9,0, F1,10,1/2) 20 (S1,9,0, S1,8,1/2, S1,8,1/2, F1,7,0) 21 (S1,9,0, S1,8,1/2, S1,8,1/2, F1,9,0)
22 (S1,9,0, S1,8,1/2, S1,10,1/2, F1,9,0) 23 (S1,9,0, S1,10,1/2, S1,10,1/2, F1,9,0) 24 (S1,9,0, S1,10,1/2, S1,10,1/2, F1,11,0)
25 (S1,10,1/2, S1,9,1, S1,9,0, F1,8,1/2) 26 (S1,10,1/2, S1,9,1, S1,9,0, F1,10,1/2) 27 (S1,10,1/2, S1,9,1, S1,11,0, F1,10,1/2)
28 (S1,10,1/2, S1,11,1, S1,9,0, F1,10,1/2) 29 (S1,10,1/2, S1,11,1, S1,11,0, F1,10,1/2) 30 (S1,10,1/2, S1,11,1, S1,11,0, F1,12,1/2)
31 (S1,11,0, S1,10,1/2, S1,10,1/2, F1,9,0) 32 (S1,11,0, S1,10,1/2, S1,10,1/2, F1,11,0) 33 (S1,11,0, S1,10,1/2, S1,12,1/2, F1,11,0)
34 (S1,11,0, S1,12,1/2, S1,12,1/2, F1,11,0) 35 (S1,11,0, S1,12,1/2, S1,12,1/2, F1,13,0) 36 (S1,12,1/2, S1,11,1, S1,11,0, F1,10,1/2)
37 (S1,12,1/2, S1,11,1, S1,11,0, F1,12,1/2) 38 (S1,12,1/2, S1,11,1, S1,13,0, F1,12,1/2) 39 (S1,12,1/2, S1,13,1, S1,11,0, F1,12,1/2)
40 (S1,12,1/2, S1,13,1, S1,13,0, F1,12,1/2) 41 (S1,12,1/2, S1,13,1, S1,13,0, F1,14,1/2) 42 (S1,13,0, S1,12,1/2, S1,12,1/2, F1,11,0)
43 (S1,13,0, S1,12,1/2, S1,12,1/2, F1,13,0) 44 (S1,13,0, S1,12,1/2, S1,14,1/2, F1,13,0) 45 (S1,13,0, S1,14,1/2, S1,14,1/2, F1,13,0)
46 (S1,13,0, S1,14,1/2, S1,14,1/2, F1,15,0) 47 (S1,14,1/2, S1,13,1, S1,13,0, F1,12,1/2) 48 (S1,14,1/2, S1,13,1, S1,13,0, F1,14,1/2)
49 (S1,14,1/2, S1,15,1, S1,13,0, F1,14,1/2) 50 (S1,15,0, S1,14,1/2, S1,14,1/2, F1,13,0)

T-I-2

51 (F1,4,1/2, F1,5,0, S1,5,0, S1,6,1/2) 52 (F1,5,0, F1,6,1/2, S1,6,1/2, S1,5,0) 53 (F1,5,0, F1,6,1/2, S1,6,1/2, S1,7,0)
54 (F1,6,1/2, F1,7,0, S1,5,0, S1,6,1/2) 55 (F1,6,1/2, F1,7,0, S1,7,0, S1,6,1/2) 56 (F1,6,1/2, F1,7,0, S1,7,0, S1,8,1/2)
57 (F1,7,0, F1,8,1/2, S1,6,1/2, S1,7,0) 58 (F1,7,0, F1,8,1/2, S1,8,1/2, S1,7,0) 59 (F1,7,0, F1,8,1/2, S1,8,1/2, S1,9,0)
60 (F1,8,1/2, F1,9,0, S1,7,0, S1,8,1/2) 61 (F1,8,1/2, F1,9,0, S1,9,0, S1,8,1/2) 62 (F1,8,1/2, F1,9,0, S1,9,0, S1,10,1/2)
63 (F1,9,0, F1,10,1/2, S1,8,1/2, S1,9,0) 64 (F1,9,0, F1,10,1/2, S1,10,1/2, S1,9,0) 65 (F1,9,0, F1,10,1/2, S1,10,1/2, S1,11,0)
66 (F1,10,1/2, F1,11,0, S1,9,0, S1,10,1/2) 67 (F1,10,1/2, F1,11,0, S1,11,0, S1,10,1/2) 68 (F1,10,1/2, F1,11,0, S1,11,0, S1,12,1/2)
69 (F1,11,0, F1,12,1/2, S1,10,1/2, S1,11,0) 70 (F1,11,0, F1,12,1/2, S1,12,1/2, S1,11,0) 71 (F1,11,0, F1,12,1/2, S1,12,1/2, S1,13,0)
72 (F1,12,1/2, F1,13,0, S1,11,0, S1,12,1/2) 73 (F1,12,1/2, F1,13,0, S1,13,0, S1,12,1/2) 74 (F1,12,1/2, F1,13,0, S1,13,0, S1,14,1/2)
75 (F1,13,0, F1,14,1/2, S1,12,1/2, S1,13,0) 76 (F1,13,0, F1,14,1/2, S1,14,1/2, S1,13,0) 77 (F1,13,0, F1,14,1/2, S1,14,1/2, S1,15,0)
78 (F1,14,1/2, F1,15,0, S1,13,0, S1,14,1/2)

T-I-3

79 (F1,4,1/2, F1,5,1, F1,5,0, S1,6,1/2) 80 (F1,5,0, F1,4,1/2, F1,4,1/2, S1,5,0) 81 (F1,5,0, F1,4,1/2, F1,6,1/2, S1,5,0)
82 (F1,5,0, F1,6,1/2, F1,6,1/2, S1,5,0) 83 (F1,5,0, F1,6,1/2, F1,6,1/2, S1,7,0) 84 (F1,6,1/2, F1,5,1, F1,5,0, S1,6,1/2)
85 (F1,6,1/2, F1,5,1, F1,7,0, S1,6,1/2) 86 (F1,6,1/2, F1,7,1, F1,5,0, S1,6,1/2) 87 (F1,6,1/2, F1,7,1, F1,7,0, S1,6,1/2)
88 (F1,6,1/2, F1,7,1, F1,7,0, S1,8,1/2) 89 (F1,7,0, F1,6,1/2, F1,6,1/2, S1,5,0) 90 (F1,7,0, F1,6,1/2, F1,6,1/2, S1,7,0)
91 (F1,7,0, F1,6,1/2, F1,8,1/2, S1,7,0) 92 (F1,7,0, F1,8,1/2, F1,8,1/2, S1,7,0) 93 (F1,7,0, F1,8,1/2, F1,8,1/2, S1,9,0)
94 (F1,8,1/2, F1,7,1, F1,7,0, S1,6,1/2) 95 (F1,8,1/2, F1,7,1, F1,7,0, S1,8,1/2) 96 (F1,8,1/2, F1,7,1, F1,9,0, S1,8,1/2)
97 (F1,8,1/2, F1,9,1, F1,7,0, S1,8,1/2) 98 (F1,8,1/2, F1,9,1, F1,9,0, S1,8,1/2) 99 (F1,8,1/2, F1,9,1, F1,9,0, S1,10,1/2)
100 (F1,9,0, F1,8,1/2, F1,8,1/2, S1,7,0) 101 (F1,9,0, F1,8,1/2, F1,8,1/2, S1,9,0) 102 (F1,9,0, F1,8,1/2, F1,10,1/2, S1,9,0)
103 (F1,9,0, F1,10,1/2, F1,10,1/2, S1,9,0) 104 (F1,9,0, F1,10,1/2, F1,10,1/2, S1,11,0) 105 (F1,10,1/2, F1,9,1, F1,9,0, S1,8,1/2)
106 (F1,10,1/2, F1,9,1, F1,9,0, S1,10,1/2) 107 (F1,10,1/2, F1,9,1, F1,11,0, S1,10,1/2) 108 (F1,10,1/2, F1,11,1, F1,9,0, S1,10,1/2)
109 (F1,10,1/2, F1,11,1, F1,11,0, S1,10,1/2) 110 (F1,10,1/2, F1,11,1, F1,11,0, S1,12,1/2) 111 (F1,11,0, F1,10,1/2, F1,10,1/2, S1,9,0)
112 (F1,11,0, F1,10,1/2, F1,10,1/2, S1,11,0) 113 (F1,11,0, F1,10,1/2, F1,12,1/2, S1,11,0) 114 (F1,11,0, F1,12,1/2, F1,12,1/2, S1,11,0)
115 (F1,11,0, F1,12,1/2, F1,12,1/2, S1,13,0) 116 (F1,12,1/2, F1,11,1, F1,11,0, S1,10,1/2) 117 (F1,12,1/2, F1,11,1, F1,11,0, S1,12,1/2)
118 (F1,12,1/2, F1,11,1, F1,13,0, S1,12,1/2) 119 (F1,12,1/2, F1,13,1, F1,11,0, S1,12,1/2) 120 (F1,12,1/2, F1,13,1, F1,13,0, S1,12,1/2)
121 (F1,12,1/2, F1,13,1, F1,13,0, S1,14,1/2) 122 (F1,13,0, F1,12,1/2, F1,12,1/2, S1,11,0) 123 (F1,13,0, F1,12,1/2, F1,12,1/2, S1,13,0)
124 (F1,13,0, F1,12,1/2, F1,14,1/2, S1,13,0) 125 (F1,13,0, F1,14,1/2, F1,14,1/2, S1,13,0) 126 (F1,13,0, F1,14,1/2, F1,14,1/2, S1,15,0)
127 (F1,14,1/2, F1,13,1, F1,13,0, S1,12,1/2) 128 (F1,14,1/2, F1,13,1, F1,13,0, S1,14,1/2) 129 (F1,14,1/2, F1,15,1, F1,13,0, S1,14,1/2)
130 (F1,15,0, F1,14,1/2, F1,14,1/2, S1,13,0)

T-3

131 (F1,4,1/2, S1,5,0, S1,5,1) 132 (F1,5,1, S1,6,1/2, S1,6,3/2) 133 (F1,5,0, S1,6,1/2, S1,6,1/2)
134 (F1,6,1/2, S1,5,0, S1,5,1) 135 (F1,6,1/2, S1,5,0, S1,7,1) 136 (F1,6,1/2, S1,7,0, S1,5,1)
137 (F1,6,1/2, S1,7,0, S1,7,1) 138 (F1,7,1, S1,6,1/2, S1,6,3/2) 139 (F1,7,1, S1,6,1/2, S1,8,3/2)
140 (F1,7,1, S1,8,1/2, S1,6,3/2) 141 (F1,7,1, S1,8,1/2, S1,8,3/2) 142 (F1,7,0, S1,6,1/2, S1,6,1/2)
143 (F1,7,0, S1,6,1/2, S1,8,1/2) 144 (F1,7,0, S1,8,1/2, S1,8,1/2) 145 (F1,8,1/2, S1,7,0, S1,7,1)
146 (F1,8,1/2, S1,7,0, S1,9,1) 147 (F1,8,1/2, S1,9,0, S1,7,1) 148 (F1,8,1/2, S1,9,0, S1,9,1)
149 (F1,9,1, S1,8,1/2, S1,8,3/2) 150 (F1,9,1, S1,8,1/2, S1,10,3/2) 151 (F1,9,1, S1,10,1/2, S1,8,3/2)
152 (F1,9,1, S1,10,1/2, S1,10,3/2) 153 (F1,9,0, S1,8,1/2, S1,8,1/2) 154 (F1,9,0, S1,8,1/2, S1,10,1/2)
155 (F1,9,0, S1,10,1/2, S1,10,1/2) 156 (F1,10,1/2, S1,9,0, S1,9,1) 157 (F1,10,1/2, S1,9,0, S1,11,1)
158 (F1,10,1/2, S1,11,0, S1,9,1) 159 (F1,10,1/2, S1,11,0, S1,11,1) 160 (F1,11,1, S1,10,1/2, S1,10,3/2)
161 (F1,11,1, S1,10,1/2, S1,12,3/2) 162 (F1,11,1, S1,12,1/2, S1,10,3/2) 163 (F1,11,1, S1,12,1/2, S1,12,3/2)
164 (F1,11,0, S1,10,1/2, S1,10,1/2) 165 (F1,11,0, S1,10,1/2, S1,12,1/2) 166 (F1,11,0, S1,12,1/2, S1,12,1/2)
167 (F1,12,1/2, S1,11,0, S1,11,1) 168 (F1,12,1/2, S1,11,0, S1,13,1) 169 (F1,12,1/2, S1,13,0, S1,11,1)
170 (F1,12,1/2, S1,13,0, S1,13,1) 171 (F1,13,1, S1,12,1/2, S1,12,3/2) 172 (F1,13,1, S1,12,1/2, S1,14,3/2)
173 (F1,13,0, S1,12,1/2, S1,12,1/2) 174 (F1,13,0, S1,12,1/2, S1,14,1/2) 175 (F1,13,0, S1,14,1/2, S1,14,1/2)
176 (F1,14,1/2, S1,13,0, S1,13,1) 177 (F1,14,1/2, S1,13,0, S1,15,1)

Table 9. Models in which the DM could be stable due to accidental symmetry (DM-A).
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T-I-1 DM-A (exceptional)

1 (S1,5,1, S1,4,3/2, S1,6,1/2, F1,5,1) 2 (S1,5,1, S1,6,3/2, S1,6,1/2, F1,5,1) 3 (S1,7,1, S1,6,3/2, S1,6,1/2, F1,5,1)

T-I-2

4 (F1,4,1/2, F1,5,1, S1,5,1, S1,6,1/2) 5 (F1,5,1, F1,4,3/2, S1,4,3/2, S1,5,1) 6 (F1,5,1, F1,4,3/2, S1,6,3/2, S1,5,1)
7 (F1,5,1, F1,6,3/2, S1,4,3/2, S1,5,1) 8 (F1,5,1, F1,6,3/2, S1,6,3/2, S1,5,1) 9 (F1,5,1, F1,6,3/2, S1,6,3/2, S1,7,1)
10 (F1,6,1/2, F1,5,1, S1,5,1, S1,6,1/2) 11 (F1,6,1/2, F1,5,1, S1,7,1, S1,6,1/2)

T-I-3

12 (F1,4,3/2, F1,3,2, F1,5,1, S1,4,3/2) 13 (F1,4,3/2, F1,5,2, F1,5,1, S1,4,3/2) 14 (F1,4,3/2, F1,5,2, F1,5,1, S1,6,3/2)
15 (F1,5,1, F1,4,3/2, F1,4,1/2, S1,5,1) 16 (F1,5,1, F1,4,3/2, F1,6,1/2, S1,5,1) 17 (F1,5,1, F1,6,3/2, F1,4,1/2, S1,5,1)
18 (F1,5,1, F1,6,3/2, F1,6,1/2, S1,5,1) 19 (F1,5,1, F1,6,3/2, F1,6,1/2, S1,7,1) 20 (F1,6,3/2, F1,5,2, F1,5,1, S1,4,3/2)
21 (F1,6,3/2, F1,5,2, F1,5,1, S1,6,3/2) 22 (F1,6,3/2, F1,7,2, F1,5,1, S1,6,3/2)

T-3

23 (F1,4,3/2, S1,5,1, S1,3,2) 24 (F1,4,3/2, S1,5,1, S1,5,2) 25 (F1,6,3/2, S1,5,1, S1,5,2)
26 (F1,6,3/2, S1,5,1, S1,7,2)

T-I-2 DM-E (exceptional)

1 (F1,3,1, F1,2,3/2, S1,2,3/2, S1,1,1) 2 (F1,3,1, F1,2,3/2, S1,2,3/2, S1,3,1) 3 (F1,3,1, F1,2,3/2, S1,4,3/2, S1,3,1)
4 (F1,3,1, F1,4,3/2, S1,2,3/2, S1,3,1) 5 (F1,3,1, F1,4,3/2, S1,4,3/2, S1,3,1) 6 (F1,3,1, F1,4,3/2, S1,4,3/2, S1,5,1)
7 (F1,5,1, F1,4,3/2, S1,4,3/2, S1,3,1)

T-I-3

8 (F1,2,3/2, F1,1,2, F1,3,1, S1,2,3/2) 9 (F1,2,3/2, F1,3,2, F1,3,1, S1,2,3/2) 10 (F1,2,3/2, F1,3,2, F1,3,1, S1,4,3/2)
11 (F1,3,1, F1,2,3/2, F1,2,1/2, S1,1,1) 12 (F1,3,1, F1,2,3/2, F1,2,1/2, S1,3,1) 13 (F1,3,1, F1,2,3/2, F1,4,1/2, S1,3,1)
14 (F1,3,1, F1,4,3/2, F1,2,1/2, S1,3,1) 15 (F1,3,1, F1,4,3/2, F1,4,1/2, S1,3,1) 16 (F1,3,1, F1,4,3/2, F1,4,1/2, S1,5,1)
17 (F1,4,3/2, F1,3,2, F1,3,1, S1,2,3/2) 18 (F1,4,3/2, F1,3,2, F1,3,1, S1,4,3/2) 19 (F1,4,3/2, F1,5,2, F1,3,1, S1,4,3/2)
20 (F1,5,1, F1,4,3/2, F1,4,1/2, S1,3,1)

T-3

21 (F1,2,3/2, S1,3,1, S1,1,2) 22 (F1,2,3/2, S1,3,1, S1,3,2) 23 (F1,4,3/2, S1,3,1, S1,3,2)
24 (F1,4,3/2, S1,3,1, S1,5,2)

T-I-1 DM-A (exceptional)

1 (S1,5,1, S1,4,3/2, S1,6,1/2, F1,5,1) 2 (S1,5,1, S1,6,3/2, S1,6,1/2, F1,5,1) 3 (S1,7,1, S1,6,3/2, S1,6,1/2, F1,5,1)

T-I-2

4 (F1,4,1/2, F1,5,1, S1,5,1, S1,6,1/2) 5 (F1,5,1, F1,4,3/2, S1,4,3/2, S1,5,1) 6 (F1,5,1, F1,4,3/2, S1,6,3/2, S1,5,1)
7 (F1,5,1, F1,6,3/2, S1,4,3/2, S1,5,1) 8 (F1,5,1, F1,6,3/2, S1,6,3/2, S1,5,1) 9 (F1,5,1, F1,6,3/2, S1,6,3/2, S1,7,1)
10 (F1,6,1/2, F1,5,1, S1,5,1, S1,6,1/2) 11 (F1,6,1/2, F1,5,1, S1,7,1, S1,6,1/2)

T-I-3

12 (F1,4,3/2, F1,3,2, F1,5,1, S1,4,3/2) 13 (F1,4,3/2, F1,5,2, F1,5,1, S1,4,3/2) 14 (F1,4,3/2, F1,5,2, F1,5,1, S1,6,3/2)
15 (F1,5,1, F1,4,3/2, F1,4,1/2, S1,5,1) 16 (F1,5,1, F1,4,3/2, F1,6,1/2, S1,5,1) 17 (F1,5,1, F1,6,3/2, F1,4,1/2, S1,5,1)
18 (F1,5,1, F1,6,3/2, F1,6,1/2, S1,5,1) 19 (F1,5,1, F1,6,3/2, F1,6,1/2, S1,7,1) 20 (F1,6,3/2, F1,5,2, F1,5,1, S1,4,3/2)
21 (F1,6,3/2, F1,5,2, F1,5,1, S1,6,3/2) 22 (F1,6,3/2, F1,7,2, F1,5,1, S1,6,3/2)

T-3

23 (F1,4,3/2, S1,5,1, S1,3,2) 24 (F1,4,3/2, S1,5,1, S1,5,2) 25 (F1,6,3/2, S1,5,1, S1,5,2)
26 (F1,6,3/2, S1,5,1, S1,7,2)

T-I-2 DM-E (exceptional)

1 (F1,3,1, F1,2,3/2, S1,2,3/2, S1,1,1) 2 (F1,3,1, F1,2,3/2, S1,2,3/2, S1,3,1) 3 (F1,3,1, F1,2,3/2, S1,4,3/2, S1,3,1)
4 (F1,3,1, F1,4,3/2, S1,2,3/2, S1,3,1) 5 (F1,3,1, F1,4,3/2, S1,4,3/2, S1,3,1) 6 (F1,3,1, F1,4,3/2, S1,4,3/2, S1,5,1)
7 (F1,5,1, F1,4,3/2, S1,4,3/2, S1,3,1)

T-I-3

8 (F1,2,3/2, F1,1,2, F1,3,1, S1,2,3/2) 9 (F1,2,3/2, F1,3,2, F1,3,1, S1,2,3/2) 10 (F1,2,3/2, F1,3,2, F1,3,1, S1,4,3/2)
11 (F1,3,1, F1,2,3/2, F1,2,1/2, S1,1,1) 12 (F1,3,1, F1,2,3/2, F1,2,1/2, S1,3,1) 13 (F1,3,1, F1,2,3/2, F1,4,1/2, S1,3,1)
14 (F1,3,1, F1,4,3/2, F1,2,1/2, S1,3,1) 15 (F1,3,1, F1,4,3/2, F1,4,1/2, S1,3,1) 16 (F1,3,1, F1,4,3/2, F1,4,1/2, S1,5,1)
17 (F1,4,3/2, F1,3,2, F1,3,1, S1,2,3/2) 18 (F1,4,3/2, F1,3,2, F1,3,1, S1,4,3/2) 19 (F1,4,3/2, F1,5,2, F1,3,1, S1,4,3/2)
20 (F1,5,1, F1,4,3/2, F1,4,1/2, S1,3,1)

T-3

21 (F1,2,3/2, S1,3,1, S1,1,2) 22 (F1,2,3/2, S1,3,1, S1,3,2) 23 (F1,4,3/2, S1,3,1, S1,3,2)
24 (F1,4,3/2, S1,3,1, S1,5,2)

Table 10. Exceptional DM candidates with Y = 1. The table at the top corresponds to DM models
with exits (DM-E) which need a stabilizing symmetry and the table at the bottom to accidental
DM models (DM-A).

The symbol * has been placed next to each model where one of the Landau pole scales
is very low, i.e Λ1,2,3 < 100TeV. On the other hand the symbol “−”, placed next to a
model, represents models where all Landau pole scales, larger than mNP, are very large
Λ1,2,3 > 1015 GeV. The symbol † is marked next to the only model that unifies at a scale
of mG ' 1017 GeV.
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