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1 introduction

Once referred to as a “counterexample to almost anything” [1], Taub-NUT spacetime was
generally regarded as an unphysical solution to Einstein gravity, since it had rotating
string like singularities (Misner strings) and regions of closed timelike curves (CTCs) in
their vicinity. Its Euclidean version became the preferable form for the metric, the solu-
tion being interpreted as a gravitational instanton [2]. Its thermodynamic properties were
later interpreted in this context [3–10], the key point being that a periodic identification
of the (Euclidean) time coordinate is made so that the Misner string singularity is re-
moved [11]. Apart from the consequence that the Lorentzian version of the spacetime has
CTCs everywhere, the maximal extension of the spacetime becomes problematic [11–13].

Recently there has been a revival of interest in the Lorentzian Taub-NUT (LTN)
spacetime [14–22]. The primary reason for this was the recent demonstration that LTN
spacetime is geodesically complete and that freely falling observers do not experience causal
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pathologies [14, 15]. Although the latter situation does not hold for other (non-geodesic)
observers, it has been argued that spacetime geometry would be deformed by the back-
reaction of these accelerations so that chronology is ultimately be preserved [14]. Provided
this is the case, there is no apparent obstruction toward considering LTN as a physically
admissible solution to Einstein gravity. Indeed, the shadows of rotating LTN black holes
have been constructed [24, 25], anticipating possible observational constraints on these
objects.

Our interest in this paper is in the thermodynamic behaviour of LTN black holes. Work
on this originated with the de Sitter LTN [26] and on the tunnelling method for computing
black hole temperature [27]. More recently there have been more complete studies in
which the free energy has been calculated [18, 20] and a formulation of the laws of NUT-
charged black hole mechanics [19–22] were derived,1 generalizing the original approach [23].
Unlike the Euclidean case, this approach yields a first law of full cohomogeneity. The
Misner strings can be asymmetrically distributed along the north-south polar axes, and
the gravitational Misner charges encode their strengths.

Despite these successes, there remains an ambiguity in this approach, namely an iden-
tification of the entropy [18]. The Noether charge method applied to the Euclidean solu-
tion [5] yields an entropy SN that is a combination of contributions from the horizon area
and the Misner strings. The temperature T is given via either the tunnelling method [27]
or by standard Wick-rotation arguments and is the surface gravity of the black hole. A
new pair of conjugate variables (ψ,N) appear that ensure full cohomogeneity of the first
law. All thermodynamic quantities are finite for all finite values of the NUT charge n, and
have a smooth limit as the n→ 0.

However it was subsequently argued [19] that the surface gravity of the black hole
and its conjugate areal quantity should respectively correspond to the temperature and
entropy of the LTN black hole, with an additional conjugate pair of variables (ψ′N/S, N

′
N/S)

corresponding to the surface gravity of the Misner strings and a conjugate Misner charges,
the N/S corresponding to the north/south polar axes. This approach is more geometrically
intuitive, but has the feature that one of ψ′N/S diverges at some finite value of n, and has
no smooth n → 0 limit if the Misner strings are symmetrically distributed. It is likewise
unclear if the ψ′N/S should be interpreted as temperatures associated with the strings (in
which case N ′N/S are the corresponding string entropies) or not [19].

Furthermore, the choice of thermodynamic potentials for the NUT charged black
hole was recently shown to be ambiguous when both electric and magnetic charge are
present [21]. Two possible versions of the thermodynamic first law can be formulated de-
pending on how these charges are defined. Both the magnetic and electric charges depend
on the radius of the sphere over which the field strength and its dual are integrated via
Gauss’ law. One can either take the magnetic charge to be the value at infinity and the
electric charge to be that at the horizon, or vice-versa. In both cases a first law of full
cohomogeneity in all variables is obtained, but the thermodynamic NUT charges differ,
related to each other by electromagnetic duality [21].

1These laws have since been used to investigate weak cosmic censorship for NUT-charged black
holes [28, 29].
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A somewhat analogous situation holds for the choice of entropy. The two approaches
are connected by the relation

SN = A

4 + ψ′NN
′
N + ψ′SN

′
S

T
(1.1)

where A is the area of the black hole. If ψ′N = ψ′S ∝ T , a situation that would arise under
analytic continuation of periodic identification of the temperature [11, 26] then the Noether
charge entropy would equal the entropy from the horizon plus the total entropy N ′N +N ′S
of the strings [19], if the latter indeed can be regarded as string entropies.

It is the purpose of this paper to study the thermodynamics of charged LTN black
holes under these two interpretations — one in which the entropy is taken to be SN and
the other in which the entropy is taken to be S+ = A

4 . Previous work on this subject [21]
considered only the latter interpretation. It is our purpose here to understand what the
thermodynamic implications are of considering the entropy to the Noether charge entropy
SN , in accord with all other approaches to black hole thermodynamics.

We shall work in the context of Black Hole Chemistry [30]. This approach, in which the
cosmological constant Λ is regarded as a thermodynamic variable [31–34] corresponding to
a pressure P = − Λ

8π = 3
8πl2 , has proven to be very fruitful. The Hawking-Page transition

for AdS black holes [35] can be reinterpreted in terms of a first-order liquid/solid phase
transition [36]. Many new phenomena appear, including van der Waals phenomena [37], re-
entrant phase transitions [38, 39], black hole triple points [40], polymer-like transitions [41],
superfluid phase transitions [42], repulsive black hole microstructure [43], and more [30].

This task is somewhat complicated since the conserved electric and magnetic charges
depend on the radius of the 2-sphere that encloses the black hole. If one requires the
electromagnetic vector potential to vanish at the horizon [10, 44, 45], then the electric and
magnetic charges are no longer independent, and one can take the conserved electric charge
to that given as r → ∞. As a consequence of this, the first law of thermodynamics no
longer has full cohomogeneity. Only one of the electric/magnetic charges appears in the
first law, even though the LTN black hole has both types of charges. Furthermore, it has
been shown that this constraint is not necessary: all the parameters of the solution can be
varied independently varied provided that one charge is an asymptotic charge (r →∞) and
the other is evaluated on the horizon (r → r+) [21]. We shall consider all three scenarios:
asymptotic electric charge, asymptotic magnetic charge, and the standard ‘constrained’
thermodynamics.

Within each scenario we shall consider a variety of ensembles to see what kinds of
phase behaviour possible in each. Along with the Noether-charge entropy SN , the LTN
solution has two conjugate thermodynamic NUT charge/potential pairs, (NNN, ψNN) and
(NNS, ψNS) associated with each polar axis. For simplicity we shall choose these to be
equal, referring to them as (NN , ψN ). We therefore consider the following ensembles

1. Fixed electric and magnetic charges, fixed NN

2. Fixed electric and magnetic charges, fixed ψN

3. Fixed electrostatic potential, fixed magnetic charge, fixed NN
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4. Fixed electrostatic potential, fixed magnetic charge, fixed ψN

5. Fixed magnetostatic potential, fixed electric charge, fixed NN

6. Fixed magnetostatic potential, fixed electric charge, fixed ψN

for each of the three scenarios for defining charge. Furthermore, the relation (1.1) implies
that each of these ensembles has a counterpart in a setting where S+ is regarded as the
entropy with corresponding charge/potential pair, (N+, ψ+), with fixed NN corresponding
to fixed ψ+ and vice-versa. This latter situation is equivalent to fixing the NUT charge n,
and its thermodynamics has been given some study previously [21].

We shall therefore concentrate on the ensembles with fixed ψN . We find several new
phase phenomena in this case that we refer to as the fractured cusp, snapping cusp, zig-zag,
and double swallowtail structures in plots of the free energy as a function of temperature.

2 The charged Lorentzian Taub NUT solution

The charged LTN metric is [10, 51]

ds2 = −f [dt+ 2n cos θdφ]2 + dr2

f
+ (r2 + n2)(dθ2 + sin2 θdφ2) (2.1)

where
A = −h(dt+ 2n cos θdφ) (2.2)

is the electromagnetic vector potential. The functions f and h are

f = r2 − 2mr − n2 + 4n2g2 + e2

r2 + n2 − 3n4 − 6n2r2 − r4

l2(r2 + n2) (2.3)

h = er

r2 + n2 + g(r2 − n2)
r2 + n2 (2.4)

with n the NUT parameter, m the mass parameter, and e and g the respective electric and
magnetic charge parameters. The thermodynamic pressure is

P = − Λ
8π = 3

8πl2 (2.5)

and
V = 4πr+

3
(
r2

+ + 3n2
)

(2.6)

is its conjugate thermodynamic volume [18].
The mass and angular momentum can be computed via conformal completion meth-

ods [52, 53], yielding for the mass

M = m (2.7)

=
e2l2 − 3n4 + 6n2r2

+ + r4
+ + l2((4g2 − 1)n2 + r2

+)
2l2r+
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where f(r+) = 0; the angular momentum vanishes [21]. The conserved electric and mag-
netic charges are respectively given by

qe = 1
4π

∫
S2
∗F = e(r2 − n2)− 4grn2

r2 + n2 (2.8)

qm = 1
4π

∫
S2
F = −2ng(r2 − n2) + er

r2 + n2 (2.9)

and depend on the radius of the sphere over which the integration is performed [21]. Their
asymptotic values are

Q = lim
r→∞

qe = e Qm = lim
r→∞

qm = −2gn (2.10)

The electrostatic potential φ is obtained from calculating the difference between the
values of −ξ.A on the horizon and infinity [21]

φ = −(ξ.A|r=r+ − ξ.A|r=∞) = er+ − 2gn2

r2
+ + n2 (2.11)

and is the conserved electric charge.
The temperature associated with the surface gravity at the horizon is

T =
f ′+
4π = 1

4πr+

(
1 +

3(r2
+ + n2)
l2

− e2 + 4n2g2

r2
+ + n2

)
(2.12)

and
S+ = π(r2

+ + n2) (2.13)

is the contribution to the entropy from the horizon of the black hole.
To compare the 2 choices of entropy and thermodynamic NUT charge we must have

TdS+ + ψ+dN+ = TdSN + ψNdNN (2.14)

so that the first law holds for both choices of the entropy, where

ψ+ = 1
8πn (2.15)

is the thermodynamic potential corresponding to the thermodynamic NUT charge N+. As
noted above, this latter quantity is contingent upon the choice of electric and magnetic
charge. For the choice of metric (2.1) the potential ψ− = 0 [19]. We note also that ψ+
diverges as n → 0, making the thermodynamic interpretation of this potential less than
clear.

The Noether charge entropy SN contains contributions from both the horizon and
the Misner string, with NN and ψN the corresponding thermodynamic NUT charge and
conjugate potential. To relate these two we can write

N+ = NNX Xψ+ = ψN (2.16)
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where X is a function of the parameters (r+, n, l, e, g). Upon insertion into (2.14) we obtain

TdS+ + ψ+dN+ = TdS+ + ψN
X
d(XNN )

= TdS+ + NNψN
X

d(X) + ψNdNN

= TdSN + ψNdNN (2.17)

yielding

X = NNψN
T

⇒ N+ = k
N2
NψN
T

ψ+ = T

kNN
(2.18)

and
SN = S+ + N+ψ+

T
↔ S+ = SN −

NNψN
T

(2.19)

where k is a non vanishing numerical constant whose choice is arbitrary. We shall choose
k = 2 henceforth to agree with previous conventions [18, 20].

The Noether charge approach ascribes the total thermodynamic entropy as having con-
tributions from both the horizon and the Misner string [5]. This latter quantity depends on
N+, which itself depends on the definition of electric and magnetic charge. From (2.18) it is
easy to see that NN does not depend on these definitions, but that ψN does. Consequently
the Noether charge entropy likewise depends on this choice.

We note also that SN diverges as the black hole approaches extremality. This is not
possible if e = g = 0. But for any nonzero {e, g} the temperature of the black hole
vanishes for

rext
+ = l√

6

√√√√√1 + 12
e2

+
l2

+ 48g2
+n

2 −
(

1 + 6n
2

l2

)
(2.20)

where the notation e+ and g+ indicate that e or g could depend on r+ given the defini-
tions (2.8) and (2.9). We see that sufficiently small values of n exist for which rext

+ is real
and positive and hence for which SN diverges. For fixed values of e and g, this implies
there is a threshold value of the pressure

Pt = 4g2n2 + e2 − n2

8πn4 (2.21)

that determines whether or not the temperature can vanish. For P < Pt, T > 0 for all
values of r+.

The diverging behaviour of SN is an obvious consequence of (2.19), and is perhaps
the best reason for regarding the horizon entropy as the entropy of the LTN black hole.
However it is the purpose of this paper to explore the physical implications of interpreting
the entropy of this object to come from both the horizon and the Misner string. If indeed
the Misner string has gravitational degrees of freedom, these likewise could contribute to
the entropy of the black hole. This is the approach taken in the Euclidean case, and it is
our purpose to understand the implications of this in the Lorentzian sector.

We also note that for any given value of n 6= 0 there exist values of {e, g} so that the
LTN black hole is sub-extremal.
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In subsequent sections we shall consider the follow definitions of electric and magnetic
charge [21]:

1. Horizon magnetic charge, given by (2.9) with r = r+ and electric charge at infinity,
given by (2.8) with r →∞.

2. Horizon electric charge, given by (2.8) with r = r+ and magnetic charge at infinity,
given by (2.9) with r →∞.

3. A constrained thermodynamics where the electric and magnetic charges are related
by imposing the constraint that the electromagnetic potential A in (2.2) vanishes at
the horizon [10, 44, 45].

Before proceeding, in considering the phase transition behaviour for various ensembles,
the relation (2.19) implies that fixed NN in scenarios where SN is regarded as the entropy
corresponds to fixed ψ+ in scenarios where S+ is regarded as the entropy. Likewise, fixed
ψN in scenarios where SN is regarded as the entropy corresponds to fixed N+ in scenarios
where S+ is regarded as the entropy. In what follows we shall adopt the perspective that
SN is regarded as the entropy, and will comment where relevant as to what distinctions
arise if S+ is regarded as the entropy.

3 Case 1: horizon magnetic charge

For this first case we consider horizon magnetic charge Q
(+)
m ≡ qm(r = r+), yielding

from (2.9)

Q(+)
m =

−2n(er+ + g[r2
+ − n2])

r2
+ + n2 Qe = e (3.1)

where the electric charge is given by (2.10). The corresponding potentials are given by:

φ(1)
m = −n(2gr+ + e)

r2
+ + n2 (3.2)

φ(1)
e = −2gn2 + er+

r2
+ + n2

In this case the first law incorporating horizon entropy S+ is

dM = TdS+ + ψ+dN
(1)
+ + V dP + φ(1)

e dQe + φ(1)
m dQ(+)

m (3.3)

provided [21]

N
(1)
+ = −4πn3

r+

(
1 +

3(n2 − r2
+)

l2
+

(r2
+ − n2)(e2 + 4ger+)

(r2
+ + n2)2 −

4n2g2(3r2
+ + n2)

(r2
+ + n2)2

)
. (3.4)
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Using (2.18) and (2.19), we obtain

S
(1)
N =

(l2(r4
+ + 4n2r2

+ − n4)e2 + 8l2n2r+(r2
+ − n2)ge+ 4l2n2(r4

+ − 4n2r2
+ − n4)g2)π

(l2(n2 + r2
+)e2 + 4l2n2(n2 + r2

+)g2 − (n2 + r2
+)2(l2 + 3n2 + 3r2

+))

+
(n2 + r2

+)(l2n2 − l2r2
+ + 3n4 − 12n2r2

+ − 3r4
+)π

(l2e2 + 4l2n2g2 − (n2 + r2
+)(l2 + 3n2 + 3r2

+))
(3.5)

N
(1)
N = −

(4l2g2n2 + l2e2 − l2n2 − l2r2
+ − 3n4 − 6n2r2

+ − 3r4
+)n

(n2 + r2
+)r+l2

(3.6)

ψ
(1)
N = −n2

4l2g2n4 + 12l2g2n2r2
+ + 4l2egn2r+ − 4l2egr3

+
(4l2g2n2 + l2e2 − l2n2 − l2r2

+ − 3n4 − 6n2r2
+ − 3r4

+)(n2 + r2
+)

− n

2
l2e2n2 − l2e2r2

+ − l2n4 − 2l2n2r2
+ − l2r4

+ − 3n6 − 3n4r2
+ + 3n2r4

+ + 3r6
+

(4l2g2n2 + l2e2 − l2n2 − l2r2
+ − 3n4 − 6n2r2

+ − 3r4
+)(n2 + r2

+)
(3.7)

for the Noether charge entropy, the thermodynamic Noether NUT charge, and its conjugate
potential. It is straightforward to show that the first law

dM = TdS
(1)
N + ψ

(1)
N dNN + V dP + φ(1)

e dQe + φ(1)
m dQ(+)

m (3.8)

and Smarr relation
M = 2TS(1)

N − 2PV + φ(1)
e Qe + φ(1)

m Q(+)
m (3.9)

are both satisfied using (3.5), (3.6), and (3.7). Note that the NN has no scaling dimension
and so does not appear in (3.9).

The Noether charge entropy (3.5) depends on the parameters (e, g) and is not positive
for all values of the parameters. This phenomenon has been seen before in Taub-NUT AdS
spacetimes [6, 8] as well as in higher-curvature gravity [46, 48, 49]. While negative entropy
does not make sense from a statistical mechanics viewpoint, the LTN solution does not
have any pathologies (beyond, perhaps, what we have noted for the Misner string), and
there is no obvious reason that these negative entropy solutions should be rejected outright.
Furthermore, it is possible to shift the entropy by an arbitrary constant, either by adding
to the action a term proportional to the volume form of the induced metric on the hori-
zon [50] or by including an explicit Gauss-Bonnet term [46]. This latter possibility has been
studied in some detail for the Euclidean Taub-NUT-AdS solution, where the introduction
of the Gauss-Bonnet term was shown to renormalize the Misner string contribution to the
entropy [47].

4 Case 2: horizon electric charge

We now turn to case 2, the contrariwise situation for which the electric charge Q(+)
e ≡

qe(r = r+), yielding from (2.8)

Q(+)
e =

e(r2
+ − n2)− 4gr+n

2

r2
+ + n2 Qm = −2ng (4.1)

– 8 –
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where now the magnetic charge is given by (2.10). The corresponding potentials are now
given by:

φ(2)
e = −2gn2 + er+

r2
+ + n2

φ(2)
m = −n(2gr+ + e)

r2
+ + n2 (4.2)

and the thermodynamic NUT charges are related to each other via

N
(2)
+ = N

(1)
+ − 16πn2φ(2)

e φ(2)
m (4.3)

by electromagnetic duality.
From (2.18) and (2.19), we obtain

S
(2)
N = π((6r2 + (4g2 − 1)l2)n6 + (24r4 − (16g2 + 1)l2r2 − 8l2egr + l2e2)n4 − 3n8)

(n2 + r2)(3n4 − ((4g2 − 1)l2 − 6r2)n2 − l2e2 + l2r2 + 3r4)

+ π((18r6 + (−4g2 + 1)l2r4 + 8l2egr3 + 4l2e2r2)n2 − l2e2r4 + l2r6 + 3r8)
(n2 + r2)(3n4 − ((4g2 − 1)l2 − 6r2)n2 − l2e2 + l2r2 + 3r4) (4.4)

ψ
(2)
N = −n2

−3n6 + ((4g2 − 1)l2 − 3r2
+)n4

(−3n4 + ((4g2 − 1)l2 − 6r2
+)n2 + (e2 − r2

+)l2 − 3r4
+)(n2 + r2

+)

− n

2
(((−4g2 − 2)r2

+ − 4egr+ + e2)l2 + 3r4
+)n2 + (4egr3

+ + 3e2r2
+ − r4

+)l2 + 3r6
+

(−3n4 + ((4g2 − 1)l2 − 6r2
+)n2 + (e2 − r2

+)l2 − 3r4
+)(n2 + r2

+)
(4.5)

with the thermodynamic Noether NUT charge still given by (3.6).
As before, the first law

dM = TdS
(2)
N + ψ

(2)
N dNN + V dP + φ(2)

e dQ(+)
e + φ(2)

m dQm (4.6)

and Smarr relation

M = 2TS(2)
N − 2PV + φ(2)

e Q(+)
e + φ(2)

m Qm (4.7)

are both satisfied using (4.4), (4.5), and (3.6). The Noether NUT charge NN has no scaling
dimension and so does not appear in (4.7).

We illustrate in figure 1 a plot of the Noether charge entropy for cases 1 and 2. For
sufficiently large r+ they are similar, but notable distinctions appear at small r+; these
become more pronounced at larger n. For nonzero (e, g), the entropy diverges as a function
of (r+, n) as T → 0. In both cases the Noether charge entropy (4.4) is not always positive
for sufficiently small black holes due to the Misner string contributions as shown in figure 1.
Unlike the horizon magnetic case (3.5), the entropy S

(2)
N is not a monotonic function of

r+ — as r+ decreases the entropy decreases until it reaches a minimum, after which it
increases further as r+ decreases until the singularity is reached.

– 9 –
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Figure 1. Comparison of Noether charge Entropies for cases 1 and 2. The lower red sheet is case 1,
the upper blue sheet is case 2, with ` = 30, g = 0.5, e = 1. The grey plane indicates zero.

5 Case 3: constrained thermodynamics

We now consider the situation in which the electromagnetic potential is constrained to
vanish on the horizon. This has generally been the approach taken for NUT-charged
solutions in the Euclidean case [44, 45], and is equivalent to the condition h(r+) = 0,
which is

g = − er+
r2

+ − n2 (5.1)

and using (2.10) the asymptotic electric charge and electrostatic potential become

Q = e (5.2)

φ(3) = −er+ − 2gn2

n2 + r2
+

= −g

from (2.10) and (2.11). The thermodynamic quantities (2.7), (2.12) and (3.4) likewise must
be changed to incorporate the constraint (5.1), and respectively become

M (3) =
r4

+6n2r2
+ − 3n4 + (r2

+ − n2)l2

2r+l2
−
e2(r2

+ + n2)2

2(r2
+ − n2)r+

(5.3)

T (3) = 1
4πr+

(
1 +

3(r2
+ + n2)
l2

−
e2(r2

+ + n2)
(r2

+ − n2)2

)
(5.4)

and
N

(3)
+ = −4πn3

r+

(
1 +

3(n2 − r2
+)

l2
+
e2(3r2

+ + n2)
(r2

+ − n2)2

)
(5.5)

and we see that g, M , and T all become singular as r+ → |n|. However this occurs in an
unphysical region where T < 0.

– 10 –
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The first law (3.3) is no longer of full cohomogeneity, and reads

dM = T (3)dS+ + ψ+dN
(3)
+ + V dP + φ(3)

e dQe (5.6)

and the Smarr relation

M = 2T (3)S+ + 2ψ+N
(3)
+ − 2V dP + φ(3)

e dQe (5.7)

is likewise reduced.
Once again, using (2.18) and (2.19), we obtain

S
(3)
N =

e2l2π(r4
+ − n4 − 4n2r2

+)
e2l2(n2 + r2

+)− (n2 − r2
+)2(l2 + 3(n2 + r2

+))

−
π(r2

+ − n2)2(3(r4
+ + 4n2r2

+ − n4)− l2(r2
+ − n2))

e2l2(n2 + r2
+)− (n2 − r2

+)2(l2 + 3(n2 + r2
+))

(5.8)

N
(3)
N = −n

−l2(r2
+ + n2)e2 + (r2

+ − n2)2(l2 + 3n2 + 3r2
+)

r+(r2
+ − n2)2l2

(5.9)

ψ
(3)
N = −n2

l2(n2 + 3r2
+)e2 − (r2

+ − n2)2(l2 + 3n2 − 3r2
+)

e2l2(n2 + r2
+)− (n2 − r2

+)2(l2 + 3(n2 + r2
+))

(5.10)

where we note that N (3)
N in (5.9) is obtained from (3.6) upon inserting the constraint (5.1).

As before, the Noether charge entropy S
(3)
N in (5.8) depends on the charge parameter e

and is not always positive. This quantity is the same as that obtained from the Euclidean
section [10] upon employing the Wick rotation n→ in, e→ ie, and g → ig.

We now have a first law of reduced cohomogeneity

dM = T (3)dS
(3)
N + ψ

(3)
N dN

(3)
N + V dP + φ(3)

e dQe (5.11)

and Smarr relation
M = 2T (3)S

(3)
N − 2PV + φ(3)

e Qe (5.12)

that are straightforwardly shown to both be satisfied using (5.4), (5.8), (5.10), and (5.9).
Once again, the Noether NUT charge NN has no scaling dimension and so does not appear
in (5.12).

In this case we encounter a new phenomenon: neither the Noether charge entropy S(3)
N

nor the horizon entropy S+ is a single-valued function of M . For r+ > n, black holes
of sufficiently small mass can exist in either a high-entropy state or a low entropy state
depending on the values of the other parameters. This is because the mass M is no longer
a monotonically increasing function of the horizon radius — for sufficiently small values
of M , there are two allowed values (small and large) of r+, yielding this behaviour. If we
admit solutions with r+ < n, then a 3rd branch of solutions appears, in which S

(3)
N < 0

and S+ > 0 but smaller than the values in figure 2, each an increasing function of M , with
S+ approaching its asymptotic value from below.
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Figure 2. Noether Charge Entropy for Case 3. Left: two plots of the Noether charge entropy SN
in case 3, for ` = 12, as a function of (n, r+). The lower (blue) plot is for e = 0 and the upper
(yellow) one for e = 0.6. The grey plane indicates zero. Right: a plot of SN (blue) and S+ (red) as
a function of M for ` = 7, e = .13, and n = 1.5.

Table 1. Free Energy and Phase Behaviour for Various Ensembles at fixed pressure P
G(I) = M − TS(I)

N G
(I)
ψ = M − TS(I)

N − ψ(I)
N N

(I)
N .

Fixed Quantities (a) Qe, Qm, N (I)
N (b) Qe, Qm, ψ(I)

N (c) φe, Qm, N (I)
N (d) φe, Qm, ψ(I)

N (e) φm, Qe, N (I)
N (f) φm, Qe, ψ(I)

N

Horizon Magnetic F = G(1) F = G
(1)
ψ F = G(1) − φeQe F = G

(1)
ψ − φeQe F = G(1) − φmQm F = G

(1)
ψ − φmQm

(Case I)
Horizon Electric F = G(2) F = G

(2)
ψ F = G(2) − φeQe F = G

(2)
ψ − φeQe F = G(2) − φmQm F = G

(2)
ψ − φmQm

(Case II)
Constrained F = G(3) F = G

(3)
ψ F = G(3) − φeQe F = G

(3)
ψ − φeQe

(Case III)

6 Phase behaviour and thermodynamic ensembles

As noted in the introduction, we consider six distinct thermodynamic ensembles for each
case. This is summarized in table I. One feature common to all cases is the notion of a
threshold pressure that governs the behaviour of the temperature. Solving either of case I
or case II for (e, g) in terms of (Qe, Qm) yields

T =
3r6

+ + (l2 − 3n2)r4
+ − ((Q2

e +Q2
m + 2n2)l2 + 3n4)r2

+ − 4l2QeQmnr+ + 3n6(1− Pt/P )
4πl2r+(r2

+ − n2)2

(6.1)

where
Pt = Q2

e +Q2
m − n2

8πn4 . (6.2)

is a threshold pressure. For case I, Qe and Qm in (6.1) and (6.2) are given by (3.1),
whereas for case II they are given by (4.1), but with Qm replaced by −Qm. For case III
the threshold pressure is given by replacing Qm → 0 in (6.2).
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We shall employ the notation G(I) = M − TS(I)
N , for which N (I)

N is fixed and G(I)
ψ =

M − TS(I)
N − ψ

(I)
N N

(I)
N for which ψ(I)

N is fixed, the index I = 1, 2, 3 denoting the respective
horizon magnetic, horizon electric, and constrained cases. Note that using (2.19), we have

G(I) = M − TS(I)
N = M − TS+ − ψ+N+ (6.3)

G
(I)
ψ = M − TS(I)

N − ψ
(I)
N N

(I)
N = M − TS+−2ψ+N+ (6.4)

indicating for each case that fixed N (I)
N corresponds to fixed ψ+ (or fixed n).

We shall now discuss the various phase transitions that can occur.

6.1 Fixed N
(I)
N

As stated above, this case corresponds to ensembles in which one either regards the entropy
as being S(I)

N , or in which n (or ψ+) is fixed and the entropy is S+. The phase structures
obtained are equivalent in either case. This corresponds to columns (a), (c), and (e) in the
table.

The form of (6.1) indicates that there can be as many as 3 extremal black holes
depending on the magnitudes relative signs of Qe, Qm, and Pt/P . The various possibilities
are illustrated in figure 3. We see that if Pt > P then T →∞ as r+ → 0, whereas if Pt < P

then T → −∞ as r+ → 0. The rule of signs can be used to infer the remaining behaviour.
If Pt > P and Qe and Qm have the same sign then T has two positive roots, corresponding
to the upper middle diagram in figure 3. However if Pt < P then T has either one root if
Qe and Qm have the same sign (shown in the upper left diagram) or three roots if they
have opposite sign (shown in the upper left diagram). Two interesting special cases occur
if Qe = −Qm. The singularity at r+ = n is removed, and the temperature either has one
root if Pt > P (shown in the lower right diagram in figure 3) or no roots if Pt < P (shown
in the lower left diagram).

For case III, the upper right and lower right diagrams in figure 3 are not possible.
For vanishing charge, only the lower left diagram is possible, as there are no extremal
black holes. For any nonzero charge there will either be one or two extremal black holes,
corresponding to the upper left and upper middle diagrams respectively. For all possibilities
in case III we observe behaviour similar to that of cases I and II where these remaining
diagrams in figure 3 are applicable, and so we shall not illustrate this case in what follows.

Since physical solutions must have positive temperature, we will obtain various branches
of possible physical solutions for each of the various possibilities. This will have interesting
implications for the free energy and phase behaviour of the LTN black hole as we shall see.
Note that while T is singular at r+ = n (as are M and NN ) if Qe 6= −Qm, this takes place
in an unphysical region where T < 0.

6.1.1 Vanishing charge

For zero magnetic and electric charge, the free energy diagram corresponds to that of a
cusp, shown in figure 4 for two different values of n. This cusp may be above or below the
G = 0 axis in the free-energy diagram, with larger values of n moving the cusp to smaller
values of G. If n = 0 the intersection of the cusp signifies a Hawking-Page transition to
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Figure 3. Possible behaviours of the temperature for various values of the parameters, with ` = 3.
The upper three figures all have singularities at r+ = n. The upper left figure has Pt > P , with
Qe = 1, Qm = 1.3 and n = 1.3. There is only one extremal black hole. The upper middle figure
has Pt < P , with Qe = 1, Qm = 0.7 and n = 1.3. There is both a large and a small extremal black
hole. The upper right figure has Pt > P , with Qe = −1.1, Qm = 1.3 and n = 1.3. There is now a
large extremal black hole and two smaller extremal black holes. The lower left figure has Pt < P ,
with Qm = −Qe = −1.1, and n = 1.3; in this case there are no extremal black holes. The lower
right figure has Pt > P , with Qm = −Qe = −1.4, and n = 1.3; in this case there is one extremal
black hole, but no singularity in T for r+ > 0.
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Figure 4. Cusp Structure for vanishing charge. Setting e = g = 0, we observe a cusp structure
for all values of ` and n. Here we set ` = 3; n = 1.3 and n = 0.7 are the blue and red curves
respectively, with the dash corresponding to M < 0 solutions.

thermal AdS (radiation). But if n 6= 0 this cannot take place in the G(I) ensembles, since
these correspond to fixed n, whereas thermal AdS has n = 0.

6.1.2 Interrupted swallowtails

For cases Ia and IIa, we have a phenomenon that we refer to as the ‘interrupted swallowtail’,
previously observed [21] for Lorentzian NUT-charged AdS black holes in which S+ is taken
to be the entropy. We illustrate this in figure 5.

If Pt > P , the classic swallowtail structure observed for n = 0 Reissner-Nordstrom AdS
black holes [37] takes place, as shown in the left diagram in figure 5. For low pressures there
is a first order large/small phase transition as the temperature decreases; for high pressures
there is only a single phase. However if P > Pt then an additional new branch appears
for small r+ < n for which the free energy is negative. In this case the first order phase
transition at the swallowtail interaction will not take place. Instead there will be a first
order transition at the intersection of the r+ > n branch with the r+ < n branch, as shown
in the right diagram in figure 5. The would-be swallowtail transition is ‘interrupted’ by
the lower branch transition — essentially the large/small transition becomes a large/tiny
transition.

There is a caveat to this, however. The mass on this lower branch is not always positive
— as temperature increases the mass can become negative. If negative mass solutions are
not ruled out as unphysical, then the first order phase transition above will take place.
However if they are ruled out, then this will not take place and the usual large/small
swallowtail transition takes place. This is shown in the inset in the left diagram in figure 5.
In this particular case, the pressure is such that the negative mass tiny solutions have higher
free energy than the large solutions, and so a large/tiny transition will take place. However
as the pressure increases, the negative mass part moves toward lower temperatures on the
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Figure 5. Swallowtails below and above threshold pressure. Left: setting n = 1, Qe = 1.4 and
Qm = −1.3, we have Pt = 0.10544 > P for all values of P (or `) shown. This situation exhibits
the low-pressure swallowtail and high-pressure single-phase behaviour that takes place for n = 0
Reissner-Nordstrom AdS black holes. At the intersection of the swallowtail, there is a first-order
phase transition from a large black hole to a small one as the temperature decreases. Right: setting
n = 1.2, Qe = 1 and Qm = 0.1, we have Pt < 0, ensuring P > Pt for all values of P shown (or
`). There are now two branches. For one branch r+ > n; the curves exhibit the same qualitative
behaviour as the diagram at the left. Along the other branch r+ < n; for all values of P these
branches are nearly indistinguishable. This branch has a lower free energy than the r+ > n branch
at low temperatures, and so there will be a first order phase transition where these two branches
intersect. However this branch will also have negative mass for sufficiently small r+, illustrated in
the inset. These structures occur in cases Ia and IIa.

r+ < n branch and the large/tiny transition will not take place if negative mass solutions
are ruled out [21].

We illustrate this in figure 6. Depending on where this occurs, as temperature decreases
there will either be a zeroth order large/tiny transition (if the negative mass solutions set
in at a temperature larger than the swallowtail intersection) or a first order large/small
transition (at the swallowtail intersection) followed by a zeroth order small/tiny transition
(if the negative mass solutions set in at a temperature smaller than the swallowtail inter-
section). For sufficiently high pressure the swallowtail is absent, and only a large/tiny first
order transition takes place, shown in figure 7.

6.1.3 Breaking swallowtails

If we set Qe = −Qm, then we have behaviour associated with the lower two diagrams in
figure 3; we illustrate this behaviour in figure 8. Here the swallowtail ‘breaks’ in a manner
similar to the snapping behaviour seen for accelerating black holes [54]. For P < Pt an
extremal black hole exists, and the free energy diagram exhibits swallowtail behaviour
with the familiar first order large/small transition as temperature decreases [37]. However
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Figure 6. Interrupted Swallowtail. For ` = 11, Qe = 1 and a range of values of n, we observe an
interrupted swallowtail, where the usual large/small transition is unstable, and instead a large/tiny
first order phase transition takes place as temperature decreases. Blue solid lines correspond to
M > 0, whereas red dashed lines correspond to M < 0. For large enough n this transition will be
for M > 0, shown in the right diagram. As n decreases, it reaches a threshold value (n = 1.15,
shown in the middle diagram) below which the transition is from a large black hole with M > 0 to
a the tiny black hole with M < 0, shown in the left diagram. Throughout, the entropy S(I)

N > 0 at
the transition; the unstable branch at large T eventually has S(I)

N < 0, shown by the red dot-dash
line. These structures occur in cases Ia and IIa.

Figure 7. Large/Tiny transitions. For sufficiently high pressure (here ` = 3), the swallow tail is
absent, and only a large/tiny transition takes place. Setting Qe = 1 and n = 1.3, we observe a
situation analogous to that in figure 6, but with increasingly negative magnetic charge governing
whether or not M < 0 for the tiny phase. Proceeding left to right, the left diagram has Qm = −0.2,
the middle one Qm = −0.55 and the right one Qm = −0.8. Blue solid lines correspond to M > 0
and S > 0, red dashed lines to M < 0, and S > 0, and red dot-dash lines to M < 0, and S < 0.

as the pressure increases so that P > Pt, instead of a critical point being reached, the
swallowtail becomes a cusp. No phase transition takes place; instead, as temperature
decreases the large black hole becomes smaller until it attains a minimal size below which
it is thermodynamically unstable; in figure 8, threshold at which P = Pt occurs at ` = 3.975.

6.1.4 Charge-changing phase transitions

Further interesting behaviour occurs if we consider fixed electromagentic potentials. In this
case it is possible to get first order transitions from large positively charged black holes to
small negatively charged ones (and vice-versa, depending on the parameter choices made.
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Figure 8. Breaking Swallowtail. Here we set n = 1.3 and Qe = −Qm = 1.1. The larger two values
of ` correspond to P < Pt, and exhibit the familiar swallowtail behaviour. However for P > Pt
(` = 3) the swallowtail is replaced by a cusp. No second order critical behaviour is observed. This
behaviour can occur in case Ia.

Figure 9. Charge-Changing Phase Transition. Plotting free energy as a function of temperature
for Qm = 0.8, n = 1.8, φe = 0.1, and ` = 12, we observe a first order large/small phase transition,
where the electric charge changes sign. The inset shows the behaviour of the charge as a function
of temperature. This behaviour is typical of case Ic, and for its magnetic counterpart, case Ie.

To be specific, we illustrate in figure 9 a typical situation for fixed φe and Qm, corre-
sponding to case Ic. As the temperature decreases, there is a first-order large/small phase
transition where the sign of Qe changes. Essentially the black hole discharges all its pos-
itive charge and picks up negative charge from the fixed potential. If we fix Qe and φm
(Case Ie) we observe similar behaviour, but with the magnetic charge Qm changing sign.

In figure 10 we illustrate how this charge-changing behaviour changes as the fixed
value of n is varied. For sufficiently small n no charge-changing behaviour takes place. As
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Figure 10. NUT charge dependence of Charge-changing Transitions. We see that as n increases in
size, the small branch becomes negatively charged. The charge transition point eventually moves
to the unstable part of the swallowtail, at which point charge-changing transitions become possible.
Throughout all these diagrams, M > 0. This behaviour can occur in cases Ic and Ie.

n increases, the small branch develops negative charge, which grows along the small branch
until eventually the charge-changing first order transition takes place.

6.1.5 Inverted cusps

We also observe a structure we refer to as an inverted cusp. This can occur if P < Pt
and the charges are sufficiently large and of opposite sign. In this case the temperature
as a function of r+ is given by the upper right diagram in figure 3. There are now three
extremal black holes, with the smaller two yielding an inverted cusp structure in the free
energy.

This is illustrated in figure 11. There is a branch of large black holes (r+ > n) that
exhibits the standard swallowtail structure at low pressures (` = 20 in the figure), which
vanishes at a critical point at a sufficiently high pressure, beyond which the curve is smooth
(` = 3 in the figure). However there is now branch of tiny black holes (r+ < n) that has the
form of an inverted cusp. This cusp may or may not intersect the large branch, depending
on the relative size of the magnetic charge compared to the electric one.
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Figure 11. Inverted Cusp. For P < Pt we observe inverted cusp structures when there are three
possible extremal black holes. Blue solid curves correspond to ` = 20 (low pressure) and red dot-
dash curves to ` = 3 (high pressure). Left: we set n = 1.3, Qe = −1.39, and Qm = 0.969. The
inverted cusps do not intersect the other curves corresponding to larger black holes. The inset
provides a close up of the cusp for ` = 20. Right: we set n = 1.3, Qe = −1.30, and Qm = 1.10.
The inverted cusps intersect the other curves corresponding to larger black holes. These situations
can occur in cases Ia and Ib.

If the magnetic charge is sufficiently small, the cusps do not intersect, as shown in the
left diagram of figure 11. In this case, at low pressure there will be a standard first order
large/small phase transition as the temperature decreases; above and below the transition
r+ > n. This will be followed by a zeroth order transition, in which the small r+ > n black
hole becomes a tiny r+ < n black hole. The lower branch of the cusp corresponds to the
smallest of the tiny black holes and is thermodynamically stable. At high pressures there
is no swallowtail, but the zeroth order transition will still take place.

If the magnetic charge is sufficiently large, the cusps intersect, as shown in the right
diagram of figure 11. As temperature decreases there is no longer a first order large/small
transition at low pressure. Instead, for all pressures, there is a first order phase transition
in which the large r+ > n black hole becomes a tiny r+ < n black hole.

It is also possible to have situations in which three extremal black holes are present
at low pressure but not high pressure, and vice-versa, as shown in figure 12. In this case
the phase behaviour will be a combination of the previous cases. In the left diagram, as
temperature decreases we observe a large/small first order transition where r+ > n at low
pressure and a zeroth order large/tiny transition at high pressure. In the right diagram, for
both pressures we have only a first order large/tiny transition as temperature decreases.

These structures change as the pressure changes. In the left diagram in figure 12,
as pressure decreases, the inverted cusp recedes, eventually vanishing. A swallowtail then
develops as pressure further increases. The right diagram in figure 12 has a somewhat more
complicated behaviour. As pressure decreases, the lower r+ < n branch shifts a bit and
then suddenly snaps to an inverted cusp that intersects the large branch curve. As pressure
further decreases, a swallowtail forms on the large branch above the inverted cusp, giving
rise to the low pressure swallowtail plus inverted cusp structure we see in the diagram.
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Figure 12. Pressure Dependent Inverted Cusps. Blue solid curves correspond to ` = 20 (low
pressure) and red dot-dash curves to ` = 3 (high pressure). Left: we set n = 1.3, Qe = −1.5, and
Qm = 1.1. In this case there is only one extremal black hole at low pressure, but three extremal
black holes at high pressure. Right: we set n = 1.3, Qe = −1.1, and Qm = 0.964. In this case there
are three extremal black holes at low pressure, but only one extremal black hole at high pressure.

Finally, it is possible for the inverted cusp to just intersect the large black hole branch.
In this case there will be a form of triple point, where the large, tiny, and unstable tiny
phases coexist.

6.2 Fixed ψ
(I)
N

For fixed ψ
(I)
N we obtain distinct ensembles from those considered previously [21], corre-

sponding to columns (b), (d), and (e) in the table. The entropy is now interpreted as S(I)
N ,

and only G(I)
ψ = M − TS(I)

N − ψ
(I)
N N

(I)
N has a sensible interpretation.

Before proceeding to describe the additional qualitatively new phase behaviour we
observe, we first note that discontinuities are present in both temperature and charge
when plotted as functions of r+. This is illustrated in figure 13 for the temperature and in
figure 14 for the electric charge, for various values of the magnetic charge. This behaviour
undergirds the various phase behaviours for fixed ψ(I)

N that we now go on to describe.
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Figure 13. Temperature vs. Horizon size for nonzero magnetic charge at fixed electric potential.
This plot of T vs. r+ at ψ(I)

N = 0 exhibits a discontinuity in temperature for various values of Qm
relative to the Qm = 0 case. For sufficiently large Qm black hole solutions do not exist at small r+.
Here ` = 7 and Φe = 0.5.

Figure 14. Electric charge vs. Horizon size at fixed electric potential. This plot of Qe vs. r+ at
ψ

(I)
N = 0 exhibits a single discontinuity for vanishing magnetic charge Qm = 0, that widens as ψ(I)

N
increases, with a positively charged black hole becoming negatively charged at sufficiently small
r+. If Qm 6= 0 a second discontinuity appears if ψ(I)

N 6= 0, and there is an intermediate range of r+

where Qe < 0. This region narrows as ψ(I)
N increases. Here ` = 7 and Φe = 0.5.

6.2.1 Inverted swallowtails

Consider first fixed electric and magnetic charges with fixed ψ(I)
N , column (b) in the table.

If ψ(I)
N = 0, the familiar swallowtail structure appears for vanishing magnetic charge,

corresponding to the familiar first-order large/small black hole phase transition. However
fractures appear for nonzero Qm, as shown in figure 15. In this case no phase transition is
present. This swallowtail structure is restored for sufficiently large ψ(I)

N .
More generally this cases exhibits a double swallowtail structure, with one swallowtail

inverted, as shown in figure 16. For large pressures only the lower inverted swallowtail is
present, but for small enough pressure the upper cusp becomes a swallowtail. As pressure
decreases, the lower swallowtail structure shrinks and the upper one grows. The formation
of the inverted swallowtail as a function of increasing magnetic charge is shown in figure 17.
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Figure 15. Case 1(b) Fixed Electric and Magnetic Charges. The plots on the left are for temper-
ature and free energy for fixed ψ(I)

N = 0, and on the right for fixed ψ(I)
N = 2, and for the respective

fixed horizon magnetic charges shown. The fixed electric charge Qe = 0.6, and ` = 20. The presence
of magnetic charge induces a discontinuity in the free energy, but this is restored for sufficiently
large ψ(I)

N .

This situation exhibits interesting phase behaviour. At high temperatures we have a
large black hole. As temperature decreases, there will be a first order transition to a small
black hole, on the lower part of the curve containing the inverted swallowtail. These black
holes may have M < 0, depending on the choice of parameters. As temperature further
decreases, the small black hole grows in size, eventually undergoing a zeroth order phase
transition to a larger black hole on the bottom of the inverted swallowtail. This black hole
may undergo a further zeroth order transition to an even larger black hole if the pressure
is sufficiently large (the ` = 7 curve in figure 16), or else remain at some fixed value beyond
which no black holes exist if the pressure is smaller (the ` = 8 curve in figure 16). If the
pressure is small enough for an upper swallowtail to be present, then there will be a zeroth
order transition to a larger black hole on the lower branch of the upper swallowtail (the
` = 9, 10 curves in figure 16). As temperature further decreases, the hole shrinks in size
a bit, terminating at some value of r+ and T below which no black holes can exist. This
latter behaviour is more easily seen in figure 18.

6.2.2 Fractured cusp

Another phenomenon is one we refer to as the ‘fractured cusp’, which can occur for vanish-
ing magnetic charge, as in cases 1(d) and 2(d). These are equivalent because the electric
charge Qe is the same function of n, r+, and φe when Qm = 0. This phenomenon can
occur even if Qe = 0, as shown in figure 19.
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Figure 16. Inverted Swallowtails. These structures can appear for cases Ib and IIb; we illustrate
them here for Qe = 1 and Qm = 0.75 (case Ib). At large pressures there is a lower swallowtail
on what would otherwise be a cusp. For sufficiently large `, the upper cusp is replaced with a
swallowtail. As ` increases (or as pressure decreases) the lower swallowtail shrinks and the upper
one grows. Note that the lower parts of each curve have segments where M < 0. The insets provide
close-ups of the upper and lower parts of the curves.

For vanishing ψ(I)
N , we observe the familiar cusp structure of a Hawking-Page transition.

Choosing parameters so that Qe > 0, the lower branch of the cusp corresponds to a large
black hole of large charge, and the upper branch to a small black hole of small charge.
However if ψ(I)

N 6= 0, we find that there is a discontinuity in Qe as a function of horizon
size r+, and that black holes of sufficiently small horizon size will be negatively charged,
with a corresponding discontinuity appearing in the temperature. There is a class of small
negatively charged small black holes that is discontinuous from a class of larger positively
charged ones, with an intermediate range of r+ where no black holes are possible. As
ψ

(I)
N 6= 0 gets larger, this discontinuity gap widens. A corresponding discontinuity appears

in the upper branch at small r+ in the free-energy diagram, shown in figure 20. As ψ(I)
N 6= 0

increases, this unstable small branch develops a cusp and moves downward to lower values
of G. There is a critical value of ψ(I)

N 6= 0 at which the lower part of the small branch
intersects the large branch; as ψ(I)

N 6= 0 increases beyond this value we then have a first-order
phase transition between a large positively-charged NUT-charged black hole and a small
negatively charged one with different NUT parameter. As ψ(I)

N 6= 0 becomes even larger,
the cusp on the negatively charged branch moves below the positively charged branch,
at which point the branch of small negatively charged black holes is thermodynamically
stable. This sequence is shown in figure 21.

If the electric potential in (3.2) is fixed to larger values, then the discontinuity for
small ψ(I)

N > 0 is not present, and there is no value of the horizon size for which the black
hole changes the sign of its charge. The free energy does not have an unstable branch of
small negatively charged black holes; instead the familiar cusp associated with a Hawking-
Page transition appears, with the (positively) charged black hole unstable to discharge
into thermal AdS. However once ψ(I)

N is sufficiently large, the unstable branch of small
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Figure 17. Formation of Inverted Swallowtails. This sequence of diagrams shows how the inverted
swallowtails form as the magnetic charge increases. Note the appearance of an additional narrow
swallowtail on the unstable large black hole branch at the right for smaller values of Qm.

negatively charged black holes reappears, with the value of the horizon radius where the
charge becomes negative getting larger for larger ψ(I)

N . As ψ(I)
N increases, the discontinuity

in the free energy reappears, with a double cusp structure developing. The right most
cusp is the positively charged branch that is stable for large temperatures, whereas the left
cusp is the negatively charged branch stable at smaller temperatures. There is a 0th-order
phase transition from a large positively charged black hole to a small negatively charged
one, which is stable as temperature decreases until G = 0, at which point there is the
discharge transition to thermal AdS. As ψ(I)

N increases further, a gap between the positive
branch and negative branches appears. For large temperature, the stable branch is of
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Figure 18. Inverted Swallowtail Transitions. This particular case undergoes three phase transitions
as temperature decreases. The first is a large M > 0 to small M < 0 black hole, shown at the
rightmost intersection. As temperature decreases, the mass becomes positive. Eventually there is
a zeroth order transition to a slightly larger black hole, located at the rightmost cusp of the lower
inverted swallowtail. As temperature further decreases, the hole gets larger, eventually undergoing
another zeroth order transition to an even larger black hole located on the bottom branch of the
upper swallowtail. The temperature finally decreases to its minimal value, below which no black
hole exist for this choice of parameters. The inset shows the behaviour of the temperature as a
function of horizon size. Note that there are no extremal black holes.

Figure 19. Free energy for various fixed ψN . We set e = g = 0 and ` = 3. The upper blue curve
corresponds to ψN = 0, the lower red curve to ψN = 0.2. The right hand diagram is a close-up of
the ψN = 0.2 case, exhibiting the fractured cusp.
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Figure 20. Fractured Cusp at fixed electric potential. Free-energy plotted as a function of tempera-
ture at vanishing magnetic charge Qm = 0, fixed electric potential Φe = 0.5, and fixed ψ(I)

N = 0.001.
The upper blue curve is the negatively charged branch; the fracture is shown in the inset.

Figure 21. Fractured Cusp Development at fixed electric potential. This sequence of plots of free-
energy vs. temperature show the development of the fractured cusp as ψ(I)

N increases for vanishing
magnetic charge. The blue curve is the negatively charged branch; the insets highlight the relation-
ship between the negative and positive branches. Here ` = 7 and Φe = 0.5.
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Figure 22. Alternate Fractured Cusp Development at fixed electric potential. This sequence of
plots of free-energy vs. temperature shows the development of the fractured cusp for larger values
of ψ(I)

N for vanishing magnetic charge. The blue curve is the negatively charged branch; the insets
highlight the relationship between the negative and positive branches. Here ` = 7 and Φe = 0.55.

positive charge. As the temperature decreases, there is a 0th-order phase transition to the
upper branch of the negative-charge cusp. As T further decreases, there is another 0th
order transition to the lower part of the negative-charge branch, which is the most stable
part. This situation is illustrated in figure 22.

6.2.3 Snapping fractured cusps

When the magnetic charge Qm 6= 0, new phenomena emerge. Consider first ψ(I)
N = 0. For

large r+, the sign of Qe is reversed relative to the Qm = 0 case; for large r+, black holes of
large Qe > 0 become black holes of small Qe < 0 for Qm > 0. As r+ gets smaller, there is
a critical value at which Qe → −∞ for some fixed Qm > 0. Below this value of r+, Qe > 0
and very closely matches its value and Qm = 0 for a given value of (small) r+. There is a
corresponding discontinuity in the temperature T : as shown in figure 13, below the critical
horizon value, T is close to its Qm = 0 counterpart, whereas above this value T does not
smoothy match this case.

As noted above, if Qm = 0 and ψ
(I)
N > 0 the sign of Qe is flipped for small black

holes. But for Qm > 0, the sign of Qe is retained for both small and sufficiently large
black holes, with an intermediate range of r+ where Qe flips sign. This range gets smaller
as ψ(I)

N gets larger. The discontinuity in the temperature is likewise eliminated for large
r+, matching closely its Qm = 0 counterpart. There is an intermediate range of r+ where
the discontinuity persists; this range increases with increasing Qm and decreases with
increasingz ψ(I)

N .
Turning to the free energy, we find for ψ(I)

N = 0 that the cusp present in a G vs. T
diagram for Qm = 0 shifts by a finite rightward amount for small Qm 6= 0. As Qm gets
larger, the cusp fractures slightly in its upper branch. As Qm increases further still, the
upper branch of the cusp ‘snaps’ at a threshold value of Qm, becoming a near-vertical steep
line. This is the phenomenon of the snapping fractured cusp, shown in figure 23.
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Figure 23. Snapping Fractured Cusp. This structure develops for vanishing ψ(I)
N as Qm increases.

The discontinuity in the fractured cusp widens as Qm increases, with the right-hand branch van-
ishing (snapping away), leaving a single curve that is very steep for small T .

Figure 24. Zig-Zag. This structure develops for nonzero ψ(I)
N as Qm increases. The discontinuity

in the fractured cusp widens as Qm increases, eventually getting connected by a third line and
forming a zig-zag structure for sufficiently large Qm.

For ψ(I)
N > 0, we find similar behaviour for small Qm — the cusp becomes truncated

at its lower end, shifting upward and fracturing as Qm gets larger. However for larger Qm
we encounter a new phenomenon.

6.2.4 Zig-zags and double swallowtails

For sufficiently large ψ(I)
N > 0 and Qm we observe a new phenomenon. The discontinuity

in the fractured cusp can suddenly become filled, once Qm exceeds a threshold value. The
G vs. T curve becomes a ‘zig-zag’ structure, shown in figure 24. For a given value of
Qm above this threshold, increasing values of ψ(I)

N > 0 cause the zig-zag to fold back on
itself, producing a double swallowtail structure, shown in figure 25. For larger ` (smaller
pressures) and larger Qm these double swallowtail structures become more prominent.
They will snap back into a zig-zag structure as Qm becomes even larger.
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Figure 25. Double Swallowtail. This structure can appear for sufficiently large `, ψ(I)
N , and Qm.

Large black holes are at the most negative value of the free energy G; as temperature decreases
there is a first-order large/small phase transition, shown at the most negative self-intersection of G.

We find that all of these phenomena occur at sufficiently small r+. For large enough
r+, the G vs. T curves merge, over a broad range of values of Qm and ψ

(I)
N > 0. The

phase of the black hole system at a given temperature is, as usual, found from the global
minimum of G, and phase transitions will occur at all points where G interects itself. For
Qm 6= 0, no Hawking-Page transitions will occur as G goes from negative to positive due
to the conservation of magnetic charge.

The behavior of G vs T curves for the case II is qualitatively the same as for case I.
There is an exception for case II, column (d) and (e) in the table for Snapping Fractured
Cusps.

7 Concluding remarks

We have investigated the thermodynamic behaviour of electrically and magnetically charged
Lorentzian Taub-NUT black holes, regarding the entropy of these objects to be the Noether
charge entropy SN that includes the horizon area and the contribution from the Misner
string, in contrast to the proposal that the only contribution to the entropy comes from
the horizon area [19], denoted S+. In both approaches the cohomogeneity of the 1st law
is the same, and the definitions of the thermodynamic NUT potential ψ and its conjugate
charge N are changed. If SN is taken to be the entropy of the system, then it can become
negative for sufficiently small black holes, and it will diverge (along with ψ) as the black
hole approaches extremality. However if S+ is taken to be the entropy of the system, then
the NUT potential ψ will diverge as n→ 0 (or at some other finite value of n if we do not
take the Misner string to be symmetrically placed along the polar axis [19]).

Despite these distinctions, we do not find any other criteria to be significant in dis-
tinguishing which choice of the entropy is preferable. Indeed, we have seen that charged
Lorentzian Taub-NUT black holes exhibit a rich range of unusual phase behaviour, re-
gardless of which interpretation of the entropy is employed. Columns (a), (c), and (e) of
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table I yield the various phase behaviours observed in section 6.1 for both interpretations.
Some of this behaviour was noted previously [21], but much is new. The behaviour seen
in section 6.2 applies only if SN is taken to be the entropy of the system, and applies to
columns (b), (d) and (e) of table I.

The physical relevance of Lorentzian NUT charged black holes is still very much an
open question in gravitational physics. To the extent that they are relevant, the thermo-
dynamic behaviour we have described will necessarily have to emerge from some deeper
quantum gravitational description whose degrees of freedom are not necessarily associated
only with the horizon.
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