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1 Introduction

Ding-Iohara-Miki (DIM) algebra [1, 2] is a unique and beautiful object. It can be under-
stood as a quantum affinization Uq(ĝ) of an algebra g which is itself and affine algebra1

g = ĝl1, deformed by an additional parameter t. Because of the presence of two loops in
the construction, the algebra is often called quantum toroidal, and we will denote it by
Uq,t(

̂̂
gl1). DIM algebra is symmetric under the exchange of three parameters q, t−1 and t

q .
It has two gradings (d, d⊥), two central charges (γ, γ⊥) (again coming from two loops in the
construction) and also an interesting automorphism group SL(2,Z) which acts on them as
doublets. We collect the relevant definitions related to DIM algebra and its representations
in appendix A.

In addition to being interesting from purely algebraic and representation theoretic
point of view, DIM algebra is extremely relevant for physics. For example:

1The construction also works for g = ĝln.
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• It is the symmetry behind the AGT relation [3–5] between instanton series of 4d
N = 2 (and 5d N = 1) gauge theories and 2d CFTs [6–8]. It is also the origin of the
spectral duality, which exchanges the gauge groups at the nodes of a quiver gauge
theory with the group corresponding to the Dynkin diagram of the quiver [9–13].

• It plays the central role in refined topological strings [14], where the central object of
the formalism — refined topological vertex — can be identified with the intertwining
operator of Fock representations of DIM algebra [6]. See eq. (2.1) for an illustration
of such a vertex/intertwiner. It also endows toric Calabi-Yau three-folds with an
interesting integrable structure [15, 16] and implies (q, t)-KZ difference equations for
refined topological string amplitudes [18, 19].

• DIM algebra provides a universal way to understand “non-perturbative Ward iden-
tities”, or qq-characters [20–34] for 4d, 5d and 6d quiver gauge theories. Composing
the trivalent intertwiners of Fock representations of DIM algebra according to a toric
diagram of a CY threefold, one can build a “two-dimensional” (or network) matrix
model, which is related to a family of Dotsenko-Fateev-like integral ensembles and
the corresponding q-deformed vertex operator algebras [35].

• Very recently it was identified as the cohomological Hall algebra associated to CY
three-folds [36–39].

• Higgsing construction can be employed to get holomorphic blocks [40, 41] of 3d
N = 2∗ gauge theories2 from a specifically tuned network of intertwiners of DIM
algebra [42, 43].

In the current paper we focus on the last item in the above list (however, as we will
see there are further ramifications) and introduce a convenient formalism for describing 3d
N = 2∗ quiver gauge theories.

Let us first recall the Higgsing construction (for details see [42, 43]). The 3d theories can
be understood as worldvolume theories on the vortices in the Higgs phase of 5dN = 1 gauge
theories [44–48]. In the Ω-background there is an analogue of geometric transition [49, 50],
which relates the theory withM vortices in the Higgs phase to the theory without vortices in
the Coulomb phase with scalar field vev a = ε2M . The geometric transition interpretation
arises when we consider the Type IIB brane construction of the 5d gauge theory. M vortices
on the Higgs branch correspond to M D3 branes stretching between NS5 and D5’ branes,
while the dual side (after the transition) corresponds to the resolution of the NS5 and D5’
crossing. The five-brane picture, in turn is related to the combination of DIM intertwiners,
as shown in [6]. This combination gives the partition function of the Higgsed 5d theory,
and thus of the 3d theory.

Our new formalism bypasses the complicated Higgsing procedure. The major source
of complications in the Higgsing approach is the need to construct an auxiliary 5d N = 1

2By this we denote N = 4 gauge theories with supersymmetry softly broken by a real axial mass. For
the details see [42, 43].
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Figure 1. Comparison of two different formalisms for building a 3d N = 2∗ quiver gauge theory.
a) The old formalism: horizontal and vertical solid lines denote horizontal and vertical Fock repre-
sentations respectively; circles and crossings denote resolved conifold-like geometries with specially
tuned parameters. The notation is explained in detail in [42, 43]. b) The new formalism. Solid
horizontal lines still denote horizontal Fock spaces, while vertical dashed lines are vertical vector
representations. They are joined together by Higgsed vertices. Notice how each circle in a) gives
rise to dashed line emanating upwards from the corresponding point in b). Individual dashed lines
correspond to screening charges acting on the Fock spaces represented by solid lines, so that the
overall picture gives a Dotsenko-Fateev-like integral representation of the holomorphic block. c)
The quiver gauge theory modelled by a) and b).

gauge theory, then tune its parameters to specific values, so that it reproduces the 3d theory
on the worldvolume of the vortex defects appearing in the Higgs branch of the 5d theory.

Our new formalism, which we call the Higgsed network calculus, avoids the interme-
diate step (the auxiliary 5d theory) and allows for direct computation of the holomorphic
blocks of the 3d theories. The formalism employs a “Higgsed” vertex which resembles re-
fined topological vertex, but, unlike the latter, doesn’t introduce a bend in the five-brane.
An example of two descriptions of the same 3d theory using the old and the new formal-
ism is shown in figure 1. Overall, the Higgsed network looks as a collection of D3 branes
(dashed lines in figure 1) stretched between a stack of parallel five-branes (solid lines).

On the algebraic side, Higgsed vertices can be thought of as elementary building blocks
of screening currents, which commute with the action of a certain W -algebra and in this
way can be used to define this algebra [51, 52]. It also turns out that in our approach we
can easily reproduce the well-known result [53–56] — that the holomorphic blocks of 3d
gauge theories of the kind we are considering are eigenfunctions (or, more generally, kernel
functions) of trigonometric Ruijsenaars-Schneider Hamiltonians.

Having thus reproduced the results of the old approach, we continue to some gener-
alizations which are natural in the new formalism. We consider all three possible species
of horizontal Fock representations and all three possible species of vertical vector repre-
sentations and heavily employ the S3 symmetry of the DIM algebra to build a network
incorporating all of them (see appendix A for details on the representations of DIM alge-
bra). This corresponds to introducing several sorts of screening currents. The resulting
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model was considered in [52], and corresponds to a W -algebra associated with a super-
algebra. We have thus obtained partition functions of 3d quiver theories corresponding
to Dynkin diagrams of superalgebras. These theories should be 3d uplifts of 2d theories
recently studied in [58] (see also earlier work [59]).

Indeed, the characteristic feature of the 2d theories considered in [58] is that they
are obtained by gluing together two linear quiver gauge theories of An−1 and Am−1 type,
corresponding to two bosonic subalgebras of the superalgebra gl(n|m). Both parts are
N = (4, 4) theories softly broken to N = (2, 2) by introducing the twisted mass for adjoint
multiplets at each node of the quiver. The twisted masses of the adjoints in the two halves
of the theory are opposite and the two halves are coupled through a certain N = (2, 2)
gauge theory forming the “fermionic” node of the quiver. As we will see, our construction
naturally gives rise to partition functions which look very similar to this 2d picture: they
describe 3d N = 2 linear quiver gauge theories with adjoint matter multiplet on each gauge
node and with adjoint mass having opposite signs on the two halves of the quiver which
are coupled through a special “fermionic” node. We also prove that partition functions
of the 3d theories of these types are eigenfunctions of trigonometric Ruijsenaars-Schneider
Hamiltonians or their supersymmetric generalizations [62].

The rest of the paper is structured as follows. In section 2 we present the system-
atic introduction of our formalism and examples of the computations reproducing the old
construction: we write down one species of Higgsed vertices, show how to compose them
into screening currents and derive the commutation relations for them. In section 3 we
introduce the complete toolbox of vertices, build the fermionic screening current and write
down the corresponding partition functions. We prove that the network partition functions
are eigenfunctions of the supersymmetric Ruijsenaars-Schneider Hamiltonians in section 4.
We present our conclusions and comment on future directions in section 5.

2 Intertwiners and blocks

In this section we introduce the Higgsed vertices Φ and Φ∗, from which we build the
“Higgsed network”. The vacuum matrix element of the network will give the partition
function (holomorphic block) of the 3d quiver gauge theory.

We have collected the definitions of the DIM algebra and its relevant representations in
the appendix A not to clutter the presentation with too many technical details. However,
the reader who is not familiar with DIM formalism is invited to consult it before proceeding
to the main part of the text.

As a warm-up, let us recall the construction of the conventional refined topological
vertices as intertwining operators of DIM algebra, proposed in [6]. In this approach five-
branes of Type IIB string theory (or, equivalently, the edges of the toric diagram of a
CY threefold) are identified with Fock representations F (m,n),q,t−1

u of DIM algebra (see
section A.3 for the definition of a Fock representation). The central charge vector of
the Fock representation corresponds to the type of the fivebrane with (depending on an
irrelevant choice of SL(2,Z) duality frame) (1, 0) meaning NS5 and (0, 1) meaning D5’. The
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intertwiner of Fock representation is a trivalent junction of branes, as shown below:

F (0,1),q,t−1

w

F (1,0),q,t−1

u

F (1,1),q,t−1

−uw

(2.1)

Since the charges of the representations, or branes are conserved, the branes are bend at the
junction. The basis in a Fock space is labelled by Young diagrams. Therefore, solid lines
in eq. (2.1) each carry a Young diagram, and gluing of two legs is performed by summing
over a complete basis of states in the Fock space, i.e. over all Young diagrams. The result is
just a network of intertwining operators, composed according to a five-brane web (or toric
diagram of a CY). The vacuum matrix element of the network of intertwiners is equal to
the refined topological string partition function on the toric CY [27, 28] (see also [29–34]).

2.1 The intertwiners Φ and Φ∗

Let us introduce the main character of our story, the Higgsed vertex, or the vector inter-
twiner Φ(w) : F (1,0),q,t−1

u ⊗ Vqw → F
(1,0),q,t−1

tu , which we draw as

Φ(w) =
Vq
w

F (1,0),q,t−1

uF (1,0),q,t−1

tu

(2.2)

From now on all the Fock representations we will encounter will have the “direction”
of the central charge equal to (1, 0), and we omit it from our notation. The dashed vertical
lines denote the vertical vector representations (see section A.4), while solid horizontal lines
are still horizontal Fock representations (see section A.3), the latter exactly the same as in
the ordinary DIM networks.

The vector representation has zero central charges, so when it joins a Fock represen-
tation the five-brane is not bent. This behavior reminds one of a D3 brane ending on an
NS5 brane. In a moment we will see that this is not a coincidence and derive a precise
relation between a network of intertwiners and the partition function of the effective 3d
theory obtained from the D3 branes stretched between a stack of five-branes.

The intertwining property of Φ means that Φ∆(g) = gΦ for any element g of DIM
algebra (see the definition of the coproduct in section A.2). One can check that the following
explicit expression3 [60, 61] for the intertwiner (2.2) indeed satisfies this constraint:

Φ(w) = e−ε2Qw
P
ε1 exp

−∑
n≥1

wn

n

1− t−n
1− qn a−n

 exp

∑
n≥1

w−n

n

1− tn
1− q−nan

 (2.3)

where we define q = eε1 , t = eβε1 = e−ε2 and the definition of the Fock space operators an,
P and Q are given in eqs. (A.8), (A.9) in the appendix A. Notice that though the Fock
space is not bent (its slope is horizontal all the way through the intertwiner), as we see
from eq. (2.2) and the explicit expression (2.3), its spectral parameter (which plays the role

3We rescale the coordinate w by q− 1
2 compared to [60, 61].
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of the position of the five-brane) is shifted after it passes the junction with the incoming
dashed line.

We are already able to study the simplest nontrivial example, a network of two inter-
twiners:

w1 w2

Fq,t−1

t2u 3 〈∅| |∅〉 ∈ Fq,t−1

u

(2.4)

The corresponding expression is the matrix element of the product of two operators (2.3),
which is evaluated by normal ordering the free fields:

(2.4) = 〈t2u,∅|Φ(w1)Φ(w2)|u,∅〉 = w
logq u+β
1 w

logq u
2 exp

−∑
n≥1

1
n

(
w2
w1

)n 1− t−n
1− q−n

 =

= w
logq u+β
1 w

logq u
2

(
q
t
w2
w1

; q
)
∞(

qw2
w1

; q
)
∞

. (2.5)

Moving one step further, we get an answer for the network of n operators Φ glued together
horizontally:

w1 · · ·
. . .

wn

〈∅|
Fq,t−1

tnu

|∅〉
Fq,t−1

u
= A(~w)

(
n∏
i=1

w
logq u+β(i−1)
i

)∏
i<j

(
wi
wj

; q
)
∞(

twiwj ; q
)
∞

(2.6)

where we extract the q-periodic prefactor

A(~w) =
∏
i<j

(wi
wj

)β θq (twiwj )
θq
(
wi
wj

)
 (2.7)

from the matrix element; here θq(x) = (q; q)∞(x; q)∞
( q
x ; q

)
∞ is Jacobi theta-function.

We will see in what follows that such q-periodic factors will be mostly immaterial to the
structure of the network. In particular, they factor out of the sums when we glue vector
states together, and give an overall q-periodic prefactor for the network.

To build networks of intertwiners similar to (but simpler than) those considered
in [6, 27–34] we need one more operator, the dual intertwiner Φ∗(y) : F (1,0)

u → F (1,0)
u/t ⊗V

q
y ,

which satisfies ∆(g)Φ∗ = Φ∗g. An explicit check shows that the operator

Vq
y

Fq,t−1

u
Fq,t−1

u/t

= Φ∗(y) =

= eε2Qy
β− P

ε1 exp

∑
n≥1

yn

n

(
t

q

)n
2 1− t−n

1− qn a−n

 exp

−∑
n≥1

y−n

n

(
t

q

)n
2 1− tn

1− q−nan

 (2.8)

satisfies the intertwining property. Notice how the spectral parameter of the Fock space to
the left of the dual intertwiner Φ∗ is shifted the opposite way, compared to the intertwiner Φ.
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The matrix elements of products of Φ∗ are given by

y1 · · ·

· · ·

yn

〈∅|
Fq,t−1

t−nu

|∅〉
Fq,t−1

u

=
(

n∏
i=1

y
− logq u+β(n−i+1)
i

)∏
i<j

(
yj
yi

; q
)
∞(

t
yj
yi

; q
)
∞

. (2.9)

Combining Φ and Φ∗ we get

y1 · · ·

· · ·

ym

〈∅|
Fq,t−1

tn−mu

|∅〉
Fq,t−1

u

w1 · · ·
. . .

wn

= A(~w)B(~w, ~y)
(

n∏
i=1
w

logq u+β(i−2m−1)
i

)
×

×
(
m∏
i=1

y
− logq u+β(i−2n+1)
i

)
n∏
k<l

(
wk
wl

; q
)
∞(

twkwl ; q
)
∞

m∏
i<j

(
yj
yi

; q
)
∞(

t
yj
yi

; q
)
∞

m∏
a=1

n∏
b=1

(
t
√

q
t
wb
ya

; q
)
∞(√

q
t
wb
ya

; q
)
∞

, (2.10)

where an additional q-periodic prefactor reads

B(~w, ~y) =
m∏
a=1

n∏
b=1

( ya
wb

)β θq (t√ q
t
ya
wb

)
θq
(√

q
t
ya
wb

)
 . (2.11)

We can already notice that the q-Pochhammer factors in eq. (2.10) resemble those
of the holomorphic block integrand for a pair of N = 2 bifundamental chiral multiplets
charged under U(n) × U(m) flavour symmetry. In this case the parameter q is identified
with the parameter of the 3d Ω-background S2×qD2 and t is related to the real axial mass
deformation of the N = 4 theory. Together the two chirals constitute what we might call
a bifundamental N = 2∗ multiplet, i.e. what remains of the N = 4 bifundamental multi-
plet after turning on the t-parameters responsible for the soft breaking of supersymmetry.
Indeed, if we set the masses associated to U(n) flavours to µi = yi, i = 1, . . . , n and the
U(m) masses to µ̄j =

√
q
twj , j = 1, . . . ,m, we find that we reproduce the bifundamental

contribution
m∏
a=1

n∏
b=1

(
t µ̄bµa ; q

)
∞(

µ̄b
µa

; q
)
∞

. (2.12)

to the D2 ×q S1 partition function. Thus, n dashed lines coming from the top of the
picture in eq. (2.10) correspond to a U(n) flavour group and m dashed lines escaping from
the bottom are related to U(m) flavour group. Thus, our initial guess that the dashed lines
are somehow associated with D3 branes seem to be plausible: the 3d bifundamental chirals
couple the U(n) and U(m) gauge theories living on the stacks of D3 branes. The D3 branes
are semi-infinite, so the gauge fields are frozen and the gauge symmetries become flavour
symmetries of the 3d theory of bifundamental chirals.

What is the field theory role of the remaining factors in eq. (2.10)? First of all, the q-
periodic contributions in the holomorphic blocks are not important, since they cancel when

– 7 –
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one combines two blocks into a partition function for a compact manifold (e.g. S3
b ). Addi-

tional q-Pochhammers in eq. (2.10) can be thought of as coming from flipping fields [42, 43],
charged under flavour symmetries U(n) and U(m).

We will see in what follows that when we glue pictures like (2.10) along the dashed
lines we effectively gauge the corresponding flavour groups. The flipping fields coming
from both sides then combine into an N = 2 vector and adjoint chiral contribution for the
gauged symmetry. This is in accordance with the D3 brane interpretation: the couplings
on the branes are unfrozen, when the branes have finite length.

2.2 Commutation relations for the intertwiners

For the moment we have only shown how to compose the intertwiners Φ and Φ∗ horizontally.
However, we can already make a natural and meaningful exercise with our building blocks.
Let us compare different orderings of the intertwiners along the solid line. There are three
possibilities:

1. Commutation of Φ with Φ:
w1 w2

=

(w1
w2

)β θq (tw1
w2

)
θq
(
w1
w2

)
R(w1

w2

)
×

w2 w1

(2.13)

where
R (x) = (x; q)∞ (qx; q)∞

(tx; q)∞
( q
tx; q

)
∞
. (2.14)

The terms in the square brackets in eq. (2.13) combine into a q-periodic function of
w1,2, which, as we have mentioned above, is not important for our network construc-
tion. The function R(x) is the “miniature version” of the DIM R-matrix [15, 16, 68–
71]. In our case the R-matrix permutes two vector representations living on the
vertical dashed lines.

2. Commutation of Φ∗ with Φ∗. For the dual intertwiners we find

y1 y2

=

(y1
y2

)β θq
(
y2
y1

)
θq
(
ty2
y1

)
 1
R
(
y1
y2

) ×
y2 y1

(2.15)

which features an inverse of the R-matrix from eq. (2.14) together with another q-
periodic factor.

3. Commutation of Φ with Φ∗. Finally, we have
w1

y2

=

( y2
w1

)β θq (√ q
t t
y2
w1

)
θq
(√

q
t
y2
w1

)
×

w1

y2

(2.16)

We find that Φ and Φ∗ commute, up to q-periodic factors, which for us is as good as
commutativity.
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2.3 Vertical gluing and q-Virasoro screening charges

We pass to the next necessary step in building the network of intertwiners — vertical
gluing. In our convention the states in the vector representation correspond to the shifts
of the spectral parameter w 7→ qkw. Thus, to sum over the complete basis of states in the
vector representation we need to take the sum over k, or, equivalently, the so-called Jackson
q-integral over the spectral parameter w of the vector representation. For example, gluing
together two dual intertwiners we get an operator Qq,t1q : Fq,t−1

u1 ⊗Fq,t−1
u2 → Fq,t

−1

t−1u1
⊗Fq,t

−1

tu2 :

Qq,t−1
q =

∑
k∈Z

Vq
qkw

Fq,t−1

u1
Fq,t−1

t−1u1

Fq,t−1

u2Fq,t−1

tu2

=
∑
k∈Z

Φ∗(qkw)
⊗

Φ(qkw)
=
∫ ∞
−∞

dqw

Φ∗(w)
⊗

Φ(w)
=
∫ ∞
−∞

dqwS
q,t−1
q (w) =

=
∑
k∈Z

e−ε2(Q1−Q2)
(
qkw

)β+P1−P2
ε1 exp

−∑
n≥1

wn

n
qnk

1− t−n
1− qn

(
a

(2)
−n −

(
t

q

)n
2
a

(1)
−n

)×
× exp

∑
n≥1

w−n

n
q−nk

1− tn
1− q−n

(
a(2)
n −

(
t

q

)n
2
a(1)
n

) , (2.17)

where we denote by a(1)
n (resp. a(2)

n ) creation and annihilation operators acting on the upper
(resp. lower) horizontal Fock space (similarly for the zero modes P1,2 and Q1,2). One more
convenient representation of the vertical gluing is the contour integral over an appropriate
contour in the complex w plane. One way to rewrite eq. (2.17) as a contour integral is to
notice that

(q; q)2
∞

(a; q)∞
( q
a ; q

)
∞

∮
C

dξ

ξ

(
ξ

w

)logq a θq
(
aξ
w

)
θq
(
ξ
w

) f(ξ) =
∑
k∈Z

f(qkw), (2.18)

for almost any a ∈ C, where C wraps the poles of the theta-function in the denominator.
Therefore, by inserting the theta-functions and a prefactor, as in eq. (2.18), under the
integral and integrating over a specific contour we can turn the integral into a sum. It
turns out that for certain combinations of intertwiners the contour C can be traded for
other contours wrapping poles of the correlation functions (2.10). As have been noted in
e.g. [8, 13], eventually all the representations of the “trigonometric integrals” — either
as a sum, or as a Jackson q-integral, or as a contour integral — boil down to the same
expression and are completely equivalent. Similar equivalence occurs in the Dotsenko-
Fateev representations of q-deformed conformal blocks and in the holomorphic blocks of
3d theories. We will mostly use the contour integral representation, usually assuming that
the contour wraps the poles of the correlation functions under the integral.

In fact, the integrand Sq,t−1
q (w) in the first line of eq. (2.17) is nothing but the screening

current of the q-Virasoro algebra Virq,t, built from the pair of free bosons a(1,2)
n [27, 28].

Thus Qq,t−1
q is the screening charge, commuting with the action of Virq,t. As explained

in [27, 28, 63–67] this algebra is a subalgebra of the DIM algebra, i.e. one can build a current
from a combination of DIM generators, so that when acting on the tensor product of two

– 9 –



J
H
E
P
0
8
(
2
0
2
1
)
1
4
9

horizontal Fock representations it reproduces the relations of Virq,t. Since the network of
intertwiners (2.17) commutes with ∆(g) for any g from the DIM algebra, it also commutes
with the q-Virasoro current. We can write the intertwining relation graphically:

∑
k∈Z

∆(g)

Vq
qkw =

∑
k∈Z

∆(g)

Vq
qkw

(2.19)

where the double line denotes the position of the operator ∆(g) on the horizontal lines, or
as a formula

[Qq,t−1
q ,∆(g)] = 0. (2.20)

A more general network can be obtained by adding external dashed lines, e.g.

∑
k∈Z

Vq
qky

w1 w2

Fq,t−1

u1
Fq,t−1

tu1

Fq,t−1

u2Fq,t−1

tu2

(2.21)

One can see that the external lines correspond to degenerate vertex operators of the Virq,t
algebra, similarly to [27, 28]. The network (2.21) is therefore a product of screened degen-
erate vertex operators. Taking the vacuum matrix element of eq. (2.21) we get

〈∅|
⊗
〈∅|

(
2.21

) |∅〉
⊗
|∅〉

= A(w1, w2)B(w1, w2, y)
( 2∏
i=1

w
logq u+β(i−3)
i

)
×

×

(
w1
w2

; q
)
∞(

tw1
w2

; q
)
∞

∫ ∞
−∞

dqy y
logq

u2
u1
−2β

2∏
i=1

(
t
√

q
t
wi
y ; q

)
∞(√

q
t
wi
y ; q

)
∞

. (2.22)

where A(~w) and B(~w, ~y) are periodic factors from eq. (2.7) and from eq. (2.11) respectively.
The 3d gauge theory corresponding to the network (2.21) can be deduced either from

the form of the integrand (2.22) (q-Pochhammer ratios give two pairs of chirals and a
single integration implies a U(1) gauge group) or directly by interpreting (2.21) as a brane
picture (the intermediate dashed line gives the U(1) gauge theory and two upper dashed
lines contribute two fundamental multiplets, i.e. two pairs of fundamental chirals). In any
case, the resulting theory is the N = 2∗ version of the T [SU(2)] theory. The masses of the
fundamental multiplets are µi =

√
q
twi and the FI parameter of the U(1) gauge group is

τ = u2
u1
. The prefactor in the second line of eq. (2.22) corresponds to flipping fields of the

U(2) flavour symmetry group.
Let us make a comment about the contours, over which one can integrate the screening

currents. If we consider the space of intertwining operators of the form (2.21) as a vector
space over q-periodic functions of the parameters, it turns out to be two dimensional. One
can obtain this fact using several different lines of arguments:
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1. As we show in section 4 the network (2.21) is an eigenfunctions of the Ruijsenaars
difference operator with the eigenvalue independent of y. q-periodic functions pass
through the difference operator, so one can study the space of eigenfunctions as a vec-
tor space over the field of q-periodic functions in the same way as one studies the space
of eigenfunctions of a differential operator over the field of constants. The difference
operator is of second order, therefore the space of solutions is two-dimensional.

2. The 3d theory T [SU(2)] corresponding to the network has two vacua. These vacua
correspond to two linearly independent networks of intertwiners.

We can write two linearly independent networks of intertwiners similarly to (2.22), but
with the Jackson q-integrals replaced by the contour integrals over the contours C1,0 and
C0,1, wrapping the poles at y =

√
q
tw1q

k, k ∈ Z≥0 and y =
√

q
tw2q

k, k ∈ Z≥0 respectively.
One can also isolate the contributions of contours C1,0 and C0,1 by taking the residue in the
y-parameter of the intermediate dashed line at y =

√
q
tw1,2.

In what follows, not to overburden the notation, we will omit writing the sums and the
shifts of the intermediate dashed lines on our diagrams. In this convention two networks
corresponding to contours C1,0 and C0,1 are given by the following pictures

√
q
tw1

w1 w2

Fq,t−1

u1
Fq,t−1

tu1

Fq,t−1

u2Fq,t−1

tu2

√
q
tw2

w1 w2

Fq,t−1

u1
Fq,t−1

tu1

Fq,t−1

u2Fq,t−1

tu2

(2.23)

Notice how the lower dashed lines “cling” to the upper dashed lines. As we have explained,
this is the consequence of the structure of poles of the integrand. For several screenings
stretched between two neighbouring horizontal lines (i.e. for a non-abelian 3d theory), from
the first look at the structure of the integrand one could have assumed that the intermediate
lines can also “cling” together forming stacks of branes. Indeed, the interaction between
two parallel branes gives a denominator

(
tykyl ; q

)
∞
. For example, the picture:

y1 y2

w1 w2

Fq,t−1

u1
Fq,t−1

u1

Fq,t−1

u2Fq,t−1

t2u2

(2.24)

corresponds to the integral

∮
C

d2y

y1y2
(y1y2)logq

u2
u1
−2β

2∏
k 6=l

(
yk
yl

; q
)
∞(

tykyl ; q
)
∞

2∏
i=1

2∏
j=1

(
t
√

q
t
wi
yj

; q
)
∞(√

q
t
wi
yj

; q
)
∞

. (2.25)
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This “stacking” of branes would have corresponded to the contour of double integration
C = C0,2 over the spectral parameters y1 and y2, which wraps the poles y1 =

√
q
tw2q

k1 ,

y2 =
√

q
tw2q

k2t−1, with k1,2 ∈ Z≥0. However, in fact this group of poles gets cancelled

by the numerators
(
t
√

q
t
wi
yj

; q
)
∞

in the integrand (2.25). Therefore parallel dashed lines
between the same horizontal lines cannot cling together and always cling to separate upper
dashed lines.

As one can deduce from the brane diagram, the 3d theory corresponding to the net-
work (2.24) is the U(2) gauge theory (two intermediate dashed lines) with two fundamental
multiplets (two external dashed lines). It has only one arrangement of branes in which
y1,2 =

√
q
tw1,2q

k1,2 . Thus, the resulting theory has only one vacuum. Geometrically, this
theory corresponds to counting certain quasimaps to the target Gr(2, 2) ' Gr(0, 2), i.e. to
a point.

In general, the network with two horizontal lines corresponds to a 3d with a single
gauge group U(m) and a number n of fundamental multiplets:

y1 · · · ym

w1 · · · wn

· · ·
Fq,t−1

u1
Fq,t−1

tn−mu1

Fq,t−1

u2Fq,t−1

tmu2

⇔ U(m)

τ1/τ2

n

µi

(2.26)

There are n!
m!(n−m)! vacua, corresponding to the contours of integration C1,0,...,1 with m

ones and (n−m) zeroes. Graphically this number is explained as follows: m intermediate
dashed lines can cling to separate external dashed line, and all the intermediate dashed lines
are identical, hence m! in the denominator. These vacua are identified with fixed points
of (C∗)n action on Gr(m,n) (notice that we consider only m ≤ n). The corresponding
integrals are given by

〈∅|
⊗
〈∅|

(
2.26

) |∅〉
⊗
|∅〉
∼

n∏
k<l

(
wk
wl

; q
)
∞(

twkwl ; q
)
∞

∮
Ck1,...,kn

dmy
m∏
i=1

y
logq

u2
u1
−2β−1 ∆(q,t)

m (~y)
∆̄(q,t)
m,n (~y, ~w)

, (2.27)

where

∆(q,t)
m (~y) =

m∏
k 6=l

(
yk
yl

; q
)
∞(

tykyl ; q
)
∞

, ∆̄(q,t)
m,n (~y, ~w) =

n∏
i=1

m∏
j=1

(√
q
t
wi
yj

; q
)
∞(

t
√

q
t
wi
yj

; q
)
∞

. (2.28)

This is precisely the integral for the holomorphic block of the U(m) theory with n fun-
damental multiplets. The prefactors again play the role of flipping fields of the flavour
symmetry. We can relate the parameters of the network to that of the gauge theory on
S1 ×q R2. We write down the dictionary in table 1.
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3d U(m) gauge theory Higgsed network (2.21)

Axial real mass mA
1

RS1
ln
(
−
√
q
t

)
3d Ω-background parameter q

FI parameter τ u2
u1

Flavour masses µi
√

q
twi

Vacua Contours of integration

Table 1. Dictionary between the parameters of the 3d gauge theory and Higgsed network.

2.4 qWN -algebra screenings and 3d quivers

We can stack more than two horizontal Fock representations on top of each other and
stretch vector representations between them. For example:

y1 · · · ym

z1 · · · zk

w1 · · · wn

· · ·
Fq,t−1

u1
Fq,t−1

tn−mu1

Fq,t−1

u2
Fq,t−1

tm−ku2

Fq,t−1

u3Fq,t−1

tku3

(2.29)

The intermediate dashed lines can now stretch between either the upper two Fock spaces
or the lower two. This gives rise to two screening currents, Sq,t

−1

q,12 (y) and Sq,t
−1

q,23 (z) (and
the corresponding screening charges), which are similar to the Virasoro one (2.17) with
appropriate change of a(1,2)

n to a(2,3)
n in Sq,t

−1

q,23 (z). The algebra commuting with the screening
charges is the q-deformed W3-algebra. The commutation can be inferred from the DIM
intertwining relations exactly as in eq. (2.19).

Two sorts of screening currents have nontrivial normal ordering, because the bosonic
operators a(2)

n are shared between them. In fact the normal ordering produces the interac-
tion, dictated by the A2 Cartan matrix, between the integration variables yi and zj . Thus,
the vacuum matrix element of the network (2.29) is the A2-type q-conformal matrix model,
as in [13]:

〈∅|
⊗
〈∅|
⊗
〈∅|

(
2.29

)
|∅〉
⊗
|∅〉
⊗
|∅〉

∼
n∏
k<l

(
wk
wl

; q
)
∞(

twkwl ; q
)
∞

×

×
∮
Ck1,...,kn

dmy

∮
Cl1,...,lk

dkz
m∏
i=1

y
logq

u2
u1
−2β−1

k∏
i=1

z
logq

u3
u2
−2β−1 ∆(q,t)

k (~z)∆(q,t)
m (~y)

∆̄(q,t)
k,m (~z, ~y)∆̄(q,t)

m,n (~y, ~w)
,

(2.30)
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where ∆ and ∆̄ are given in eq. (2.28). The corresponding gauge theory is a linear quiver

U(k)

τ2/τ3

U(m)

τ1/τ2

n

µi

(2.31)

For N horizontal lines there will be (N − 1) intermediate stacks of D3 branes and corre-
spondingly, the 3d quiver would have (N − 1) nodes, since each D3 stack corresponds to a
gauge group.

3 Bosonic and fermionic screenings

In this section we follow the natural development of our formalism and introduce additional
intertwiners, which are obtained by acting with the S3 permutation symmetry of DIM on
Φ and Φ∗. When combined into a network, these new intertwiners produce new screening
currents and charges, defining more generalW -algebras and 3d quiver gauge theories, which
both turn out to be associated with superalgebras.4 In this way we reproduce the results
of [52] onW -algebras associated to DIM algebra in a simplified and streamlined way. More
concretely, our intertwiners are “halfs” of the screening currents which appeared in [52],
i.e. a pair of intertwiners contracted together gives a screening charge. Thus the new
intertwiners can be thought of as elementary building blocks, from which the screening
charges of [52] can be constructed.

3.1 Dual screenings

As shown in section A.3, the Fock space representation Fq,t−1
u of DIM is invariant under the

symmetry q ↔ t−1. However, the intertwining operators, Φ and Φ∗ from eqs. (2.3) and (2.8)
respectively are not invariant. This is not a surprise of course, since the operators Φ and
Φ∗ intertwine tensor products of Fq,t−1

u with V w
q and while the former is invariant under

q ↔ t−1, the latter is not. Acting with the symmetry q ↔ t−1 on Φ and Φ∗ we obtain new
intertwiners. At this point we need to refine our notation slightly in order not to confuse
different operators. We call the intertwiners Φ and Φ∗ from eqs. (2.3) and (2.8) Φq

q,t−1(w)
and Φ∗q,t−1

q (w) with the indices signifying the spaces they act on. We also introduce the
color-coded graphical notation with three vector representations Vqw, Vt

−1
w and Vt/qw drawn

as blue, red and violet dashed lines respectively. In this way each parameter (q, t−1, t/q)
corresponds to a color: q to blue, t−1 to red, t

q to violet. The Fock spaces also carry the
color corresponding to their “missing index”: Fq,t−1

u is violet, Fq,t/qu is red, F t
−1,t/q
u is blue.

4An important distinction should be made between gauge theories with gauge supergroups and quiver
gauge theories with conventional bosonic gauge groups but with quivers having the form of Dynkin dia-
grams associated with classical Lie superalgebras. Here by the “association” between the gauge theory and
superalgebra we mean the latter.

– 14 –



J
H
E
P
0
8
(
2
0
2
1
)
1
4
9

The intertwiners Φq
q,t−1(w) and Φ∗q,t−1

q (w) are then drawn as

Φq
q,t−1(w) =

Vq
w

Fq,t−1

uFq,t−1

tu

(3.1)

Φ∗q,t−1
q (w) =

Vq
y

Fq,t−1

u
Fq,t−1

u/t

(3.2)

The new intertwiners are drawn as

Vt−1

w

F (1,0),q,t−1

u
F (1,0),q,t−1

q−1u
= Φt−1

q,t−1(w) : F (1,0),q,t−1
u ⊗ V t−1

w → F (1,0),q,t−1

q−1u (3.3)

Vt−1

y

Fq,t−1

u
Fq,t−1

qu

= Φ∗q,t
−1

t−1 (w) : F (1,0),q,t−1
u → F (1,0),q,t−1

qu ⊗ V t−1
w (3.4)

The explicit expressions for the new intertwiners are as follows:

Φt−1

q,t−1(w) = e−ε1Qw
P
ε2 exp

−∑
n≥1

wn

n
a−n

 exp

∑
n≥1

w−n

n
an

 , (3.5)

Φ∗q,t
−1

t−1 (w) = eε1Qy
1
β
− P
ε2 exp

∑
n≥1

yn

n

(
t

q

)n
2
a−n

 exp

−∑
n≥1

y−n

n

(
t

q

)n
2
an

 , (3.6)

where we have applied the symmetry (A.14) to the intertwiners (2.3) and (2.8). Of course,
all the results for normal ordering, commutation and gluing obtained in section 2 hold for
the red dashed lines as well, provided one exchanges q ↔ t−1 in all the expressions (hence,
for example, the integrations over the spectral parameters of the intermediate red dashed
lines are t−1-Jackson integrals and the irrelevant prefactors are t-periodic).

One can use the new intertwiners together with the “old” ones to obtain more general
networks. The color rule for gluing the colored lines is simple: the intertwiners we have
just described (eqs. (3.1)–(3.4)) connect dashed lines and solid lines of colors which do
not coincide. For example, a red dashed line can connect to blue and violet, but not red
horizontal lines. Let us for the moment consider horizontal lines of only one color, say
violet (the general setup will be described in section 3.2).

For the simplest example, consider two violet horizontal lines. We can stretch either
blue or red dashed lines between them:

y1 y2 = =
∫ ∞
−∞

dt−1y1

∫ ∞
−∞

dqy2

Φ∗q,t−1
q (y1)
⊗

Φq
q,t−1(y1)

Φ∗q,t
−1

t−1 (y2)
⊗

Φt−1

q,t−1(y2)
=

=
∫ ∞
−∞

dt−1y1

∫ ∞
−∞

dqy2 S
q,t−1
q (y1)Sq,t

−1

t−1 (y2). (3.7)

– 15 –



J
H
E
P
0
8
(
2
0
2
1
)
1
4
9

These two types of lines give rise to two types of screening currents Sq,t−1
q (w) (“blue”

current) and Sq,t
−1

t−1 (w) (“red” current). Both of them commute with the action of DIM
algebra, and therefore with the action of the q-Virasoro acting on the Fock spaces. In fact
these two screenings also commute with each other and constitute the well-known standard
set of screenings of the q-Virasoro algebra.

To give a more familiar example of the same situation consider the ordinary Virasoro
algebra built from a free field φ(x) and generated by T (z) = (∂φ(z))2 + b−b−1

2 ∂2φ(z). Then
there are two stanrard screening currents : ebφ(x) : and : e 1

b
φ(x) : commuting with T (z)

related by the symmetry b ↔ 1
b . This symmetry is exactly the symmetry q ↔ t−1 of the

q-deformed model.
As noted in [52], the red and blue screening currents commute:

[Sq,t−1
q (w), Sq,t

−1

t−1 (y)] = 0. (3.8)

However, their normal ordering is nontrivial, though it doesn’t contain q-Pochhammer
symbols as the ordering between screening currents of the same color:

Sq,t
−1

t−1 (y1)Sq,t−1
q (y2) = y2

1(
1− 1

t
y2
y1

) (
1− 1

q
y2
y1

) : Sq,t
−1

t−1 (y1)Sq,t−1
q (y2) : (3.9)

Thus, the integrals corresponding to the networks with two violet horizontal lines can be
described as a pair of coupled q-Dotsenko-Fateev-type integral ensembles:

|∅〉

|∅〉
z1 · · · zl

x1 · · · xk

· · ·

y1 · · · ym

w1 · · · wn

· · ·

〈∅|

〈∅| ∼

∼
∮
Ck1,...,kn

dmy

∮
Cl1,...,lk

dlz
m∏
i=1

y
− logt

u2
u1
− 2
β
−1 ∆(t−1,q−1)

m (~y)
∆̄(t−1,q−1)
m,n (~y, ~w)

l∏
i=1

z
logq

u2
u1
−2β−1 ∆(q,t)

l (~z)
∆̄(q,t)
l,k (~z, ~x)

l∏
i=1

m∏
j=1

1(
zi − 1

t yj
) (
zi − 1

qyj
) m∏
j=1

k∏
i=1

(
yj −

√
qtxi

) l∏
j=1

n∏
i=1

(
zj −

√
qtwi

)
(3.10)

The coupling between two DF integral (one with parameters (q, t) and the other with
(t−1, q−1)) in the last line in eq. (3.10) is due to the interaction (3.9).

From the field theory point of view the integral (3.10) describes two 3d theories

1. N = 2∗t U(m) gauge theory with n fundamental multiplets in the Ω-background with
parameter q and axial mass deformation t,

2. N = 2∗q−1 U(l) gauge theory with k fundamental multiplets in the Ω-background with
parameter t−1 and axial mass deformation q−1.

These two theories are coupled through a 1d interaction term. This setup was described
in [57].
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The situation with more than two violet horizontal lines is similar: there are twice as
many types of screening charges as there were in section 2.4. All these screening charges
commute with the action of qWN algebra. The corresponding field theory is a pair of 3d
theories coupled thorough 1d interaction.

3.2 Gluing different Fock spaces. Fermionic screenings

The final logical step in our formalism is to stack together horizontal lines of different colors.
Let us start with two lines, e.g. violet and red. Between them we can stretch dashed lines
of the color different from both horizontal lines. There is, therefore, only one choice, blue,
which produces the screening current Sq,t

−1|q,t/q
q (w)

y =
∫ ∞
−∞

dqy

Φ∗q,t/qq (y)
⊗

Φq
q,t−1(y)

=
∫ ∞
−∞

dqy S
q,t−1|q,t/q
q (y). (3.11)

Evaluating the screening current explicitly we get

Sq,t
−1|q,t/q

q (y) = e−(ε1+ε2)Q1−ε2Q2y
ε1+ε2−P1+P2

ε1 ×

× exp

∑
n≥1

yn

n(1− qn)
(
t−

n
2 (1− (t/q)n) a(1)

−n − (1− t−n)a(2)
−n

)×
× exp

∑
n≥1

y−n

n(1− q−n)
(
−t−

n
2 (1− (q/t)n) a(1)

n + (1− tn)a(2)
n

) (3.12)

where the bosons satisfy

[a(1)
n , a(1)

m ] = n
1− q|n|

1−
( q
t

)|n| δn+m,0, [a(2)
n , a(2)

m ] = n
1− q|n|
1− t|n|

δn+m,0, (3.13)

An explicit calculation shows that the currents Sq,t
−1|q,t/q

q (y) anticommute. Such fermionic
screenings appear naturally in the context ofW -algebras associated with superalgebras [52].
In particular, on two horizontal lines of different colors, DIM algebra is expected to act as
a W -algebra associated to superalgebra gl1|1 (somewhat similarly to the case of two Fock
spaces of the same color where a product of q-Virasoro and Heisenberg algebras, associated
to gl2 acts). Having the fermionic screening we can build interesting DF-type integrals5

and the corresponding 3d quiver gauge theories. Both of them are associated to Dynkin
diagrams of superalgebras. Let us write down the simplest example, corresponding to the
network

y2y1

w1 w2

⇔ U(2)

τ1/τ2

2

µi

(3.14)

5Unfortunately the name superintegral is already taken.
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The vacuum matrix element of (3.14) is∮
C1,1

(y1y2)logq
u2
u1

+2β−3 ∆2(~y)
∆̄(q,q/t)

2,2 (~y, ~w)
, (3.15)

where ∆2(~y) is the square of the ordinary (i.e. not (q, t)-deformed) Vandermonde determi-
nant:

∆m(~y) =
m∏
i 6=j

(
1− yi

yj

)
. (3.16)

This gives us a hint at what a 3d N = 2∗ theory associated to superquiver looks like: the
gauge node (the only one in the example, painted graw in (3.14)), corresponding to the
fermionic root has trivial axial deformation parameter, as if N = 4 supersymmetry was
unbroken. More generally, for several bosonic roots separated by a fermionic one, the axial
mass parameter mA changes sign along the quiver: e.g. it is t for the bosonic nodes to the
left of the fermionic node, and q

t for the bosonic nodes to the right of the fermionic one.
On the fermionic node we effectively have the theory with t = q.

Notice that the setup with horizontal solid lines of different colors which we consider
in this section is different from that with differently colored vertical dashed lines from
section 3.1. While the former gives a peculiar gauge theory on a 3d space R2×qS1, the latter
produces a pair of 3d theories, one living on R2 ×q S1 and another on R2 ×t−1 S1, coupled
through some 1d degrees of freedom living on S1. Our algebraic formalism incorporates
both of these setups, so it is natural to ask if there might be a relation between the two
theories, but we currently make no claims in this regard.

Finally, as an exercise we draw a colorful picture incorporating various screenings we
have obtained:

y1 · · · ym

z1 · · · zk

w1 · · · wn

· · ·

z̃1 · · · z̃k̃

p1 · · · pl

w̃1 · · · w̃ñ

· · ·

(3.17)

The resulting qW -algebra should be associated to a certain reduction of a sum of superal-
gebras gl1|2 ⊕ gl2|1. Indeed, if we for a moment exclude the blue horizontal line from the
picture (3.17) then according to [52] we should get qW [gl1|2], while if we delete the violet
horizontal line, we should get qW [gl2|1]. Having all three types of horizontal lines should
probably give a certain reduction of qW [gl1|2]⊕ qW [gl2|1].

One can analyze what sort of gauge theory corresponds to the network (3.17) by cutting
the picture into smaller pieces, which we have already discussed. Considering the pieces
involving dashed lines of a given color separated horizontally from each other we observe
that the corresponding gauge theory consists of three 3d theories each living in its own
S1 × R2 space with Ω-background parameters q, t−1 and t

q respectively:
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1. Supersymmetric quiver theory associated to the algebra gl2|1 on S1 ×q R2 with axial
mass parameters t and q

t .

2. Supersymmetric quiver theory associated to the algebra gl1|1 on S1× t
q
R2 with axial

mass parameters q−1 and t.

3. Theory of free multiplets on S1 ×t−1 R2 with axial mass deformation q−1.

Each of the theories 1, 2 and 3 have already appeared in our discussions, and we have
seen that they indeed correspond to pieces of the picture (3.17). Pairs of theories (1, 2)
and (2, 3) are coupled by 1d interaction terms, which can be deduced from the form of the
partition function corresponding (which in turn can be computed by normal ordering the
intertwining operators).

4 Ruijsenaars Hamiltonians and their supersymmetric versions

In this section we prove that the networks we have constructed are the eigenfunctions
of (supersymmetric) Ruijsenaars Hamiltonians acting on the spectral parameters of the
external dashed lines.

We first consider a simple example and then argue that the statement actually holds
for a larger class of networks. Our example is the T [SU(2)] theory. The proof here is
already well-known, but we rederive it using the intertwining property of Higgsed networks
to show that it is automatic in our approach. Consider the action of DIM element ∆3(x+

0 )
on the corresponding network (2.23):

√
q
tw2

w1 w2

u1

u2

tu1

tu2

∆3(x+
0 )

= √
q
tw2

w1 w2

u1

u2

tu1

tu2

∆(x+
0 )

(4.1)

where the equality follows from the definition of the intertwining operator. Using the
coproduct from section A.2 we find that on the tensor product of two vector representation
and two Fock representations one has

∆3(x+
0 )|
Vqw1⊗V

q
w2⊗F

q,t−1
u1 ⊗Fq,t

−1
u1

=

= ∆(x+
0 )|Vqw1⊗V

q
w2

+
∮
C

dz

z
(ψ−(z)⊗ ψ−(z))|Vqw1⊗V

q
w2
⊗∆(x+(z))|

Fq,t
−1

u1 ⊗Fq,t
−1

u1
(4.2)

where the integration contour C is a small contour around z = 0. Eq. (4.2) gives the DIM
action featuring in the l.h.s. of eq. (4.1).

DIM action in the r.h.s. of eq. (4.1) is just ∆(x+(z))|
Fq,t

−1
u1 ⊗Fq,t

−1
u1

(see (A.5)).
Sandwiching both sides of eq. (4.1) between the vacuum states, we find that
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∆(x+(z))|
Fq,t

−1
u1 ⊗Fq,t

−1
u1
|∅〉 ⊗ |∅〉 contains only non-negative powers of z, as does (ψ−(z)⊗

ψ−(z))|Vqw1⊗V
q
w2

(see the representations in section A.3 and A.4). Thus, the inte-
gral in eq. (4.2) is equal to the zero mode of ∆(x+(z))|

Fq,t
−1

u1 ⊗Fq,t
−1

u1
|∅〉 ⊗ |∅〉, i.e. to

(u1+u2)
(1−q−1)(1−t) |∅〉 ⊗ |∅〉. We have

∆3(x+
0 )|
Vqw1⊗V

q
w2⊗F

q,t−1
u1 ⊗Fq,t

−1
u1
|w1〉 ⊗ |w2〉 ⊗ |∅〉 ⊗ |∅〉 =

= − 1
1− q−1 |qw1〉 ⊗ |w2〉 ⊗ |∅〉 ⊗ |∅〉+

− 1
1− q−1

(
1− tw2

w1

) (
1− q

t
w2
w1

)
(
1− w2

w1

) (
1− qw2

w1

) |w1〉 ⊗ |qw2〉 ⊗ |∅〉 ⊗ |∅〉+

+ u1 + u2
(1− q−1)(1− t) |w1〉 ⊗ |w2〉 ⊗ |∅〉 ⊗ |∅〉 (4.3)

In the r.h.s. of eq. (4.1) we find that 〈∅| ⊗ 〈∅|∆(x+
0 ) also reduces to zero modes, which in

this case are 〈∅| ⊗ 〈∅| (tu1+tu2)
(1−q−1)(1−t) . Substituting both sides of eq. (4.1) and denoting the

vacuum matrix element of the network by ψ(~w, ~u) we can writeqw1∂w1 +

(
1− tw2

w1

) (
1− q

t
w2
w1

)
(
1− w2

w1

) (
1− qw2

w1

) qw2∂w2

ψ(~w, ~u) = (u1 + u2)ψ(~w, ~u) (4.4)

Factoring the flipping field contributions (see eq. (2.22)) out of ψ(~w, ~u) we find that the
function

ψ̃(~w, ~u) =

(
tw1
w2

; q
)
∞(

w1
w2

; q
)
∞

ψ(~w, ~u) (4.5)

is an eigenfunction of the Ruijsenaars Hamiltonian:

H1ψ̃(~w, ~u) =
(

1− tw1
w2

1− w1
w2

qw1∂w1 +
1− tw2

w1

1− w2
w1

qw2∂w2

)
ψ̃(~w, ~u) = (u1 + u2)ψ̃(~w, ~u). (4.6)

The argument of intertwining is completely general, thus any Higgsed network of the form
we have considered is an eigenfunction of the Ruijsenaars Hamiltonians with eigenvalues
determined by the spectral parameters of the horizontal lines.

Let us finally mention the supersymmetric generalization of the Ruijsenaars system,
which is obtained by considering the network (3.10). In this case there are two types
of DIM action in the vertical representations, which give rise to two coupled Ruijsenaars
Hamiltonians:

Hsuper
1 =

k∑
i=1

n∏
a=1

xi − qwa
xi − wa

∏
j 6=i

txi − xj
xi − xj

qxi∂xi +

+ 1− q−1

1− t

n∑
i=1

k∏
a=1

wi − t−1xa
wi − xa

∏
j 6=i

q−1wi − wj
wi − wj

t−wi∂wi (4.7)
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The interaction terms in the Hamiltonian are due to the nontriviality of the DIM coproduct.
Denoting the value of the vacuum matrix element of (3.10) (stripped off the flipping fields)
by ψ̃(~w, ~x, ~u) we get

Hsuper
1 ψ̃(~w, ~x, ~u) = 1

1− t
(
(1− tk−lqm−n)u1 + (1− tlqm)u2

)
ψ̃(~w, ~x, ~u). (4.8)

Such system was considered in [62].6 Our formalism provides explicit integral formu-
las for the solutions of the supersymmetric Ruijsenaars system and of the corresponding
supersymmetric Macdonald polynomials (and, in the t → q limit, supersymmetric Schur
functions).

5 Conclusions and discussions

We have introduced a version of the network formalism based on the DIM algebra inter-
twiners. It can be thought of as an analogue of the refined topological vertex formalism for
the case incorporating not only a network of five-branes of Type IIB, but also D3 branes.
On the field theory side it provides a way to understand partition functions (holomorphic
blocks) of 3d N = 2∗ quiver gauge theories. In particular, it gives a constructive defi-
nition of the partition functions for the quiver theories with quivers having the form of
Dynkin diagrams of superalgebras and gives a transparent proof of the fact that the parti-
tion functions are eigenfunctions of (supersymmetric) Ruijsenaars-Schneider Hamiltonians.
On the algebraic side our construction naturally produces screenings for the qW -algebras,
including those associated with superalgebras.

There are many directions along which one can extend the approach presented here.
For example we have just started studying the 3d theories corresponding to superquivers7

— there is a wealth of interesting examples which can be built rather straightforwardly
with a simple set of building blocks, as e.g. the picture (3.17) demonstrates. Some of the
networks we have introduced can be compactified, i.e. drawn on a cylinder or torus instead
of a plane. This should give rise to explicit description of the eigenfunctions of quantum
elliptic and double elliptic systems [79–84]. It would be interesting to study the monodromy
problems for the networks we have introduce — they should be described by the elliptic
stable envelopes theory [85–88].

Acknowledgments

The author would like to thank B. Feigin for a discussion. The author is supported by the
RSF grant 18-71-10073.

6Their notation differs from the notation here: (q, t)[62] = (q, t−1)here.
7We should emphasize that there are two a priori unrelated ways of incorporating supergroups into the

gauge theories. The first way is to consider supergroups as gauge groups [74–78]. The second is to consider
quiver gauge theories with quivers having special “fermionic” vertices, corresponding to Dynkin diagrams of
superaglebras [58, 59]. It is the latter approach which is incorporated into our formalism (see section 3.2).
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A DIM algebra and its representations

For the sake of completeness in this appendix we list the relevant formulas from the theory
of DIM algebras, mostly taken from [6, 60, 61].

A.1 The algebra

DIM algebra Uq,t(
̂̂
gl1) is generated by the currents x±(z) = ∑

n∈Z x
±
n z
−n, ψ±(z) =∑

nR0 ψ
±
n z
−n and a central element γ subject to the relations8

[ψ±(z), ψ±(w)]= 0, ψ+(z)ψ−(w)=
g
(
γwz
)

g
(
γ−1w

z

)ψ−(w)ψ+(z), (A.1)

ψ+(z)x±(w)= g

(
γ∓

1
2
w

z

)∓1
x±(w)ψ+(z), ψ−(z)x±(w)= g

(
γ∓

1
2
w

z

)±1
x±(w)ψ−(z),

(A.2)

[x+(z), x−(w)] = 1
G−(1)

(
δ

(
γ−1 z

w

)
ψ+

(
γ

1
2w
)
− δ

(
γ
z

w

)
ψ−

(
γ−

1
2w
))

, (A.3)

G∓
(
z

w

)
x±(z)x±(w) = G±

(
z

w

)
x±(w)x±(z), (A.4)

where δ(x) = ∑
n∈Z x

n and the “structure functions”9 of the algebra are given by G±(x) =
(1 − q±1x)(1 − t∓1x)(1 − t±1q∓1x) and g(x) = G+(x)

G−(x) . Notice that g
(

1
x

)
= 1

g(x) and in

particular G+(1) = G−(1). The ratio of the zero modes ψ−
0
ψ+

0
= γ2

⊥ also turns out to be
central.10 There are also Serre relations for triple commutators of x+(z) and x−(z), which
we will not write down here.

Notice that the relations of the algebra are manifestly symmetric under the action of
S3 group permuting the triplet of deformation parameters

(
q, t−1, t/q

)
. Only part of this

symmetry will be retained by the representations which we are going to consider. By this
we mean that some permutations will not affect a representation, while others will turn a
representation into an isomorphic one.

DIM algebra respects two gradings, d and d⊥. d counts the number of the Laurent
mode of a current, so that d(x±n ) = d(ψ±n ) = n, while d⊥ is a “perpendicular” grading
defined as d⊥(x±n ) = ±1, d⊥(ψ±n ) = 0.

There is an extra symmetry of the DIM algebra, which is not manifest in the defini-
tion (A.1)–(A.4) — the SL(2,Z) automorphism group (the most tricky part of it is the
action of the S-element, known as the Miki automorphism). We will not define the action
of this symmetry on the currents explicitly. It will be enough for us to visualize it as an
action of SL(2,Z) on the double grading lattice (d, d⊥) ∈ Z2 and on the doublet of central
charges (γ2, γ2

⊥), so that e.g. x+
0 is turned into ψ−−1 by the S element.

8This definition differs from the definition of [6] by the rescaling of the generators x±
our(z) = (1 −

q∓1)−1(1− t±1)−1x±
AFS(z), while keeping ψ±

our(z) = ψ±
AFS(z).

9Curiously, they also appear as factorized scattering matrices of some 2d integrable models. It is tempting
to try to understand DIM algebra as a version of the Zamolodchikov-Fateev algebra of such models.

10The product of the zero modes ψ−
0 ψ

+
0 is central too, but can be eliminated by an overall rescaling of

all the currents.
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A.2 The coproduct

DIM algebra can be endowed with a coproduct ∆, which acts on the generators as follows:

∆(x+(z)) = x+(z)⊗ 1 + ψ−
(
γ

1
2
(1)z

)
⊗ x+

(
γ(1)z

)
, (A.5)

∆(x−(z)) = x−
(
γ(2)z

)
⊗ ψ+

(
γ

1
2
(2)z

)
+ 1⊗ x−(z), (A.6)

∆(ψ±(z)) = ψ±
(
γ
± 1

2
(2) z

)
⊗ ψ±

(
γ
∓ 1

2
(1) z

)
. (A.7)

where γ(1) (resp. γ(2)) denotes the central charge of the first (resp. second) representation
in the tensor product. Since the currents are formal infinite Laurent series, the products in
the r.h.s. may require regularization for some representations. We will not encounter this
problem for the representations we will consider.

The coproduct ∆ respects the S3 permutation symmetry of the DIM algebra but is not
invariant under the action of SL(2,Z). In fact there is an infinite number of coproducts,
parametrized by irrational slopes on the 2d plane. All these coproducts are related to each
other by nontrivial Drinfeld twists (see [15, 16], and for a more geometric view also [17]).

A.3 Horizontal Fock representation

There is a representation of DIM algebra on the Fock space F (1,0),q,t−1
u , generated by the

action of creation operators a−n, n ∈ Z>0 on the vacuum vector |∅, u〉. The states of Fq,t−1
u

are therefore labelled by Young diagrams. The combination of indices (1, 0) and q, t−1 of
the representation is used to denote the “direction” (horizontal) and “length” of its central
charge vector (γ2, γ2

⊥) = ((t/q)1, (t/q)0) = (t/q, 1) respectively. We will usually omit the
index (1, 0), when it is clear what is the direction of the central charge vector. Creation
and annihilation operators satisfy the commutation relations

[an, am] = n
1− q|n|
1− t|n|

δn+m,0, (A.8)

while the zero modes P and Q commute with an and satisfy the standard Heisenberg
commutation relations

[P,Q] = 1. (A.9)

The zero modes act on the vacuum vector as follows:

P |∅, u〉 = ln u |∅, u〉, eαQ|∅, u〉 = |∅, eαu〉. (A.10)
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The action of the DIM generators is given by the following vertex operators:

x+(z) = (1− q−1)−1(1− t)−1eP exp

∑
n≥1

zn

n
(1− t−n)a−n

 exp

−∑
n≥1

z−n

n
(1− tn)an

 ,
(A.11)

x−(z) = (1− q)−1(1− t−1)−1e−P exp

−∑
n≥1

zn

n
(1− t−n)

(
t

q

)n
2
a−n

×
× exp

−∑
n≥1

z−n

n
(1− tn)

(
t

q

)n
2
an

 ,
ψ+(z) = exp

−∑
n≥1

z−n

n
(1− tn)

(
1−

(
t

q

)n)(q
t

)n
4
an

 , (A.12)

ψ−(z) = exp

∑
n≥1

zn

n
(1− t−n)

(
1−

(
t

q

)n)(q
t

)n
4
a−n

 . (A.13)

The representation Fq,t−1
u is invariant under the exchange of q and t−1 deformation

parameters. To see this we notice that the exchange q ↔ t−1 in the vertex opera-
tors (A.11)–(A.13) is equivalent to the rescaling of the creation and annihilation operators:

a(q,t−1)
n = 1− q−n

1− tn a(t−1,q)
n . (A.14)

Notice in particular, that a(t−1,q)
n satisfy

[a(t−1,q)
n , a(t−1,q)

m ] = n
1− t−|n|
1− q−|n|

δm+n,0, (A.15)

as they should. This symmetry might be familiar from the theory of Macdonald polynomials
M

(q,t−1)
Y (a(q,t−1)

−n ), in which it corresponds to the transposition of the Young diagram Y .
As we have mentioned above, this Z2 symmetry of the Fock representation is part of
the larger S3 permutation symmetry of the DIM algebra. The remaining elements of
S3 transform Fq,t−1

u into two more horizontal Fock representations Fq,t/qu and F t
−1,t/q
u ,

obtained from (A.11)–(A.13) by permuting the parameters of the algebra. Their central
charge vectors (γ2, γ2

⊥) are (t−1, 1) and (q, 1) respectively.
Fock representation with different slope, e.g. a vertical one F (0,1),q,t−1

u can be obtained
by the action of the elements of SL(2,Z) automorphism group on F (1,0),q,t−1

u . We will
not need these representations for the construction presented in the main text, so we omit
their explicit definition. For more information on the action of SL(2,Z) and its implications
see [8, 27–35].

A.4 Vertical vector representation

The vertical vector representation Vqw has trivial central charges (γ2, γ2
⊥) = (1, 1). It can

be understood as a kind of evaluation representation for the currents x±(z), ψ±(z), similar
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to evaluation representations of (quantum) affine algebra. There are two equivalent ways
to view Vqw: either as an infinite dimensional representation parametrized by w with basis
|n,w〉, n ∈ Z, or as a representation on the space of functions of w with state |n,w〉
corresponding to function |qnw〉. In the first case the action of the DIM currents is

x+(z)|w, n〉 = − 1
1− q−1 δ

(
qnw

z

)
|w, n+ 1〉,

x−(z)|w, n〉 = 1
1− q δ

(
qn−1w

z

)
|w, n− 1〉,

ψ+(z)|w, n〉 =

(
1− t

q
qnw
z

) (
1− 1

t
qnw
z

)
(
1− qnw

z

) (
1− 1

q
qnw
z

) |w, n〉, (A.16)

ψ−(z)|w, n〉 =

(
1− q

t
z

qnw

) (
1− t z

qnw

)
(
1− z

qnw

) (
1− q z

qnw

) |w, n〉.
In the second view the currents act on functions |w〉:

x+(z)|w〉 = − 1
1− q−1 δ

(
w

z

)
|qw〉,

x−(z)|w〉 = − 1
1− q δ

(
w

qz

) ∣∣∣∣wq
〉
,

ψ+(z)|w〉 =

(
1− t

q
w
z

) (
1− 1

t
w
z

)
(
1− w

z

) (
1− 1

q
w
z

) |w〉, (A.17)

ψ−(z)|w〉 =
(
1− q

t
z
w

) (
1− t zw

)(
1− z

w

) (
1− q zw

) |w〉.
We will use both views interchangeably at our convenience.

The vector representation V q
w is manifestly symmetric with respect to the exchange

of t and q
t . The action of S3 permutation symmetry of DIM algebra produces two more

vector representations Vt−1
w and Vt/qw defined in an obvious way.

A.5 Visualizing representations

Let us also mention that both Fock and vector representations can be thought of
as certain reductions of a more general MacMahon representation of central charge
(1,K) [63–67, 72, 73] with general K ∈ C and states labelled by plane partitions, i.e. 3d
Young diagrams (here we do not pay attention to the direction of the central charge vec-
tor, focusing only on its “magnitude”). As a mnemonic aid, one can view the 3d partitions
constituting the MacMahon representation as living in a Z3

>0 space with three coordinate
axes associated with three parameters (q, t−1, t/q) of the DIM algebra. A reduction of the
representation corresponds to restriction to a subset of plane partitions of specific form:

1. Fock representation Fq,t−1
u contains plane partitions of unit thickness lying along the

(q, t−1) plane inside Z3
>0, i.e. those that reduce to Young diagrams. It is evident
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geometrically, that Fq,t−1
u is invariant under the exchange of q and t−1 axes and that

this symmetry corresponds to the transposition of a Young diagram Y labelling a
state of the representation. There are three coordinate planes, and therefore three
Fock representations.

2. Vector representation Vqw can be visualized as single column diagrams towering in
the direction associated to q. One needs to stretch one’s imagination a little bit in
this case, since columns of negative height are also allowed. Naturally, the represen-
tation is invariant with respect to the exchange of coordinate axes t ↔ q

t , which lie
perpendicular to q. There are three species of vector representations, corresponding
to three different orientations of the columns.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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