
J
H
E
P
0
8
(
2
0
2
1
)
1
4
8

Published for SISSA by Springer

Received: July 1, 2021
Accepted: August 5, 2021

Published: August 26, 2021

Symmetry breaking at high temperatures in large N

gauge theories

Soumyadeep Chaudhuri and Eliezer Rabinovici
Racah Institute, The Hebrew University,
Jerusalem 9190401, Israel

E-mail: chaudhurisoumyadeep@gmail.com, eliezer@mail.huji.ac.il

Abstract: Considering marginally relevant and relevant deformations of the weakly cou-
pled (3 + 1)-dimensional large N conformal gauge theories introduced in [1], we study the
patterns of phase transitions in these systems that lead to a symmetry-broken phase in the
high temperature limit. These deformations involve only the scalar fields in the models.
The marginally relevant deformations are obtained by varying certain double trace quartic
couplings between the scalar fields. The relevant deformations, on the other hand, are ob-
tained by adding masses to the scalar fields while keeping all the couplings frozen at their
fixed point values. At the N → ∞ limit, the RG flows triggered by these deformations
approach the aforementioned weakly coupled CFTs in the UV regime. These UV fixed
points lie on a conformal manifold with the shape of a circle in the space of couplings.
As shown in [1], in certain parameter regimes a subset of points on this manifold exhibits
thermal order characterized by the spontaneous breaking of a global Z2 or U(1) symmetry
and Higgsing of a subset of gauge bosons at all nonzero temperatures. We show that the
RG flows triggered by the marginally relevant deformations lead to a weakly coupled IR
fixed point which lacks the thermal order. Thus, the systems defined by these RG flows
undergo a transition from a disordered phase at low temperatures to an ordered phase at
high temperatures. This provides examples of both inverse symmetry breaking and sym-
metry nonrestoration. For the relevant deformations, we demonstrate that a variety of
phase transitions are possible depending on the signs and magnitudes of the squares of the
masses added to the scalar fields. Using thermal perturbation theory, we derive the ap-
proximate values of the critical temperatures for all these phase transitions. All the results
are obtained at the N → ∞ limit. Most of them are found in a reliable weak coupling
regime and for others we present qualitative arguments.
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1 Introduction

Spontaneous breaking of symmetries plays an important role in distinguishing the different
phases of matter. Usually symmetries that are broken at low temperatures are eventually
restored as the temperature becomes sufficiently high.1 This is true also for systems in
which a symmetry that is unbroken at low temperatures is spontaneously broken at a higher
critical temperature [2] - a phenomenon called inverse symmetry breaking. In each such
instance, the broken symmetry is restored at an even higher temperature. The ubiquity of
such symmetry restoration in nature raised the question of whether there can be models
where some symmetry remains broken up to arbitrarily high temperatures.

1Here, as well as in the rest of the paper, we are referring to the spontaneous breaking of ordinary
(0-form) global symmetries. There are known instances of spontaneous breaking of higher form symmetries
at high temperatures. One familiar example of this is the spontaneous breaking of the 1-form ZN center
symmetry in pure Yang-Mills theory with SU(N) gauge group.
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This question has been explored for several decades in varied contexts; it has important
implications for several areas of physics. We refer the reader to [3–14] for a sample of the
literature. The main difficulty of coming up with a conclusive answer lay in the fact
that the theories considered were UV-incomplete, thereby putting an upper cutoff on the
temperatures that can be explored.2 To overcome this problem certain Wilson-Fisher-like
conformal field theories (CFTs) with global O(N) symmetries were studied for both infinite
and finite N in fractional dimensions [28, 29].3 The advantage of studying CFTs is that
the absence of any intrinsic scale in the theory leads the system to be in the same phase
(whatever it may be) at all nonzero temperatures. A symmetry-broken phase was indeed
found to occur in the models considered in [28, 29]. This was followed by the construction
of (3+1)-dimensional large N conformal gauge theories in [1] where certain global Z2 or
U(1) symmetries were shown to be broken at all nonzero temperatures. It was also shown
that this symmetry breaking is accompanied by the Higgsing of a subset of gauge bosons
which leads the system to be in a persistent Brout-Englert-Higgs (BEH) phase. In this
context, we refer the reader to [31] for examples of similar persistent Higgsing at high
temperatures in some asymptotically free large N gauge theories. Certain asymptotically
safe theories [32] were also considered in [31], but they failed to show a symmetry-broken
phase in the high temperature limit.

The study of the above-mentioned CFTs has demonstrated the existence of persistent
symmetry breaking in the large N limit. However, this still leaves open the question of how
the persistent symmetry breaking characteristics change in the presence of an extra scale.
In this work we address this question by considering relevant and marginally relevant
deformations of the large N CFTs introduced in [1]. These CFTs are weakly coupled.
They lie on a circle in the space of couplings. In appropriate parameter regimes, a subset
of points on this fixed circle demonstrates spontaneous breaking of some global Z2 or U(1)
symmetries at any nonzero temperature. We consider two kinds of deformations of these
CFTs with thermal order. As we will discuss shortly, these deformations involve only
the scalar fields in the model. At the N → ∞ limit, the RG flows triggered by these
deformations end up at the aforementioned CFTs in the UV regime. So, in this limit
these systems provide examples of symmetry nonrestoration in theories with nontrivial UV
fixed points. Exploring the IR regimes of these flows, we find interesting patterns of phase
transitions at nonzero temperatures. Let us briefly describe these deformations and the
corresponding phase transitions in the following two paragraphs.

The first class of deformations that we consider consists of marginally relevant ones
involving variations of certain quartic couplings between the scalar fields. Such marginally
relevant deformations may exist in four dimensional theories only in the presence of non-

2Examples of symmetry nonrestoration have been found in certain models with imaginary or random
chemical potentials [15–20]. The dynamics of these models suffer from the lack of unitarity. Some holo-
graphic models were also explored as candidates for theories with symmetry nonrestoration [21–27]. Unlike
the phases discussed in this paper, the symmetry-broken phases in these models do not correspond to stable
vacua in thermal states.

3There may be issues with unitarity of such Wilson-Fisher-like fixed points at finite N due to the
potential existence of operators with complex scaling dimensions [30].
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Abelian gauge interactions [33]. This is the case here. We show that the RG flows corre-
sponding to these deformations lead to a non-Gaussian fixed point in the IR. The theory
remains weakly coupled throughout the flow allowing the use of perturbation theory to
study it. As mentioned earlier, under certain conditions, some of the UV fixed points
of these flows demonstrate persistent thermal order. On the other hand, the IR fixed
point lacks thermal order. From this we conclude that there must be an inverse symmetry
breaking phase transition at an intermediate temperature. By a perturbative analysis,
we determine the critical temperature corresponding to this phase transition. Above the
critical temperature, the system persistently remains in a symmetry-broken phase.

The second class of deformations involves adding masses to the scalar fields while
keeping all the couplings frozen at the fixed points exhibiting thermal order. We show that
at high temperatures, the effects of these masses are insignificant and the system exists
in the same phase as the UV fixed point where a Z2 (or U(1)) global symmetry remains
persistently broken. As the temperature is decreased the effects of the renormalized masses
of the scalar fields become increasingly pronounced. At sufficiently low temperatures,
such renormalized masses can induce phase transitions in the system. We show that in
certain cases such phase transitions can be studied using thermal perturbation theory. We
derive estimates of the critical temperatures corresponding to these phase transitions. We
show that a variety of phases can exist slightly below such critical temperatures. The
nature of these phases crucially depend on the magnitudes and signs of the squares of the
renormalized masses. Far below the critical temperatures, the perturbative analysis breaks
down. So we cannot say anything definite about the phases in this regime.

We emphasize that all the results mentioned above are derived in the N → ∞ limit.
Whether the symmetry nonrestoration in these models persists for finite N remains unre-
solved.4 In the conclusion of the paper we comment on the potential problems that may
arise for symmetry nonrestoration at finite N .

Organization of the paper: in section 2, we review the models that were introduced
in [1]. We discuss the features of the planar beta functions of the couplings in these
models and the corresponding fixed points with special emphasis on the fixed points with
thermal order.

In section 3, we demonstrate the existence of marginally relevant deformations of the
fixed points exhibiting thermal order. We show that the systems defined by these defor-
mations undergo inverse symmetry breaking phase transitions at nonzero critical temper-
atures. We derive estimates of these critical temperatures.

In section 4, we add masses to the scalar fields in the models, and study the phase
transitions induced by these masses at nonzero critical temperatures. We show that there
are distinct patterns of phase transitions for the different signs and magnitudes of the
squares of these masses. We provide estimates of the critical temperatures corresponding
to these phase transitions.

4In this context, we refer the reader to the recent work [34] where symmetry nonrestoration was found
to occur even at finite N in some d-dimensional nonlocal CFTs with 1 < d < 4.
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In section 5, we conclude by summarizing our results and commenting on how finite
N corrections can alter the features found in the N →∞ limit.

In appendix A we show that the tree-level quartic terms in the effective potential of
the scalar fields are positive-definite throughout the RG flows discussed in section 3.

In appendix B we derive the 1-loop beta functions of the masses of the scalar fields
that are introduced in section 4.

2 Review of the double bifundamental models

In this section we will describe the models that were originally introduced in [1] and which
will be the objects of interest in this work. These models have gauge groups of the form

G =
2∏
i=1

Gi ×Gi (2.1)

where Gi can be either SO(Nci) or SU(Nci).5 The models where the Gi’s are SO(Nci)
and SU(Nci) were called the real double bifundamental model and the complex double
bifundamental model respectively in [1]. These names were coined keeping in mind the
representations in which certain scalar fields in the model transform under the gauge group.
Henceforth, we will use the abbreviations RDB and CDB for these models. The two sectors
of the gauge group are labeled by the index i. The matter fields in each sector transform
only under the gauge group (Gi×Gi) in that sector and they are invariant under the gauge
transformations in the other sector. The fields in the ith sector include two sets of massless
fermions (ψi and χi), each of which has Nfi flavors and transforms in the fundamental
representation of one of the Gi’s while being invariant under the other Gi. These fermions
are Majorana spinors in the RDB model and Dirac spinors in CDB model. In addition
to these fermions, there is an Nci × Nci matrix of massless scalar fields which transform
in the bifundamental representation of Gi ×Gi. These scalars are real in the RDB model
and complex in the CDB model. The scalar fields in each sector interact via both single
trace and double trace quartic couplings. There is an additional double trace interaction
coupling the scalar fields in the two sectors. In figure 1 we provide a schematic diagram
indicating the representations in which the different fields transform in these models.

The renormalized Lagrangians of these models have the following common form:6

L =− 1
2

2∑
i,γ=1

Tr
[
(Fiγ)µν(Fiγ)µν

]
+ iκ

2∑
i=1

Tr
[
ψi /Dψi

]
+ iκ

2∑
i=1

Tr
[
χi /Dχi

]

+ κ
2∑
i=1

Tr
[(
DµΦi

)†
DµΦi

]
−

2∑
i=1

h̃iTr
[
(Φ†iΦi)2

]
−

2∑
i=1

f̃i
(
Tr
[
Φ†iΦi

])2

− 2ζ̃Tr
[
Φ†1Φ1

]
Tr
[
Φ†2Φ2

]
,

(2.2)

where κ = 1
2 for the RDB model, and κ = 1 for the CDB model. The index γ distinguishes

the two Gi’s in the ith sector. The fermionic fields ψi and χi are (Nci ×Nfi) matrices.
5The ranks Nc1 and Nc2 can be different.
6In case of the RDB model, Φ†i = ΦTi since the scalar fields are real.

– 4 –



J
H
E
P
0
8
(
2
0
2
1
)
1
4
8

Nc1

Nc1

Nc2
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Nf2
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Φ1 Φ2

ψ1

χ1

ψ2

χ2

Figure 1. A schematic diagram indicating the representations in which the different fields trans-
form in the double bifundamental models: the two sectors are represented by the two subdiagrams
which are connected by a dashed line. This dashed line represents a double trace quartic interaction
between the scalar fields in the two sectors. The two green nodes in each sector represent the two
Gi’s in the gauge group Gi ×Gi of that sector. Each of these Gi’s is SO(Nci) for the RDB model
and SU(Nci) for the CDB model. The line connecting the two green nodes in each sector represents
the scalar fields in that sector which transform in the bifundamental representation of Gi × Gi.
These scalar fields interact via both single trace and double trace quartic couplings. The two yellow
nodes in each sector represent the Nfi flavors of the two fermions ψi and χi in that sector. Each line
connecting a green node and a yellow node indicates that the respective fermion is an (Nci ×Nfi)
matrix which transforms in the fundamental representation of the corresponding Gi.

In [1] the fixed points of these models were studied at the Veneziano limit [35] where
Nci, Nfi → ∞ while r ≡ Nc2

Nc1
and xfi ≡

Nfi
Nci

are kept finite, and the different couplings
scale as

g2
i = 16π2λi

Nci
, h̃i = 16π2hi

Nci
, f̃i = 16π2fi

N2
ci

, ζ̃ = 16π2ζ

Nc1Nc2
(2.3)

with gi being the gauge coupling in the ith sector.7 We will continue to work in this limit.
In this limit, there is an orbifold equivalence [36–45] between the RDB model and the CDB
model [1] with the couplings in the two dual theories related by

λCi = λRi
2 , hCi = 2hRi , fCi = 2fRi , ζC = 2ζR. (2.4)

Here the superscript ‘R’ or ‘C’ indicates whether the coupling belongs to the RDB or the
CDB model. This planar equivalence between the two models will allow us to restrict our
attention to the RDB model. All results that will be derived in this work will have their
counterparts in the CDB model.

Now, the planar beta functions (in the MS scheme) of the different couplings in the
RDB model have the following forms:

βλi = −
(21− 4xfi

6

)
λ2
i +

(−27 + 13xfi
6

)
λ3
i + · · · ,

βhi = 16h2
i − 6hiλi + 3

16λ
2
i + · · · ,

βfi = 8f2
i + 32fihi − 6fiλi + 24h2

i + 9
16λ

2
i + 8ζ2 + · · · ,

βζ = ζ
[
8f1 + 8f2 + 16h1 + 16h2 − 3λ1 − 3λ2

]
+ · · · .

(2.5)

7The gauge couplings for the two Gi’s in the ith sector are taken to be equal.
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The dots indicate higher order corrections. There are several features of these beta func-
tions which will be important for our analysis in this work. We would like to mention two
of them here. Firstly, note that these beta functions are independent of the ratio r = Nc2

Nc1
.

This means that the RG flows that we will study in section 3 will be independent of this
ratio. Secondly, the beta functions of the single trace couplings (λi and hi) are indepen-
dent of the double trace couplings (fi and ζ).8 These properties of the beta functions were
shown to survive up to all orders at the Veneziano limit in [1].

Based on the forms of the above beta functions, one can show that there are unitary
perturbative fixed points9 which are of the following two kinds.

1. There is a discrete set of fixed points where the two sectors are decoupled and the
couplings have the following values at leading order:

λi = 21− 4xfi
13xfi − 27 , hi = 3−

√
6

16 λi, fi =
2
√

6 + σi

√
18
√

6− 39
16 λi, ζ = 0 (2.6)

with σi = ±1. Note that to get unitary fixed points in a perturbative regime, one
must set xfi = 21

4 − εi with 0 < εi � 1.

2. The second class of fixed points consists of theories where the two sectors are coupled.
These fixed points exist only when xf1 = xf2 ≡ xf . They form a conformal manifold
which has the shape of a circle in the space of couplings.10 The values of the different
couplings on this fixed circle at leading order are as follows:

λ1 = λ2 ≡ λ = 21− 4xf
13xf − 27 , h1 = h2 ≡ h = 3−

√
6

16 λ,

fp =
√

6
8 λ, f2

m + ζ2 =
(18
√

6− 39
256

)
λ2.

(2.7)

where fp ≡ f1+f2
2 and fm ≡ f1−f2

2 .

All these fixed points survive under higher loop corrections at the planar limit and have
stable effective potentials (at least up to leading order in perturbation theory) [1]. More-
over, in appropriate regimes of the ratio r certain points on the fixed circle exhibit thermal
order, i.e., a Z2 symmetry in the sector with the smaller rank is spontaneously broken at all
nonzero temperatures. The relevant Z2 symmetry in the ith sector transforms the different
fields in that sector as follows:

Φi → TiΦi, ψi → Tiψi, (Vi1)µ → Ti(Vi1)µT −1
i , (2.8)

where Ti is the following Nci ×Nci diagonal matrix:

Ti ≡ diag{−1, 1, · · · , 1}. (2.9)
8This is a general feature of planar beta functions of single trace couplings in large N gauge theories [39].
9These fixed points are akin to the Banks-Zaks-Caswell fixed points [46–48] in more familiar QCDs.

10A couple of points on this circle where ζ = 0 have already been included in the first class.
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It leaves the fields in the other sector unchanged. These symmetry transformations map
one class of gauge-equivalent field configurations to another.11 These global symmetries
were called baryon symmetries in [1] because the corresponding order parameters are the
expectation values of the determinants of the scalar fields.

When Nc2 < Nc1, the baryon symmetry in the first sector remains unbroken at all
temperatures. On the other hand, the baryon symmetry in the second sector can be
spontaneously broken in a thermal state for a subset of points on the conformal manifold
when r < rmax ≡

√
6
√

6−13
61−6

√
6 ≈ 0.191. These points can be expressed simply by defining the

following polar coordinates in the fm-ζ plane:

fm = R sin θ, ζ = R cos θ, (2.10)

where θ ∈ [0, 2π). For each r < rmax, the fixed points exhibiting thermal order lie in the
angular interval θ ∈ (θ1, θ2) where12

θ1 = cos−1(ν1), θ2 = π − sgn(r − r0)
(
π − cos−1(ν2)

)
(2.11)

with r0 ≡
√

18
√

6−39
12 and

ν1 ≡ r

−12 +
√(

18
√

6− 183
)
r2 +

(
18
√

6− 39
)

(
1 + r2)√18

√
16− 39

 ,
ν2 ≡ r

−12−
√(

18
√

6− 183
)
r2 +

(
18
√

6− 39
)

(
1 + r2)√18

√
16− 39

 .

(2.12)

Here the range of the function cos−1 is the interval [0, π]. The plots of θ1 and θ2 as
functions of r are shown in figure 2. From these plots, one can see that for all values of
r ∈ (0, rmax) the end points of the above angular interval satisfy π

2 < θ1 < θ2 <
3π
2 with

θ1 → π
2 and θ2 → 3π

2 as r → 0, and θ1,2 → cos−1
(
−
√

61−6
√

6
4
√

3

)
≈ 2.952 as r → rmax. Thus,

cos θ (or equivalently, ζ = R cos θ) is always negative for the fixed points demonstrating
thermal order.

When Nc1 < Nc2, one would get similar fixed points with spontaneous breaking of the
baryon symmetry in the first sector at all nonzero temperatures. These fixed points can
be obtained from those demonstrating thermal order in the second sector by the transfor-
mations r → 1

r and θ → 2π − θ.
It was shown in [1] that for all the fixed points where the baryon symmetry in a sector

is spontanously broken at nonzero temperatures, this phenomenon is accompanied by the
Higgsing of half of the gauge bosons in the same sector. This leads the system to be in a
persistent Brout-Englert-Higgs (BEH) phase at all nonzero temperatures.

A similar spontaneous breaking of a baryon symmetry at nonzero temperatures and a
persistent BEH phase were also found at the corresponding fixed points of the dual CDB

11See appendix A of [1] for a proof of this.
12One can check that the angular interval given here is equivalent to the intervals of fm and ζ given in [1].
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Figure 2. Graphs of θ1 and θ2 against r: for each value of r < rmax ≡
√

6
√

6−13
61−6

√
6 , θ1 and θ2 are

the endpoints of the angular interval on the fixed circle which exhibits thermal order in the second
sector. They always lie in the regime π

2 < θ1 < θ2 <
3π
2 . As r → 0, θ1 → π

2 and θ2 → 3π
2 . As

r → rmax, θ1,2 → cos−1
(
−
√

61−6
√

6
4
√

3

)
≈ 2.952.

model. In this case, the relevant baryon symmetry in each sector is a U(1) symmetry which
can be obtained by replacing Ti by the Nci ×Nci diagonal matrix defined below:

(Ti)φ ≡ diag{eiφ, 1, · · · , 1}. (2.13)

with φ ∈ [0, 2π).
An important result which was derived in [1] is that the above-mentioned baryon

symmetries are not broken in a thermal state for the fixed points where the two sectors are
decoupled. We will find this result to be consequential as one of these fixed points is the
IR limit of the RG flows corresponding to the marginally relevant deformations discussed
in section 3.

3 Phase transitions for marginally relevant deformations

In this section we will consider certain marginally relevant deformations of the points on
the fixed circle in the RDB model by varying the quartic couplings between the scalars
fields. In subsection 3.1 we will demonstrate the existence of such a marginally relevant
deformation for each point on the fixed circle. Later in subsection 3.2 we will study the RG
flows triggered by these deformations. We will show that in the IR limit these RG flows
take the corresponding systems to a unique fixed point that lacks thermal order. Therefore,
at low temperatures all these systems are in a disordered phase. On the other hand, in
the UV limit some of these systems flow to the points on the fixed circle which exhibit
thermal order. This means that at high temperatures these systems are in an ordered
phase. Therefore, each of these systems must undergo an inverse symmetry breaking
phase transition at some critical temperature. Above this critical temperature, the system
remains persistently in a symmetry-broken phase. In subsection 3.3, we will provide an
estimate of this critical temperature.

3.1 Deformations of the double trace quartic couplings

Let us now turn our attention to the deformations of the quartic couplings away from their
values on the fixed circle. The deformations that are of interest to us involve only the double

– 8 –
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trace couplings (fi and ζ). Since the beta functions of the single trace couplings (λi and
hi) are independent of the double trace ones at the Veneziano limit, these couplings remain
frozen at their fixed point values throughout the RG flows triggered by such deformations.
Therefore, all such RG flows take place only in a subspace where λ1 = λ2 = λ and
h1 = h2 = h with λ and h being the values given in (2.7) at leading order in perturbation
theory. In this subspace the full planar beta functions of the double trace couplings have
the following forms:13

βfp = F1
(
fp,
√
f2
m + ζ2

)
, βfm = fmF̃2

(
fp,
√
f2
m + ζ2

)
, βζ = ζF̃2

(
fp,
√
f2
m + ζ2

)
,

(3.1)

where F1 and F̃2 are two functions of fp and
√
f2
m + ζ2. Switching to the polar coordinates

introduced in (2.10), the beta functions can be re-expressed as

βfp = F1(fp, R), βR = F2(fp, R), Rβθ = 0, (3.2)

where F2(fp, R) ≡ RF̃2(fp, R). The expressions of F1(fp, R) and F2(fp, R) at leading order
are

F1(fp, R) = (8fp + 32h− 6λ)fp + 8R2 + 24h2 + 9
16λ

2 ,

F2(fp, R) = R(16fp + 32h− 6λ) .
(3.3)

We can see that βθ = 0 for all points in the space of the double trace couplings where
R 6= 0. Moreover, the beta functions of fp and R are independent of the angular coordinate
θ. Therefore, for a fixed point of these beta functions where R 6= 0, a shift in the value of
θ spans the conformal manifold. Another important consequence of the vanishing of βθ is
that the projections of all RG flows on the fm-ζ plane are radially directed. Furthermore,
the fact that βfp and βR are independent of θ ensures that such flows are identical for all
values of θ.

Now, suppose f0p and R0 are the values of fp and R for the points on the conformal
manifold. The leading order expressions of f0p and R0 are (see (2.7))

f0p =
√

6
8 λ, R0 =

(√
18
√

6− 39
16

)
λ. (3.4)

Consider the following small deformations of fp and R away from their values on the
fixed circle:

fp = f0p + δfp, R = R0 + δR. (3.5)

The beta functions of these deformations in the values of fp and R (at linear order) are

βδfp = ∂F1
∂fp

(f0p, R0)δfp + ∂F1
∂R

(f0p, R0)δR,

βδR = ∂F2
∂fp

(f0p, R0)δfp + ∂F2
∂R

(f0p, R0)δR.
(3.6)

13We refer the reader to section 5 of [1] for a derivation of these forms of the beta functions of the double
trace couplings up to all orders in perturbation theory at the planar limit.
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The coefficient matrix multiplying the deformations in the above equations is

M =

∂F1
∂fp

(f0p, R0) ∂F1
∂R (f0p, R0)

∂F2
∂fp

(f0p, R0) ∂F2
∂R (f0p, R0)

 = 16R0

(
0 1
1 0

)
. (3.7)

The second equality in the above equation is obtained by substituting F1, F2 and the
couplings h, f0p and R0 by their leading order expressions. The eigenvalues of this matrix
and the corresponding eigenvectors are as follows:

v1 = −16R0, v2 = 16R0,

e1 =
(

1
−1

)
, e2 =

(
1
1

)
.

(3.8)

Therefore, the deformations along e1 and e2 are marginally relevant and marginally irrele-
vant respectively. The existence of a marginally relevant deformation clearly demonstrates
that all points on the conformal manifold are UV fixed points of certain RG flows. Next,
let us study the features of these RG flows.

3.2 RG flows triggered by the marginally relevant deformations

To analyze the RG flows triggered by the marginally relevant deformations, we will rely on
the 1-loop expressions of the beta functions. This approximation is justified near the UV
fixed points on the conformal manifold as these fixed points are weakly coupled. However,
the RG flows triggered by the marginally relevant deformations can take the system to
a strongly coupled regime. We will show that this is not the case when we choose the
marginally relevant deformation such that it has a radially inward component in the fm-ζ
plane, i.e., δR < 0. Therefore, in this case one can trust the results based on the 1-loop beta
functions. If the deformation is chosen to be in the opposite direction, i.e., δR > 0, then
the theory indeed flows to a strongly coupled regime. This can be verified by noticing that
the RG flows obtained from the 1-loop beta functions lead to divergences of the couplings
at finite energy scales.

With the above comments in mind, we choose the marginally relevant deformation to be

δfp = −δR = R0
2 ε̃ (3.9)

at a reference energy scale Λ. We take 0 < ε̃ < 1. The RG flow generated by the 1-loop
beta functions leads to the following values of the couplings at a scale µ:

fp = f0p + R0
2

[
(1− k)

(
1− tanh(8R0t)

)
1 + k tanh(8R0t)

]
, R = R0

2

[
(1 + k)

(
1 + tanh(8R0t)

)
1 + k tanh(8R0t)

]
, (3.10)

where t ≡ ln(µ/Λ) and k ≡ 1 − ε̃. In figure 3, a graphical plot of this RG flow is given
for λ = 0.001, ε̃ = 0.1. Note that the theory remains weakly coupled throughout the RG
flow. In the deep UV, it flows to a point on the fixed circle as expected. In the deep IR, it
flows to a fixed point where the two sectors are decoupled and f1 = f2 = 2

√
6+
√

18
√

6−39
16 λ.
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R

Figure 3. RG flow for λ = 0.001, ε̃ = 0.1: in the UV limit (t→∞) the couplings flow to a point
on the fixed circle. In the IR limit (t → −∞) they flow to a fixed point where the two sectors are
decoupled.

Due to the rotational symmetry in the fm-ζ plane, this behavior of the RG flow is identical
for marginally relevant deformations of all points on the fixed circle. In particular, when
r < rmax, it holds for the deformations of the fixed points demonstrating thermal order
in the second sector. The RG flows triggered by these deformations lead to the IR fixed
point where the two sectors are decoupled. As we have mentioned earlier, the baryon
symmetries in both the sectors are unbroken at any nonzero temperature for this IR fixed
point. Therefore, for the systems that flow from the UV fixed points with thermal order
to this IR fixed point without thermal order, there must be a transition from a disordered
phase to an ordered phase as the temperature is increased. We will now determine the
critical temperatures at which this phase transition takes place in these systems.

3.3 Estimates of the critical temperatures

To determine the critical temperatures, we will consider the thermal effective potential of
the scalar fields. At leading order in perturbation theory, this potential has both quadratic
and quartic terms. The quartic terms are as follows:

Vquartic = 16π2
[ 2∑
i=1

hi
Nci

Tr[(ΦT
i Φi)2] +

2∑
i=1

fi
N2
ci

(
Tr[ΦT

i Φi]
)2

+ 2ζ
Nc1Nc2

Tr[ΦT
1 Φ1]Tr[ΦT

2 Φ2]
]
.

(3.11)
In appendix A we have shown that these quartic terms are positive-definite throughout the
RG flows that we have discussed in the previous subsection.

The quadratic terms in the thermal effective potential are generated due to integration
over the nonzero Matsubara modes of the different fields in the theory. These terms have
the following structure

Vquadratic = 1
2

2∑
i=1

m2
th,iTr[ΦT

i Φi] (3.12)

where m2
th,1 and m2

th,2 are the thermal masses (squared) of the scalar fields Φ1 and Φ2
respectively. The contributions of 1-loop diagrams to such thermal masses (squared) were
computed for a general 4-dimensional gauge theory in [3]. Using these general results, the
1-loop expressions of m2

th,1 and m2
th,2 were derived in [1]. These expressions reduce to the
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following forms at the planar limit:

m2
th,1 = 16π2T 2

3

[
2h1 + f1 + rζ + 3

8λ1

]
,

m2
th,2 = 16π2T 2

3

[
2h2 + f2 + ζ

r
+ 3

8λ2

]
,

(3.13)

where T is the temperature. These thermal masses (squared) quantify the behavior of the
effective potential of the scalar fields in the neighborhood of the point Φ1 = Φ2 = 0, viz.,
the origin of the field space. Their signs determine the fates of the baryon symmetries
at any given temperature. If either m2

th,1 or m2
th,2 is negative then the minimum of the

effective potential cannot be at the origin of the field space. In fact, the positivity of the
tree-level quartic terms in the potential ensures the existence of a minimum of the potential
away from the origin. This would imply the spontaneous breaking of at least one of the
baryon symmetries. In particular, when m2

th,i < 0, the baryon symmetry in the ith sector
would be spontaneously broken [1].

To track the effective potential at different temperatures we will set the renormalization
scale µ = T . Let us explain this choice of the renormalization scale. Our aim is to check
perturbatively whether the thermal effective potential of the scalar fields has a minimum
away from the origin. When both the thermal masses (squared) are positive, the minimum
of the potential is at the origin. In this case, as long as we are sufficiently away from
the critical temperature, we will have m2

th,1,m
2
th,2 ∼ 16π2

3 λT 2.14 At higher orders in the
perturbative expansion of the potential near the origin, there are terms which contain
the logarithm of the ratio of m2

th,i and µ2. The lowest order term of this kind is the
Coleman-Weinberg term [49–51]. By setting µ = T we ensure that such logarithmic terms
are suppressed by at least a factor of λ ln λ � 1 compared to the leading order terms
that we are retaining.15 A similar argument can be given when either of the thermal
masses (squared) is negative and the minimum of the potential is away from the origin.
In this case, again as long as we are sufficiently away from the critical point, we will
have |m2

th,i| ∼ 16π2

3 λT 2 irrespective of the sign of m2
th,i.16 Comparing this behavior of the

thermal masses (squared) with the quartic terms given in (3.11), one can check that if there
is symmetry-breaking in the ith sector, then the value of Φi (appropriately normalized by
Nci) at the minimum would be of the same order as the temperature scale T . To be more
precise, if (Φi)0 is the value of Φi at the minimum, then

√
Tr[(Φi)T0 (Φi)0]

Nci
∼ T .17 We want the

perturbative expansion of the potential to be valid at this scale. At higher orders in this
expansion, there are terms which contain the logarithm of the ratio of λ times the square
of this scale and µ2. By taking µ = T , we again ensure that such logarithmic corrections

14This is due to the fact that the different couplings are at most O(λ) throughout the RG flows discussed
in the previous subsection. From the expressions given in (3.13), one can see that if r is too small or too
large then the magnitude of one of the thermal masses (squared) can become much larger than 16π2

3 λT 2.
In this paper, we will work in a regime where this is not the case.

15This suppression persists even when T is very small.
16In fact, this behavior of the thermal masses (squared) would persist in the high temperature limit.
17See [1] for the explicit forms of such thermal expectation values of the scalar fields in the UV CFTs.

Similar expressions would hold in the models that we are studying presently.
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are small. So we can rely on the perturbative analysis sufficiently away from the critical
temperature on both sides of this temperature. To come up with an estimate of the critical
temperature, we will interpolate the thermal masses (squared) in the intermediate interval
with the expressions given in (3.13) and search for the point at which one of the thermal
masses (squared) vanishes.

One may be able to improve the above-mentioned perturbative analysis by choosing µ
to be some O(1) numerical coefficient times T . Such a numerical factor can be absorbed in
the reference energy scale Λ by rescaling it appropriately while doing thermal perturbation
theory. Due to the ambiguity in the value of this numerical factor, there would be theoret-
ical uncertainties in the critical temperatures of the phase transitions that we will study.18
Henceforth, we will ignore this subtlety as our aim is to find the qualitative nature of the
phases in different temperature regimes and to determine the critical temperatures for the
phase transitions in terms of the unspecified reference energy scale Λ.

Having provided the rationale for choosing µ = T in the effective potential, let us now
look at the behavior of the thermal masses at different temperature scales. For this it is
convenient to define the dimensionless quantity

m̃2
th,i ≡

3
16π2T 2m

2
th,i. (3.14)

Substituting the values of the different couplings along the RG flow triggered by the
marginally relevant deformation, we get

m̃2
th,1 =R0

2 (1 + k)
(
r cos θ + sin θ − 1

)
C(t) +

(3
4λ+R0

)
,

m̃2
th,2 =R0

2 (1 + k)
(cos θ

r
− sin θ − 1

)
C(t) +

(3
4λ+R0

)
,

(3.15)

where θ is the angular location of the UV fixed point on the conformal manifold and C(t)
is the following function of t ≡ ln(TΛ ):

C(t) ≡ 1 + tanh(8R0t)
1 + k tanh(8R0t)

. (3.16)

Note that the parameter k = 1− ε̃ controls the behavior of the thermal masses at different
temperatures. As ε̃ → 0, C(t) → 1 and the rescaled thermal masses (squared), m̃2

th,1
and m̃2

th,2, stop changing with the temperature. In this limit, they just reduce to the
rescaled thermal masses (squared) of the points on the conformal manifold which were
analyzed in [1].

To study the variations of the thermal masses (squared) with the temperature con-
cretely, we choose the UV fixed point to be the point where θ = π, or equivalently,
fm = 0, ζ = −R0. As can be verified from (2.11), this fixed point has thermal order in
the second sector only when r < r0 ≈ 0.188. So to stay in this regime, we choose r = 0.1.
To keep the values of the couplings and the deformations small we choose λ = 0.001 and
ε̃ = 0.1 as before. For this set of parameters, the plots of the rescaled thermal masses
(squared) at different temperature scales are given in figure 4. As one can see form these

18Such theoretical uncertainties were discussed in [52] for first order phase transitions in some models.
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Figure 4. Plots of the rescaled thermal masses (squared) against t = ln(T/Λ) for r = 0.1, θ = π,
λ = 0.001, ε̃ = 0.1: in the low temperature regime, both m̃2

th,1 and m̃2
th,2 saturate at positive values.

This indicates that the baryon symmetries in both the sectors are unbroken in this regime. In the
high temperature limit, m̃2

th,1 saturates at a positive value, while m̃2
th,2 saturates at a negative value.

This means that the baryon symmetry in the second sector remains persistently broken above a
critical temperature. This critical temperature (Tc) is given by tc ≡ ln(Tc/Λ) ≈ −1172.1.

plots, both m̃2
th,1 and m̃2

th,2 decrease monotonically with increase in the temperature. How-
ever, m̃2

th,1 remains positive at all temperatures indicating the absence of thermal order
in the first sector. On the other hand, m̃2

th,2 starts off from a positive value at low tem-
peratures, but eventually becomes negative at high temperatures indicating a transition
to an ordered phase. The critical temperature at which this transition happens is where
m̃2

th,2 = 0. This behavior is similar for all the systems where the UV fixed point exhibits
thermal order in the second sector. One can obtain a general expression of the critical
temperature (Tc ≡ Λetc) for all these systems by solving the equation m̃2

th,2 = 0. We
provide this expression below:

tc = 1
8R0

tanh−1(ρ), (3.17)

where
ρ ≡
−(1 + k)R0

2r
(
− cos θ + r(1 + sin θ)

)
+ (3λ

4 +R0)
(1 + k)R0

2r
(
− cos θ + r(1 + sin θ)

)
− k(3λ

4 +R0)
. (3.18)

From the above expression, we can see that tc has a real value only when ρ ∈ (−1, 1). This
puts a restriction on the UV fixed points for which there can be a phase transition. The
allowed fixed points are precisely the ones where θ ∈ (θ1, θ2) with θ1 and θ2 being the values
given in (2.11). To study the variation of tc in this domain, we choose r = 0.1, λ = 0.001,
ε̃ = 0.1 and plot the values of tc for different values of θ in figure 5. As one can see, tc
increases rapidly as one approaches the edges of the interval (θ1, θ2). As θ → θ1 or θ → θ2,
tc →∞ thereby indicating the absence of the phase transition at the end points. For each
point in the interval θ ∈ (θ1, θ2), there is a finite temperature at which the system goes
to an ordered phase characterized by the spontaneous breaking of the baryon symmetry
and Higgsing of half of the gauge bosons in the second sector. In the Veneziano limit, the
system remains in this phase at all higher temperatures.

The line of critical points shown in figure 5 separates the following two phases:

• Phase 1: the high temperature phase where the baryon symmetry in the first sec-
tor remains unbroken while the baryon symmetry in the second sector is sponta-
neously broken.
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Figure 5. Plot of tc against θ for r = 0.1, λ = 0.001, ε̃ = 0.1: the critical temperature increases
sharply near the edges of the interval (θ1, θ2), i.e., tc →∞ as θ → θ1 or θ → θ2.
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t=ln(T/Λ)

Phase 1
Phase 2

Figure 6. Phase diagram of the systems with r = 0.1, λ = 0.001, ε̃ = 0.1: in Phase 1, the
baryon symmetry in the first sector is unbroken while the baryon symmetry in the second sector is
spontaneously broken. In Phase 2, the baryon symmetries in both the sectors are unbroken. The
red line in this diagram is the line of critical points separating the two phases. It is the same as the
curve given in figure 5.

• Phase 2: the low temperature phase where the baryon symmetries in both the sectors
are unbroken.

In figure 6, we show the phase diagram of the systems with r = 0.1, λ = 0.001, ε̃ = 0.1.
The phase diagrams for other values of r in the domain r < rmax would be similar to that
shown in this figure.

Let us end this section with a remark on the zero temperature phase of the systems that
we have been considering. At T = 0, the thermal masses (squared) vanish and it is no longer
possible to set the renormalization scale µ to T . In this case, one may wonder whether the
Coleman-Weinberg terms can lead to a symmetry-broken phase. Such a symmetry-broken
phase was indeed found in [49] for massless scalar QED at zero temperature. As shown
in [49], the quartic coupling in that model is of the same order as the fourth power of
the gauge coupling at certain renormalization scales. This leads to the Coleman-Weinberg
term becoming comparable to the quartic term slightly away from the origin which, in
turn, allows for a perturbatively reliable minimum in this domain. In our case, however,
the quartic couplings remain O(λ) throughout the RG flow with λ being related to the gauge
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couplings gi by λ = Ncig
2
i

16π2 . The suppression of the Coleman-Weinberg terms compared to
the quartic terms in this case is analogous to the same in massless φ4 theory where one does
not get a perturbatively reliable minimum away from the origin at zero temperature [49].
Therefore, in the systems that we are considering, we expect the baryon symmetries in
both the sectors to remain unbroken at zero temperature. We would like to establish this
more rigorously in the future.

4 Adding masses to the scalar fields

In the previous section we studied marginally relevant deformations of the points on the
fixed circle in the RDB model obtained by varying the double trace quartic couplings
between the scalar fields. In this section we will consider relevant deformations of the same
fixed points obtained by adding masses to the scalar fields.19 For such deformations, the
Lagrangian has the following terms in addition to those given in (2.2):

Lmass = −1
2

2∑
i=1

m2
iTr[ΦT

i Φi], (4.1)

where m2
1 and m2

2 are the renormalized masses (squared) of the scalar fields in the two
sectors. The 1-loop planar contributions to their RG flows (in the MS scheme) are derived
in appendix B. These contributions are as follows:

µ
dm2

1
dµ

=
(
16h1 + 8f1 − 3λ1

)
m2

1 + 8rζm2
2,

µ
dm2

2
dµ

=
(
16h2 + 8f2 − 3λ2

)
m2

2 + 8ζ
r
m2

1.

(4.2)

Since we are working in a mass-independent renormalization scheme for the RG flows of the
quartic couplings, we can freeze these couplings at their fixed point values and study the
flows of the masses. Substituting the couplings by their leading order values on the fixed
circle as given in (2.7) and switching to the polar coordinates in the fm-ζ plane (see (2.10)),
we get

µ
dm2

1
dµ

= 8R0
(

sin θ m2
1 + r cos θ m2

2

)
,

µ
dm2

2
dµ

= 8R0

(cos θ
r

m2
1 − sin θ m2

2

)
,

(4.3)

where R0 is the radius of the fixed circle whose value at leading order in λ is given by20

R0 =
(√

18
√

6− 39
16

)
λ. (4.4)

19The planar equivalence between the RDB model and the CDB model can be extended to the case where
the scalar fields are massive. These masses in the two dual theories are equal to each other.

20We remind the reader that λ1 = λ2 ≡ λ = 21−4xf

13xf−27 on the fixed circle.
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Solving the above equations, we get

m2
1 = 1

2(1− sin θ)M2
1 e−8R0t + 1

2(1 + sin θ)M2
2 e8R0t,

m2
2 = 1

2r
(
−M2

1 e−8R0t +M2
2 e8R0t

)
cos θ,

(4.5)

where t ≡ ln(µ/Λ) with Λ being a reference energy scale. M2
1 and M2

2 are integration
constants having the dimension of mass2. When both of them are nonzero, they determine
the asymptotic behavior of the renormalized masses (squared) in the IR and UV regimes
respectively.

At any nonzero temperature T there are additional contributions to the effective masses
(squared) of the scalar fields from the thermal masses (squared) which were discussed
in the previous section. For the massive theories that we are considering presently, the
expressions of the 1-loop thermal masses (squared) given in (3.13) are approximately valid
when T 2 � |m2

i |. These expressions are given below:

m2
th,1 = 16π2T 2

3

[
2h1 + f1 + rζ + 3

8λ1

]
,

m2
th,2 = 16π2T 2

3

[
2h2 + f2 + ζ

r
+ 3

8λ2

]
.

(4.6)

For the points on the fixed circle, these expressions reduce to

m2
th,1 =16π2T 2

3

[
R0
(
r cos θ + sin θ

)
+ 3

4λ
]
,

m2
th,2 =16π2T 2

3

[
R0

(cos θ
r
− sin θ

)
+ 3

4λ
]
.

(4.7)

The overall effective masses (squared) of the scalar fields at the temperature T are

m2
eff,1 = (m2

1 +m2
th,1)|µ=T , m

2
eff,2 = (m2

2 +m2
th,2)|µ=T . (4.8)

These effective masses (squared) determine the behavior of the effective potential of the
scalar fields in the neighborhood of the point Φ1 = Φ2 = 0. A negative value of m2

eff,i
indicates that the baryon symmetry in the ith sector is spontaneously broken.

Here, as in the previous section, we have set µ = T to avoid large logarithms from ap-
pearing in the thermal perturbative expansion of the effective potential of the scalar fields.
However, now one must be careful as the validity of this choice of the renormalization scale
rests on the magnitudes of effective masses (squared) being O(16π2

3 λT 2).21 At sufficiently
21The validity of the perturbation theory also requires |m2

i |µ=T | � T 2. However, note that this is auto-
matically ensured when |m2

eff,i| ∼ 16π2

3 λT 2 because

|m2
i |µ=T | = |m2

eff,i −m2
th,i| < |m2

eff,i|+ |m2
th,i| ∼

32π2

3 λT 2 � T 2.

Conversely, when the magnitudes of the effective masses (squared) become much larger than O( 16π2

3 λT 2),
the renormalized masses (squared) can become comparable to T 2. In that case, the expressions of the
thermal masses (squared) given in (4.7) are no longer reliable.
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low temperatures, the contributions of the renormalized masses (squared) will drive the ef-
fective masses (squared) out of this regime. So, unlike the previous section, here we cannot
study the phase of the system down to arbitrarily low temperatures. However, we will show
that in some cases, the renormalized masses can induce a phase transition at scales where
the perturbative analysis is reliable, i.e., near the critical temperatures corresponding to
these phase transitions, the effective masses (squared) remain O(16π2

3 λT 2). In the rest of
this section, we will use the term ‘low temperatures’ to mean temperatures slightly below
such critical temperatures where the perturbative analysis is valid. We hope the reader
will not be misled by this laxity.

The above-mentioned phase transitions and the corresponding critical temperatures
depend on the magnitudes and the signs of two mass2 scales M2

1 and M2
2 which were

introduced in (4.5). To study these phase transitions let us define the following two dimen-
sionless quantities which are obtained via dividing M2

1 and M2
2 by 32π2

3 Λ2:

c1 ≡
3

32π2
M2

1
Λ2 , c2 ≡

3
32π2

M2
2

Λ2 .
(4.9)

It is also convenient to switch to the following dimensionless quantities obtained via dividing
the effective masses (squared) by 16π2

3 T 2:

m̃2
eff,1 ≡

3
16π2

m2
eff,1
T 2 , m̃2

eff,2 ≡
3

16π2
m2

eff,2
T 2 . (4.10)

In the regime where m2
i |µ=T � T 2 and the expressions of the thermal masses (squared)

given in (4.7) are reliable, the rescaled effective masses (squared) defined above have the
following values:

m̃2
eff,1 = (1− sin θ)c1 e

−(2+8R0)t + (1 + sin θ)c2 e
−(2−8R0)t +R0

(
r cos θ + sin θ

)
+ 3

4λ,

m̃2
eff,2 = 1

r

(
− c1 e

−(2+8R0)t + c2 e
−(2−8R0)t

)
cos θ +R0

(cos θ
r
− sin θ

)
+ 3

4λ. (4.11)

In the high temperature limit (i.e., large t), the rescaled effective masses (squared) are
dominated by the contributions of the thermal masses (squared) and we have

m̃2
eff,1

t→∞−−−→ R0
(
r cos θ + sin θ

)
+ 3

4λ,

m̃2
eff,2

t→∞−−−→ R0

(cos θ
r
− sin θ

)
+ 3

4λ. (4.12)

These high temperature behaviors of the effective masses (squared) are exactly as they
would be for the UV CFTs. Therefore, for the systems where r < rmax =

√
6
√

6−13
61−6

√
6 and

θ ∈ (θ1, θ2) with θ1 and θ2 being the values given in (2.11), the baryon symmetry in the first
sector remains unbroken in the high temperature regime, whereas the baryon symmetry
in the second sector is persistently broken in the same regime. In the rest of this section
we will restrict our attention to these systems which exhibit thermal order in the second
sector at the high temperature limit. As the temperature is lowered in these systems,
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i.e., as t decreases, the contributions of the renormalized masses (squared) start becoming
comparable to the thermal masses (squared). This is what allows for phase transitions in
the system. From the expressions given in (4.11) one can see that the signs of c1 and c2 (or
equivalently, the signs of the mass2 scales M2

1 and M2
2 ) play the key role in determining

these phase transitions. We will study these phase transitions in the following 2 cases:

• Case 1: M2
1 6= 0,M2

2 = 0,

• Case 2: M2
1 = 0,M2

2 6= 0.

We will see that for each of these cases, there are distinct patterns of phase transitions
depending on the signs of the nonzero M2

i . We will discuss the low temperature phases
for the different signs of the nonzero M2

i in each case as separate subcases. Later, in sub-
section 4.3 we will summarize these results and comment on the possible phase transitions
when both M2

1 and M2
2 are nonzero.

4.1 Case 1: M2
1 6= 0, M2

2 = 0

In this case the expressions of the rescaled effective masses (squared) reduce to the follow-
ing forms:

m̃2
eff,1 = (1− sin θ)c1 e

−(2+8R0)t +R0
(
r cos θ + sin θ

)
+ 3

4λ,

m̃2
eff,2 = −1

r
cos θ c1 e

−(2+8R0)t +R0

(cos θ
r
− sin θ

)
+ 3

4λ.
(4.13)

We remind the reader that we are restricting our attention to the systems which exhibit
thermal order in the second sector at high temperatures, i.e., the systems where r < rmax
and θ ∈ (θ1, θ2). As we have already mentioned in section 2, cos θ is always negative
for such systems. Moreover, the quantity (1 − sin θ) is positive for all values of θ in
this domain. Therefore, from the expressions given in (4.13) we can see that in the low
temperature regime where the renormalized masses (squared) dominate over the thermal
masses (squared), both the effective masses (squared) have the same sign. This sign depends
on whether c1 (or equivalently, M2

1 ) is positive or negative.

4.1.1 Subcase 1: M2
1 > 0

When M2
1 > 0, both the effective masses (squared) are positive in the low temperature

regime. This indicates that the baryon symmetries in both the sectors are unbroken in this
regime. Therefore, there should be a phase transition at some critical temperature where
the baryon symmetry in the second sector is spontaneously broken.

At the critical temperature (Tc) corresponding to this phase transition m2
eff,2 vanishes,

i.e., the renormalized mass (squared) m2
2|µ=Tc exactly cancels the thermal mass (squared)

m2
th,2 . Therefore, we have

|m2
2|µ=Tc | ∼

16π2

3 λT 2
c � T 2

c . (4.14)
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Figure 7. Plot of α = − r(1−sin θ)
cos θ against r and θ in the domain r < rmax and θ ∈ (θ1, θ2).

Moreover, note that the two renormalized masses (squared) are related as follows

m2
1|µ=Tc = αm2

2|µ=Tc (4.15)

where α ≡ − r(1−sin θ)
cos θ . Since we are considering systems where r ∈ (0, rmax) and θ ∈ (θ1, θ2)

with θ1 and θ2 satisfying π
2 < θ1 < θ2 <

3π
2 , both the numerator and denominator in α are

nonzero. In fact, the denominator can become small only when θ is close to π/2 or 3π/2.
Such values of θ can lie in the range (θ1, θ2) only when r is close to zero. Therefore, in this
case the factor of r in the numerator of the expression of α ensures that α remains small
despite the denominator having a small value. In figure 7 we show the values of α for all
values (r, θ) satisfying r < rmax and θ1 < θ < θ2. We can see that α < 1 at all points in
this domain. Thus, from (4.14) and (4.15) we can conclude that

|m2
1|µ=Tc | .

16π2

3 λT 2
c � T 2

c
(4.16)

for all these systems. Note that |m2
1,2|µ=Tc | � T 2

c means that the expressions of the thermal
masses (squared) given in (4.7) are reliable at the critical temperature. Moreover, the fact
that |m2

1|µ=Tc | . 16π2

3 λT 2
c ensures that at the critical temperature |m2

eff,1| ∼ 16π2

3 λT 2
c . This

means that the perturbation theory with µ = T can be trusted at temperatures near Tc.
Hence, one can study the phase transition using this renormalization scale.

To study this phase transition with a concrete example, we plot the rescaled effective
masses (squared) against t ≡ ln(T/Λ) for the case where r = 0.1, θ = π, λ = 0.001, c1 = 0.1
and c2 = 0 in figure 8. One can check that the choice of r and θ is such that the UV fixed
point exhibits thermal order in the second sector. Note that m̃2

eff,1 remains positive for
all values of t. It grows as one goes to lower temperatures. At high temperatures, it
saturates at a positive value. This means that the baryon symmetry in the first sector
remains unbroken at all temperatures where the perturbative analysis is reliable. On the
other hand, m̃2

eff,2 also grows as the temperature is lowered, but at high temperatures it
saturates at a negative value. This means that the baryon symmetry in the second sector
is spontaneously broken at a critical temperature and then it remains broken at all higher
temperatures.

In order to determine this critical temperature, we can solve for the value of t at which
m̃2

eff,2 vanishes. Setting m̃2
eff,2 = 0 at t = tc = ln(Tc/Λ), we get

tc = − 1
2 + 8R0

ln
[

r

c1 cos θ

{
R0
(cos θ

r
− sin θ

)
+ 3

4λ
}]
. (4.17)
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Figure 8. Plots of the rescaled effective masses (squared) against t = ln(T/Λ) for r = 0.1, θ = π,
λ = 0.001, c1 = 0.1, c2 = 0: both m̃2

eff,1 and m̃2
eff,2 grow as the temperature decreases. In the high

temperature limit, m̃2
eff,1 saturates at a positive value while m̃2

eff,2 saturates at a negative value.
This indicates a phase transition at an intermediate temperature where the baryon symmetry in
the second sector is broken. The critical temperature (Tc) corresponding to this phase transition is
given by tc ≡ ln(Tc/Λ) ≈ 3.659.

2.0 2.5 3.0 3.5 4.0
θ

3.8

4.0

4.2

4.4

4.6

tc

Figure 9. Plot of tc against θ for r = 0.1, λ = 0.001, c1 = 0.1, c2 = 0: the critical temperature
increases sharply near the edges of the interval (θ1, θ2),i.e., tc →∞ as θ → θ1,2.

In figure 9, we provide the plot of tc corresponding to different values of θ ∈ (θ1, θ2) for
r = 0.1, λ = 0.001, c1 = 0.1, c2 = 0. Just like what we saw for the critical temperatures
corresponding to the phase transitions discussed in section 3, the critical temperature in
this case increases sharply as one approaches the edges of the domain (θ1, θ2), and tc →∞
as θ → θ1 or θ → θ2. This means that at these edges, the system no longer undergoes
the aforementioned phase transition and the baryon symmetries in both the sectors remain
unbroken at all temperatures where the perturbative analysis can be trusted.

4.1.2 Subcase 2: M2
1 < 0

When M2
1 < 0, both the effective masses (squared) are negative in the low temperature

regime. This means that the baryon symmetries in both the sectors are spontaneously
broken in this regime. On the other hand, in the high temperature regime, the baryon
symmetry in the first sector is unbroken while the baryon symmetry in the second sector is
spontaneously broken. Therefore, we expect a phase transition at some critical temperature
where the baryon symmetry in the first sector is restored.
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Figure 10. Plots of the rescaled effective masses (squared) against t = ln(T/Λ) for r = 0.03,
θ = 4.52, λ = 0.001, c1 = −0.1, c2 = 0: both m̃2

eff,1 and m̃2
eff,2 are negative in the low temperature

regime, and their magnitudes grow as the temperature is decreased. In the high temperature limit,
m̃2

eff,1 saturates at a positive value while m̃2
eff,2 saturates at a negative value. This indicates that the

baryon symmetry in the second sector remains broken at all temperatures where the perturbative
analysis can be trusted, while the baryon symmetry in the first sector is restored at a critical
temperature. This critical temperature (Tc) is given by tc = ln(Tc/Λ) ≈ 2.889.

At this critical temperature, the effective mass (squared) m2
eff,1 should vanish, i.e.,

m2
1|µ=Tc should cancel the contribution of the m2

th,1, and consequently

|m2
1|µ=Tc | ∼

16π2

3 λT 2
c � T 2

c . (4.18)

Now, we can again use the relation (4.15) between m2
1 and m2

2 to get

m2
2|µ=Tc = m2

1|µ=Tc
α

(4.19)

where α ≡ − r(1−sin θ)
cos θ . As we had noted earlier, α < 1 for all the UV fixed points which we

are considering, i.e., the fixed points where r < rmax and θ ∈ (θ1, θ2). From the plot given
in figure 7 we can see that in certain regimes of r and θ, α can be much smaller than 1.
In such regimes, the magnitude of m2

2|µ=Tc will be much larger than 16π2

3 λT 2
c making the

perturbative analysis with µ = T unreliable near the critical temperature.
In order to reliably employ the perturbative analysis to study the phase transition, we

choose a system where r = 0.03 and θ = 4.52. One can check that the fixed point to which
this system flows in the UV lies in the domain given in (2.11), i.e., it exhibits thermal order
in the second sector. For this point, we have α ≈ 0.311, and hence

m2
2|µ=Tc ≈ 3.216 m2

1|µ=Tc . (4.20)

Therefore, near the critical temperature, we remain in a regime where |m2
eff,2| ∼ 16π2

3 λT 2,
and the perturbative analysis is reliable.

In figure 10, we plot m̃2
eff,1 and m̃2

eff,2 against t ≡ ln(T/Λ) for the case where r = 0.03,
θ = 4.52, λ = 0.001 c1 = −0.1 and c2 = 0. Here m̃2

eff,2 remains negative for all values
of t. Its magnitude grows as one goes to lower temperatures. At high temperatures, it
saturates at a negative value. This means that the baryon symmetry in the second sector
remains broken at all temperatures where the perturbative analysis is valid. The behavior
of m̃2

eff,1 is quite similar to that of m̃2
eff,2 in the low temperature regime, i.e., in this regime
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Figure 11. Plots of the rescaled effective masses (squared) against t = ln(T/Λ) for r = 0.1, θ = π,
λ = 0.001, c1 = 0, c2 = 0.1: m̃2

eff,1 > 0 and m̃2
eff,2 < 0 at all temperatures indicating the absence of

any phase transition in the domain of validity of the perturbative analysis.

m̃2
eff,1 < 0 and |m̃2

eff,1| grows as the temperature is lowered. However, at high temperatures
m̃2

eff,1 saturates at a positive value. This means that the baryon symmetry in the first
sector is restored at a critical temperature. The value of this critical temperature (Tc) is
given by tc = ln(Tc/Λ) ≈ 2.889.

4.2 Case 2: M2
1 = 0, M2

2 6= 0

In this case the expressions of the rescaled effective masses (squared) are

m̃2
eff,1 = (1 + sin θ)c2 e

−(2−8R0)t +R0
(
r cos θ + sin θ

)
+ 3

4λ,

m̃2
eff,2 = 1

r
cos θ c2 e

−(2−8R0)t +R0

(cos θ
r
− sin θ

)
+ 3

4λ.
(4.21)

As we have noted earlier, cos θ < 0 for the systems that we are considering, and (1+sin θ) >
0 for all values of θ in this domain. Therefore, at sufficiently low temperatures, when the
renormalized masses (squared) dominate over the thermal masses (squared), m̃2

eff,1 and
m̃2

eff,2 have opposite signs. These signs depends on whether c2 (or equivalently, M2
2 ) is

positive or negative.

4.2.1 Subcase 1: M2
2 > 0

When M2
2 > 0, i.e., c2 > 0, then m̃2

eff,1 > 0 and m̃2
eff,2 < 0 in the low temperature regime.

This means that in this regime the baryon symmetry in the first sector remains unbroken
and the baryon symmetry in the second sector is spontaneously broken. This is identical to
the phase in the high temperature limit. Therefore, we expect the system to remain in the
same phase at all temperatures in the domain of validity of the perturbative analysis. To
verify this we plot m̃2

eff,1 and m̃2
eff,2 at different temperatures for r = 0.1, θ = π, λ = 0.001,

c1 = 0 and c2 = 0.1 in figure 11. We can see that m̃2
eff,1 > 0 and m̃2

eff,2 < 0 for all values
of t. This indicates that the system remains in the same phase at all temperatures where
perturbation theory can be trusted.

4.2.2 Subcase 2: M2
2 < 0

When M2
2 < 0, i.e., c2 < 0, then m̃2

eff,1 < 0 and m̃2
eff,2 > 0 in the low temperature regime.

This means that in this regime the baryon symmetry in the first sector is spontaneously
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Figure 12. Plot of α̃ = − r(1+sin θ)
cos θ against r and θ in the domain r < rmax and θ ∈ (θ1, θ2).

broken and the baryon symmetry in the second sector is unbroken. On the other hand,
in the high temperature limit, as we have already seen, the baryon symmetry in the first
sector is unbroken and the baryon symmetry in the second sector is spontaneously broken.
Therefore, as one goes from the low temperature regime to the high temperature regime,
the baryon symmetry in the first sector would be restored at some critical temperature
Tc1 and the baryon symmetry in the second sector would be broken at a possibly different
critical temperature Tc2. At these two critical temperatures,

|m2
1|µ=Tc1 | ∼

16π2

3 λT 2
c1 � T 2

c1, |m2
2|µ=Tc2 | ∼

16π2

3 λT 2
c2 � T 2

c2. (4.22)

From the relation between the two renormalized masses (squared), we get

|m2
2|µ=Tc1 | =

|m2
1|µ=Tc1 |
α̃

, |m2
1|µ=Tc2 | = α̃|m2

2|µ=Tc2 | (4.23)

where α̃ ≡ − r(1+sin θ)
cos θ . Just like α in the previous case, α̃ < 1 in the domain r < rmax and

θ ∈ (θ1, θ2) as can be seen from the plot given in figure 12. Therefore,

|m2
1|µ=Tc2 | .

16π2

3 λT 2
c2 � T 2

c2. (4.24)

Note that |m2
i |µ=Tc2 | � T 2

c2 means that the expressions of the thermal masses (squared)
given in (4.7) are reliable near the critical temperature Tc2. |m2

1|µ=Tc2 | . 16π2

3 λT 2
c2 further

implies that near the critical temperature Tc2, m2
eff,1 satisfies the condition

|m2
eff,1| ∼

16π2

3 λT 2. (4.25)

This means that we can rely on the perturbative analysis with µ = T in this regime.
Near the other critical temperature (Tc1) the perturbative analysis can break down if

α̃ is very small. To avoid this, we choose a system where r = 0.1 and θ = 2.1 for which
α̃ ≈ 0.369. In this system, we have

|m2
2|µ=Tc1 | ≈ 2.71|m2

1|µ=Tc1 | ∼
16π2

3 λT 2
c1. (4.26)

Therefore, in this case we can rely on the perturbative analysis even near the critical
temperature Tc1. In figure 13 we provide the plots of the rescaled effective masses (squared)
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Figure 13. Plots of the rescaled effective masses (squared) against t = ln(T/Λ) for r = 0.1,
θ = 2.1, λ = 0.001, c1 = 0, c2 = −0.1: m̃2

eff,1 < 0 and m̃2
eff,2 > 0 in the low temperature regime. In

the high temperature limit, m̃2
eff,1 saturates at a positive value while m̃2

eff,2 saturates at a negative
value. This indicates that as the temperature is increased, there are two phase transitions. The first
phase transition corresponds to the restoration of the baryon symmetry in the first sector. At the
second phase transition, the baryon symmetry in the second sector is spontaneously broken. The two
critical temperatures Tc1 and Tc2 are given by tc1 = ln(Tc1/Λ) ≈ 2.688 and tc2 = ln(Tc2/Λ) ≈ 4.355.
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tc2

Figure 14. Plot of tc2 against θ for r = 0.1, λ = 0.001, c1 = 0, c2 = −0.1: tc2 →∞ as θ → θ1 or
θ → θ2.

against t = ln(T/Λ) for r = 0.1, θ = 2.1, λ = 0.001, c1 = 0 and c2 = −0.1. As we can
see from these plots, m̃2

eff,1 and m̃2
eff,2 both flip their signs as the temperature is increased.

The critical temperatures (Tc1 and Tc2) corresponding to these phase transitions are given
by tc1 = ln(Tc1/Λ) ≈ 2.688 and tc2 = ln(Tc2/Λ) ≈ 4.355.

Since the perturbative analysis with µ = T is valid near the critical temperature Tc2
for different values of (r, θ) in the domain r < rmax, θ ∈ (θ1, θ2), we can provide a general
expression for Tc2. This critical temperature can be evaluated by demanding that m̃2

eff,2 = 0
at T = Tc2. This gives us the following expression for tc2 ≡ ln(Tc2/Λ):

tc2 = − 1
2− 8R0

ln
[
− r

c2 cos θ

{
R0

(cos θ
r
− sin θ

)
+ 3

4λ
}]
. (4.27)

In figure 14, we plot tc2 against θ in the domain θ ∈ (θ1, θ2) for r = 0.1, λ = 0.001, c1 = 0
and c2 = −0.1. From this plot, we can see that tc2 increases sharply as one approaches the
edges of the domain (θ1, θ2), and tc2 →∞ as θ → θ1 or θ → θ2. This means that at these
edges, the baryon symmetries in the second sector remains unbroken at all temperatures
where the perturbative analysis is valid.
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4.3 Summary of the results and comments on the case M2
1 6= 0, M2

2 6= 0

In this section we studied the systems that are obtained by introducing masses to the scalar
fields in the RDB model. We restricted our attention to the systems that flow to the UV
fixed points exhibiting thermal order in the second sector. Due to this behavior of the
systems in the UV regime, these systems remain in a persistently symmetry-broken phase
in the high temperature limit. We found that as the temperature is lowered, the effects
of the renormalized masses of the scalar fields start becoming significant. At sufficiently
low temperatures, these renormalized masses can lead to phase transitions in the system.
We studied such phase transitions for different values of two mass2 scales M2

1 and M2
2 that

appear in the renormalized masses (squared). When both these scales are nonzero, they
determine the asymptotic behavior of the renormalized masses (squared) in the IR and UV
regimes respectively. However, to simplify the analysis, we considered the following two
cases where only one of these scales is nonzero:

1. M2
1 6= 0,M2

2 = 0,

2. M2
1 = 0,M2

2 6= 0.

We showed that in each of these cases, the sign of the nonzero M2
i determines the phase

transitions occurring in the system. We showed that in certain parameter regimes, one
can study these phase transitions using perturbation theory with the renormalization scale
µ = T . In these regimes, the perturbation theory remains valid slightly below the crit-
ical temperatures corresponding to the phase transitions. We called the phases at these
scales the ‘low temperature’ phases of the systems. These low temperature phases and the
associated phase transitions for the different cases are summarized in table 1. We expect
similar phase transitions even outside the aforementioned parameter regimes. However, to
be sure of this, one would need to improve the perturbative analysis which lies beyond the
scope of this paper.

Finally, let us end this section by commenting on the possible phase structures when
both M2

1 and M2
2 are nonzero. In general, it is hard to ascertain the regime of validity of

the perturbative analysis near the critical temperatures in these cases. So, the following
discussion will be mostly speculative. In the presence of both M2

1 and M2
2 , we expect the

sign of M2
1 to determine the phase in the low temperature regime. This is due to the fact

that as the temperature is lowered, the terms with the coefficient c1 ≡
3M2

1
32π2Λ2 in the rescaled

effective masses (squared) given in (4.11) grow faster than the terms with the coefficient
c2 ≡

3M2
2

32π2Λ2 . However, at intermediate temperatures the phase can depend on M2
2 as well.

The situations in which M2
2 can play an important role in determining the phase at such

intermediate temperature scales can be guessed from the low temperature phases in the
presence of a single M2

i that are given in table 1. If the signs of M2
1 and M2

2 are such that
individually both of them lead to the same phase in a sector at low temperatures, then
the phases in that sector at different temperature regimes would be identical to those in
the presence of M2

1 alone. On the other hand, if the signs of M2
1 and M2

2 are such that
individually they lead to distinct phases in a sector at low temperatures, then there are
the following two possibilities. If there is a phase transition in that sector when only M2

1 is
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Fate of the baryon symmetry Phase transitions as the
M2

1 , M
2
2 in the low temperature regime temperature is increased

First sector Second sector
Baryon symmetry in the

M2
1 > 0, M2

2 = 0 unbroken unbroken second sector is broken
at a critical temperature.
Baryon symmetry in the

M2
1 < 0, M2

2 = 0 broken broken first sector is restored
at a critical temperature.

M2
1 = 0, M2

2 > 0 unbroken broken No phase transition.
2 phase transitions:

At a critical temperature Tc1
baryon symmetry in the

M2
1 = 0, M2

2 < 0 broken unbroken first sector is restored.
At another critical temperature
Tc2, baryon symmetry in the

second sector is broken.

Table 1. Phase transitions for the systems in which the baryon symmetry in the first sector is
unbroken and the baryon symmetry in the second sector is broken at the high temperature limit.

nonzero, we do not expect anything dramatic to happen in the presence of M2
2 apart from

a modification of the critical temperature corresponding to this phase transition. However,
if there is no phase transition in that sector when only M2

1 is nonzero, then a pair of
phase transitions might be induced by the presence of M2

2 . Whether such a pair of phase
transitions occurs or not would depend on the relative magnitudes of M2

1 and M2
2 . In

case such phase transitions indeed occur in a particular sector, the phase in that sector
between the two critical temperatures would be the same as the low temperature phase
in the presence of M2

2 alone. We do not undertake a detailed study of such double phase
transitions as the perturbation theory with µ = T may not be appropriate for analyzing
the phases near the two critical temperatures.

To illustrate the possibility of such a pair of phase transitions and the associated prob-
lems with the perturbative analysis, let us consider a system where r = 0.1, θ = 2.1,
λ = 0.001 and c1 = c2 = −0.2. In figure 15 we plot the rescaled effective masses (squared)
against t = ln(T/Λ) for this system. From these plots, we can see that at sufficiently low
temperatures, both m̃2

eff,1 and m̃2
eff,2 are negative which indicates that the baryon symme-

try in both the sectors are broken in this regime. This behavior at lower temperatures is
determined by the negative sign of M2

1 (see table 1). As the temperature is increased, due
to the presence of a negative M2

2 ,22 m̃2
eff,2 becomes positive at a critical temperature indi-

cating the restoration of the baryon symmetry in the second sector. When the temperature
is increased further, m̃2

eff,2 again becomes negative at a critical temperature and remains
so at higher temperatures. This second phase transition is driven by the thermal mass

22See the low temperature phase for M2
2 < 0 in table 1.
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Figure 15. Plots of the rescaled effective masses (squared) against t = ln(T/Λ) for r = 0.1,
θ = 2.1, λ = 0.001, c1 = c2 = −0.2: a pair of phase transitions occurs in the second sector.

(squared) m2
th,2 which begins to dominate over the renormalized mass (squared) m2

2|µ=T in
this regime.23 At this second critical temperature, the system re-enters into a phase where
the baryon symmetry in the second sector is spontaneously broken. However, note that
|m̃2

eff,1| becomes much larger than λ at temperatures higher than both the critical tem-
peratures mentioned above, i.e., |m2

eff,1| no longer remains O(16π2

3 λT 2) near these critical
temperatures. This indicates that the perturbative analysis with µ = T is unreliable in
these regimes. We hope to come up with a more reliable analysis of such double phase
transitions in the future.

5 Conclusion and discussion

In this paper we considered relevant and marginally relevant deformations of the large N
CFTs introduced in [1] and showed that in the N → ∞ limit, the resulting RG flows end
at these CFTs in the UV regime. The gauge groups in these theories have the product
form given in (2.1). This structure of the gauge group implies the existence of two distinct
sectors in the models. The ranks of the gauge groups in the two sectors can be unequal.
The matter fields in each sector transform in certain representations of the gauge group in
that sector while remaining invariant under the gauge transformations in the other sector.
In each of these sectors, there is a global Z2 (or U(1)) baryon symmetry. It is the fate
of these symmetries at different temperatures that was of interest to us in this work. We
studied the RG flows of these theories to analyze whether the baryon symmetries in the two
sectors are spontaneously broken or not at different temperature scales. As we mentioned
above, the UV fixed points of these RG flows are the large N CFTs explored in [1]. These
CFTs are weakly coupled and they lie on a conformal manifold with the shape of a circle
in the space of couplings. It was shown in [1] that when the ratio of the ranks of the gauge
groups in the two sectors is sufficiently away from 1, an angular interval on this circle
of fixed points demonstrates thermal order characterized by the spontaneous breaking of
the Z2 (or U(1)) global baryon symmetry in the sector with the smaller gauge group. It
was also shown that this symmetry breaking is accompanied by the Higgsing of half of
the gauge bosons in the same sector at all nonzero temperatures. From these facts, we
concluded that the systems described by the RG flows ending at these UV fixed points

23There would be a third phase transition as well where the baryon symmetry in the first sector is restored.
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exhibit a symmetry-broken phase in the high temperature regime. We studied the IR
limits of the RG flows corresponding to the different deformations and found interesting
patterns of phase transitions. Let us summarize the features of these phase transitions for
the different deformations below.

The first class of deformations that we considered involved variations of the double
trace quartic couplings of the scalar fields from their values on the fixed circle. We showed
that for each point on the fixed circle there is a marginally relevant deformation belonging
to this class. The RG flows triggered by these marginally relevant deformations lead to
a weakly coupled fixed point in the IR where the two sectors are decoupled. In fact,
the theories remain weakly coupled throughout these RG flows. At the IR fixed point
of these flows, the baryon symmetries in both the sectors are unbroken at any nonzero
temperature. On the other hand, as mentioned earlier, the UV fixed points for some
of these flows demonstrate thermal order characterized by spontaneous breaking of the
baryon symmetry in the sector with the smaller gauge group. We showed that for each
of these flows, there is an inverse symmetry breaking at a critical temperature where the
baryon symmetry in the sector with the smaller gauge group is spontaneously broken. We
determined this critical temperature by finding the temperature scale at which the thermal
mass of the scalar fields in the respective sector goes to zero.

The second class of deformations involved adding masses to the scalar fields while
keeping all the couplings in the model frozen at a fixed point which exhibits thermal order
in the smaller sector. We studied the RG flows of these masses. This analysis showed that
there are two mass2 scales, M2

1 and M2
2 , which determine the asymptotic behavior of the

renormalized masses (squared) in the IR and the UV regimes respectively when both of
them are nonzero. We found that in the high temperature limit, the effects of both these
scales are suppressed compared to those of the thermal masses (squared) of the scalar
fields, and the system remains in the same phase as the UV fixed point. Therefore, the
baryon symmetry in the smaller sector remains persistently broken in this regime. The
baryon symmetry in the larger sector, on the other hand, is unbroken in the same regime.
As the temperature is lowered, the effects of M2

1 and M2
2 start becoming significant. At

sufficiently low temperatures, they can induce phase transitions in the system. The nature
of these phase transitions depends on the magnitudes and signs of M2

1 and M2
2 . We did

a detailed analysis of these phase transitions for the cases where only one of the M2
i ’s

is nonzero. The results of this analysis for the systems where the second sector has the
smaller gauge group are summarized in table 1. We also found that when both M2

1 and
M2

2 are nonzero, in some cases there may be a pair of phase transitions occurring in a
sector at different critical temperatures. We discussed the limitations of our perturbative
analysis in studying the detailed features of such double phase transitions and estimating
the corresponding critical temperatures.

We now comment on a few subtleties in the analysis done in this work. Firstly, note
that we relied on the 1-loop expressions of the beta functions and the thermal masses to
determine the phases at different temperatures. We expect the higher loop corrections to
refine the estimates of the critical temperatures while not changing the qualitative features
of the phases in the different regimes. In this context, it is also important to remember that
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thermal perturbation theory is riddled with infrared problems [53, 54].24 In the models that
we considered there are three mass scales at any temperature T where we could employ the
perturbative analysis. These three mass scales are associated with the following modes:

1. The “hard" nonzero Matsubara modes of the different fields; these modes have masses
of the order of πT ,

2. The “soft” zero Matsubara modes of the scalar fields and the longitudinal gauge
bosons;25 these modes have masses of the order of

√
16π2

3 λT ,

3. The “ultrasoft” zero Matsubara modes of the un-Higgsed transverse gauge bosons;
these modes have masses of the order of 16π2

3 λT .

The different phases in our models are determined by the physics at the soft scale while the
IR problems arise from the ultrasoft modes. They appear in the form of an infinite number
of diagrams at a subleading order in the effective potential. This leads to breakdown of
perturbation theory at this order. Usually this non-perturbative physics is studied by
employing the dimensionally reduced effective theory framework and the techniques of
lattice gauge theories [55–62]. Such studies on a variety of models indicate that these non-
perturbative contributions typically do not alter the qualitative features of the phases in
different regimes.26 We expect a similar thing in the models considered in this paper. It
may be useful to check this explicitly in the future.

Another point to which we would like to draw the reader’s attention is that the UV
fixed points of the RG flows studied in this paper are like the Banks-Zaks-Caswell fixed
points in more familiar QFTs. Such fixed points are typically considered to be IR fixed
points as small variations of the gauge couplings from their values at these fixed points
usually lead to asymptotic freedom. In our analysis, we avoided this by fixing the gauge
couplings (as well as the single trace quartic couplings) at their fixed point values. This
could be done in the massive theories that we considered in section 4 because the RG flows
of the masses do not backreact on the flows of the gauge couplings (as well as the quartic
couplings) in the MS scheme.27 In case of the massless theories considered in section 3,
the single trace couplings could be kept frozen at their fixed point values as their beta
functions are independent of the double trace couplings at the planar limit [1].

Finally, let us end with some comments on how finite N corrections may alter the
features that we have presented at the planar limit. Currently, it is not clear to us whether
the UV fixed points lying on the conformal manifold survive under such corrections. We
refer the reader to the analysis in appendix H of [1] for some perturbative computations of
1/N corrections which suggest that these fixed points may survive under such corrections.

24We refer the reader to [55] for detailed discussion on such IR problems.
25In a symmetry-broken phase, a subset of the transverse gauge bosons also get Higgsed. The zero

Matubara modes of these Higgsed transverse gauge bosons also belong to the class of soft modes.
26They may lead to corrections in the critical temperatures corresponding to the phase transitions.
27Freezing the gauge couplings and the quartic couplings in the MS scheme at their fixed point values

while allowing the masses to flow involves a fine-tuning which may take a different form in mass-dependent
renormalization schemes.
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Another potential problem would arise at finite N due to the fact that the double trace
couplings start affecting the RG flows of the single trace couplings. This can eventually
drive these couplings away from their planar fixed point values at sufficiently high temper-
atures where the cumulative effects of 1/N corrections become significant. Resolving both
the issues mentioned above is complicated by the fact that to take into account 1/N correc-
tions while staying in a regime where 1/N � ’t Hooft couplings, one would need to re-sum
the perturbative expansions in the ’t Hooft couplings. It would be interesting to explore
whether the thermal order persists under 1/N corrections after such re-summations. We
would like to return to these issues in the future.
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A Positivity of the quartic terms in the thermal effective potential at
leading order

In this appendix we will show that the tree-level quartic terms in the thermal effective po-
tential of the scalar fields remain positive throughout the RG flows studied in section 3.2.28
These quartic terms have the following form:

Vquartic = 16π2
[ 2∑
i=1

hi
Nci

Tr[ρ2
i ] +

2∑
i=1

fi
N2
ci

(
Tr[ρi]

)2
+ 2ζ
Nc1Nc2

Tr[ρ1]Tr[ρ2]
]
, (A.1)

where ρi ≡ ΦT
i Φi. Note that ρ1 and ρ2 are positive-definite matrices. From this one can

easily see that a sufficient condition for the positivity of Vquartic is

hi > 0, fi > 0, f1f2 − ζ2 > 0. (A.2)

Let us now check whether these inequalities are satisfied throughout the above-mentioned
RG flows. Firstly, let us note that h1 and h2 are frozen at the following common value in
these RG flows:

h1 = h2 = h =
(3−

√
6

16

)
λ. (A.3)

Since λ and the coefficient
(

3−
√

6
16

)
are both positive, we can see that h > 0. Now, let us

look at the double trace couplings f1 = fp +R sin θ and f2 = fp−R sin θ. The values of fp
and R along these RG flows are as follows.

fp = f0p + R0
2

[(1− k)
(
1− tanh(8R0t)

)
1 + k tanh(8R0t)

]
, R = R0

2

[(1 + k)
(
1 + tanh(8R0t)

)
1 + k tanh(8R0t)

]
. (A.4)

28Our analysis will closely follow the derivation of the same result for the UV CFTs in [1].
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From these values of the couplings along the RG flow, we get

f1,2 = fp ±R sin θ ≥ fp −R = f0p −R0 + (1− k)R0

[
1− tanh(8R0t)

1 + k tanh(8R0t)

]
. (A.5)

Here the quantities k and tanh(8R0t) satisfy the following inequalities:

0 < k < 1, −1 < tanh(8R0t) < 1. (A.6)

From this, we can infer that

(1− k)R0

[
1− tanh(8R0t)

1 + k tanh(8R0t)

]
> 0. (A.7)

This leads to the positivity of the couplings f1 and f2 as shown below:

f1,2 > f0p −R0 =
[√

6
8 −

√
18
√

6− 39
16

]
λ ≈ 0.165λ > 0. (A.8)

Note that for θ = π
2 the positivity of f1 and f2 implies

fp ±R > 0. (A.9)

This also leads to the positivity of the quantity (f1f2 − ζ2) as shown below:

f1f2 − ζ2 = f2
p −R2 = (fp +R)(fp −R) > 0. (A.10)

Therefore, we have shown that all the conditions given in (A.2) are satisfied by the cou-
plings throughout the RG flows discussed in section 3.2. Therefore the corresponding tree-
level quartic terms in the thermal effective potential of the scalar fields are positive-definite.

B RG flows of the masses of the scalar fields

In this appendix we will derive the RG flows of the masses of the scalar fields that were
introduced in section 4. For this we will rely on the expressions of the 1-loop beta functions
of such masses in a general gauge theory given in [63]. To be able to use these expressions,
we need to re-express the quadratic and quartic terms involving the scalar fields in the
Lagrangian of the RDB model as follows:

Lmass = −1
2m

2
arir,bsjs(Φr)arir(Φs)bsjs ,

Lquartic = − 1
4!λarir,bsjs,ctkt,dulu(Φr)arir(Φs)bsjs(Φt)ctkt(Φu)dulu

(B.1)

where m2
arir,bsjs

and λarir,bsjs,ctkt,dulu are symmetric under exchange of indices. By com-
paring the above forms with those given in (4.1) and (2.2), we can see that

m2
a1i1,b1j1 ≡ m

2
1δa1b1δi1j1 , m2

a2i2,b2j2 ≡ m
2
2δa2b2δi2j2 , m2

a1i1,b2j2 = m2
a2i2,b1j1 ≡ 0, (B.2)
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λa1i1,b1j1,c1k1,d1l1 ≡ 4h̃1
[
δi1j1δk1l1(δa1c1δb1d1 +δa1d1δb1c1)+δi1k1δj1l1(δa1b1δc1d1 +δa1d1δb1c1)

+ δi1l1δj1k1(δa1b1δc1d1 + δa1c1δb1d1)
]

(B.3)

+ 8f̃1
[
δi1j1δk1l1δa1b1δc1d1 + δi1k1δj1l1δa1c1δb1d1 + δi1l1δj1k1δa1d1δb1c1

]
,

λa2i2,b2j2,c2k2,d2l2 ≡ 4h̃2
[
δi2j2δk2l2(δa2c2δb2d2 +δa2d2δb2c2) + δi2k2δj2l2(δa2b2δc2d2 +δa2d2δb2c2)

+ δi2l2δj2k2(δa2b2δc2d2 + δa2c2δb2d2)
]

(B.4)

+ 8f̃2
[
δi2j2δk2l2δa2b2δc2d2 + δi2k2δj2l2δa2c2δb2d2 + δi2l2δj2k2δa2d2δb2c2

]
,

λa1i1,b1j1,c2k2,d2l2 =λa1i1,c2k2,b1j1,d2l2 = λa1i1,c2k2,d2l2,b1j1

=λc2k2,a1i1,b1j1,d2l2 = λc2k2,a1i1,d2l2,b1j1 = λc2k2,d2l2,a1i1,b1j1

≡ 8ζ̃δa1b1δi1j1δc2d2δk2l2 . (B.5)

Now, we can use the expressions given in [63] to get the following 1-loop beta functions
of m2

arir,bsjs
:

(4π)2µ
d

dµ
(m2

a1i1,b1j1) =m2
c1k1,d1l1λa1i1,b1j1,c1k1,d1l1 +m2

c2k2,d2l2λa1i1,b1j1,c2k2,d2l2

− 3
2∑

r,γ=1
g2
rΛ

S,rγ
a1i1,b1j1

,

(4π)2µ
d

dµ
(m2

a2i2,b2j2) =m2
c2k2,d2l2λa2i2,b2j2,c2k2,d2l2 +m2

c1k1,d1l1λa2i2,b2j2,c1k1,d1l1

− 3
2∑

r,γ=1
g2
rΛ

S,rγ
a2i2,b2j2

.

(B.6)

Here
ΛS,rγa1i1,b1j1

≡ 2Crγ2 (S1)m2
a1i1,b1j1 , ΛS,rγa2i2,b2j2

≡ 2Crγ2 (S2)m2
a2i2,b2j2 , (B.7)

where Crγ2 (Si) is the quadratic Casimir of the representation in which the scalar fields in
the ith sector transform under the γth Gr in the rth sector.29 The values of these quadratic
Casimirs are as follows:

Crγ2 (S1) = δr1

(
Ncr − 1

4

)
, Crγ2 (S2) = δr2

(
Ncr − 1

4

)
. (B.8)

Substituting these quadratic Casimirs as well as the parameters m2
arir,bsjs

and
λarir,bsjs,ctkt,dulu by their values given above, and then switching to the ’t Hooft couplings
introduced in (2.3), we get

µ
dm2

1
dµ

= 8
[
h1

(
2 + 1

Nc1

)
+ f1

(
1 + 2

N2
c1

)]
m2

1 + 8ζNc2
Nc1

m2
2 − 3λ1

(
1− 1

Nc1

)
m2

1,

µ
dm2

2
dµ

= 8
[
h2

(
2 + 1

Nc2

)
+ f2

(
1 + 2

N2
c2

)]
m2

2 + 8ζNc1
Nc2

m2
1 − 3λ2

(
1− 1

Nc2

)
m2

2.

(B.9)

29We remind the reader that Gr = SO(Ncr) in the RDB model.
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At the planar limit (Nc1, Nc2 →∞), these beta functions reduce to

µ
dm2

1
dµ

=
(
16h1 + 8f1 − 3λ1

)
m2

1 + 8rζm2
2,

µ
dm2

2
dµ

=
(
16h2 + 8f2 − 3λ2

)
m2

2 + 8ζ
r
m2

1,

(B.10)

where r ≡ Nc2
Nc1

in the same limit.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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