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1 Introduction

It has been a fascinating problem in supersymmetric gauge theories and string theory
to identify the BPS algebras [1] underlying the BPS (Bogomol’nyi-Prasad-Sommerfield)
states and their enumerative invariants. While there have been many developments in this
direction, it is still in general a difficult question to identify the BPS algebra explicitly.

It has recently been realized [2, 3] that the BPS quiver Yangian, defined in [2], is
precisely the BPS algebra for type IIA string theory compactified on an arbitrary toric
Calabi-Yau three-fold.1 The quiver Yangian incorporates and generalizes discussions on
affine Yangians [5–10] and W algebras [11–14], and contains the cohomological Hall al-
gebra (CoHA) [4, 15, 16] as a Borel subalgebra. The quiver Yangian has a well-defined
representation on the torus fixed-point set of the BPS moduli space; the fixed points are
known to be described by configurations of the statistical model of crystal melting [17–21],
which are known mathematically to enumerate the generalized Donaldson-Thomas (DT)
invariants [22].2 In fact, the algebra itself can be bootstrapped from its action on these
crystal representations [2]. Moreover, such an action can be justified physically by super-
symmetric equivariant localization of an N = 4 quiver quantum mechanics [3], which is
the world-volume theory on the D-branes.

1The problem of identifying the BPS algebra for toric Calabi-Yau manifolds was posed previously in [4].
The references [2, 3] answered this question.

2For the special case of X = C3, this representation reduces to the plane partition representation of
the affine Yangian of gl1, studied previously in [7–10, 23], and for toroidal algebras in [24–27], see also a
more recent work [28] on this subject. For toric Calabi-Yau threefolds without compact 4-cycles, the quiver
Yangians coincide with affine Yangians for Lie superalgebras glm|n [2, 3, 16]. For toric Calabi-Yau threefolds
with compact 4-cycles, the quiver Yangians seem to be new algebras and their detailed properties are yet
to be explored.
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The goal of this paper is to extend the considerations of [2, 3] and construct a vast
zoo of new representations of the quiver Yangian. Instead of the particular crystal from [2]
(called the canonical crystal in this paper), we consider a general subset of the crystal,
and construct a representation of the quiver Yangian acting on its molten crystals. Such a
general discussion requires us to extend the definition of the quiver Yangian to the shifted
quiver Yangian, which is a new algebra we define in this paper.

The shapes of these subcrystals translate to different framings of the quivers and the
eigenvalues of the ground states (a.k.a. the ground state charge functions) of the represen-
tations. Aforementioned methods of BPS algebra construction — N = 4 quiver quantum
mechanics and bootstrap — are applicable to these new framed quivers and ground state
charge functions, respectively. We show the resulting BPS algebra is indeed the shifted
quiver Yangian.

Our discussion incorporates many of the known phenomena in the studies of BPS
states in the literature, such as the wall crossing phenomena and the inclusion of various
non-compact D-branes (some of which gives rise to the so-called “open/closed BPS state
counting”). All these different-looking BPS counting problems are now unified as different
representations of the shifted quiver Yangian. Interestingly, many of our representations do
not seem to have known counterparts in the BPS state counting problem in the literature,
and our results suggest that there will be many BPS state counting problems which are yet
to be identified/studied, even inside the realm of non-compact toric Calabi-Yau geometries.

The plan of this paper is as follows. In section 2, we define the shifted quiver Yangian.
In section 3, we describe the representations of the shifted quiver Yangian in terms of crystal
melting. In section 4, we show that the shifted quiver Yangian is indeed the BPS algebra
of the N = 4 quiver quantum mechanics system specified by a framed quiver. Sections 5
and 6 demonstrate our main results with examples of open BPS counting and BPS wall-
crossing, respectively. In section 7 we discuss examples of representations which have not
been discussed previously in the literature. We end with a summary and comments on
open problems in section 8. We include two appendices containing technical materials.

The main players of this story, together with the sections they appear in, are summa-
rized in figure 1.

2 Shifted quiver Yangians

In this section, we give the definition of the shifted quiver Yangians and their essential
properties. While this section is self-contained, our definition here closely follows the
definition of the quiver Yangian (unshifted quiver Yangian in the terminology of this paper)
in [2], for which readers are referred to for many relevant details.

2.1 Defining data and generators

One of the defining data for the shifted quiver Yangian is a pair (Q,W ), where Q = (Q0, Q1)
is the quiver diagram, with Q0 andQ1 being the set of vertices {a} and the set of arrows {I},
respectively, and W is the superpotential, which consists of monomial terms corresponding
to closed loops {L} in the quiver Q. The pair (Q,W ) defines an N = 4 supersymmetric

– 2 –
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Figure 1. Interrelations of various concepts discussed in this paper. Those colored in blue are new
concepts introduced in this paper.

quiver quantum mechanics [29]. In this paper, we will consider those (Q,W ) that give rise
to the quantum mechanics theory whose vacuum moduli space describes a toric Calabi-Yau
three-fold.3 The definition of the shifted quiver Yangians, however, works for more general
choices of Q and W .

3The combinatorial relations between the quiver data (Q,W ) and the toric data have been studied
extensively in the literature on brane tilings [30–32], see e.g. [33, 34] for reviews.
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We assign a flavor charge (an equivariant parameter) hI for each arrow I ∈ Q1, subject
to the following constraints. First, each term in the superpotential W should have total
charge zero, i.e. the charge assignment represents a symmetry preserving the superpotential
W . Correspondingly, for each loop L in the quiver Q associated with a term in W , we have
a loop constraint:

loop constraint:
∑

I∈loop L

hI = 0 . (2.1)

In addition, there are gauge symmetries that correspond to the U(1) isometries of the toric
Calabi-Yau geometry. As a result, up to gauge redundancies we are also free to impose a
constraint

vertex constraint:
∑
I∈a

signa(I)hI = 0 , (2.2)

for each vertex a, and signa(I) is +1 if the arrow I flows towards the vertex a, −1 if the
arrow I flows outwards from the vertex a, and 0 otherwise. Having imposed both types of
constraints, we are left with two independent parameters we denote as h1 and h2 for toric
Calabi-Yau three-folds [2]. These two parameters correspond to the two parameters for
equivariant torus actions preserving the holomorphic Calabi-Yau three-form.

The shifted quiver Yangian consists of a triplet of generators (e(a)(z), f (a)(z), ψ(a)(z))
for each quiver vertex a ∈ Q0, with the mode expansion

e(a)(z) ≡
+∞∑
n=0

e
(a)
n

zn+1 , ψ(a)(z) ≡
+∞∑

n=−∞

ψ
(a)
n

zn+1+s(a) , f (a)(z) ≡
+∞∑
n=0

f
(a)
n

zn+1 . (2.3)

Here the set of integers s = {s(a)} in the expansion of ψ(a)(z) for a ∈ Q0 characterize the
“shift” in the shifted quiver Yangian. Note that the shift affects the mode expansions of
ψ(a)(z) only.4

For toric Calabi-Yau threefolds without compact 4-cycles,

ψ
(a)
n<−2 = 0 and ψ

(a)
n=−1 = 1 , (2.4)

for all a ∈ Q0. Namely, for the case without compact 4-cycles, the mode expansion for
ψ(a)(z) in (2.3) can be written as

ψ(a)(z) ≡
+∞∑
n=−1

ψ
(a)
n

zn+1+s(a) . (2.5)

For toric Calabi-Yau threefolds with compact 4-cycles, since the mode expansion of
ψ(a) is from −∞ to +∞, the information of the shift s(a) is somewhat lost,5 because the
expansion of ψ(a)(z) in (2.3) can also be written as

ψ(a)(z) ≡
+∞∑

n=−∞

ψ̃
(a)
n

zn+1 . (2.6)

4In this section we will only consider the untruncated versions of the algebras. The truncation of the
algebra will be considered in section 3.4. The truncation will in general change the shift of the algebra.

5One way to retain this information even for the case with compact 4-cycles is to invoke the vacuum
state |∅〉 and demand that ψ(a)

n<−2|∅〉 = 0 and ψ
(a)
n=−1|∅〉 = |∅〉, analogous to the condition (2.4) for the

case without compact 4-cycles.
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2.2 Relations in fields

We can now define the shifted quiver Yangian Y(Q,W, s) by the following OPE (Operator
Product Expansion)-like relations:

ψ(a)(z)ψ(b)(w) = ψ(b)(w)ψ(a)(z) ,
ψ(a)(z) e(b)(w) ' ϕb⇒a(z − w) e(b)(w)ψ(a)(z) ,
e(a)(z) e(b)(w) ∼ (−1)|a||b|ϕb⇒a(z − w) e(b)(w) e(a)(z) ,
ψ(a)(z) f (b)(w) ' ϕb⇒a(z − w)−1 f (b)(w)ψ(a)(z) ,
f (a)(z) f (b)(w) ∼ (−1)|a||b|ϕb⇒a(z − w)−1 f (b)(w) f (a)(z) ,[

e(a)(z), f (b)(w)
}
∼ −δa,bψ

(a)(z)− ψ(b)(w)
z − w

,

(2.7)

where throughout this paper “'” means equality up to znwm≥0 terms,6 and “∼” means
equality up to zn≥0wm and znwm≥0 terms. The bracket [e(a)(z), f (b)(w)} denotes the
anti-commutator {e(a)(z), f (b)(w)} when both a and b are odd, and the commutator
[e(a)(z), f (b)(w)] otherwise. The Z2-grading of the generators e(a)

n and f (a)
n is given by

|a| =

0 (∃ I ∈ Q1 such that I starts and ends at a) ,
1 (otherwise) ,

(2.8)

while the operators ψ(a)
n are always even. The function (the bond factor) ϕa⇒b(z) in (2.7)

is defined as

ϕa⇒b(u) ≡
∏
I∈{b→a}(u+ hI)∏
I∈{a→b}(u− hI)

, (2.9)

where {a → b} denotes the set of arrows from vertex a to vertex b. (When there is no
arrow between vertices a and b in the quiver, we define ϕa⇒b(u) = ϕb⇒a(u) = 1.) The
function ϕa⇒b(z) satisfies the reflection property7

ϕa⇒b(u)ϕb⇒a(−u) = (−1)|a→b|+|b→a| , (2.10)

where |a → b| denotes the number of arrows from vertex a to vertex b. Finally, we
emphasize that the bond factor ϕa⇒b(u) (2.9) should be treated as a “formal” rational
function: namely, all the factors in its numerator and denominator need to be kept even
when the charges hI take some special values such that some factors of the numerator and
the denominator cancel each other.

6For Calabi-Yau threeforlds without compact 4-cycles, “'” means equality up to zn≥−s(a)
wm and

znwm≥0 terms.
7Note that for a chiral quiver with some |a→ b|+ |b→ a| being odd, this reflection property means that

we need to choose an ordering for the vertices a and b when writing down the e− e and f − f relations in
(2.7).

– 5 –
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When we set s(a) = 0, we recover the quiver Yangian defined earlier in [2]. In this
paper, in order to distinguish this special case from more general shifted quiver Yangians,
we call the algebra Y(Q,W, s = 0) the unshifted quiver Yangian.8

Finally, we mention another mode expansion for the Cartan generators ψ(a)(z) of the
shifted quiver Yangians that is more natural in the study of their representations (to be
discussed in section 3). Instead of the expansion of ψ(a)(z) in (2.3), we have

ψ(a)(z) ≡ ]ψ
(a)
0 (z) · φ(a)(z) with ]ψ

(a)
0 (z) ≡

∏s(a)
−
β=1(z − z−

(a)
β )∏s(a)

+
α=1(z − z+

(a)
α )

, (2.11)

where we have the shift s(a) = s(a)
+ − s(a)

− and the new Cartan generators φ(a)(z) have the
mode expansion

φ(a)(z) =
+∞∑

n=−∞

φ
(a)
n

zn+1 , (2.12)

so that ψ(a)
n are linear combinations of φ(a)

n .

In this description of the shifted quiver Yangian, the “shift” is encoded in the set of
rational functions {]ψ(a)

0 (z)} defined in (2.11), and the shifts are characterized by s(a)
+ poles

{z+
(a)
α } and s(a)

− zeros {z−(a)
α } for each vertex a ∈ Q0. To emphasize this we sometimes use

the notation Y(Q,W, ]ψ) for the algebra Y(Q,W, s).

The special cases of Y(Q,W, ]ψ) with s(a)
+ = 0 or s(a)

− = 0 were discussed previously
in [4, 35], for some examples of quivers associated with Lie superalgebras glm|n. Our
definition here generalizes the definition to a large class of quivers, which are in general
not associated with finite-dimensional Lie (super)algebras.9

8All the quiver Yangians in [2] correspond to the canonical crystals, see section 3.1. Without truncation
(see section 3.4), a quiver Yangian Y(Q,W, s) that corresponds to the canonical crystal should have shift
s(a) = δa,1. The definition of [2] included one truncation factor (z + C) for all the ψ(a=1)(z) generators,
therefore the algebras in [2] are unshifted quiver Yangians, i.e. s(a) = 0 for all a ∈ Q0.

9Shifted Yangians associated with finite-dimensional Lie algebras were discussed earlier in [36–38].

– 6 –
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2.3 Relations in modes

The quadratic relation (2.7) in terms of the fields can then be translated in terms of modes
using the expansion (2.3):

[
ψ(a)
n , ψ(b)

m

]
= 0 ,

|b→a|∑
k=0

(−1)|b→a|−k σb→a|b→a|−k [ψ(a)
n e(b)

m ]k =
|a→b|∑
k=0

σa→b|a→b|−k [e(b)
m ψ(a)

n ]k ,

|b→a|∑
k=0

(−1)|b→a|−k σb→a|b→a|−k [e(a)
n e(b)

m ]k = (−1)|a||b|
|a→b|∑
k=0

σa→b|a→b|−k [e(b)
m e(a)

n ]k ,

|a→b|∑
k=0

σa→b|a→b|−k [ψ(a)
n f (b)

m ]k =
|b→a|∑
k=0

(−1)|b→a|−k σb→a|b→a|−k [f (b)
m ψ(a)

n ]k ,

|a→b|∑
k=0

σa→b|a→b|−k [f (a)
n f (b)

m ]k = (−1)|a||b|
|b→a|∑
k=0

(−1)|b→a|−k σb→a|b→a|−k [f (b)
m f (a)

n ]k,[
e(a)
n , f (b)

m

}
= δa,b ψ

(a)
n+m−s(a) .

(2.13)
Here the mode numbers for e(a) and f (a) always take the range m ∈ Z≥0, whereas for
the Cartan generators ψ(a), the mode number has the range m ∈ Z≥0 for the Calabi-Yau
three-fold without compact 4-cycle but m ∈ Z for those with compact 4-cycles. We have
defined

[AnBm]k ≡
k∑
j=0

(−1)j
(k
j

)
An+k−j Bm+j ,

[BmAn]k ≡
k∑
j=0

(−1)j
(k
j

)
Bm+j An+k−j ;

(2.14)

σa→bk denotes the kth elementary symmetric sum of the set {hI} with I ∈ {a → b}; and
finally |a→ b| stands for the number of arrows from vertex a to vertex b in the quiver Q.

When s is finite, the quadratic relations between the Cartan generators ψ(a) and
the e(a)/f (a) generators simplify for the first few ψ

(a)
n modes. To derive these “initial

conditions”, one simply plugs in the mode expansion (2.3) (with ψ(a)
−1 = 1) into the ψ − e

and ψ − f relations in (2.13) with n = −|a→ b| = −|b→ a|, and gets

[
ψ

(a)
0 , e(b)

m

]
=
(
σa→b1 + σb→a1

)
e(b)
m =

 ∑
I∈{a→b}

hI +
∑

I∈{b→a}
hI

 e(b)
m ,

[
ψ

(a)
0 , f (b)

m

]
= −

(
σa→b1 + σb→a1

)
f (b)
m = −

 ∑
I∈{a→b}

hI +
∑

I∈{b→a}
hI

 f (b)
m ,

(2.15)

where we have used ψ(a)
−1 = 1. Next, for |a→ b| = |b→ a| ≥ 2, consider n = −|a→ b|+ 1,

– 7 –
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which gives[
ψ

(a)
1 , e(b)

m

]
=
(
σa→b2 − σb→a2

)
e(b)
m +

(
σb→a1 ψ

(a)
0 e(b)

m + σa→b1 e(b)
m ψ

(a)
0

)
,[

ψ
(a)
1 , f (b)

m

]
= −

(
σa→b2 − σb→a2

)
f (b)
m −

(
σa→b1 ψ

(a)
0 f (b)

m + σb→a1 f (b)
m ψ

(a)
0

)
.

(2.16)

The conditions with ψ(a)
`≥2, if they exist, can be derived similarly. These “initial conditions”

are useful in the attempt of mapping the quiver Yangian to other types of algebras such
as W algebras.

2.4 Some properties

Let us now comment on some properties of the shifted quiver Yangian Y(Q,W, s). Our
discussion here is brief since it is parallel to the case of the unshifted quiver Yangian in [2,
section 4.3].

• We have the triangular decomposition

Y(Q,W ) = Y+
(Q,W ) ⊕ B(Q,W ) ⊕ Y−(Q,W ) , (2.17)

where Y+
(Q,W ),Y

−
(Q,W ),B(Q,W ) are generated by the e(a)

n , f
(a)
n , ψ

(a)
n ’s, respectively.

• We have a Z2 automorphism

e(a)(z)↔ f (a)(z) , ψ(a)(z)↔ ψ(a)(z)−1 , (2.18)

which exchanges Y+
(Q,W ) and Y−(Q,W ) while preserving B(Q,W ).

• In addition to the Z2 grading introduced in (2.8), for each vertex a ∈ Q0 we can
define an associated Z grading dega by

dega(e(b)
n ) = δa,b , dega(ψ(b)

n ) = 0 , dega(f (b)
n ) = −δa,b . (2.19)

We can also define a filtration on the algebra by

deglevel(e(b)
n ) = deglevel(f (b)

n ) = n+ 1
2 , deglevel(ψ(b)

n ) = n+ 1− s(b) . (2.20)

• The spectral shift z → z − ε generates an automorphism of the algebra.
• Recall that the equivariant parameters are the flavor symmetry charge assignments

of the quiver quantum mechanics. This comes with ambiguities arising from gauge
symmetry, i.e. the shift

hI → h′I = hI + εa signa(I) , (2.21)

where

signa(I) ≡


+1 (s(I) = a , t(I) 6= a) ,
−1 (s(I) 6= a , t(I) = a) ,
0 (otherwise) ,

(2.22)

and s(I) and t(I) denote the source and the target of the arrow I, respectively. This
generates an automorphism of the algebra for each quiver vertex a.

– 8 –
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• The quadratic relations (2.7), or equivalently the mode version (2.13), can be sup-
plemented by extra relations, as in the unshifted case [2, section 4.4]. These new
relations are traditionally called the Serre relations, and we would then obtain a
reduced shifted quiver Yangian

Y(Q,W ) = Y(Q,W )/(Serre relations) . (2.23)

For cases without compact 4-cycles the quiver Yangian is identified to be the affine
Yangian of glm|n, for which Serre relations are already known [39]. For a general toric
Calabi-Yau threefold there seems to be no known form of the Serre relations, and it
would be interesting to study this point further.

3 Molten crystal representations of shifted quiver Yangians

In the previous section, we defined the shifted quiver Yangians and listed their basic prop-
erties. In this section, we will explain how to construct and classify their representations.

3.1 Review: canonical crystals and unshifted quiver Yangians

Let us first review the molten crystal representation of the unshifted quiver Yangian con-
structed in [2].

The BPS crystal associated to a quiver-superpotential pair (Q,W ) was constructed
in [20] as the representation of the path algebra of “quiver with relations” A(Q,W ), where
the relations mean the F -term relations ∂W/∂ΦI = 0 for each bifundamental ΦI associated
to an arrow I. Each atom in the crystal corresponds to an F -term equivalence class of paths
starting from a framed vertex o, which is chosen from the set of vertices {a} in the quiver
Q to be the origin of the crystal; and the atoms are connected by arrows {I} of the quiver,
as follows from the definition. The resulting crystal can be viewed as a three-dimensional
lift of the universal cover of the periodic quiver Q̃ = (Q0, Q1, Q2).10

To promote the BPS crystal from the representation of the path algebra A(Q,W ) to the
representation of the (unshifted) quiver Yangian Y(Q,W ), we need to give the crystal a finer
structure, in particular, we can relate the coordinates of each atom to the flavor-symmetry
charges of the theory. The two charge assignments are non-R flavor symmetries, and are
precisely given by the equivariant parameters hI introduced previously in section 2.1 as
part of the data of the Y(Q,W ) algebra; the third coordinate is given by an R-symmetry,
under which the superpotential has charge +2. Once we fix a charge assignment, the charge
of an atom is defined as the total flavor charge of the corresponding operator [2]:

h(�) ≡
∑

I ∈ path[o→� ]
hI , (3.1)

10For a quiver quantum mechanics originating from a toric Calabi-Yau three-fold, the quiver-super-
potential pair (Q,W ) can be recast into a periodic quiver Q̃ = (Q0, Q1, Q2), namely, a quiver Q̃ on the
two-dimensional torus so that the faces Q2 = {F} of the quiver represent monomial terms in the superpo-
tential W .
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where we used the fact that an atom can be represented by a path from o. We call
the resulting crystal associated with the quiver-superpotential pair (Q,W ) the canonical
crystal, denoted by C0(Q,W ), or simply C0 when there is no risk of confusion.

Here and in what follows we will use the symbol � to denote an atom of a crystal. The
path o → � in a crystal can be projected first to the periodic quiver Q̃ and further to Q.
In Q the projection of o→ � ends on a particular quiver vertex a, we say in this case that
atom � is colored by color a. If we will need to stress in our notations that some atom �
has a particular color a, we will denote it as a .

Given a crystal C, we can consider a configuration K of a molten crystal. This is a
finite subset of the atoms in the crystal such that the following melting rule is satisfied:
for any atom � such that I · � ∈ K for some arrow I, then � is also contained in K [20].
Namely, the molten crystal K is the complement of a crystal configuration that is C with
some atoms “melted away” near the origin.

The representation of the unshifted quiver Yangian in [2] is given by

ψ(a)(z)|K〉 = Ψ(a)
K (z)|K〉 ,

e(a)(z)|K〉 =
∑

a ∈Add(K)

±
√
p(a)Resu=h( a )Ψ

(a)
K (u)

z − h( a ) |K + a 〉 ,

f (a)(z)|K〉 =
∑

a ∈Rem(K)

±
√
q(a)Resu=h( a )Ψ

(a)
K (u)

z − h( a ) |K− a 〉 .

(3.2)

Here the signs q(a) = 1 and p(a) ≡ ϕa⇒a(0) = ±1 in (3.2) are related to the statistics of
the operators e(a)(z) and f (a)(z). The sets Add(K) and Rem(K) denote the sets of atoms
that can be added to or removed from the crystal configuration K, respectively, so that the
result is again an allowed crystal configuration satisfying the melting rule. The ± signs in
the coefficients of the e(a)(z) and f (a)(z) actions depend on both the initial state K and
the atom a , and can be fixed once we determine the statistics of the algebra. The “charge
function” Ψ(a)

K (u) and the “vacuum charge function” ψ(a)
0 (z) are defined by

Ψ(a)
K (u) ≡ ψ(a)

0 (u)
∏
b∈Q0

∏
b ∈K

ϕb⇒a(u− h( b )) ,

ψ
(a)
0 (z) ≡

(1
z

)δa,o

.

(3.3)

Note that the vacuum charge function ψ(a)
0 is non-trivial only for “the framed vertex” a = o,

which we choose to be one of the vertices of the quiver.
What is crucial in this representation is that the poles of the charge function correspond

to the atoms that can be added or removed from the crystal. This ensures that the
residues in the action of e(a) and f (a) (inside the square root in (3.2)) are non-vanishing,
and hence we can generate all the possible states |K〉 starting with the vacuum. (When
these properties do not hold we obtain a reducible representation of the algebra, as we will
discuss in section 4.4.)
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3.2 Representations from subcrystals

We are now ready to discuss more general representations. This time we consider a repre-
sentation space spanned by configurations of molten crystal starting from a subcrystal ]C
of the canonical crystal C0.

To construct a representation associated with ]C we proceed in several steps.
1. First, we decompose a subcrystal ]C into a superposition of multiple canonical crys-

tals, each after an appropriate translation and weighted with plus/minus multiplici-
ties. Namely, a subcrystal ]C can be viewed as a superposition of positive/negative
crystals (see figure 2(a)).

The decomposition procedure itself takes a few steps. Suppose one carves out a
subcrystal ]C from the canonical crystal C0. We would like to determine the coordi-
nates (with respect to C0) of the starting atoms of each positive and negative crystals
that ]C is decomposed into.
(a) The starting atoms of the positive crystals near the origin are called starters.

Without loss of generality, we move ]C as close as possible to the origin of C0
in the direction orthogonal to the 2D projection, such that as many as possible
starters can have depth zero (i.e. lie on the surface of the crystal).

(b) The positive crystals headed by the starters would eventually meet and start to
overlap inside C0. To avoid over-counting the overlapping region inside ]C, we
need to add the “negative” crystal started at their meeting point to cancel the
redundant region. When the overlapping region is the overlap of n ≥ 2 positive
crystals, we need to add n − 1 copies of negative crystals, all starting at the
meeting point of these n positive crystals. The atom at the meeting point, i.e.
the atom that heads the negative crystal, is called pauser, because it corresponds
to a zero in the charge function and thus “slows down” the speed of the crystal
growth. The order of a pauser is defined as n − 1, the number of copies of the
negative crystals. An order-one pauser is called simple pauser, etc. Note that
the positions, colors, and orders of the pausers are fixed once the positions of
the starters are given. See figure 2(i).

(c) The negative crystals might also meet and start to overlap in ]C. We then need to
add positive crystals to cancel the overlaps of the negative crystals. The starting
atoms of these positive crystals are again starters. Then these secondary positive
crystals might intersect, prompting us to add secondary negative crystals, etc.
This procedure follows the inclusion-exclusion principle and continues until we
determine all the starters and pausers. See figure 2(ii).

(d) Finally, one can stop the growth of ]C along certain directions by adding negative
crystals starting at appropriate places. The atom that heads such a negative
crystal is called stopper, since the crystal ]C stops growing at the position of this
atom. See figure 2(iii).

Using this procedure, we can represent any subcrystal ]C by such linear superpositions
of (possibly infinite) translations of canonical crystals C0. Finally, note that to define
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(i)

C0

]C

=

C0

Ca

+

C0

Cb

−

C0

Ca ∩ Cb

(ii)

C0

]C

=

C0

Ca

+

C0

Cb

+

C0

Cc

−

C0

Ca ∩ Cb

−

C0

Cb ∩ Cc

−

C0

Ca ∩ Cc

+

C0

Ca ∩ Cb ∩ Cc

(iii)

C0

]C

=

C0

C+

−

C0

C−

Figure 2. The subcrystal ]C of the canonical crystal can be represented as a superposition of
positive/negative canonical crystals.

a subcrystal ]C, we only need to specify the set of its starters and stoppers, because
the set of the pausers is determined by the positions of its starters.

2. Next we translate the decomposition of the subcrystal ]C into the charge functions of
the ground state of the corresponding representation, denoted by ]ψ

(a)
0 (z) for a ∈ Q0.

The subcrystal ]C corresponds to the ground state of a representation ]Rep of
the shifted quiver Yangian Y(Q,W, s), where the pair (Q,W ) maps one-to-one to the
canonical crystal C0 and the shift s is determined by the shape of the subcrystal ]C.
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Consider the molten crystal configurations from the subcrystal ]C, i.e. the com-
plements of crystal configurations with some atoms melted away from the surface of
]C. They together furnish the excited states of the representation ]Rep. All these
states can be obtained by applying the creation operator e(a)(z) on the ground state
iteratively. Therefore, the ground state charge functions ]ψ

(a)
0 (z) should encode the

shape of the subcrystal ]C.
Let us see how the three types of leading atoms (starters, pausers, and stoppers)

are captured by ]ψ
(a)
0 (z).

(a) When applying the creation operator e(a)(z) on the ground state, the atoms
that one can add are the starters, each heading a positive crystal. Therefore,
the coordinate function of each starter gives a pole in ]ψ

(a)
0 (z):

z+
(a) = h( a ) , when a is a starter . (3.4)

When there are multiple poles in ]ψ
(a)
0 (z), the crystal starts at these starters

and grows from them simultaneously.
(b) Each order-n pauser gives rise to an order-n zero in ]ψ

(a)
0 (z):

z−(a) = h( a ) , when a is a pauser . (3.5)

(c) Each stopper gives rise to a simple zero in ]ψ
(a)
0 (z):

z−(a) = h( a ) , when a is a stopper . (3.6)

Putting all these together, we have the ground state charge function:

]ψ
(a)
0 (z) =

∏s(a)
−
β=1(z − z−

(a)
β )∏s(a)

+
α=1(z − z+

(a)
α )

, (3.7)

and {z+
(a)
α } corresponds to the set of all starters of color a, and s(a)

+ is the size of this
set, whereas {z−(a)

β } corresponds to the set of all pausers (with multiplicity given by
the order) and stoppers of color a, and s(a)

− is the size of this set.
3. We can then use the same formulas (3.2) and (3.3), with the ground state charge

function ψ
(a)
0 (z) replaced by the ground state charge function ]ψ

(a)
0 (z), to define

the representation ]Rep of the shifted quiver Yangian Y(Q,W, s), where the shift
s = {s(a)} with

s(a) ≡ s(a)
+ − s(a)

− . (3.8)

The proof that this indeed gives a representation of Y(Q,W, s) is essentially the same
as in the previous discussion for the unshifted quiver Yangians [2].

We have explained the procedure of determining the ground state charge function of
a representation, by decomposing the subcrystal in terms of the superposition of posi-
tive/negative canonical crystals. There is actually another way of determining the ground
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state charge function: by considering the ground state of a non-trivial representation as an
excited state of the vacuum representation and then computing the charge function from
the definition (3.3). For a large class of representations, the crystal configuration of the
ground state has “removable” atoms only at infinity, namely, there are sufficient amount
of cancellations between the contributions from neighboring atoms that all the “removing
poles” are pushed to infinity. Therefore, although viewed a priori as an excited state in
the vacuum representation, the end result of evaluating the charge function via (3.3) gives
rise to a charge function of a ground state, i.e. they can be annihilated by all the f (a)(z)
generators, of a non-vacuum representation.

This method has been used to compute the ground state charge function for non-trivial
representations of the affine Yangian of gl1, and it works for ordinary representations [9, 10],
the conjugate representations [40] (the so-called high-wall representations that are relevant
for the counting of the PT invariants [40, 41]), and even the representations in the twisted
sectors [23]. (Note that since this method only works for those representation whose ground
state only has “removable” atoms at infinity, we cannot use it to study e.g. the finite
chamber representation in section 5.1.4 nor those “novel” representations in section 7.)

In this paper, we also generalize this method to generic toric Calabi-Yau threefolds.
Since the computation is rather technical, we leave it to appendix B. In this approach, the
relevant molten crystal configuration consists of infinitely many atoms, and the resulting
charge function might need a regularization,11 for more details see appendix B. But after
the appropriate regularization, the resulting charge function agrees with the result (3.7)
computed via the method introduced in this subsection.

Comparing the two methods, one can see that the positive/negative crystal method
introduced in this paper is superior. First, the new method is more general, applicable
to both the infinite-dimensional and the finite-dimensional representations, whereas the
old method only works for the infinite-dimensional representations.12 Second, even for
the infinite representations, with the new method there is no need to consider an infinite
number of atoms and hence no need for regularization — one can directly read off the
ground state charge function (3.7) from the position of the starters, pausers, and stoppers.
Lastly, the positive/negative crystal method allows us to construct and classify previously
unknown representations easily, see section 7.

3.3 Irreducibility

The representations we constructed in the previous subsection, by defining the subcrystal
in terms of the positions of its starters, pausers, and stoppers, are in general reducible.
First of all, the subcrystal can have multiple connected components. In the rest of this

11For the affine Yangian of gl1, the contributions from the infinite number of atoms cancel and there is
no need for regularization.

12We could remove those “removing poles” by hand, and thus obtain the correct ground state charge
function even with this method. However, this is not very natural and hence we will not do so in this
paper. We instead study those “finite” representations using the positive/negative crystal method in the
main text.
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= 0
starter

positive crystal

negative crystal

shadow stoppers

stopper

Figure 3. The irreducibility of the representation requires the stoppers of the subcrystal to have
relative depth-zero. In this figure, this condition is violated, leading to three irreducible components,
depicted in three different colors (pink, blue, and green).

paper we focus on those subcrystals that are simply connected. However, even for such a
simply-connected subcrystal ]C, the associated representation ]Rep can still be reducible.

To see this, let us consider the example of figure 3. Inside the canonical crystal C0,
whose starter is colored blue, we have a negative crystal, headed by a stopper at the location
�2. This creates a zero z = h(�2) of the ground state charge function.

Now the important point is that the relations between atoms and the ground state
charge function is not one-to-one (even if we assume generic equivariant parameters).13

This is because the equivariant parameters satisfy the loop constraint. Namely, a zero
z = h(�2) inevitably means that there are zeros at all the atoms �3 whose two-dimensional
projection coincide with �2.

We can now see that this can make the representation reducible. Consider a path shown
in orange in figure 3. The path is F -term equivalent to another path shown in green, which
goes through atoms corresponding to zeros of the ground state charge function. This means
that the path gives zero both ways, making the representation reducible.

Let us now determine the irreducible component of a simply-connected subcrystal.
Without loss of generality (since the essential information of the subcrystal ]C is its shape),
we can use the translational invariance to move the subcrystal ]C as close to the origin of the
canonical crystal C0 as possible, such that as many as possible starters have depth-zero.14

When the stopper atom has a depth bigger than zero, those atoms with the same coordinate
function h(�2) but with lower depth are called the “shadows” of the stopper. When we
grow the crystal by applying the creation operators e(a)(z) on the ground state, we would
hit the stopper shadow with depth-zero first, and the crystal growth along that direction
would stop there. Namely it is the depth-zero shadow of the stopper that determines the
first irreducible component of the subcrystal. Peeling off this first irreducible component,
we can start the growth of the crystal again and the depth-one shadow of the stopper
determines the second irreducible component. Repeating this way until we reach the true

13We will discuss the case of non-generic equivariant parameters in section 3.4.
14If we do not do this, we can simply replace the “depth” of the stopper below by “relative depth”, i.e.

the difference between the depth of the stopper and the smallest depth of the starters.
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stopper, we can see that having a stopper of depth-n means that there are (at least) n+ 1
irreducible components of the subcrystal. In the example shown in figure 3, the stopper
(colored red) has depth-two, therefore there are two stopper shadows (colored purple) with
depth-zero and depth-one. Therefore the reducible representation that is given by the
subcrystal of figure 3 has three irreducible components (colored orange, blue, and green,
respectively).

3.4 Truncations of shifted quiver Yangians

One assumption in the discussion of the irreducibility above is that the equivariant param-
eters are generic — if we impose genericity we expect that the two atoms �1,�2 ∈ C have
the same values h(�1), h(�2) if and only if the two atoms are located at the same point in
the two-dimensional projection.

This changes, however, when the equivariant parameters are not generic. In this case
it could happen that the ground state charge function creates more zeros than intended,
making the representation reducible.

We can further enrich the story by replacing the ground state charge function (3.7) by
a slightly more general ansatz:

]ψ
(a)
0 (z) = t(a)(z)

∏s(a)
−
β=1(z − z−

(a)
β )∏s(a)

+
α=1(z − z+

(a)
α )

. (3.9)

If we assume that t(a)(z) is a rational function with no poles or zeros at any of the
atoms of the subcrystal ]C, then this will not affect the construction of the representation
as well as its irreducibility at generic equivariant parameters, except that the shift of the
shifted Yangian Y(Q,W, ]ψ) is affected by the degree of t(a)(z).

Such a factor was already encountered when we discussed the vacuum representations
of the unshifted quiver Yangians in [2]. In (3.3), the charge function ψo

0 has a zero at
z = −C, where C is the value of the central element and is taken to be generic. As long
as C does not correspond to the locations of the atoms h(�), this does not have any effect
on the structure of the crystal.

The factor t(a)(z), however, can affect the irreducibility of the representations when
we consider non-generic equivariant parameters. This is because the t(a)(z) can create new
poles/zeros at the locations of the crystal.

Now, suppose for a shifted quiver Yangian Y(Q,W, s), the same factor t(a)(z) is present
in the ground state charge function of all its representations ]Rep, and denote the order of
t(a)(z) by |t(a)|, then the truncation factor changes the shift s(a) of the Y(Q,W, s) algebra by

s(a) → s̃(a) ≡ s(a) − |t(a)| , (3.10)

and realizes a truncation of the algebra Y(Q,W, s̃).
In [2] this issue was studied for the unshifted quiver Yangians, and the corresponding

representations lead to truncations of the algebra. Moreover such truncations are identified
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with D4-branes wrapping divisors in the toric Calabi-Yau manifold. The same story applies
for our shifted quiver Yangians of this paper.15

3.5 From subcrystals to framed quivers

For the discussion of quiver supersymmetric quantum mechanics it is useful to reformulate
the statements in terms of the quiver. This is done by introducing the concept of a framed
quiver (]Q, ]W ), extending the original quiver data (Q,W ).

A framing of the quiver is defined by (1) adding to the original quiver Q a new vertex
(called framing node) and new arrows between the new vertex and the existing vertices,
and (2) appending corresponding new monomial terms to the superpotential W . A vertex
a connected to the framing node f by some arrow f → a is called a framed vertex or a
framed node.

For the case of the canonical crystal C0, the framed quiver is simple: we add an extra
node f , i.e. the framing node, and an arrow ι from f to a particular vertex a, i.e. the
framed node. When we construct the crystal we consider a set of paths starting from the
framed node, and this ensures that the crystal growth starts with an atom of color a. This
framing is called the canonical framing.

For a general subcrystal ]C, each pole of the ground state charge function ]ψ
(a)
0 (z) is

represented in the framed quiver ]Q by an arrow from the framing node f to a framed
vertex a. For general {]ψ(a)

0 (z)} with multiple poles, this means that when the path starts
from the framed nodes there are multiple choices of arrows in the initial step, and this in
turn means that the crystal growth starts at multiple locations. The charge assignments
of the framed arrows should be chosen according to the charges of the starter atoms.

The zeros of ]ψ(a)
0 (z) are represented by arrows from the vertex a back to the framing

node f . In addition, for the zeros of ]ψ(a)
0 (z) we need to add appropriate superpotential

terms such that the growth of the crystal indeed pauses or stops there.16 Namely, in order
to realize the negative crystal, we add an arrow from the framed vertex a going back to
the framing node f and also a newly-added superpotential term involving it. These arrows
play the role of the Lagrange multipliers enforcing the constraints. While the addition
of a newly-introduced field q potentially enlarges the vacuum moduli space of the theory,
the F -term constraint, which follows from taking the derivative of the superpotential with
respect to other fields, reduces to that of the original theory when we have q = 0. The
non-trivial statement is that in a suitable chamber of the moduli space (i.e. for a suitable
choice of the stability parameter), this is ensured automatically.

Physically, the framing node f represents non-compact D-branes filling some non-
compact cycles of the toric Calabi-Yau threefold X. For example, for the BPS wall-crossing,
the framing node corresponds to a D6-brane filling the entire X. Because the toric Calabi-

15In [2], a truncation factor t(a)(z) = z + C was introduced already during the definition of the quiver
Yangians that correspond to canonical crystals, therefore all the quiver Yangians in [2] are unshifted, in the
terminology of the current paper.

16Recall that by “pausing” we mean that the presence of negative crystal (lead by the pauser) ensures
that the overlapping of positive crystals does not give rise to an over-counting of the overlapped regions.
In some sense, a pauser makes the crystal grow slower, but at the right “speed”.
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Yau threefold X itself is non-compact, its BPS moduli space is also non-compact, therefore
we need a regularization procedure, where we start with a compact Calabi-Yau manifold
and then take the decoupling limit (cf. [42]). Since the D6-brane is non-compact at the
end of this process, the gauge field on the D6-brane becomes non-dynamical and gives rise
to a flavor symmetry of the theory. (As a mathematical counterpart, this extra framing
node of the quiver is called “frozen” in the cluster algebra literature.)

Similarly, the effect of adding non-compact D4 and D2 branes, which encompasses
“open/closed” BPS counting and truncation of the BPS algebra, respectively, can also be
realized by choosing a framing ] of (]Q, ]W ) appropriately.

3.6 Bootstrapping shifted quiver Yangians from subcrystal representations

The unshifted quiver Yangians Y(Q,W ) can be bootstrapped from their actions on the
molten crystal representations from the canonical crystal C0, see section 6.4 of [2]. This
property generalizes to the shifted quiver Yangian Y(Q,W, ]ψ) or equivalently Y(Q,W, s).
Namely, although in this paper, we first wrote down the algebraic relations of the shifted
quiver Yangians in (2.7) and then gave their actions on the subcrystal representations (3.2)
and (3.3), had we not known the algebraic relations, we could have also bootstrapped the
relations (2.7) from the actions (3.2) and (3.3).

The bootstrap procedure goes exactly the same way as the one in section 6.4 of [2].
Since all the relations involve a product of two operators at two values of spectral parame-
ters: A1(z) and A2(w), where A1,2 are from the set {e(a), ψ(a), f (a)} for a ∈ Q0, and we know
the action of a single operator on an arbitrary molten crystal state |K〉, applying A1(z) and
A2(w) on |K〉 in two different orders and comparing the two results A1(z)A2(w)|K〉 and
A2(z)A1(w)|K〉 then gives a relation (?) involving A1(z) and A2(w) on the arbitrary state
|K〉. Since we assume that the set of molten crystal states {|K〉} furnishes a representation
of the algebra, and the relation (?) is true on any |K〉, therefore, the relation (?) holds as
an algebraic relation itself, without the need to refer to any state |K〉. This way we can
derive all the relations in (2.7). Furthermore, demanding that the vacuum character of the
reduced quiver Yangian (2.23) reproduces the counting of the molten crystal configurations
from the canonical crystal strongly constraints the Serre relations [2]. It would be interest-
ing to explicitly identify an appropriate set of Serre relations for the quiver Yangian, such
that the resulting algebra (i.e. the reduced quiver Yangian) acts faithfully on the crystal.

Let us note that the fact that the quiver Yangians can be bootstrapped from their
action on the representations has been discussed previously in the literature. In fact,
inspired by the observation that the affine Yangian of gl1 can be bootstrapped from its
action on the set of plane partitions, the affine Yangian of gl2 and gl1|1 (in the “gluing”
bases) were constructed with this bootstrap technique, from their actions on a pair of
plane partition “glued” appropriately according to the dual graphs of the toric diagrams
of the C2/Z2 × C and the resolved conifold geometries, respectively [40, 43, 44]. The
“colored crystal bases” adopted in [2] makes the generalization of this bootstrap technique
to arbitrary toric Calabi-Yau threefolds more transparent and streamlined, because they
are particularly adapted to the structure of (the torus fix-points set of) the vacuum moduli
space. However, we expect that this bootstrap technique will work in other bases as well.
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Finally we mention the similarity of this bootstrap feature of the quiver Yangians to
that of vertex operator algebras (VOAs). First of all, it is known that for the special
case of the toric Calabi-Yau threefolds without compact 4-cycles, the quiver Yangians are
related to some infinite-dimensional W algebras [45].17 The algebraic relations of a vertex
operator algebra can be reconstructed once we know its action on the vacuum module,
due to the locality property of the VOA [49]. This is similar to the bootstrap story of the
quiver Yangian. However, in the colored crystal bases of the quiver Yangians adopted in
the current paper, the bootstrap of the quiver Yangians seems much more efficient and
transparent than the corresponding problem in VOA. It would be interesting to find the W
algebra counterpart of the quiver Yangians for generic toric Calabi-Yau threefolds (namely,
those with compact 4-cycles) by comparing the bootstrap procedures of the quiver Yangians
and of the VOAs.

4 Quiver BPS algebras

In this section we will see that the representation of the shifted quiver Yangian described in
the previous section can be derived more physically, namely by equivariant localization on
the moduli space of the quiver quantum mechanics [29] associated with the framed quiver
(]Q, ]W ) introduced in section 3.5. The discussion here closely follows a similar discussion
of [3] for the unshifted case.

4.1 Quiver quantum mechanics

We are identifying the algebraic construction of the BPS quiver Yangian with a physical
construction of the BPS algebra in an N = 4 supersymmetric quantum mechanics. The
defining data of a quantum mechanics Lagrangian consists of (1) a quiver-superpotential
pair (]Q, ]W ) and (2) for each vertex a ∈ ]Q0 the quiver dimension da and the stability
parameter ζa:

da ∈ Z≥0, ζa ∈ R, for a ∈ ]Q0 . (4.1)

The matter content for quiver gauge theories is identified as follows:

1. A non-framing node a ∈ Q0 with dimension da corresponds to the gauge group U(da).
In particular, the 1D N = 4 vector multiplet contains the following bosonic fields:

gauge field Aa, real scalar Xa, complex scalar Φa . (4.2)

2. An arrow I ∈ {a → b} for a, b ∈ Q0 corresponds to a chiral multiplet charged bi-
fundamentally with respect to U(db) × U(da). In particular, the 1D N = 4 chiral
multiplet contains the following bosonic fields:

complex scalar qI . (4.3)
17The affine Yangian of gl1 is isomorphic to the universal enveloping algebra of the W1+∞ algebra [9, 10].

The affine Yangians of gl2 and gl1|1 are expected to be related to the gl2 and gl2|2 matrix extended W1+∞

algebras, respectively [40, 43, 44]; and for more general toric Calabi-Yau threefolds without compact 4-
cycles, we expect that the affine Yangian of glm|n is related to the glm|n extended W1+∞ algebra studied
in [14, 46–48].
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In the Lagrangian, to the chiral multiplets one assigns complex mass parameters
identified with corresponding equivariant parameters:

hI . (4.4)

3. A framing node f is associated with an ungauged flavor symmetry U(df ), and there-
fore the corresponding gauge degrees of freedom in the node f are frozen. One can
introduce additional complex masses mi to the flavor multiplets by giving VEVs to
gauge multiplet fields:

〈Af 〉 = 0, 〈Xf 〉 = 0, 〈Φf 〉 = diag(m1,m2, . . . ,mdf
) . (4.5)

Physically this situation is usually interpreted as a quantum mechanical particle motion
in a target space geometry given by the quiver representation moduli space. We will denote
this space as

R~d,~ζ
(]Q, ]W ) . (4.6)

The N = 4 superalgebra is generated by four supercharges, combined in two doublets:

Qα , Q̄α̇ , with α, α̇ = 1, 2 , (4.7)

and satisfying the following relations:{
Qα, Q̄β̇

}
= −2σ0

αβ̇
H− 2i σµ

αβ̇
(Bµ

a )mn (G(a))nm ,

{Qα,Qβ} = −8
∑

a,b∈Q0

∑
I∈{a→b}

[(
σ0i
)
α

γ εγβ
(
q̄IB

i
a −Bi

bq̄I
)]
∂qIW ,

(4.8)

where H and G(a) are the Hamiltonian and the Noether charge operator for the U(da)
gauge transformation, respectively; and the 4-vector Bµ

a is

Bµ=0,1,2,3
a = (Aa, Xa,Re Φa, Im Φa) . (4.9)

A bridge between localizations in physics and those in geometry is constructed when
one interprets the fermion fields as differential forms on the cotangent bundle to the target
space. In this dictionary, the supercharge is translated into a twisted equivariant differen-
tial [3]:

Q1 = e−H
(
dX + ∂̄Φ + ∂̄q + ιV + dW∧

)
eH , (4.10)

which is de Rham in scalar fields X and Dolbeault in complex fields Φ and q; and the
function H is a Morse height function, whose critical locus corresponds to a canonical
quiver D-term contribution:

∂H

∂Xa
= ζa1da×da +

∑
x∈Q0

∑
I∈{a→x}

qIq
†
I −

∑
y∈Q0

∑
J∈{y→a}

q†JqJ , ∀a ∈ Q0 . (4.11)

Finally, the vector field V on R is:

V =
∑

a,b∈Q0

∑
I∈{a→b}

Tr (ΦbqI − qIΦa − hIqI)
∂

∂qI
. (4.12)
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4.2 Molten crystals as fixed points

The BPS states in this model are defined as physical ground states. The corresponding
wave-functions are annihilated by H and G, mapping them one-to-one to gauge-invariant
harmonic forms on R. Another relation in the superalgebra (4.8) dictates that for the
system to have a supersymmetric ground state, the superpotential W also has to be an
invariant function with respect to both the gauge and the flavor symmetries. As a result,
the values of the complex masses, i.e. the equivariant weights hI , have to satisfy the loop
constraint (2.1).

The wave-functions of the BPS states occupy a subspace of the whole Hilbert space,
called the BPS Hilbert space HBPS.

Using the Hodge decomposition theorem, we identify this space with the equivariant
cohomologies of the quiver representation moduli space:

HBPS ∼= H•GC

(
R~d,~ζ

(Q,W ) ,Q1
)
, (4.13)

where the equivariant action is realized by a complexified gauge group:

GC =
∏
a∈Q0

GL(da,C) . (4.14)

The standard localization techniques provide us a way to calculate this space via a
summation over the critical points of H andW that are fixed with respect to the equivariant
GC-action. The critical locus of H gives rise to a canonical quiver D-term (4.11) constraint
(i.e. a stability constraint) — following the guidelines of the Narasimhan-Seshadri-Hitchin-
Kobayashi correspondence theorem [50, 51], one concludes that the D-term constraint can
be traded for a stability constraint.

In what follows we will consider a specific locus on the moduli space known as a cyclic
chamber, which can be characterized by the constraint on the stability parameters:

ζa < 0 , for all non-framing nodes a ∈ Q0 . (4.15)

In the cyclic chamber, fixed points on the quiver representation moduli space are in one-
to-one correspondence with the molten crystals we describe in section 3.

A fixed point labeled by a molten crystal K defines a classical configuration. The IR
dynamics is described by a canonical phase with a spontaneously broken gauge symmetry.
To describe this fixed point quiver representation explicitly, we could choose any fixed basis
of our preference. One basis choice that makes this picture rather transparent is the one
in which the vectors are formally assigned to atoms of the molten crystal � ∈ K. The
resulting representation vector space can be split in graded components according to the
colors of the atoms:

Ua :=
⊕

C a , dimUa = da , a ∈ Q0 . (4.16)

In the IR, the expectation value of Φa is

〈Φa〉 ∈ End(Ua) , 〈Φa〉 b = δab h ( a ) · a , (4.17)
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and that of qI is

〈qI∈{a→b}〉 ∈ Hom(Ua, Ub) , 〈qI〉 a =
{

b , if I connects a to b in K ,

0, otherwise . (4.18)

The effective field theory near the configuration K is a theory of mesons, where the
meson fields are given by gauge-invariant polynomials of the chiral fields qI . In our case, the
Wilsonian renormalization group action is one-loop exact, due to supersymmetry. There-
fore we can expand all the polynomials in qI around their expectation values 〈qI〉 up to
the first-order quantum corrections δqI . This means that in the IR, the target space of the
theory is effectively the space of the linearized gauge-invariant polynomials of {qI}:

RIR(K) :=

⊕
I∈Q1

δqI

 / gC , (4.19)

where the linearized action of the gauge algebra gC reads:

δqI∈{a→b} 7→ δqI + gb · 〈qI〉 − 〈qI〉 · ga , with ga ∈ gl(da,C) . (4.20)

The meson fields µ ∈ RIR(K) have the same quantum numbers as the matrix elements
of qI in the chosen basis, so we could label them by indices I, a 1, and b 2, where a 1, and
b 2 are a pair of atoms of the crystal K connected by a qI matrix element (see (4.18)).
Such a meson field acquires an effective complex mass in the IR — an equivariant weight
of the corresponding tangent direction to a fixed point in R:

mC
(
µI; a 1, b 2

)
= h( b 2)− h( a 1)− hI . (4.21)

Naively, one may encounter a situation when a meson’s complex mass is zero. In prac-
tice, except for the extreme situations that correspond to reducible representations (which
we will consider later), the naive zero meson masses are lifted from zero by superpotential
higher order corrections. So there are no massless degrees of freedom, and hence the con-
figuration K is an isolated fixed point and the effective theory configuration is described
by a single state whose wave function we denote as a ket-vector

|K〉 . (4.22)

A geometric characteristic of a fixed point K can be given in terms of an equivariant
Euler class. When calculating this expression we have to take into account the lifting
corrections due to the superpotential to the equivariant weights. In [3] a regularized version
of the Euler class was proposed. Suppose we consider a meson vector space N with a graded
basis µi:

N : {µi,mC,i}dim N
i=1 . (4.23)

For such a vector space the regularized Euler class is defined as:

Eul(N) := (−1)

⌊ ∑
i: mC,i=0

1
2

⌋
∏

i: mC,i 6=0
mC,i , (4.24)

where b∗c is the floor function applied to ∗.
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A complete subspace of the Hilbert space containing BPS wave functions for all ad-
missible dimension vectors ~d can be parameterized by a crystal C:⊕

~d

HBPS;~d,~ζcyclic
∼=

⊕
K∈melt(C)

C|K〉 . (4.25)

In the next subsection we will describe a BPS algebra acting on the Hilbert space (4.25).

4.3 BPS algebras

To construct the BPS algebra, consider two-dimensional vectors ~d and ~d′ that satisfy

d′a = da + 1 (4.26)

for some single node a ∈ Q0. The BPS algebra generators act as maps between quantum
mechanical systems for target spaces parameterized by ~d and ~d′:

HBPS
[
R~d,~ζ

(
]Q, ]W

)]
HBPS

[
R~d′,~ζ

(
]Q, ]W

)]
.

e(a)

f (a)
(4.27)

Explicitly, these maps are given by a Fourier-Mukai (FM) transform acting on the coho-
mologies of the quiver representation moduli spaces, and hence the BPS Hilbert spaces,
analogous to the constructions of [52, 53]. The Fourier-Mukai kernel is given by the struc-
ture sheaf of an incidence locus defined as an inclusion of a sub-representation into a bigger
representation:

R~d,~ζ

(
]Q, ]W

)
⊂ R~d′,~ζ

(
]Q, ]W

)
. (4.28)

Consider two fixed-point representations corresponding to two molten crystals K and K′,
respectively. The representation associated with K can be embedded into the one associated
with K′ only if the crystal configuration K can be embedded into K′, namely if K′ = K+�.
In the neighborhood of a pair of fixed points K and K + �, the incidence locus constraint
is also linearized and can be described by a hyperplane:

SIR(K,K + �) := {RIR(K) ⊂ RIR(K + �)} ⊂ RIR(K)⊕RIR(K + �) . (4.29)

The resulting matrix elements read for the raising/lowering BPS algebra generators:18

e(a)|K〉 =
∑

a ∈Add(K)
σ+(K, a ) Eul (RIR(K))

Eul (SIR(K,K + a )) |K + a 〉 ,

f (a)|K〉 =
∑

a ∈Rem(K)
σ−(K, a ) Eul (RIR(K))

Eul (SIR(K− a ,K)) |K−
a 〉 .

(4.30)

To compare later with the quiver Yangians that are bootstrapped from the molten
crystal representations, it is convenient to introduce a spectral parameter z to the BPS

18Extra corrections σ±(K,�) in these expressions are mere (±1)-sign multipliers defined in [3, equa-
tion (2.62)]. This is a counterpart of the sign choices in (3.2).
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algebra constructed via (4.30). First, notice that the gauge invariant combinations of
Φa (4.17) commute with the supercharge (4.10) and can be used to extend the BPS algebra
of e(a) and f (a), in particular, we have

Tr (z − Φa)−1|K〉 =
∑
a ∈K

1
z − h( a ) |K〉 . (4.31)

Then we define the raising and lowering operators with spectral parameter z as [3]

e(a)(z) ≡
[
Tr(z − Φa)−1, e(a)

]
and f (a)(z) ≡ −

[
Tr(z − Φa)−1, f (a)

]
, (4.32)

whose actions on the crystal state are

e(a)(z)|K〉 =
∑

a ∈Add(K)

σ+(K, a )
z − h( a ) ×

Eul (RIR(K))
Eul (SIR(K,K + a )) |K + a 〉 ,

f (a)(z)|K〉 =
∑

a ∈Rem(K)

σ−(K, a )
z − h( a ) ×

Eul (RIR(K))
Eul (SIR(K− a ,K)) |K−

a 〉 .
(4.33)

In addition, we can define Cartan operators

ψ(a)(z) = ]ψ
(a)
0 (z) exp

 ∑
b∈]Q0

Tr log ϕb⇒a(z − Φb)

 , (4.34)

where functions ϕ are bond factors associated with the framed quiver ]Q we defined
in (2.9),19 and the vacuum charge function ]ψ

(a)
0 (z) can also be treated in this picture

as a bond factor contribution from “frozen” degrees of freedom corresponding to the fram-
ing node f :

]ψ
(a)
0 (z) = ϕf⇒a(z) . (4.35)

A crystal basis |K〉 is an eigen-basis of operators ψ(a)(z) with eigenvalues

ψ(a)(z)|K〉 = Ψ(a)
K (z)|K〉 . (4.36)

The generators
e(a)(z), f (a)(z), ψ(a)(z) (4.37)

define the BPS algebra acting on the BPS Hilbert space as a crystal representation.
We should comment that although the expressions for the representations of the shifted

quiver Yangian (4.33) look different from the bootstrapped expressions (3.2), the two rep-
resentations are isomorphic. The isomorphism is given by a simple re-scaling of the norms
of the states in the representation. In the bootstrapped representation, the generators
e(a)(z) and f (a)(z) are conjugate with respect to the following norm:

〈K,K′〉bootstrap = δK,K′ , (4.38)
19While the expression (2.9) was originally meant for the quiver Q in section 2, here we apply the same

formula to the framed quiver ]Q.
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whereas the norm associated with the quantum mechanics reads:

〈K,K′〉QM = Eul (RIR(K)) δK,K′ . (4.39)

We have computed the relations in the BPS algebra acting on different vectors of all
the crystal representations listed in the paper. A conclusion supported by diverse numerical
evaluations is the following:

BPS Algebra (]Q, ]W ) ∼= Y(Q,W, s) , (4.40)

as long as the representations are irreducible. The shifts s in (4.40) are defined in a
canonical way (3.7).

The obstacle to extending this claim to all representations including reducible ones is
not insurmountable. The problem occurs when we are trying to move across a boundary
between irreducible components inside a reducible representation. Even though the crystals
at this boundary are related by embedding: say, K ⊂ K + a , the corresponding matrix
element is however null:

〈K + a | e(a)(z) |K〉 = 0 . (4.41)

On the quantum mechanics side, in this situation we hit an IR singularity, which we
will discuss in the next subsection. The corresponding matrix element for BPS algebra
generator e(a)(z) is not well-defined. However if one re-defines ill-defined matrix elements
of the BPS algebra to be zero as in (3.2) we conjecture that the equivalence (4.40) can be
extended to all representations.

4.4 Reducible representations and IR singularities

The IR singularities we mentioned in the previous section are standard singularities for low-
energy effective actions. The masses of the effective particles are functions of initial and
renormalization group parameters and are generically unconstrained. The parameter space
may contain specific loci where the masses of some particles become zero. An occasionally
massless particle contributes as a resonance pole to the scattering matrices at low energies,
and thus it can create a condensate and produce a singularity in the effective action. In this
subsection we would like to present our arguments that the reducibility of a BPS algebra
representation is closely related to the appearance of massless particles in the low energy
spectrum, spoiling isolated crystal vacua.

4.4.1 Example: CCC3

Let us first illustrate this phenomenon using the simplest example of a C3 framed quiver,
with a standard superpotential:

]Q = B1,2,3
R

S
,

]W = TrB1[B2, B3] .

(4.42)

– 25 –



J
H
E
P
0
8
(
2
0
2
1
)
1
4
6

Compared with the canonically framed quiver (Q,W )0 for C3, the framed quiver (]Q, ]W )
has an additional arrow going from the gauged node back to the framing node �, and note
that the superpotential W is unchanged by this additional arrow. Namely, there are two
arrows R and S connecting the framing node � with the gauge node. The superpoten-
tial is independent of both R and S, therefore the equivariant weights of these fields are
unconstrained. The ground state charge function in this case reads:

]ψ0(z) = z + hS
z − hR

. (4.43)

The crystal ]C corresponding to (]Q, ]W ) is a C3 canonical crystal C0 filling an octant in
the 3D space.

The reducibility of this representation depends on the value of the complex parameter
hR+hS . Consider two molten crystal configurations: an empty one |∅〉 and one containing
a single atom |�〉. A simple calculation (4.30) gives the matrix element of the raising
operator e:

〈� | e |∅〉2 = hR + hS . (4.44)

When hR + hS is a generic complex number, not belonging to the 2D crystal lattice,
the representation is irreducible. However, if hR + hS = 0, the representation becomes
reducible, and moreover, |∅〉 is a one-dimensional irreducible component.

On the other hand, in the configuration associated with |�〉 we have the following
expectation values of fields:

〈Bi〉 = 0 , 〈R〉 = 1 , 〈S〉 = 0 , 〈Φ〉 = hR , (4.45)

so that the quantum correction δR for the condensed field R is massless, fulfilling the
condensation constraint:

mC(δR) = 〈Φ〉 − hR = 0 . (4.46)

A quantum correction δS to the chiral field S parameterizes an effective meson field, with
an effective chiral mass given by the following expression:

mC (δS) = −〈Φ〉 − hS = −(hR + hS) = −〈� | e |∅〉2 . (4.47)

Therefore we see that the situation when the representation becomes reducible and the
vectors |∅〉 and |�〉 belong to two disjoint irreducible components corresponds to an IR
singularity due to an effective massless meson particle.

4.4.2 General cases

The simple logic presented earlier can be extended to the general situation when a negative
crystal is placed deeper than the boundaries of the positive crystals (see figure 4). In
particular, we will argue that this situation leads to an effectively new massless particle in
the IR.

Consider a path connecting the leading atom of a positive crystal (the atom with the
red dot in figure 4) to that of a negative crystal (the blue dot in figure 4). Decompose this
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K

M

D

S

Figure 4. Schematized crystal-version depiction for a reducible representation.

path into two segments: (1) the path going along the positive crystal boundary denoted as
M and (2) the path going inside the crystal denoted as D. Denote the chiral field associated
to the arrow going from the gauge node back to the framing node, and corresponding to
the head atom of the negative crystal, as S. As discussed in section 3.5, the correction to
the superpotential due to the arrow S takes the following form:

δW = TrS ·D ·M . (4.48)

This model can describe both the scenarios when the negative crystal is placed at the
boundary of the positive crystal and the one when it is deep in the interior of the positive
crystal. In the former case map D is just given by the unit in the quiver path algebra.

We start to grow a crystal K as usual until it reaches an atom located at M . For such
a crystal, the field M condenses and acquires an expectation value

〈M〉 6= 0 , (4.49)

therefore its complex mass mC(M) = 0. After the spontaneous symmetry breaking in the
IR, the quantum degrees of freedom δM acquire a mass through the Higgs mechanism.
Equivalently we may say it is deleted from the IR meson space (4.19) by the gC-action.
Notice that mC(D) = 0 since it does not displace the atom location projected to the 2D
{h1, h2}-space. From the loop constraint (2.1) on the superpotential we derive:

mC(S) = −mC(D)−mC(M) = 0 . (4.50)

The superpotential contribution corrects this zero mass by:

|δmC(S)|2 ∼
∣∣∣∣∂δW∂S

∣∣∣∣2 ∼ |〈D〉|2 · |〈M〉|2 ∼ |〈D〉|2 , (4.51)

where in the last correspondence in (4.51) we have used the fact that M has a non-
zero VEV.

Now consider the two scenarios separately. In the first scenario where the negative
crystal is located at the boundary of the positive crystal and hence D is just a unit in the
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quiver path algebra, one can substitute D by just a complex number, so its expectation
value is non-zero, and from (4.51) the field S has a non-zero effective mass in the IR. In
the second scenario where the negative crystal is placed deeper inside the positive crystal,
according to the melting rule discussed in section 3.1 we can always pick a molten crystal
configuration K such that it does not contain the atom D ·M . In this case 〈D〉 = 0, and
the field S is effectively massless in the IR.

5 Wall-crossing

The BPS states are known to be affected by the wall-crossing phenomena [54–57]: the
spectra of the BPS states have a piece-wise dependence on the value of Kähler moduli,
such that the Kähler moduli space is divided into chambers separated by the marginal
stability walls. A BPS spectrum in a given chamber is well-defined and jumps across the
walls. This aspect brings certain difficulties to the construction of the BPS algebra outside
the cyclic chamber.

Although there exist various computational tools in the literature that allow one to
describe the spectrum and the corresponding invariants for a generic point of the Kähler
moduli space, a generic structure of the BPS spectrum in an arbitrary chamber remains
obscure. Generically, outside the cyclic chamber we have not been able to assign some
tractable enumerative combinatorics theory to the fixed points in a way similar to how we
enumerate the fixed points by the molten crystals in the cyclic chamber. This phenomenon
occurs even for the simplest toric Calabi-Yau threefolds — although the fixed point com-
binatorics is still traceable outside the cyclic chamber, we lose the 3D crystal structure,
hindering the construction of the BPS algebra based on the crystal melting picture.

Therefore in the following we will focus on those cases where the BPS states are still
enumerated by 3D crystals even after wall-crossings.

5.1 Example: wall-crossing in conifold

The first class of the wall-crossing examples is spanned by quiver mutations, also known
to the physics community as Seiberg dualities [58].

A mutation identifies the representation moduli spaces for two quivers with different
values of FI parameters and dimensions, in a manner that a cyclic chamber of one quiver
may be mapped to a non-cyclic chamber of the other one.

The simplest example of the mutation is captured by the wall-crossing phenomenon in
the conifold O(−1)×O(−1)→ P1, whose toric diagram and its dual graph are

(0,0)

(0,1) (1,1)

(1,0)

3
3̂

1

1̂

(5.1)

– 28 –



J
H
E
P
0
8
(
2
0
2
1
)
1
4
6

5.1.1 Canonical crystal and affine Yangian of gl1|1
The canonically framed quiver-superpotential pair (Q0,W0) is

Q0 =
ι

a1, a2

b1, b2∞ 1 2
,

W0 = Tr [b2a2b1a1 − b2a1b1a2] .

(5.2)

The corresponding periodic quiver on a torus, which can be redrawn as an infinite square
lattice on a plane universally covering the torus, is

1

11

11

2 2

2

2

a1
a2

a1

a1

a2

a2

b2 b2

b2

b1

b1 b1

(5.3)

The canonical crystal in the case of the conifold is a lift to 3D of the square lattice
in a physical 2D plane of weights parameterized by h1 and h2. The third direction is
parameterized by the depth parameter d. White atoms corresponding to quiver vertex 1
are filling even levels in d, while black atoms corresponding to quiver vertex 2 are filling
odd levels in d. So we can assign to lattice edges a1, a2, b1, b2 the following 3D lifted
vectors (see figure 5):

~a1 = (−1, 0, 1) , ~b1 = (0,−1, 1) , ~a2 = (1, 0, 1) , ~b2 = (0, 1, 1) . (5.4)

The loop constraint (2.1) translates to

µ(a1) + µ(a2) + µ(b1) + µ(b2) = 0 , (5.5)

and the vertex constraint (2.2) translates to

µ(a1) + µ(a2) = µ(b1) + µ(b2) . (5.6)

After imposing both the loop and vertex constraints, we have

µ(a1) = −h1 , µ(a2) = h1 , µ(b1) = −h2 , µ(b2) = h2 . (5.7)

One can then immediately read off the bond factors from the periodic quiver (6.34) by
the definition (2.9)

ϕa⇒a(u) = 1 , ϕa⇒a+1(u) = (u+ ha+1)(u− ha+1)
(u+ ha)(u− ha)

, (5.8)
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Figure 5. The canonical crystal for the resolved conifold (called pyramid partition). It corresponds
to the so-called non-commutative DT chamber [17], i.e. m = 1.

where the indices are understood as mod 2. Accordingly, the resulting algebra is

OPE:



ψ(a)(z)ψ(b)(w) ∼ ψ(b)(w)ψ(a)(z) ,
ψ(a)(z) e(a)(w) ∼ e(a)(w)ψ(a)(z) ,
e(a)(z) e(a)(w) ∼ −e(a)(w) e(a)(z) ,
ψ(a)(z) f (a)(w) ∼ f (a)(w)ψ(a)(z) ,
f (a)(z) f (a)(w) ∼ −f (a)(w) f (a)(z) ,

ψ(a+1)(z) e(a)(w) ∼ (∆ + ha+1)(∆− ha+1)
(∆ + ha)(∆− ha)

e(a)(w)ψ(a+1)(z) ,

e(a+1)(z) e(a)(w) ∼ −(∆ + ha+1)(∆− ha+1)
(∆ + ha)(∆− ha)

e(a)(w) e(a+1)(z) ,

ψ(a+1)(z) f (a)(w) ∼ (∆ + ha)(∆− ha)
(∆ + ha+1)(∆− ha+1) f

(a)(w)ψ(a+1)(z) ,

f (a+1)(z) f (a)(w) ∼ − (∆ + ha)(∆− ha)
(∆ + ha+1)(∆− ha+1) f

(a)(w) f (a+1)(z) ,

{e(a)(z) , f (b)(w)} = −δa,b ψ
(a)(z)− ψ(a)(w)

z − w
,

(5.9)

where throughout this paper ∆ is defined as

∆ ≡ z − w. (5.10)

The initial conditions are

Initial:



[ψ(a)
0 , e(a)

m ] = [ψ(a)
1 , e(a)

m ] = [ψ(a)
0 , f (a)

m ] = [ψ(a)
1 , f (a)

m ] = 0 ,
[ψ(a+1)

0 , e(a)
m ] = 0 ,

[ψ(a+1)
0 , f (a)

m ] = 0 ,
[ψ(a+1)

1 , e(a)
m ] = (−1)a (h2

2 − h2
1) e(a)

m ,

[ψ(a+1)
1 , f (a)

m ] = −(−1)a (h2
2 − h2

1) f (a)
m .

(5.11)

We can check that ψ(0)
0 +ψ

(1)
0 is a central term. To complete the definition, we supplement
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ζ1

ζ2

Cyclic

EmptyC
(i)
m

C
(f)
m

Figure 6. The stability chambers of the conifold.

these relations with the Serre relation

Serre :

 Symz1,z2

{
e(a)(z1) ,

[
e(a+1)(w1),

{
e(a)(z2) , e(a+1)(w2)

}]}
∼ 0 ,

Symz1,z2

{
f (a)(z1) ,

[
f (a+1)(w1),

{
f (a)(z2) , f (a+1)(w2)

}]}
∼ 0 ,

(5.12)

5.1.2 Chamber structure

We study the chamber structure of moduli space associated with the conifold following [18].
The marginal stability walls and the chambers in the Kähler moduli space are depicted in
figure 6. The entire positive quadrant is occupied by an “empty” chamber in which there
are no supersymmetric BPS states in the spectrum, except for the trivial vacuum where all
the quiver dimensions are zero. The negative quadrant is filled by the cyclic chamber Ccyc.

In the two remaining quadrants, there are an infinite number of chambers, labeled by
integers and accumulating towards the line

ζ1 + ζ2 = 0 . (5.13)

These chambers can be divided into two classes: infinite chambers C(i)
m and finite ones C(f)

m ,
both labeled by positive integer m ∈ N.20 They are given by their boundaries:

C
(i)
m : (m− 1) ζ1 +mζ2 > 0 , m ζ1 + (m+ 1) ζ2 < 0 ,

C
(f)
m : mζ1 + (m− 1) ζ2 < 0 , (m+ 1) ζ1 +mζ2 > 0 .

(5.14)

Let us define linear transformations of dimensions:

~d (i)
m = (md1 + (1−m)d2 , (1 +m)d1 −md2) ,
~d (f)
m = (−(m+ 1)d1 +md2 , −md1 + (m− 1)d2) .

(5.15)

20This identification will become clear in what follows.
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Then we have the following equivalence between quiver representation moduli spaces in-
duced by mutation sequences:

R
(
~d (i)
m , ~ζ ∈ C(i)

m , Q,W
)
∼= R

(
~d, ~ζ ∈ Ccyc, Q

(i)
m ,W

(i)
m

)
,

R
(
~d (f)
m , ~ζ ∈ C(f)

m , Q,W
)
∼= R

(
~d, ~ζ ∈ Ccyc, Q

(f)
m ,W (f)

m

)
.

(5.16)

Below we will discuss the quiver mutation on
(
Q

(i)
m ,W

(i)
m

)
and

(
Q

(f)
m ,W

(f)
m

)
. In particular,

a single mutation process transforms a quiver through a single marginal stability wall
m↔ m+ 1, as we explain in appendix A (see also [59]).

5.1.3 Infinite chambers

A sequence of m − 1 steps of quiver mutations (for a single step see appendix A) on the
canonically framed quiver (5.2) for the conifold geometry gives the quivers Q(i)

m and the
superpotential W (i)

m in the infinite chamber C(i)
m [59]:

Q(i)
m =

1 2
a1, a2

b1, b2
r1, . . . , rm

s1, . . . , sm−1

,

W (i)
m = Tr

[
b2a2b1a1 − b2a1b1a2 +

m−1∑
i=1

si (a2ri − a1ri+1)
]
.

(5.17)

Below we will also rederive this quiver-superpotential pair from the shape of the correspond-
ing subcrystal, by first decomposing the subcrystal into superpositions of positive/negative
crystals, using the procedure of section 3.2 and 3.5. The fields associated with the arrows
in Q(i)

m have the following complex masses, i.e. equivariant weights:

µ(a1) = −h1 , µ(a2) = h1 , µ(b1) = −h2 , µ(b2) = h2 ,

µ(rk) = 2(k − 1)h1 , µ(sk) = −(2k − 1)h1 .
(5.18)

The crystal C(i)
m corresponding to the quiver (5.17) is a prism-like infinite crystal cor-

responding to a stack of pyramids such that the resulting crystal develops an edge (see
figure 7(a)) [17, 18, 59, 60]. The edge contains exactly m (white) atoms and the case
m = 1 corresponds to the canonical crystal shown in figure 5. A generating function
for the number N(w, b) of molten crystals containing w white atoms and b black atoms
reads [60]:

Zm(q1, q2) =
∑
w,b

Nm(w, b)qw1 qb2 =
( ∞∏
n=1

(1− qn1 qn2 )−2n
)

×
( ∞∏
n=1

(
1 + qm+n−1

1 qm+n
2

)n)( ∞∏
n=m

(
1 + q−m+n+1

1 q−m+n
2

)n)
.

(5.19)

Let us first specify the coordinate system for the atoms in the crystal C(i)
m . We choose

the white atom at the left end of the edge as the origin; and the direction to its right is
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chosen as the x1 direction, the one to its north as the x2 direction, and finally the direction
pointing deeper into the crystal as the x3 direction. An atom at the coordinate (x1, x2, x3)
has the equivariant weight (or the coordinate function)

h(�) = h1x1(�) + h2 x2(�) , (5.20)

which is independent of the x3 direction. Along the x3 direction, there is a double layer
structure, namely, with white and black layers alternating. The atoms in the nth white
layer and the nth black layer both have x3 = n− 1.

In the crystal C(i)
m , the m white atoms (for node 1) along the edge (see figure 7(b)) are

at depth d = 0, with coordinates

(x1, x2, x3) = (2k − 2, 0, 0) =: xk , for k = 1, . . . ,m , (5.21)

whose coordinate functions (5.20) give the equivariant weights of m arrows rk going from
the framing node to node 1:

starter of color 1: χk ≡ µ(rk) = 2(k − 1) h1 , k = 1, . . . ,m . (5.22)

The (m− 1) black atoms (for node 2) sitting between the m white atoms are also at depth
d = 0, whose projections to the edge of the prism are shown in figure 7(b). They have
coordinates

(x1, x2, x3) = (2k − 1, 0, 1) =: yk , for k = 1, . . . ,m− 1 , (5.23)

whose coordinate functions (5.20) give the equivariant weights of the m − 1 Lagrange
multiplier fields sk, which are denoted by the m − 1 arrows going from node 2 to the
framing node:

pausers of color 2: υk ≡ −µ(sk) = (2k − 1)h1 , k = 1, . . . ,m− 1 . (5.24)

Finally, the Lagrange multiplier fields sk impose relations on the quiver path algebra that
ensure that two paths starting from nearest white atoms at xk and xk+1 end on a common
black atom at yk.

From the viewpoint of this paper, the crystal C(i)
m (shown in figure 7(a)) should be

considered as a subcrystal of the canonical crystal C(i)
1 (shown in figure 5). To obtain the

subcrystal C(i)
m from the canonical crystal C(i)

1 , one can either (1) remove m − 1 “layers”
of atoms from C(i)

1 along certain direction or (2) superpose certain number of positive and
negative canonical crystals C(i)

1 , positioned according to the starters and pausers, respec-
tively.21

Let us look at the second approach (explained in section 3.2) now and leave the first
one to appendix B.2. To illustrate the procedure, it is enough to use the subcrystal C(i)

3 as
an example. In the procedure of section 3.2, one can see that C(i)

3 contains three positive
(canonical) crystals at level-1: Ca, Cb, Cc, where Ca,b,c = Cx1,x2,x3 and Cx is the canonical

21There is no stopper involved because we are not considering truncation for now.
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(a)

(b)
x1 y1 x2 y2 ym−1 xm

Figure 7. (a) The crystal for the infinite chamber C(i)
m of the resolved conifold, with m = 3. (b) The

locations of the starters at xk with k = 1, 2, . . . ,m and the pausers at yk with k = 1, 2, . . . ,m− 1.

crystal whose leading atom is at the position x. Their intersections gives the three negative
(canonical) crystals at level-1: Cab, Cbc, Cac. Then the intersection of theses three negative
crystals at level-1 gives one positive crystal at level-2: Cabc.

Ca : Cb :

Cc : Cab

Cbc : Cac :

(5.25)

In principle this procedure, based on the inclusion-exclusion principle, can be infinite.
In the current case, one can see that the decomposition procedure terminates at Cabc because
the negative crystal Cac and the positive crystal Cabc coincide and hence cancel each other.
As a result, the subcrystal C(i)

3 has a decomposition

C(i)
3 = Ca + Cb + Cc − Cab − Cbc . (5.26)

Therefore, the positive crystal contributions are only from starter atoms in the prism edge
located in points χk in figure 7(b), and the negative contributions come only from pausers
located in points υk in figure 7(b). For the general crystal we have:

C(i)
m =

m∑
k=1
Cxk
−
m−1∑
k=1
Cyk

, (5.27)
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where Cx is a canonical crystal whose leading atom is at the position x, {xk} is the set of
the coordinates of the m starters, and {yk} is the one for the m− 1 pausers.

Using (3.7) we translate the coordinate function of the starters (5.22) and pausers (5.24)
into the ground state charge function:

]ψ
(1)
0 =

m∏
k=1

1
z − χk

and ]ψ
(2)
0 =

m−1∏
k=1

(z − vk) . (5.28)

Therefore, the infinite subcrystal C(i)
m , for chamber m, gives rise to a representation of the

shifted quiver Yangian of gl1|1, with shifts given by

s = (m,−m+ 1) . (5.29)

The net shift s(1) + s(2) is 1. One can use the procedure of section 3.5 to check that
the framed quiver and superpotential corresponding to the ground state charge function is
indeed the one obtained by the sequence of quiver mutations (5.17).

Finally, note that there is more than one way to construct the subcrystal C(i)
m from

the canonical C(i)
1 . In appendix B.2, we show how to obtain the crystal C(i)

m by removing
m − 1 “layers” of atoms from the canonical crystal C(i)

1 along a certain direction; and
correspondingly derive the ground state charge function by considering the ground state
of the representation given by C(i)

m as an excited state in the vacuum representation given
by the canonical crystal C(i)

1 . The resulting ground state charge functions (B.19) agree
with (5.28), derived via the positive/negative crystal decomposition.

5.1.4 Finite chambers

In contrast to the infinite chamber, the crystal in a finite chamber is of finite size [18]. The
quiver Q(i)

m and superpotentials W (i)
m in the finite chamber C(f)

m are:

Q(f)
m =

1 2
a1, a2

b1, b2
r1, . . . , rm

s0, . . . , sm

,

W (f)
m = Tr

[
b2a2b1a1 − b2a1b1a2 + s0a1r1 +

m−1∑
i=1

si(a2ri − a1ri+1) + sma2rm

]
.

(5.30)

Compared to the infinite chamber case in (5.17) for the same m, the quiver Q(f)
m for the

finite chamber has two additional fields s0 and sm, whose equivariant weights are

µ(s0) = h1 and µ(sm) = −(2m− 1)h1 , (5.31)

and the equivariant weights of all the other fields take the same value as those for the(
Q

(i)
m ,W

(i)
m

)
in the infinite chamber, given in (5.18).

In accordance with the two additional fields s0 and sm in the quiver Q(f)
m , the super-

potential W (f)
m (5.30) has two additional terms, which are underlined. The two new fields

s0 and sm impose two extra relations on the quiver path algebra:

a1r1 = 0 , a2rm = 0 , (5.32)
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(a)

(b)
y0 x1 y1 x2 y2 ym−1 xm ym

Figure 8. (a) The crystal for the finite chamber C(f)
m of the resolved conifold, with m = 4. (b) The

locations of the starters at xk with k = 1, 2, . . . ,m, the pausers at yk with k = 1, 2, . . . ,m− 1, and
the stoppers at y0 and ym.

which dictate that the crystal should stop its growth at the two corresponding stopper
atoms.

This means that the corresponding crystal C(f)
m can be obtained by cutting off two

infinite pyramids from the two ends of an infinite crystal C(f)
m (with the same m). The

resulting crystal C(f)
m has the shape of a tetrahedron (see figure 8(a)) and is also called a

finite type pyramid partition in the literature [18, 59]. Compared to the crystal C(i)
m in the

infinite chamber for the same m, in addition to the m starters with coordinates at xk with
k = 1, 2, . . . ,m (see (5.21)) and the pausers at yk with k = 1, 2, . . . ,m− 1 (see (5.23)), the
finite crystal C(f)

m has two stoppers at y0 and ym. The positions of theses starters, stoppers,
and pausers for the crystal C(f)

m give the equivariant weights of the corresponding arrows
via (5.20) as in the previous case (see figure 8(b)):

starts of color 1: χk = µ(rk) = 2(k − 1)h1 , k = 1, . . . ,m ,

pausers of color 2: υk = −µ(sk) = (2k − 1)h1 , k = 1, . . . ,m− 1 ,
stoppers of color 2: υk = −µ(sk) = (2k − 1)h1 , k = 0,m .

(5.33)

Finally, the partition function for C(f)
m reads:

Z(q1, q2) =
m∏
n=1

(1 + qm−n1 qm−n+1
2 )n , (5.34)

from which one can check that the total number of atoms in C(f)
m is:

max # = m(m+ 1)(2m+ 1)
6 . (5.35)
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From (3.7), the ground state charge function of the finite representation from the
crystal C(f)

m is

]ψ
(1)
0 =

m∏
k=1

1
z − χk

and ]ψ
(2)
0 =

m∏
k=0

(z − vk) , (5.36)

where the poles come from the starters located at xk in (5.33) and the zeros from pausers
and stoppers located at yk in (5.33). This is to be compared with the result (5.28) for
the infinite chamber with the same m. Again, one can use the procedure of section 3.5 to
derive the framed quiver and superpotential pair associated with the ground state charge
function (5.36) and check that it gives

(
Q

(i)
m ,W

(i)
m

)
in (5.30).

Finally, using (3.8), we see that the finite representation from the crystal C(f)
m is a

representation of the shifted quiver Yangian of gl1|1, with shifts given by

s = (m,−m− 1) . (5.37)

The net shift is −1, in contrast to the case in the infinite chamber, whose net shift is 1
from (5.29).

5.2 Example: wall-crossing in KPPP2

Let us now give an example of a toric Calabi-Yau threefold with compact 4-cycle.

5.2.1 Canonical crystal and unshifted quiver Yangian

Let us consider the geometry KP2 , the canonical bundle over P2. The geometry coincides
with C3/Z3, where the action of Z3 is (z1, z2, z3)→ (ωz1, ωz2, ωz3) with ω3 = 1. The toric
diagram and its dual graph are

(0,0)

(-1,0)

(1,1)

(0,-1)

(5.38)

The canonically framed quiver is the McKay quiver [61, 62] for the Z3-action together
with the framing node and one arrow from the framing node to the node 1:

Q0 =

1

2

3
(
X

(1)
i , α

(1)
i

)
(
X

(2)
i , α

(2)
i

)

(
X

(3)
i , α

(3)
i

)
(5.39)
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The corresponding superpotential is

W0 =
3∑

i,j,k=1
εijkTr(X(1)

i X
(2)
j X

(3)
k ) , (5.40)

where εijk is the totally antisymmetric tensor.
The loop constraint (2.1) from the superpotential is

α
(1)
i + α

(2)
j + α

(3)
k = 0 for {i, j, k} ∈ {1, 2, 3} , (5.41)

and the vertex constraint (2.2) for this case is

3∑
i=1

α
(a)
i =

3∑
i=1

α
(a+1)
i for a = 1, 2, 3 , (5.42)

which reduces the number of parameters to two, given by the triple (h1, h2, h3):

α
(1)
i = α

(2)
i = α

(3)
i = hi (i = 1, 2, 3) , h1 + h2 + h3 = 0 . (5.43)

Finally, the periodic quiver corresponding to the canonically framed quiver and superpo-
tential pair (5.39) and (5.40) is

3 12

2

1

3

23

1

h2h2

h1

h1

h1

h1

h2h2

h2 h2

h1

h1

h3

h3

h3

h3

(5.44)

where we have shown the fundamental regions of the torus as shaded regions. Since there
is no self-loop in the quiver diagram (5.39), all vertices are fermionic:

|a| = 1 , a = 1, 2, 3 . (5.45)

For the C3/Z3 geometry, the canonical crystal built from the periodic quiver (5.44)
has the same shape as the one for the C3 geometry, and the Z3 orbifolding only changes
the coloring scheme. Namely, each molten crystal configuration from the canonical crystal
of C3/Z3 is a plane partition, and the coloring scheme is the following. The 3D octant can
be sliced into layers of atoms, with the layers perpendicular to the vector (1, 1, 1). Now
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instead of having a uniform color for all atoms as in C3, the color of a box (i.e. atom) in
the plane partition is defined as

color(�) = (slice(�) mod 3) + 1 , (5.46)

where slice(�) counts which slice the � is in, given by

slice(�) = x1 + x2 + x3 for � at coordinate (x1, x2, x3) . (5.47)

In this convention the box at the origin of the plane partition has coordinate (0, 0, 0) and
has color(�) = 1.

From the period quiver (5.44), we can read off the bond factors to be

ϕa⇒a(u) = 1 ,

ϕa⇒a+1(u) = 1∏
i=1,2,3 (u− hi)

≡ ϕ−(u) ,

ϕa⇒a−1(u) =
∏

i=1,2,3
(u+ hi) ≡ ϕ+(u) ,

(5.48)

which gives the unshifted quiver Yangian

OPE:



ψ(a)(z)ψ(b)(w) = ψ(b)(w)ψ(a)(z) ,
ψ(a)(z) e(a)(w) ' e(a)(w)ψ(a)(z) ,
e(a)(z) e(a)(w) ∼ −e(a)(w) e(a)(z) ,
ψ(a)(z) f (a)(w) ' f (a)(w)ψ(a)(z) ,
f (a)(z) f (a)(w) ∼ −f (a)(w) f (a)(z)

ψ(a±1)(z) e(a)(w) ' ϕa⇒a±1(∆) e(a)(w)ψ(a±1)(z) ,
e(a+1)(z) e(a)(w) ∼ −ϕa⇒a+1(∆) e(a)(w) e(a+1)(z) ,
ψ(a±1)(z) f (a)(w) ' ϕa⇒a±1(∆)−1 f (a)(w)ψ(a±1)(z) ,
f (a+1)(z) f (a)(w) ∼ −ϕa⇒a+1(∆)−1 f (a)(w) f (a+1)(z) ,

{e(a)(z) , f (b)(w)} ∼ −δa,b ψ
(a)(z)− ψ(b)(w)

z − w
,

(5.49)

where a = 1, 2, 3 ∈ Z3.

5.2.2 Wall-crossing in KPPP2

As described in [63], turning on a strong B-filed results in wall-crossing. The new BPS
states analogous to the case of wall-crossing in the conifold geometry can be described by
the molten crystal configurations from certain subcrystals of the canonical crystal.

The subcrystal Cm that corresponds to the chamber m is given by removing the first
m layers of atoms from the canonical crystal, resulting in a truncated triangular pyramid:

m atoms

(5.50)

The top section plane is the right triangle with m atoms in an edge row.
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Consider two atom layers on the top of the truncated triangular pyramid Cm:

h1

h2

h3
(5.51)

We mark atoms using the following color code:

� Atoms at layer 1 (depth 0) with coordinates:

ρα,β = (h3 − h1)α+ (h3 − h2)β , α, β = 0, . . . ,m− 1; α+ β ≤ m− 1 . (5.52)

� Atoms at layer 1 (depth 0) with coordinates:

σα,β = (h3 − h1)α+ (h3 − h2)β + h1 , α, β = 1, . . . ,m− 1; α+ β ≤ m− 1 . (5.53)

� Atoms at layer 2 (depth 1) at the boundary edges of the triangular cross-section.
� Atoms at layer 2 (depth 1) at the tips of the triangular cross-section.

We apply our standard methods to describe corresponding quivers and ground state
charge functions associated with Cm.

1. The positive crystals are located at all the positions of atoms at depth 0. They
correspond to quiver arrows from the framing node to the node of the quiver, denoted
by Rα,β , and the corresponding masses are:

µ (Rα,β) = ρα,β , α, β = 0, . . . ,m; α+ β ≤ m− 1 . (5.54)

2. In addition to the positive crystals, we have to add some negative crystals to cancel
multiple contributions. These crystals are located at different positions of atoms of
layer 2. They are associated to corresponding quiver arrows from a quiver node to the
framing node. We denote these fields as Sα,β,i, and the corresponding masses read:

µ (Sα,β,i) = −σα,β , α, β = 0, . . . ,m; α+ β ≤ m. (5.55)

The resulting quiver has the following form:

Qm =

1

2

3X
(1)
i

Sα,β,i X
(2)
i

X
(3)
i

Rα,β

(5.56)
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The cardinality of the index i in the fields Sα,β,i reflects the multiplicity of negative
crystal contributions. This multiplicity is 2 for atoms lying on the face of the atom
layer 2 marked with the red color in diagram (5.51), 1 for boundary atoms marked
with the blue color in (5.51) and 0 for vertex atoms marked with the green color:

i = 1, . . . , 2− δα,m − δβ,m − δα+β,m . (5.57)

3. The fields Sα,β,i are Lagrange multipliers enforcing additional relations to the quiver
path algebra. The number of such relations and the cardinality are given by the
number of nearest neighbors to the corresponding atom at layer 1. The corresponding
superpotential reads:

Wm=
3∑

i,j,k=1
εijkTr(X(1)

i X
(2)
j X

(3)
k )

+
m−1∑
α=1

Tr
(
Sα,0,1

(
X

(1)
1 Rα,0−X(1)

2 Rα−1,0

))
+
m−1∑
α=1

Tr
(
S0,α,1

(
X

(1)
1 R0,α−X(1)

3 R0,α−1

))
+
m−1∑
α=1

Tr
(
Sα,m−α,1

(
X

(1)
2 Rα−1,m−α−X(1)

3 Rα,m−α−1

))
+

m−1∑
α,β=1

α+β≤m−1

Tr
(
Sα,β,1

(
X

(1)
1 Rα,β −X(1)

2 Rα−1,β

)
+Sα,β,2

(
X

(1)
1 Rα,β −X(1)

3 Rα,β−1

))
.

(5.58)

Summarizing, we derive the following ground state charge functions for the cham-
ber Cm:

]ψ
(1)
0 (z) = 1

m−1∏
α=0

m−1−α∏
β=0

(z − ρα,β)
,

]ψ
(2)
0 (z) =

m−1∏
α=1

m−1−α∏
β=1

(z − σα,β)2 ×
m−1∏
γ=1

(z − σγ,0) (z − σ0,γ) (z − σγ,m−γ) ,

]ψ
(3)
0 (z) = 1 ,

(5.59)

which correspond to the shifts:

s(1) = m(m+ 1)
2 , s(2) = −

(
m2 − 1

)
, s(3) = 0 . (5.60)

Finally, we mention that although we have focused on the infinite chambers C(i)
m for

the KP2 geometry, it is also easy to study the finite chamber C(f)
m . Recall that for the

conifold case, the finite chamber C(f)
m can be obtained by placing two stoppers at the end

of the ridge of the C(i)
m pyramid (with the same m). Similarly for the KP2 geometry, a
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subcrystal C(f)
m for the finite chamber can be obtained by placing three stoppers along the

three edges xi with i = 1, 2, 3 and on the same slice. It is straightforward to write down
the corresponding framed quiver and superpotential, the ground state charge function, and
the shift for the corresponding finite representation.

6 Open BPS states

The simplest type of representations of shifted quiver Yangian Y(Q,W, s) correspond to
the open BPS states, which count open DT invariants (see e.g. [21, 64–67] for molten
crystal representations for open DT invariants). In this section, we explain how to use our
crystal/quiver construction to characterize them.

A growing crystal approaches asymptotically the corresponding (p, q)-web of the toric
Calabi-Yau geometry [20]. This statement can be made precise in terms of amoebae in a
dimer model for crystal growth [68, 69]. Representations whose characters are generating
functions for the corresponding open DT invariants have a non-trivial asymptotic behavior
at the toric diagram legs given by 2D crystals. In what follows we will concentrate on the
case of C3 where this phenomenon occurs first.22

6.1 Example: open BPS states in CCC3

Let us start by considering the simplest example, C3. The toric diagram and its dual graph
of C3 are

(0,0)

(0,1)

(1,0)

3

1

2

(6.1)

6.1.1 Review: canonical crystal C0 and affine Yangian of gl1
The canonically framed quiver-superpotential pair (Q0,W0) is

Q0 = B1,2,3
R

,

W0 = TrB1[B2, B3] .

(6.2)

22Being constructed from multiple positive and negative contributions, crystals for open BPS states are
rigid. This implies that the only free parameter is a crystal “center of mass” allowing one to translate
the crystal projection in the (h1, h2)-plane as a whole. Poles in the vacuum charge functions — weights
of arrows flowing from the framing node — are originally unconstrained. Constraints on the positions of
the poles are defined through the superpotential, each zero — a weight for an arrow flowing towards the
framing node — delivers a single constraint. Therefore a relation between the number of variables and
constraints defines a relation between the net numbers of positive and negative shifts:

(net # of poles)− (net # of zeroes) =
∑

a

s(a)
+ −

∑
a

s(a)
− = 1.

– 42 –



J
H
E
P
0
8
(
2
0
2
1
)
1
4
6

The periodic quiver corresponding to (Q0,W0) in (6.2) is

1

1

1

1

h1 h1

h2

h2

h3 (6.3)

where the fundamental region of the torus is shown as a shaded region, and the parameter
hi is the charge associated to the field Bi with i = 1, 2, 3. The loop constraint (2.1) gives

h1 + h2 + h3 = 0 , (6.4)

which is equivalent to the vertex constraint (2.2) in this case.
From the periodic quiver (6.3) one can construct the canonical crystal C0, which has

the shape of a single 3D octant. Each state in this representation is labeled by a plane
partition inside the octant. The three edges of this 3D octant, and of each plane partition
in it, can be labeled by the positive directions of x-, y- and z-axes, whose projections down
to 2D correspond precisely to the three legs in the dual graph of the toric diagram (6.1).

The canonical crystal C0 gives the vacuum representation of the unshifted quiver Yan-
gian. For C3, there is only one bond factor (2.9), which can be read off from the periodic
quiver (6.3) to be

ϕ1⇒1(u) = ϕ3(u) = (u+ h1)(u+ h2)(u+ h3)
(u− h1)(u− h2)(u− h3) , (6.5)

subject to the loop constraint (6.4). Plugging this into the general formulae for the OPE
relations (2.7) and the initial conditions (2.15) and (2.16), and supplementing them with
Serre relations, we have the full list of algebra relations of the affine Yangian of gl1:

OPE:



ψ(z)ψ(w) ∼ ψ(w)ψ(z) ,
ψ(z) e(w) ∼ ϕ3(∆) e(w)ψ(z) , e(z) e(w) ∼ ϕ3(∆) e(w) e(z) ,
ψ(z) f(w) ∼ ϕ−1

3 (∆) f(w)ψ(z) , f(z) f(w) ∼ ϕ−1
3 (∆) f(w) f(z) ,

[e(z) , f(w)] ∼ − ψ(z)− ψ(w)
z − w

,

Initial:
{

[ψ0, em] = 0 ,
[ψ0, fm] = 0 ,

[ψ1, em] = 0 ,
[ψ1, fm] = 0 ,

[ψ2, em] = 2σ3 em ,

[ψ2, fm] = −2σ3 fm ,

Serre:
{
Symz1,z2,z3 (z2 − z3) [e(z1) , [e(z2) , e(z3)]] ∼ 0 ,
Symz1,z2,z3 (z2 − z3) [f(z1) , [f(z2) , f(z3)]] ∼ 0 ,

(6.6)

where σ3 ≡ h1h2h3. It is straightforward to write down the relations in terms of modes,
following (2.13).

6.1.2 Subcrystal C~Y
For the canonical crystal C0, all the plane partitions have trivial asymptotics along the
three directions. A general representation corresponding to the open BPS states is labeled
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(a) (b)

Figure 9. For plane partition representation with asymptotics Y1 = {4, 3, 3, 1, 1}, Y2 = {4, 3, 3, 1},
Y3 = {7, 5, 3, 1, 1}, the ground state configuration (a) and the graph D~Y (b).

by a triplet of Young diagrams
~Y = (Y1, Y2, Y3) (6.7)

along the three directions. The shape of the sub-crystal ]C = C~Y can be obtained in the
following steps. First, a triplet of Young diagrams ~Y uniquely determines the minimal
configuration of the plane partition with ~Y as asymptotics, e.g. see figure 9(a) for the
minimal plane partition with Y1 = {4, 3, 3, 1, 1}, Y2 = {4, 3, 3, 1}, Y3 = {7, 5, 3, 1, 1} as
asymptotics. Since it is minimal, it would be killed by the annihilation operator f(z),
namely, this minimal plane partition is the ground state of the representation labeled by
~Y . Second, the subcrystal C~Y is the complement of this ground state plane partition in
the canonical crystal C0, which is the whole octant in this case. The excited states in this
representation are obtained by applying creation operator e(z), i.e. adding more boxes, on
the ground state plane partition. (Equivalently, this can also be viewed as melting away
atoms from C~Y .) By construction, all the plane partitions in the representation C~Y have
the same asymptotics ~Y .

6.1.3 Ground state charge function ψ~Y (z)

Let us now translate the shape of the subcrystal C~Y into the corresponding ground state
charge function ψ~Y (z).

To achieve this, we first apply the method of section 3.2 to reconstruct C~Y as a union
of positive and negative canonical crystals C0. Namely, for a given C~Y , we first determine
the minimal plane partition configuration with ~Y as asymptotics. Then starting from this
minimal plane partition, the atoms one can place at its convex and concave corners are
the origins of the positive and negative crystals, respectively. Finally, by the reasoning of
section 3.2, the coordinate functions of these convex and concave atoms then corresponds
to the poles and zeros of the ground state charge function ψ~Y (z).
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Since the coordinate function of an atom is independent of its depth, one can also
carry out the procedure above in the 2D projection. Namely, the three asymptotic Young
diagrams ~Y = (Y1, Y2, Y3) and the corresponding minimal plane partition can be uniquely
characterized by an oriented graph drawn on the 2D hexagon lattice, denoted as D~Y . The
advantage of using the 2D graph D~Y is that the coordinate functions of the atoms at the
convex and concave corners of the minimal plane partition correspond directly to various
intersection points of the external oriented lines (which are fixed by ~Y ) and some internal
lines that are added to complete the graph. We now explain the procedure of determining
the graph D~Y and the associated ground state charge function ψ~Y (z) in the following steps.

1. The coordinate system of the 2D crystal lattice can be specified by the length and
orientations of the links in the lattice, which we choose as follows

~̀2

~̀1
~̀3 (6.8)

where ~̀1,2,3 are three 2D vectors that obey ~̀1 + ~̀2 + ~̀3 = 0. The position of a vertex
v in the 2D lattice can be decomposed into

~x(v) =
∑

ni ~̀i with ni > 0 . (6.9)

Each vertex in D~Y corresponds to a tower of atoms in the crystal, with depth from
0 to ∞. But they all have the same coordinate function, namely, for a vertex at the
position (6.9), all the atoms that project to it share the coordinate function

h(�) =
∑

ni hi with ni > 0 . (6.10)

One can define the coordinate of a vertex in the 2D lattice to be

x(v) ≡ ~x(v) · (h1, h2, h3) =
∑

ni hi , (6.11)

for ~x(v) = ∑
ni ~̀i, with ni > 0 , coinciding with the coordinate function of the atoms

that project to it.

2. For a given ~Y , we start with three semi-infinite long rows along the three positive
directions xi with i = 1, 2, 3, each with a cross section being the corresponding Young
diagram Yi.

The 2D projection of these three rows give rise to three “beams” of external
oriented lines parallel to `i respectively. The orientation and position of each line in
the ith beam are determined by the Young diagram Yi. First, within each beam, the
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directions of the external lines alternate, starting and ending with an outgoing arrow:

Y3

Y1 Y2

u1 v1 u2 v2 vp

u1

v1
u2

v2

vp

(6.12)

Second, the distances between adjacent arrows are given by the hook lengths of the
boundary cells of Yi, namely, the lengths of the edges of Yi, see (6.12). Finally, the
distance between the first arrow of the ith beam and `i is given by the height of Yi.

3. The three semi-infinite rows would intersect, and determine the minimal plane par-
tition configuration fixed by ~Y . For a given ~Y , one can draw the minimal plane
partition directly in 3D in order to locate all the convex and concave corners.

Equivalently, in the 2D graph D~Y , one can let the external lines intersect, and
the intersection points (i.e. the vertices in the internal part of D~Y ) should correspond
one-to-one to the corners of the minimal plane partition. To match all the corners,
one needs to add some internal lines, in order that (1) for each vertex the arrows are
either all incoming or all outgoing, and (2) all vertices in D~Y are either valence-3 or
valence-6.23

The resulting corners, or equivalently, the vertices in D~Y fall into the following
three types:

• Concave corner ⇐⇒ outgoing valence-3 vertex (denoted as black vertex in D~Y ).
In the decomposition of the subcrystal C~Y into superpositions of positive/

negative C0 crystals, a concave corner is a place where one can add an atom
�, which sits at the origin of a positive crystal. Namely, each concave corner
corresponds to a starter. We denote the set of starters for a given ~Y as s(~Y ).

Projecting to 2D, one can immediately see that a concave corner in the
minimal plane partition corresponds to a vertex with three outgoing arrows in
the following directions:

, (6.13)

and such a vertex is colored black in D~Y . We denote the set of black vertices as
s(~Y ), which maps one-to-one to the set of starters s(~Y ).

For the example in figure 9, there are seven starters, at the positions

(0, 7, 4), (1, 5, 3), (2, 3, 3), (3, 1, 3), (3, 3, 1), (4, 5, 0), (5, 0, 4) , (6.14)
23This rule of adding internal lines is to match the vertices to the corners of the minimal plane partition.
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with coordinate function h(�) = x(v) values:

7h2 + 4h3 , 4h2 + 2h3 , h2 + h3 , 2h1 + 2h3 ,

2h1 + 2h2 , 4h1 + 5h2 , 5h1 + 4h3 .
(6.15)

• Half-convex corner ⇐⇒ incoming valence-3 vertex (denoted as white vertex
in D~Y ).

A half-convex corner in the minimal plane partition is the intersection point
of two positive crystals, and therefore corresponds to the origin of a negative
crystal. This is a simple pauser, i.e. it gives rise to a simple zero in the ground
state charge function. We denote the set of simple pausers for a given ~Y as p1(~Y ).

Projecting down to 2D, a half-convex corner maps to a vertex with three
incoming arrows, and there are 6 possible configurations for the arrows:

, , , , , . (6.16)

We color such vertices as white and denote the set of them for a given ~Y as
p1(~Y ), which maps one-to-one to the set of simple pausers p1(~Y ).

For the example in figure 9, there are four simple pausers, at the positions

(1, 7, 4), (2, 5, 3), (4, 5, 1), (5, 1, 4) , (6.17)

with coordinate function h(�) = x(v) values:

6h2 + 3h3, 3h2 + h3, 3h1 + 4h2, 4h1 + 3h3 . (6.18)

• Full-convex corner ⇐⇒ incoming valence-6 vertex (denoted as white vertex
in D~Y ).

In the minimal plane partition, it is also possible to have full-convex corners,
which correspond to the (simultaneous) intersection points of three positive
crystals. An atom added at such a corner is the origin of two copies of negative
crystals overlapping each other, hence is a double pauser, contributing a double
zero to the ground state charge function. We denote the set of double pauser
for a given ~Y by p2(~Y ).

Projecting to 2D, a full-convex corner, i.e. a double pauser, corresponds to
a vertex with 6 incoming arrows:

(6.19)

We again color them as white and denote the set of them by p2(~Y ), which maps
one-to-one to the set of double pausers p2(~Y ).

For the example in figure 9, there is one double pauser, at the position

(3, 3, 3) , (6.20)
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and with coordinate function

h(�) = x(v) = 0 . (6.21)

4. Collecting the contribution from s(~Y ), p1(~Y ), and p2(~Y ) together, we can write down
the ground state charge function immediately:

ψ~Y (z) =

∏
�∈p1(~Y )

(z − h(�)) · ∏
�∈p2(~Y )

(z − h(�))2

∏
�∈s(~Y )

(z − h(�)) , (6.22)

with h(�) in s(~Y ), p1(~Y ), and p2(~Y ) given in (6.15), (6.18), and (6.21), respectively.
Since the number of poles is the same as the number of zeros in (6.22), both 7,
the ground state charge function describes a representation of the unshifted affine
Yangian of gl1, as expected.

6.1.4 Framed quiver and superpotential

The quiver and superpotential pair that correspond to the canonical crystal C0, i.e. the one
with trivial ~Y , are given in (6.2). Let us now determine the framed quiver and superpo-
tential pair (Q~Y ,W~Y ) for the subcrystal C~Y .

As explained in section 3.5, the framed quiver Q~Y can be obtained by adding arrows to
the canonically framed quiver Q0: an arrow from the framing node to the gauge node for
each stopper and an arrow from the gauge node back to the framing node for each pauser.
Accordingly, the superpotential needs to be modified by additional terms that enforce the
loop constraints for the new loops in Q~Y . In summary, we have

Q~Y = B1,2,3
Rb

Sw, S̃w̃,α
,

W~Y = B1[B2, B3] +
∑

z∈p1,2(~Y )

δWz ,

(6.23)

where Rb denotes the chiral field that corresponds to the arrow b from the framing node to
the gauge node; and similarly the chiral field Sw and the doublet of chiral fields S̃w̃,α with
α = 1, 2 correspond to the arrow w and w̃ from the gauge node back to the framing node,
respectively. Using the dictionary among the arrows in the framing quiver, the origins of
the positive/negative crystals, and the poles/zeros in the ground state charge function, we
have the following correspondence:

R ←→ arrow from f.n. to g.n. ←→ starter ←→ pole in ψ~Y (z) ,
S ←→ arrow from g.n. to f.n. ←→ simple pauser ←→ simple zero in ψ~Y (z) ,
S̃ ←→ arrow from g.n. to f.n. ←→ double pauser ←→ double zero in ψ~Y (z) ,

(6.24)
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where g.n. stands for the gauge node and f.n. for the framing node. The masses of these chi-
ral fields are given by (±1)× the coordinate functions of the corresponding starters/pausers,
with ± for the starter and the pauser, respectively:

Rb with µ(Rb) = h(�b) , �b ∈ s(~Y ) ,
Sw with µ(Sw) = −h(�w) , �w ∈ p1(~Y ) ,

S̃w̃,α with µ(S̃w̃,α) = −h(�w̃) , �w̃ ∈ p2(~Y ), α = 1, 2 .
(6.25)

Recall from section 3.5 that for each arrow z from the framed vertex back to the
framing node, which corresponds to a zero in ψ~Y (z), we need to add a term δWz into the
superpotential. The expression for the correction term δWz depends on whether the arrow
corresponds to a simple zero or a double zero in ψ~Y (z).

1. For w ∈ p1(~Y ) there are two possible types of situations:

j~h2 i~h1

, δWw = Sw
(
Bi

1Rb1 −B
j
2Rb2

)
, (6.26)

j~h2

k~h3
i~h1

, δWw = Sw
(
Bj

2Rb1 −Bk
3B

i
1Rb2

)
. (6.27)

In both cases we have to impose a Lagrange constraint through the superpotential
that crystals growing from two nearest black vertices interfere properly. We could
reshuffle a sequence of B1 and B3 generators in the second term of this superpotential
correction. All these arrangements are equivalent.

2. For w ∈ p2(~Y ) we have two interference constraints and, therefore, two Lagrange
fields:

j~h2

k~h3

i~h1 , δWw = S̃w,1
(
Bi

1Rb1 −B
j
2Rb2

)
+ S̃w,2

(
Bi

1Rb1 −Bk
3Rb3

)
. (6.28)

Two interference constraints come from two pairings of the black vertices. Clearly,
three black vertices could be linked in two pairs in three different ways producing
three different superpotential corrections. All these three superpotential options are
equivalent.

6.1.5 Representation of affine Yangian of gl1
The representation associated with the canonical crystal C0, spanned by all plane partitions
with trivial asymptotics, is the vacuum representation of the affine Yangian of gl1.
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For non-trivial asymptotics ~Y , the representation Rep~Y associated with the subcrystal
C~Y is spanned by all plane partitions with asymptotics ~Y and is a non-vacuum represen-
tation of the (unshifted) affine Yangian of gl1. The representation can be specified by its
ground state charge function (6.22). The fact that there is no shift involved can be seen
from the fact that the number of its poles is equal to the number of its zeros, making the
shift s = 0.

Finally, note that since the affine Yangian of gl1 is isomorphic to the universal en-
veloping algebra of W1+∞ algebra, the representation Rep~Y is also a representation of the
W1+∞ algebra. The plane partition representations discussed in this subsection, with all
possible asymptotics Rep~Y , give a very transparent and geometric way of constructing rep-
resentations for the W1+∞ algebra. Furthermore, the truncations of these representations
become the representations of the rational WN,k algebras.

6.2 Example: open BPS states in (CCC2/ZZZ2)× CCC

6.2.1 Canonical crystal and affine Yangian of gl2
For C2/Z2×C, the toric diagram and its dual graph are

(0,0)

(0,1)

(0,2)

(1,0)

3

3̂

1

1̂

(6.29)

Its associated quiver diagram is the A2-quiver

Q =

(A1, α1), (B2, β2)

(B1, β1), (A2, α2)

(C1, γ1) (C2, γ2)

1 2
(6.30)

with super-potential

W = Tr[−C1A1B1 + C1B2A2 − C2A2B2 + C2B1A1] . (6.31)

Both vertices are bosonic:
|a| = 0 , a = 1, 2 , (6.32)

since there is a self-loop for each of them in the quiver (6.30).
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The loop constraint (2.1) and the vertex constraint (2.2) together give

α1 = α2 ≡ h1 , β1 = β2 ≡ h2 , γ1 = γ2 = γ ≡ h3 ,

and h1 + h2 + h3 = 0 .
(6.33)

The two-dimensional projection of the crystal, the periodic quiver, is given by:

1 22

2

2

1

11

1

h2h2

h1

h1

h1

h1

h2h2

h2 h2

h1

h1

h3

h3

h3

h3

(6.34)

The canonical crystal for the (C2/Zn)×C geometry has the same shape but different
coloring as the canonical crystal for the C3 geometry. Namely, each molten crystal config-
uration from the canonical crystal of (C2/Zn)× C still has the shape of a plane partition.
The orbifolding determines the coloring scheme to be

color(�) = (x1 + x2) mod n+ 1 for � at coordinate (x1, x2, x3) , (6.35)

where the � at the origin has the coordinate (0, 0, 0) and color(�) = 1. Note that the
color of a � is independent of its x3 coordinate, following from the orbifold action. In this
subsection, we focus on n = 2, without loss of generality.

The bond factor can be read off from the periodic quiver (6.34) to be

ϕa⇒a(u) = u+ h3
u− h3

and ϕa+1⇒a(u) = (u+ h1)(u+ h2)
(u− h1)(u− h2) . (6.36)

Plugging the bond factor (6.36) and the statistics factor (6.32) into the general formula for
the algebraic relation (2.7) we obtain the affine Yangian of gl2.

6.2.2 Subcrystals for open BPS states

We have explained that the canonical crystal for the (C2/Zn)×C geometry with all n ∈ N
has the same shape as the one for C3. Therefore, same as for the open BPS states in the C3

geometry considered in section 6.1, the open BPS states for the (C2/Zn)×C geometry are
also given by the subcrystal fixed by the three asymptotic Young diagrams ~Y = (Y1, Y2, Y3)
along the x1,2,3 directions of the plane partition. Namely, the coloring scheme just inherits
the one from the canonical crystal.

Below, for concreteness, let us focus on n = 2. Figure 10 gives an example of the
subcrystal for the open BPS states in the (C2/Zn)×C geometry, with the same asymptotics
as the C3 example in figure 9, i.e. Y1 = {4, 3, 3, 1, 1}, Y2 = {4, 3, 3, 1}, Y3 = {7, 5, 3, 1, 1}.
We will now determine the corresponding ground state charge function, the framed quiver
and superpotential, and the shift.
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Figure 10. The subcrystal for the open BPS states in (C2/Zn) × C geometry, with asymptotics
Y1 = {4, 3, 3, 1, 1}, Y2 = {4, 3, 3, 1}, Y3 = {7, 5, 3, 1, 1}.

The coordinates of the starters and pausers in the subcrystal figure 10 are already
given in (6.14), (6.17), and (6.20), inherited from figure 10. We just need to assign colors
to them according to (6.35) with n = 2. Namely, the information of these starters and
pausers that enter the ground state charge function are their coordinate function h(�) and
their color (defined in (6.35) with n = 2), namely

(h(�), c) = (x(v), 1 + ~x(v) · (1, 1, 0) mod 2) . (6.37)

1. In figure 10, there are seven starters, at the positions

(0, 7, 4), (1, 5, 3), (2, 3, 3), (3, 1, 3), (3, 3, 1), (4, 5, 0), (5, 0, 4) . (6.38)

The (h(�), c) values of the 7 starters in (6.38) are

(7h2 + 4h3, 2), (4h2 + 2h3, 1), (h2 + h3, 2), (2h1 + 2h3, 1),
(2h1 + 2h2, 1), (4h1 + 5h2, 2), (5h1 + 4h3, 2) .

(6.39)

2. Similarly, in figure 10, there are four simple pausers, at the positions

(1, 7, 4), (2, 5, 3), (4, 5, 1), (5, 1, 4) , (6.40)

with coordinate function and color (h(�), c) values:

(6h2 + 3h3, 1), (3h2 + h3, 2), (3h1 + 4h2, 2), (4h1 + 3h3, 1) . (6.41)

3. Finally, in figure 10, there is one double pauser, at the position (3, 3, 3), and with
coordinate function and color (h(�), c) values

(0, 1) . (6.42)

From the positions of these starters and pausers, one can immediately write down the
ground state charge functions ψ(a)

~Y
(z) ≡ ]ψ

(a)
0 (z) with a = 1, 2:

ψ
(1)
~Y

(z) = (z − (6h2 + 3h3)) (z − (4h1 + 3h3)) z2

(z − (4h2 + 2h3)) (z − (2h1 + 2h3)) (z − (2h1 + 2h2)) ,

ψ
(2)
~Y

(z) = (z − (3h2 + h3)) (z − (3h1 + 4h2))
(z − (7h2 + 4h3)) (z − (h2 + h3)) (z − (4h1 + 5h2)) (z − (5h1 + 4h3)) .

(6.43)
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Comparing these ground state charge functions (6.43) with the one for the C3 geometry
with the same asymptotics, given in (6.22), we see that ψ~Y (z) = ψ

(1)
~Y

(z)ψ(2)
~Y

(z), namely,
the latter splits into two factors, one for each color. This is a general feature: for the
(C2/Zn)× C and P2 geometries, whose canonical crystals have the same shape as the one
for C3 but different color schemes, the product of the ground state charge functions ψ(a)

~Y
(z)

for all colors a reproduces the ground state charge function ψ~Y (z) for C3 with the same
asymptotics ~Y .

Counting the number of poles and zeros in the ground state charge function in (6.43),
we see that the subcrystal in figure 10 gives rise to a representation of the shifted Yangian
of gl2, with shift:

s = (−1, 2) . (6.44)

From the ground state charge function in (6.43), we can also derive the corresponding
framed quiver and superpotential for the asymptotics ~Y in figure 10:

]Q =

1

2

(6.45)

6.3 Example: open BPS states in PPP2

Let us now study the open BPS states in KP2 . As explained in section 5.2.1, the canonical
crystal has the same shape as the one for the C3 geometry, but a coloring scheme given
by (5.2.1). Therefore the method of studying the open BPS states in KP2 is the same as
the one used for the case of (C2/Z2)× C in section 6.2.

The open BPS states inKP2 are again labeled by the three asymptotics Young diagrams
~Y = (Y1, Y2, Y2). Consider the subcrystal given by the asymptotics Y1 = {5, 4, 3, 1, 1},
Y2 = {4, 4, 4, 3, 2}, Y3 = {8, 6, 5, 3, 2, 1}, shown in figure 11. The starters and pausers enter
the ground state charge function as the coordinate charge function and the color:

(h(�), c) = (x(v), 1 + ~x(v) · (1, 1, 1) mod 3) . (6.46)

Let us list the starters and pausers, together with their (h(�), c) values, of the sub-
crystal in figure 11.

1. There are nine starters, at the positions

(0, 8, 5), (1, 6, 5), (2, 5, 4), (3, 3, 3), (4, 2, 3),
(4, 3, 1), (4, 5, 0), (5, 1, 4), (6, 0, 5) ,

(6.47)

with (h(�), c) values:

(8h2 + 5h3, 2), (5h2 + 4h3, 1), (3h2 + 2h3, 3), (0, 1), (2h1 + h3, 1),
(3h1 + 2h2, 3), (4h1 + 5h2, 1), (4h1 + 3h3, 2), (6h1 + 5h3, 3) .

(6.48)
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(a) (b)

Figure 11. A KP2 subcrystal given by the asymptotics Y1 = {5, 4, 3, 1, 1}, Y2 = {4, 4, 4, 3, 2},
Y3 = {8, 6, 5, 3, 2, 1}: (a) the ground state configuration and (b) the graph D~Y .

2. There are six simple pausers, at the positions

(1, 8, 5), (2, 6, 5), (3, 5, 4), (4, 5, 1), (5, 2, 4), (6, 1, 5) , (6.49)

with coordinate-color function (h(�), c) values:

(7h2 + 4h3, 3), (4h2 + 3h3, 2), (2h2 + h3, 1),
(3h1 + 4h2, 2), (3h1 + 2h3, 3), (5h1 + 4h3, 1) .

(6.50)

3. There is one double pauser, at the position (4, 3, 3), and with coordinate function
(h(�), c) given by

(h1, 2) . (6.51)

Plugging these into the definition of the ground state charge function ]ψ
(a)
0 (z) in (3.7),

we get

ψ
(1)
~Y

(z) = (z − (2h2 + h3)) (z − (5h1 + 4h3))
z (z − (5h2 + 4h3)) (z − (2h1 + h3)) (z − (4h1 + 5h2)) ,

ψ
(2)
~Y

(z) = (z − (4h2 + 3h3)) (z − (3h1 + 2h3)) (z − h1)2

(z − (8h2 + 5h3)) (z − (4h1 + 3h3)) ,

ψ
(3)
~Y

(z) = (z − (7h2 + 4h3)) (z − (3h1 + 2h3))
(z − (3h2 + 2h3)) (z − (3h1 + 2h2)) (z − (6h1 + 5h3)) .

(6.52)

Counting the number of the poles and zeros in ψ
(a)
~Y

(z), we see that the subcrystal given
in figure 11 gives rise to a representation of the shifted quiver Yangian (5.49) for the KP2

geometry, with the shift
s = (2,−2, 1) . (6.53)

The net shift is 1, as expected.
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From the ground state charge function (6.43) we can derive the corresponding framed
quiver and superpotential for the representation given by figure 11:

]Q =
1 2

3

. (6.54)

6.4 Example: wall-crossing for open BPS states in conifold

We can combine all the ingredients discussed in this and the previous section. Namely
we can consider open BPS states in general chambers, for a toric Calabi-Yau manifold
more general than C3. For geometries without compact 4-cycles, the combinatorics for the
crystals for such open BPS state countings can be found in [66]. In general, to specify open
BPS state counting problems one starts with a crystal for the closed BPS states and then
specifies the shape of the crystal by choosing the asymptotic shapes of the crystal, as in
the case of the topological vertex [70].

To illustrate this, let us consider as an example the open BPS invariants in an infinite
chamber C(i)

m for the conifold geometry. Without the D2-brane, the representation for C(i)
m

was studied in section 5.1.3, and the shape of the subcrystal, with m = 3, was given in
figure 7.

Let us consider C(i)
m for m = 4 with asymptotic ~Y = ({2, 1}, ∅, {1}, {1}). Figure 12(a)

shows the shape of the subcrystal C(i)
m=4, with the atoms that lie on the infinite rows with

the cross-sections given by ~Y colored, node 1 → red and node 2 → blue. Removing these
atoms, we obtain the subcrystal that corresponds to the open BPS states defined by ~Y in
the chamber C(i)

m=4, shown in figure 12(b).
The corresponding framed quiver and superpotential are a modification of those for

the trivial ~Y , given in (5.17):

]Q =
1 2

a1, a2

b1, b2
r1, r2, r3, r4

s1, s2, s3

,

]W = Tr
[
b2a2b1a1 − b2a1b1a2

+ s1 (a2r1 − a1b2a1r2)
+ s2 (a2r2 − a1b2a1r3)

+ s3 (a2b2a2b1a2r3 − a1r4)
]
,

(6.55)
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∅

Figure 12. Open BPS state with ~Y = ({2, 1}, ∅, {1}, {1}) in the infinite chamber C(i)
m=4 of the

conifold geometry. (a) The atoms that lie on the infinite rows with the cross-sections given by
~Y are colored, node 1 → red and node 2. (b) The red and blue atoms are removed, giving the
subcrystal for the open BPS states with ~Y in C(i)

m=4.

where the corresponding masses of fields are:

µ(r1) = −2h1 + 2h2, µ(r2) = h1 + h2, µ(r3) = 4h1, µ(r4) = 8h1,

µ(s1) = h1 − 2h2, µ(s2) = −2h1 − h2, µ(s3) = −7h1,

µ(a1) = −h1, µ(a2) = h1, µ(b1) = −h2, µ(b2) = h2 .

(6.56)

The masses µ(ri) and µ(si) correspond to the coordinate function of the starters and
the pausers of the subcrystal ]C shown in figure 12, therefore the ground state charge
functions are:

]ψ
(1)
0 =

4∏
i=1

1
(z − µ(ri))

and ]ψ
(2)
0 =

3∏
i=1

(z + µ(si)) . (6.57)

Counting the number of poles and zeros in (6.57), we see that the subcrystal in figure 12
gives rise to a representation of the shifted affine Yangian of gl1|1, with shift

s = (4,−3) , (6.58)

with net shift 1. This is the same as the case when the asymptotics ~Y is trivial (see (5.29)),
as expected.

7 More general representations

In all the examples considered in section 5 and section 6, the subcrystals themselves and
their corresponding framed quivers either have already appeared in the literature, or can
arise naturally if we perform some conventional deformations to our field theory setup
considered also in the literature. What we have achieved in section 5 and section 6 is to
construct their associated representations of the relevant shifted quiver Yangians. All these
representations are irreducible for generic choices of the equivariant parameters.

However, the procedure of constructing a representation from a given subcrystal, and
moreover of relating (1) the shape of the subcrystal, (2) the ground state charge func-
tion, and (3) frame quiver and superpotential, are rather general. Namely, any arbitrary
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subcrystal can give rise to a representation of the shifted quiver Yangian and the associ-
ated framed quiver. For simplicity here we consider those subcrystals that correspond to
irreducible representations (recall section 3.3).

In this section, we will consider those subcrystals (subject to the irreducibility con-
straints) that do not arise as a result of some physical manipulation on the underlying
theory, like wall-crossing or BPS states supporting open invariants, at least not as far as
we are aware. We will call these representations novel representations.

7.1 Example: finite representations for CCC3

The first example we would like to consider in this section is a family of finite representations
for the case of C3. As we have mentioned, any convex subcrystal subject to the irreducibility
constraint would give a new representation. For simplicity, let us consider a subcrystal of
the shape of a cuboid, with three lengths being of m, n and k atoms, namely, we would
like the crystal growth to terminate after steps m, n and k along the x1,2,3 direction,
respectively, shown below:

k atoms

m atoms n atoms

(7.1)

In terms of the positive/negative crystals picture, the subcrystal (7.1) has one starter at

(x1, x2, x3) = (0, 0, 0) , (7.2)

and three stoppers at

(x1, x2, x3) = (m, 0, 0) , (0, n, 0) , (0, 0, k) . (7.3)

Plugging these into (3.7), we obtain the ground state charge function:

]ψ0(z) = (z −mh1)(z − nh2)(z − kh3)
z

, (7.4)

where h1 + h2 + h3 = 0. The three zeros in (7.4) cancel the creating poles at mh1, nh2, and
kh3, respectively. Therefore, applying the creation operator e(z) repeatedly on the ground
state would give a finite representation of the shifted affine Yangian of gl1. The basis of
the corresponding Verma module is finite and represented by molten crystals embedded in
the cuboid (7.1).

Compared to the canonically framed quiver and superpotential (6.2), the presence of
the three stoppers (7.3) imposes three new relations in the quiver path algebra:

Bm−1
1 ·R = 0 , Bn−1

2 ·R = 0 , Bk−1
3 ·R = 0 , (7.5)
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(a)

(b)
x1 y1 x2 y2 ym−1 xm ym

Figure 13. (a) The crystal for the “half-infinite” chamber of the resolved conifold, i.e. a half-infinite
pyramid, with m = 4. (b) The locations of the starters xk with k = 1, 2, . . . ,m, the pausers yk with
k = 1, 2, . . . ,m− 1, and a single stopper ym.

which are implemented by three new Lagrange constraint fields S1,2,3, represented by three
arrows going from the gauge node to the framing node. The resulting framed quiver and
superpotential are:

Q
(novel)
m,n,k = B1,2,3

R

S1,2,3

,

W
(novel)
m,n,k = Tr

[
B1[B2, B3] + S1B

m−1
1 R+ S2B

n−1
2 R+ S3B

k−1
3 R

]
.

(7.6)

7.2 Example: “half-infinite” representation for conifold

Another interesting example emerges when we revisit the case of wall-crossing in the
conifold.

Recall that the finite chamber C(f)
m differs from the infinite chamber C(i)

m by the presence
of the two stoppers at the end of the ridge of the pyramid (i.e. the initial chain of atoms),
see figure 8(b) vs. figure 7(b). These two stoppers impose two termination constraints and
cut the infinite subcrystal C(i)

m into a finite one C(f)
m .

Now let us place only one stopper, at the right end of the ridge of C(i)
m in figure 7. The

resulting crystal Ch.i.m has the shape of a half-infinite prism, with m atoms in its ridge (see
figure 13).

To obtain the framed quiver and superpotential for the half-infinite chamber C(h.i)
m ,

we simply eliminate the arrow that corresponds to the left stopper from the framed
quiver (5.30) for the finite chamber C(f)

m and the corresponding term in the superpotential
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in (5.30), and the resulting quiver and superpotential read:

Q(novel)
m =

v0 v1
a1, a2

b1, b2
r1, . . . , rm

s1, . . . , sm

,

W (novel)
m = Tr

[
b2a2b1a1 − b2a1b1a2 +

m−1∑
i=1

si(a2ri − a1ri+1) + sma2rm

]
.

(7.7)

The equivariant weights of the starters, pausers, and the single stopper for the crystal
Ch.i.m are

starts of color 1: χk = µ(rk) = 2(k − 1)h1 , k = 1, . . . ,m ;
pausers of color 2: υk = −µ(sk) = (2k − 1)h1 , k = 1, . . . ,m− 1 ;
stoppers of color 2: υm = −µ(sm) = (2m− 1)h1 ,

(7.8)

from which we can immediately write down the ground state charge function using (3.7):

]ψ
(1)
0 =

m∏
k=1

1
z − χk

and ]ψ
(2)
0 =

m∏
k=1

(z − vk) . (7.9)

We see that the half-infinite representation from the crystal C(h.i)
m is a representation of the

shifted quiver Yangian of gl1|1, with shifts given by

s = (m,−m) . (7.10)

We have checked that all the algebraic relations (2.7) and (3.2) are applicable to this family
of examples.

8 Summary and open problems

The (unshifted) quiver Yangian Y(Q,W ) is the BPS algebra for type IIA string theory
compactified on an arbitrary non-compact toric Calabi-Yau three-fold, in the so-called
non-commutative DT chamber and without the open BPS states involved [2, 3]. The BPS
Hilbert space corresponds to the set of molten crystals from a canonical crystal C0, which
spans the vacuum representation of Y(Q,W ). The quiver and superpotential pair (Q,W )
is the canonically framed one.

In this paper, we generalize this story to include all the known BPS counting problems,
including other chambers in wall-crossing and open BPS states, in this framework; and the
end result actually produces a much broader class of BPS counting problems, most of
them new.

The central player is the subcrystal ]C of the canonical crystal C0. We have shown that
an arbitrary simply-connected convex subcrystal ]C gives rise to a set of molten crystal
configurations that furnish a (generically non-vacuum) representation ]Rep of a shifted
quiver Yangian Y(Q,W, s).
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We have shown that a subcrystal ]C can be characterized by a unique decomposition of
positive and negative canonical crystals C0. Namely, the information of the representation
]Rep from ]C can be packaged into a set of leading atoms — called starters, pausers, and
stoppers — that specify the locations of the corresponding positive and negative C0 building
blocks. The information of these leading atoms can then be easily translated to the ground
state charge function {]ψ(a)(z)} of the representation ]Rep, which determines the entire
representation.24

Similar to the fact that the unshifted quiver Yangian Y(Q,W ) can be bootstrapped
from its vacuum representation Rep0 (which is spanned by the molten crystals from C0) [2],
the shifted quiver Yangian Y(Q,W, ]ψ), or equivalently Y(Q,W, s), can also be boot-
strapped from these non-vacuum representations ]Rep, spanned by the molten crystals
from the subcrystal ]C.

The shape of the subcrystal can then be easily translated into the framing ] of the
quiver superpotential (Q,W ), giving rise to the framed quiver superpotential (]Q, ]W ). We
have checked that the BPS algebra of theN = 4 supersymmetric quiver quantum mechanics
system defined by (]Q, ]W ) matches with the shifted quiver Yangian Y(Q,W, ]ψ) that is
directly bootstrapped from the subcrystal representation ]Rep.

Although our original motivation was to generalize the unshifted quiver Yangian in
order to cover all the known BPS counting problems, the result goes far beyond this. It
would be interesting to explore these new BPS counting problems further, both within the
framework of quiver Yangians and beyond.

In closing, let us comment on some further open questions for future research:

• In section 3.4 we discussed situations where the subcrystal representations become
reducible for non-generic equivariant parameters, leading to truncations of the alge-
bra (so that the algebra acts irreducibly). It would be interesting to work out this
truncation of the shifted quiver Yangians in detail, and also identify the truncations
with the geometry of non-compact D-branes. Such an analysis will strengthen the
analysis of the unshifted case in [2].

• As we discussed in section 4, the representations will no longer be described by
statistical model of crystal melting when the choice of stability parameters are not
chosen as those from the cyclic chamber. In these non-cyclic chambers, we still expect
that the fixed points of the moduli space are given by combinatorics associated with
quivers, and that we obtain representations from them. The problem is to study
these representations in detail, and generalize our discussion to arbitrary chambers.

• Our discussion of this paper relies crucially on the equivariant localization with re-
spect to the torus action originating from the toric condition on the Calabi-Yau
three-fold. One natural question is whether we can extend our discussion to non-
toric Calabi-Yau three-folds, especially to compact Calabi-Yau three-folds.

24This method of determining {]ψ
(a)
0 (z)} from the shape of the subcrystal is far superior to an alter-

native method that was used in the C3 case and is generalized to arbitrary toric Calabi-Yau threefolds in
appendix B.
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A Conifold mutations

In this appendix we give the details of a single quiver mutation process — or Seiberg duality
transformation — on a conifold quiver (5.17). We will show that the duality describes a
transition between two members of the family:

(
Q

(i)
m ,W

(i)
m

) (
Q

(i)
m+1,W

(i)
m+1

)Seiberg dual
. (A.1)

In particular, we will start with the pair
(
Q

(i)
m ,W

(i)
m

)
in (5.17), which we reproduce here

Q(i)
m =

1 2
a1, a2

b1, b2
r1, . . . , rm

s1, . . . , sm−1

,

W (i)
m = Tr

[
b2a2b1a1 − b2a1b1a2 +

m−1∑
i=1

si (a2ri − a1ri+1)
]
,

(A.2)

apply one quiver mutation process, and show that the result is given precisely by(
Q

(i)
m+1,W

(i)
m+1

)
.

We apply the standard procedure of quiver mutation [58] on the quiver in (A.2) with
respect to the node 1. First, each pair of chiral fields p and q forming a path going through
the mutation node, which is node 1 here, is represented in the dual theory (i.e. the mutated
quiver) by a meson operator Mpq = q · p. In our case, for the mutated quiver we derive the
following meson operators:

Sij = aibj ∈ {2→ 2}, i, j = 1, 2 ,
Mk,i = airk ∈ {∞ → 2}, k = 1, . . . ,m ,

(A.3)

where ∞ labels the framing node. Secondly, in addition to the meson field for each pair p
and q, in the mutated quiver one needs to add the corresponding dual chiral fields p̌ and
q̌, going in the opposite direction of p and q, respectively. Finally, the superpotential W
needs to be modified accordingly. Since W is a gauge invariant quantity, it should depend
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only on the meson combination q · p. Therefore the modification W should be performed
according to the following rule for each pair of q and p:

W 3 Tr f(qp) −→ W̌ 3 Tr [f(Mpq) +Mpqp̌q̌] . (A.4)

After these three steps, we obtain the quiver and superpotential for the Seiberg dual theory
that results from the quiver mutation w.r.t. node 1 of the theory given by (A.2):

Q̌m =

1̌ 2̌
ǎ1, ǎ2

b̌1, b̌2
ř1, . . . , řm

s1, . . . , sm−1

Mk,i

Sij

,

W̌m = Tr
[
S22S11 − S21S12 +

m−1∑
k=1

sk (Mk,2 −Mk+1,1)

+
2∑

i,j=1
Sij b̌j ǎi +

m∑
k=1

2∑
i=1

Mk,i řk ǎi

 .

(A.5)

To complete the description of the dual quiver theory, it suffices to calculate the quiver
dimensions and the stability parameters in the dual quiver (A.5). For the quiver dimensions
and the FI parameters we have:

(ď1, ď2) = (2d2 − d1, d2) ,
(ζ̌1, ζ̌2) = (−ζ1, ζ2 + 2ζ1) .

(A.6)

Applying the relations (5.14) and (5.15) on (A.6), we find that under this map these vectors
are transformed in the following way:(

~d(i)
m ,

~ζ(i)
m

)
−→

(
P ~d

(i)
m+1, P

~ζ
(i)
m+1

)
, (A.7)

where the operator P permutes the components of a two-dimensional vector.
Finally, to see that the dual quiver (A.5) is in the same family as (A.2), withm→ m+1,

we simplify the dual quiver (A.5) further. First, one can see that the quiver and the
superpotential defined in (A.5) are redundant: some of the relations in the quiver path
algebra have a single solution and the corresponding fields can be integrated out in the
effective field theory. Integrating over fields Sij , sk — using their equations of motion that
follow from the superpotential constraint — we derive:

S22 = −b̌1ǎ1 , S11 = −b̌2ǎ2 , S12 = b̌1ǎ2 , S21 = b̌2ǎ1 ,

Mk,2 = Mk+1,1 , k = 1, . . . ,m− 1 .
(A.8)

Then it is useful to define a new chiral field šk in the following way:

š1 := M1,1 ,

šk := Mk,1 = Mk−1,2 , for k = 2, . . . ,m ,

šm+1 := Mm,2 .

(A.9)
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Substituting these solutions (to the equations of motion) back into the superpotential, we
derive the following reduced quiver and superpotential:

Q̌red
m =

1̌ 2̌
ǎ1, ǎ2

b̌1, b̌2
ř1, . . . , řm

š1, . . . , šm+1

,

W̌ red
m = −

(
ǎ1b̌1ǎ2b̌2 − ǎ1b̌2ǎ2b̌1

)
+

m∑
k=1

řk (ǎ1šk + ǎ2šk+1) ,

(A.10)

which is equivalent to the mutated quiver and superpotential pair (A.5). The chiral masses
of the dual fields are:

µ(ǎ1) = h1 , µ(ǎ2) = −h1 ,

µ(b̌1) = h2 , µ(b̌2) = −h2 ,

µ(řk) = −2(k − 1)h1 , for k = 1, . . . ,m ,

µ(šk) = (2k − 3)h1 , for k = 1, . . . ,m+ 1 .

(A.11)

One can immediately see that the reduced version of the mutated pair of a quiver and
a superpotential (Q̌red

m , W̌ red
m ) in (A.10) is identical to the pair (Qm+1,Wm+1), i.e. (A.2)

with m→ m+ 1, after renaming the quiver gauge nodes: 1̌→ 2 and 2̌→ 1.

B New representations via redefinition of ground states

In this appendix we explain in more detail an alternative method of deriving the repre-
sentation associated with a subcrystal, mentioned at the end of section 3.2. This was the
method used to study non-trivial representations of the affine Yangian of gl1 for the C3

geometry [9, 10, 23, 40]; and here we generalize it to the quiver Yangian for arbitrary toric
Calabi-Yau threefolds. The end result agrees with the positive/negative crystal method
employed throughout the main text. But the method in this appendix serves to confirm
the results and to highlight the advantage of the new method.

The basic idea is simple. In the crystal melting we usually consider removing a finite
number of atoms from the canonical crystal C0. Let us instead consider removing an infinite
number of atoms from the crystal C0, to obtain a state |K〉, which consists of these infinite
number of atoms “melted away” from the crystal C0. We do this by choosing a set of atoms
at asymptotic infinity, and subsequently remove all the atoms minimally needed to satisfy
the melting rule.

We can now regard the state |K〉 as a new vacuum:

|∅〉new ≡ |K〉 , (B.1)

and start growing the crystal from there. Indeed, since K contains all the atoms minimally
needed to consistently remove the atoms of C0 at infinity, it is not possible to further remove
finitely-many atoms from K; the only possibility is to add atoms to K, and this ensures
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that the state |K〉 can be regarded as a new ground state.25 In other words, this has the
effect of permanently removing some atoms from the canonical crystal C0, to obtain a new
subcrystal ]C.

The vacuum charge function ]ψ associated with the representation can be derived from
the charge function for the state |K〉 as

]ψ
(a)
0 (z) ≡ lim

K′→K
Ψ(a)

K′ (z) , (B.2)

where K′ has only finitely-many atoms removed. As we will see, this limit in general
requires a regularization procedure.

B.1 Example for open BPS states: (CCC2/ZZZ2)× CCC

Let us reexamine the open BPS states of (C2/Z2) × C, studied in section 6.2, using the
regularization procedure. Recall that a general subcrystal corresponding to the open BPS
states of (C2/Z2)× C is given by the three Young diagrams asymptotics ~Y = (Y1, Y2, Y3).
Here, to illustrate the procedure, we will first obtain the three fundamental representations,
with only one of Yi = � and the other two trivial. Then we will explain how to construct
representations with arbitrary ~Y by combining these fundamental representations.

The canonical crystal, the canonically framed quiver and superpotential, and the cor-
responding unshifted affine Yangian of gl2 for the (C2/Z2)×C geometry were summarized
in section 6.2.1. Now, to consider open BPS states corresponding to a simplest non-trivial
Young diagram, �, along the x1 direction, we start from the canonical crystal and remove
all atoms located at

�1 : (x1, x2, x3) = (m ∈ N0, 0, 0) , (B.3)

along the x1 direction. By the definition (3.3) and the coloring scheme (6.35), we can
compute the charge functions as

Ψ(a)
�1

(u) = (ψ0(u))δa,1
∞∏
n=0

ϕ1⇒a(u− 2nh1)ϕ2⇒a(u− (2n+ 1)h1) , (B.4)

where n accounts for the nth atom sequence 1→ 2 in the long row of atoms from the origin
to infinity along the x1 direction. Plugging in the bond factors

ϕa⇒a(u) = u+ h3
u− h3

and ϕa+1⇒a(u) = (u+ h1)(u+ h2)
(u− h1)(u− h2) , (B.5)

we have

Ψ(1)
�1

(u) = 1
u
· u

u− h3

(
lim
k→∞

u− 2k h1 − h3
u− 2k h1

)
→ 1

u− h3
=: ]ψ(1)

�1
(u) ,

Ψ(2)
�1

(u) = u+ h1
u− h2

(
lim
k→∞

u− (2k − 1) h1 + h3
u− (2k − 1) h1

)
→ u+ h1

u− h2
=: ]ψ(1)

�1
(u) .

(B.6)

25When we choose a certain excited state as a new “vacuum”, one usually encounters holes in addition to
particles. In our situation K is chosen such that creating a hole consistently requires removing an infinite
number of atoms, and hence costs “infinite energy”. This ensures that there are no “hole-like” excitations.
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In deriving (B.6) from (B.4), we first see that although the naive definition (B.4) of the
charge function of the non-trivial representation �1 involves infinitely many factors (from
the infinitely many atoms), there are actually a lot of cancellation between factors from the
neighboring atoms. After the cancellation, there is a limiting function in the bracket (for
each a = 1, 2), which describes the end of the long row with the position of the end going
to the infinity. Secondly, for this particular representation, the limiting function evaluates
to a finite number (which is 1 here). In the end, the charge functions (B.6) of the state
�1 are rather simple rational functions, which become the ground state charge functions
of the representation �1.

We can verify that this is precisely the ground state charge function expected for
the minimal representation �1. The functions (B.6) have poles at z = h3 and h2, with
color 1 and 2, representing two positive crystals whose leading atoms are color 1 and 2,
respectively; there is also a color 2 zero at z = −h1 = h2 + h3, representing a negative
crystal (whose leading atom is color 2), which is needed to cancel the overlap of the two
positive crystals.

Since the crystal has a symmetry exchanging the x1 and x2 directions, the case of the
x2-direction is parallel to that of the x1-direction, with the result

Ψ(1)
�2

(u) = 1
u
· u

u− h3

(
lim
k→∞

u− 2k h2 − h3
u− 2k h2

)
→ 1

u− h3
=: ]ψ(1)

�2
(u) ,

Ψ(2)
�2

(u) = u+ h2
u− h1

(
lim
k→∞

u− (2k − 1) h2 + h3
u− (2k − 1) h2

)
→ u+ h2

u− h1
=: ]ψ(1)

�2
(u) .

(B.7)

What about the analogous representation along the x3 direction? First of all, from the
crystal structure, the charge function of �3 is

Ψ(a)
�3

(u) = (ψ0(u))δa,1
∞∏
n=0

ϕ1⇒a(u− nh3) . (B.8)

Plugging in the bond factor (B.5), we get

Ψ(1)
�3

(u) = (u+ h3)
limn→∞(u− nh3)(u− (n+ 1)h3) → (u+ h3) =: ]ψ(1)

�3
(u) ,

Ψ(2)
�3

(u) = limn→∞(u+ h1 − nh3)(u+ h2 − nh3)
(u− h1)(u− h2) → 1

(u− h1)(u− h2) =: ]ψ(2)
�3

(u) .
(B.9)

Although there are still a lot of cancellations between the factors from the neighboring
atoms, we see that the limit function doesn’t evaluate to a finite number, unlike the cases
for�1,2. We nevertheless proceeded to regularize by throwing away factors corresponding to
infinities in the u-plane. The end results are regarded as the ground state charge functions
of the representation �3. This is again expected for the minimal representation for �3: the
decomposition of the subcrystal gives two positive crystals at u = h1, h2 and one negative
crystal for the overlap u = −h3 = h1 + h2.

With the ground state charge functions of the three fundamental representations (B.6),
(B.7), and (B.9) as the building blocks, one can construct the ground state charge function
for the representation associated with a subcrystal with arbitrary asymptotics ~Y . For
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example, for ~Y = ( , ∅, ∅), we need two �1, from (B.6), and for the second � factor, we
need to apply Ψ(a)

� (u)→ Ψ(a+1)
� (u−h2). Combining them together we get the ground state

charge functions as26

Ψ(1)
~Y

(u) = 1
u
· u

u− h3
· u+ h1 − h2

u− 2h2
= 1
u− h3

· u+ h1 − h2
u− 2h2

=: ]ψ(1)
~Y

(u) ,

Ψ(2)
~Y

(u) = u+ h1
u− h2

· u− h2
u− h3 − h2

= 1 =: ]ψ(2)
~Y

(u) .
(B.10)

Again, one can check that all the poles and zeros are expected from the shape of the
subcrystal. Take another example ~Y = ( , ∅, ), we need a �1 from (B.6), and a �3
from (B.9), and remove the double counting from the contribution of the first atom (which
is shared between �1 and �3). Altogether, we have

Ψ(1)
~Y

(u) = 1
u
· u

u− h3
· u(u+ h3) · u− h3

u+ h3

= u =: ]ψ(1)
~Y

(u) ,

Ψ(2)
~Y

(u) = u+ h1
u− h2

· 1
(u− h1)(u− h2) ·

(u− h1)(u− h2)
(u+ h1)(u+ h2)

= 1
(u− h2)(u+ h2) =: ]ψ(2)

~Y
(u) ,

(B.11)

where the positions of the poles and zeros are expected from the shape of the subcrystal.
Although repeating this procedure can give the ground state charge function of any sub-
crystal, it is clear that the positive/negative crystal method used in the main text is much
simpler.

B.2 Example for wall crossing: conifold

In the previous subsection, we showed how to generalize the method of studying non-trivial
representations of the affine Yangian of gl1 for the C3 geometry [9, 10, 23, 40] to the case of
open BPS states for other geometries, with (C2/Z2)×C as an example. In this subsection,
we will show that this method can also be used to construct representations corresponding
to other chambers of wall-crossing. We will consider the example of the infinite chamber
C(i)
m for the conifold geometry, already studied using the positive/negative crystal method

in section 5.1.3.
To apply this method, we first compare the subcrystal C(i)

m with the canonical crystal
C0 = C(i)

m=1, and determine which atoms to remove in order to obtain C(i)
m from C(i)

1 . In
figure 14, we reproduce the crystals C(i)

1 from figure 5 and C(i)
m from figure 7 (for m = 3).

Comparing the two, we see that in order to obtain the latter from the former, we need to
remove m− 1 (which equals 2) double slices of atoms along one of the surfaces, which are
colored red for node 1 and blue for node 2.

In order to compute the charge function, we need to specify the coordinates of the
atoms in the canonical crystal C0 = C(i)

1 . Recall that each box in the plane partition can
26Note that the vacuum factor 1

u
should only appear once and is never shifted.
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x1

x2

x3

m (white) starters at positions (x1, x2, x3) = (m− 1− 2n,m− 1,m− 1)

m− 1 (black) pausers at positions (x1, x2, x3) = (m− 2− 2n,m− 1,m− 1)

Figure 14. The subcrystal for the infinite chamber C(i)
m can be obtained from the canonical crystal

C0 = C(i)
1 by removing m − 1 double layers of atoms. Left: canonical crystal C0 with two double

slices of atoms marked (red for color 1 and blue for color 2). Right: removing the red and blue
atoms gives the subcrystal for the infinite chamber C(i)

m with m = 3.

be described by the 3D coordinates (x1, x2, x3) with xi ∈ N0. Similarly, we label the atoms
in the crystal C(i)

1 by the coordinates (x1, x2, x3 = `). First of all, the crystal has a layered
structure, labeled by x3 = ` with ` = 0, 1, 2, · · · ,∞. Each level has two sublevels: first a
level of atoms with color 1 followed by a level of atoms with color 2. Within each level,
the atom is further distinguished by their (x1, x2) coordinate. At level `, first there is a
sublevel that contains (`+ 1)2 atoms of color 1, with positions

x1 = −` ,−`+ 2 , · · · , `− 2 , ` ;
x2 = −` ,−`+ 2 , · · · , `− 2 , ` ;
x3 = ` .

(B.12)

These are followed by the sublevel with (`+ 1)(`+ 2) atoms of color 2, with positions27

x1 = −`− 1 ,−`+ 1 , · · · , `− 1 , `+ 1 ;
x2 = −` ,−`+ 2 , · · · , `− 2 , ` ;
x3 = ` .

(B.13)

The coordinate function of the atom at (x1, x2, x3 = `) is

h(�) = h1 x1(�) + h2 x2(�) . (B.14)

As shown in figure 14, the subcrystal that corresponds to the chamber C(i)
m can be

obtained from the canonical crystal C0 = C(i)
1 by removing m − 1 double layers of atoms

27Note that in this subsection, we are using a slightly different coordinate system for x3 for the conifold
geometry from the one used in the main text, given by (5.4). The main difference is that here we are using
a double-layer coordinate system in which the white atoms and the black atoms in the same double-layer
have the same x3 coordinate, whereas in the main text we have the single-layer system in which atoms from
different layers have different x3 coordinate. However, since the coordinate function (5.20) is independent
of the x3 coordinate of the atom, this difference is immaterial to our discussion.
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along the surface. The atoms to be removed are: the atoms of color 1 at positions

x1 = −` ,−`+ 2 , · · · , `− 2 , ` ;
x2 = −` ,−`+ 2 , · · · ,−`+ 2(m− 2) ;
x3 = ` ,

(B.15)

together with atoms of color 2 at positions

x1 = −`− 1 ,−`+ 1 , · · · , `− 1 , `+ 1 ;
x2 = −` ,−`+ 2 , · · · ,−`+ 2(m− 2) ;
x3 = ` ,

(B.16)

for ` = 0, 1, . . . ,∞.
Adding these atoms to the vacuum, we obtain the state to be considered as the ground

state of the representation C(i)
m . The charge function can be computed by definition (3.3) as

Ψ(a)(z) = (ψ0(z))δa,1

×
∞∏
`=0

min(m−2,`)∏
n2=0

( ∏̀
n1=0

ϕ1⇒a (z − ((`− 2n1) h1 − (`− 2n2) h2))

×
`+1∏
n1=0

ϕ2⇒a (z − ((`+ 1− 2n1) h1 − (`− 2n2) h2))
)
.

(B.17)

Plugging in the bond factor (5.8) of affine Yangian of gl1|1, we have

Ψ(1)(z) = 1∏m−1
n=0 (z − ((m− 1− 2n)h1 + (m− 1) h2))

· lim
L→∞

m−1∏
n2=0

∏L+2
n1=0 (z − ((L+ 2− 2n1) h1 − (L− 2n2) h2))∏L+1

n1=0 (z − ((L+ 1− 2n1) h1 − (L+ 1− 2n2) h2))
,

Ψ(2)(z) =
m−2∏
n=0

(z − ((m− 2− 2n) h1 + (m− 1) h2))

· lim
L→0

m−2∏
n2=0

∏L
n1=0 (z − ((L− 2n1) h1 − (L+ 1− 2n2) h2))∏L+1
n1=0 (z − ((L+ 1− 2n1) h1 − (L− 2n2) h2))

.

(B.18)

While there are a lot of cancellations between factors of neighboring atoms, the cancel-
lation is not complete: the factors at the final level L (before taking L to infinity) remain.
As a regularization we propose to drop these factors in the limit L→∞, to obtain

Ψ(1)(z) = 1∏m−1
n=0 (z − ((m− 1− 2n)h1 + (m− 1) h2))

,

Ψ(2)(z) =
m−2∏
n=0

(z − ((m− 2− 2n) h1 + (m− 1) h2)) .
(B.19)

We see that this regularization scheme reproduces the correct vacuum charge function, as
expected from the general discussions in section 5.1.3.
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The charge function Ψ(1) for chamber C(i)
m hasm poles, corresponding to them positions

where one can add the first atom of color 1:

(x1, x2, x3) = (m− 1− 2n,m− 1,m− 1) ,
with n = 0, 1, . . . ,m− 1 .

(B.20)

On the other hand, the charge function Ψ(2) has no pole, corresponding to the fact that
there is no place to add an atom of color 2 immediately starting from the ground state of
this representation. Instead, it has m− 1 zeros at

(x1, x2, x3) = (m− 2− 2n,m− 1,m− 1) ,
with n = 0, 1, . . . ,m− 2 .

(B.21)

These poles and zeros agree with the positions of starters and pausers of the subcrystal
C(i)
m , derived using the positive/negative method in section 5.1.3.28

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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