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axionic field plus its saxionic partner, and the classical F-term potential takes the form
V = ZABρAρB up to exponentially-suppressed terms, with ρ depending on the fluxes and
axions and Z on the saxions. We provide explicit, general expressions for Z and ρ, and
from there analyse the set of flux vacua for an arbitrary number of fields. We identify two
families of vacua with all complex structure fields fixed and a flux contribution to the tad-
pole Nflux which is bounded. In the first and most generic one, the saxion vevs are bounded
from above by a power of Nflux. In the second their vevs may be unbounded and Nflux
is a product of two arbitrary integers, unlike what is claimed by the Tadpole Conjecture.
We specialise to type IIB orientifolds, where both families of vacua are present, and link
our analysis with previous results in the literature. We illustrate our findings with several
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1 Introduction

A powerful feature of F-theory compactifications is that they provide an overall picture of
the set of string vacua, as they are directly connected to most string theory constructions
via dualities. This trait is particularly significant in the context of compactifications to four
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dimensions, where they are in addition endowed with a notably simple and efficient mecha-
nism to stabilise moduli. Indeed, complex structure moduli fixing in F-theory through the
presence of background four-form fluxes is a paradigmatic framework to remove unwanted
neutral scalars from the low energy effective theory [1–6]. It is from this framework that
we have developed our current understanding of the string Landscape.

Since the F-theory flux landscape is quite vast, it is not obvious how to describe all the
information encoded in complex structure moduli stabilisation. One possible approach is
to treat the set of flux vacua as an ensemble, and apply statistical methods to extract their
physical properties [7]. A different strategy is to assume that complex structure moduli are
fully fixed at a very high scale, and so one can safely integrate out all of them to analyse
the physics of Kähler moduli and localised degrees of freedom [8–10]. The information of
complex structure moduli stabilisation is then encoded in a set of parameters that appear
in the effective theory below the flux scale, and which are oftentimes assumed to be tunable
in terms of an appropriate choice of Calabi-Yau geometry and flux quanta.

It has however been pointed out that there could be more to it than this generic picture
of complex structure moduli stabilisation. On the one hand, some works have questioned
the idea that one can generically fix all complex structure moduli and at the same time
satisfy the tadpole consistency conditions of the compactification [11–13]. On the other
hand, it has been shown that at asymptotic limits in complex structure field space the flux
potential simplifies and its form can be classified in terms of robust Calabi-Yau data [14],
leading to certain no-go results and general arguments in favour of the finiteness of flux
vacua [15].

Clearly, these recent results point towards a rich structure underlying F-theory flux
potentials that is yet to be unveiled. In order to uncover this structure, it is important
to gain analytic control over F-theory flux potentials and its corresponding set of vacua.
Ideally, given a Calabi-Yau four-fold and a choice of four-form fluxes, one would like to
understand directly from these data how many complex structure moduli are stabilised by
the potential, at which point in field space they are fixed, and what is their mass spectrum.

It is the purpose of this work to take a non-trivial step in this direction, by providing
an explicit, analytic description of F-theory flux potentials and their vacua. We do so by
focusing on regions of large complex structure of smooth Calabi-Yau four-folds. In this
regime, we are able to provide an explicit expression for the F-theory F-term potential for
any four-fold Y4, up to exponentially-suppressed terms. At this level of approximation, the
only data that are needed to specify the potential are the flux quanta and certain topological
numbers of the mirror four-fold X4. This simplicity allows us to perform a general analysis
of the vacua conditions for an arbitrary number of complex structure fields, and eventually
uncover different families in which such vacua are arranged.

An important ingredient of our analysis is the fact that at moderate and large complex
structure the 4d Kähler potential displays a number of axionic shift symmetries, only bro-
ken by the exponentially-suppressed terms that we neglect. Because of this, each complex
structure field splits into an axionic and a saxionic component. Microscopically, the peri-
odicity of the axions corresponds to the monodromies around the large complex structure
point that act non-trivially both on the periods of the holomorphic Ω and flux G4 four-
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forms. It turns out that in terms of these real variables the scalar potential takes a very
simple form, namely V = 1

2Z
ABρAρB, with ρA monodromy-invariant combinations of fluxes

and axions, and ZAB only depending on the saxions. Since the potential is positive semi-
definite and only yields Minkowski vacua, the on-shell equations amount to ZABρB = 0
∀A, and so they can be solved algebraically.

Using these on-shell equations, one is able to rewrite the flux contribution to the D3-
brane tadpole Nflux as a sum of positive terms, and from there derive that certain flux
quanta must vanish at large complex structure in order to find vacua in this regime. De-
pending on which quanta vanish we distinguish different families of flux vacua, which we
then analyse. In the most generic family, which is present in any Calabi-Yau four-fold
Y4, the number of stabilised moduli depends on the choice of fluxes, an effect that we
characterise with explicit formulas. Remarkably, even in the most favourable case full
moduli stabilisation is not that easy to observe: it is only manifest when the entries of
ZAB are computed to certain accuracy. In practice, one may compute them i) in the strict
asymptotic limit [14], ii) by approximating the periods of Ω with their leading behaviour
(section 2.1) , and iii) by including all the polynomial corrections to such periods, neglecting
only exponentially-suppressed terms (section 2.2). For this family of vacua only with this
third description full complex structure moduli stabilisation is manifest. Less accurate de-
scriptions yield potentials that typically have at least one flat direction. As a consequence,
most vacua cannot exist at parametrically large complex structure. In fact, we find that
the saxion vevs are bounded from above by roughly K(3)N

p+ 1
2

flux , where K(3) represents the
minor polynomial correction to the potential, Nflux is the flux contribution to the D3-brane
tadpole, and p ≤ h3,1(Y4) is bounded by the number of complex structure moduli.

In this generic scheme, the condition to achieve full moduli stabilisation depends on
those flux quanta that contribute to Nflux. It is therefore possible that in some instances
Nflux grows as we increase the number of moduli, as recently proposed by the Tadpole
Conjecture in [12]. Our framework allows us to propose a formula that tests this statement,
and that can be checked in any compactification. Regardless of whether this happens or not,
we find that in certain compactifications the Tadpole Conjecture is violated, due to a second
family of vacua that emerges for them. This new family of vacua arises whenever a complex
structure saxion appears at most linearly in e−K (with K the Kähler potential) and the
superpotential, a setup which we dub the linear scenario. Examples of this are Calabi-Yau
four-folds Y4 whose mirrorX4 is a fibration of a Calabi-Yau over a P1, and in particular type
IIB orientifold compactifications. The new set of vacua appears at large values of the linear
saxion, with Nflux a simple product of two flux quanta. The remaining non-vanishing flux
quanta are such that they fix all complex structure moduli. Remarkably, in the particular
case of type IIB compactifications the polynomial corrections identified as K(3) are also
needed to implement this full moduli stabilisation and, in fact, this family of vacua are
mirror dual of the Minkowski type IIA flux vacua originally found in [16]. The necessity
of polynomial corrections is however not a universal feature in other F-theory realisations
of the linear scenario, as we show with an explicit example. This indicates that it is this
more exotic family of vacua, and maybe new ones yet to be discovered, that dominate the
landscape of F-theory vacua at regions of parametrically large complex structure.
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The paper is organised as follows. In section 2 we compute the flux scalar potential for
arbitrary four-folds, first using the leading terms of the periods of Ω and then including all
polynomial terms. In section 3 we analyse the resulting vacua equations, and in particular
how a finite D3-brane tadpole affects the existence of vacua. From here we obtain the
most generic family of flux vacua in the large complex structure regime, which nevertheless
cannot exist at parametrically large complex structure. In section 4 we apply our results to
the special case of type IIB orientifold compactifications, matching them with the existing
literature. In particular, we identify a family of flux vacua which is different from the generic
one, in which the expression for Nflux is independent of the number of moduli. Section 5
upgrades this family of vacua to a genuine F-theory setup, which we dub linear scenario.
In section 6 we illustrate our findings with explicit constructions of Calabi-Yau four-folds,
whose mirror are smooth fibrations. We finally present our conclusions in section 7.

Several technical details have been relegated to the appendices. Appendix A provides a
geometric definition of the flux-axion polynomials ρA, and relates the ZAB with the Hodge
star action on the space of four-forms. Appendix B gathers the different computations
needed to include all the polynomial terms in the flux potential which, in terms of the
mirror four-fold, can be seen as taking into account curvature corrections. Appendix C
discusses the mondromy-invariant combination of fluxes that appear in our setup, which
are the quantities that fix the saxions vevs. Appendix D computes the most involved part
of the vacua equations for the compactifications discussed in section 6.1, whose mirror
four-fold is an elliptic fibration.

2 The F-theory potential at large complex structure

In a region of sufficiently large complex structure, the moduli space geometry of F-theory
on a Calabi-Yau (CY) four-fold simplifies, in the sense that each complex structure field
splits into an axionic and a saxionic real components. This not only constrains the form
of the 4d effective Kähler potential, but also of the superpotential induced by background
four-form fluxes. In this section we will compute both, and from there provide an explicit
bilinear expression for the F-term scalar potential, on which we will base our subsequent
analysis. In section 2.1 we will consider the leading form of the potential at large saxion
values, from which one can infer most of the intuition regarding the ensemble of flux vacua,
and in section 2.2 we will include the polynomial corrections to these leading terms. As
we will see in section 3, such corrections turn out to be crucial to fully understand moduli
stabilisation in F-theory.

2.1 The leading flux potential

Let us consider F-theory compactified on a Calabi-Yau four-fold Y4, which is a smooth
elliptic fibration over a three-fold base C3. In the presence of an internal background four-
form flux G4, a scalar potential is generated for both the complex structure and Kähler
moduli of Y4. On the one hand, the potential for Kähler moduli can be seen as a D-term
potential D = 1

2
∫
Y4
G4 ∧ J ∧ J , with J the Kähler form of Y4. On the other hand, the

potential for the complex structure moduli can be understood as an F-term potential, with
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Gukov-Vafa-Witten superpotential [17]

W =
∫
Y4
G4 ∧ Ω , (2.1)

where Ω is the holomorphic (4,0)-form of Y4, in terms of which we define its complex
structure moduli. At large volume the Kähler potential is given by K = −2 logV3 + Kcs,
where V3 is the volume of C3 and only depends on its Kähler moduli, while

Kcs = − log
∫
Y4

Ω ∧ Ω̄ . (2.2)

Both potentials are positive semi-definite, and select global, 4d Minkowski minima at those
points in moduli space where the Hodge self-duality condition is satisfied [18]

G4 = ∗G4 . (2.3)

Those minima in which G4 is a primitive (2,2)-form are, moreover, supersymmetric [19].
Our goal is to provide an explicit expression for the F-term scalar potential in terms of

the complex structure moduli of the four-fold. To do so one must first determine a basis for
the lattice ΛW of quantised fluxes that enters (2.1), and then compute the corresponding
periods of Ω. It turns out that the first part of this problem is quite subtle. This lattice
pairs up via (2.1) with the horizontal subspace of the middle cohomology of the four-fold
H4
H(Y4) ⊂ H4(Y4), which is generated by Ω and its derivatives [20, 21]. We have that

dimH4
H(Y4) = 2 + 2h3,1(Y4) + dimH2,2

H (Y4), with the embedding H2,2
H (Y4) ⊂ H2,2(Y4)

being quite involved [22]. As a consequence, in a four-fold there is no clear link between
the number of complex structure moduli, which is given by h3,1(Y4), and the number of
fluxes that enter the superpotential.1

Fortunately, one may implement the strategy of [23, 24] to overcome these difficulties
and find concrete expressions for the F-term potential. The main idea in [23, 24] is to use
homological mirror symmetry and consider the mirror four-fold of Y4, which we denote as
X4. Then one may compactify type IIA on X4, and identify the periods of Ω in Y4 with
the central charges of topological B-branes on X4, which generate the mirror of the lattice
ΛW . In the large volume regime, this lattice can be understood as D(2p)-branes wrapping
holomorphic 2p-cycles, with p = 0, 1, 2, 3, 4. The subtleties alluded above translate into
constructing a basis of holomorphic 4-cycles, a set that can be generated by intersecting
pairs of divisors of X4. This basis can be constructed explicitly when X4 is a smooth
fibration, see [23] and the discussion in sections 5 and 6. An element of the corresponding
lattice will have a central charge of the form

∫
X4
eJc ∧ FRR, where FRR is a closed even

polyform and Jc = B + iJ is the complexified Kähler form of X4. It follows that, under
these assumptions, the F-theory superpotential (2.1) can be identified with a 2d analogue
of the 4d type IIA RR flux superpotential [25].

1Recall that for type IIB on a Calabi-Yau three-fold we have b3/2 complex fields on the complex structure
and axio-dilaton sectors, and a real lattice of background three-form fluxes of dimension 2b3. In sections 5
and 6 we will consider F-theory constructions that reproduce the same sort of relation.
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The leading order term for the central charge Π2p of a D(2p)-brane wrapping a holo-
morphic 2p-cycle on X4 in the large volume limit is

Π0 = 1 , (2.4a)

Πi
2 = −T i , (2.4b)

Π4µ = 1
2ηµνζ

ν
ijT

iT j , (2.4c)

Π6 i = −1
6KijklT

jT kT l , (2.4d)

Π8 = 1
24KijklT

iT jT kT l , (2.4e)

where T i = bi + iti, i = 1, . . . , h1,1(X4) stand for the complexified Kähler moduli of X4,
and Kijkl for its quadruple intersection numbers. The index µ in Π4µ runs over a basis of
four-cycles generating all the intersections of a basis of Nef divisor classes [Di] on X4. As a
result we can write the class of their intersection as [γij ] = [Di.Dj ] = ζµij [σµ] for some set of
integral four-form classes [σµ] and some ζµij ∈ Z. Finally ηµν = [σµ] · [σν ] is the intersection
matrix of this sector, which must satisfy

Kijkl = ζµijηµνζ
ν
kl = ζµijζµ,kl . (2.5)

where in the second equality we have defined ζµ,kl ≡ [σµ] · [Dk] · [Dl].
Applying the mirror symmetry map, the {T i} become the complex structure moduli of

Y4, where now i = 1, . . . , h3,1(Y4). The set of holomorphic 2p-cycles classes of X4 becomes
a lattice of horizontal four-cycles in Y4, such that [σµ] 7→ [σYµ ]. The central charges (2.4)
become the leading terms for the periods of the four-form Ω in the large complex structure
limit, where it admits an expansion of the form

Ω = απ0 + αiπ
i
2 + σYµ π

µ
4 + βiπ6i + βπ8 . (2.6)

Here {α, αi, σYµ , βi, β} represent a set of harmonic four-forms which is also an integral basis
for H4

H(Y4). Their moduli-dependent coefficients are given by

π0 = 1 , πi2 = T i , πµ4 = 1
2ζ

µ
ijT

iT j , π6i = 1
6KijklT

jT kT l , π8 = 1
24KijklT

iT jT kT l .

(2.7)
The classical intersection numbers for their Poincaré dual four-cycles are∫

Y4
α ∧ β = 1,

∫
Y4
αi ∧ βj = −δji ,

∫
Y4
σYµ ∧ σYν = ηµν . (2.8)

In fact the intersection matrix for {α, αi, σYµ , βi, β} is more involved, as (2.8) receive cor-
rections that destroy its block-anti-diagonal form and which, in the mirror four-fold X4,
arise due to curvature terms. We discuss such corrections in subsection 2.2, where we show
that they can be absorbed in a redefinition of the G4-flux quanta. Thus, for the purpose
of providing an explicit expression for the F-term potential, one may still work with these
naive intersection numbers.
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To compute the flux superpotential we only need to expand the flux G4 in the same
basis of four-forms

G4 = mα−miαi + m̂µσYµ − eiβi + eβ , (2.9)

where m,mi, m̂µ, ei, e ∈ Z represent the flux quanta. Using (2.8) we obtain that the
superpotential takes the form

W = e+ eiT
i + 1

2 m̂
µζµ,klT

kT l + 1
6 Kijklm

iT jT kT l + m

24 Kijkl T
iT jT kT l . (2.10)

One can obtain a more symmetric expression by considering a set of integers mij that
satisfy

m̂µ = 1
2ζ

µ
ijm

ij , (2.11)

so that the superpotential becomes

W = e+ eiT
i + 1

4 Kijklm
ijT kT l + 1

6 Kijklm
iT jT kT l + m

24 Kijkl T
iT jT kT l . (2.12)

In general the choice of mij is not unique, but it is easy to see that any choice will yield the
same final expression. We will predominantly use the form of the superpotential (2.10),
although in some instances it will be more convenient to use the auxiliary expression (2.12)
that involves the redundant set of fluxes mij .

Notice that this superpotential is nothing but a linear combination of the central
charges Π2p in (2.4) which, upon mirror symmetry becomes a linear combination of the
periods of Ω. Indeed, we have that

W = ~q tΣ~Π = eΠ0 − eiΠi
2 + m̂µΠ4µ −miΠ6 i +mΠ8 , (2.13)

which clearly reproduces (2.10). Here we have defined the vector of fluxes ~q t =
(m,mi, m̂µ, ei, e), the vector of periods ~Π t = (Π0,Πi

2,Π
µ
4 ,Π6 i,Π8) and the pairing matrix

Σ =


0 0 0 0 1
0 0 0 −δij 0
0 0 δµν 0 0
0 −δji 0 0 0
1 0 0 0 0

 . (2.14)

We can also use (2.4), (2.6) to compute the piece of the Kähler potential (2.2). We
have that

Kcs = − log
[
2Re(π0π̄

8)
∫
Y4
α ∧ β + 2Re(πi2π̄6

j )
∫
Y4
αi ∧ βj + πµ4 π̄

ν
4

∫
Y4
σYµ ∧ σYν

]
, (2.15)

from where we obtain
Kcs = − log

(2
3Kijklt

itjtktl
)
. (2.16)

As expected, in this large complex structure limit the leading term of the Kähler potential
only depends on ti ≡ ImT i, and so the field space metric displays abundant continuous
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shift symmetries. As we will see below, polynomial corrections to the periods (2.4) do
modify (2.16), but they do not introduce a dependence on bi ≡ ReT i. This can be expected
from considering type IIA compactified on the mirror manifold X4, where the bi correspond
to integrals of the B-field. In the large volume limit these fields can be considered as axions,
since the only terms breaking the continuous shift symmetry are generated by world-sheet
instanton effects and are therefore suppressed as e2πiT ini , ni ∈ Z. The same statement
applies to our setup, where the periodic nature of the fields bi translates into a the familiar
set of monodromies Ti around the large complex structure point, which act non-trivially
on the basis {α0, αi, σµ, β

i, β0}, the periods Π2p and the flux quanta, but leave Ω and G4
invariant.

This large set of axionic variables allows us to derive a simple, analytic expression for
the F-term scalar potential. The main observation is that one should express the scalar
potential in terms of a set of axion polynomials ρA linear on the flux quanta, which are
invariant under the action of the monodromies Ti. Because at the two-derivative level the
scalar potential is quadratic in the fluxes, one recovers an expression of the form

V = 1
2Z

ABρAρB , (2.17)

where ρA ≡ ρA(b) are independent of the saxions ti. The matrix entries ZAB do not depend
on the fluxes, and so they can only depend on the axions through periodic functions.
However, such periodic functions necessarily enter the periods of Ω through terms of the
form e2πiT ini , which are exponentially suppressed in the large complex structure regime.
Therefore under our assumptions we have that ZAB ≡ ZAB(t) only depends on the saxions
of the compactification, providing a simple, factorised bilinear structure for the F-term
scalar potential. This same strategy was applied for type IIA 4d flux compactifications
in [26–29], where a potential with the structure (2.17) was obtained, in agreement with
general EFT considerations [30–32]. As shown in [29, 33, 34, 36], this bilinear structure
allows one to characterise the set of vacua in a simple, systematic manner, and even to
determine the behaviour of the system away from them [14, 37, 38]. In section 3 we will use
the form (2.17) of the F-theory F-term potential to classify the set of flux vacua at large
complex structure. Finally, as pointed out in [14], the same bilinear expression (2.17) holds
near other points at infinite distance in complex structure field space, and so in principle
our strategy could be extended to these regions as well.

To find the bilinear expression (2.17) one must use the well-known no-scale properties
of F-theory compactifications to simplify the Cremmer et al. [39] formula for the F-term
potential. In particular, the fact that the Kähler moduli do not appear in the superpotential
translates into the following simplified expression [18, 40]

V = eK
∑
i,j

Kij̄DiWDj̄W , (2.18)

where i, j = 1, . . . , h3,1(Y4) run over the complex structure moduli of Y4. Here Di =
∂i + (∂iK) stands for the supergravity covariant derivative, while Kij̄ is the inverse of the
Kähler metric Kij̄ ≡ ∂i∂j̄K. Because the Kähler potential is independent of the complex
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structure axions, it is more convenient to express both in terms of tensors with real indices
gij ≡ 1

4∂ti∂tjK = Kij̄ . These read

gij = 4KiKj
K2 − 3Kij

K
gij = 4

3 t
itj − 1

3KK
ij , (2.19)

with Kij the inverse of Kij , and we have defined the contractions

K ≡ Kijkltitjtktl , Ki ≡ Kijkltjtktl , Kij ≡ Kijkltktl , Kijk ≡ Kijkltl . (2.20)

The expression (2.18) is already positive semi-definite and bilinear, but still not of the
form (2.17). To make explicit the factorisation between axions and saxions, one must define
the flux-axion polynomials ρA, which capture the discrete symmetries of the superpotential,
and whose geometric interpretation and general definition is given in appendix A. In our
setup they read

ρ = e+ eib
i + 1

2m̂
µζµ,klb

kbl + 1
6Kijklm

ibjbkbl + 1
24mKijklb

ibjbkbl , (2.21a)

ρi = ei + m̂µζµ,ilb
l + 1

2Kijklm
jbkbl + 1

6mKijklb
jbkbl (2.21b)

ρ̂µ = m̂µ + ζµijb
imj + 1

2ζ
µ
ijb

ibj , (2.21c)

ρ̃i = mi +mbi , (2.21d)

ρ̃ = m. (2.21e)

As pointed out in [28], these polynomials are related to each other via derivatives, leading
to a convenient way to express for the superpotential and F-terms. For the case at hand
we have

W =ρ+ iρit
i − 1

2ζµρ̂
µ − i

6Kiρ̃
i + K24 ρ̃ , (2.22a)

∂iW =ρi + iζµiρ̂
µ − 1

2Kij ρ̃
j − i

6Kiρ̃ , (2.22b)

together with ∂jK = 2iKj/K, and where we have defined the contractions ζµ ≡ ζµ,ijt
itj

and ζµi ≡ ζµ,ijt
j . Plugging these expressions into (2.18) and using the properties of the

metrics (2.19) one finds the following expression for the F-theory flux potential

V = eK
[
4
(
ρ− K24 ρ̃

)2
+ gij

(
ρi + K6 gikρ̃

k
)(

ρj + K6 gjlρ̃
l
)

+ gijP ζµiζνj ρ̂
µρ̂ν

]
, (2.23)

where gijP is the primitive component of the inverse metric, i.e. gijP = 1
3(titj −KKij). This

expression for the potential is one of the main results of this section. It reproduces the
bilinear, factorised structure in (2.17) as a sum of three positive semi-definite terms, that
correspond to a block-diagonal structure for the saxion-dependent matrix Z. Indeed, if we
arrange the flux-axion polynomials in a vector of the form

~ρ t =
(
ρ̃, ρ̃i, ρ̂µ, ρi, ρ

)
, (2.24)
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then the said matrix reads

ZAB = eKK
3



K
24 −1
K
6 gij δij

6
Kg

ij
P ζµiζνj

δij
6
Kg

ij

−1 24
K


, (2.25)

which can be easily taken to a block-diagonal form. Notice that each block is singular, and
that their ranks add up to 2h3,1(Y4). Therefore, generically the vacua equations ZABρB = 0
amount to impose 2h3,1(Y4) conditions on the same amount of unknowns, namely the
complex structure real fields. Finally, note that we can rewrite this expression as

2V2
3Z = diag

(K
24 ,
K
6 gij , gµν ,

6
K
gij ,

24
K

)
− χ0 , (2.26)

where gµν ≡ ηµν − 2(Kij −K−1titj)ζµiζνj and

χ0 =


0 0 0 0 1
0 0 0 −δij 0
0 0 ηµν 0 0
0 −δji 0 0 0
1 0 0 0 0

 , (2.27)

encodes the intersection numbers (2.8). As it follows from the results of appendix A, split-
ting Z in these two terms corresponds to the well-known expression for the scalar potential

V = 1
4V2

3

[∫
Y4
G4 ∧ ∗G4 −

∫
Y4
G4 ∧G4

]
, (2.28)

at this level of approximation. As we will see below, the polynomial corrections to the
scalar potential will respect the factorisation between axions and saxions, and therefore the
bilinear structure (2.17). On the one hand, the corrections to the intersection numbers (2.8)
will modify ~ρ but not Z. On the other hand, the corrections to the Kähler potential (2.16)
will leave ~ρ invariant but destroy the block-diagonal structure of Z.

It is instructive to compare the above results with previous analysis in the literature.
For instance, one would recover the F-theory flux potential analysed in [41] by setting
mi = m̂µ = ei = e = 0 and keeping only m as a non-vanishing quantum of flux. The scalar
potential would still look the same, but the axion dependence in (2.21) would become
very simple. As we will see in section 3, vacua with m 6= 0 are not allowed at sufficiently
large complex structure, in agreement with the result of [41]. Including the remaining flux
quanta does a priori allow us to find non-trivial extrema of the potential, as we will also
study in the next section.

One may also compare (2.23) with the asymptotic potentials analysed in [14] re-
stricted to the particular case of the large complex structure limit. In the language
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of [14], the approximation that leads to the expression (2.23) lies in between those that
result in the asymptotic form of the potential and its strictly asymptotic form. To
achieve the latter one must take the expression (2.26) and replace each of the entries
in diag

(
K
24 ,
K
6 gij , gµν ,

6
Kg

ij , 24
K

)
by its leading term on the complex structure saxions ta,

which amounts to replace the Hodge star operator by its strictly asymptotic approxima-
tion Csl(2). The plain asymptotic form of the potential (that is, replacing ∗ by Cnil) is
achieved by adding further polynomial corrections to (2.23), which we now turn to anal-
yse. As we will see, full moduli stabilisation is only achieved when these corrections are
taken into account. Moreover, their presence leads to important restriction on the space of
flux vacua, which remain undetected if only the strictly asymptotic form of the potential
is used.

2.2 Polynomial corrections

The leading form of the potential (2.23) receives several corrections of different nature,
which can be classified in terms of corrections to the superpotential and Kähler potential.
In the following we will address those that depend on the complex structure sector and are
polynomial corrections to W and e−K . These can be treated like perturbative corrections
to the leading potential, as opposed to exponentially-suppressed corrections. Taking these
polynomial corrections into account permits to extend our analysis to regions where the
complex structure saxions are only moderately large, so that the exponential corrections
of the form e2πiT ini can still be neglected. The reader not interested in the details of the
following derivation may only focus on the results (2.42) and (2.43), that summarise the
polynomial corrections for the superpotential and Kähler potential, and proceed to the
next section.

To compute the said corrections let us again consider type IIA compactified in the
mirror four-fold X4. Here the polynomial corrections that arise in the Kähler sector are
due to curvature corrections, while the exponential corrections that we will neglect arise
from world-sheet instanton effects. The polynomial corrections are encoded in the asymp-
totic expression for the D(2p)-brane central charges, as computed in [42] and reviewed in
appendix B.1. They correct the leading terms in (2.4) as

Πcorr
0 = 1 , (2.29a)

Πi corr
2 = −T i , (2.29b)

Πcorr
4 ij = 1

2KijklT
kT l + 1

2 (Kiijk +Kijjk)T k + 1
12 (2Kiiij + 3Kiijj + 2Kijjj) +K

(2)
ij ,

(2.29c)

Πcorr
6 i = −1

6KijklT
jT kT l − 1

4KiijkT
jT k − 1

6KiiijT
j −K(2)

ij T
j + 1

2K
(2)
ii + iK

(3)
i , (2.29d)

Πcorr
8 = 1

24KijklT
iT jT kT l + 1

2K
(2)
ij T

iT i − iK(3)
i T i +K(0) , (2.29e)

where we have defined

K
(2)
ij = 1

24

∫
X4
c2(X4) ∧Di ∧Dj , K

(3)
i = ζ(3)

8π3

∫
X4
c3(X4) ∧Di , (2.30)
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and
K(0) = 1

5760

∫
X4

7c2(X4)2 − 4c4(X4) . (2.31)

Notice that here we are working with the redundant set of four-cycles γij = Di.Dj .
From these expressions it is easy to compute how the corrected version of the F-

theory superpotential (2.10) looks like. Indeed, mirror symmetry translates (2.29) into the
corrected periods of Ω in Y4, and so one simply needs to multiply them by the G4 flux
quanta, as in (2.13). In this case it is more convenient to work with the auxiliary flux quanta
mij defined in (2.11), and therefore to extend the flux vector to ~q ′ t = (m,mi,mij , ei, e).
One then finds that

W corr = ~q ′ tΣ~Πcorr = eΠ0 − eiΠi
2 + 1

2m
ijΠcorr

4 ij −miΠcorr
6 i +mΠcorr

8 , (2.32)

where Σ is the obvious extension of (2.14) to the auxiliary flux basis. This is a rather in-
volved expression, but it becomes more manageable if one distinguishes between two classes
of corrections that appear in the periods of Ω. The first one corresponds to corrections
to the intersection numbers (2.8), and the second one to the Kähler potential (2.16). As
we will see, each of these corrections has a different effect on the F-term scalar potential,
which becomes more transparent when it is written in the bilinear form (2.17).

To compute the corrections to the intersection numbers (2.8), one may again consider
type IIA compactified on the mirror manifold X4. There, two D(2p)-branes wrapping holo-
morphic cycles on X4 of complementary dimension have a natural topological intersection
number, that can be thought of as the mirror dual to (2.8). Then, on a D-brane wrapping a
2p-cycle with p ≥ 2, a non-trivial curvature may induce lower-dimensional D-brane charges.
This affects the index that counts the open strings stretching between the two D-branes,
and which in the absence of induced charges amounts to the intersection number between
cycles. The curvature-corrected open string index between two B-branes E and F reads

χ(E ,F) =
∫
X4

Td(X4) (ch E)∨ (chF) , (2.33)

where ch E is the Chern character of E , and the Todd class for a Calabi-Yau four-fold is

Td(X4) = 1 + c2
12 + 3c2

2 − c4
720 . (2.34)

Finally, for an element β ∈ H2k(Y,Z) we define β∨ = (−1)kβ. It is the topological
index (2.33) that is well-behaved under the mirror map, and gives the actual intersection
numbers of the four-forms that appear in (2.6), instead of (2.8). Nevertheless, it turns out
that, upon applying the proper redefinitions, one can still use the intersection matrix (2.8).

Indeed, the open string index for holomorphic 2p-cycles on X4 is computed in ap-
pendix B.1, with the result

χ = ΛTχ0Λ , (2.35)
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where χ0 is defined as in (2.27) and

Λ =



1 0 0 0 0

0 δji 0 0 0
1
12c

µ
2 −ζµii ζµkl 0 0

0 1
6Kjjji +K

(2)
ji −1

2 (Kjkkl +Kjkll) δij 0

K(0) − 1
24Kiiii −

1
2K

(2)
ii λkl 0 1


, (2.36)

contains the corrections induced by the curvature. Here we have defined c2(X4) = cµ2σµ

and λkl = 1
12 (2Kkkkl + 3Kkkll + 2Kklll) +K

(2)
kl . Notice that Λ is independent of K(3)

i .
With these expressions at hand, it is easy to see that the superpotential (2.32) can be

rewritten as
W corr =

(
Λ~q ′

) t · χ0 · (Λ~πcorr) , (2.37)

where

Λ~πcorr =



1 0 0 0 0
0 δji 0 0 0
0 0 δνµ 0 0

−iK(3)
i 0 0 δij 0

0 −iK(3)
i 0 0 1




π0
πi2
πµ4
π6i
π8

 . (2.38)

The components of ~πcorr can be interpreted as the corrected moduli-dependent coefficients
of Ω in the expansion (2.6). Here we will not need the precise expression of such com-
ponents, because the quantities of interest only depend on Λ~πcorr. The expression (2.37)
implies that, when taking into account the polynomial corrections in our F-theory setup,
one can still use the classical intersection numbers (2.8) if one makes the replacements

~q → Λ~q ′ , ~π → Λ~πcorr , (2.39)

in all the computations of the previous subsection. That is, in (2.6) we perform the
replacements

π6i → π6i − iK(3)
i , π8 → π8 − iK(3)

i T i , (2.40)

and in (2.9) we replace the flux quanta by

m̄µ = m̂µ − 1
2ζ

µ
iim

i + m

12c
µ
2 , (2.41a)

ēj = ej + mi

6 Kjjji +miK
(2)
ij −

1
2 (Kjkkl +Kjkll)mkl , (2.41b)

ē = e+mjkλjk −mi
( 1

24Kiiii + 1
2K

(2)
ii

)
+mK(0) . (2.41c)

To sum up, the corrected expression for the GVW superpotential takes the form

W corr = ē+ ēiT
i + 1

2 m̄
µζµ,klT

kT l + 1
6 Kijklm

iT jT kT l

+ m

24 Kijkl T
iT jT kT l − iK(3)

i

(
mi +mT i

)
. (2.42)
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This strategy to rewrite the superpotential not only gives a more manageable expres-
sion, but also yields the corrected Kähler potential as a byproduct. Indeed, it follows that
the corrections to (2.16) can be computed from the expression (2.15), by performing the
replacements (2.40). One then finds that

Kcorr
cs = − log

(2
3Kijklt

itjtktl + 4K(3)
i ti

)
. (2.43)

Notice that this expression still respects the continuous shift symmetry of the axionic fields
bi and it only depends on the type IIA α′3-corrections that correspond to the third Chern
class of X4. It is also a natural generalisation of the α′3-correction to the Kähler potential
in type IIA compactifications in Calabi-Yau three-folds, see e.g. [16, 34]. In appendix B.2
we rederive the same expression using a different method, as a cross-check of our results.

From these expressions one can derive the corrections to the F-term scalar poten-
tial (2.23). For this, it is useful to write the superpotential and its derivatives in terms of
shifted axion polynomials. We have that

W corr = ρ̄+ iρ̄it
i − 1

2ζµρ̄
µ − i

(1
6Ki +K

(3)
i

)
ρ̃i +

(K
24 +K

(3)
i ti

)
ρ̃ , (2.44a)

∂iW
corr = ρ̄i + iζµiρ̄

µ − 1
2Kij ρ̃

j − i
(Ki

6 +K
(3)
i

)
ρ̃ , (2.44b)

where

ρ̄ = ē+ ēib
i + 1

2m̄
µζµ,klb

kbl + 1
6Kijklm

ibjbkbl + 1
24mKijklb

ibjbkbl , (2.45a)

ρ̄i = ēi + m̄µζµ,ilb
l + 1

2Kijklm
jbkbl + 1

6mKijklb
jbkbl (2.45b)

ρ̄µ = m̄µ + ζµijb
imj + 1

2mζ
µ
ijb

ibj , (2.45c)

ρ̃i = mi +mbi , (2.45d)

ρ̃ = m. (2.45e)

Notice that if we take K(3)
i → 0 the corrected scalar potential reduces to (2.23), except for

the flux redefinition (2.41) that only replaces the components of (2.24) by (2.45). As we
show in appendix B.3, the effect of a non-vanishing K(3)

i is to modify the matrix (2.25),
inducing new non-vanishing entries that destroy its block-diagonal structure. Due to its
complicated form, it is easier to characterise the corrections to the vacua equations in terms
of the vanishing conditions for the corrected F-terms, as we do in appendix B.4.

Monodromies

The above expressions allow us to connect the definition of ~ρ with the monodromies that
act on the periods of Ω. For this it is useful to describe the superpotential in terms of the
vector of auxiliary fluxes ~q ′ t = (m,mi,mij , ei, e0), as in (2.32). Then one can rewrite this
expression as

W corr =
(
R̂~q ′

) t
R̂t−1Σ~Πcorr , (2.46)
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where
R̂ ≡ Λ̂−1R(b)Λ̂ = eb

iP̂i , (2.47)

with Λ̂ the extension of Λ to a square matrix, as defined in (B.14), and

R(b) =



1 0 0 0 0

bi δik 0 0 0

bibj biδjk + bjδik δikδ
j
l 0 0

1
6Kijklb

jbkbl 1
2Kijklb

jbl 1
2Kijklb

j δij 0
1
24Kijklb

ibjbkbl 1
6Kijklb

ibjbl 1
4Kijklb

ibj bi 1


, (2.48)

P̂n = Λ̂−1PnΛ̂ = Λ̂−1



0 0 0 0 0

δin 0 0 0 0

0 δinδ
j
k + δikδ

j
n 0 0 0

0 0 1
2Kinkl 0 0

0 0 0 δin 0


Λ̂ . (2.49)

Here R(b) is the axion-dependent rotation matrix which transforms the flux vector into the
vector of flux-axion polynomials as R~q ′ = ~ρ ′, where ~ρ ′ t =

(
ρ̃, ρ̃i, ρij , ρi, ρ

)
is the extension

of (2.24) to include the polynomials ρij = mij +mibj +mjbi +mbibj . The matrices Pi are
the generators of such a rotation.

One can check that R̂t−1Σ~Πcorr does not depend on the axions bi, and so that (2.46)
expresses the superpotential as a product of an axion-dependent and a saxion-dependent
vector. From (2.29) one obtains that the monodromy action on the periods

~Πcorr(T j + 1) = Tj · ~Πcorr(T j) , (2.50)

is given by

Tj =



1 0 0 0 0

−δkj δki 0 0 0

0 −δijδkl δki δ
l
j 0 0

0 0 −1
2Kijkl δki 0

0 0 Kiijk+Kijkk

2 + Kjjki

4 −δji 1


. (2.51)

This action is fully encoded in the rotation matrix R̂, and more precisely in its generators
P̂i. In particular we have that

Ti = Σ eP̂
t
i Σ = e−P̂i . (2.52)

3 Tadpoles and vacua

With an explicit form for the F-term scalar potential in the large complex structure regime
one may characterise the set of vacua in that region. We will pay particular attention to
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the fact that the flux contribution to the tadpole Nflux is bounded from above, something
that forbids the presence of certain flux vacua at arbitrarily large complex structure. As we
will see, this tadpole constraint leads to different moduli stabilisation scenarios, classified
by which flux components are turned on. In this section we will analyse the most generic
of these scenarios, in which one can clearly see that the corrections K(3)

i to the Kähler
potential are crucial to stabilise all moduli. As a direct consequence, one finds an upper
bound for the vev of the complex structure saxions, that depends both on K(3)

i and Nflux.
One can also consider a quite different setup in which such a bound is absent, whose general
discussion we leave for section 5.

3.1 General flux vacua

Armed with the explicit form of the potential at large complex structure, one may now
analyse its set of vacua. Let us first consider the leading flux potential (2.23). Since it
is a sum of three positive semi-definite terms and its dependence on the Kähler moduli
only enters through the overall factor eKK ∝ V−2

3 , its minima correspond to Minkowski
vacua where these three terms vanish. In other words, we must impose the following set of
on-shell conditions

ρ = 1
24Kρ̃

ρi = −1
6Kgij ρ̃

j

0 = (Kζµi −Kiζµ) ρ̂µ

(3.1a)

(3.1b)

(3.1c)

where the general solution for (3.1c) reads

ρ̂µ = Aζµ + Cµ , ζµiC
µ = 0 ∀i , (3.2)

with A, Cµ moduli-dependent quantities. For those vacua that preserve supersymmetry, we
need to impose that W = 0 on-shell. From (2.22a) we see that this implies two additional
conditions:

tiρi = 0 , ζµρ̂
µ = K6 ρ̃ . (3.3)

From our discussion in the previous section it follows that, in order to implement the
polynomial corrections that correspond to K(0) and K

(2)
ij , we only need to perform the

replacement

(ρ, ρi, ρ̂µ)→ (ρ̄, ρ̄i, ρ̄µ) (3.4)

in (3.1) and (3.3), with the new quantities given by (2.45). Therefore the above equations
essentially hold whenever it is a good approximation to neglect the correction due to K(3)

i

in the Kähler potential (2.43). The vacua equations that follow from including such a
correction to the Kähler potential are discussed in appendix B.4. In here we simply collect
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the result, approximated to linear order in εi = 6K(3)
i /K:

ρ̄− 1
24Kρ̃ = − 1

48εit
i [Kρ̃+ 18ζµρ̄µ] , (3.5a)

ρ̄i + 1
6Kgij ρ̃

j = 1
3Ki

(
εj − εktk

Kj
K

)
ρ̃j − 1

6εiKj ρ̃
j , (3.5b)(

ζµi −
Ki
K
ζµ

)
ρ̄µ = 1

8

(
εi − εktk

Ki
K

)
(Kρ̃+ 2ζµρ̄µ) . (3.5c)

Finally, those vacua that are supersymmetric will satisfy the additional conditions

tiρ̄i = 1
4
(
Kεiρ̃i − εktkKj ρ̃j

)
, ζµρ̄

µ = K6
(
1 + εit

i
)
ρ̃ , (3.6)

up to quadratic terms in εi.

3.2 The tadpole constraint

In any consistent F-theory compactification on a four-fold Y4 one must satisfy the D3-brane
tadpole condition

Nflux = 1
2

∫
Y4
G4 ∧G4 = χ(Y4)

24 −ND3 , (3.7)

where χ(Y4) is the Euler characteristic of Y4, and ND3 is the number of space-time filling
D3-branes. The number χ(Y4) can take a range of values depending on the four-fold, but
since stability of Minkowski vacua requires ND3 > 0, (3.7) sets an upper bound for Nflux.
Notice that we also need to impose Nflux > 0 in order to find a vacuum, due to the on-
shell constraint (2.3). We therefore have the allowed range 0 ≤ Nflux ≤ χ(Y4)/24 for any
Minkowski flux vacuum. To understand what this implies in our setup, one may easily
compute the value of Nflux in terms of the expressions of section 2. Starting from (2.9)
one finds

Nflux ≡ ēm− ēimi + 1
2ηµνm̄

µm̄ν , (3.8)

where the barred flux quanta are defined in (2.41) and their presence arises from the
corrections to the naive intersection numbers (2.8).

The interesting observation is that this expression for Nflux equals a bilinear of flux-
axion polynomials, namely

Nflux = ρ̄ρ̃− ρ̄iρ̃i + 1
2ηµν ρ̄

µρ̄ν . (3.9)

One can check this identity directly, or by realising that the flux contribution to the tad-
pole (3.8) is one of the flux monodromy-invariants that constrain the orbit of values that
~ρ can take. In fact, since the entries of ~ρ are invariant under monodromies as well, their
on-shell value can only depend on such flux invariants and, because of (3.1), the same holds
for the saxion vevs. The invariants that arise in generic F-theory flux compactifications are
listed in appendix C.

This last expression for Nflux can be evaluated at each vacuum via the on-shell con-
ditions derived above. For simplicity, let us assume that we are in a sufficiently large
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complex structure regime such that the Kähler potential correction term K
(3)
i ti in (2.43)

can be neglected. Then one may use (3.1) with the replacement (3.4) to obtain

Nflux
vac= K

24
(
ρ̃2 + 4gij ρ̃iρ̃j

)
+ 1

2gµν ρ̄
µρ̄ν , (3.10)

where gµν is defined as in (2.26), and we have used that for a vector of the form (3.2) we
have that ηµν ρ̂ν = gµν ρ̂

ν , see appendix A for details.
Along any limit of large complex structure we have that K → ∞, because otherwise

Ki → 0 for at least some i, which takes us away from the regime of validity of our analysis.
Then the question is if along these limits all terms on the r.h.s. of (3.10) remain bounded
from above. If they did not, no vacua would be found at sufficiently large complex structure,
for any value of χ(Y4). Since all terms are positive definite, they need to be bounded
separately.

The first term on the r.h.s. of (3.10) is clearly unbounded, so we must impose ρ̃ = m =
0, which then implies ρ̃i = mi. For the second term, the question is whether Kgijmimj =
(4KiKj/K−3Kij)mimj remains bounded or not along the different large complex structure
limits. Those choices of mi where it is not bounded should be set to zero in order to find
a consistent vacuum. This depends crucially on the topology of Y4 through the quadruple
intersection numbers Kijkl of its mirror X4. A full classification of all possibilities should
follow from the techniques developed in [14] applied to the special case of large complex
structure limits. Here, we take a simplified approach by asking whether Kgjj remains
bounded or not in the case that we blow up a single modulus ti → ∞. If it does not, one
should set mj = 0 to find vacua in that regime.

We can distinguish four different cases:

(i) The modulus ti appears with a quartic term in the Kähler potential, i.e. Kiiii 6= 0.
In this case the component Kgii is not bounded since

Kgii ∼ (ti)2 →∞ . (3.11a)

In addition, for those indices j 6= i such that Kiiij 6= 0, the diagonal term Kgjj
scales as

Kgjj = 4KjKj
K

− 3Kjj ∼ (ti)2 →∞ , (3.11b)

and it is therefore also unbounded.

(ii) The modulus ti appears only cubic in the Kähler potential, i.e. Kiiii = 0 but Kiiik 6= 0
for some k 6= i. In this case the component Kgii is unbounded as

Kgii ∼ Kiiiktitk →∞ , (3.12a)

with no summation involved. If in addition Kiijk 6= 0 for some k, also the component
Kgjj is unbounded, as it scales at least as

Kgjj ∼ ti →∞ . (3.12b)
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(iii) The Kähler potential depends quadratically on the modulus ti which corresponds to
Kiiij = 0, ∀j but Kiikl 6= 0 for some k, l 6= i. In this case the metric component Kgii
does not scale:

Kgii ∼ Kiikltktl ∼ const. (3.13a)

But the components Kgjj are still unbounded, since generically they scale as

Kgjj ∼ (ti)2 →∞ , (3.13b)

as long as Kiijk 6= 0 for some k.

(iv) Finally, if the Kähler potential is only linear in ti, i.e. Kiikl = 0, ∀k, l, but Kijkl 6= 0
for j, k, l 6= i the diagonal component Kgii vanishes asymptotically as

Kgii ∼
Kijkltjtktl

ti
→ 0 . (3.14a)

The other components Kgjj are nevertheless unbounded as, generically

Kgjj ∼ ti →∞ . (3.14b)

Given this behaviour of the tensor Kgij , one would expect to find very few vacua in
which mi 6= 0 for some i in regions where ti & 1

2
√
χ(Y4), ∀i. Exceptions to this rule may for

instance happen if the index i appears only linearly in the quadruple intersection numbers
Kijkl, and if we consider the regime ti � tj , ∀j 6= i. In that case one may satisfy the tadpole
constraint for mi arbitrary and mj = 0, ∀j 6= i. A clear setup where this happens is when
we consider a factorised geometry like Y4 = Y3 × T2, that can be interpreted as a type
IIB flux compactification, and identify T i with the complex structure of T2. The type IIB
setup will be analysed in section 4, while the more general linear setup will be discussed in
section 5. In the next subsection we will consider the more generic case in which we need
to set m = mi = 0, ∀i in order to find vacua in the region ti & 1

2
√
χ(Y4), keeping in mind

that in some special cases this constraint could be stronger than necessary. For smaller
saxion values these restricted flux quanta will also give rise of vacua, but there they will
coexist with vacua with other flux patterns, see e.g. [43, 44].

3.3 Moduli stabilisation

Motivated by the above discussion, let us restrict our attention to flux vacua at large
complex structure such that

~q t = (m,mi, m̂µ, ēi, ē) = (0, 0, m̂µ, ēi, ē) , (3.15)

which implies that ρ̃ = ρ̃i = 0 and that ρ̄µ = m̂µ. In this case the flux contribution to the
D3-brane tadpole reads

Nflux = 1
2ηµνm̂

µm̂ν . (3.16)
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Plugged into (3.1), the restricted fluxes (3.15) imply
ρ̄ = 0
ρ̄i = 0
Kζµim̂µ = Kiζµm̂µ

(3.17)

where we recall that the last equation is equivalent to the decomposition (3.2) for m̂µ. This
system has the simplifying property that the equations for axions and saxions decouple.
From the first two equations we obtain

ρ̄ = 0 =⇒ ē+ ēib
i + 1

2m̂
µζµ,klb

kbl = 0 (3.18b)=⇒ ē = −1
2 ēib

i , (3.18a)

ρ̄i = 0 =⇒ m̂µζµ,ijb
j = −ēi . (3.18b)

To analyse the implication of these two equations let us define the matrix Mij ≡
m̂µζµ,ij , and let r be its rank. From (3.18b) we obtain a system of r equations with
h3,1(Y4) unknowns. This system will only have a solution if the vector ēi lies in the image
of M , which will impose h3,1(Y4) − r constraints on these fluxes. Only when these con-
straints are met we will be able to find a vacuum, and in this case only r axions will be
stabilised. In particular, notice that then only r complex structure fields appear in the
superpotential (2.42). This suggests that several saxionic directions will not be stabilised
either, as one can see from the third equation in (3.17). Indeed, in general we have that
ζµ 6= 0, as this corresponds to the volume of a holomorphic four-cycle in the mirror four-
fold X4, but also that it only depends on r saxionic directions, and so the remaining ones
are unfixed by the vacuum equations. Moreover this third equation is such that contracted
with ti becomes trivial and so, in fact, it only stabilises r − 1 saxions. Therefore at least
one saxionic direction is left unconstrained, even in the case of maximal rank.

Coming back to (3.18), we see that only those axions bi that are fixed by (3.18b) will
appear in (3.18a), which translates into an additional constraint that must be imposed on
the fluxes in order to achieve a vacuum. This time, however, the constraint is removed when
corrections to the Kähler potential are taken into account, similarly to the effect observed
in [16, 33, 34] in the context of Minkowski type II flux compactifications on three-folds.
Indeed, including the corrections to the Kähler potential couples the equations for axions
and saxions, which in turn changes the counting of stabilised moduli. This can already be
seen from the vacua equations corrected at linear order in the parameter εi = 6K(3)

i /K,
see (3.5), which adapted to the present case read

ρ̄ = −3
8εit

iζµm̂
µ , (3.19a)

ρ̄i = 0 , (3.19b)

(Kζµi −Kiζµ) m̂µ = 1
4
(
Kεi − εktkKi

)
ζµm̂

µ . (3.19c)

Notice that (3.19b) is the same as before, and therefore gives r equations on the axions.
Similarly, (3.19c) becomes trivial when contracted with ti and so, even if modified, still
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yields r − 1 equations for the saxions. The main difference comes from (3.19a), which
couples axions and saxions and using (3.19b) becomes

ē+ 1
2 ēib

i = −3
8εit

iζµm̂
µ . (3.20)

On the one hand, this equation no longer sets a constraint for the flux ē. On the other
hand, plugging in the value for bi obtained from (3.18b) one obtains an additional equation
for the saxions which, together with (3.19c), fixes the vev for r of them. Using the results
of appendix B.4, one can check that this structure is in fact preserved at all orders in the
correction parameter εi, and so the counting holds at the level of polynomial terms in the
scalar potential.

To sum up, we obtain a system with only r = rank(M) complex structure fields fixed by
the above vacua equations. Fixing the remaining ones would necessarily imply taking into
account the exponentially-suppressed corrections that we are neglecting in our analysis.
It is beyond the scope of our work to determine whether full moduli stabilisation would
then be achieved or not, although in any event such fields would be extremely light in
this regime.

In general we will consider those cases in which the rank of Mij ≡ m̂µζµ,ij equals
h3,1(Y4), which a priori can be achieved by choosing an appropriate flux m̂µ. Since in
this scheme Nflux = 1

2ηµνm̂
µm̂ν , one may wonder if such flux choices restrict the possible

values of Nflux. Let us for instance consider the case in which the choice of m̂µ is such that
r = h3,1(Y4) implies

ζµ,ijM
ij = 1

2γ ηµνm̂
ν + βµ , (3.21)

where M ikMkj = δij , γ is a real function of the fluxes with a lower bound α > 0 and
m̂µβµ ≤ 0. Then we have that Nflux ≥ αh3,1(Y4), which is the sort of behaviour proposed
by the Tadpole Conjecture in [12]. Whenever (3.21) holds, and depending on the precise
value for α, a large number of moduli could be in tension with satisfying the upper bound
for Nflux, as pointed out in [12]. It would be thus interesting to determine in which
cases (3.21) occurs.

We can go a step further in our analysis and impose bounds on the saxion vevs by
recalling the leading solution for ρ̂µ, see (3.2). Since now mi = m = 0 we have

m̂µ = Aζµ + Cµ +O(εi) , (3.22)

with Cµζµi = 0. Therefore, the tadpole is given by

Nflux = 1
2gµνm̂

µm̂ν = 1
2A

2K + 1
2C

µCνgµν +O(εi) ≥
1
2A

2K +O(εi) . (3.23)

On the other hand, substituting in (3.19a) we obtain

A = − 4ρ̄
9K(3)

i ti
. (3.24)

Looking now at the equation (3.19b)

ēi = −m̂µζµ,ilb
l ≡ −Milb

l , (3.25)
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we can infer that ρ̄ behaves like ρ̄ ∼ q/P (m̂µ) for some integer q and some polynomial
P (m̂µ) of degree r = rankM in the m̂µ. For instance, when M is invertible and so
r = h3,1(X4), the matrix Mil has integer combinations of the m̂µ as coefficients, and thus
its inverse

M−1 = 1
detM

h3,1−1∑
s=0

M s
∑

k1,...kh3,1−1

h3,1∏
l=1

(−1)kl+1

lklkl!
(
TrM l

)kl
, s+

h3,1−1∑
l=1

lkl = h3,1 − 1 ,

(3.26)

depends inversely on det M , which is a degree h3,1 polynomial on the fluxes m̂µ. The
remaining terms appearing in M−1 are polynomials of the integers m̂µ, up to combinatoric
factors. Because in this case

ρ̄ = ē− 1
2M

ij ēiēj , (3.27)

with M ij the inverse of Mij , we can estimate that there exists an integer p ≤ h3,1(X4)
satisfying Np

fluxρ̄ & d2p−1, with d ≡ g.c.d{mµ}. When M is not invertible, we instead have
that p ≤ r = rankM . Finally, using (3.23), we conclude that

K < (Nflux)2p+1d2−4p(K(3)
i ti)2 . (3.28)

For a given choice of fluxes, this relation sets an upper bound on the possible values of
the complex structure saxions. The details of this constraint will heavily depend on the
topology of the mirror four-fold, through its intersection numbers and the α′3-correction
terms K(3)

i . For instance, notice that for a saxionic direction ti along which K grows
linearly (3.28) does not really set a bound, in agreement with our results of section 5. As
a very rough estimate, (3.28) sets an overall bound for the complex structure saxion vevs
of the form

ti . N
p+ 1

2
flux d

1−2p|K(3)
i | . (3.29)

Remarkably, our reasoning applies also when some fields are not fixed at the polyno-
mial level.

Finally note that, even when M has maximal rank, this moduli stabilisation scheme
suggests that there is a saxionic field direction whose mass is suppressed by εiti compared
to the other ones, as it is only stabilised when the corrections to the Kähler potential
are taken into account. To check whether the scalar mass spectrum is hierarchical or not
one should describe the potential in terms of canonically normalised fields, which we will
not attempt to do in this work. Nevertheless, we already see that the key ingredient for
such a potential hierarchy is the mixing between different blocks in the saxion-dependent
matrix (2.25), which only appears due to K

(3)
i corrections, and so by construction it is

suppressed in the large complex structure regime.

4 The type IIB limit

A celebrated moduli stabilisation setup corresponds to type IIB orientifold compactifica-
tions with background three-form fluxes. In this section we specify our results to this case,
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neglecting the presence of D7-brane moduli and worldvolume fluxes. As we will see, our
findings imply not only a simple form for the scalar potential at large complex structure and
weak coupling, but also two different moduli stabilisation schemes with an upper bound for
the complex structure vevs. One of these schemes provides counterexamples to the Tadpole
Conjecture of [12], that proposes a tension between full moduli stabilisation and the tad-
pole constraint. Such a scheme will be generalised to genuine F-theory compactifications
in section 5.

4.1 The flux potential

Type IIB compactifications with background three-form fluxes can be understood as F-
theory on (C3 × T2)/Z2, with C3 a Calabi-Yau three-fold, provided that the presence of
D7-branes can be neglected for the bulk dynamics. We can then apply the results of
the previous two sections by splitting the index counting complex structure moduli as
i = {0, a}, where T 0 represents the complex structure of T2 and T a, a = 1, . . . , h2,1(C3)
the complex structure moduli of the three-fold. We also impose

K0abc = κabc , (4.1)

where κabc are the triple intersection numbers of the mirror three-fold B3. From (2.12) we
obtain a leading-order superpotential of the form

W = e+ e0T
0 + eaT

a + 1
2m

abκabcT
cT 0 + 1

2m
0aκabcT

bT c

+ m0

6 κabcT
aT bT c + 1

2m
aκabcT

bT cT 0 + m

6 κabcT
aT bT cT 0 . (4.2)

This expression does not fully correspond to the superpotential of type IIB flux compactifi-
cations, due to the redundancy associated to the quanta mij . A one-to-one correspondence
between flux quanta is achieved when we consider an expression of the form (2.10), which
involves specifying a basis of holomorphic four-cycles classes {[σµ]} in the mirror four-fold
X4 = (B3 × T2)/Z2.

In this case the basis {[σµ]} can be constructed explicitly, as follows. We first consider
the B3 Mori cone generators [C′a], a = 1, . . . , h1,1(B3), and the divisor classes [D′a], that
generate its Kähler cone and specify its triple intersection numbers as κabc = [D′a]·[D′b]·[D′c].
The Kähler cone of X4 is generated by [Da] = [D′a ×T2], and by the class of B3, which we
denote as [D0]. Following section 2, we consider the following set of holomorphic four-cycles

γij = Di.Dj , i = {0, a} , (4.3)

that correspond to the quanta mij in (4.2). The elements of this set are not independent
in homology, as opposed to the following ones

Ha = D′a , Hâ = Câ × T2 , (4.4)

which form the holomorphic four-form basis {[σµ]} = {[Ha], [Hâ]}. In other words, the
index µ in (2.10) splits as µ = {a, â}, with a, â = 1, . . . , h1,1(B3). The intersection matrix
for (4.4) is

ηaâ = [Ha] · [Hâ] = δaâ , (4.5)

– 23 –



J
H
E
P
0
8
(
2
0
2
1
)
0
7
7

with the remaining entries vanishing. The relation with the redundant set (4.3) is given by

ζa0b = ζab0 = δab , ζa,bc ≡ ζ âbcηâa = κabc , (4.6)

with vanishing remaining entries. One can then easily check that (4.1) is recovered
from (2.5).

Having fixed {[σµ]}, the superpotential for the mirror four-fold Y4 = (C3×T2)/Z2 reads

W = ē+ ē0T
0 + ēaT

a + m̄aT
aT 0 + 1

2m̂
aκabcT

bT c + m0

6 κabcT
aT bT c

+ 1
2m

aκabcT
bT cT 0 + m

6 κabcT
aT bT cT 0 − iK(3)

0

(
m0 +mT 0

)
. (4.7)

where we have applied (2.11), defined ma ≡ δaâm̂
â and already taken into account the

polynomial corrections of section 2.2. Notice that for the case of Y4 = (C3×T2)/Z2 we have
that K(0) = K

(2)
00 = K

(2)
ab = K

(3)
a = 0. We similarly obtain the corrected Kähler potential

Kcorr
cs = − log

(
2t0
)
− log

(4
3κabct

atbtc + 2K(3)
0

)
. (4.8)

One may now connect these expressions with the more standard formulation of type
IIB flux compactifications on Calabi-Yau orientifolds. We start with the superpotential [17]

WIIB =
∫
C3

Ω3 ∧G3 , (4.9)

where G3 = F3 − τH3 is the complexified three-form flux, with τ = C0 − ig−1
s the axio-

dilaton. The holomorphic three-form Ω3 of the Calabi-Yau C3, can be expanded as

Ω3 = αIX
I − βI∂IF , (4.10)

with (αI , βI) a symplectic basis of harmonic three-forms on C3. The prepotential in the
large complex structure limit is given by

F = −1
6
κabcX

aXbXc

X0 + 1
2K

(1)
ab X

aXb +K(2)
a XaX0 − i

2K
(3)(X0)2 + . . . (4.11)

where exponential corrections have been neglected. By introducing the projective coordi-
nates za = Xa/X0 we can write the holomorphic three-form as

Ω3 =α0 + zaαa +
(1

2κabcz
bzc +K

(1)
ab z

b +K(2)
a + 1

6κaaa
)
βa

−
(1

6κabcz
azbzc +K(2)

a za − iK(3)
)
β0 , (4.12)

where an overall X0 factor has been dropped. Similarly, we can expand the G3 flux as

G3 = (F 0 − τH0)α0 − (F a − τHa)αa + (Fa − τHa)βa + (F0 − τH0)β0 , (4.13)

and arrive to the following expression for the superpotential

WIIB = Ḡ0 + Ḡaz
a + 1

2κabcG
azbzc + 1

6G
0κabcz

azbzc − iK(3)G0 , (4.14)
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where we have defined GI ≡ FI−τHI and Ḡa = Ga−K(1)
ab G

a+K(2)
a G0, Ḡ0 = G0−K(2)

a Ga.
One can see that this expression matches (4.7) upon performing the identifications

T 0 = τ , T a = za , (4.15)

as well as K(3)
0 = K(3), K(2)

0a = K
(2)
a , K(1)

ab = 1
2κaab and

H0 = −m, F 0 = m0 , Ha = −ma , F a = m̂a , (4.16)
H̄a = −m̄a , F̄a = ēa , H̄0 = −ē0 , F̄0 = ē .

Additionally, from (4.12) one also reproduces (4.8), as already shown in [16, 34].
Using the results of section 2 one may give a compact expression for the resulting

F-term scalar potential. The flux-axion polynomials are2

ρ̄ = ē+ ē0b
0 + ēab

a + m̄ab
ab0

+ κabc

(1
2m̂

abbbc + 1
2m

abbbcb0 + 1
6m

0babbbc + 1
6mb

abbbcb0
)
,

ρ̄0 = ē0 + m̄ab
a + κabc

(1
2m

abbbc + 1
6mb

abbbc
)
,

ρ̄a = ēa + m̄ab
0 + κabc

(
m̂bbc +mbb0bc + 1

2m
0bbbc + 1

2mb
bbcb0

)
,

ρ̄′a = m̄a + κabc

(
mbbc + 1

2mb
bbc
)
, (4.17)

ρ̂a = m̂a +mab0 +m0ba +mb0ba ,

ρ̃a = ma +mba ,

ρ̃0 = m0 +mb0 ,

ρ̃ = m,

in terms of which the potential takes the form (2.17). At leading order, the saxion-
dependent matrix Z reads

ZAB = 4
3e

Kt0κ



1
6 t

0κ −1
1
6
κ
t0 1

2
3 t

0κgκab δab
2
3
κ
t0 g

κ
ab −δab

−δab
3
2
t0

κ g
ab
κ

δab
3
2

1
t0κg

ab
κ

1 6 t0κ
−1 6

t0κ



, (4.18)

2For altenative definitions of flux-axion invariants in the type IIB compactifications see [26, 45, 46].
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where ~ρ t =
(
ρ̃, ρ̃0, ρ̃a, ρ̂a, ρ̄′a, ρ̄a, ρ̄0, ρ̄

)
and we have defined

κ ≡ κabctatbtc , κa ≡ κabctbtc , κab ≡ κabctc , (4.19)

and
gκab = 3

2κ

(3κaκb
2κ − κab

)
, gabκ = 2tatb − 2

3κκ
ab . (4.20)

Notice that in this case the matrix Z has the structure

Z =
(
A B

Bt BtA−1B

)
, A = At , (4.21)

with A, B non-singular 2h3,1 × 2h3,1 matrices. This form is preserved by polynomial
corrections.

4.2 Tadpoles and moduli stabilisation

Let us analyse the conditions for Minkowski vacua and the implications of the tadpole
constraint in the type IIB orientifold limit. If we consider a large complex structure regime
such that the effect of the correction K(3) can be neglected, the vacua conditions read

ρ̄ = 1
6 t

0κρ̃

ρ̄0 = −1
6
κ

t0
ρ̃0

ρ̄a = −2
3 t

0κgκabρ̃
b

ρ̄′a = 2
3
κ

t0
gκabρ̂

b

(4.22a)

(4.22b)

(4.22c)

(4.22d)

All these equations are a straightforward application of the general result (3.1) to the type
IIB limit, except perhaps (4.22d). To see how it arises from (3.1c) notice that

4
(
ζµ0 −

K0
K
ζµ

)
ρ̄µ = 2taρ̄′a −

κaρ̂
a

t0
= 0 ,

4
(
ζµa −

Ka
K
ζµ

)
ρ̄µ = 4t0ρ̄′a + 4κabρ̂b −

3κa
κ

(
2t0tbρ̄′b + κbρ̂

b
)

= 0 ,
(4.23)

where we used that ζâ,0b = δâb and ζa,bc = κabc. Together, these two conditions im-
ply (4.22d).

As in the general case, when turning on the correctionK(3) the above vacuum equations
are corrected. In particular, for the type IIB limit we find that the equations (3.5) yield

ρ̄− t0κ

6 ρ̃ = −ε κt
0

12

[
ρ̃+ 9

κt0
κaρ̂

a
]
, (4.24a)

ρ̄0 + 1
6
κ

t0
ρ̃0 = ε

1
12

(
κ

t0
ρ̃0 − 9κaρ̃a

)
, (4.24b)

ρ̄a + 2
3 t

0κgκabρ̃
a = ε

3
4κa

(
ρ̃0 − t0κb

κ
ρ̃b
)
, (4.24c)

ρ̄′a −
2
3
κ

t0
gκabρ̂

b = ε
3
8
κa
κ

(
2κρ̃+ κb

t0
ρ̂b + 2tbρ̄′b

)
, (4.24d)

where we have defined ε ≡ 3K(3)

2κ .
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In terms of the vacua equations, one can give a more explicit expression for the tadpole
condition in this setup. One begins with the topological quantity

Nflux = ēm− ēimi + m̄am̂
a = ρ̄ρ̃− ρ̄iρ̃i + ρ̄′aρ̂

a , (4.25)

which at vacua can be expressed as

Nflux
vac= t0κ

6

(
ρ̃2 + (ρ̃0)2

(t0)2 + 2
3g

κ
abρ̃

aρ̃b + 3
2κ2 g

ab
κ ρ
′
aρ
′
b

)
, (4.26)

where we have used the conditions (4.22) and therefore neglected the effect of K(3). This
approximation is justified if we aim to obtain the restriction on the fluxes that arise in the
different weak coupling, large complex structure limits κ, t0 → ∞, as done in section 3.2.
As in there (see also [45, appendix D]), we must set ρ̃ = 0 when t0, κ/6 >

√
Nflux in order

to find vacua, and therefore in this regime ρ̃0 = m0, ρ̃a = ma. The remaining fluxes will
then be constrained depending on the different limits that we take, which we can classify
in a slightly more explicit manner as compared to the general case.

Indeed, let us consider a scaling of the form t0 ∼ κr → ∞, with r ∈ R. If r ≥ 1
then t0κgκab will diverge, and we will have to set ma = ρ̃a to zero. We will also have that
t0gabκ /κ diverges, and so ma = ρ̄′a must vanish as well. We then recover a simplified flux
lattice such that ~q t = (0,m0, 0, m̂a, 0, ēa, ē0, ē), and the tadpole is given by Nflux = −m0ē0.
Alternatively, if r < 1 the m0 = ρ̃0 must be set to zero and, generically, the same applies
for ma = ρ̃a. The question is then whether m̂a = ρ̂a and ma = ρ̄′a must vanish or not.
In fact, to have a non-trivial tadpole we need that Nflux =

∑
a m̂

ama 6= 0, and one can
convince oneself that this is only possible if t0 scales like κgκaa, for at least some a. All
these are cases in which r < 1 and ~q t = (0, 0, 0, m̂a,ma, ēa, ē0, ē), which we will consider
as another subset of vacua. Finally, one can check that this classification is unchanged if
we add to (4.26) the corrections that arise from imposing (4.24). Let us now analyse the
moduli stabilisation of both classes of vacua.

IIB1: ~q t = (0, 0, 0, m̂a,ma, ēa, ē0, ē)

This case falls into the generic class of vacua discussed in section 3.3. We have that the
vacua equations (4.24) reduce to

ρ̄ = −3ε
4 κam̂

a , (4.27a)

ρ̄i = 0 , i = 0, a , (4.27b)

mb −
2
3
κ

t0
gκbcm̂

c = ε
3

4t0
κb
κ
κam̂

a , (4.27c)

to first order in ε. We may now apply the general discussion in section 3.3 to set bounds
on the saxion vevs. Using (4.27c) we find that

ma = Aκa + Ca +O(ε) , m̂a = 2At0ta + Ca +O(ε) , (4.28)

where Cata = 0, Caκa = 0 and Caκab = −t0Cb. We therefore obtain the inequality

Nflux = 2A2t0κ+ CaC
a +O(ε) ≥ 2A2t0κ+O(ε) , (4.29)
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while from (4.27a) one can see that

A = −4
9

ρ̄

t0K(3) . (4.30)

From here we find the following bound for the complex structure saxions,

κ

t0
< N2p+1

flux d2−4p(K(3))2 , (4.31)

where p ≤ h2,1(C3) + 1 is bounded by the number of complex structure plus dilaton fields,
and d = g.c.d({m̂a,ma}). Here we have used a reasoning similar to the one below (3.25)
to arrive to the inequality Np

fluxρ̄ & d2p−1. Finally, notice that taking into account that in
this scheme t0 ∼ κgκaa, we end up with a bound for the saxions which is, again, roughly of
the form (3.29).

To obtain a more concrete scheme one may consider that the matrix Mij ≡ m̂µζµ,ij ,
introduced below (3.18), is invertible. In the type IIB limit and with our particular choice
of fluxes this matrix is given by

M =
(

0 ma

mb Sab

)
, Sab ≡ κabcm̂c . (4.32)

Then, choosing the fluxes in such a way thatMij has an inverse requires Sab to be invertible
as well. If that is the case, the inverse matrix M ij has the form

M−1 = S−1

 −1 Sacmc

Sbcmc SS
ab − SacSbdmcmd

 , S ≡ Sabmamb , (4.33)

where Sab is the inverse of Sab. Notice that forM to be invertible we have to further ensure
S 6= 0. If this last condition is not satisfied, the kernel of M is given by

ker(M) = 〈(1,−Sabmb)t〉 , (4.34)

such that we have a flat direction along T i = (τ,−τSabmb)t. Given the identification (4.16)
this precisely reproduces the flat direction found in [47] for Sab invertible but S = 0.

Using these results we can achieve stabilisation of all the moduli of the system. Starting
with the axions, from (4.27b) we have

b0 = −S−1Sabēamb + ē0S
−1 , (4.35)

ba = −ē0S
−1Sabmb − ēbSab + S−1SacmcS

bdmdēb = −Sab(ēb + b0mb) . (4.36)

Regarding the saxions, the expression (4.27c) at leading order provides us with a system
of h2,1(C3) independent equations of order 4 in the set of h2,1(C3) {ta}. Hence, we can use
it to express all the saxions in terms of the saxionic direction t0. We can then substitute
our results in (4.27a) and employ the first order corrections in ε to stabilise the remaining
direction t0. Note that we are able to ignore the corrections in (4.27c) because the first
leading contribution of the saxions in (4.27a) is already linear in the parameter ε.

– 28 –



J
H
E
P
0
8
(
2
0
2
1
)
0
7
7

Looking to the shape ofM ij we observe a very straightforward flux choice for which the
matrixMij is invertible, and which is related to the ansatz taken in [48] for different reasons.
Indeed, let us consider that m̂a 6= 0 ∀a and takema = (r/q)Sabm̂b, with q ≡ gcd(κabcm̂bm̂c)
and r ∈ Z. Then the matrix M ij simplifies to

M−1 = S−1

 −1 r
qm

a

r
qm

b SSab − r2

q2 m̂
am̂b

 , (4.37)

where in this case we have S = (r/q)2(Sabm̂am̂b). Let us study the implications of our
ansatz for the relations derived from the equations of motion. First we evaluate Sabm̂b =
κabcm̂

bm̂c using the second relation of (4.28):

κabcm̂
bm̂c = 4A2(t0)2κa + 4κabACbt0 + κabcC

bCc

= 4A2(t0)2κa − 4(t0)2ACa + κabcC
bCc , (4.38)

where in the last step we have used the relation Caκab = −Cbt0. Now we combine our
ansatz ma = (r/q)Sabm̂b with the first relation of (4.28). This leads to

r = q

4A(t0)2 ,

Ca = 1
2κabcC

bCc .

(4.39)

Contracting the last expression with ta and taking into account that Cata = 0 we conclude

κabC
aCb = 0⇒ gκabC

aCb = 0⇒ Ca = 0 . (4.40)

Hence, the ansatz ma = (r/q)Sabm̂b implies that Ca = Ca = 0 in (4.28). Then m̂a ∝
ta and Sab ∝ κab, as in [48]. Moreover the ratio ta/t0 is easily fixed at leading order,
since (4.28) gives

ta

t0
= 2rm̂a

q
. (4.41)

Working now with (4.27b) we have

b0 = q2

r2Sabm̂am̂b

(
ē0 −

r

q
m̂aēa

)
, (4.42)

ba = −Sabēb −
rm̂ab0

q
. (4.43)

Finally, (4.30) determines the vev for the saxion t0.
Note that in this particular setup the total tadpole Nflux =

∑
amam̂

a is a sum of
positive terms and so it exceeds in value to h2,1(C3). As pointed out in [12] this kind
of behaviour leads to a significant tension between tadpole cancellation and full moduli
stabilisation for a large number of moduli. From our perspective, this would favour vacua
where Ca 6= 0. In that case, one should apply (3.21) to see whether Nflux is bounded from
below by h2,1(C3) or not.
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4.3 IIB2: ~q t = (0,m0, 0, m̂a, 0, ēa, ē0, ē)

This case is dual, via mirror symmetry, to the type IIA non-supersymmetric Minkowski flux
vacua constructed in [16] and analysed from the viewpoint of the bilinear potential (2.17)
in [34]. As shown in there, in this case one can solve for the vev of each field in terms of
the flux vacua and the correction ε. One starts with the following vacua equations

ρ̄ = 0 , (4.44a)

t0ē0 + 1
6κm

0 = ε
κ

6
1 + 4ε
2− ε m

0 , (4.44b)

ρ̄a = ε
3
2
κa

2− εm
0 , (4.44c)

ρ̂a = 0 , (4.44d)

which at first order in ε are equivalent to (4.24), restricted to this choice of fluxes. Borrowing
the results from [34, section 4.1] and adapting them to our notation we obtain the solution

b0 = − 1
3ē0(m0)2

(
κabcm̂

am̂bm̂c − 3eam̂am0
)
− ē

ē0
,

ba = −m̂
a

m0 ,

(4.45)

for the axions and
t0 = −1

6
m0

ē0

(
κ− ε1 + 4ε

2− ε

)
,

κa = 2− ε
3(m0)2ε

(
κabcm̂

bm̂c − 2m0ēa
)
,

(4.46)

for the saxions. Note that the κa are determined implicitly, and that acceptable vacua
correspond to saxion vevs within {ta > 0|ε � 1}, which imposes a constraint on the
flux quanta.3

Notice that t0 ∼ κ/6, as could have been guessed from the leading order equa-
tion (4.22b) and the fact that ρ̄0 = ē0. Also

κ

κa
. (m0)2|K(3)| < N2

fluxd
−2|K(3)| , (4.47)

with d = g.c.d.(m0, ē0). This results in an upper bound on the value of the complex
structure saxions which is roughly of the form (3.29) with p = 3

2 , even if the moduli
stabilisation scheme under discussion is different from the one in section 3.3. Note also
that this bound is consistent with the regime in which ε � 1, whenever (m0)2|K(3)| is
moderately larger than 1.

This class of vacua constitute a counterexample to the Tadpole Conjecture proposed
in [12], since the flux contribution to the tadpole Nflux = −m0ē0 is independent of the

3Explicit solutions to the equations for κa have been proposed in [16], assuming homogeneous vevs for
all ta. Additionally, these equations are similar to those determining the Kähler moduli vevs in type IIA
AdS4 CY orientifolds [36? ] and so explicit solutions for such a setup will translate into Minkowski vacua
in this context.
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number of complex structure moduli. There is therefore no tension between achieving full
moduli stabilisation and having an Nflux that it is bounded. A key property for this to
happen is the fact that most of the RR flux quanta that implement moduli fixing do not
contribute to the tadpole because they do not pair up with ē0 in the intersection matrix.
What is true is that all complex structure saxions ta are stabilised only when the effect of
the correction K(3) is taken into account [16] which suggests that, in this case, decoupling
the expression for Nflux from the number of complex structure moduli comes at the cost
of having several light fields. In the next section we will generalise this scheme to genuine
F-theory setups. We will see that most of the features of the type IIB case will be realised
except for the bound (4.47), which may or may not be present.

5 The linear scenario

The moduli stabilisation scheme IIB2 for type IIB orientifolds provides a class of compact-
ifications in which the flux contribution to the D3-brane tadpole Nflux is independent from
the number of complex structure moduli h3,1(Y4), and nevertheless one can achieve full
moduli stabilisation. Therefore it is quite simple to stabilise all complex structure moduli
and at the same time satisfy the bound 24Nflux ≤ χ(Y4), a scenario whose realisation has
been recently doubted [11–13], see also [49]. In the following we would like to generalise the
key features of scheme IIB2 to more general F-theory compactifications, providing further
counterexamples to the Tadpole Conjecture of [12].

We will dub this more general setup the linear scenario, because the key ingredient will
be a four-fold Y4 such that at least one complex structure saxion tL only appears linearly
on K = 3

2e
−Kcs and in the superpotential. This means that K takes the form

K = 4KLtL + f , (5.1)

with KL ≡ KLabctatbtc, and f ≡ f(ta) a function independent of tL and homogeneous of
degree four on the remaining saxions ta. This kind of Kähler potential is found when the
mirror four-fold X4 is a smooth three-fold fibration over P1,4 see section 6.3 for an explicit
example. In this case the leading saxion-dependent matrix (2.25) is

Z = 1
2V2

3



K
24 −1

K
6 gLL

K
6 gLLεa 1

K
6 gLLεa

K
6 gab δab

gµν − ηµν
δba

6
K g̃

ab − 6
K g̃

abεa

1 − 6
K g̃

abεa
6
Kg
−1
LL + 6

K g̃
abεaεb

−1 24
K


, (5.2)

4Note that in order for tL to appear only linearly in K the mirror X4 needs to have a nef effective
divisor DL such that D2

L = 0. The normal bundle OX4 (DL)|DL of DL is then trivial and by adjunction it
follows that c1(DL) vanishes. This is satisfied whenever X4 is a fibration of a CY three-fold, K3 × T2 or
an abelian variety over P1, in which case DL corresponds to the class of the generic fibre. See [50] for a
related discussion for CY three-folds.
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where
K
6 gLL = 1

6
KL

tL
(
1 + 1

4
f
KLtL

) , εa = ∂a

(
f

4KL

)
, (5.3)

and g̃acgcb = δab . We now consider a limit which takes one or several of the saxions ta to
infinity such that

tL ∼ KL →∞ . (5.4)

We also assume that tL grows faster than any of the other saxions ta, so that we realise
the hierarchy tL � ta. Along such a limit K → ∞ and Kgab → ∞. This implies that in
order to find vacua we need to set ρ̃ = ρ̃a = 0, which translates into the flux constraint
m = ma = 0. We also have that

K
6 gLL

(5.4)→ 1
6
KL
tL

, (5.5)

and one may find vacua with mL 6= 0 in this regime. Finally, one describes the fluxes
m̂µ by constructing the set of four-forms σµ in the mirror four-fold X4. As mentioned, we
assume that X4 is a three-fold fibration over P1. Due to this fibration structure, a basis
of holomorphic four-cycles on X4 can be generated from the Kähler cone generators Da of
the fibre X3

Ha = Da.DL , (5.6)

as well as by fibering the Mori cone generators Ca of X3 over the base P1

Hâ = Ca → P1 . (5.7)

This last set of basis elements is related to the holomorphic four-cycles γij = Di.Dj as

[γab] = KLabcδcĉ[Hĉ] . (5.8)

The integral basis of four-form classes [σµ] is then {[σµ]} = {[Ha], [Hâ]}, and so the
four-cycle index splits as µ = {a, â}, like in the type IIB case, and then (5.2) takes the
form (4.21). The intersection matrix ηµν is given by

ηab̂ = δab̂ , ηab = 0 , (5.9)

plus ηâb̂ in general non-vanishing and quite involved (see (6.86) for its form in an explicit
example). The form of gµν will then in general be quite complicated, but given the non-
vanishing entries of the intersection matrix ηµν , setting m̂â = 0 leads to ηµνm̂µm̂ν = 0 and
the only contribution to the tadpole is

Nflux = −mLēL , (5.10)

which, just as in the IIB2 scheme, is independent from h3,1(Y4). We then recover the
flux vector

~q t = (0,mL, 0, m̂a, 0, ēa, ēL, ē) , (5.11)
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and we find that mL has the same role as m0 in the IIB2 setup of section 4.2. It moreover
follows that the flux-axion polynomials (2.45) reduce to

ρ̄ = ē+ eLb
L + ēab

a +KLabc
(1

2m̂
abbbc + 1

6m
Lbabbbc

)
,

ρ̄a = ēa +KLabc
(
m̂bbc + 1

2m
Lbbbc

)
,

ρ̄L = ēL , ρ̄′a = 0 , ρ̂a = m̂a +mLba , (5.12)

ρ̃a = 0 , ρ̃L = mL , ρ̃ = 0 ,

which we recognise as the flux-axion polynomials in the IIB2 setup upon the identifying
KLabc with κabc. The leading-order vacua equations read

ρ̄ = 0 , (5.13a)

ēL + K6 gLLm
L = 0 , (5.13b)

ρ̄a − εaēL = 0 , (5.13c)
ρ̂a = 0 , (5.13d)

and can be solved like for the IIB2 scheme. Indeed, the first and fourth equations fix the
vev for the axions as

bL = − 1
3ēL(mL)2

(
KLabcm̂am̂bm̂c − 3eam̂amL

)
− ē

ēL
,

ba = − m̂
a

mL
,

(5.14)

and the remaining ones the vev for the saxions. In particular we find that KgLL/6 '
KL/6tL must lie in the range (N−1

flux, Nflux), and that

tL = −1
6
KLmL

eL
− f

4K , (5.15)

εa =
mLēa − 1

2KLabcm̂
bm̂c

mLēL
= − Na

Nflux
=⇒ Nflux|εa| & 1 . (5.16)

Here we have defined Na ≡ mLēa − 1
2KLabcm̂

bm̂c as a monodromy-invariant flux combi-
nation in the present setup, more precisely the analogue of the third invariant listed in
appendix C. We also obtain the inequality

K
6 gLL|εa| & N−2

flux . (5.17)

Notice that in the present setup the leading vacua equations in principle suffice to find
a set of vacua with full moduli fixing, unlike in the IIB2 scheme. This is due to the fact
that εa appears at leading order. Nevertheless, further corrections will also contribute to
the above equations, and in some cases they are needed to understand the implications
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of the inequality (5.16). We can read off such corrections from (B.42), focusing on those
corrections that involve K(3)

L , which are the leading ones. To leading order in εL ≡
3K(3)

L
2KL

one can also extract them from (3.5b), obtaining that in (5.13c) now we have

εa = ∂a

(
f

4KL

)
− 6 εLKL

Ka
gLLK2

(5.4)→ g∞a −
27
4 K

(3)
L

tL
KL
KLa
KL

. (5.18)

Here we have defined g∞a as the asymptotic behaviour of ∂a
(

f
4KL

)
along the limit (5.4).

Notice that the second term asymptotes as KLa
KL
→ 0, and so the qualitative behaviour of

the system depends on the functional behaviour of g∞a . We have two possibilities:

— If g∞a → 0 for some a, then (5.16) will set an upper bound on this limit. If moreover
the K(3)

L correction dominates over ga, then the bound will be similar to (4.47).
Indeed, from (5.17) we then obtain

9
8 |K

(3)
L |
KLa
KL

& N−2
flux . (5.19)

— If for all a, g∞a tends to a finite number bigger than N−1
flux, then (5.16) is automatically

satisfied and no bound is imposed on the saxion vevs in order to find vacua in this
region. This is for instance the case of the overall rescaling ta → λta, λ → ∞,
since due to the homogeneity of f and KL all the g∞a tend to quotients of intersection
numbers. Therefore for sufficiently large values of Nflux (5.16) becomes trivial. Notice
that in this case the monodromy-invariant flux combination Na only scans a finite
number of values along the limit, and so the set of inequivalent flux vacua in this
regime should be finite.

A potential third possibility would be that ga → ∞, ∀a, which would also imply that the
bound (5.16) is automatically satisfied and that all possible values of Na are scanned along
the limit, yielding an infinity of flux vacua. However, this scenario is not realised here.
To see this, we note that the limit (5.4) requires that we have to blow up (some of) the
saxions ta, possibly at different rates. Now, there is always (at least) one saxion t∗ that
grows the fastest. Due to the fibrations structure of the mirror X4 the terms appearing in
f are determined by the intersection numbers KLabc of the fibre X3 and the details of the
twist of X3 over P1. As a consequence in the limit (5.4) we can estimate

f . t∗KL . (5.20)

With this information, we can now evaluate the component |g∞∗ | as

4|g∞∗ | =
∣∣∣∣∂∗ ( f

KL

)∣∣∣∣ ≤ ∣∣∣∣∂∗fKL
∣∣∣∣+

∣∣∣∣∣f∂∗KLK2
L

∣∣∣∣∣ .
∣∣∣∣KLKL

∣∣∣∣+
∣∣∣∣∣ t∗KL∂∗KLK2

L

∣∣∣∣∣ . (5.21)

We can further use t∗∂∗KL . O(KL) to see that the second term on the r.h.s. is finite in
the limit (5.4). Given that the first term on the r.h.s. is O(1) we find that at least |g∞∗ |
can never diverge along (5.4), and so the possibility ga →∞, ∀a cannot be realised.

– 34 –



J
H
E
P
0
8
(
2
0
2
1
)
0
7
7

Beyond large complex structure

As we have seen, the linear scenario is quite natural in the context of F-theory four-
fold compactifications at large complex structure, and one may construct several explicit
examples like the one discussed in section 6.3. A natural question is then if the same
setup can be realised along other limits of infinite distance within the complex structure
field space. To address this question let us extract the key features and the underlying
geometric picture that lies behind the linear scenario, in order to connect with the results
of [14], where techniques were developed to address the features of flux potentials along
general infinite distance limits.

For this, notice that the leading-order saxion-dependent matrix (5.2) is of the form

2V2
3Z + χ0 =



H

M Mεa
Mεa Hab

gµν
Hab −Habεa
−Habεa M

−1 +Habεaεb
H−1


, (5.22)

where χ0 is defined in (2.27), and HacHcb = δab . From the results of appendix A, we can
interpret this matrix as the Hodge star action on the basis of four-forms {α̃, α̃i, σ̃µ, β̃i, β̃}
in which the component of G4 are the flux-axion polynomials ρA, see eq. (A.1). In (5.22)
this action is block-diagonal, which is a general feature of the large complex structure
regime, cf. (2.25). In fact, it follows from the results of [14] that the Hodge star action is
approximately block-diagonal in any complex structure region in the vicinity of an infinite
distance point.

Now, it is also a general result of [14] that as we approach an asymptotic region
in complex structure field space, the different blocks in the Hodge star action behave
differently. Some of them tend to infinity and some of them tend to zero, while the rest
remain of finite order. In the linear scenario we have that H,Hab →∞, H−1, Hab → 0, and
M remains of order one. To find vacua one then needs to set ρ̃ = ρ̃a = 0, which implies the
flux constraint m = ma = 0. Finally, it is reasonable to assume that it is consistent with
the vacua equations to set to zero some of the fluxes m̂µ, in such a way that ηµνm̂µm̂ν = 0.
The only contribution to the tadpole is then

Nflux = −mLēL , (5.23)

which is independent of h3,1(Y4). This leads to a vector of flux-axion polynomials of the
form ~ρ t =

(
0,mL, 0, ρ̂a, 0, ρ̄a, ēL, ρ̄

)
, from where the equations of motion follow

ρ̄ = 0 , ρ̂a = 0 , ρ̄a = εaēL , ēL +MmL = 0 . (5.24)

From here one obtains that M ∈ (N−1
flux, Nflux), and the inequalities

Nflux|εa| & 1 =⇒ M |εa| & N−2
flux . (5.25)
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The relevance of these bounds depends on the asymptotic behaviour of the εa along each
limit. By the results of [14] one would expect that εa either tends to zero, increasing the
number of blocks in which the Hodge star action is divided, or it remains finite. If all εa
tend to zero, then we recover a bound for the saxion vevs, just as in the IIB2 scheme of
section 4.2. If they do not, there is a priori no bound for the saxion vevs, but the values
that the monodromy-invariant flux bilinear Na can take is limited, and so should be the
number of inequivalent flux vacua.

As we depart from the large complex structure region, some of the entries of (5.22)
will stop being zero, and the above block-diagonal structure will be further broken. A clear
example of this is the effect of K(3) corrections in the IIB2 scheme, that besides generating
a non-vanishing εa, induce additional non-vanishing off-diagonal entries in (5.22). How-
ever, in that case such additional corrections do not deform significantly the set of vacua
equations (5.24), as can be appreciated from (4.44). As a result, this moduli stabilisation
scheme can be taken to be valid on a large region of complex structure field space. Whether
this last feature is also present along limits outside of the large complex structure regime
is yet to be seen, although the robustness of the equations in the IIB2 setup suggests that
this could well be the case.

6 Examples

As stressed in section 2, the most subtle part of the flux potential is the piece related to
the four-forms σµ, whose basis is not known in general. Exceptions to this are four-folds
Y4 whose mirror dual X4 is a smooth fibration, of which the setups in sections 4 and 5
are particular subcases. In this section we provide explicit constructions that illustrate our
previous results, by considering two types of fibrations for X4. In section 6.1 we apply our
framework to the case in which X4 is an elliptic fibration, which is a natural generalisation
of the type IIB case. In section 6.2 we study a concrete two-field model of this setup, and
show how the bounds for the saxion vevs obtained in section 3.3 are realised in practice.
Section 6.3 considers a four-fold X4 that is a fibration of a Calabi-Yau three-fold over P1,
yielding a concrete realisation of the linear scenario of section 5. This illustrates how our
general formulas apply to specific geometries, while a more detailed description of the set
of flux vacua for each case is left for the future.

6.1 Elliptically fibered mirror

A natural generalisation of the type IIB limit is given by Calabi-Yau four-folds Y4 whose
mirror X4 is a smooth, elliptically fibered four-fold with a section. In this case all the
topological invariants of X4 are determined by the three-fold base B3 and so, as pointed
out in [23], one has explicit control over the set of four-forms σµ. In our language, this
allows us to determine the intersection numbers ζµ,ij explicitly, specify the form of the
flux potential, and to carry out our analysis with the same degree of detail as in the
type IIB limit.

To see how this works, let us construct explicitly a basis of holomorphic 2p-cycles
classes in the mirror four-fold X4, as done in the type IIB case. On the three-fold base
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B3 of X4, a basis of holomorphic 2p-cycles is given by the point class Opt, the generators
of the Mori cone [C′a], a = 1, . . . , h1,1(B3) = h1,1(X4) − 1, the divisors classes [D′a] that
generate the Kähler cone, and the class of B3. The relevant topological invariants for us
will be the triple intersection numbers and the first Chern class of B3:

κabc = [D′a] · [D′b] · [D′c] , and c1(B3) = ca1[D′a] . (6.1)

We embed the holomorphic cycles of B3 into X4 by using the projection of the fibration π
and the divisor class of the section [E]. In particular, the Mori cone of X4 is generated by

[Ca] = [E.π−1(C′a)] , [C0] , (6.2)

with [C0] the class of the fibre. The Kähler cone is generated by the dual basis of divisor
classes

[Da] = π∗[D′a] , [D0] = [E] + π∗c1(B3) . (6.3)

Similarly to the type IIB case, we can construct a set of holomorphic four-cycle classes as

[γij ] = [Di.Dj ] , i = {0, a} . (6.4)

Again, all holomorphic four-cycle classes can be generated from linear combinations of [γij ],
but (4.3) does not form a basis because it is not a linearly independent set. For the case
at hand, one can construct such a basis from

[Ha] = [D0.π
−1(Da)] , [Hâ] = π∗[Ca] , (6.5)

which reduces to (4.4) when the fibration is trivial. This is a different choice of basis
compared to the one taken in [23], but more convenient for our purposes. The integral basis
of four-form classes [σµ] that correspond to the period (2.4d) is then given by {[σµ]} =
{[Ha], [Hâ]}, and so µ = {a, â}, with a, â = 1, . . . , h1,1(B3). Notice that the number
of elements of the basis (6.4) is 2h1,1(X4) − 2, smaller than the 1

2h
1,1(X4)(h1,1(X4) + 1)

elements in (6.4). The tensor ζµij connecting both sets of four cycles as

[γij ] = ζµij [σµ] = ζaij [Ha] + ζ âij [Hâ] , (6.6)

is specified by

ζa0b = ζab0 = δab , ζa,bc ≡ ζ âbcηâa = κabc , ζa00 = ca1 , (6.7)

with all remaining components vanishing. This clearly reduces to (4.6) for ca1 = 0, and one
can check that it satisfies the relation (2.5). The intersection matrix for the basis (6.5) is
given by

ηâb̂ = 0 , ηab̂ = δab̂ , ηab = κabcc
c
1 ≡ cab , (6.8)

and so applying (2.5) we recover

K0abc = κabc , K00ab = κabcc
c
1 ≡ cab ,

K000a = κabcc
b
1c
c
1 ≡ ca , K0000 = κabcc

a
1c
b
1c
c
1 ≡ c ,

(6.9)
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which indeed are the quadruple intersection numbers of the elliptically fibered four-fold
X4. Furthermore, for a X4 a smooth Weierstrass model the Euler characteristic χ(X4) can
be calculated from the adjunction formula as

χ(X4) =
∫
B3

[12c1(B3) ∧ c2(B3) + 360 c1(B3) ∧ c1(B3) ∧ c1(B3)] , (6.10)

which also gives the Euler characteristic for the mirror Y4. In the mirror four-fold Y4 (6.7)
translates, via (2.11), into the following dictionary for the set of G4-flux quanta

ma ≡ δab̂m̂
b̂ = 1

2κabcm
bc , m̂a = m0a + 1

2c
a
1m

00 , (6.11)

which are the generalisation of the type IIB fluxes ma, m̂a to the present case and the
actual G4-flux quanta,5 while mij should be seen as auxiliary quanta. The superpotential
then reads

W corr = ē+ ēiT
i + 1

2κabcm̄
cT bT c + T 0cabm̄

aT b + 1
2(T 0)2cam̄

a + T 0T am̄a + 1
2(T 0)2ca1m̄a

+ 1
6m

0κabcT
aT bT c + 1

2T
0κabcm

aT bT c + 1
2m

0T 0cabT
aT b + 1

2(T 0)2cabm
aT b

+ 1
2m

0(T 0)2caT
a + 1

6(T 0)3cam
a + 1

6m
0(T 0)3c

+ m

24
(
c(T 0)4 + 4(T 0)3caT

a + 6(T 0)2cabT
aT b + 4T 0κabcT

aT bT c
)

− iK(3)
i (mi +mT i) , (6.12)

where we have included the polynomial corrections of section 2.2, and in particular the flux
redefinition (2.41). Similarly, the corrected Kähler potential is

Kcorr
cs = − log

(2
3(4t0κ+ 6(t0)2κac

a
1 + 4(t0)3κabc

a
1c
b
1 + (t0)4c) + 4K(3)

i ti
)
. (6.13)

It then follows from our general analysis that we recover a scalar potential of the
form (2.17), where the flux-axion polynomials are given by

ρ̄ = ē+ ē0b
0 + ēab

a + m̄a

(
ba + ca1b

0
)
b0 + 1

2κabcm̂
abbbc + 1

2κabcm̂
acb1b

0(bc + cc1b
0)

+ 1
6κabc

(
3mabbbcb0 + 3macb1(b0)2bc +macb1c

c
1(b0)3

+m0(ba + ca1b
0)(bb + cb1b

0)(bc + cc1b
0)
)

+ m

24κabc
(
4babbbcb0 + 6babbcc1(b0)2 + 4bacb1cc1(b0)3 + ca1c

b
1c
c
1(b0)4

)
,

ρ̄0 = ē0 + m̄a(ba + ca1b
0) + κabcm̂

acb1(bc + cc1b
0)

+ 1
2κabc

(
ma + ca1m

0
)

(bb + cb1b
0)(bc + cc1b

0)

5Because the mirror manifold X4 is a smooth elliptic fibration the quantisation condition for the G4

flux [51] is trivial, in the sense that [G4] must be an integer class [52]. In the present setup this implies that
ma, m̂

a ∈ Z. In fact, all flux quanta in (2.9) should be integers when X4 is a smooth elliptically fibered
four-fold.
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+ m

6 (ba + ca1b
0)(bb + cb1b

0)(bc + cc1b
0) ,

ρ̄a = ēa + m̄ab
0 + κabcm̂

b
(
bc + cc1b

0
)

+ κabc

(
mbb0

(
bc + 1

2c
c
1b

0
)

+ 1
2m

0(bb + b0cb1)(bc + b0cc1)
)

+ m

6 κabc
(
3bbbcb0 + 3(b0)2cb1b

c + (b0)3cb1c
c
1

)
, (6.14)

ρ̄′a = m̄a + κabc

(
mbbc + 1

2mb
bbc
)
,

ρ̄a = m̄a +mab0 +m0ba + ca1m
0b0 +m

(
b0ba + 1

2c
a
1(b0)2

)
,

ρ̃a =ma +mba ,

ρ̃0 =m0 +mb0 ,

ρ̃ =m,

and the saxion-dependent matrix reads, in the limit where the corrections K(3)
i can be

neglected

ZAB = eKK
3



K
24 −1

K
6 gij δij

B̃a
cÃcdB̃

d
b B̃a

b

B̃b
a Ãab

δij
6
Kg

ij

−1 24
K


, (6.15)

with ~ρ t =
(
ρ̃, ρ̃i, ρ̄a, ρ̄′a, ρ̄i, ρ̄

)
. Here we have separated the tensor gµν − ηµν = 6

Kg
ij
P ζµiζνj

in (2.25) into four blocks, reflecting the splitting µ = {a, â}. In particular, the matrices
that appear in (6.15) are related to the metric gµν defined below (2.26) by

Ãabδaĉδbd̂ = gĉd̂ , B̃a
bδbĉ = gaĉ − δaĉ , (6.16)

and their explicit form is

Ãab =− 2
[
K00

(
tatb + t0(tacb1 + tbca1) + (t0)2ca1c

b
1

)
+K0at0(tb + t0cb1) +K0bt0(ta + t0ca1)

+Kab(t0)2
]

+ 2(t0)2

K

[
4tatb + 2t0(tacb1 + tbca1) + (t0)2ca1c

b
1

]
, (6.17)

B̃b
a =− 2

[
K00

(
κacc

c
1t
b + t0(catb + κacc

c
1c
b
1) + (t0)2cac

b
1

)
+K0bt0(κaccc1 + cat

0)

+K0c
(
κact

b + t0(κaccb1 + cact
b) + (t0)2cacc

b
1

)
+Kbct0(κac + t0cac)

]
+ 2t0

K

[
2κatb + (t0)

(
4κaccc1tb + κac

b
1

)
+ (t0)2

(
2κaccc1cb1 + 2catb

)
+ (t0)3cac

b
1

]
.

(6.18)

Finally, ÃacÃcb = δba, from where the structure (4.21) is manifest.

– 39 –



J
H
E
P
0
8
(
2
0
2
1
)
0
7
7

Moduli stabilisation

Let us now write down the Minkowski vacuum equations for the case at hand, and study
to what extent the results from the Type IIB orientifold limit generalise to this class of
compactifications. In this setup the on-shell conditions (3.1) become

ρ̄ = 1
24Kρ̃

ρ̄i = −1
6Kgij ρ̃

j

ρ̄′a = Γabρ̄b

(6.19a)

(6.19b)

(6.19c)

where we have defined Γab ≡ −ÃacB̃c
b. An explicit expression for this matrix is given

in appendix D, from where one can see that for vanishing ca1, Γab → 2
3
κ
t0 g

κ
ab, and we

recover (4.22). Using the vacuum equations we can rewrite the flux contribution to the
tadpole as

Nflux = ρ̄ρ̃− ρ̄iρ̃i + 1
2ηµν ρ̄

µρ̄ν
vac= K

24
(
ρ̃2 + 4gij ρ̃iρ̃j

)
+ 1

2 (cab + Γab + Γba) ρ̄aρ̄b , (6.20)

where the last term is positive definite by construction, as it equals 1
2gµν ρ̄

µρ̄ν . Hence, as in
the type IIB case, in order not to overshoot the D3-brane tadpole we have to set ρ̃ = m = 0
and we further set ρ̃a = ma = 0. However, unlike in the type IIB case the saxion t0 now
enters with a fourth power in K. Thus, based on our general discussion in section 3, we
also need to demand ρ̃0 = m0 = 0 to find vacua that do not violate the tadpole constraint
at large complex structure.

As before, including the corrections K(3)
i will modify the vacuum equations. At linear

order in these corrections we have (3.5) adapted to this setup, which reads:

ρ̄− 1
24Kρ̃ = −3

8εit
i
[K

18 ρ̃+$

]
, (6.21a)

ρ̄i + 1
6Kgij ρ̃

j = 1
3Ki

(
εj − εktk

Kj
K

)
ρ̃j − 1

6εiKj ρ̃
j , (6.21b)

ρ̄′a − Γabρ̄b = Ea
4t0

[K
2 ρ̃+$

]
, (6.21c)

where we have defined $ = (2tat0 + (t0)2ca1)ρ̄′a + (κa + 2κabcb1t0 + ca(t0)2)ρ̄a and

Ea =
[
εb −

Kb
(K − 2K0t0)

(
2εctc − εiti

)] [
δba −

Kacb1t0

K − 2K0t0 +Kaca1t0

]
. (6.22)

Let us now turn to the restricted flux scenario m = mi = 0 which yields ρ̃ = ρ̃i = 0,
ρ̄a = m̂a and ρ̄′a = ma. In this case (6.21) reduces to

ρ̄ = −3
8εit

i$ , (6.23a)

ρ̄i = 0 , (6.23b)

ma − Γabm̂b = 1
4

(
εa −

Ka(εctc − ε0t0 + t0εbc
b
1)

K − 2K0t0 +Kaca1t0

)
$ . (6.23c)
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In order to stabilise all complex structure fields, we need to choose the flux quanta (ma, m̂
a)

such that the matrix M defined in (3.25) is invertible. In the present case of a smooth
elliptic fibration the matrix M is given by

M =
(
M00 M0a
Ma0 Mab

)
=
(
ca1ma + cam̂

a ma + cabm̂
b

ma + cabm̂
b κabcm̂

b

)
. (6.24)

To see whether this matrix is invertible, let us define the matrices Sab ≡ κabcm̂b and

S̃ab = Sab −
(ma + cacm̂

c)
(
mb + cbdm̂

d
)

cc1mc + ccm̂c
. (6.25)

Now the block-matrix (6.24) is invertible if one of the two is fulfilled

a) : Sab invertible and maS
abmb + ca1ma 6= 0 ,

b) : cc1mc + ccm̂
c 6= 0 , and S̃ab invertible .

(6.26)

The solution (3.2) now reads

ma = Aκa + Ca +O(εi) , m̂a = A
(
2tat0 + (t0)2ca1

)
+ Ca +O(εi) , (6.27)

with the coefficients Ca and Ca satisfying

Cat
0 = −(κab + cabt

0)Cb , (caκabt0 + κb)Cb = 0 . (6.28)

Then (6.23a) allows us to recover (3.24)

A = − 4ρ̄
9K(3)

i ti
. (6.29)

In addition, (6.23c) simplifies to

ma − Γabm̂b = A

4

(
εa −

Ka(εctc − ε0t0 + t0εbc
b
1)

K − 2K0t0 +Kaca1t0

)
, (6.30)

and (6.20) becomes

Nflux = 1
2A

2K − 1
t0

(
κab + 1

2cabt
0
)
CaCb +O(εi) ≥

1
2A

2K +O(εi) . (6.31)

At this point we may apply the reasoning below (3.25) to obtain the inequality Np
fluxρ̄ &

d2p−1 with d = gcd(ma, m̂
a) and p ≤ h(3,1). Hence we conclude that

K < N2p+1
flux d2−4p(K(3)

i ti)2 . (6.32)
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6.2 A two-field model

As a concrete example of a Calabi-Yau four-fold Y4 for which the mirror X4 is elliptically
fibered, let us consider X4 to be the degree 24 hypersurface in P5

(1,1,1,1,8,12). This man-
ifold has been studied in the context of moduli stabilisation for instance in [23]. This
hypersurface can be viewed as an elliptic fibration over P3 with intersection polynomial

I(X4) = 64D4
0 + 16D3

0D1 + 4D2
0D

2
1 +D0D

3
1 , (6.33)

where D0 is the Kähler cone divisor associated to the zero section E, [D1] = π∗[H] the
pull back of the hyperplane class in P3 and c1(P3) = 4H. For this four-fold we have the
following basis of four-cycles

[H1] = [D0.D1] , [H1] = π∗[C1] , (6.34)

with C1 the single Mori cone generator of P3. The non-vanishing components of the tensor
ζµij as in (6.7) are thus given by

ζ1
01 = 1 , ζ1,11 = κ111 = 1 , ζ1

00 = c1
1 = 4 , (6.35)

and the intersection matrix η reduces to

η11 = 0 , η1
1 = 1 , η11 = 4 . (6.36)

Furthermore, the corrections K(3)
i for this example are given by

K
(3)
0 = −3860 ζ(3)

(2π)3 , K
(3)
1 = −960 ζ(3)

(2π)3 . (6.37)

Finally, the Euler number of X24 and its mirror Y4 = X∗24 is χ(X24) = χ(X∗24) = 23328.
With this preparation we can now look at flux vacua for F-theory on X∗24 in the large
complex structure regime. To find vacua for large values of the saxions t0, t1 we restrict to
the flux vector

~qt = (0, 0, 0, m̂1,m1, ē1, ē0, ē) . (6.38)

The vacuum equations ρ̄i = 0 then translate to

ē0 +m1
(
b1 + 4b0

)
+ 4m̂1

(
b1 + 4b0

)
= 0 , ē1 + m̂1

(
b1 + 4b0

)
+m1b

0 = 0 , (6.39)

such that the matrix M in (6.24) is given by

M =
(

4m1 + 16m̂1 m1 + 4m̂1

m1 + 4m̂1 m̂1

)
, (6.40)

which is invertible provided m1 + 4m̂1 6= 0 and m1 6= 0. In case this is fulfilled we obtain

b0 = m̂1ē0
m1 (4m̂1 +m1) −

ē1
m1

, (6.41)

b1 = −4 m̂1ē0
m1 (4m̂1 +m1) −

ē0
4m̂1 +m1

+ 4ē1
m1

. (6.42)
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From here we can deduce

ρ̄ = 2
(
4m̂1 +m1

)
m1ē−m1ē1ē0 + m̂1ē0 (ē0 − 4ē1) + 3ē0ē1

(
4m̂1 +m1

)
2 (4m̂1 +m1)m1

, (6.43)

for which the numerator is a combination of integer fluxes and thus at least of O(1) if
non-vanishing. We can further use (6.19c) to solve the vacuum equations for ρµ at leading
order. For our particular two-modulus case we have

m1 = Γ11m̂
1 , (6.44)

with

Γ11 = (t1)4 + 4t0(t1)3

2(t1)3t0 + 12(t1)2(t0)2 + 16(t0)3t1
. (6.45)

The corrected equations of motion for ρ̄ now give

2
(
4m̂1 +m1

)
m1ē−m1ē1ē0 + m̂1ē0 (ē0 − 4ē1) + 3ē0ē1

(
4m̂1 +m1

)
2 (4m̂1 +m1)m1

= −3
8εit

iζµm
µ ,

(6.46)

with

ζµm
µ =

[
(t1)2 + 4t1t0 + 16(t0)2

]
m̂1 +

(
t1t0 + 4(t0)2

)
Γ11m̂

1 . (6.47)

Furthermore, in this model the contribution to the tadpole is then given by

Nflux = m̂1m1 + 4(m̂1)2 = (Γ11 + 4) (m̂1)2 . (6.48)

We now want to find the bound on K and ti for which we expect solutions to the vacuum
equations similar to (3.28). To that end, let us distinguish three different cases depending
on the hierarchy between t1 and t0:

i) Vacua with the hierarchy t1 � t0. In this case we can approximate

m1 =

 t1
2t0

1 + 4 t
0

t1
+O

(
t0

t1

)2
 m̂1 =

(
t1

2t0 + 2
)
m̂1 +O

(
t0

t1

)
. (6.49)

Thus in order to have the required hierarchy we need m1 � m̂1 such that the con-
tribution to the tadpole goes essentially as Nflux & Γ11. From (6.43) we then find

N2
fluxρ̄ & 1 , (6.50)

i.e. we would expect (3.28) to hold for p = 2. The r.h.s. of (6.46) to leading order is
then given by

− 9
16
K

(3)
0 t0 +K

(3)
1 t1

t0(t1)3

(
(t1)2m̂1 + t1t0m1

)
= 27

32
K

(3)
1
t0

m̂1 +O
( 1
t1

)
. (6.51)
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Using the bound (6.50) we can derive

t0 .
(
4m̂1 +m1

) (
m1m̂

1
)
|K(3)

1 | = Γ2
11(m̂1)3|K(3)

1 | . |K
(3)
1 |N

2
flux . (6.52)

Accordingly, t1 is bounded by

t1 ∼ m1

m̂1 t
0 .

(
4m̂1 +m1

)
(m1m1) |K(3)

1 | . N3
flux|K

(3)
1 | . (6.53)

Combining the bound for t0 and t1 we find

K .
(
K

(3)
i ti

)2
N5

flux , (6.54)

in accordance with (3.28) for p = 2.

ii) Vacua with both saxions of the same order, i.e. t0/t1 = γ with γ ∼ O(1). In this case

m1 =
(
γ−1 1 + 4γ

2 + 12γ + 16γ2

)
m̂1 , (6.55)

such that in order for γ to be O(1) we also need m̂1 and m1 to be of the same order.
Accordingly, from (6.43) and (6.48) we find

Nfluxρ̄ & 1 , (6.56)

such that we expect the bound (3.28) with p = 1. We can now set a bound on the
overall saxion t1. Using (6.47) we have that

−3
8εit

iζµm
µ ∼ 1

t1
m̂1f(γ) , (6.57)

with f a function of γ. From here, we derive the bound

t1 . m̂1
(
4m̂1 +m1

)
m1|K(3)

1 + γK
(3)
0 | . N

3/2
flux|K

(3)
1 + γK

(3)
0 | , (6.58)

and similar for t0. Combining the scaling of t0 and t1 we find the bound

K .
(
K

(3)
i ti

)2
N3

flux , (6.59)

in accordance with (3.28) with p = 1.

iii) Vacua with the hierarchy t0 � t1. Here we find

m1 =

1
4

(
t1

t0

)2

+O
(
t1

t0

)3
 m̂1 , (6.60)

such that we need to impose m̂1 � m1 to achieve the required hierarchy. In view
of (6.48) and (6.43) we then find the bound

N
1/2
fluxρ̄ & 1 , (6.61)
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which should lead to (3.28) with p = 1/2. In this regime we have that

−3
8εit

iζµm
µ ∼ −K(3)

0
m̂1

t0
. (6.62)

From here we can then derive the bounds

t0 . 4(m̂1)2m1|K(3)
0 | . Nflux|K

(3)
0 | , t1 . N

1/2
flux|K

(3)
0 | . (6.63)

Putting things together we then find

K .
(
K

(3)
i ti

)2
N2

flux , (6.64)

in accordance with (3.28) for p = 1/2.

Type IIB limit

F-theory compactified on the four-fold X∗24 can be viewed as the F-theory lift of type IIB
compactified on the mirror quintic which has a single complex structure modulus T 1. The
intersection number and Euler characteristic of the mirror, i.e. in the quintic itself, are

κ111 = 1 , χE = −200 . (6.65)

The main difference to the case of X∗24 discussed before is that now t0 only appears linearly
in the Kähler potential. In this case, the set of vacuum equations simplifies considerably.
For instance at the classical level (4.22d) reduces to

ρ̄′1 = 1
2
t1

t0
ρ̂1 . (6.66)

Focusing on the restricted flux case ~q t = (0, 0, 0, m̂a, m̄a, ēa, ē0, ē) this translates into

t1

t0
= 2m1

m̂1 . (6.67)

In this case the equation for ρi read

ρ̄0 = ē0 +m1b
1 = 0 , ρ̄1 = ē1 +m1b

0 + m̂1b1 = 0 , (6.68)

which are solved by

b1 = − ē0
m1

, b0 = − ē1
m1

+ m̂1

m2
1
ē0 . (6.69)

This can be inserted into ρ̄ to find

ρ̄ = ē+ 1
2 ēib

i = 1
m2

1

(
(m1)2ē− ē1ē0m1 + 1

2 ē
2
0m̂

1
)
. (6.70)

We can now give an estimate for the range where the moduli t0, t1 can be fixed, based
on (4.27a):

(m1)2ē− ē1ē0m1 + 1
2 ē

2
0m̂

1 = 9
8K

(3) m̂
1

t1
(m1)2. (6.71)

As in the case of X∗24 we distinguish three cases:
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i) At the vacuum we have the hierarchy t1 � t0. In this case we have m1 � m̂1 such
that the flux contribution to the tadpole is determined by m1. As a consequence

t1 . |K(3)|m1
(
m1m̂

1
)
< |K(3)|N2

flux , (6.72)

and accordingly

κ

t0
. (K(3))2N5

flux , (6.73)

which agrees with (4.31) for p = 2.

ii) At the vacuum t0 ∼ t1. For this we need m1 ∼ m̂1. In this case we find

t1 . |K(3)|m1
(
m1m̂

1
)
< |K(3)|N3/2

flux , (6.74)

where we used N1/2
flux & m̂1 ∼ m1. Hence

κ

t0
. (K(3))2N3

flux , (6.75)

which corresponds to (4.31) for p = 1.

iii) At the vacuum we have the hierarchy t0 � t1. In this case we have Nflux & m̂1 � m1
such that our bound becomes

t1 . |K(3)|m1
(
m1m̂

1
)
< |K(3)|Nflux , (6.76)

and

κ

t0
. (K(3))2Nflux , (6.77)

reproducing (4.31) for p = 1/2.

We see that compared to the X∗24 discussion the bound on t1 in the case i) is stronger
whereas it is the same in case ii) and even less constraining in case iii). In the present
example we further have

|K(3)| = ζ(3)
8π3 |χE | ' 1 , (6.78)

such that |K(3)|m1
(
m1m̂

1) can be made moderately larger than 1 to ensure that we are
always in the regime where the perturbations ε� 1.

6.3 A realisation of the linear scenario

In section 5 we discussed a linear scenario that resembles certain features of the IIB2
scheme and in particular allows for full moduli stabilisation for a flux choice with only
one contribution to the D3-brane tadpole Nflux. In the following we would like to give
an explicit example of an F-theory construction that realises this linear scenario. In our
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concrete model the number of complex structure moduli is four, but as discussed in section 5
the construction can be easily generalised to an arbitrary h3,1(Y4).

As pointed out in section 5 we can realise the linear scenario in case the mirror manifold
X4 admits a fibration of a Calabi-Yau three-fold X3 over a P1. As the example in this
section, we take the mirror manifold X4 to be a triple fibration T2 → P1 → P1 → P1,
which can either be seen as an elliptic fibration over a base B3 = P1 → F2 or as a fibration
of a Calabi-Yau X3 = T2 → F1 over P1. Here, Fn the n-th Hirzebruch surfaces. Such
a manifold can be constructed using toric methods — the toric data for this manifold is
given e.g. in [53]. For this model we have four generators of the Kähler cone D0, D1, D2
and DL with intersection polynomial

I(Y4) =
(
8D3

0 +D0D1D2 +D0D
2
2 + 2D2

0D1 + 3D2
0D2

)
DL + 6D2

0D2D1 + 2D0D2D
2
1

+ 2D0D
2
2D1 + 16D3

0D1 + 2D0D
3
2 + 4D2

0D
2
1 + 6D2

0D
2
2 + 18D3

0D2 + 52D4
0 .
(6.79)

We can identify D0 as the Kähler cone generator related to the zero section of the elliptic
fibration as in (6.3). Furthermore DL, satisfying DL.DL = 0, denotes the class of the
generic Calabi-Yau three-fold fibre X3 and D1 and D2 are the divisors dual to the curves
inside the base F1 of X3. From (6.79) we can read off

K =
[
8(t0)3 + t0t1t2 + t0(t2)2 + 2(t0)2t1 + 3(t0)2t2

]
tL + 6(t0)2t2t1 + 2t0t2(t1)2

+ 2t0(t2)2t1 + 16(t0)3t1 + 2t0(t2)3 + 4(t0)2(t1)2 + 6(t0)2(t2)2 + 18(t0)3t2 + 52(t0)4 .
(6.80)

In the following we will use the indices a, b, . . . to refer to i = 0, 1, 2 and α, β, . . . to refer
just to i = 1, 2. The first Chern class of the base B3 is given by

c1(F1 → P1) = 2D2 +D1 , (6.81)

and the corrections K(3)
i can be read off from [53]

c3(Y4)Di = −3136D0 − 960D1 − 1080D2 − 480DL . (6.82)

Since X4 can be seen as an elliptic fibration, a basis of four-cycles is given as in (6.5).
However, here we choose a different basis of four-cycles that is better suited for the study
of the linear scenario that is given by (5.6) and (5.7). The first set of four-cycles is given
by divisors of the generic three-fold fibre X3:

H0 = D0.DL , Hα = Dα.DL , α = 1, 2 . (6.83)

The second set of four-cycles is obtained by fibering the Mori-cone generators Cα of X3
over the base P1. The so-obtained four-cycles H satisfy

Dα.Dβ = λαβH0̂ , D0.Dα = λαβ
(
δββ̂Hβ̂ + cβ1H0̂

)
, D0.D0 = λαβc

α
1

(
δββ̂Hβ̂ + cβ1H0̂

)
,

(6.84)
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where λαβ = KL0αβ is the intersection on the two-fold base of X3. From here we can read
off the non-vanishing components of the ζ tensor

ζ0
L0 = 1 , ζαLβ = δαβ , ζ 0̂

αβ = λαβ , ζ α̂β0 = δα̂αλαβ ,

ζα̂00 = δα̂αλαβ , ζ 0̂
α0 = λαβc

β
1 , ζ 0̂

00 = λαβc
α
1 c
β
1 . (6.85)

The non-vanishing components of the intersection matrix ηµν in the four-cycle sector are

ηab̂ = δab̂ , η0̂α̂ = δα̂αλ
αγλδρD0DγDδDρ

ηα̂β̂ = δα̂αδβ̂β

[
λαγλβδD2

0DγDδ − (cα1λβδ + cβ1λ
αδ)λγρD0DδDγDρ

]
.

(6.86)

In the following, we use the notation ma = δaâm̂
â for the fluxes associated to Hâ. With

this information, we can now look for solutions to the vacuum equations. We are interested
in vacua that realise the linear scenario of section 5 and hence look at the limit (5.4), which
in the present case can be viewed as some sort of Sen’s limit. As before, to find vacua in
the region probed by this limit we must set ρ̃ = m = 0, and since Kgab will generically
diverge we also set ρ̃a = ma = 0 in order not to violate the tadpole constraint. However,
we can have mL 6= 0 since (5.5) is finite. If we further set ρ̄′a = ma = 0 by (6.86) we have a
single pair of fluxes contributing to the D3-brane tadpole as Nflux = −mLēL. This results
in the following restricted flux vector (5.11):

~q t = (0,mL, 0, 0, m̂a, 0, ēα, ē0, ēL, ē) , (6.87)

and the following flux-axion polynomials:

ρ̄ = ē+ ēib
i + KL0αβ

2
(
m̂0(bα + cα1 b

0)(bβ + cβ1 b
0) + m̂αb0(2bβ + cβ1 b

0)
)

+ 1
6KLabcm

Lbabbbc ,

ρ̄0 = ē0 +KL0αβ
(
m̂α(bβ + cβ1 b

0) + cα1 m̂
0(bβ + cβ1 b

0)
)

+ 1
2KL0abm

Lb0babb ,

ρ̄α = ēα + m̂0KL0αβ
(
bβ + cβ1 b

0
)

+ m̂βKL0αβb
0 + 1

2KαLabm
Lbβbabb ,

ρ̄L = ēL , (6.88)

ρ̄′a = 0 ,

ρ̂a = m̂a +mLba ,

ρ̃a = 0 ,

ρ̃L = mL ,

ρ̃ = 0 ,

where we used that the intersection numbers KLabc are related to λαβ and cα1 via

KL0αβ = λαβ , KL00α = λαβc
β
1 , KL000 = λαβc

α
1 c
β
1 . (6.89)
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One can check that the polynomials in (5.12) correspond to those obtained in the general
linear scenario in section 5. The axions are stabilised as in (5.14), and also the stabili-
sation of the saxions works as in the general case. For concreteness, let us focus on the
overall rescaling

ta = vaλ , va ∼ O(1) , λ→∞ . (6.90)

together with tL ∼ λ3 → ∞. We can thus write K = 4tLκ(v)λ3 + f(v)λ4 and Ka =
3tLκa(v)λ2 + fa(v)λ3. The values for the parameters va can then be inferred from the
equation of motion for ρ̄a as in (5.13c) where εa in the present example is given by

εa = gLa
gLL
− 6εLKL

Ka
gLLK2

(5.4)→
κ(v)fa(v)− 3

4κa(v)f(v)
κ(v)2 − 27

4 K
(3)
L

κa(v)
κ(v)2

tL
λ4 . (6.91)

Then the equation of motion (5.16) fixes the va. Since by assumption the va are of order
one, we also find εa ∼ O(1), ∀a, such that the bound Nflux|εa| ≥ 1 is trivially satisfied. As a
result there is no upper bound for the value of λ, in accordance with the general discussion
in section 5. Still, since Na is a monodromy-invariant flux combination there should only
be a finite number of inequivalent vacua along the limit. Finally, the ratio tL/λ3 is fixed
by (5.13b):

ēL = −K6 gLLm
L → −λ

3

tL

mL

6 =⇒ tL
λ3 . Nflux . (6.92)

We thus conclude that the present example indeed captures all the key features discussed
for the general linear scenario in section 5.

7 Conclusions

In this paper we analysed flux potentials and their vacua for F-theory compactifications on
smooth elliptically fibered Calabi-Yau four-folds. We restricted our analysis to the regime
of moderate to large complex structure, where the complex structure moduli split into an
axionic and a saxionic component and the periods of the holomorphic four-form Ω can be
well approximated by polynomial expressions, neglecting exponentially suppressed terms.
In this regime we provided an explicit expression for the scalar potential that allows for
a systematic study of its vacua. To arrive at this result, we used that the periods of the
four-fold in the large complex structure regime are captured, through homological mirror
symmetry, by the central charges of B-branes wrapping the holomorphic 2p-cycles in the
mirror four-fold. This strategy was promoted in [23, 24] to calculate the Gukov-Vafa-Witten
superpotential.

Since in our limit of consideration exponential corrections to the periods can be ignored,
the resulting axionic shift symmetry allows us to separate the scalar potential into a saxion-
dependent matrix ZAB and a set of flux-axion polynomials ρA that depend on the axions
and the G4-flux quanta. This structure is in fact a general feature of the scalar potential
close to generic large distance singularities, as argued in [14]. In terms of the ρA the
vacua conditions, i.e. the self-duality constraint for the G4-flux, take the particularly simple
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form (3.1) and can be analysed systematically. Using this form of the self-duality condition
allowed us to directly compute the flux contribution to the D3-brane tadpole Nflux in terms
of the ρA on-shell values.

Our analysis shows that for generic Calabi-Yau four-folds we have to restrict the choice
of fluxes in order not to violate tadpole cancellation parametrically. This led us to consider
the generic flux choice (3.15). In fact this constraint on the possible fluxes can be viewed as
a generalisation of the result of [41, 54], where it was shown that in 4d type IIB/F-theory
compactifications switching on the flux associated to the top period is inconsistent with
tadpole cancellation and moduli stabilisation at large complex structure.

As it turns out, our generic choice of fluxes compatible with the tadpole cancellation is
too constrained in order for the leading vacua equations to stabilise all complex structure
fields. In particular, the analysis of the set of leading order vacua equations revealed
that at least one saxionic direction necessarily remains flat. This problem is circumvented
when polynomial corrections to the periods are included. While most of these polynomial
corrections can be treated as a re-definition of the flux quanta, the correction K

(3)
i , that

is related to the third Chern class of the mirror four-fold, has important consequences for
the vacua equations as it gives a correction to the action of the Hodge ∗ operator on Y4.
Including this correction allows us to generically stabilise all the complex structure fields.
Still, to achieve full moduli stabilisation the fluxes need to be chosen in such a way that the
matrix M appearing in (3.25) is invertible. Invertibility of this matrix should be read as
a constraint on the fluxes m̂µ contributing to the tadpole Nflux. In the light of the recent
conjecture put forward in [12, 13] it would be very interesting to translate this constraint
into a precise relation between Nflux and the number of fields that need to be stabilised,
which a priori could exist for this particular family of vacua.

In any event, we observed that in this generic flux scenario the regime for the saxion
vevs in which we can find vacua without violating tadpole cancellation is bounded from
above by |K(3)|Np+ 1

2
flux .6 As discussed in section 3, the exponent p is bounded by the number

of complex structure fields in the system, and the upper bound on the saxionic vevs can
be understood as arising due to the full stabilisation of the complex structure moduli by
means of perturbatively suppressed terms. This bound on the saxion vevs nicely parallels
the prediction for the total number of flux vacua based on statistical methods [55–57].
Indeed, it was found that the number of vacua in type IIB flux compactifications grows
like NQ/2

flux , with Q the number of flux quanta. Since in type IIB the number of flux quanta
is twice the number of complex structure plus dilaton fields, our bound on the saxion vevs
is indeed in line with the expected number of flux vacua in type IIB. It would be interesting
to make this link more precise, also by adding the D7-brane flux contribution as in [58].

Reducing our general F-theory setup to type IIB, we connected with several existing
results in the literature. We realised that the flux choice made in [48] is one of the simplest
that guarantee that the matrix M is invertible, implying that all complex structure moduli

6We stress that even taking into account this upper bound, we can find vacua consistent with our
approximation of neglecting exponentially suppressed terms, since the saxion vevs are still allowed to be
moderately large depending on the precise value of K(3).
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and the dilaton are fixed. In our scheme, the mass spectrum clearly depends on the
correction K(3), as one of the fields is only stabilised when they are taken into account.
This is also consistent with the results of [45, 48], since the parameter ξ that controls
their mass spectrum is a simple function of K(3). Furthermore, we also showed that in
one particular case in which the matrix M is not invertible, we recover the residual flat
direction found in [47] for the same flux choices. In that reference it was shown that this
flat direction can be stabilised by including non-perturbative corrections, possibly yielding
to an exponentially small superpotential. Our analysis of section 3.3 provide an F-theory
generalisation of both of these type IIB constrained flux scenarios, and we expect them
to display similar features, see e.g. [59]. In particular, notice that the vacuum obtained
in [47] after including exponential corrections is located at O(1) values for the saxionic
fields. This is analogous to our observation that the small corrections which yield full
stabilisation of all complex structure fields set an upper bound for the regime in which we
expect to find vacua. Based on our analysis presented in this paper, it would be interesting
to investigate whether also in general F-theory models non-perturbative corrections can
lift the perturbatively flat direction of the potential when M is not invertible. Finally, it
would also be interesting to connect our results with the type IIB analysis made in [60].

Besides the class of vacua associated to the flux choice (3.15), which is present in
generic F-theory models, we found a second class of vacua arising for a different pattern
of flux quanta when at least one of the complex structure fields only enters linearly in
e−K and the superpotential. In this case there exists a region in field space where we can
fix all complex structure moduli with the flux choice (5.11), without violating the tadpole
constraint. Most importantly, for this flux choice there is only a pair of flux quanta that
contribute to the tadpole. As we argued in section 5, in the linear scenario the full moduli
stabilisation can be achieved provided the matrix ZAB entering the scalar potential has
enough off-diagonal components. In the type IIB limit these off-diagonal components are
again related to the K(3) correction and reproduce the mirror dual of the Minkowski vacua
studied in [34]. However, as discussed in section 5 in the generic F-theory setup we do
not necessarily need to rely on the K(3) corrections, and full moduli stabilisation can be
already achieved just on the level of the classical contributions to the periods of the four-
fold. Notice that in this case the off-diagonal terms of ZAB are not necessarily suppressed
in the large complex structure limit. As a consequence there is in general no bound on
the value of the saxion vevs for which we can find these kind of vacua. Still, as argued
in section 5, we expect the number of vacua in this class to be finite. This follows from
inequivalent vacua being characterised by a monodromy-invariant integer which can only
take values in a finite range.

The analysis presented in this paper offers some avenues to follow in the future: first
of all it would be interesting to calculate the precise mass spectra for the F-theory vacua
obtained here as done in [45, 48] for the type IIB case. In this way one could verify whether
there is indeed a hierarchy between the masses of the fields in the complex structure sector.
More precisely, given our analysis one would expect that the mass of at least one of the
fields that is stabilised only through the effect of the K(3) corrections is smaller than the
masses of the fields that are already stabilised using the leading order vacua equations.

– 51 –



J
H
E
P
0
8
(
2
0
2
1
)
0
7
7

Second, one could try to generalise our explicit expressions to other asymptotic regions
in the four-fold complex structure moduli space, as classified in [14]. Our analysis shows
that in order to achieve full moduli stabilisation it is often necessary to include contributions
that are sub-leading in the asymptotic region. In the particular case of the large complex
structure regime, we were fortunate to get general expressions for these contributions via
mirror symmetry. However, for limits other than the large complex structure limit, the
subleading contributions to the periods are not known in general, though for three-folds
there has been recent progress in that direction [61]. As a first step one could consider
infinite distance limits that involve intersections with divisors corresponding to conifold-
like singularities. Moduli stabilisation in type IIB string theory around such regions has
been considered in [62, 63]. Furthermore, for three-folds such limits have been classified
in the dual Kähler moduli space as emergent string/decompactification limits in [50], see
also [64, 65] for a discussion of similar emergent string limits in CY four-folds. Since such
limits are defined in the large volume phase of the mirror dual four-fold, it should be easier
to relate them to the discussion presented in here. It would be interesting to see whether
or not in these more general limits one also sees the two classes of vacua discussed in this
work, or even if one encounters additional classes of vacua that enhance the flux landscape.
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A Geometric interpretation of the ρA

In this appendix we provide a geometric interpretation of the flux-axion polynomials ρA,
introduced in section 2 to describe the scalar potential in regions of large complex structure,
as well as of the saxion-dependent matrix ZAB that appears in (2.25). While our discussion
is restricted to the large complex structure region, our reasoning can be easily generalised
to other limits in which approximate axionic shift symmetries appear in the moduli space
metric.

To understand the flux-axion polynomials geometrically, one may first realise that they
can be seen as the components of the flux G4 in a particular basis of four-forms. More
precisely we have that

G4 = ρ̄α̃− ρ̄iα̃i + ρ̄µσ̃µ − ρiβ̃i + ρβ̃ , (A.1)
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where we have defined

α̃ = α+ biαi + 1
2b

ibjζµijσ
Y
ν + 1

6Kijklb
ibjbkβl + 1

24Kijklb
ibjbkblβ ,

α̃i = αi + ζµijb
jσYµ + 1

2Kijklb
jbkβl + 1

6Kijklb
jbkblβ ,

σ̃µ = σYµ + ζµklb
kβl + 1

2ζµklb
kblβ ,

β̃i = βi + biβ ,

β̃ = β .

(A.2)

The geometric interpretation of the ρ’s then boils down to the geometric significance of this
tilded set of four-forms, in comparison with the basis of integer four-forms {α, αi, σYµ , βi, β},
that span the horizontal subspace H4

H(Y4). As one can check, two key properties of this
new basis are that:

i) It has the same intersection numbers as the initial basis {α, αi, σYµ , βi, β}.

ii) Their elements are invariant under monodromies around the large complex structure
point.

The first property can be easily checked by direct computation, and it implies the tad-
pole identity (3.9). The second one follows from the characterisation of the large complex
structure monodromies as (2.52), given that the monodromy generators P̂i also specify the
change of basis {α, αi, σYµ , βi, β} → {α̃, α̃i, σ̃µ, β̃i, β̃}. Combined, these two properties also
allows us to relate the saxion-dependent matrix ZAB with the action of the Hodge star
operator on the basis {α̃, α̃i, σ̃µ, β̃i, β̃}.

Indeed, this tilded basis is particularly suitable to express monodromy-invariant quan-
tities like the holomorphic four-form Ω and its derivatives. To simplify the discussion, let us
ignore the contribution of the corrections K(3)

i to the expression of Ω. That is, we consider
the expression (2.6), from where we find

Ω = α̃+ itiα̃i −
1
2ζ

µσ̃µ −
i

6Kiβ̃
i + K24 β̃ , (A.3)

DiΩ = α̃i + iζµi σ̃µ −
1
2Kikβ̃

k − i

6Kiβ̃ + 2iKi
K

[
α̃+ itiα̃i −

1
2ζ

µσ̃µ −
i

6Kiβ̃
i + K24 β̃

]
,

(A.4)

DiDjΩ = ζµij σ̃µ + iKijkβ̃k −
1
2Kij β̃ −

(
gij + 4KiKj

K2

)
Ω + 2iKi

K
∂T j Ω + 2iKj

K
∂T iΩ (A.5)

+
(

2iKijtk

K
− 2i
K

(
δki Kj + δkjKi)

)
+ iKklKijl

)
DkΩ .

We now use the fact that the Hodge star operator has a simple action on each of these
four-forms

∗ Ω = Ω , ∗DiΩ = −DiΩ , ∗DiDjΩ = DiDjΩ , (A.6)
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and in particular that

1
3 t
itjDiDjΩ + Ω = itiα̃i −

2
3ζ

µσ̃µ −
i

6Kiβ̃
i (A.7)

is self dual. From the real part of this expression we obtain that

∗ (ζµσ̃µ) = ζµσ̃µ , (A.8)

and from its imaginary part that

∗
(
tiα̃i −

Ki
6 β̃i

)
= tiα̃i −

Ki
6 β̃i . (A.9)

In addition, using that ∗Ω = Ω and the above relations we obtain

∗
(
α̃+ K24 β̃

)
= α̃+ K24 β̃ . (A.10)

Moreover, from ∗DiΩ = −DiΩ we obtain the following two conditions

∗
(
α̃i −

Kik
2 β̃k

)
= −α̃i + Kik2 β̃k − 2

3
KiKk
K

β̃k + 4Ki
K
α̃kt

k , (A.11)

∗
(
ζµi σ̃µ −

1
6Kiβ̃

)
= −ζµi σ̃µ + 1

6Kiβ̃ −
4Ki
K

(
α̃− 1

2ζ
µσ̃µ + K24 β̃

)
, (A.12)

where we used (A.9). Taking this into account as well as the above relations, one finds
that the action of the Hodge star operator on the basis {α̃, α̃i, σ̃µ, β̃i, β̃} must be given by

∗α̃ = K24 β̃ , ∗β̃ = 24
K
α̃ ,

∗α̃i = −1
6Kgij β̃

i , ∗β̃i = − 6
K
gijα̃j ,

(A.13)

together with (A.8) and

∗
(
ζµi −

Ki
K
ζµ
)
σ̃µ = −

(
ζµi −

Ki
K
ζµ
)
σ̃µ . (A.14)

It is now easy to identify the action of the Hodge star with the diagonal entries of
the saxion-dependent matrix (2.25). More precisely, we have that the matrix 2V2

3Z + χ0
defined in there corresponds to the entries of the standard four-form metric

GAB =
∫
Y 4
ωA ∧ ∗ωB , (A.15)

with {ωA} = {α̃, α̃i, σ̃µ, β̃i, β̃}, computed to the same level of approximation. In fact, to
fully show this statement one must verify that

gµν =
∫
Y4
σ̃µ ∧ ∗σ̃ν , (A.16)

with gµν as defined below (2.26). This is easy to argue from the results above. For this,
let us perform the decomposition

ρµσ̃µ = (Aζµ +Bµ + Cµ) σ̃µ , (A.17)
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with components such that

Bµ =
(
ζµi −

Ki
K
ζµ
)
ξi , ζµiC

µ = 0 ∀i , (A.18)

for some arbitrary vector ξi. This splitting is directly related to the decomposition intro-
duced in (3.2), to which one can give a geometric meaning in terms of self-duality properties.
Indeed, it follows from (A.8) and (A.14) that the first and second components are Hodge
self-dual and anti-self-dual, respectively, and it is easy to convince oneself (either using
mirror symmetry or (A.5)) that ∗Cµσ̃µ = Cµσ̃µ. Putting all these together we have

ρµρν
∫
Y4
σ̃µ ∧ ∗σ̃ν = ρµηµνρ

ν − 2BµηµνB
ν = ρµηµνρ

ν − 2ξi
(
Kij −

KiKj
K

)
ξj

= ρµηµνρ
ν − 2ρµ

(
Kij −K−1titj

)
ζµiζνjρ

ν , (A.19)

where we have used that ξi(Kij − KiKj

K ) = (ζµj − Kj

K ζµ)ρµ, and so (A.16) follows.
Notice that our results imply a prescription to construct the flux-axion polynomials ρA,

without the knowledge of (A.2), and that one can apply it to any other field space region
with approximate axionic symmetries. Indeed, given a real integral basis of horizontal four-
forms {ωA} one may construct an alternative basis {ω̃A} from axion-independent linear
combinations of the real and imaginary parts of Ω, DiΩ and DiDjΩ, so that the elements of
the new basis are automatically monodromy-invariant. One must moreover choose the new
basis such that χAB ≡

∫
ω̃A ∧ ω̃B =

∫
ωA ∧ωB. We then define the flux-axion polynomials

ρA as the coefficients of the four-form flux in this basis, and the saxion-dependent matrix
in terms of its Hodge and intersection products:

G4 = ρAω̃
A , ZAB = 1

2V2
3

(
GAB − χAB

)
, (A.20)

with GAB defined as in (A.15).

B Curvature corrections on four-folds

In this appendix we cover several technical details regarding the polynomial corrections
discussed in section 2.2. In B.1 we elaborate on the computation of the corrections to
the periods and the intersection matrix, both seen as curvature corrections in the dual
Calabi-Yau four-fold X4. In B.2 we provide an alternative derivation of the corrected
Kähler potential (2.43). In B.3 we provide the flux potential including all the polynomial
corrections. In B.4 we focus on the corrections to the F-terms, which we use to provide
the corrected vacuum equations.

B.1 Corrected periods and intersection matrix

Section 2.2 discusses the polynomial corrections to the four-fold periods in the large complex
structure regime. These can be obtained via mirror symmetry from the central charges
of B-branes wrapped on holomorphic (2p)-cycles in the mirror four-fold X4. In the large
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volume regime the leading polynomial form of the central charge of a (2p)-brane that
corresponds to a complex E is given by

Z(E) =
∫
X4
eJΓC(X4) (ch(E))∨ , (B.1)

where J is the complexified Kähler class. The Calabi-Yau n-fold complex Γ-class is given by

ΓC(Xn) =
√
Td(Xn) exp(iΛXn) , (B.2)

with Td(Xn) the Todd class of Xn and

ΛXn = − ζ(3)
(2π)3 c3 + ζ(5)

(2π)5 (c5 − c2c3) + . . . (B.3)

To evaluate these central charges one needs a basis of (2p)-branes, which we take as type
IIA D(2p)-branes on a four-fold X4. For p 6= 2 such a basis was constructed in [42]: the
D8-brane wrapped on X4 is associated with the structure sheaf OX4 with Chern character
ch(OX4) = 1. A basis of D6-branes is given by the sheaves ODi with Di the generators of
the Kähler cone. For these sheaves the Chern character is given by

ch(ODi) = Di −
1
2D

2
i + 1

6D
3
i −

1
24D

4
i . (B.4)

A basis for D2-branes is obtained from the Mori cone generators Ci via Ci = ι!OCi

(
K

1/2
Ci

)
for which the Chern character is simply

ch(Ci) = Ci . (B.5)

Finally, as shown in [23] in many cases a basis of D4-branes can be constructed from the
intersection of two divisors Di.Dj . The Chern character of the associated sheaf ODi.Dj

is then

ch(ODi.Dj ) = Di.Dj −
1
2Di.Dj . (Di +Dj) + 1

12Di.Dj

(
2D2

i + 3DiDj + 2D2
j

)
. (B.6)

Using these expressions for the Chern characters, the central charges in (B.1) can be
explicitly evaluated yielding the periods (2.29). Let us stress that these expressions for the
central charges are valid in the large volume regime. Away from these limits in principle
exponential corrections need to be taken into account that do not necessarily converge in the
entire classical Kähler cone. In order to ensure that we are in the regime of validity of the
polynomial approximation to the central charges we impose that the classical contribution
to the central charges of 8-, 6- and 4-branes is suitably large. We will in particular assume
that the curvature corrections due to ci(X4) are small compared to the leading polynomial
expression in (2.29). As an example of what this constraint entails, let us consider the
central charge of a D6-brane on a divisor Di that satisfies Di.Di.Di.Dj = 0, ∀Dj . In the
limit of large ti we find that

Z(ODi) = −1
6KiijkT

iT jT k − 1
24T

i
∫
c2 ∧Di ∧Di + . . .

= −T i
(1

6KiijkT
jT k +K

(2)
ii

)
+ . . . (B.7)
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Since the term in the brackets is constant for large values of ti we see that for the curvature
correction to be subleading we need to impose

1
6Kiijkt

jtk > |K(2)
ii | , (B.8)

which is a condition on the other saxions. For a related discussion of the role of the second
Chern class for the validity of the perturbative expansion in type IIA on CY three-folds,
see [50].

Besides the periods, to extract the form of the flux potential we also need the corrected
intersection matrix χ associated to the integer basis of 2p-cycles on the Calabi-Yau four-fold
X4. As reviewed in the main text, this intersection matrix is given by the open string index

χ(E ,F) =
∫
X4

Td(X4)(chE)∨(chF) , (B.9)

where the Todd class is given by (2.34) and E and F are complexes corresponding to the
branes wrapped on the 2p-cycles. Using the Chern characters of the associated complexes
reviewed above, we can calculate the intersection matrix to be

χ =



1
720
∫

3c2
2 − c4 −K(2)

ii − 1
24Kiiii χ(ODi.Dj ,OY ) 0 1

−K(2)
kk −

1
24Kkkkk χ(ODk

,ODi) −1
2Kkkij + 1

2(Kkiij +Kkijj) −δik 0

χ(ODk.Dl
,OY ) −1

2Kiikl + 1
2(Kklli +Kkkli) Kklij 0 0

0 −δki 0 0 0

1 0 0 0 0


,

(B.10)

where

χ(ODi.Dj ,OY ) = 1
12(2Kiiij + 3Kiijj + 2Kijjj) + 2K(2)

ij , (B.11)

χ(ODi ,ODk
) = −2K(2)

ik + 1
4Kiikk −

1
6(Kiiik +Kikkk) . (B.12)

This matrix can now be rewritten as a product of three matrices

χ = Λ̂tχ̂0Λ̂ , (B.13)

where

Λ̂ =



1 0 0 0 0

0 δji 0 0 0
1
12c

jl
2 −δji δli δji δ

l
k 0 0

0 1
6Kjjji +K

(2)
ji −1

2 (Kjiik +Kjikk) δij 0

K(0) − 1
24Kiiii −

1
2K

(2)
ii λik 0 1


, (B.14)
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with λik = 1
12 (2Kiiik + 3Kiikk + 2Kikkk) +K

(2)
ik , and we have

χ̂0 =


0 0 0 0 1
0 0 0 −δij 0
0 0 Kijkl 0 0
0 −δji 0 0 0
1 0 0 0 0

 . (B.15)

As emphasised in the main text, to describe the potential in terms of physical fluxes
we need to rewrite χ̂0 so that it describes an intersection on the actual basis of four-cycles
σµ. We can do this by defining

χ̂0 = Θtχ0Θ , (B.16)

with

Θ =


1 0 0 0 0
0 δji 0 0 0
0 0 ζµij 0 0
0 0 0 δij 0
0 0 0 0 1

 . (B.17)

Then, by defining Λ = ΘΛ̂ we arrive at the expression (2.36) and

χ = Λtχ0Λ , (B.18)

with χ0 given in (2.27).

B.2 Corrections to the Kähler potential

In the main text, we derived the polynomial corrections to the Kähler potential (2.16)
via the correction to the periods of Ω and the intersection numbers. We noted that the
resulting Kähler potential (2.43) remains of the classical form up to a term proportional
to the third Chern class of the mirror. In the following we will review a more direct way
to arrive at the same result, based on the results of [66].

In [66] the Kähler potential on the complexified Kähler moduli space of general Calabi-
Yau n-fold Xn was argued to be of the form

e−K =
∫
Xn

exp

2i
h(1,1)(Xn)∑

i=1
tiDi

 Γ̂C(Xn)
¯̂ΓC(Xn)

+O(e2πiT ) , (B.19)

based on calculating the perturbative corrections to the S2 partition function of the asso-
ciated gauged linear sigma model. Here ti = ImT i is the saxionic part of the complexified
Kähler moduli of Xn and Γ̂C(Xn) is the complex Γ-class (B.2) that also appears in the
calculation of the central charges (B.1). Since the Todd class is real, its contribution to the
Kähler potential drops out and we are left only with contributions from the term exp(iΛXn).
For Calabi-Yau four-folds there is only one term in ΛX4 proportional to the third Chern
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class, indicating that only the third Chern class gives a correction to the Kähler potential.
Evaluating (B.19) for a four-fold thus yields

e−K = 2
3Kijklt

itjtktl + 4ζ(3)
(2π)3

∫
X4
c3(X4).Dit

i = 2
3Kijklt

itjtktl + 4K(3)
i ti , (B.20)

up to exponentially-suppressed corrections, with K
(3)
i defined as in (2.30). This polyno-

mial structure was previously conjectured in [67], and one can easily check that it agrees
with (2.43).

B.3 Corrected F-term potential

To compute the F-term potential we use the standard Cremmer el al. formula [39]

e−KVF = gmn̄DmWDn̄W̄ − 3|W |2 , (B.21)

where DmW = ∂TmW +(∂TmK)W , gmn̄ is the inverse field space metric and m,n run over
all moduli. Ignoring corrections to the Kähler sector of the compactification we recover the
standard cancellation of no-scale structure models and the above expression simplifies to

e−KVF = gij̄DiWDj̄W̄ (B.22)

= gij̄
[

ReWi ReWj̄ + ImWi ImWj̄

+
(
(ReW )2 + Im(W )2

)
KiK̄j̄ +KiWW̄j̄ + K̄j̄WiW̄

]
,

where Wi = ∂iW and now i, j only run over complex structure moduli. We proceed
to consider the version of the superpotential (2.44) and the Kähler potential (2.43) that
include the polynomial corrections:

W = ρ̄0 + iρ̄it
i − 1

4Kij ρ̄
ij − i

(1
6Ki +K

(3)
i

)
ρ̃i +

(K
24 +K

(3)
i ti

)
ρ̃ , (B.23)

Kcs = − log
(2

3Kijklt
itjtktl + 4K(3)

i ti
)
, (B.24)

where the ρ’s are given by (2.45). From the Kähler potential we can derive the corrected
version of the metric of the complex structure moduli space. We have

KT i ≡ ∂T iKcs =
i
(
2Ki + 3K(3)

i

)
K + 6K(3)

k tk
= i

2K
4Ki +Kεi
1 + εktk

, (B.25)

gij ≡ ∂T i∂T̄ jKcs

= 1
(1 + εktk)2

[4KiKj
K2 − 3Kij

K
+ 1
K

(
Kiεj +Kjεi − 3Kijεktk

)
+ 1

4εiεj
]
, (B.26)

where we have defined εi ≡ 6K(3)
i /K. The inverse metric can be computed as a series in

powers in εi, whose first terms are given by

gij = (1 + εkt
k)2

[4
3 t
itj − 1

3KK
ij + εkK

3
(
Kijtk +Kiktj +Kjkti

)
+
[
K2

12K
ikKjl − K3

(
Kijtktl + titjKkl

)
+ 4

3 t
itjtktl

]
εkεl +O(ε3k)

]
. (B.27)
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Working with the inverse metric in its full extension would be extremely cumbersome.
We take a different approach with the final aim of obtaining an expression for the scalar
potential where the uncorrected part can be easily identified. To do so we make use of the
following relation:

gikKT i = 2iti − 3i
2

ε̃i

(1 + ε)2 , (B.28)

with ε = εit
i and ε̃i = gij(εj − 4εKj/K). Then VF becomes

e−KVF =gij(ReWi ReWj + ImWi ImWj) + 4 ReW (ReW + ti ImWi)

+ 4 ImW (ImW − ti ReWi) + 3ε̃i

(1 + ε)2 (ImW ReWi − ReW ImWi)

−
(
(ReW )2 + (ImW )2

)
L , (B.29)

where
L = 3ε

1 + ε
+ 3ε̃i

4(1 + ε)3K
(4Ki +Kεi) . (B.30)

Substituting the superpotential and its derivatives in terms of the flux polynomials and
denoting the uncorrected metric and its inverse (2.19) by g0

ij and gij0 , respectively, we
arrive to

e−KVF = 4
(
ρ̄− K24 ρ̃

)2
+ gij0

(
ρi + K6 g

0
ikρ̃

k
)(

ρj + K6 g
0
jlρ̃

l
)

+ (gij − titj)ζµiζνj ρ̄µρ̄ν

+ 1
36
(
gij − gij0

)
KiKj ρ̃2 + 1

36g
ij(2KiKεj +K2εiεj)ρ̃2 − 1

12εK
2ρ̃2 + 2ε

3 Kρ̄ρ̃

+ 1
3
(
gij0 − g

ij
)
ζµiKj ρ̄µρ̃−

K
3 g

ijζµiεj ρ̄
µρ̃+ ε

3Kζµρ̄
µρ̃+ (gij − gij0 )ρ̄iρ̄j

−
(
gij − gij0

)
Kjkρ̄iρ̃k + 1

4
(
gij − gij0

)
KikKjlρ̃kρ̃l −

2K
3 εj ρ̃

j ρ̄it
i

− K9 Kiεj ρ̃
iρ̃j + K

2

9 (εiρ̃i)2 + 3ε̃i

(1 + ε)2

[
ρ̄iρ̄kt

k − 1
6(Kkδji + 3Kiktj)ρ̄j ρ̃k

− 1
6Kεkρ̃

kρ̄i + 1
12(Kj +Kεj)Kikρ̃j ρ̃k − ρ̄ζµiρ̄µ + 1

6(Ki +Kεi)ρ̃ρ̄+ 1
2ζµρ̄

µζνiρ̄
ν

− 1
12(Ki +Kεi)ρ̃ζµρ̄µ −

( 1
24 + ε

6

)
Kρ̃ζµiρ̄µ + K6

( 1
24 + ε

6

)
(Ki +Kεi)ρ̃2

]
− L

[
ρ̄2 + 1

4(ζµρ̄µ)2 +
( 1

24 + ε

6

)2
K2ρ̃2 − ζµρ̄µρ̄+

( 1
12 + ε

3

)
Kρ̃ρ̄

− ζµρ̄µ
( 1

24 + ε

6

)
Kρ̃+ (ρ̄iti)2 + 1

36[(Ki +Kεi)ρ̃i]2 −
1
3 ρ̄it

i(Kj +Kεj)ρ̃j
]
.

(B.31)

One can then see that in the limit εi → 0 we recover the leading form of the potential (2.23)
from the first line of this expression. Notice that as expected all terms are quadratic on the
flux-axion polynomials ρA, and so one has a potential of the form (2.17). The expression
for the matrix Z is, however, much more complicated than (2.25), with several new non-
vanishing entries that destroy its block-diagonal structure.
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We can use the result in (B.31) to generalise (2.25) to account for the presence of linear
order corrections in εi. The new matrix will be given by

Z = Z0 + εkZ
k +O(ε2k) , (B.32)

where Z0 is the uncorrected matrix from (2.25) and Zk is given by

2V2
3Z

k =



Ktk
48 − tk

2 ζµ + K
8K

ikζµi −tk

X kij Ykij
− tk

2 ζν + K
8K

ikζνi Mk
µν 3Kikζνi + 6tk

K ζν

Ykji Zkij

−tk 3Kikζµi + 6tk
K ζµ

36tk
K


, (B.33)

where we have arranged the flux-axion polynomials in a vector of the form ~ρ t =(
ρ̃, ρ̃i, ρ̄µ, ρ̄i, ρ̄

)
and we have defined

X kij ≡
tk

K
KiKj −

tk

2 Kij −
1
12δ

k
i Kj −

1
12δ

k
jKi , (B.34)

Ykij ≡
2tk

K
tiKj + tkδij −

1
2KjK

ik − 3ti

2 δkj , (B.35)

Zkij ≡4tk

K
titj − 2Kijtk −Kiktj −Kjkti , (B.36)

Mk
µν ≡

tk

K
ζµζν − 2tkKijζµiζνj + 1

2K
ikζµiζν + 1

2K
ikζνiζµ . (B.37)

In general, given the complicated form of the potential, it is easier to characterise the
corrected vacuum equations in terms of the corrected F-terms, as we now turn to discuss.

B.4 Corrected vacuum equations

The polynomial corrections to the superpotential (2.42) and Kähler potential (2.43) modify
the on-shell conditions (3.1) at leading order. In the following we would like to compute
such a modification which, as pointed out in the main text, essentially depends on K

(3)
i .

Using (2.44) and (B.25) we find the F-term condition DiW = 0 to be equivalent to(
K + 6K(3)

j tj
) [
ρ̄i + iζµ,iρ̄

µ − 1
2Kij ρ̃

j − i

6Kiρ̃− iK
(3)
i ρ̃

]
= −2i

(
Ki + 3

2K
(3)
i

)[
ρ̄+ iρ̄jt

j − 1
2ζµρ̄

µ − i

6Kj ρ̃
j − iK(3)

j ρ̃j + K24 ρ̃+K
(3)
j tj ρ̃

]
.

(B.38)
Contracting this expression with ti yields(
K + 6K(3)

i ti
) [
ρ̄jt

j + iζµρ̄
µ − 1

2Kj ρ̃
j − i

6Kρ̃− iK
(3)
j tj ρ̃

]
= −2i

(
K + 3

2K
(3)
i ti

)[
ρ̄+ iρ̄jt

j − 1
2ζµρ̄

µ − i

6Kj ρ̃
j − iK(3)

j ρ̃j + K24 ρ̃+K
(3)
j tj ρ̃

]
.

(B.39)
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We now split this equation into real and imaginary part. The real part gives(
1 + 1

2εit
i
)
ρ̄it

i = −
(

1 + 5
2εit

i
) Kj ρ̃j

6 +
(
4 + εit

i
) Kεj ρ̃j

12 , (B.40)

and the imaginary part(
1 + 1

4εit
i
)
ρ̄ = Kρ̃24 −

Kεitiρ̃
96 − 3εitiζµρ̄µ

8 + K(εiti)2ρ̃

24 , (B.41)

where again εi ≡ 6K(3)
i /K. Inserting the above expressions back into (B.38) we obtain

ρ̄i = 1
2Kij ρ̃

j −
2
(
Ki
K + 1

4εi
)

1 + 1
2εjt

j − 1
2(εktk)2

[1
3Kj ρ̃

j + 1
3εkt

kKj ρ̃j −
1
6Kεj ρ̃

j
(
1 + εkt

k
)]

, (B.42)

and (
ζµ,i −

Ki
K
ζµ

)
ρ̄µ =− 1

8
(
1 + εkt

k
) (
Kiεktk − εiK

)
ρ̃− 5

4εkt
kζµ,iρ̂

µ

+
(Ki
K
εkt

k + 1
4εi
)
ζµρ̄

µ + 1
4
(
εiεkt

kζµ − (εktk)2ζµ,i
)
ρ̄µ .

(B.43)

As expected, in the limit εi → 0 equations (B.41), (B.42) and (B.43) reduce to the classical
vacuum equations (3.1). To capture the leading effect of the corrections, we can also expand
to linear order in εi to find

ρ̄− 1
24Kρ̃ = − 1

48εit
i [Kρ̃+ 18ζµρ̄µ] +O(ε2i ) , (B.44a)

ρ̄i + 1
6Kgij ρ̃

j = −1
6εiKj ρ̃

j − 1
3Ki

(
εjt

jKk
K
− εk

)
ρ̃k +O(ε2i ) , (B.44b)(

ζµ,i −
Ki
K
ζµ

)
ρ̄µ = 1

8

(
εi − εktk

Ki
K

)
(Kρ̃+ 2ζµρ̄µ) +O(ε2i ) , (B.44c)

which gives (3.5) in the main text. If we further impose the condition for supersymmetric
vacua W = 0 we get the additional constraints

ρ̄it
i = 1

4
(
Kεiρ̃i − εitiKj ρ̃j

)
+O(ε2i ) , (B.45a)

ζµρ̄
µ = K6

(
1 + εit

i
)
ρ̃+O(ε2i ) . (B.45b)

where we have also made use of the linearised equations (B.44).

C Flux invariants and moduli fixing

The introduction of the flux-axion polynomials ρA is a powerful technique that allows for
the study of moduli stabilisation in a clear and systematic way. Since the flux polynomi-
als depend on the axions bi, fixing the moduli amounts to solve the system of algebraic
equations in the saxions ti and the flux polynomials ρA that arises from the vanishing
derivatives of the scalar potential with respect to the set of moduli.
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As discussed in [29], using the ρA as a stepping stone to stabilise the bi may lead to
some questions regarding whether it is actually possible to accomplish this task, since in
most examples the number of polynomials will exceed the rank of the system of equations.
The solution to this problem comes through the fact that the ρA are not a set of fully
independent variables. There are many constraints that arise from their definition and
they can be expressed by the set of combinations of flux polynomials which are invariant
under shifts of the axions. More precisely, we look for invariant multilinear combinations
of ρA under the transformation ~ρ→ R(b)~ρ, with R(b) given by (2.48). After some algebra
we find that these invariants are

ρ̃2ρi − ρ̃ζµ,ij ρ̃j ρ̄µ + 1
3Kijklρ̃

j ρ̃kρ̃l = m2ei −mζµ,ijmjm̄µ + 1
3Kijklm

jmkml , (C.1a)

ρ̄ρ̃− ρ̄iρ̃i + 1
2ηµν ρ̄

µρ̄ν = ēm− ēimi + 1
2ηµνm̄

µm̄ν , (C.1b)

ρ̄µρ̃− 1
2ζ

µ
ij ρ̃

iρ̃j = m̄µm− 1
2ζ

µ
ijm

imj , (C.1c)

ρ̃ = m. (C.1d)

Looking at (3.1), we could think the system is composed of 2h(3,1) + 1 linearly inde-
pendent equations but note that the last family of equations has an additional constraint,
since (Kζµi −Kiζµ) ti is trivially zero. Therefore we actually have 2h(3,1) equations in the
variables {ti, ρA}, which amount to 3h(3,1) + h(2,2) + 2 unknowns. If it were not for the
invariants this would imply that we have an extremely unconstrained system. However,
the existence of invariant combinations of axion polynomials greatly reduces the number
of degrees of freedom. From (C.1) we see that we have 2 + h(3,1) + h(2,2) constraints. Con-
sequently, the ρ’s move in an orbit of dimension h(3,1) which is just enough to fix all the
axions using half of the vacua equations. The remaining h(3,1) vacua equations can be used
to fix the saxions ta.

Notice that, by construction, the multilinear combinations of flux quanta in the r.h.s.
of (C.1) are invariant under the monodromies Ti around the complex structure point,
see (2.52). This implies that they label flux-inequivalent vacua, and therefore that the sax-
ion vevs should only depend on such invariants, simply because the value of the invariants
ρA in the vacuum also must depend on them. Finally, in some specific scenarios where some
flux quanta vanish, like in sections 3.3), (4.2 and 5, the flux-axion polynomials will simplify
and some other combinations of fluxes may play the role of those in (C.1). For instance,
only (C.1b) remains non-vanishing in the moduli stabilisation scheme of section 3.3, but
other invariants like m̄µ appear in this case.

D Vacua equations for elliptic fibered mirrors

In this appendix we analyse the vacua equations for the particular case in which the mirror
manifold X4 is elliptically fibered, as considered in section 6.1. In particular we want
to provide an explicit expression for Γab ≡ −ÃacB̃c

b in (6.19c). While one could simply
compute the inverse of (6.17) and apply the definition, in the following we would like to
obtain an expression for Γ directly from (3.1c), in the same spirit as in (4.23). This strategy
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should be useful in cases where X4 is not a fibration, and so the index splitting µ = {a, â}
does not occur. Then, in general gµν − ηµν will be a singular matrix, and we cannot have
an expression of the form (6.15), because Ã does not have an inverse.

To proceed one may expand the vacua equations (3.1c) in the basis (6.5). This is
equivalent to consider the equations

ζb0

[
B̃b

cÃcdB̃
d
eρ̄
e + B̃b

cρ̄′c

]
= 0 , (D.1)

ζba

[
B̃b

cÃcdB̃
d
eρ̄
e + B̃b

cρ̄′c

]
+ ζab

[
B̃b

cρ̄
c + Ãbcρ̄′c

]
= 0 , (D.2)

which are in turn equivalent to (6.19c). Expanding (3.1c) using (6.7) and after some algebra
we obtain:

K
(
ta + ca1t

0
)

(ρ̄a + cabρ̄
b) = K0

[
t0(2tc + t0cc1)(ρ̄c + ccbρ̄

c) + κbρ̄
b
]
, (D.3a)

K
(
κabρ̄

b + t0(ρ̄a + cabρ̄
b)
)

= Ka
[
t0(2tb + t0cb1)(ρ̄b + cbcρ̄

c) + κbρ̄
b
]
, (D.3b)

which can be simplified with the following change of basis

%a = ρ̄a + cabρ̄
b , %a = ρ̄a , (D.4)

in terms of which (D.3) read

K
(
ta + ca1t

0
)
%a = K0

[
t0(2tc + t0cc1)%c + κb%

b
]
, (D.5a)

K
(
κab%

b + t0%a
)

= Ka
[
t0(2tb + t0cb1)%b + κb%

b
]
. (D.5b)

Note that there is some redundancy among this set of equations, inherited from the
fact that the contraction of (3.1c) with ti vanishes identically. To extract the information
contained in (D.5b) that is independent of (D.5a) we introduce two projection operators

(Pp)ab = δab −
Katb

K −K0t0
, (Pnp)ab = Katb

K −K0t0
. (D.6)

Then applying Pp to (D.5b) we obtain

t0
(
%a −

Ka
K −K0t0

tc%c

)
= Ka
K −K0t0

κb%
b − κab%b , (D.7)

which is solved by

%a = Gab%b , with Gab ≡
[ Kavb
K −K0t0

+ 1
t0

( Ka
K −K0t0

κb − κab
)]

, (D.8)

where vb is a vector that still needs to be determined. Projecting (D.5b) with Pnp is
equivalent to (D.5a), which can be rewritten as

(K −K0t
0)
(
ta%a + t0ca1%0a

)
= K0

(
t0ta%a + κb%

b
)
. (D.9)

From this equation we can determine vb to be

vb =
(
K −K0t

0) cc1κcb + (K0 − cc1Kc)κb
K − 2K0t0 + t0ca1Ka

, (D.10)
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such that the matrix Γab = Gab − cab is given by

Γab = 1
K −K0t0

[(
K −K0t

0) cc1κcbKa + (K0 − cc1Kc)Kaκb
K − 2K0t0 + t0ca1Ka

+ 1
t0
Kaκb

]
− 1
t0
κab − cab

(D.11)

= Ka(κb + t0κbcc
c
1)

t0(K − 2K0t0 + t0ca1Ka)
− 1
t0
κab − cab . (D.12)

Finally, we may rewrite Γab in terms of base quantities by expanding it in t0cb1. The result is:

t0
(
2κ+ 3cc1κct0 + cc1c

d
1κcd(t0)2

)
Γab = 3κaκb − 2κκab (D.13)

+ t0 (3κacκb + 3κaκbc − 3κabκc − 2κκabc) cc1
+ (t0)2 (3κacκbd − κcdκab + κacdκb − 3κabcκd) cc1cd1
+ (t0)3 (κacdκbe − κcdκabe) cc1cd1ce1 .

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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