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1 Introduction

Model-independent unitarity arguments [1], as well as model-specific calculations show that
viable thermal-relic dark matter (DM) scenarios in the multi-TeV regime feature interac-
tions that generate long-range potentials and give rise to bound states. The formation
and decay of metastable bound states alters the DM decoupling in the early universe [2]
and contributes to its indirect signals [1, 3–8]. In fact, in a variety of models, bound-state
formation (BSF) can be faster than annihilation [9–15].

This is particularly striking in models where DM couples to a light scalar boson charged
under a symmetry. It was recently shown that the emission of such a scalar boson by a
pair of interacting particles alters their effective Hamiltonian and can result in extremely
rapid monopole capture processes [13]. This may potentially have severe implications for
multi-TeV DM coupled to the Higgs doublet. Moreover, it has been shown that the 125GeV
Higgs boson can mediate a significant long-range interaction between TeV-scale particles,
despite being heavier than all other Standard Model (SM) force mediators [12, 16].

These considerations impel investigating the role of the Higgs doublet in the cosmology
of multi-TeV DM coupled to the Higgs. The above effects can be potentially important in
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scenarios that involve a trilinear coupling between the DM and Higgs multiplets, i.e. δL ⊃
χ̄nHχn+1 +h.c., where χn stands for a fermionic or bosonic n-plet under SUL(2), and DM
is the lightest neutral mass eigenstate arising from the mixing of χn and χn+1 after the
electroweak phase transition (EWPT). These models have been among the archetypical
scenarios of DM coupled to the Weak interactions of the SM (WIMPs) [17–34].

Here we will focus on a minimal singlet-doublet realisation of this class of scenarios. In a
companion paper, we have computed the non-relativistic potentials, the BSF cross-sections,
the bound-state decay rates and bound-to-bound transitions [35]. In this paper, we employ
the results of [35] to compute the DM thermal decoupling from the primordial plasma in
the early universe. Several aspects of this calculation are examined in detail, including the
effect of both radiative BSF and BSF via scattering on the relativistic thermal bath, the
importance of bound-to-bound transitions and the late recoupling of the DM destruction
processes due to BSF via Higgs emission. As in [35], we carry out all computations assuming
electroweak symmetry; indeed, for DM heavier than 5TeV, freeze-out begins before the
EWPT, even though the complete thermal decoupling may occur much later. The validity
of the approximation is discussed in detail.

We note that our calculations are important broadly for scenarios that introduce new
stable species in the fashion considered here, even if these species do not account for DM.
Besides specifying the parameters for which the relic density of the lightest new mass
eigenstate matches the observed DM abundance, we show how the relic density is affected
by the new effects within a broader parameter space. As is standard, the relic density of
stable particles sets a cosmological constraint on new physics scenarios.

This work is organized as follows. In section 2, we summarise the model following [35],
and briefly review its basic properties in the broken electroweak phase. Moreover, we
discuss the temperature dependence of the Higgs-doublet mass in relation to the BSF
processes of interest. In section 3, we lay out the formalism for computing the DM thermal
decoupling, and discuss the interplay among bound-state formation, ionisation, decay and
bound-to-bound transition processes. The results of this computation are presented and
discussed in section 4. We conclude in section 5.

2 The model

2.1 Lagrangian and mass eigenstates

We begin by specifying the model following ref. [35], before summarising the mass eigen-
states and interactions in the broken electroweak phase.

We consider a gauge-singlet Majorana fermion S = (ψα, ψ†α̇)T of massmS , and a Dirac
fermion D = (ξα, χ†α̇)T of mass mD with SM gauge charges SUL(2) × UY (1) = (2, 1/2).
S and D are assumed to be odd under a Z2 symmetry that leaves all the SM particles
unaffected. Under these assignments, the new degrees of freedom (dof) allow to extend the
SM Lagrangian by the following interactions

δL = 1
2 S̄(i/∂ −mS)S +D(i /D −mD)D − (yLD̄LHS + yRD̄RHS + h.c.), (2.1)
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field SUL(2) UY (1) Z2

S 1 0 −1
D 2 1/2 −1
H 2 1/2 +1

Table 1. Particle content and charge assignments.

where H is the SM Higgs doublet of mass mH and hypercharge YH = 1/2, and DL ≡
PLD = (ξα, 0)T and DR ≡ PRD = (0, χ†α̇)T , with PR,L = (1 ± γ5)/2 being the right-
handed and left-handed projection operators. In the above, Dµ ≡ ∂µ − ig1Y Bµ − ig2W

a
µ t
a

is the covariant derivative, with ta = 1
2(σ1, σ2, σ3) and σ being the Pauli matrices. The

particle content of eq. (2.1) is summarised in table 1.
We take mS and mD to be real. This can be achieved by rephasing ψ and either ξ or

χ. Rephasing the remaining spinor eliminates the phase of one of the Yukawa couplings.
Thus the free parameters of the present model are 4 real couplings (two masses and two
dimensionlesss Yukawa couplings), and a phase that allows for CP violation.

We will focus on the regime where S and D can co-annihilate efficiently before the
EWPT of the universe. This occurs if their masses are similar, within about 10%. A
larger mass difference would imply that the number density of the heavier species in the
non-relativistic regime becomes negligible, since it would be suppressed with respect to the
lighter species by exp[−(δm/m)x] . 0.1, with x ≡ m/T ∼ 25 during DM freeze-out. Since
the masses must be similar for the processes considered here to be relevant, we take them
to be equal for simplicity,

mD = mS ≡ m. (2.2)

It will be useful also to introduce the reduced mass of a pair of DM particles,

µ ≡ m/2. (2.3)

In addition, in order to reduce the number of free parameters, we set

yL = yR ≡ y, (2.4)

which we take to be real. (The CP violation is not important for our purposes.) Our
computations can of course be extended to more general Yukawa couplings. As is standard,
we define the couplings

α1 ≡
g2

1
4π , α2 ≡

g2
2

4π , αH ≡
y2

4π . (2.5)

For later convenience, following [35], we also define the couplings

αR ≡
1
2

[√
[(α1 + 3α2)/4]2 + 8α2

H − (α1 + 3α2)/4
]
, (2.6a)

αA ≡
1
2

[√
[(α1 + 3α2)/4]2 + 8α2

H + (α1 + 3α2)/4
]
. (2.6b)
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The model of eq. (2.1) and various aspects of its phenomenology have been considered
for general parameters extensively in the past [17–26]. Here we will only briefly review the
mass eigenstates and their interactions after electroweak symmetry breaking for the choice
of parameters denoted in eqs. (2.2) and (2.4).

Mass eigenstates in the broken electroweak phase. At electroweak symmetry
breaking, the neutral component of the Higgs doublet acquires a vacuum expectation value.
In terms of their SUL(2) components, the H, ξ and χ fields are

H =

 φ+

1√
2

(vH + h+ iφ0)

 , ξα =
(
ξ+
α

ξ0
α

)
, χα =

(
χ0
α

χ−α

)
, (2.7)

with vH ' 246 GeV being the Higgs vacuum expectation value.
We define the left-handed multiplet of the neutral states N̂α ≡ (ψα, ξα, χα)T . Then,

by inserting eq. (2.7) into the Lagrangian (2.1), we find the corresponding mass terms,

δLN,mass = −1
2N̂

αM̂N N̂α + h.c., (2.8)

with

M̂N =

 m yvH/
√

2 yvH/
√

2
yvH/

√
2 0 m

yvH/
√

2 m 0

 . (2.9)

We diagonalise eq. (2.8) by setting

Nα = UN̂α, Nα = N̂αUT , MN = (UT )−1M̂NU
−1, (2.10)

where U is the unitary matrix

U =

−1/
√

2 1/2 1/2
0 i/

√
2 − i/

√
2

1/
√

2 1/2 1/2

 . (2.11)

The corresponding mass eigenvalues are

m1 ≡ m− yvH , m2 ≡ m, m3 ≡ m+ yvH . (2.12)

In addition to the neutral states, there is a charged Dirac fermion of mass m.

Interactions in the broken electroweak phase and constraints. The interactions
among the neutral states, N ≡ (N1, N2, N3)T , are described by the Lagrangian [19]

δLN,inter = g2
2cW

ZµN
†
2 σ̄

µ i

2
√

2
(N1 +N3)− y

2h (N1N1 −N3N3 +N1N3) + h.c., (2.13)

where cW = g2/
√
g2

1 + g2
2.
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Bound state B UY (1) SUL(2) Spin dof (gB) Bohr momentum (κB)
SS/DD̄ 0 1 0 1 mαA/2
DD̄ 0 1 1 3 m(α1 + 3α2)/8
DD 1 1 1 3 m(−α1 + 3α2)/8
DS 1/2 2 0 2 mαH/2

Table 2. The ground-level (principal and angular-momentum quantum numbers {n`m} = {100})
bound states and their Bohr momenta κB in the limit mH → 0. The binding energies are |EB | =
κ2
B/m. The couplings are defined in eqs. (2.5) and (2.6). The SS/DD̄, DD̄ and DD bound states

can decay directly into radiation. The DS rate of decay into radiation is suppressed, however
the DS bound state can transit spontaneously into an SS/DD̄ bound state via H emission. All
other bound-to-bound transitions are suppressed. The bound state decay and transition rates are
summarised in [35, table 6].

Since the coupling to Zµ is non-diagonal, with the mass splitting being always much
larger than ∼ O(100 keV) for the y values we will consider here (cf. section 3), the con-
straints from direct detection experiments due to this interaction are evaded. On the other
hand, the coupling to the Higgs boson is expected to yield sizable DM-nucleus scattering
and potentially strong constraints. Existing analyses of the direct detection data for this
model do not extend to the multi-TeV regime that is of interest here. Moreover, the direct
detection constraints on the model (2.1) are generally significantly relaxed around the so-
called blind spots where the coupling to the Higgs vanishes, roughly when yL = −yR (see
e.g. [19, 22].) Constraints may also arise from electroweak precision observables, and in
particular from the contribution to the T parameter. While the latter scales as (y2

L− y2
R)2

and vanishes in the limit considered here, it may become important for large values of the
Yukawa coupling(s) if |yL| � |yR| or |yL| � |yR|. We refer to [18–20] for related studies.

While a detailed phenomenological analysis is beyond the scope of the present work,
our results are important for interpreting the experimental constraints, since they imply a
different relation between the DM mass and couplings in order for the observed DM density
to be attained via thermal freeze-out.

2.2 Bound states

The interactions of eq. (2.1) — in particular the exchange of B,W andH bosons — generate
long-range potentials among the S, D and D̄ species that distort the wavefunctions of
scattering states and give rise to bound states. The long-range dynamics in the symmetric
electroweak phase has been discussed in detail in the companion paper [35], and shall not
be repeated here. However, since our focus is the effect of bound states on the DM thermal
decoupling, in table 2 we summarise for convenience the bound levels we consider.

2.3 Higgs doublet mass and EWPT

The cross-sections for BSF via H emission depend on the Higgs doublet mass [35]. Taking
into account the finite temperature 1-loop corrections to the effective potential (see e.g. [36,
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37]), we estimate that before the EWPT of the universe, the Higgs doublet mass was

m2
H(T ) ≈ −m

2
h

2 + πT 2

4

(
α1 + 3α2 + 2λ

π
+ y2

t

π

)
, (2.14)

where mh ' 125 GeV is the Higgs boson mass at zero temperature, λ = m2
h/(2v2

H) ' 0.13
is the Higgs quartic coupling, VSM ⊃ −λ|H|4, and yt ' 0.994 is the top quark Yukawa
coupling. The EWPT occurs as m2

H(T )→ 0, i.e. at estimated temperature

TEWPT ≈
√

2mh√
πα1 + 3πα2 + 2λ+ y2

t

' 151 GeV. (2.15)

In computing the DM decoupling, we use eq. (2.14) at T > TEWPT, and set mH →
mh at T < TEWPT while still using the annihilation and BSF rates computed under the
assumption of electroweak symmetry. We discuss this approximation in section 4.2.

We may now estimate whether or when mH(T ) implies that BSF via Higgs emission
is kinematically suppressed. In a thermal distribution, the energy dissipated during BSF
averages to 〈ω〉 = 3T/2 + |EB| (cf. eq. (3.23) and [35].) The first term suffices to provide
for mH(T ) for all T > TEWPT since mH(T > TEWPT) . 0.63T , as well as after the EWPT,
down to temperatures T ∼ 2mh/3 ' 83 GeV. However, since the BSF cross-sections
weigh preferentially low values of vrel, the kinematic suppression may become important at
somewhat larger T than this estimate implies, unless |EB| is sufficient to provide for mH .

3 Boltzmann equations for dark matter thermal decoupling

3.1 Coupled Boltzmann equations

Let Yj ≡ nj/s and YB ≡ nB/s be the number-density-to-entropy-density ratios of the free
species j and the bound state B respectively. In our model, j = S, D, D̄ and B = SS/DD̄,
DD̄, DD, DS (cf. table 2.) We are ultimately interested in the total DM yield

Y ≡ YS + YD + YD̄ = YS + 2YD. (3.1)

Note that the bound states are metastable and their abundance becomes eventually negli-
gible, so we do not include them in eq. (3.1). As is standard, we will use the time parameter

x ≡ m/T. (3.2)

The entropy density of the universe is s = (2π2/45)g∗ST 3 = (2π2/45)g∗Sm3/x3. We denote
by g∗S and g∗ the entropy and energy dof respectively, and define

g
1/2
∗,eff = g∗S√

g∗

(
1− x

3g∗S
dg∗S
dx

)
. (3.3)
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The evolution of Yj and YB is governed by the coupled Boltzmann equations
dYj
dx

=− λ

x2

∑
i

〈σann
ji vrel〉

(
YjYi − Y eq

j Y eq
i

)
− λ

x2

∑
i

∑
B
〈σBSF
ji→B vrel〉

(
YjYi −

YB
Y eq
B
Y eq
j Y eq

i

)

− Λx
∑
i

〈Γj→i〉
(
Yj −

Yi
Y eq
i

Y eq
j

)
, (3.4a)

dYB
dx

=− Λx
[
〈Γdec
B 〉 (YB − Y

eq
B ) +

∑
i,j

〈Γion
B→ij〉

(
YB −

YiYj
Y eq
i Y eq

j

Y eq
B

)

+
∑
B′ 6=B
〈Γtrans
B→B′〉

(
YB −

YB′

Y eq
B′
Y eq
B

)]
, (3.4b)

where

λ ≡
√
π

45mPlmg
1/2
∗,eff and Λ ≡ λ

s x3 =
√

45
4π3

mPl
m2

g
1/2
∗,eff
g∗,S

, (3.5)

and the equilibrium densities in the non-relativistic regime are

Y eq
i '

90
(2π)7/2

gi
g∗,S

x3/2 e−x and Y eq
B '

90
(2π)7/2

gB
g∗,S

(2x)3/2 e−2x e|EB|/T , (3.6)

where gi are the spin and SUL(2) dof of the free species, with gS = 2, gD = gD̄ = 4. The
dof gB and the binding energies EB of the bound states we consider are listed in table 2.
For later convenience, we also define the total DM dof gDM ≡ gS + gD + gD̄ = 10, and the
equilibrium density of (3.1)

Y eq = 90
(2π)7/2

gDM
g∗,S

x3/2 e−x. (3.7)

In the above, Γdec
B , Γion

B→ij and Γtrans
B→B′ are respectively the rates of B decay into radiation,

ionisation (a.k.a. dissociation) to ij, and transition into the bound level B′. The rates
Γj→i describe the transitions between free particles, due to decays, inverse decays and/or
scatterings on the thermal bath; overall, these processes do not change the DM number
density, but retain equilibrium among the dark species. Note that in eqs. (3.4) we must
use the thermally averaged rates, 〈Γ〉. The thermal average introduces Lorentz dilation
factors for decay processes — which however are insignificant in the non-relativistic regime
— as well as Bose-enhancement factors in the case of transitions and capture or ionisation
processes. We discuss this in more detail in section 3.3. The thermally-averaged rates and
cross-sections of inverse processes are related via detailed balance that we have already
employed in writing eqs. (3.4),

〈Γtrans
B→B′〉 = Γtrans

B′→B × (Y eq
B′ /Y

eq
B ), (3.8a)

〈Γion
B→ij〉 = s 〈σBSF

ij→Bvrel〉 × (Y eq
i Y eq

j /Y eq
B ), (3.8b)

〈Γi→j〉 = 〈Γj→i〉 × (Y eq
j /Y eq

i ). (3.8c)
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The fractional relic DM density is

Ω ' (m−
√

4παHvH)Y∞s0/ρc, (3.9)

where Y∞ is the final yield, and we have included the mass shift of the lightest state that
arises after the electroweak symmetry breaking (cf. eq. (2.12)); this is significant only for
the lower end of the mass range we consider and for large couplings αH . In eq. (3.9),
s0 ' 2839.5 cm−3 and ρc ' 4.78 · 10−6 GeV cm−3 are the entropy and critical energy
densities of the universe today [38].

3.2 Effective Boltzmann equation

The system of coupled Boltzmann eqs. (3.4) is numerically difficult to solve. We shall thus
adopt an effective method that reduces eqs. (3.4) to one equation for the DM yield (3.1).

For convenience, we first define the total formation cross-section, ionisation rate and
transition rate of every bound state B,

σBSF
B ≡

∑
i,j

gigj
g2

DM
σBSF
ij→B, (3.10a)

Γion
B ≡

∑
i,j

Γion
B→ij , (3.10b)

Γtrans
B ≡

∑
B′ 6=B

Γtrans
B→B′ . (3.10c)

We begin by assuming that the i ↔ j interactions are sufficiently rapid to ensure
chemical equilibrium among the free species, such that Yi/Y eq

i = w, where w is the same
for all i = S,D, D̄. Due to their rapid decays, inverse decays and transitions to other
bound levels, the bound states are typically close to equilibrium, thus dYB/dx ' 0. Under
this assumption, eqs. (3.4b) yield a system of linear equations for YB that can be solved
and re-employed in eq. (3.4a) [39]. For bound states that do not participate in any bound-
to-bound transitions, this simplifies to

YB = Y eq
B
〈Γdec
B 〉+ w2〈Γion

B 〉
〈Γdec
B 〉+ 〈Γion

B 〉
. (3.11)

In the model under consideration and within our approximations [35], the spin-1 DD̄
and DD bound states do not participate in any bound-to-bound transitions, while the
spin-0 SS/DD̄ and DS bound states can rapidly transit into each other via H absorp-
tion/emission (cf. [35, table 6].) For the latter, eqs. (3.4b) read 〈Γdec

SS/DD̄
〉+ 〈Γion

SS/DD̄
〉+ 2〈Γtrans

SS/DD̄→DS〉 −2〈Γtrans
DS→SS/DD̄〉

−〈Γtrans
SS/DD̄→DS〉 〈Γion

DS〉+ 〈Γtrans
DS→SS/DD̄〉

 YSS/DD̄
YDS


=

[〈Γdec
SS/DD̄

〉+ w2〈Γion
SS/DD̄

〉
]
Y eq
SS/DD̄

w2〈Γion
DS〉Y

eq
DS

 ,
(3.12)
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where we set 〈Γdec
DS〉 ' 0 [35], and we recall that 〈Γtrans

SS/DD̄→DS〉 = 〈Γtrans
DS→SS/DD̄〉

(Y eq
DS/Y

eq
SS/DD̄

), due to detailed balance eq. (3.8a). The factors 2 in the first row account
for transitions to and from the two conjugate bound states DS and D̄S.

Next, we use eq. (3.11) for the DD̄ and DD yields and the solution of eq. (3.12) for
the SS/DD̄ and DS yields, in the Boltzmann eq. (3.4a). Summing over all free particle
species, we find that the evolution of Y is governed by the Boltzmann equation

dY

dx
= −

√
π

45
mPlmg

1/2
∗,eff

x2 〈σvrel〉eff [Y 2 − (Y eq)2], (3.13)

where the equilibrium density Y eq is given in eq. (3.7). The DM destruction cross-section
〈σvrel〉eff receives contributions from direct annihilation and BSF processes,

〈σvrel〉eff = 〈σannvrel〉+ 〈σBSFvrel〉eff , (3.14)

with

〈σannvrel〉 ≡
∑
i,j

gigj
g2

DM
〈σann
ij vrel〉, (3.15)

and

〈σBSFvrel〉eff = 〈σBSF
SS/DD̄

vrel〉eff + 〈σBSF
DD̄

vrel〉eff + 2〈σBSF
DD vrel〉eff + 2〈σBSF

DS vrel〉eff , (3.16)

where the factors 2 in the DD andDS terms account also for the formation of the conjugate
bound states. The individual contributions are found as follows. For the bound-states that
do not participate in any bound-to-bound transitions,

〈σBSF
DD̄

vrel〉eff

〈σBSF
DD̄

vrel〉
=

〈Γdec
DD̄
〉

〈Γdec
DD̄
〉+ 〈Γion

DD̄
〉
, (3.16a)

〈σBSF
DD vrel〉eff
〈σBSF
DD vrel〉

= 〈Γdec
DD〉

〈Γdec
DD〉+ 〈Γion

DD〉
, (3.16b)

while for the coupled bound states

〈σBSF
SS/DD̄

vrel〉eff

〈σBSF
SS/DD̄

vrel〉
=

〈Γdec
SS/DD̄

〉

〈Γdec
SS/DD̄

〉+ 〈Γion
SS/DD̄

〉+ 2
〈Γion
DS〉 〈Γtrans

DS→SS/DD̄〉
〈Γion
DS〉+ 〈Γtrans

DS→SS/DD̄〉
Y eq
DS

Y eq
SS/DD̄

, (3.16c)

〈σBSF
DS vrel〉eff
〈σBSF
DS vrel〉

=
〈Γtrans
DS→SS/DD̄〉 ×

〈Γdec
SS/DD̄

〉
〈Γdec
SS/DD̄

〉+ 〈Γion
SS/DD̄

〉

〈Γion
DS〉+ 〈Γtrans

DS→SS/DD̄〉+ 2
〈Γion
DS〉〈Γtrans

DS→SS/DD̄〉
〈Γdec
SS/DD̄

〉+ 〈Γion
SS/DD̄

〉
Y eq
DS

Y eq
SS/DD̄

. (3.16d)

In eqs. (3.16), 〈σBSF
B vrel〉 are the thermal averages of the actual velocity-weighted formation

cross-sections for every bound state, defined in eq. (3.10a); we discuss them further in the
following section. Note that if the transitions between the SS/DD̄ and DS bound states
are very rapid, in particular when 〈Γtrans

DS→SS/DD̄〉 � 〈Γ
ion
DS〉, then the branching ratios that

weigh their actual BSF cross-sections in eqs. (3.16c) and (3.16d) are equal.

– 9 –
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3.3 Effective cross-section

We now consider in more detail the contributions to the effective DM destruction cross-
section in our model, based on the computations of ref. [35]. We begin with direct an-
nihilation in section 3.3.1, and then discuss BSF in section 3.3.2. In figures 1 and 2 we
illustrate the contributions to BSF, while in figure 3 we compare all contributions to the
DM destruction cross-section for a chosen set of parameters, showcasing the effect of the
Higgs potential and of BSF via Higgs emission.

3.3.1 Annihilation

In our model, the total annihilation cross-section is

σannvrel =
[
gSS(σann

SS vrel) + 2gDD̄(σann
DD̄

vrel) + 2gDD(σann
DDvrel) + 4gDS(σann

DS vrel)
]
/g2

DM,

(3.17)

where the indices denote the two-particle scattering states, with dof gSS = 4, gDD = 16,
gDD̄ = 16, gDS = 8. The DD and DS contributions carry factors of 2 to account also for
the annihilation of the conjugate states, and DD̄ and DS carry factors of 2 to account for
the two distinguishable particles annihilated in each process.1 From [35, table 5], we find

gSS(σann
SS vrel)/(πm−2) = 0, (3.18a)

gDD̄(σann
DD̄

vrel)/(πm−2) = 1×
(
α2

1
2 + 3α2

2
2

)
× αAS0(ζA) + αRS0(−ζR)

αA + αR

+ 3×
[

(α1 + 2αH)2

12 + 10α2
1

3

]
× S0

(
ζ1 + 3ζ2

4

)
+ 3× α1α2 × S0

(
ζ1 − ζ2

4

)
+ 9×

[
(α2 + 2αH)2

12 + α2
2

12 + 2α2
2

]
× S0

(
ζ1 − ζ2

4

)
, (3.18b)

gDD(σann
DDvrel)/(πm−2) = 3× 4α2

H

3 × S0

(−ζ1 + 3ζ2
4

)
, (3.18c)

gDS(σann
DS vrel)/(πm−2) = 6×

(
α1αH

6 + α2αH
2

)
× S0(−ζH). (3.18d)

In the above, the s-wave Sommerfeld factor is

S0(ζS) ≡ 2πζS
1− e−2πζS

, (3.19)

where ζS ≡ αS/vrel, with αS being the strength of the Coulomb potential of the scattering
state. The various ζS appearing in eqs. (3.18) are

ζ1 ≡ α1/vrel, ζ2 ≡ α2/vrel, ζH ≡ αH/vrel, ζA ≡ αA/vrel, ζR ≡ αR/vrel. (3.20)
1As is well known, for pairs of identical particles (here SS, DD, D̄D̄), this factor is canceled upon

thermal averaging by the factor 1/2 needed to avoid double-counting of the initial particle states [40].
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Each of the terms in eqs. (3.18) is the product of the dof, the perturbative annihilation
cross-section and the Sommerfeld factor of a spin- and gauge-projected state. The DD̄
cross-section includes contributions from both the SUL(2) singlet and triplet projections,
which are characterised by different non-relativistic potentials and thus have different Som-
merfeld factors. For the singlet states, the potential depends also on the spin. Indeed, the
spin-0 SUL(2) singlet SS and DD̄ states mix due to the Higgs mediated potential. Since
the perturbative s-wave annihilation of the SS component vanishes, the contribution from
the annihilation of the SS-like state has been included in the DD̄-like state, for simplicity.
We refer to [35] for more details.

The thermally averaged annihilation cross-section (3.15) is found from (3.17),
(3.18) and

〈σannvrel〉 =
(
m

4πT

)3/2 ∫
d3vrel e

−mv2
rel/(4T ) (σannvrel). (3.21)

3.3.2 Bound state formation

The radiative BSF cross-sections have been summarised in [35, tables 7–10], and we shall
denote them here as σrBSF

B vrel[xx] with xx and B being the scattering and bound states.
Bound states can also form through scattering on the thermal bath, via exchange of an
off-shell mediator; the corresponding cross-section factorise in their radiative counterparts
and temperature-dependent functions [35, 41, 42]. Collecting these results, the velocity-
weighted cross-sections σBSF

B vrel for the formation of the various bound-state species B
receive the following contributions from the individual channels (cf. [35, tables 7-10])

σBSF
SS/DD̄

vrel = 1
g2

DM

{
2× 1× (1 +RB)× σrBSF

SS/DD̄
vrel[(DD̄)spin-0(1,0) ]

+2× 3× (1 +RW )× σrBSF
SS/DD̄

vrel[(DD̄)spin-0(3,0) ]

+4× 2× (1 +RH/hH)× σrBSF
SS/DD̄

vrel[(DS)spin-0(2,1/2)]
}
, (3.22a)

σBSF
DD̄

vrel = 1
g2

DM

{
2× 3× (1 +RB)× σrBSF

DD̄
vrel[(DD̄-like)spin-1(1,0) ]

+1× 3× (1 +RB)× σrBSF
DD̄

vrel[(SS-like)spin-1(1,0) ]

+2× 9× (1 +RW )× σrBSF
DD̄

vrel[(DD̄)spin-1(3,0) ]

+4× 6× (1 +RH/hH)× σrBSF
DD̄

vrel[(DS)spin-1(2,1/2)]
}
, (3.22b)

σBSF
DD vrel = 1

g2
DM

{
1× 9× (1 +RW )× σrBSF

DD vrel[(DD)spin-1(3,1) ]

+2× 6× (1 +RH/hH)× σrBSF
DD vrel[(DS)spin-1(2,1/2)]

}
, (3.22c)

σBSF
DS vrel = 1

g2
DM

{
2× 2× (1 +RB)× σrBSF

DS vrel[(DS)spin-0(2,1/2), B emission]

+ 2× 2× (1 +RW )× σrBSF
DS vrel[(DS)spin-0(2,1/2), W emission]

+ 1× 1× (1 +RH/hH)× σrBSF
DS vrel[(SS-like)spin-0(1,0) ]

+ 2× 1× (1 +RH/hH)× σrBSF
DS vrel[(DD̄-like)spin-0(1,0) ]

– 11 –
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+ 2× 3× (1 +RH/hH)× σrBSF
DS vrel[(DD̄)spin-0(3,0) ]

+1× 3× (1 +RH/hH)× σrBSF
DS vrel[(DD)spin-0(3,1) ]

}
. (3.22d)

In each term above, the first factor accounts for the number of DM particles destroyed (upon
thermal averaging), as well as the capture of the conjugate scattering state if applicable,
in analogy to eq. (3.17) for annihilation. The second factor corresponds to the dof of the
scattering state.

The factors in the brackets sum the radiative and via-scattering contributions to BSF.
The factors RH , RB, RW indicate the off-shell exchange of H, B and W bosons with the
thermal bath, and depend on ω/T , where

ω = µ(α2
B + v2

rel)/2 (3.23)

is the energy dissipated in the capture process [9, 35], with αB being the strength of the
potential of the corresponding bound state (cf. table 2 and [35, table 6].) RH depends also
on mH/ω, and essentially replaces the phase-space suppression

hH(ω) ≡
(
1−m2

H/ω
2
)1/2

(3.24)

due to on-shell H(†) emission that is included in the radiative cross-sections. The RH , RB,
RW factors can be found in [35].

Next, we must thermally average eqs. (3.22). In BSF, the emitted boson carries away
a small amount of energy that can be comparable to the temperature of the primordial
plasma during the DM decoupling. The Bose enhancement due to the final state boson
can thus be significant, and must be included in thermal averaging the BSF cross-sections
to ensure that detailed balance holds [2],2

〈σBSF
B vrel〉 =

(
m

4πT

)3/2 ∫
d3vrel e

−mv2
rel/(4T )

(
1 + 1

eω/T − 1

)
(σBSF
B vrel), (3.25)

As seen in eqs. (3.16), the contributions of each bound level to the effective DM de-
struction cross-section (3.14) have to be waited by the appropriate branching fractions that
account for the portion of bound states that decay into radiation thereby reducing the DM
density. The bound-state decay and transition rates needed to compute these branching
fractions can be found in [35, table 6]. In thermally averaging these rates, we may ne-
glect the Lorentz dilation factor that is ' 1 in the non-relativistic regime. However, the
low-energy boson emitted in bound-to-bound transitions implies a Bose enhancement that
must be included to ensure detailed balance at temperatures higher than the dissipated
energy. So,

〈Γdec
B 〉 ' Γdec

B , (3.26a)

〈Γtrans
DS→SS/DD̄〉 ' [1 +RH(ω)/hH(ω)]

(
1 + 1

eω/T − 1

)
Γtrans
DS→SS/DD̄, (3.26b)

2We recall from [35] that a factor of [1 + 1/(eω/T − 1)] has been pulled out from the definition of the
BSF cross-section via scattering, such that eq. (3.25) is the appropriate thermal-averaging formula for both
radiative BSF and BSF via scattering.
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where the dissipated energy here is ω = m(α2
A − α2

H)/4, and hH(ω) is the phase-space
suppression defined in eq. (3.24). Finally, the bound-state ionisation rates are computed
using the detailed balance eq. (3.8b), and summing over all ionised states as in eqs. (3.10a)
and (3.10b); this yields

〈Γion
B 〉 ' 〈σBSF

B vrel〉 ×
g2

DM
gB

(
mT

4π

)3/2
e−|EB|/T . (3.26c)

Ionisation equilibrium. Eq. (3.26c) implies that at T � |EB|, the ionisation of
the bound states tends to be faster than their decays and transitions, i.e. 〈Γion

B 〉 �
〈Γdec
B 〉, 〈Γtrans

B 〉, provided that 〈σBSF
B vrel〉 is sufficiently large. If so, the system reaches

a state of ionisation equilibrium, where the effective BSF cross-sections (3.16) become
independent of the actual ones [43],

〈σBSF
B vrel〉eff '

gB
g2

DM
Γdec
B

( 4π
mT

)3/2
e+|EB|/T , (3.27)

where for the DS bound state whose direct decay into radiation is suppressed, we must
use the effective decay rate (cf. eq. (3.16d))

〈Γdec
DS〉 → 〈Γtrans

DS→SS/DD̄〉
〈Γdec
SS/DD̄

〉
〈Γion
SS/DD̄

〉+ 〈Γdec
SS/DD̄

〉+ 2〈Γtrans
DS→SS/DD̄〉(Y

eq
DS/Y

eq
SS/DD̄

)
. (3.28)

Since the bound-state decay rates are proportional to the annihilation cross-sections of the
corresponding scattering states (cf. e.g. ref. [35]), eq. (3.27) implies that at high tempera-
tures and while ionisation equilibrium holds, the BSF contribution to the DM destruction
rate is negligible in comparison to that of direct annihilation (cf. e.g. [13, eq. (3.20)].)

However, as T approaches or drops below |EB|, the ionisation rates become expo-
nentially suppressed and are overcome by the bound-state decay and/or bound-to-bound
transition rates. For the uncoupled bound states DD̄ and DD, this implies that the
effective BSF cross-sections increase exponentially until they saturate to their maxi-
mum values, the actual BSF cross-sections. For the SS/DD̄ and DS coupled system,
〈Γtrans
DS→SS/DD̄〉 > 〈Γ

ion
DS〉, occurs before the decay rates surpass the ionisation rates; in this in-

terval, the effective BSF cross-sections (3.16) together with the detailed balance eq. (3.26c),
imply that ionisation equilibrium holds for the sum of the SS/DD̄ and DS contributions,

〈σBSF
SS/DD̄

vrel〉eff + 2〈σBSF
DS vrel〉eff '

g
SS/DD̄

g2
DM

Γdec
SS/DD̄

( 4π
mT

)3/2
e+|ESS/DD̄|/T , (3.29)

where again we neglected the SS/DD̄ decay against ionisation rate. At even lower temper-
atures, when ionisation becomes slower than decay, the effective BSF cross-sections reach
their actual values.

We illustrate the above in figures 1 and 2, where we also compare radiative BSF and
BSF via scattering. Two observations are useful more generally for calculations of freeze-out
with bound states:
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Figure 1. Thermally averaged BSF cross-sections for the DD̄ and DD bound states; the latter
includes the capture into its conjugate. We have used m = 20 TeV, αH = 0.2 and the temperature
dependent Higgs mass mH(T ); the spikes in the radiative BSF occur at the EWPT, when the Higgs
mass tends to zero before becoming mh ' 125 GeV. The vertical lines mark the temperatures
equal to the binding energies. Note that the cross-sections have been regulated according to [35,
section 3.6.].

• In some (but not all) cases, BSF via scattering dominates at early times; BSF via
Higgs exchange may also dominate at late-times over on-shell emission due to the
phase-space suppression of the latter. Nevertheless BSF via scattering does not
change significantly the effective BSF cross-section with respect to considering ra-
diative BSF only, because overall it becomes subdominant while the system is still in
ionisation equilibrium, or around the time it exits it.

• For the DD̄, DD bound states, ionisation equilibrium ceases at T > |EB| (cf. figure 1.)

In contrast, the bound-to-bound transitions prevent the SS/DD̄ and DS coupled
system to reach ionisation equilibrium. However, it closely tracks it until much lower
temperatures, T � |EB|, due to the largeness of the BSF cross-sections (cf. figure 2.)

We also note here that the computation of the DM thermal decoupling (cf. section 4)
shows that much of the BSF effect on the relic density arises after the system exits
ionisation equilibrium. (This was also found in ref. [2].)

The above imply that it is not safe to estimate the BSF effect by assuming ioni-
sation equilibrium until T ∼ |EB| and neglecting any effect thereafter, an approach
previously adopted in refs. [44–48]. Considering instead the BSF cross-sections is
necessary for an accurate computation.
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Figure 2. As in figure 1, but for the SS/DD̄ and DS states that transition into each other via
Higgs emission or absorption. The DS panels include the capture into its conjugate. In the bottom
row, we show the sum of the SS/DD̄, DS and D̄S contributions. The vertical lines mark the
temperatures equal to the binding energies and the energy splitting between SS/DD̄ and DS. The
feature around x ' 50 occurs when the Higgs doublet mass becomes lower than the energy splitting
between the two bound states; this opens up the bound-to-bound transitions via on-shell Higgs
emission (at higher T they occur only via off-shell Higgs exchange with the thermal bath), and
drives the SS/DD̄ bound states somewhat away from ionisation equilibrium.

4 Results

4.1 Timeline and relic density

Collecting all the above, we are now ready to compute the DM decoupling and relic density.
We consider and compare the cases described in table 3, and recall that our calculations
always assume electroweak symmetry. We discuss this approximation in section 4.2.

In figure 4, we present an example of the time evolution of the effective cross-section
and the DM density. For the parameters chosen, the exponential increase of 〈σvrel〉eff due
to BSF when the ionisation processes cease, gives rise to a second period of DM destruction
that decreases the DM density by two orders of magnitude! In figure 5, we show the timeline
of the DM thermal decoupling. We define the recoupling period of DM destruction due
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AnnSBW
Annihilation with Sommerfeld effect
due to the B,W -mediated potentials.

AnnSBW + BW -BSFBW
Annihilation and BSF via B or W emission or
exchange, including the B,W -mediated potentials.

AnnSBW H + BWH-BSFBW H
Annihilation and BSF via on-shell B, W or H(†)

emission, including the B,W,H-mediated potentials.

Table 3. The combinations of effects we compare in the following, in terms of their impact on the
DM decoupling. The case of perturbative annihilation only does not differ very significantly from
annihilation with Sommerfeld effect, thus we do not present it separately. When considering BSF,
we always include both radiative BSF and BSF via scattering. However, we have examined their
effects separately, and found that the inclusion of BSF via scattering does not change the results
obtained when considering radiative BSF only. Moreover, in the present model, considering the
Higgs-mediated potential while omitting BSF via Higgs emission, or the reverse, do not result in a
significant effect on the relic density (cf. figure 3), we thus do not present these cases separately.

to BSF as the interval between the two occurrences when d2(ln Y )/d(ln x)2 = 0, and the
chemical decoupling as the latest time when d(ln Y )/d(ln x) = 10%. In the same plot, we
also mark the EWPT, as well as the time beyond which the finite Higgs mass affects its
long-range effect. Since in part of the parameter space, the recoupling occurs after the
EWPT and the full chemical decoupling occurs even later, the effect of BSF via Higgs
emission is most important for the range of DM masses where the binding energies exceed
the Higgs boson mass, mh ' 125 GeV. These ranges are also marked in figure 5. (We
discuss the validity of various approximations, including that of electroweak symmetry, in
section 4.2.)

In figure 6, we show the values of αH vs. m that reproduce the observed DM density,
as well as the impact of the various processes on the relic density. As already seen in
figure 4, at m & few TeV, BSF via emission of a Higgs doublet is estimated to decrease the
relic density by up to two orders of magnitude. The implications are twofold. For a fixed
mass m, the coupling αH is predicted to be almost up to an order of magnitude smaller
than when neglecting BSF via Higgs emission. This should be expected to change (relax)
experimental constraints very significantly. Conversely, for a given coupling, a much larger
m is anticipated. In fact, DM masses almost up to the unitarity limit can be attained for
αH < 1. (We discuss the unitarity limit in more detail in section 4.3.) This motivates
experimental searches at very high masses.

To understand better the effect of the various bound states, in figure 7 we show the αH−
m relation determined by considering direct annihilation plus each of the four bound states
separately. The spin-1 DD and DD̄ bound states have only a small effect because their
binding energy is independent of αH and somewhat small. This implies that ionisations
inhibit the DM destruction via their formation until late, when BSF via Higgs emission is
kinematically blocked, and BSF via B or W emission is not sufficiently fast to overcome
the suppression due to the low DM density. Passing on to the SS/DD̄ and DS bound
states, for the lower range of m and αH , their formation destroys DM efficiently after the
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Figure 3. Contributions to the effective DM destruction cross-section. The solid lines include
direct annihilation with Sommerfeld effect plus BSF according to the colour legend. We have used
m = 20 TeV, αH = 0.2 and the temperature dependent Higgs mass mH(T ). Note that the cross-
sections have been regulated according to [35, section 3.6.]. The binding energy of the DD̄ and DD
bound states does not depend on the coupling to the Higgs, and their formation via H emission or
exchange is always suppressed due the Higgs mass; their contribution is dominated by W emission.
Both the SS/DD̄ and DS binding energies depend on αH , which ensures that their formation
via H emission is not suppressed when the Higgs-mediated potential is taken into account and
provided that αH is sufficiently large (bottom right panel.) The DS bound states do not exist
when neglecting the Higgs-mediated potential (upper row.)

EWPT. Thus the threshold for their effect being important is set by |EB| > mh ' 125 GeV,
as the grey dotted lines in figure 7 indicate.

Even away from the correlation of parameters that reproduces the observed DM den-
sity, the BSF effect on the relic abundance of the stable species can be very large as seen
in figure 8. The parameter space where the relic density is cosmologically insignificant is
greatly enlarged. This is important for scenarios that do not aspire to explain the DM
density, but nevertheless predict the existence of stable particles.
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Figure 4. The effective cross-section 〈σvrel〉eff/(πm−2) and the dark matter yield Y ≡ n/s, vs.
the time parameter x = m/T . We also mark the time of freeze-out, the EWPT, and the chemical
decoupling for the three cases in the legend. We have used m = 50 TeV and αH = 0.2.
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calculation (cf. cyan line in figure 6.) For the recoupling intervals, we indicate the bound state that
has the dominant effect.
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Figure 6. Left: αH vs. m such that the observed DM density is attained via thermal decoupling,
when different combinations of effects are considered, as described in table 3. Note that the DM
mass is mDM = m −

√
4παHvH with vH ' 246 GeV, and does not differ substantially from m

along any of the lines. In grey lines, we show the result if the Boltzmann equations are integrated
only up until the EWPT (dotted), and if the cross-sections are not regulated according to [35,
section 3.6] (dashed.) Right: the effect of the various processes on the relic density. For all lines,
αH is determined as a function of m by the full computation on the left (cyan line), but for each
line here the Boltzmann equations include only the processes indicated in the legend.
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Figure 7. αH vs. m such that the observed DM density is attained via thermal decoupling,
considering the contributions of the various bound states separately.
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Figure 8. Contours of log10(Ω/ΩDM) (with the values indicated in black), when considering
AnnSBW only (left), and AnnSBW H + BWH−BSFBW H (right). The red and cyan lines mark
Ω = ΩDM. Note that the DM mass, mDM = m −

√
4παHvH , differs significantly from m only at

the top left corners of the plots.

4.2 Major approximations and their validity

We now summarise the main approximations made in our analysis and comment on their
potential effect on the estimated relic density.

(i) Considered only ground-level bound states.

BSF via vector or neutral scalar emission is dominated by dipole and quadrapole
moments respectively. In these cases, the capture into the ground state is the domi-
nant BSF process [2, 9–11, 49], the reason being twofold: it is the most exothermic
process, and the overlap of scattering and bound state wavefunctions is larger.

In contrast, BSF via emission of a charged scalar is a monopole transition, and the
capture into excited states can be comparable to or faster than the capture into the
ground state, despite the latter being more exothermic [13]. This suggests that in
the present model, capture into excited states via Higgs emission may be important.

Nevertheless, independently of the BSF cross-sections, the relative effect of the excited
states on the relic density is moderated by their smaller binding energy that renders
their ionisation efficient until later. We thus anticipate that in the present model
excited states may have a significant albeit not dominant effect that would further
diminish the relic density and alter the coupling-mass relation along the direction
found here. This is worth pursuing in more detail in the future.

(ii) Regularisation of inelastic cross-sections in parametric regimes where BSF via Higgs
emission approaches or appears to exceed the unitarity limit.
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The efficiency of BSF via emission of a charged scalar implies that the computed
cross-sections may reach or violate the upper limit on inelastic cross-sections im-
plied by unitarity (cf. eq. (4.4)) even for small or moderate values of the coupling
of the interacting particles to the scalar [13]. The restoration of unitarity implies
that resummed higher order corrections, i.e. higher-order contributions to the non-
relativistic potential, must be considered [1]. In the context of the present model,
the problem was discussed in ref. [35, section 3.6], where the regularisation scheme of
ref. [50] was adopted as an effective method to ensure that unitarity is not violated.
However, as discussed in ref. [35], this scheme is not entirely suitable for the case of
interest.
In figure 6 we compare the αH−m relations with and without regularisation. Clearly,
at large m the effect is significant; the regularisation of the cross-sections ensures that
m does not exceed the unitarity limit on the mass of thermal relic DM [1, 51], which we
discuss in section 4.3. This suggests that working out a more accurate regularisation
scheme that would address the issues discussed in ref. [35] may be important in order
to obtain more accurate results. We leave this for future work.

(iii) Neglected the Higgs mass in the Higgs-mediated potential.

The validity of the Coulomb approximation for the Higgs-mediated potential has been
discussed in [35, section 2.3.3], where the relevant conditions have been put forward.
Here we discuss their validity during the DM thermal decoupling.
Scattering states: in a thermal bath, the condition µvrel > mH for the validity of
the Coulomb approximation implies

√
3mT/2 & mH . Considering the Higgs doublet

mass (2.14) before the EWPT, this becomes T . 3m, which clearly covers all of the
range of interest for the DM freeze-out (T . m/25.) Below the EWPT, where mH →
mh ' 125 GeV, the condition is satisfied until after the DM chemical decoupling, as
shown in figure 5. Therefore, the Coulomb approximation does not pose any problem.
Bound states: the condition µαH > few × mH , becomes xαH > few before the
EWPT, with x = m/T . This is satisfied for all relevant x and αH for which BSF has
an effect (x & 50 and αH & 0.1, cf. figures 6 and 5.) It is easy to check that this
condition is also satisfied below the EWPT for all relevant DM masses and couplings
(m > 5 TeV and αH & 0.1, cf. figure 6.) Note that this is not coincidental; BSF via
Higgs emission does not have a significant effect for lower αH values because of the
phase-space suppression due to the Higgs mass (cf. figure 7.) The estimation here
thus confirms the argument of ref. [35] that bound states are nearly Coulombic in the
parameter space where their formation is kinematically allowed and significant.

(iv) Assumed electroweak symmetry.

In figure 5, we see that the DM destruction via BSF may be efficient after the EWPT.
The breaking of the electroweak symmetry has several important implications that
we now discuss.

a. The Goldstone modes of the Higgs doublet are absorbed by the Z,W± bosons.
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• BSF via emission of a Higgs doublet in the unbroken electroweak phase
corresponds to BSF via emission of h or the longitudinal modes of the Z,W±
bosons in the broken electroweak phase. The Goldstone boson equivalence
theorem implies that the amplitudes for BSF via emission of the longitudinal
Z,W± components are the same as those for the corresponding processes in
the unbroken electroweak phase, in the limit that the energy of the emitted
vector boson is much larger than its mass, m2

Z,W /ω
2 � 1.

In our computation, the phase-space suppression sets mH → mh ' 125 GeV
after the EWPT, ensuring that mh/ω < 1 or equivalently m2

Z,W /ω
2 < 0.5.

We thus regard the approximation as acceptable, especially in the parameter
space away from the phase-space thresholds (cf. figure 7.)
The importance of monopole BSF processes in a broken gauge phase due
to the Goldstone boson equivalence theorem was previously pointed out
in ref. [52].

• The potential mediated by the Higgs doublet in the unbroken electroweak
phase is mediated by h and the longitudinal Z,W± components in the
broken phase. To compute the non-relativistic potential generated by the
latter, we need their contribution to the vector boson propagators,

i
q2 −m2

V

qµqν

m2
V

, (4.1)

where q and mV = gV vH/2 denote the vector boson momentum and mass,
for V = Z,W±, with gZ =

√
g2

1 + g2
2 and gW = g2. In general, the exchange

of Z,W± between a pair of Z2-odd particles may change the mass eigenstate
on each leg. (Indeed, in the model under consideration, the Z,W± bosons
couple only non-diagonally to the mass eigenstates, cf. eq. (2.8).) Consid-
ering (4.1), the contribution from the exchange of the longitudinal Z,W±
components to the 2PI kernels (cf. ref. [35, section 2]) is proportional to

KL ∝ [ū(p′1)igV /qu(p1)][ū(p′2)igV /qu(p2)]/m2
V

= (igV )2(m′1 −m1)ū(p′1)u(p1) (m2 −m′2)ū(p′2)u(p2)/m2
V , (4.2)

where q = p′1−p1 = p2−p′2, and we used the Dirac equation /pu(p) = mu(p).
Considering the mass splittings ∼ yvH , this becomes

KL ∝ g2
V (yvH)2(2m)2/m2

V ∝ y2m2. (4.3)

eq. (4.3) shows that the potentials generated by the exchange of the longi-
tudinal Z,W± is indeed proportional to the coupling to the Higgs doublet.
The range of the potentials are m−1

V > m−1
h , thus the arguments presented

in item (iii) for the Coulomb approximation remain valid. An analogous
result has been obtained in [52] for a broken U(1) model.
Note that in eqs. (4.2) and (4.3) we omitted various numerical factors and
signs for simplicity, and focused on deriving the scaling of the 2PI kernel.
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Considering these factors in detail reproduces the Higgs-doublet mediated
potential (aside from the screening scale.)

b. The Weak gauge bosons become massive.
The non-zero Z,W± masses curtail the range of the potentials generated by the
exchange of both their transverse and longitudinal components, and introduce
phase-space suppression to the BSF processes occurring via their emission. The
validity of the Coulomb approximation for the Z,W± bosons can be assessed
as in the preceding discussion for the Higgs. However, in the present model,
the B,W -generated potentials and BSF via B or W emission do not have a
significant effect, due to the fact that one of the dark multiplets is a gauge
singlet and the other belongs to a small representation. We thus do not consider
the transverse Z,W± components further. The effect of the longitudinal Z,W±
components was discussed above.

c. The components of the DM multiplets acquire different masses.
After acquiring a mass splitting, the various pairs of Z2-odd particles can oscil-
late into each other according to the non-relativistic potentials computed in [35,
section 2] provided that the kinetic energy of their relative motion exceeds their
mass difference. This necessitates mv2

rel/4 > 2yvH , which, upon thermal aver-
aging, becomes T > (4/3)

√
4παHvH . This condition is not satisfied below the

EWPT for the αH values of interest (αH & 0.1.) We thus expect that the rates
of some of the processes below the EWPT will be lower than estimated here.
This is probably the most severe limitation of our computation. To assess its
impact, in figure 6 we include the coupling-mass relation obtained by integrating
the Boltzmann equations only up to the EWPT. Clearly, a proper treatment
would result in an αH −m relation between our this and the result obtained by
integrating until late times. We see that even when the integration stops at the
EWPT, the Higgs effect is still very significant, even if it appears only for larger
αH values. The impact on the relic density reaches up to a factor of a few.

4.3 Unitarity limit on the dark matter mass

The unitarity of the S matrix sets an upper limit on the partial-wave inelastic cross-sections,

σinel
` 6 σuni

` = (2`+ 1)π
k2 ' (2`+ 1)π

µ2v2
rel

, (4.4)

where ` is the partial wave and k is the momentum of either of the interacting particles in
the CM frame. The last approximation in eq. (4.4) concerns the non-relativistic regime,
where k = µvrel with µ being the reduced mass.

The upper limit (4.4) suggests that for very large masses, annihilations in the early
universe may not suffice to reduce the density of thermalised particles to the observed
DM value. It thus sets an upper bound on the mass of thermal relic DM annihilating
predominantly via a finite number of partial waves in the early universe [51]. For self-
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conjugate DM in thermal equilibrium with the SM plasma, this is [1, 2]3

mDM,` . 197 TeV×


√

2`+ 1, solely `,

`+ 1, 0 6 ` 6 `max.
(4.5)

eq. (4.5) is modified by 1/
√

2 in the case of non-self-conjugate DM.
The parametric dependence of σuni

` on µ and vrel implies that the limit (4.4) can be
attained down to arbitrarily low velocities — thus the upper limit (4.5) on the mass of
thermal-relic DM can be reached — only if there is an attractive long-range force between
the interacting particles, and provided of course that the relevant couplings are sufficiently
large [1]. Attractive long-range interactions imply also the existence of bound states, whose
formation and subsequent decay may decrease the DM abundance more efficiently than
direct annihilation [2]. This means that BSF may essentially be the dominant process that
saturates the unitarity limit (4.4), and that additional partial waves to those dominating
in the annihilation processes may become important, thereby increasing the upper limit on
the DM mass [1].

In general, the Weak interactions of the Standard Model are not sufficiently strong to
generate cross-sections that approach the unitarity limit (4.4), unless perhaps the inter-
acting particles belong to very large SUL(2) representations. However, BSF via emission
of a scalar charged under a symmetry can be very efficient even for small couplings [13].
Here, we have seen that BSF via Higgs emission can raise the predicted WIMP mass very
significantly, bringing it potentially close to the unitarity limit.

5 Conclusion

Our DM searches are currently at the onset of the exploration of the multi-TeV regime with
a variety of existing and upcoming telescopes observing high-energy cosmic rays. In this
mass regime, within the thermal-relic scenario, the DM interactions are expected to man-
ifest as long-range and give rise to non-perturbative effects, in particular the Sommerfeld
effect and the formation of bound states. These effects may operate in the early universe
during the DM thermal decoupling, as well as inside DM haloes today, and significantly
alter the DM phenomenology.

In the present work, consisting of this and a companion paper [35], we have consid-
ered the role of the Higgs doublet as a light force mediator, in the thermal decoupling
of multi-TeV WIMP DM. We have shown that the Higgs-doublet-mediated potential be-
tween DM particles and the formation of DM bound states via Higgs-doublet emission can
dramatically change the predicted relic density. This, in turn, alters the coupling-mass
relation that reproduces the observed DM abundance. Moreover, it greatly expands the
parameter space where the stable relics do not overclose the universe, even if they are a

3If DM annihilates into a dark plasma that has different temperature than the SM plasma or includes
many relativistic dof during DM freeze-out, then this value may somewhat change. Moreover, departures
from thermal cosmology, such as episodes of entropy injection (see e.g. [53]), imply that larger mDM values
may be permissible.

– 24 –



J
H
E
P
0
8
(
2
0
2
1
)
0
6
9

subdominant component of DM. In the former case, the modified coupling-mass relation
implies that on one hand, for a given DM mass, existing constraints may be significantly
relaxed, and on the other hand, DM may be much heavier than previously anticipated,
potentially approaching the unitarity limit.

While the amplitude for BSF via Higgs-doublet emission can be quite large even for
small couplings of the DM multiplets to the Higgs, the Higgs-doublet mass introduces a
kinematic suppression to the cross-section that renders this effect relevant for larger DM
masses and/or couplings to the Higgs. In the specific singlet-doublet scenario considered
here, we found that the effect is significant for m & 5 TeV and αH & 0.1. However, in
models involving larger SUL(2) representations, the gauge interactions contribute more
significantly to the binding energy of the bound states, thereby rendering the phase-space
suppression less significant. We thus expect that the effect on the relic density will be
important even for lower couplings.

Finally, we note that the capture into excited bound levels, which we neglected here,
may also have a sizeable effect due to the monopole nature of the transitions occurring via
Higgs-doublet emission. On the other hand, we have found that including BSF through
scattering on the relativistic thermal bath via an off-shell Higgs doublet does not affect the
relic density significantly.
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