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1 Introduction

Our comprehension of the dynamics of strongly-coupled chiral gauge theories is still largely
unsatisfactory, in spite of their potential role in describing the physics of fundamental in-
teractions beyond the standard model. The results of many years of study of these theories,
by using mixture of wisdom and certain consistency conditions, the most significant among
them being ’t Hooft’s anomaly matching constraints [1], do restrict possible lists of dy-
namical scenarios and symmetry realization patterns [2]-[17], but they are usually far from
being capable to determine the infrared physics of these systems uniquely.

It is customary in these discussions of the dynamics and symmetry realization in chiral
gauge theories, to take into account the nonanomalous symmetries only. For instance, the
’t Hooft anomaly matching requirements are normally applied exclusively on nonanomalous
global symmetries.

From the point of view of renormalization group, assuming that the color interactions
become strongly coupled towards the infrared, and that the low-energy effective degrees of
freedom are not the original gluons and quarks (and similar color gauge bosons and matter
fermions in general chiral theories), the anomalies present in the underlying theory must be
reproduced for consistency either by composite massless fermions (’t Hooft) if the symmetry
remains unbroken, or, if spontaneously broken, by massless Nambu-Goldstone (NG) bosons.
In the latter case, the condition of “anomaly matching” is nothing but the well-known
procedure for calculating the amplitudes (such as π → γγ, or much more generally, all
anomalous amplitudes included in Wess-Zumino-Witten effective action) containing the
NG bosons.

A third type of the application of renormalization-group invariance of anomaly concerns
certain U(1) symmetry(ies), which is (are) affected by the topologically nontrivial gauge
field configurations. This phenomenon goes under the name of strong anomaly, and the
“U(1)A problem” and its solution in QCD [18, 19] is a renowned example in which the
strong anomaly plays the central role. Probably because this appeared in the context of
some characteristic aspects of QCD which is a vectorlike gauge theory, such as the chiral
symmetry breaking and the low-energy sigma models, a similar question has not been
discussed much in the context of strongly-coupled chiral gauge theories, to the best of our
knowledge, with an exception being [5].

The aim of the present note is to discuss the implication of strong anomaly in strongly-
coupled chiral gauge theories. Rather surprisingly, the requirement that the assumed set
of infrared effective degrees of freedom (massless NG bosons and/or massless composite
fermions à la ’t Hooft) should be able to describe the strong-anomaly effective action in a
way analogous to the famous strong-anomaly QCD effective action [20]-[24] containing cer-
tain logarithmic function, yields a rather solid indication about which type of the infrared
phase is more plausible than others.

The models we will discuss in some details are the so-called Bars-Yankielowicz (BY)
and generalized Georgi-Glasow (GG) models. In particular, our discussions will be set
up first by using two simplest classes of models. One is an SU(N) gauge theory with
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left-handed fermions in the reducible, complex representation,

⊕ (N + 4) ¯ (1.1)

that is,

ψ{ij} , ηBi , i, j = 1, 2, . . . , N , B = 1, 2, . . . , N + 4 , (1.2)

which is the simplest of the so-called Bars-Yankielowicz models [4]. This model will be
called “ψη” model below, for short.1 The global symmetry group (actually the local prop-
erty of the symmetry group) is

Gf = SU(N + 4)×U(1)ψη , (1.3)

where U(1)ψη indicates the anomaly-free combination of U(1)ψ and U(1)η, associated with
the two types of matter Weyl fermions of the theory. Another model we consider is an
SU(N) gauge theory with fermions

⊕ (N − 4) ¯ (1.4)

that is,

χ[ij] , ηBi , i, j = 1, 2, . . . , N , B = 1, 2, . . . , N − 4 , (1.5)

(the simplest Georgi-Glashow model). We will refer to it as “χη” model below. The global
symmetry group of the χη model is

Gf = SU(N − 4)×U(1)χη . (1.6)

Our interest is to understand how these symmetries are realized in the infrared.
More general Bars-Yankielowicz and Georgi-Glasow models, which are similar to the

above two models but with p additional pairs of fermions in the fundamental and antifun-
damental representations, will also be considered.

In all these models the conventional ’t Hooft anomaly matching discussion apparently
allows a confining phase, with no condensates and with full unbroken global symmetry, with
some simple set of massless composite fermions saturating the anomaly matching equations.
See appendix A for the ψη model, appendix C for the χη model and appendices E and G
for more general classes of BY and GG chiral gauge theories.

At the same time, the anomaly constraints are also consistent with a dynamical Higgs
phase, in which the color and (part of) the flavor symmetry are dynamically broken by
certain bifermion condensates, see appendices B, D, F and H (taken from [25]). These
results are mostly known from the earlier work [4]-[17] and partly completed by ourselves,
but are recorded here to make our discussion self-contained.

1In some earlier literature these fields were denoted by S (the symmetric tensor ψ), A (the antisymmetric
tensor χ), and F̄ (the antifundamental, η).
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There is an aspect of the conventional ’t Hooft anomaly matching procedure in the
dynamical Higgs phase, which is perhaps not widely appreciated. The Higgs phase of these
chiral theories are, in general, described by massless NG bosons as well as some massless
fermions. These fermions saturate the conventional ’t Hooft anomaly triangles with respect
to the unbroken flavor symmetries. The way they do is, however, quite remarkable, and in
our view, truly significant. As can be seen from table 2, table 4, and in similar tables 8, 9, 12
and 13 for the generalized BY and GG models (see appendices B, D, F, H), the set of
fermions remaining massless in UV and those in the IR are identical as regards their
quantum numbers, charges, and multiplicities. Therefore, the matching of anomalies (in
the unbroken global symmetries) is completely automatic, and is natural. No arithmetic
equations need to be solved to justify a solution which might look sometimes miraculous.
The significance of such a solution of ’t Hooft’s equations (the dynamical Higgs phase) is
its stablity.2

As we will find out below, the consideration of the strong anomaly appears to give
us a rather clear indication that this second type of vacua - those in dynamical Higgs
phase, characterized by certain bifermion condensates breaking color and part of the flavor
symmetry - describe correctly the infrared dynamics of these chiral gauge theories.

This paper is organized as follows. In order to present the discussion systematically, we
first review (for QCD) and work out for the ψη and χη theories, the chiral Ward-Takahashi
identities and identify the interpolating fields for all NG bosons, assuming the dynamical
Higgs phase for these models (appendices B and D). This is done in section 2.

After this preparation, in section 3 we write the strong-anomaly low-energy effective
action for the chiral gauge theories, ψη, χη, as well as all other BY and GG models,
following the procedure used for QCD. This discussion confirms the consistency of the
dynamical Higgs phase of these models, in agreement with the recent mixed-anomaly study
in these chiral gauge theories [25, 26], but it actually somewhat strengthens the conclusion.3

The basic observation is that there is no way of writing the strong-anomaly effective
action if confining flavor symmetric vacua are assumed, i.e., by using only the massless
baryons (appendices A, C, E, and G). The fermion-zero-mode (in the instanton background)
counting would not work, in any of the chiral theories considered.

We shall comment briefly on some other types of theories (other than BY and GG
models) as well, and discuss the implication of the strong anomaly on their phases.

Related questions regarding apparent complementarity in (only) one of the models
(the χη model) and a large N argument concerning U(1) NG bosons in some chiral gauge
theories, will be briefly commented upon in section 4 and in section 5, respectively.

In section 7, our results are summarized. From the analyses of section 2 ∼ section 5
some striking analogies and at the same time contrasts, between vectorlike theories and

2As noted in [25, 26], in the study making use of generalized anomalies one might try to make further
gauging and study associated anomalies in the low-energy effective theory. From the identities of the sets
of massless fermions in the UV and IR, it is seen that such an extra gauging would not produce any new
unmatched anomalies.

3For instance the argument based on strong anomaly does not depend on whether N is even or odd,
whereas the mixed-anomaly calculation of [25, 26] were done for models with even N .
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chiral gauge theories seem to emerge. Better stated, one perhaps learns from these discus-
sions a more precise meaning of what is similar or what is dissimilar between the strong
interaction dynamics of vectorlike and chiral gauge theories beyond certain loose use of
terminologies; as a result one gets a somewhat clearer understanding of the dynamics of
strongly-coupled chiral gauge theories than before.

2 Nambu-Goldstone (NG) bosons and condensates

Consider any global continuous symmetry Gf and the associated conserved current Jµ and
charge Q, the field φ (elementary or composite) which condenses and breaks Gf , and the
field φ̃ which is transformed into φ by the Gf transformation:

Q ≡
∫
d3xJ0 , [Q, φ̃] = φ , 〈φ〉 6= 0 . (2.1)

Thus

lim
qµ→0

iqµ
∫
d4x e−iq·x〈0|T{Jµ(x) φ̃(0)}|0〉 = lim

qµ→0

∫
d4x e−iq·x∂µ〈0|T{Jµ(x) φ̃(0)}|0〉

=
∫
d3x〈0|[J0(x), φ̃(0)]|0〉

= 〈0|[Q, φ̃(0)]|0〉 = 〈0|φ(0)|0〉 6= 0 . (2.2)

This Ward-Takahashi like identity implies that the two-point function∫
d4x e−iq·x〈0|T{Jµ(x) φ̃(0)}|0〉 (2.3)

is singular at qµ → 0. If the Gf symmetry is broken spontaneously such a singularity is
due to a massless scalar particle in the spectrum -Nambu-Goldstone (NG) boson-, a “pion”
below, symbolically, such that

〈0|Jµ(q)|π〉 = iqµFπ , 〈π|φ̃|0〉 6= 0 . (2.4)

Two point function (2.3) (times qµ) behaves as

lim
qµ→0

qµ · qµ
Fπ〈π|φ̃|0〉

q2 ∼ const . (2.5)

The constant Fπ represents the amplitude for the broken current to produce the pion from
the vacuum (the pion decay constant).

2.1 Nf -flavored QCD

In the standard QCD with Nf light flavors, the quarks are

ψiL, ψ
i
R , i = 1, 2, . . . , Nf . (2.6)

We take

φ = ψ̄RψL + h.c. , φ̃ = ψ̄Rt
bψL − h.c. ; J5,a

µ = iψ̄Lσ̄µt
aψL − (L↔ R) , (2.7)
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where ta is the SU(Nf) generators, a = 1, 2, . . . N2
f − 1. It is believed, and confirmed by

lattice simulations, that for sufficiently small Nf , the field φ condenses,

〈φ〉 = 〈ψ̄RψL + h.c.〉 ∼ −Λ3 , (2.8)

leaving SU(Nf)V ×U(1)V unbroken. The axial SU(Nf)A is spontaneously broken:

〈[Qa5, φ̃b]〉 = −δab〈ψ̄RψL + ψ̄LψR〉 = c δab Λ3 6= 0 , (2.9)

where c is a constant of the order of unity. The axial U(1)A is also spontaneously broken,
but due to the strong anomaly the associated NG boson gets mass (the U(1)A problem:
see section 3.1).

2.2 NonAbelian NG bosons in the ψη model

In the dynamical Higgs phase of the ψη model (appendix B) the nonanomalous symmetry
is broken as

SU(N)× SU(N + 4)×U(1)ψη
〈ψη〉−−−→ SU(N)cf × SU(4)×U(1)′ . (2.10)

Let us first concentrate our attention to 8N NG bosons associated with the SU(N + 4)
breaking, leaving the discussion of the U(1) NG boson and an unbroken U(1)′ symmetry
to the next subsection. An SU(N + 4) current is (T a is an SU(N + 4) generator)

Jaµ = i η̄j,mσ̄µ(T a)mn ηnj , m, n = 1, 2, . . . N + 4 (2.11)

and the charges are
Qa =

∫
d3xJa0 . (2.12)

In particular, consider the broken symmetry currents (8N components):

Jaµ = i η̄j,mσ̄µ(T a)mn ηnj , (2.13)

with
m = 1, 2, . . . N , n = N + 1, . . . N + 4 , or vice versa, (2.14)

with charges
Qa =

∫
d3xJa0 =

∫
d3x η̄j,m(T a)mnηnj . (2.15)

The associated symmetry is broken by the condensates

〈ψ{ij}ηmj 〉 = cψη Λ3δim , i,m = 1, 2, . . . N , (2.16)

and there will be 8N NG bosons associated with the currents, Jaµ . A natural choice for the
pion interpolating field is a gauge-invariant composite,

φã =
(
ψikηnk

)∗
(T ã)nm

(
ψijηmj

)
. (2.17)
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The relevant commutators are:

〈[Qa, φã]〉 = −[T a, T ã]mn〈
(
ψikηmk

)∗ (
ψijηnj

)
〉 . (2.18)

Let us consider various SU(2) subalgebras (σi’s are the Pauli matrices)

T a = σ1

2 T ã = σ2

2 , T 0 = σ3

2 (2.19)

living in the 2× 2 subspace (m,n),

m ∈ {1, 2, . . . N} , n ∈ {N + 1, . . . N + 4} , (2.20)

for the broken charge Qa (2.15) and the pion field φã (2.17), respectively. The commuta-
tor (2.18) now gives

〈[Qa, φã]〉 = −1
2〈
(
ψikηmk

)∗ (
ψijηmj

)
〉+ 1

2〈
(
ψikηnk

)∗ (
ψijηnj

)
〉 (2.21)

(no summation over m or n here and below, in (2.24)).4 Upon condensation of color-flavor
diagonal form (2.16), the above becomes

〈[Qa, φã]〉 = −1
2(cψη Λ3)2 6= 0 , (2.22)

implying that Qa generates a massless NG bosons from the vacuum, whose “wave function”
is roughly

〈0|φã(x)|πa(p)〉 = fp(x) . (2.23)

Note that, by inserting (2.16), the pion interpolating field (2.17) can also be written
in a simpler, gauge dependent form:

φã ∼
(
ψmkηnk

)∗
(T ã)nm + (T ã)mn

(
ψmjηnj

)
= 2<

{
(T ã)mn

(
ψmjηnj

)}
. (2.24)

Clearly, the pairing between the charge and the pion field can be interchanged:

T a = σ2

2 T ã = σ1

2 , T 0 = σ3

2 (2.25)

(instead of (2.19)); therefore one finds 4N × 2 = 8N NG bosons.
A simpler way to state the result is, as can be seen by inspection of (2.19), (2.25),

and (2.24), that the 8N NG bosons of non diagonal SU(N+4)
SU(N)×SU(4) generators are just the

real and imaginary parts of ψmjηnj (m ≤ N, n ≥ N + 1).

2.2.1 Colored ψη NG bosons

The N2 − 1 colored NG bosons

φ̃b ∼
(
ψmkηnk

)∗
(T b)nm + (T b)nm

(
ψnjηmj

)
,

=
(
ψnkηmk

)∗
(T b)mn + (T b)nm

(
ψnjηmj

)
,

∼ <
{

(T b)nm
(
ψnjηmj

)}
, n ≤ N , m ≤ N , T b ∈ su(N) , (2.26)

generated by the condensates (2.16) are absorbed by the SU(N) gauge bosons by the
Englert-Brout-Higgs mechanism, so do not appear as physical massless particles.

4The summation over the repeated color indices, j, k are done, as usual.
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2.3 U(1) NG boson(s) in the ψη model

Assuming again that we are in the dynamical Higgs phase of the ψη model, let us examine
the fate of the two nonanomalous U(1) symmetries, U(1)ψη and a U(1)f ⊂ SU(N +4). One
combination is broken spontaneously, giving rise to a physical NG boson, and the other
combination, U(1)′, remains unbroken, as a manifest symmetry of the low-energy theory.

For the U(1)ψη symmetry, writing the matter fermions together as

(
ψ

η

)
=


ψ{ij}

η1
i
...

ηN+4
i

 , (2.27)

the U(1)ψη current is

Jµ = i
(
ψ̄ η̄

)
Tψη σ̄

µ

(
ψ

η

)
, Q =

∫
d3xJ0 , (2.28)

where

Tψη =

 (N + 4) 1N(N+1)
2

−(N + 2) 1(N+4)·N

 (2.29)

and the U(1)ψη charge operator is

Qψη =
∫
d3x

[
(N + 4)ψ̄ijψij − (N + 2)

∑
m

η̄imη
m
i

]
, (2.30)

so

[Qψη, ψk`ηn` ] = (−(N + 4) +N + 2)ψk`ηn` = −2ψk`ηn` ,
[Qψη, ψ̄k`η̄`n] = (N + 4− (N + 2)) ψ̄k`η̄`n = 2ψ̄k`η̄`n . (2.31)

The condensate is (2.16):

〈ψijηmj 〉 = cψη δ
im Λ3 , i,m ≤ N , (2.32)

so
〈[Qψη, ψk`ηn` ]〉 6= 0 , k = n = 1, 2, . . . , N . (2.33)

On the other hand, a diagonal SU(N + 4) generator (it acts only on η) which mixes
with U(1)ψη is

Tf =


0N(N+1)

2

4 1N ·N
−N 14·N

 , (2.34)

with charge operator

Qf =
∫
d3x

[
4

N∑
m=1

η̄imη
m
i −N

N+4∑
m=N+1

η̄imη
m
i

]
, (2.35)

[Qf , ψ
k`ηn` ] =


4ψk`ηn` for n ≤ N ;

−Nψk`ηn` for n > N .
(2.36)
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The same condensate (2.32) breaks also Qf , as

〈[Qf , ψ
k`ηn` ]〉 6= 0 , k = n = 1, 2, . . . , N . (2.37)

But the combination U(1)′ generated by

Q′ = 2Qψη +Qf (2.38)

remains unbroken:
〈[2Qψη +Qf , ψ

k`ηn` ]〉 = 0 (∀k, ∀n) . (2.39)

Any other combination of Qf and Qψη is spontaneously broken, see eqs. (2.31), (2.36),
so there is one physical U(1) NG boson in this model. A natural choice for the interpolating
field for this physical U(1) NG boson would be

N∑
n,j

ψnjηnj = Tr(ψη) ∝ 1 + i

F
(0)
π

φ0 + . . . , (2.40)

where the field are appropriately normalized and F (0)
π is a constant with a mass dimension.

This is an analogue of ψ̄RψL = ūRuL + d̄RdL + . . . in QCD, and also analogous to the
nonAbelian NG bosons, (2.24).

Unlike ψ̄RψL in QCD, (2.40) is not gauge-invariant. However, it is not difficult to find
a natural gauge-invariant form for the interpolating field for the same NG boson: it could
be written as

detU , Uk` = ψkjη`j , (2.41)

by using the first N flavors, ηaj , a = 1, 2, . . . , N . Note that this composite field is a singlet
of the surviving symmetry of the ψη system, (2.10). This will play an important role in
the discussion of the strong anomaly below.

Expanding around the VEV, (2.32), (2.40) and (2.41) give the same physical field,

∼ const +
N∑
k,j

(
ψkjηkj

){q}
, (2.42)

where
(
ψkjηkj

){q}
indicates the fluctuation part of the composite field, ψkjηkj .

So far, we considered two nonanomalous U(1) symmetries, U(1)ψη and a U(1)f ⊂
SU(N + 4), and found that one combination remains a manifest symmetry, call it U(1)′,
while the other (let us indicate as U(1)NG) gets broken and generates an associated, physical
massless NG boson.

Actually, the system possesses one more, independent, U(1) symmetry, though anoma-
lous. Any combination of U(1)ψ and U(1)η other than U(1)ψη is anomalous (let us call it
U(1)an) hence cannot be expressed as a linear combination of U(1)′ and U(1)NG.

It is perhaps useful to compare the situation here with the massless QCD vacuum, with
quark condensate, (2.9). In the latter, there is one manifest symmetry, U(1)V , and an axial
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symmetry U(1)A which is anomalous, and is also spontaneously broken (associated with
a would-be NG boson which becomes massive by the strong anomaly, as reviewed below,
section 3.1). In the ψη model under consideration, there is one manifest symmetry, U(1)′,
one spontaneously broken, nonanomalous, U(1)NG, with an associated physical massless
NG boson, and an anomalous U(1)an symmetry, independent of U(1)′ and U(1)NG. There
is thus one more (counting also anomalous and/or spontaneously broken) U(1) symmetry
in our model, as compared to the massless QCD.

It is tempting to regard the U(1)an symmetry as an analogue of the U(1)A symmetry
in QCD. However, as it turns out, the nature of U(1)an (whether or not it is spontaneously
broken), and related to that question, the true form of the interpolating field for the
physical massless NG boson ((2.40), (2.41), or something else), can only be found after an
appropriate study of the strong anomaly effective action for the ψη system. This will be
done in section 3.2. Somewhat surprisingly, it will be found that the dynamical Higgs phase
of the ψη model is not exhaustively characterized by the condensate of detU . The proper
form of the strong-anomaly effective action leads to a second, bi-baryon type condensate
besides 〈detU〉, see (3.26). This turns out to be the missing piece of the puzzle. The
true interpolating function for the physical massless U(1)NG boson will be found, not to be
given by φ0 of (2.40), but by φ in (3.33).

2.4 U(1) symmetries in the χη model

In the dynamical Higgs phase of the χη model the symmetry breaking proceeds as

SU(N)× SU(N − 4)×U(1)χη
〈χη〉−−→ SU(N − 4)cf × SU(4)c ×U(1)′

−→ SU(N − 4)cf ×U(1)′ , (2.43)

where the residual color SU(4)c, unbroken by the condensates

〈χijηmj 〉 = cχη δ
im Λ3 , i,m = 1, 2, . . . , N − 4 , (2.44)

evolves further towards infrared, confines, develops another condensate,

〈χχ〉 6= 0 , (2.45)

and gives rise to a hidden (dark matter?) sector invisible to the massless sector.
For the U(1)χη symmetry, writing the matter fermions together as

(
χ

η

)
=


χ[ij]

η1
i
...

ηN−4
i

 , (2.46)

the U(1)χη current is

Jµ = i
(
χ̄ η̄

)
Tχη σ̄

µ

(
χ

η

)
, Q =

∫
d3xJ0 , (2.47)
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where

Tχη =

 (N − 4) 1N(N−1)
2

−(N − 2) 1(N−4)·N

 (2.48)

and the charge operator is

Qχη =
∫
d3x

[
(N − 4)χ̄ijχij − (N − 2)

∑
m

η̄imη
m
i

]
, (2.49)

so

[Qχη, χk`ηn` ] = (−(N − 4) +N − 2)ψk`ηn` = 2χk`ηn` ,
[Qχη, χ̄k`η̄`n] = (N − 4− (N − 2)) χ̄k`η̄`n = −2 χ̄k` η̄`n . (2.50)

The condensate (2.44) leads to

〈[Qχη, χk`ηm` ]〉 6= 0 , k = m = 1, 2, . . . , N − 4 . (2.51)

On the other hand, a diagonal color U(1)c ⊂ SU(N) generator (which mixes with
U(1)ψη) is

Tc =
(

4 1N−4
−(N − 4)14

)
, (2.52)

with charge operator Qc

[Qc, χ
k`ηn` ] =


4χk`ηn` for k ≤ N − 4 ;

−(N − 4)χk`ηn` for k > N − 4 .
(2.53)

The same condensate (2.44) breaks both U(1)c and U(1)χη, but the combination U(1)′

generated by
2Qχη −Qc (2.54)

remains unbroken:
[2Qχη −Qc, χ

k`ηn` ] = 0 . (2.55)

Unlike in the ψη model, therefore, no physical massless NG bosons appear in the χη model,
as the potential NG boson is eaten up by the U(1)c ⊂ SU(N) color gauge boson by the
Englert-Brout-Higgs mechanism.

As in the ψη model, there is actually another U(1) symmetry (any combination of
U(1)χ and U(1)η, other than U(1)χη). This U(1) is also spontaneously broken by the
condensates, (2.44), but the associated pseudo-NG boson gets mass by strong anomaly, as
in the U(1)A NG boson of QCD. The fact that there are no physical, massless NG bosons
in the χη model does not mean that this anomalous U(1) symmetry is unimportant for the
discussion of the infrared dynamics, see the next section.

A closely related question is what is eventually the gauge-invariant form of the con-
densate, (2.44). A natural choice for the χη model is ((χη)im ≡ χijηmj )

U = εi1i2...iN εm1m2...mN−4(χη)i1m1(χη)i2m2 . . . (χη)iN−4mN−4χiN−3iN−2χiN−1iN

∼ ε (χη)N−4χχ . (2.56)
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3 Strong anomaly and effective Lagrangian

In this section, we first review the well-known strong-anomaly effective action in QCD
and then, following the same steps, write down the analogous effective action for chiral
gauge theories.

3.1 Strong anomaly, U(1) problem and the θ dependence in QCD

In the discussion of the dynamics of QCD the consideration of the anomalous axial U(1)A
symmetry has been quite important, in relation to the so-called U(1) problem and its
solution [18, 19]. Even though the NG boson(s) associated with the anomalous U(1)A
(η, η′)5 get mass by the strong interaction dynamics (mη � mπ, mη′ � mK) the presence
of the anomalous U(1) symmetry has a deep implication on the spontaneous breaking of
the nonanomalous chiral symmetries,

SU(Nf)L × SU(Nf)R → SU(Nf)V , (3.1)

which generates physical lightest NG bosons, the pions.
Such a logical connection is best seen in the effective Lagrangian approach for QCD in

the large N limit. Generalizing the standard sigma model Lagrangian to include the effect
of strong anomaly, the authors of [20]-[24] write

L = L0 + L̂ , (3.2)

where L0 is the standard sigma model effective Lagrangian

L0 = F 2
π

2 Tr ∂µU∂µU † + TrM U + h.c.+ . . . ; U ≡ ψ̄RψL , (3.3)

and L̂ represents the strong anomaly

L̂ = i

2q(x) log detU/U † + N

a0F 2
π

q2(x)− θ q(x) , (3.4)

q(x) is the topological density

q(x) = g2

32π2F
a
µνF̃

a,µν , (3.5)

a0 is a constant of the order of unity, Fπ the pion decay constant, and θ is the QCD vacuum
parameter. The U(1)A anomaly under

∆S = 2Nfα

∫
d4x

g2

32π2F
a
µνF̃

a,µν , ψL → eiαψL , ψR → e−iαψR , (3.6)

is reproduced by the log detU/U † term of the effective action.
5Here η, η′ are the singlet pseudoscalar mesons of the real world, as in the Particle Data Booklet. The

attentive reader will not confuse them with the Weyl fermion in the chiral ψη or χη models being studied
in the present work.
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Treating q(x) as an auxiliary field, and integrating, one gets another form of the
anomaly term [20–24]

L̂ = −F
2
π a0
4N

(
θ − i

2 log detU/U †
)2

. (3.7)

It has been noted that a multi-valued effective Lagrangian involving log detU/U † is
only well defined because

〈U〉 ∝ 1 6= 0 : (3.8)

the effective potential is defined as its expansion around its VEV,

U ∝ e
i
πata

Fπ
+i η t

0

F
(0)
π = 1 + i

πata

Fπ
+ i

η t0

F
(0)
π

+ . . . . (3.9)

Inverting the logics, one might actually argue that the presence of such an effec-
tive action reproducing the strong anomaly implies a nonvanishing condensate, 〈U〉 =
〈ψ̄RψL〉 6= 0, and hence indirectly the spontaneous breaking of nonanomalous chiral sym-
metry, SU(Nf)L × SU(Nf)R → SU(Nf)V , affecting the low-energy physics.

3.1.1 Veneziano-Yankielowicz and Affleck-Dine-Seiberg superpotentials

In the context of N = 1 supersymmetric gauge theories, the strong-anomaly effective action
is expressed by the so-called Veneziano-Yankielowicz (VY) and Affleck-Dine-Seiberg (ADS)
superpotentials [27–29]. They correctly reproduce in the infrared effective theory the effects
of instantons, supersymmetric Ward-Takahashi identities, and the anomaly of [30, 31]. The
VY and ADS superpotentials are crucial in determinig the infrared dynamics and phases
of the N = 1 supersymmetric gauge theories (see [32] for a review).

3.2 Strong anomaly and effective action in the ψη model

Unlike ψ̄RψL in QCD, φ̃ =
∑N
n,j ψ

njηnj is not gauge invariant. This is not a problem if the
system is assumed to be in dynamical Higgs phase of the ψη model, in which the low-energy
symmetry is

SU(N)cf × SU(4)×U(1)′ , (3.10)

(appendix B). A gauge invariant form of the condensate, consistent with such a symmetry is:

detU , Uk` ≡ ψkjη`j . (3.11)

In terms of this composite field, one may write the low-energy effective Lagrangian describ-
ing the strong anomaly,

L̂ = i

2q(x) log detU/U † , q(x) = g2

32π2F
a
µνF̃

a,µν , (3.12)

which looks very much in analogy with the strong-anomaly effective action of QCD, (3.4).6

The multivalued, logarithmic potential is well defined, as we are in the dynamical Higgs
6θ parameter is absent in chiral gauge theories.
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phase, 〈U〉 ∝ 1. As in QCD, one may actually reverse the logics and argue that the
strong anomaly effective action, which should be present in the low-energy effective theory
for faithfully representing all the symmetries of the UV theory, implies the nonvanishing
condensates, 〈detU〉 6= 0, which means the global symmetry breaking as in (3.10), i.e., the
system is in Higgs phase.

Though (3.12) appears to be a natural choice in the broken phase, it has a defect of
not being invariant under the full symmetry of the underlying theory,

SU(N)× SU(N + 4)×U(1)ψη . (3.13)

A correct low-energy effective action should be invariant under the full symmetry, and must
describe (at least, be consistent with) the breaking from (3.13) to (3.10). This observation
brings us back to the questions on the nature of U(1) NG bosons, raised at the end of
section 2.3.

In order to get to the right form of the strong-anomaly effective action, we start from
the beginning,

L = −1
4FµνF

µν + Lfermions (3.14)

Lfermions = −iψσ̄µ (∂ +RS(a))µ ψ − iησ̄
µ (∂ +RF∗(a)))µη (3.15)

(a is the SU(N) gage field, and the matrix representations appropriate for ψ and η fields
are indicated in an obvious notation). Change the variables by

L = −1
4FµνF

µν + Lfermions + Tr[(ψη)∗U ] + h.c.+B (ψηη)∗ + h.c. , (3.16)

where U is the composite scalars of N × (N + 4) color-flavor mixed matrix form,

Tr[(ψη)∗U ] ≡ (ψijηmj )∗U im (3.17)

and B are the baryons B ∼ ψηη,

Bmn = ψijηmi η
n
j , (3.18)

antisymmetric inm↔ n. Here we have anticipated the fact that these baryonlike composite
fields, present in the Higgs phase together with the composite scalars ψη (see appendix B),
are also needed to write down the strong-anomaly effective action, see below.

Integrating over ψ and η one gets

Leff = −1
4FµνF

µν + Tr(DU)†DU − iB σ̄µ∂µB − V . (3.19)

The potential V is assumed to be such that its minimum is of the form, (2.16):

〈U im〉 = cψη Λ3δim , i,m = 1, 2, . . . N , (3.20)

and among other terms, it contains the strong anomaly term, L̂,

V = V (0) + L̂ , (3.21)
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which we choose as

L̂ = const
[
log (εBB detU)− log (εBB detU)†

]2
. (3.22)

The argument of the logarithm

εBB detU ≡ εm1,m2,...,mN+4εi1,i2,...,iNBmN+1,mN+2BmN+3,mN+4Ui1m1Ui2m2 . . . UiNmN
(3.23)

is invariant under the full (nonanomalous) symmetries,

SU(N)c × SU(N + 4)×U(1)ψη . (3.24)

It contains N + 2 ψ’s and N + 4 η’s, the correct numbers of the fermion zeromodes in
the instanton background: in other words, it corresponds to a ’t Hooft’s instanton n-point
function, e.g.,

〈ψηη(x1)ψηη(x2)ψη(x3) . . . ψη(xN+2)〉 . (3.25)

Up to now, we have assumed that the ψη system is in dynamical Higgs phase, charac-
terized by the bifermion ψη condensate, (3.20). In fact, a crucial observation is that there
is no way of saturating the fermion zero modes, Nψ = N + 2; Nη = N + 4, by using the
baryon fields (B ∼ ψηη) only. This is a strong hint that such a confining phase in which
the only infrared degrees of freedom are the baryons (appendix A) cannot be the correct
vacuum of the system.

The problem of multi-valuedness of the effective action is solved by assuming that

〈ε(4)BB〉 6= 0 , 〈detU〉 6= 0 , (3.26)

where
ε(4)BB = ε`1`2`3`4B

`1`2B`1`2 , `i = N + 1, . . . , N + 4 . (3.27)

As
〈detU〉 ∝ 1N×N (3.28)

takes up all flavors up to N (by using the full SU(N +4) symmetry to orient the symmetry
breaking direction), BB must be made of the four remaining flavors, as in (3.27). These
baryons were not considered in earlier studies [10, 25], but are assumed to be massless
here, and indicated as B[A2B2] in table 2 (appendix B). Note that this appears to present
us with another puzzle. If these extra baryons were massive, how could such composites
appear in the low-energy effective action? Actually, there is an elegant answer. The point
is that these extra baryons do not have conventional triangle anomalies with respect to the
unbroken flavor symmetry,

G′f = SU(N)cf × SU(4)×U(1)′ (3.29)

(in particular, they have a vanishing U(1)′ charge), as can be seen in table 2 (appendix B).
We assume therefore that the baryons, indicated as B[A,B] in table 2, are all massless,
including those carrying the flavor indices (A,B = N + 1, . . . , N + 4). The conventional ’t
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Hooft criterion with respect to SU(N)c× SU(4)×U(1)′ did not require them but does not
exclude them either.

We are now ready to answer the questions raised at the end of section 2.3. We expand
around the VEV,

detU = 〈detU〉+ . . . ∝ 1 + i

F
(0)
π

φ0 + . . . ;

ε(4)BB = 〈ε(4)BB〉+ . . . ∝ 1 + i

F
(1)
π

φ1 + . . . , (3.30)

where we appropriately re-normalized the fields, φ0 is the fluctuation of
∑
n(ψη)nn, (2.40),

and F (0)
π and F (1)

π are some constants with dimension of mass.
Note that under the nonanomalous U(1) symmetries discussed in section 2.3,

〈[Qψη, ε BB detU ]〉 = 0 , 〈[Qf , ε BB detU ]〉 = 0 , (3.31)

as expected: the fluctuation of εBB detU ,

φ̃ ≡ Nπ

[
1

F
(0)
π

φ0 + 1
F

(1)
π

φ1

]
, Nπ = F

(0)
π F

(1)
π√(

F
(0)
π
)2 +

(
F

(1)
π
)2 , (3.32)

therefore does not represent the physical NG boson. Indeed, the strong-anomaly effective
action (3.22) gives a quadratic mass term for φ̃.

Vice versa, an orthogonal combination

φ ≡ Nπ

[
1

F
(1)
π

φ0 −
1

F
(0)
π

φ1

]
, (3.33)

does not get mass from (3.22). It is this field that represents (i.e., is the interpolating
field of) the physical U(1)NG NG boson of the ψη model, not the naïve expectation φ0,
discussed in section 2.3. The presence of two condensates, 〈detU〉 and 〈ε(4)BB〉, is thus
the key to answer the questions brought up at the end of section 2.3. In particular, any
anomalous combination of U(1)ψ and U(1)η is spontaneously broken also, and U(1)an can
indeed be regarded as a good analogue of the axial U(1)A symmetry in QCD.

Let us check that everything fits together. We note that 〈ε(4)BB〉 6= 0 but 〈B〉 = 0.
On the contrary, 〈detU〉 6= 0 implies the condensates 〈U〉 ∝ 1N×N , as U ∼ ψη is a scalar
composite. Furthermore, the condensate 〈ε(4)BB〉 6= 0 is a singlet of the unbroken sym-
metry Gf

′: it does not modify the symmetry breaking pattern in the Higgs phase of the
ψη model, determined by the color-flavor locked bifermion condensate, 〈ψη〉 ∝ 1, (3.10).
Also, there are four-baryon couplings from (3.22), and due to Nambu-Jona-Lasinio mecha-
nism, B ∼ B[A2B2] acquires mass: they disappear from the massless spectrum, leaving the
massless spectrum of the ψη model considered earlier [10, 25]. It might appear that this
effectively brings us back to the simple-minded approach to the strong anomaly sketched
at the beginning of this section, but as we saw above, a more careful treatment was re-
ally needed.
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The full understanding of the problem would require clarification of the mechanism for
the condensation of the baryon pair together with that of detU , (3.26). The absolute values
of the condensates BB and detU = det(ψη) are flat directions of the potential (3.22). The
instanton-induced potential is thus insufficient to determine them in itself. Even though
the condensation of detU is analogous to the quark condensates in QCD, and can be
understood as due to the strong interactions among ψ’s and η’s with the color gauge bosons,
the condensation of the color-singlet baryons is less obvious. Being the components of the
baryon B ∼ ψηη charged under color, it is natural to expect residual dipole-like interactions
between the B’s. The flat directions of the instanton potential (3.22) will be lifted, in some
way, by quantum corrections. Such an information is implicitly in the (unkown) potential
V in (3.19), but certainly a more in-depth study (as in the Coleman-Weinberg effective
action) is needed to understand the mechanism for the condensation of BB, and the relation
with the detU condensate.

3.3 Strong anomaly effective action in the generalized BY models

As the solution given above on the ψη model is remarkably subtle, one might wonder
whether a similar mechanism is at work in the so-called general Bars-Yankielowicz model,
an SU(N) gauge theory with Weyl fermions

ψij , ηAi , ξi,a (3.34)

in the direct-sum representation

⊕ (N + 4 + p) ¯ ⊕ p . (3.35)

Without repeating the analysis we recall simply [25] that a chirally symmetric confining
vacuum, with massless baryons

(B1)[AB] = ψijηAi η
B
j , (B2)aA = ψ̄ij η̄

i
Aξ

j,a , (B3){ab} = ψij ξ̄i,aξ̄j,b , (3.36)

(the first is anti-symmetric in A↔ B and the third is symmetric in a↔ b), saturating all
conventional ’t Hooft anomaly triangles (see appendix E) cannot be the correct vacuum of
the system. A (Z2)F − [Z2]2 mixed anomaly, present in the UV theory, is absent in the IR.

A dynamical Higgs phase (see appendix F) with condensate formation,

〈U iB〉 = 〈ψijηBi 〉 = cψη Λ3δjB 6= 0 , j, B = 1, . . . , N , (3.37)
〈V aA〉 = 〈ξi,aηAi 〉 = cηξ Λ3δN+4+a,A 6= 0 , a = 1, . . . , p , A = N + 5, . . . , N + 4 + p ,

and with symmetry breaking

SU(N)c × SU(N + 4 + p)η × SU(p)ξ ×U(1)ψη ×U(1)ψξ
〈ξη〉,〈ψη〉−−−−−→ SU(N)cfη × SU(4)η × SU(p)ηξ ×U(1)′ψη ×U(1)′ψξ (3.38)

turns out instead to be consistent [25].
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A strong anomaly effective action for these theories can be constructed in a way anal-
ogous to the ψη model. Instead of (3.23), one has now

ε B1B1 detU detV

≡ εm1,m2,...,mN+4+pεi1,i2,...,iN εk1,k2,...,kp (3.39)

×B[mN+1,mN+2]
1 B

[mN+3,mN+4]
1 U i1m1U i2m2 . . . U iNmNV mN+5k1 . . . V mN+4+pkp ,

where B1 are the baryons ∼ ψηη defined in (3.36). The rest of the analysis closely follows
that of the ψη model discussed in section 3.2. We shall not pursue further the details of
the analysis here, except for noting that the strong anomaly effective action with such a
logarithm, is perfectly consistent with (implies?) the condensates, (3.37), together with
〈B1B1〉 6= 0, where B1 are the baryons defined in (3.36), (F.6). Writing extensively,

〈B1B1〉 = 〈εC1C2C3C4(ψijηC1
i ηC2

j )(ψk`ηC3
k ηC4

` )〉 6= 0 ,
C1 ∼ C4 = N + 1, . . . , N + 4 : (3.40)

i.e., the system is in dynamical Higgs phase, described in appendix F.
On the contrary, it is clearly not possible to write the strong-anomaly effective action

with logarithmic argument (3.39), in terms of massless composite fermions (3.36).

3.4 Strong anomaly in the χη model

Any combination of U(1)χ and U(1)η other than U(1)χη (see table 4) suffers from the strong
anomaly. It means that the low-energy effective action should contain a term analogous
to (3.4) for QCD or (3.12) for the ψη model. The natural choice of a gauge-invariant
condensate (2.56) suggests an effective action of the form for the χη model:

i

2q(x) log(χη)N−4χχ+ h.c. , (3.41)

(q(x) is the topological density defined in (3.5)) where

(χη)N−4χχ ≡ εi1i2...iN εm1m2...mN−4 (χη)i1m1(χη)i2m2 . . . (χη)iN−4mN−4χiN−3iN−2χiN−1iN .

(3.42)

The argument of the logarithmic function taken here reflects the correct number of the
fermion zeromodes in the instanton background (Nχ = N − 2 and Nη = N − 4); the
epsilon tensors take care of the invariance under the full (nonanomalous) symmetry of the
χη system,

SU(N)c × SU(N − 4)×U(1)χη . (3.43)

This anomaly effective action agrees with the one proposed by Veneziano [5] for the special
case of SU(5) χη model, and generalizes it to all SU(N) χη models.

An important observation we share with [5] is that this strong anomaly effective action,
which should be present in the low-energy theory to reproduce correctly the (anomalous
and nonanomalous) symmetries of the UV theory, implies nonvanishing condensates,

〈χη〉 6= 0 , 〈χχ〉 6= 0 , (3.44)

i.e., the dynamical Higgs phase, appendix D.
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Another important observation here is that there is no way of writing the strong
anomaly effective action (3.41) in terms of the “baryons”, B ∼ χηη, of the assumed confin-
ing, chirally symmetric phase (appendix C). No combination of the baryons can saturate
the correct number of the fermion zeromodes, cfr (3.42).

Even though, contrary to the ψη model, the χη system has no physical U(1) NG boson
(it is eaten by a color SU(N) gauge boson), the counting of the broken and unbroken U(1)
symmetries is basically similar in the two models. Of the two nonanomalous symmetries
(U(1)c and U(1)χη), a combination remains a manifest symmetry, and the other becomes
the longitudinal part of the Tc gauge boson. Still another, anomalous, U(1) symmetry
exists, any combination of U(1)χ and U(1)η other than U(1)χη. This symmetry is also
spontaneously broken hence must be associated with a NG boson, though it will get mass
by the strong anomaly.

By expanding the composite χη and χχ fields around their VEV’s,

(detU)′ = 〈(detU)′〉+ . . . ∝ 1 + i

F
(0)
π

φ′0 + . . . ,

χχ = 〈χχ〉+ . . . ∝ 1 + i

F
(1)
π

φ′1 + . . . , (3.45)

where (detU)′ is defined in the N − 4 dimensional color-flavor mixed space, and

χχ = εi1i2i3i4χ
i1i2χi3i4 , N − 3 ≤ ij ≤ N . (3.46)

Now the strong-anomaly effective action (3.41) gives mass to

φ̃′ ≡ Nπ

[
1

F
(0)
π

φ′0 + 1
F

(1)
π

φ′1

]
, Nπ = F

(0)
π F

(1)
π√(

F
(0)
π
)2 +

(
F

(1)
π
)2 , (3.47)

whereas an orthogonal combination

φ′ ≡ Nπ

[
1

F
(1)
π

φ′0 −
1

F
(0)
π

φ′1

]
(3.48)

remains massless: it is this potential NG boson which is absorbed by the color Tc gauge
boson.

3.5 Strong anomaly in the generalized GG models

The structure of the strong anomaly action in the χη turned out to be markedly simpler
than that in the ψη model. The argument of the logarithm is made of composite scalar
fields only. One might wonder if such a simple description is valid also for more general
Georgi Glashow models [25], an SU(N) gauge theory with Weyl fermions

χ[ij] , ηAi , ξi,a (3.49)

in the direct-sum representation

⊕ (N − 4 + p) ¯ ⊕ p . (3.50)
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It turns out that the construction (3.41) straightforwardly generalizes to

i

2q(x) log εχχ det (χη) det(ξη) + h.c. , (3.51)

where we used a shorthand notation

εχχ det (χη) det(ξη)

= εi1i2...iN εk1k2...kp εm1m2...mN−4+p (3.52)

× (χη)i1m1(χη)i2m2 . . . (χη)iN−4mN−4χiN−3iN−2χiN−1iN (ξη)mN−3k1 . . . (ξη)mN−4+pkp .

Note that this is a singlet of the full symmetry group of the model. The strong anomaly
action (3.51) implies the condensates

〈χijηAi 〉 = cχη Λ3δjA 6= 0 , j = 1, . . . , N − 4 , A = 1, . . . , N − 4 ,
〈ξi,aηBi 〉 = cξη Λ3δN−4+a,B 6= 0 , a = 1, . . . , p , B = N − 3, . . . , N − 4 + p ,

(3.53)

and
〈χj1j2χj3j4〉 = cχχ ε

j1j2j3j4Λ3 6= 0 , j1, . . . , j4 = N − 3, . . . , N . (3.54)

These are precisely the set of condensates expected to occur in the Higgs phase of the GG
models, appendix H [25].

Vice versa, in the confining vacuum with unbroken global symmetry, appendix G, there
is no way the baryons (G.2) saturate all the fermion zeromodes, as in (3.52).

3.6 SU(6) model with a single fermion in a self-adjointrepresentation

After the studies of BY and GG models above, it may be of some interest to see whether
our argument based on the strong anomaly may give some relevant information in other
types of models. Let us discuss just a few examples. The first is an SU(6) model with a
single left-handed fermion in the representation,

20 = , (3.55)

studied in [33, 34]. The gauging of the 1-form Z
C
3 symmetry gives rise to a new anomaly

of the nonanomalous Zψ6 symmetry,

Z
ψ
6 −→ Z

ψ
2 , (3.56)

leading to a three-fold vacuum degeneracy [33, 34]. The interpretation and the details of
such a breaking depends on which kind of condensates are formed in the infrared. As (in
this particular model), a scalar bifermion composite cannot be a gauge singlet, the author
of [33] suggested a four-fermion condensate

〈ψψψψ〉 ∼ Λ6 6= 0 , 〈ψψ〉 = 0 , (3.57)
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whereas the authors of [34] proposed the gauge symmetry breaking condensate

〈ψψ〉 ∼ Λ3 6= 0 , (3.58)

with ψψ in the adjoint representation of SU(6). Both scenarios turn out to be consistent
with the discrete symmetry breaking, (3.56), and hence agree on a three-fold vacuum
degeneracy, but the infrared physics associated with these assumptions are quite different,
and one wonders which of the assumptions describes the system in the infrared.

The strong anomaly effective action in this model has the form,

i

2q(x) logψψψψψψ + h.c. . (3.59)

Requiring that the argument of the log acquires a nonvanishing VEV, the assumption of
four-fermion condensate (3.57) appears to be somewhat unnatural, whereas the bifermion
condensates (3.58) looks perfectly consistent, with

〈ψψψψψψ〉 ∼ 〈ψψ〉ij〈ψψ〉
j
k〈ψψ〉

k
i 6= 0 , (3.60)

where the color indices are briefly restored.

3.7 Adjoint QCD with Nc = Nf = 2

Another interesting model is the adjoint QCD, widely studied in the literature. Let us
however consider a particular case, Nc = Nf = 2. The fermions are two Weyl fermions λi,
i = 1, 2, both in the adjoint of SU(2). The conventional thinking assumed that a gauge
invariant bifermion condensate

〈λλ〉 6= 0 (3.61)

forms, breaking the flavor symmetry as SU(2)f → SO(2)f , leading to 2 NG bosons, and
reducing the discrete Z8 symmetry to Z2 resulting four degenerate vacua.

A special interest in this model was raised by the work by Anber and Poppitz [35],
which postulates that the system develops a condensates,

〈λλλλ〉 6= 0 , 〈λλ〉 = 0 , (3.62)

breaking the discrete symmetry as Z8 symmetry to Z4, hence predicting a doubly degen-
erate vacua. The flavor SU(2)f remains unbroken; massless baryons

∼ λλλ (3.63)

(which is necessarily a doublet of SU(2)f) saturates Witten’s SU(2) anomaly.
The generalized, mixed anomaly study in this model predicts [34, 35] the discrete

symmetry breaking Z8 → Z4: such a result is consistent with both of the dynamical
scenarios mentioned above, which are markedly different from physics point of view.

Does our strong-anomaly argument tell anything significant? The analogue of the
strong anomaly effective action, such a (3.4, (3.41) and (3.59), is in this case,

i

2q(x) log λλ . . . λ+ h.c. , (3.64)
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with eight λ’s inside the argument of the logarithmic function. In this model, in contrast
to what we saw in the preceding model, section 3.6, our algorithm seems to be consistent
with either of the dynamical possibilities, (3.61), or (3.62).

It would be interesting if a lattice study could give a definitive answer.
As a side comment, in the case with Nf = 1, arbitrary Nc, the adjoint QCD becomes

N = 1 supersymmetric Yang-Mills, and (3.64) with 2NfNc = 2Nc λ’s, reduces precisely
to the Veneziano-Yankielowicz [27] effective potential. And in that case, the assumption
of the bifermion condensate, 〈λλ〉 6= 0, the breaking of the discrete symmetry Z2Nc → Z2,
and the resulting Nc fold degeneracy of the vacua (equal to Witten’s index), are by now
generally accepted as the correct answer for these systems.7

4 Complementarity in the χη model?

In the χη model the symmetry of the massless sector in the dynamical Higgs phase (2.43)
(appendix D) happens to coincide8 with that of the UV theory hence with that of the
symmetric, confining phase (appendix C). This fact might lead some, based on the so-
called complementarity picture [40], to think that in the χη model these two phases are
actually one and the same.

The following discussion however shows that the coincidence of the global symmetries
in the two candidate vacua in the χη model is an accidental one. There are, indeed, clear
indications that they are physically distinct [10]. Of course it would be difficult to think
that a phase in which

〈χη〉 ∝ Λ3 6= 0 , 〈χχ〉 ∝ Λ′ 3 6= 0 (4.1)

(with no adjustable constants in front, and Λ ∼ Λ′ is the dynamical mass scale generated
by the strong SU(N) gauge interactions.), and another, without any condensates, can be
the same phase. There are no coupling constants which can be varied continuously so that
the two possible “phases” (one with (4.1), one with no condensates) are connected without
phase transition.

Another relevant issue could be the fact that in the dynamical Higgs phase (ap-
pendix D) there appear (N − 4)2 − 1 massive gauge bosons of degenerate mass, by the
Higgs mechanism together with the remnant color-flavor diagonal SU(N − 4) global sym-
metry. This is a clear prediction which can be tested by lattice simulations. Even though it
is true that these massive bosons can be re-expressed as gauge-invariant composites, there
is no particular reason why precisely these massive bosons and not others should appear
at the mass scale ∼ Λ, if the system is in confining, symmetric phase of appendix C.

Also, to understand the infrared dynamics, it is indispensable to take into account
of the effects of strong anomaly correctly. Its natural form is (3.41), as discussed in the

7Lattice studies [36–38] also seem to confirm this. We thank Stefano Piemonte for bringing these
references to our attention.

8As noted in [25] this occurs only for the χη model. In all other generalized Bars-Yankielowicz and
Georgi-Glasow models, the dynamical Higgs phase has global symmetry distinct from that in the confin-
ing, no-condensate phase, in spite of the fact that one of the bifermion condensate is in the fundamental
representation of the gauge group. See appendices A–H.
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previous section, by taking into account the fermion zeromodes in an instanton background.
The solution of the effective equation of motion would then lead to a massive NG boson,
but as in QCD and in the ψη model, the very solution implies nonvanishing vacuum
condensate, (4.1). It means that the system is in dynamical Higgs phase.

Crucially, as already noted at the end of section 3.4, there is no way of writing the
strong-anomaly effective action in terms of the massless composite “baryons” (∼ χηη): the
zero-mode counting (Nχ = N −2 > Nη = N −4) cannot work. This is a clear sign that the
“confining phase” (Appndix C) can neither be equivalent to the Higgs phase (appendix D)
nor is one of consistent vacuum phases of the χη model.

Of course, one of the strongest arguments which discriminates the two candidate vacua
comes from the mixed anomalies and the consequent, generalized-anomaly-matching anal-
ysis [25, 26] (see also [39]). The presence of a mixed anomaly of the type (Z2)F − [ZN ]2

in the UV theory and the absence of this anomaly in the “symmetric confining phase”,
show that such a phase cannot be the correct vacuum of the theory [25, 26]. As in the
ψη model, in the dynamical Higgs phase characterized by the bifermion condensates (4.1),
the color-flavor locked ZN symmetry is spontaneousy broken by the condensates, as the
U(1)χη symmetry used to form ZN ⊂ U(1)χη × (Z2)F is spontaneously broken.

To summarize: both the mixed-anomaly analysis [25, 26] and the consideration of the
strong-anomaly effective action section 3.4, lead to the same conclusion that one of the
candidate phase (dynamical Higgs phase) is consistent whereas the other (confining, flavor
symmetric phase) is inconsistent, but not that these two phases are inequivalent, perhaps
separated by a phase transition of some sort.

5 Large N planar dominance and U(1) NG bosons in chiral gauge the-
ories

Large N counting and planar Feynman diagram dominance are perturbative concepts and
are not adequate for describing condensates. Nevertheless, an argument was presented
some time ago [7] which states that in some chiral gauge theories such as ψη or χη models,
a U(1) symmetry cannot be spontaneously broken, if the system is assumed to confine.
Such a statement, if taken without due care, might mislead the reader to conclude that,
e.g., in the ψη model, the only possible phase is the chirally symmetric phase, with no
condensates and with massless composite fermions (appendix A).9

To be scrupulous, the authors of [7] do not claim that a dynamical Higgs phase (with
gauge dependent bifermion condensate) is impossible in the ψη model, or in general chiral
gauge theories. Indeed one of the two main conclusions of [7] is that a dynamical Higgs
phase is likely to be the correct answer for some chiral gauge theories (e.g., the model in
section 5 of [7]). Their claim concerning the ψη model (section 3 of [7]) is that if the ψη
system is in an exact confinement phase, then a two point function of a broken U(1) current
〈0|T{Jµ(x)Jν(0)}|0〉 cannot have, in the leading N approximation, an intermediate state
having the quantum numbers of the U(1) NG boson, therefore a spontaneous U(1) breaking
is not possible.

9Let us remember that the notation in [7] and in the present work are simply related by S = ψ; F̄ = η.
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Nevertheless, there seem to be a number of issues in this argument. First of all, no
definition of “exact confinement” is given in [7]. We noted already that there is no global
center symmetry which can be used with the Polyakov loop, to set a criterion for discrimi-
nating confinement/Higgs phases. The authors of [7] describe the “confinement phase” as a
phase in which all observable states are gauge invariant, but this is also problematic, as in a
local gauge theory gauge noninvariant (gauge-dependent) states can always be re-expressed
in a (though more complicated) gauge-invariant representation. See (2.40) versus (2.41),
for instance.

If the distinction (“exact confinement” or not) is whether or not a gauge-dependent
condensate forms, this cannot be used as a criterion either: as shown in section 2.3, the
gauge-dependent ψη condensate can be re-expressed as a gauge invariant multifermion
condensate, (2.41).

If “exact confinement” means, in the context of the ψη model, that no condensates
〈ψη〉 6= 0 form, then no U(1) symmetry is broken spontaneously, hence no NG bosons would
appear in the system anyway, independently of the 1

N counting. The observation [7] that
in the large N limit, assuming the planar diagram dominance, the intermediate states are
all made of pairs of outgoing and incoming ψ’s and η’s, hence are all neutral with respect
to the U(1) charge, is not exactly pertinent in this case.

Vice versa, if the condensate 〈ψη〉 does occur, and thus the system is in Higgs phase,
then there is a U(1) symmetry which is spontaneously broken, and a physical NG boson
appears (see section 2.3 above). This NG boson can appear as an intermediate state of the
two-point function of the associated currents, in the leading N planar graph.

Indeed, for the largeN counting of Feynman diagrams in the ψη model, it is sufficient to
remember [7] that neither ψ nor η loops are suppressed by 1

N : the standard 1
N suppression

for the fundamental-fermion (η) loop inside a planar graph is compensated by a factor ∼ N
from the flavor multiplicity. This leads to the observation [7] that the diagrams with BB̄,
BB̄BB̄, etc., intermediate states10 are not suppressed by a 1

N factor.
For exactly the same reason, neither are the planar graphs with the intermediate states

ηψψ∗η∗, ηψηψ(ψη)∗(ψη)∗, and detU(detU)∗.11 A simplest such graph is shown in figure 1.
Allowing for nonvanishing condensates 〈ψη〉 to occur in the diagram, one can see that the
U(1) NG boson does appear as an intermediate state in the current two-point function,
figure 2. There is no difficulty showing the same by using the gauge-invariant condensate
and pion field, (2.41), even though it becomes more cumbersome to draw a picture.

Recapitulating, a large N counting argument neither discriminates the possible phases
nor prohibits a U(1) symmetry to be broken spontaneously.

6 Multifield versus bi-fermion condensates

One of the key elements of our argument based on the strong anomaly is the statement
that the multifield condensate such as the one in the χη model,

〈(χη)N−4χχ〉 6= 0 (6.1)
10B are the hypothetical massless composite fermions (“baryons”) of (A.1), B ∼ ψηη.
11The ψ and η loops (rings) in the graph must be ordered one inside the other, alternatively, in order to

keep the leading 1
N

order. Arbitrary gluon exchanges can be added in a planar graph as in figure 1.
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ψ

η

Jµ Jν

ψ

η

Jµ Jν

Figure 1. A leading N planar graph for the two-point function 〈0|T{Jµ(x)Jν(0)}|0〉 with an
η∗ψ∗ψη intermediate state (figure 1a, left). On the right figure (figure 1b) the color (full) and flavor
(dashed) lines are shown. The wavy lines inside the graph are the gluons.

ψ

η

Jµ Jν

Figure 2. The same graph as figure 1, with insertion of 〈ψη〉 condensates (shown with ⊗). The
intermediate state now corresponds to the U(1) NG boson ∼ ψη of eq. (2.40).

(see eq. (3.42) for the exact meaning) implies the condensation of the component bi-
fermion scalars,

〈χη〉 6= 0 , 〈χχ〉 6= 0 , (6.2)

where

〈χη〉 = 〈χ[ij]η
B j〉 ∼ Λ3δBi , i, B = 1, 2, . . . , N − 4 , (6.3)

〈χχ〉 = 〈εi1i2i3i4χi1i2χi3i4〉 ∼ Λ3 , N − 3 ≤ ij ≤ N , (6.4)

in an appropriate gauge and with flavor orientation. A similar step is used in all other
models considered here. As this point is central in our discussion, let us pose, before
summarizing and concluding this paper, to make a few more comments. We will use the
χη model (the simplest of the GG models) for this purpose, for concreteness and to keep
the notations simple.

We have not proven that (6.2) follows from (6.1). We do believe this is correct, but
our deduction is based on a collection of plausibility considerations and consistency checks:
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dealing with a strongly-coupled gauge theories, to mathematically prove this type of deriva-
tion is not always an easy task.

Here are a few more considerations, supporting our deduction.

(a) Quark condensates in QCD versus χη condensate: in QCD, the quark condensate

〈ψ̄RψL〉 ∼ Λ3 6= 0 (6.5)

does not imply
〈ψ̄R〉 6= 0 , 〈ψL〉 6= 0 . (6.6)

However this is not because the quarks are not gauge invariant, but because they are
fermions.

But then as we recalled in section 3.1, the multifield condensate

〈detU〉 = 〈det ψ̄RψL〉 6= 0 (6.7)

following from the strong-anomaly effective action, does seem to imply the bi-fermion
scalar condensates, 〈ψ̄RψL〉 6= 0. We will further argue in section 7 that the scalar
composites ψ̄RψL in QCD and χη in the GG model (and similarly ψη in the BY
model, etc.) should be regarded as analogous objects.

We may further add that if the SU(2)WS × U(1)Y gauge interactions are taken into
account, the quark condensates 〈ψ̄RψL〉 6= 0 are no longer gauge-invariant objects.12

In this sense, too, there is no qualitative difference between the scalar composites
ψ̄RψL in QCD and χη in the GG model.

(b) The standard-model Higgs doublet: in the Weinberg-Salam model, the vacuum is at
the gauge-invariant minimum of the potential,

〈
2∑
i=1

φi ∗φi〉 6= 0 . (6.8)

This is taken to mean a nonvanishing Higgs VEV, in an appropriate gauge,

〈φ〉 =
(
v

0

)
, v 6= 0 . (6.9)

Our deduction (6.1) ↔ (6.2) is analogous to this, even though here we have a dy-
namical, composite “Higgs” scalars. One can argue against the use of this analogy,
on the basis that the Weinberg-Salam model is a weakly coupled theory, while here
we have a strongly coupled one. We believe that this difference (the former described

12As is well known, the quark condensate breaks the Weinberg-Salam gauge symmetry dynamically, even
though only by a tiny amount, insufficient to explain in itself the observed electroweak gauge symmetry
breaking.
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by a potential, the latter not) is not essential. What excludes the conclusion that the
Weinberg-Salam model with (6.8) is in confinement phase with

〈
2∑
1
φi ∗φi〉 6= 0 , 〈φ〉 = 0 , (6.10)

is the mass spectrum (W , Z, γ, etc). The attempt to rewrite the whole Weinberg-
Salam model as a confining theory [41] fails to reproduce exactly the mass spectra
(though it does almost) of the standard Higgs phase description.

Our observation here is similar: even though the global symmetry may look the same
in two “complementary” descriptions of the χη model,13 the exact mass spectra are
probably different, as we pointed out in section 4.

(c) Consistency: a more indirect, consistency argument is the following. Let us assume
the multifield condensate (6.1) forms but with

〈χη〉 = 〈χχ〉 = 0 , (6.11)

and with the full (nonanomalous) symmetry of the χη system,

SU(N)c × SU(N − 4)×U(1)χη (6.12)

intact. The low-energy system is then described, as the conventional ’t Hooft anomaly
argument suggests, by the set of massless baryons (C.1). But as there is no way
to describe the mutifermion condensate (6.1) in terms of these massless fields, we
conclude that the assumption (6.11) is inconsistent.

One may ask why the confining phase with baryons cannot have some composite
scalar ∼ (χη)N−4χχ entering strong anomaly effective action. To answer this, we
recall our criterion: the infrared degrees of freedom of the assumed phase must be able
to describe the strong anomaly effectively at low energies. Just as the NG boson
fields do in the Higgs phase of the GG models, and as they do in the confining phase
in QCD. In the BY models, the massless baryons and NG bosons together saturate
the argument of the logarithm, in the dynamical Higgs phase, as we discussed in
section 3.

If one adopts this criterion, then the confining, symmetric phase is disfavored (incon-
sistent) in all of the GG and BY models.

7 Summary and discussion

Consideration of the strong-anomalies, not always taken into account in the study of dy-
namics of chiral gauge theories, turns out to provides us with a powerful new argument

13Remember that the “complementarity” aspect is specific to the χη model, not shared by any other GG
or BY models.
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supporting the conclusion of [25, 26]: the system is in dynamical Higgs phase in the Bars-
Yankielowicz and Georgi-Glashow models. The essential requirement we make is that it
should be possible to write a strong-anomaly effective action by utilizing only the mass-
less degrees of freedom, assumed to be present in the infrared. This simple requirement
is naturally satisfied in all models considered, if assumed to be in the dynamical Higgs
vacuum with bifermion condensates. On the contrary, in the putative, confinement vacua
with massless composite fermions (baryons) as the only infrared degrees of freedom, we
found no way of writing the correct strong-anomaly effective action. In other words, it
seems that in these latter vacua, the anomalous U(1) symmetry(ies) cannot be properly
realized in the infrared.

The fact that the matter fermions in our models have larger multiplicities than the
quarks in QCD (for instance η in the ψη model has the flavor multiplicity, N + 4 ∼ N at
large N), may mean that the mass of the anomalous U(1) NG bosons will turn out to be
of the oder of Λ. Even though we do write the strong-anomaly effective action in terms of
the massless degrees of freedom of the presumed infrared theory, the fact that its solution
(the minimum of the effective potential) is at µ ∼ Λ, means that the answer cannot be
regarded as reliable quantitatively. We are however interested here only in a qualitative
question of the validity of confinement vs dynamical Higgs phase in the infrared, and we
do believe that our discussion of section 3 makes reasonable sense.

The fact that both mixed anomalies [25, 26] and the strong-anomaly effective action
(this paper) imply dynamical Higgs phase in chiral BY and GG models - is actually not a
pure coincidence. Both indeed arise by taking properly the strong chiral U(1) anomalies
into account.

Certain analogies and contrasts between the strong-interaction dynamics of vectorlike
and chiral gauge theories seem to emerge from these discussions. As the “confining, flavor
symmetric” vacua have been shown to be disfavored, we assume below that these chiral
gauge theories are indeed in dynamical Higgs phase.

And let us compare the physics of the ψη, χη and of more general BY and GG models,
with that of the standard QCD with Nf light flavors of quarks and antiquarks. Both in
QCD and in these chiral gauge theories, the theory without the matter fermions is the
same, pure SU(N) Yang-Mills theory. We have here nothing new to add to the known and
unknown properties of the pure SU(N) dynamics. Our interest here is the role the light
matter fermions play in determining the infrared dynamics, and how the resulting phase(s)
depend on the types of the matter fermions present.

In many senses, the bifermion condensates such as U = ψη in the ψη model (and
U = χη and χχ condensates in the χη model), are a good analogue of the quark condensate
U = ψ̄RψL in QCD. This “analogy” is based on the fact that all of these composite scalar
fields enter the strong-anomaly effective action in the same way, as

L̂ = i

2q(x) log detU/U † , q(x) = g2

32π2F
a
µνF̃

a,µν , (7.1)

(see section 3 for more careful discussions). And in all cases this implies condensation,
〈U〉 ∝ 1, although it’s meaning depends on the system: the color-flavor locked Higgs phase
in the chiral models, and the chiral-symmetry-breaking confining vacuum in QCD.
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Also, in a more general Bars-Yankielowicz models, there are two natural bifermion
condensation channels ((·) meaning an SU(N) singlet):

ψ
( )

η
( ¯ ) forming ,

ξ
( )

η
( ¯ ) forming (·) : (7.2)

the gluon-exchange strengths in the two channels are, respectively, proportional to
− (N+2)(N−1)

N and −N2−1
N . The ψη channel is slightly more attractive, but the strengths

are identical in the large N limit. Note that in our notation 〈ξη〉 has the same quantum
numbers as 〈ψ̄RψL〉 in QCD. Similarly for the comparison between the condensates 〈χη〉
and 〈ξη〉 in the general Georgi-Glashow models. These considerations, which are based on
rather naïve MAC [2] like idea and therefore are not very rigorous, nevertheless show that
the quark condensates in QCD and the bifermions condensates in the chiral gauge theories
under study, are really on a very “similar” footing.

Of course, the fact that the quark condensate 〈ψ̄RψL〉 is a color singlet, SU(Nf)L ×
SU(Nf)R flavor matrix, whereas 〈ψη〉 is in a color-flavor bifundamental form, breaking
the color completely, makes a world of differences in other aspects of these (vectorlike or
chiral) systems. Most importantly, the existence of colored NG bosons in the ψη (or in
the χη) model, see section 2.2.1, means that these are coupled linearly to the color gauge
bosons, and via Englert-Brout-Higgs mechanism make them massive. These processes are
absent in QCD, all NG bosons being color singlets. It is in this sense that we talk about
confinement phase in QCD, in spite of the fact that the linear potential between any two
test particles can be always flattened by the pair production of quarks from the vacuum,
and Higgs phase in the chiral models.

Also, the mass spectra get arranged quite differently in QCD and in the chiral models
discussed here. Apart from the pattern of certain degenerate massive vector bosons (see
section 4), the massless spectrum exhibits striking differences. In all chiral gauge theories
considered here, it contains in general both a number of composite fermions (baryons)
as well as some composite scalars (pions), a feature not shared by massless QCD. In
other words, the way the chiral symmetries of the UV theory are realized in the IR, is
distinctly different.

Perhaps a closer analogy - from a formal point of view — between the vectorlike
theories and chiral theories, comes from the consideration of color superconductivity in the
high-density limit of QCD [42, 43]. In such a situation the dynamics of QCD is believed
to be such that the colored di-quark condensates form,

〈ψLψL〉 6= 0 , 〈ψRψR〉 6= 0 . (7.3)

In particular, for Nf = 3, they are condensates of color-flavor diagonal forms, somewhat
similar to 〈ψη〉 or 〈χη〉 in the chiral theories discussed here, although the details of the
dynamics can obviously be quite different.

What lessons should one draw from these discussions? Clearly, there are both similar-
ities and differences between the dynamics of QCD and that of the chiral gauge theories
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fields SU(N)c SU(N + 4) U(1)ψη

UV ψ N(N+1)
2 · (·) N + 4

ηA (N + 4) · ¯ N · −(N + 2)

IR B[AB] (N+4)(N+3)
2 · (·) −N

Table 1. Chirally symmetric “confining” phase of the ψη model. As in other tables of the text,
the multiplicity, charges and the representation are shown for each set of fermions. (·) stands for a
singlet representation.

discussed here. The consideration of the strong anomaly effective actions discussed here
seems to lead us to clearer meaning of these comparisons, and with that, to point to a
better understanding of the dynamics of strongly-coupled chiral gauge theories.
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A Chirally symmetric phase in the ψη model

An interesting possibility for the ψη model is that no condensates form, the system confines
and the flavor symmetry is unbroken [4]. The candidate massless degrees of freedom in the
IR are (N+4)(N+3)

2 “baryons”,

B[AB] = ψ{ij}ηAi η
B
j , A,B = 1, 2, . . . , N + 4 , (A.1)

antisymmetric in A↔ B. All the SU(N + 4)× U(1) anomalies are saturated by B[AB] as
can be seen by using the data in table 1. The discrete anomaly (ZN+2)ψ− [SU(N)]2 is also
matched as can be easily checked, and all other discrete anomalies are also matched as a
consequence.

B Color-flavor locked Higgs phase in the ψη model

Another possibility, in the ψη model, is that of a color-flavor locked phase [10, 16], with

〈ψ{ij}ηBi 〉 = C Λ3δjB , j, B = 1, 2, . . . N , (B.1)

in which the symmetry is reduced to

SU(N)cf × SU(4)f ×U(1)′ . (B.2)

A subset of the same baryons (B[A1B1] and B[A1B2] in the notation of table 2) saturate all
of the triangles associated with the reduced symmetry group, see table 2. The massless
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fields SU(N)cf SU(4)f U ′(1)

UV ψ N(N+1)
2 · (·) 1

ηA1 ¯ ⊕ ¯ N2 · (·) −1

ηA2 4 · ¯ N · − 1
2

IR B[A1B1] ¯ N(N−1)
2 · (·) −1

B[A1B2] 4 · ¯ N · − 1
2

B[A2B2] 6 · (·) 0

Table 2. Color-flavor locked phase in the ψη model. A1 or B1 stand for the first N flavors
(A1, B1 = 1, 2, . . . , N), whereas A2 or B2 run over the rest of the flavor indices, N+1, . . . , N+4. The
set of potentially massless baryons B[A2B2], which were not explicitly taken into account in [10, 25],
do not contribute to SU(N)cf × SU(4)f × U ′(1) anomalies.

fields SU(N)c SU(N − 4) U(1)χη

UV χ
¯ N(N−1)

2 · (·) N − 4

ηA (N − 4) · N · −(N − 2)

IR B{AB} (N−4)(N−3)
2 · (·) −N

Table 3. Confinement and unbroken symmetry in the χη model.

degrees of freedom are N2+7N
2 massless baryons B[A1B] and 8N+1 NG bosons. To reproduce

correctly the strong anomaly in the IR, however, another condensate 〈BB〉 ∼ 〈ψηηψηη〉
and another set of massless baryon B[A2B2] (see table 2) are needed. This does not alter
neither the symmetry breaking pattern (B.2), nor the anomaly matching. See section 3.2
for more discussion.

C Chirally symmetric phase in the χη model

Let us first examine the possibility that no condensates form, the system confines and the
flavor symmetry is unbroken [3]. The massless baryons are

B{CD} = χ[ij] η
i Cηj D , C,D = 1, 2, . . . (N − 4) , (C.1)

symmetric in C ↔ D. The matching of the anomalies can be read off table 3.

D Color-flavor locked Higgs vacuum in the χη model

It was pointed out [10] that this system may instead develop a condensate of the form

〈χ[ij]η
B j〉 = C Λ3δBi , i, B = 1, 2, . . . , N − 4 , (D.1)

namely,
¯
⊗ → ¯ ⊕ . . . . (D.2)
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fields SU(N − 4)cf U(1)′ SU(4)c

UV χi1j1

¯
N (N−4)(N−5)

2 · (·)

χi1j2 4 · ¯ N
2 (N − 4) · ¯

χi2j2
4·3
2 · (·) 0 ¯

ηi1,A ⊕ −N (N − 4)2 · (·)

ηi2,A 4 · −N2 (N − 4) ·

IR B{AB} −N (N−4)(N−3)
2 · (·)

Table 4. Color-flavor locking in the χη model. The color index i1 or j1 runs up to N − 4 and the
rest is indicated by i2 or j2.

The symmetry is broken to

SU(N − 4)cf × SU(4)c ×U(1)′ . (D.3)

The massless baryons (C.1) saturate all the anomalies associated with SU(N−4)cf×U(1)′.
There remains the χi2j2 fermions which remain massless and strongly coupled to the SU(4)c.
We may assume that SU(4)c confines, and the condensate

〈χχ〉 6= 0 , (D.4)

in
¯
⊗

¯
→

¯

⊕ . . . , (D.5)

forms and χi2j2 acquire dynamically mass. Assume that the massless baryons are:

B{AB} = χ[ij] η
i Aηj B , A,B = 1, 2, . . . (N − 4) , (D.6)

the saturation of all of the triangles associated can be seen in table 4. The complementar-
ity [40] apparently works here, in the sense that the massless sector of the dynamical Higgs
phase has the same SU(N − 4)×U(1) symmetry. See section 4 for more discussion.

E Confining phase with unbroken global symmetries of the BY models

The matter fields of the BY model are shown in table 5.
The candidate massless composite fermions for the Bars-Yankielowitz models are the

left-handed gauge-invariant fields:

(B1)[AB] = ψijηAi η
B
j , (B2)aA = ψ̄ij η̄

i
Aξ

j,a , (B3){ab} = ψij ξ̄i,aξ̄j,b , (E.1)

the first is anti-symmetric in A ↔ B and the third is symmetric in a ↔ b; their charges
are given in table 6. Writing explicitly also the spin indices they are

(B1)[AB],α = 1
2εβγψ

ij,βηA,γi ηB,αj + 1
2εβγψ

ij,βηA,αi ηB,γj ,

(B2)a,αA = εα̇β̇ψ̄
α̇
ij η̄

i,β̇
A ξj,a,α , (B3)α{ab} = εβ̇γ̇ψ

ij,αξ̄β̇i,aξ̄
γ̇
j,b : (E.2)
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SU(N)c SU(N + 4 + p) SU(p) U(1)ψη U(1)ψξ

ψ N(N+1)
2 · (·) N(N+1)

2 · (·) N + 4 + p p

η (N + 4 + p) · ¯ N · N(N + 4 + p) · (·) −(N + 2) 0

ξ p · Np · (·) N · 0 −(N + 2)

Table 5. The multiplicity, charges and the representation are shown for each set of fermions in the
BY model.

SU(N)c SU(N + 4 + p) SU(p) U(1)ψη U(1)ψξ

B1
(N+4+p)(N+3+p)

2 · (·) (N+4+p)(N+3+p)
2 · (·) −N + p p

B2 (N + 4 + p)p · (·) p · ¯ (N + 4 + p) · −(p+ 2) −(N + p+ 2)

B3
p(p+1)

2 · (·) p(p+1)
2 · (·) ¯ N + 4 + p 2N + 4 + p

Table 6. Chirally symmetric phase of the BY model.

UV IR

SU(N + 4 + p)3 N N + p− p

SU(p)3 N N + 4 + p− (p+ 4)

SU(N + 4 + p)2 −U(1)ψη −N(N + 2) −(N + 2 + p)(N − p)− p(p+ 2)

SU(N + 4 + p)2 −U(1)ψξ 0 (N + 2 + p)p− p(N + p+ 2)

SU(p)2 −U(1)ψη 0 −(N + 4 + p)(p+ 2) + (p+ 2)(N + p+ 4)

SU(p)2 −U(1)ψξ −N(N + 2) −(N + 4 + p)(N + p+ 2) + (p+ 2)(2N + p+ 4)

U(1)3
ψη

N(N+1)
2 (N + 4 + p)3 −N(N + 4 + p)(N + 2)3 − (N+4+p)(N+3+p)

2 (N − p)3 − (N + 4 + p)p(p+ 2)3+

+p(p+1)
2 (N + 4 + p)3

U(1)3
ψξ

N(N+1)
2 p3 −Np(N + 2)3 (N+4+p)(N+3+p)

2 p3 − (N + 4 + p)p(N + p+ 2)3+

+p(p+1)
2 (2N + 4 + p)3

Grav2 −U(1)ψη N(N+1)
2 (N + 4 + p)−N(N + 4 + p)(N + 2) − (N+4+p)(N+3+p)

2 (N − p)− (N + 4 + p)p(p+ 2)+

+p(p+1)
2 (N + 4 + p)

Grav2 −U(1)ψξ N(N+1)
2 p−Np(N + 2) (N+4+p)(N+3+p)

2 p− (N + 4 + p)p(N + p+ 2)+

+p(p+1)
2 (2N + 4 + p)

SU(N + 4 + p)2 − (ZN+2)ψ 0 N + 2 + p− p = 0 mod N + 2

SU(p)2 − (ZN+2)ψ 0 −(N + 4 + p) + p+ 2 = 0 mod N + 2

Grav2 − (ZN+2)ψ 1 1− 1 + 1

Table 7. Anomaly matching checks for the IR chiral symmetric phase of the BY model. For N
odd, the last three equalities are consequences of other equations.

all transforming under the {1
2 , 0} representation of the Lorentz group. Table 7 summarizes

the anomaly matching checks [25] via comparison between table 5 and table 6.

F Dynamical Higgs phase in the BY models

The broken phase for the simplest of this class, the ψη model, has also been extensively
in the main text, see also [10, 16, 25, 26]. Something interesting happens for models
with p > 0 additional pairs of fermions in the fundamentals (η, ξ). Now there is another
channel, ξη, which is gauge invariant and charged under the flavor group. We thus have
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a competition between two possible symmetry breaking channels, ψη and ξη. We assume
that both condensates occur in the following way:

〈ψijηBi 〉 = cψη Λ3δjB 6= 0 , j, B = 1, . . . , N ,

〈ξi,aηAi 〉 = cηξ Λ3δaA 6= 0 , a = 1, . . . , N , A = N + 1, . . . , N + p , (F.1)

where Λ is the renormailization-invariant scale dynamically generated by the gauge interac-
tions and cηξ, cψη are coefficients both of order one. According to the tumbling scenario [2],
the first condensate to occur is in the maximally attractive channel (MAC). The strengths
of the one-gluon exchange potential for the two channels

ψ
( )

η
( ¯ ) forming ,

ξ
( )

η
( ¯ ) forming (·) , (F.2)

are, respectively,

N2 − 1
2N − (N + 2)(N − 1)

N
− N2 − 1

2N = −(N + 2)(N − 1)
N

,

0− 2N
2 − 1
2N = −N

2 − 1
N

. (F.3)

So the ψη channel is slightly more attractive, but such a perturbative argument is not
really significant and we assume here that both types of condensates are formed.

The resulting pattern of symmetry breaking is

SU(N)c × SU(N + 4 + p)η × SU(p)ξ ×U(1)ψη ×U(1)ψξ
〈ξη〉,〈ψη〉−−−−−→ SU(N)cfη × SU(4)η × SU(p)ηξ ×U(1)′ψη ×U(1)′ψξ . (F.4)

At the end the color gauge symmetry is completely (dynamically) broken, leaving color-
flavor diagonal SU(N)cfη symmetry. U(1)′ψη and U(1)′ψξ are combinations respectively of
U(1)ψη and U(1)ξη with the element of SU(N + 4 + p)η generated by

tSU(N+4+p)η =

 (−α(p+ 2)− pβ)1N×N
α(N−p)−βp

2 14×4
(α+ β)(N + 2)1p×p

 . (F.5)

Making the decomposition of the fields in the direct sum of representations in the subgroup
one gets table 8. The composite massless baryons are subset of those in (3.36):

B
[AB]
1a = ψijηAi η

B
j , B

[AC]
1b = ψijηAi η

C
j , B

[CD]
1c = ψijηCi η

D
j ,

A,B = 1, . . . , N , C,D = N + 1, . . . , N + 4 . (F.6)

It is quite straightforward (see the remark in Introduction) to verify that the UV-IR
anomaly matching continues to work, with the UV fermions in table 8 and the IR fermions
in table 9.

– 33 –



J
H
E
P
0
8
(
2
0
2
1
)
0
2
8

SU(N)cfη
SU(4)η SU(p)ηξ U(1)′ψη U(1)′ψξ

ψ N(N+1)
2 · (·) N(N+1)

2 · (·) N + 4 + p p

η1 ¯ ⊕ ¯ N2 · (·) N2 · (·) −(N + 4 + p) −p

η2 4 · ¯ N · 4N · (·) −N+p+4
2 −p2

η3 p · ¯ Np · (·) N · ¯ 0 N + 2

ξ p · Np · (·) N · 0 −(N + 2)

Table 8. UV fieds in the BY model, decomposed as a direct sum of the representations of the
unbroken group of eq. (F.4).

SU(N)cfη SU(4)η SU(p)ηξ U(1)′ψη U(1)′ψξ

B1a
¯ N(N−1)

2 · (·) N(N−1)
2 · (·) −(N + 4 + p) −p

B1b 4 · ¯ N · 4N · (·) −N+p+4
2 −p2

B1c 6 · (·) 6 · (·) 0 0

Table 9. IR massless fermions in the BY model in the Higgs phase.

As in the ψη model, the baryons indicated as B1c in table 9 were not considered in
the earlier work on the BY models [10, 25], but assumed here to be present and massless.
These extra baryons do not contribute to the triangle anomalies with respect to unbroken
symmetry group, see table 9, therefore do not affect the anomaly matching argument.
However, as in the ψη model, the condensate 〈B1cB1c〉 ∼ 〈ψηη ψηη〉 is needed in order to
reproduce the strong anomaly in the IR correctly. This however does not alter neither the
symmetry breaking pattern (F.4), nor the conventional anomaly matching. See section 3.3
for more discussions.

G Confining phase with unbroken global symmetries of the GG models

The candidate massless composite fermions for the Georgi-Glashow models are:

(B1){AB} = χijηAi η
B
j , (B2)aA = χ̄ij η̄

i
Aξ

j,a , (B3)[ab] = χij ξ̄i,aξ̄j,b , (G.1)

the first symmetric in A ↔ B and the third anti-symmetric in a ↔ b. Writing the spin
indices explicitly they are:

(B1){AB},α = 1
2εβγ χ

ij,βηA,γi ηB,αj + 1
2εβγ χ

ij,βηA,αi ηB,γj ,

(B2)a,αA = εβ̇γ̇ χ̄
β̇
ij η̄

i,γ̇
A ξj,a,α , (B3)[ab] = εβ̇γ̇ χ

ij ξ̄β̇i,aξ̄
γ̇
j,b . (G.2)

All anomaly triangles are saturated by these candidate massless composite fermions, see
table 11.

– 34 –



J
H
E
P
0
8
(
2
0
2
1
)
0
2
8

SU(N)c SU(N − 4 + p) SU(p) U(1)χη U(1)χξ

B1
(N−4+p)(N−3+p)

2 · (·) (N−4+p)(N−3+p)
2 · (·) −N + p p

B2 (N − 4 + p)p · (·) p · ¯ (N − 4 + p) · −(p− 2) −(N + p− 2)

B3
p(p−1)

2 · (·) p(p−1)
2 · (·) ¯ N − 4 + p 2N − 4 + p

Table 10. IR massless fermions in the chirally symmetric phase of the GG model.

UV IR

SU(N − 4 + p)3 N N + p− p

SU(p)3 N N − 4 + p− (p− 4)

SU(N − 4 + p)2 −U(1)χη −N(N − 2) −(N − 2 + p)(N − p)− p(p− 2)

SU(N − 4 + p)2 −U(1)χξ 0 (N − 2 + p)p− p(N + p− 2)

SU(p)2 −U(1)χη 0 −(N − 4 + p)(p− 2) + (p− 2)(N − 4 + p)

SU(p)2 −U(1)χξ −N(N − 2) −(N − 4 + p)(N + p− 2) + (p− 2)(2N − 4 + p+ 0)

U(1)3
χη

N(N−1)
2 (N − 4 + p)3 −N(N − 4 + p)(N − 2)3 − (N−4+p)(N−3+p)

2 (N − p)3 − (N − 4 + p)p(p− 2)3+

+p(p−1)
2 (N − 4 + p)3

U(1)3
χξ

N(N−1)
2 p3 −Np(N − 2)3 (N−4+p)(N−3+p)

2 p3 − (N − 4 + p)p(N + p− 2)3+

+p(p−1)
2 (2N − 4 + p)3

Grav2 −U(1)χη N(N−1)
2 (N − 4 + p)−N(N − 4 + p)(N − 2) − (N−4+p)(N−3+p)

2 (N − p)− (N − 4 + p)p(p− 2)+

+p(p−1)
2 (N − 4 + p)

Grav2 −U(1)χξ N(N−1)
2 p−Np(N − 2) (N−4+p)(N−3+p)

2 p− (N − 4 + p)p(N + p− 2)+

+p(p−1)
2 (2N − 4 + p)

SU(N − 4 + p)2 − (ZN−2)χ 0 N − 2 + p− p = 0 mod N − 2

SU(p)2 − (ZN−2)χ 0 −(N − 4 + p) + p− 2 = 0 mod N − 2

Grav2 − (ZN−2)χ 1 1− 1 + 1

Table 11. Anomaly matching checks for the IR chiral symmetric phase of the GG model.

H Dynamical Higgs phase in the generalized GG models

In the generalized Georgi-Glashow models there is a competition between two possible
bifermion symmetry breaking channels χη and ξη. This time, the MAC criterion would
slightly favor the ξη condensates against χη. Indeed, the strength of the one-gluon exchange
potential for the two channels

χ

( )
η
( ¯ ) forming ,

ξ
( )

η
( ¯ ) forming (·) , (H.1)

are, respectively,

N2 − 1
2N − (N − 2)(N + 1)

N
− N2 − 1

2N = −(N − 2)(N + 1)
N

,

0− 2N
2 − 1
2N = −N

2 − 1
N

. (H.2)
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SU(N − 4)cfη
SU(4)c SU(p)ηξ U(1)′χη U(1)′χξ

χ1
(N−4)(N−5)

2 · (·) (N−4)(N−5)
2 · (·) (N−4+p)N

(N−4) p N
N−4

χ2 4 · (N − 4) · 4(N − 4) · (·) (N−4+p)N
2(N−4)

pN
2(N−4)

χ3 6 · (·) 6 · (·) 0 0

η1 ¯ ⊕ ¯ (N − 4)2 · (·) (N − 4)2 · (·) − (N−4+p)N
(N−4) − pN

N−4

η2 p · ¯ p(N − 4) · (·) (N − 4) · ¯ −2− 2 p
N−4 N − 2− 2p

N−4

η3 4 · ¯ (N − 4) · ¯ 4(N − 4) · (·) − (N−4+p)N
2(N−4) − pN

2(N−4)

η4 4p · (·) p · ¯ 4 · ¯ N−4+p
2 N − 2 + p

2

ξ1 p · p(N − 4) · (·) (N − 4) · 2 + 2 p
N−4 −(N − 2) + 2p

N−4

ξ2 4p · (·) p · 4 · −N−4+p
2 −(N − 2)− p

2

Table 12. UV fieds in the GG model, decomposed as a direct sum of the representations of the
unbroken group of eq. (H.4).

Again, these perturbative estimates are not excessively significant, and we assume that
both condensates occur as:

〈χijηAi 〉 = cχη Λ3δjA 6= 0 , j = 1, . . . , N − 4 , A = 1, . . . , N − 4 , (H.3)
〈ξi,aηBi 〉 = cηξ Λ3δaB 6= 0 , a = 1, . . . , p , B = N − 4 + 1, . . . , N − 4 + p .

The pattern of symmetry breaking is

SU(N)c × SU(N − 4 + p)η × SU(p)ξ ×U(1)χη ×U(1)χξ
〈ξη〉,〈χη〉−−−−−→ SU(4)c × SU(N − 4)cfη × SU(p)ηξ ×U(1)′χη ×U(1)′χξ . (H.4)

The color gauge symmetry is partially (dynamically) broken, leaving color-flavor diag-
onal global SU(N − 4)cfη symmetry and an SU(4)c gauge symmetry. U(1)′χη and U(1)′χξ
are a combinations respectively of U(1)χη and U(1)χξ with the elements of SU(N)c and
SU(N − 4 + p)η generated by:

tSU(N)c =
(

2α(N−4+p)+βp
N−4 1(N−4)×(N−4)

−α(N−4+p)+βp
2 14×4

)
,

tSU(N−4+p)η =
(
−p(α+β)(N−2)

N−4 1(N−4)×(N−4)
(α+ β)(N − 2)1p×p

)
. (H.5)

Making the decomposition of the fields in the direct sum of representations in the subgroup
one arrives at table 12.

The composite massless baryons are subset of those in (G.1):

B{AB} = χijηAi η
B
j , A,B = 1, . . . , N − 4 . (H.6)

In the IR these fermions saturate all the anomalies of the unbroken chiral symmetry. This
can be seen by an inspection of table 13 and table 12, with the help of the following
observation.
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SU(N − 4)cfη
SU(p)ηξ U(1)′χη U(1)′χξ

B ¯ (N−4)(N−3)
2 · (·) − (N−4+p)N

(N−4) − pN
N−4

Table 13. IR fied in the GG model in the dynamical Higgs phase.

In fact, there is a novel feature in the GG models, which is not shared by the BY
models. As seen in table 13, there is an unbroken strong gauge symmetry SU(4)c, with a
set of fermions,

χ3 , χ2 , η3 , η4 , ξ2 , (H.7)

charged with respect to it. However, the pairs {χ2 , η3} and {η4 , ξ2} can form massive
Dirac fermions and decouple. These are vectorlike with respect to the surviving infrared
symmetry, (H.4), hence are irrelevant to the anomalies.14 On the other hand, the fermion
χ3 can condense

〈χ3χ3〉 (H.8)

forming massive composite mesons, ∼ χ3χ3, which also decouples. It is again neutral with
respect to all of

SU(N − 4)cfη × SU(p)ηξ ×U(1)′χη ×U(1)′χξ . (H.9)

To summarize, SU(4)c is invisible (confines) in the IR, and only the unpaired part of the
η1 fermion

( ¯ )
remains massless, and its contribution to the anomalies is reproduced

exactly by the composite fermions, (H.6).

Comment: the massive mesons {χ2 η3}, {η4 ξ2}, {χ3 χ3} are not charged with respect
to the flavor symmetries surviving in the infrared. It is tempting to regard them as a toy-
model “dark matter”, as contrasted to the fermions BAB which constitute the “ordinary,
visible” sector.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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