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1 Introduction

Recent attempts to derive the Page curve from semiclassical Euclidean gravity in low-
dimensional models have proven remarkably successful [1–3]. The lesson is that the sharp
change in tendency of the Page curve for Rényi entropies can be reproduced á la Hawking-
Page from an exchange in dominance at the Page time between the disconnected Euclidean
black hole saddle and the so-called ‘replica wormhole’ saddle. For the purity of the state
of the radiation ρR, the replica calculation in gravity outputs a formula consisting of these
two leading contributions

TrR ρ2
R ≈ e−S

R
β + e−S

R
β , (1.1)

where SRβ is the thermal second Rényi entropy of the radiation and SRβ is the thermody-
namic ‘Bekenstein-Hawking’ second Rényi entropy of the black hole at inverse tempera-
ture β.

Even if replica wormholes ‘unitarize’ the Rényi entropy of the radiation, their inclusion
seems to lead to a fundamental incompatibility with a conventional quantum mechanical
description. The semiclassical computation of the state of the radiation (ρR)ij produces
the well-known thermal result, up to perturbative corrections. The most natural way to
reconcile a thermal density matrix (ρR)β with (1.1) is to declare that Euclidean gravity
is effectively reproducing an averaged description of the ‘pseudo-random’ properties of the
discrete UV spectrum of the theory [4–13].

In this note, we reexamine the possibility introduced in [5] that replica wormholes give
an approximation to the equilibrated physics of a single unitary theory. We appeal to quan-
tum ergodicity in a high-energy microcanonical band of the Hamiltonian and derive a mi-
croscopic version of the ‘equilibrium approximation’ of [5] for Rényi entropies. Our results
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have some additional structure that enters at the level of non-planar diagrams of the previ-
ous approximation. We then show that for a certain class of states our results can be further
approximated by the microcanonical and the canonical ensembles. In the case of the canon-
ical ensemble, each term of our approximation can be computed from an Euclidean path
integral over replicas of the system with different patterns of connectivity between them.

We then consider initial pure states in AdS/CFT systems that lead to a large black hole
in equilibrium with its radiation. For the purity of the radiation subystem, the equilibrium
approximation in this case consists of three terms

(
TrR ρ2

R

)
eq
≈ e−S

R
β + e−S

R
β − e−(SRβ +SRβ ) . (1.2)

The first two terms agree with (1.1) and, in this case, the equilibrium approximation
itself prescribes a boundary path integral to compute each of these terms. The pattern of
connectivity between the replicas in each of these path integrals is ultimately related to
the topology of the corresponding saddle of the semiclassical gravitational path integral.
Similar considerations hold for higher Rényi entropies.

We finally engineer a different AdS/CFT setup that contains an evaporating black hole
in the quasi-equilibrium approximation. We get a similar qualitative result to (1.2) for the
purity of the radiation at each epoch of evaporation. The last term in (1.2) is responsible
for recovering the exact pure state for the radiation ρR at the endpoint of evaporation. The
contribution of these terms is reminiscent of higher genus saddles of the gravitational path
integral in models of JT gravity. The minus sign in (1.2), however, seems to be prescribed
from the exact unitary description and it might be ad hoc from semiclassical gravity.

The paper is organized as follows: in section 2 we derive the microscopic equilibrium
approximation for Rényi entropies from standard properties of chaotic many-body quan-
tum systems. In section 3 we give an estimation of the average quantum noise around
the microscopic equilibrium value. In section 4 we consider a class of delocalized states
over a microcanonical band and we obtain the microcanonical and canonical equilibrium
approximations for the Rényi entropies. In section 5 we analyze the equilibration of Rényi
entropies for a black hole inside a finite box, and obtain (1.2) and higher Rényi analogs.
We also consider the case of a slowly evaporating black hole. We end with some conclusions
and appendix A containing some technical details.

2 Ergodicity and long-time averaging

In this section, we will study the behavior of Rényi entropies for pure states under mild
assumptions about chaos in a high-energy microcanonical band of the Hamiltonian of a
many-body quantum system. We will start by considering a microcanonical band HE,ε of
the Hamiltonian H consisting of states with energies in the interval [E − ε, E + ε]. The
energy window will be narrow ε � E, but still spacious enough to accommodate a large
microcanonical entropy S = logN , where N is the number of energy eigenstates {|Ei〉} on
the band. We will assume that the spectrum of the Hamiltonian {Ei} is non-degenerate in
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this band,1 and that there are no rational relations between different energy eigenvalues.2

In particular, the energy differences Ei−Ej will be rationally independent, which translates
into the lack of resonances in the system.

Given some initial state localized on this band |Ψ〉 =
∑
i ci |Ei〉, its time evolution will

involve an effective number of Neff energy eigenstates, where

N−1
eff =

∑
i

|ci|4 . (2.1)

For any t > 0, the position of the state vector |Ψ(t)〉 lies on a torus determined by these
Neff real phases, TNeff , and in fact the lack of resonances will make it an ergodic cover of
this torus.

In what follows, we will assume a bipartition of the full system, H = HR ⊗ HR,
and study the time-evolution of the entanglement spectrum of |Ψ(t)〉 with respect to this
bipartition. More precisely, we will study the set of Rényi entropies

Z(R)
n = e−(n−1)S(R)

n = TrR ρnR , (2.2)

where ρR = TrR |Ψ(t)〉 〈Ψ(t)| is the reduced density matrix of subsystem R. We will
exploit the spectral properties of H on the band to compute the long-time averages of
Rényi entropies

Z(R)
n = lim

T→∞

1
T

∫ T

0
dtZ(R)

n (t) , (2.3)

which, as we shall see, will tell us an idea about ‘equilibrium’ values of Rényi entropies.
For later convenience, and in order to make contact with [5], we will introduce some

notation. Density matrices like |Ψ〉 〈Ψ| can be viewed as states |Ψ〉 ⊗ |Ψ〉∗ ∈ H⊗H, where
the star denotes some antiunitary operation like CPT. Similarly, Z(R)

n can be regarded as an
amplitude on (H ⊗ H)n, namely as Z(R)

n = 〈R,R | (|Ψ(t)〉 ⊗ |Ψ(t)〉∗)n. All the information
about the partial tracing is kept in the bra 〈R,R | that lives in the dual space to this
replicated Hilbert space (see figure 1).

We will also define a set of states on the replicated Hilbert space that will turn out to
be particularly useful for notational purposes. Given a density matrix ρ =

∑
ρij |Ei〉 〈Ej |,

and some permutation σ ∈ Sn, we define a state |ρ, σ〉 ∈ (H⊗H)n as

|ρ, σ〉 ≡
∑
ik,jk

ρi1jσ(1) . . . ρinjσ(n) |Ei1 , E
∗
j1 , . . . , Ein , E

∗
jn〉 . (2.4)

1The non-degeneracy condition is broken whenever the chaotic system has a global symmetry G, discrete
or continuous. Our analysis directly applies restricting to a superselection sector of G.

2For a holographic CFT on Sd−1×R of radius R, this condition will not be strictly satisfied in the high-
energy spectrum ER ∼ O(c) due to rational relations and degeneracies of the descendant states. However,
since most of the spectrum will be generated by new primaries, these effects are expected to be of subleading
order in 1/N as well as highly dependent on the particular operator content of the theory. A possibility is
to slightly break conformal symmetry (e.g. by adding a small relevant deformation or by coupling the CFT
to an external system) which will make the spectrum generic.
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Figure 1. Schematic representation of 〈R,R | for n = 3, where the connections represent contrac-
tions of subsystem indices of the corresponding factors.

First, we will compute the long-time average of the purity, Z(R)
2 = TrR ρ2

R. The long-
time integral (2.3) in this case involves four replicas and is given by

(
Z(R)

2

)
eq

=
∑

i1,i2,j1,j2

ci1 c
∗
j1 ci2 c

∗
j2 e
−it(Ei1+Ei2−Ej1−Ej2 ) 〈R,R |Ei1 , E∗j1 , Ei2 , E

∗
j2〉 . (2.5)

The long-time integral of the phase vanishes whenever the total frequency is non-zero,
which in this case requires Ei1 + Ei2 = Ej1 + Ej2 . From the assumption that there are no
rational relations between energy eigenvalues, this condition can only hold when the i and
j eigenvalues are identified, which leads to three different long-time saddles

e−it(Ei1+Ei2−Ej1−Ej2 ) = δi1j1δ
i2
j2

+ δi1j2δ
i2
j1
− δi1i2δ

i1
j1
δi2j2 , (2.6)

and we are not adopting the convention of summing over repeated indices for the last term.
This last term is essential in order to avoid over-counting for the case of the configuration
Ei1 = Ei2 = Ej1 = Ej2 (see appendix A).

Following these considerations, we derive the average value of the purity

Z(R)
2 = TrR

(
TrR ρ

)2 + TrR (TrR ρ)2 − 〈R,R |φ〉 , (2.7)

for the microscopic equilibration density matrix ρ =
∑
i |ci|2 |Ei〉 〈Ei|. The unnormalized

state |φ〉 is a mutipartite entangled state in the replicated Hilbert space

|φ〉 =
∑
i

|ci|4 |Ei, E∗i , Ei, E∗i 〉 . (2.8)

The first two terms in (2.7) match the equilibrium proposal of [5] but in this case ρ possesses
microscopic information about the initial pure state |Ψ〉. From the symmetries of |φ〉
under permutations of the replicas, it is straightforward to see that the whole expression
is invariant under R↔ R, which is expected from an average over the long-time ensemble
of pure states.
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The new term that we obtain is essential to preserve exact purity in the limit in which
R becomes the whole system, HR = H. In this limit, TrR ρ = 1 and TrR ρ2 = N−1

eff , so the
long-time average of the purity becomes

Z(R)
2 −→ 1

Neff
+ 1 − 1

Neff
= 1 , (2.9)

which is consistent with exact unitarity, from Tr (|Ψ(t)〉 〈Ψ(t)|)2 = 1.
The equilibration value of Z(R)

n = TrR ρnR will similarly be given by a long-time integral
over the 2n replicas

Z(R)
n =

∑
ik,jk

ci1c
∗
j1 . . . cinc

∗
jn e
−it(Ei1−Ej1+ ...+Ein−Ejn) 〈R,R |Ei1 , E∗j1 , . . . , Ein , E

∗
jn〉 .

(2.10)
The long-time integral of the phase again imposes the constraint that the total frequency
is zero, Ei1 + . . .+Ein = Ej1 + . . .+Ejn . The lack of rational relations in the spectrum of
the Hamiltonian allows to perform this integral without the need to know the particular
spectrum, mainly reducing the integral to a simple combinatorial problem for the long-time
saddles, which is explained in detail in appendix A. We import the result here

e−it(Ei1−Ej1+...+Ein−Ejn) = n! δ(i1
j1
. . . δ

in)
jn

∑
π∈Πn

απ
∏
B∈π

∏
a,b∈B

δiaib , (2.11)

where the sum is over partitions Πn of the set Nn = {1, 2, . . . , n}. A given partition has
the form π = {B1, . . . , Br} and the Bk are ‘boxes’ containing nk elements of Nn. The
number of terms in the sum is the number of partitions of Nn, which is known as the n-th
Bell number Bn, and grows super-exponentially for large n. The coefficients απ can be
recursively found from the relation

απ = 1
n1! . . . nr!

−
∑
π′<π

απ′ , (2.12)

where π′ < π represents the sum over finer partitions π′. The coefficient for the finest
partition πe = {1, 2, . . . , n} is set to απe = 1 in this normalization. The values of απ for
some of the finest partitions are explicitly computed in appendix A.

In this way, we arrive to the long-time average of the n-th Rényi entropy

Z(R)
n =

∑
σ∈Sn

〈R,R | ρ, σ〉 +
∑
π∈Π∗n

απ |Sπ|
∑

σ∈Sn/Sπ

〈R,R | φπ, σ 〉 . (2.13)

The first sum exactly reproduces the terms in the equilibrium ansatz of [5], but again one
has to consider the microscopic equilibration density matrix ρ =

∑
|ci|2 |Ei〉 〈Ei| which has

information about the initial state |Ψ〉 of the system. The second term is a sum over non-
trivial partitions Π∗n = Πn\{πe} and over the permutation orbit Sn/Sπ of each partition
π. Here Sπ < Sn the stabilizer subgroup of a given partition π, which can be intuitively
understood as any permutation that preserves the content of the ‘boxes’ Bl ∈ π. The new
states correspond to different multipartite entangled states

|φπ, σ〉 =
∑
ik

∏
B∈π

∏
a,b∈B

δiaib |ci1 |
2 . . . |cin |2 |Ei1 , E∗iσ(1)

, . . . , Ein , E
∗
iσ(n)
〉 , (2.14)
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with a new ‘source’ of entanglement coming from the projections δiaib associated to each
partition π. We can also write |φπ, σ〉 = Pπ |ρ, σ〉, for Pπ the projection operator acting
as in (2.14) on half of the H-factors of the replica Hilbert space. The number of new states
|φπ, σ〉 also scales super-exponentially with n. These states are essential to restore the
exact purity in (2.13) when the subsystem R is allowed to gradually approach the size of
the full system.

The long-time average of the Rényi entropy (2.13) is invariant under R ↔ R.
This property follows from 〈R,R| ρ, σ〉 = 〈R,R| ρ, στ〉, with the cyclic permutation
τ = (1, 2, . . . , n−1, n) ∈ Sn. The right-multiplication is an isomorphism in Sn and therefore
the first sum is trivially invariant. All possible partitions are present for each permutation
in the second sum, making the whole sum also invariant.

We can estimate the magnitude of each term in (2.13) if we introduce the effective
rank nR and nR of the density matrix ρ on each of the subsystems

(nR)−1 ≡ TrR
(
TrR ρ

)2
, (2.15)

(nR)−1 ≡ TrR (TrR ρ)2 . (2.16)

The matrix elements of ρ in an orthonormal basis {|r, r〉} of HR⊗HR will have magnitude
(ρ)rrr′r′ ∼ (nRnR)−1. In this basis, each amplitude is

〈R,R | ρ, σ〉 =
∑

ri,ri,r′i,r
′
i

∏
i

δrir′
η(i)

δri
r′i

(ρ)ririr′σ(i)r
′
σ(i)

, (2.17)

where η = (n, n − 1, . . . , 2, 1) ∈ Sn. Following the argument in [5], the diagrammatic
representation of each amplitude shows the number of R and R loops present, and each
loop corresponds to a factor of nR and nR respectively (see figure 2). The number of R
loops in 〈R,R | ρ, σ〉 can be shown to be the number of cycles of the permutation σ, denoted
k(σ). The number of R-loops, on the other hand, can be shown to be k(η−1σ). Altogether,
the magnitude of the amplitude is

〈R,R | ρ, σ〉 ∼
(nR)k(η−1σ) (nR)k(σ)

(nR nR)n . (2.18)

The dominant permutations corresponding to planar diagrams are constructed from the
‘non-crossing partitions’ of Nn and saturate the inequality

k(η−1σ) + k(σ) ≤ n+ 1 . (2.19)

For nR < nR the leading permutation in (2.18) is σ = e, while for nR > nR it is η.
Let us define the ‘order’ of a given partition π = {B1, . . . , Br} of boxes of size |Bk| = nk

as the product |π| ≡ n1 n2 . . . nk. Then, we can see that the effect of the projector Pπ
in 〈R,R | φπ, σ〉 is nothing but to reduce the previous result by a factor of N 1−|π|

eff . The
contribution of the new states is then

〈R,R |Pπ | ρ, σ〉 ∼
(nR)k(τσ) (nR)k(σ)

(nR nR)nN |π|−1
eff

, (2.20)
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Figure 2. On the left, the diagram corresponding to the amplitude 〈R,R| ρ, e〉 for n = 2. The
lines along the circumference are the boundary conditions imposed by the bra, while the lines of the
interior are prescribed by the particular permutation, σ = e in this case. Each solid loop corresponds
to a factor of nR and each dashed loop corresponds to a factor of nR. On the right, the double-line
diagrammatic representation of the amplitude. In this representation, k(η−1 e) + k(e) = F −1 = 3,
where F is the number of white faces (with the exterior included). In general, k(η−1 σ) + k(σ) =
F − 1 = E − V − 2g + 1 from the Euler-Poincaré formula, where E is the number of edges and
V is the number of vertices of the blue ‘polygon’, while g is the genus of the surface in which the
polygon is embedded. The inequality (2.19) follows from E = 3n and V = 2n.

and in particular we can see that |π| > 1 implies that the new terms enter the long-time
value at least at the order of permutations with non-planar diagrams. Note, however, that
this hierarchy is less pronounced when |Ψ〉 involves a small number of energy eigenstates,
and in this case the new terms can become comparable to certain ‘planar’ permutations.
In fact, for a single eigenstate, all the terms in (2.13) are of the same order of magnitude.

3 Quantum noise

In the previous section, we have shown that the long-time average of the Rényi entropies
in a microcanonical band of a many-body chaotic system produces a microscopic version
of the equilibrium ansatz proposed in [5]. In this section, we will show that when nR and
nR are large, quantum fluctuations are suppressed with respect to the average value in the
long run. In this sense, it is reasonable to expect that the long-time average is a measure of
the ‘equilibrated’ value of the Rényi entropy, at least for timescales t� tP ∼ E−1 exp(Neff)
with no Poincaré recurrences on the system.

In order to simplify the discussion, we will neglect the terms coming from the projectors
since they will be always subdominant with respect to leading permutations. The long-time
variance ∆(R)

n of the Rényi entropy is defined as the square root of

(
Z(R)
n − Z(R)

n

)2
≈

∑
σ∈S2n

(
〈R,R| ⊗ 〈R,R |

)
| ρ, σ〉 −

∑
σ,σ′∈Sn

〈R,R| ρ, σ〉 〈R,R| ρ, σ′
〉
,

(3.1)
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Figure 3. Double-line diagram corresponding to
(
〈R,R| ⊗ 〈R,R |

)
| ρ, σ〉 for n = 2 and the con-

nected permutation σ = (13)(24) ∈ A4. For connected diagrams, the total number of loops is
k(τ2σ) + k(σ) = F − 2 = E − V − 2g, with E = 6n and V = 4n. Therefore, only planar permuta-
tions σ ∈ An saturate (3.5).

which can be written in the compact notation(
∆(R)
n

)2
≈

∑
σ∈A2n

(
〈R,R| ⊗ 〈R,R |

)
| ρ, σ〉 , (3.2)

where A2n = S2n \Sn × Sn is the set of ‘connected’ permutations between the two Z(R)
n

factors.
The magnitude of each term in (3.2) can also be estimated from a double-line diagram-

matic counting à la ’t Hooft (see figure 3). In the product basis, {|r, r〉}, each amplitude is(
〈R,R| ⊗ 〈R,R |

)
| ρ, σ〉 =

∑
ri,ri,r′i,r

′
i

∏
i

δrir′
η2(i)

δri
r′i

(ρ)ririr′σ(i)r
′
σ(i)

, (3.3)

where η2 = (2n, . . . , n + 1)(n, . . . , 1) ∈ S2n. The number of R-loops of the diagram does
not change with respect to the previous estimation, since 〈R,R|n⊗〈R,R|n has the same R-
tracing pattern as the bra 〈R,R|2n, where the subindex represents the number of replicas.
Therefore, we will have k(σ) of such loops, each of them yielding a factor of nR. The num-
ber of R-loops, however, notices the new ‘factorized’ tracing pattern and the total number
will be given in this case by k(τ2σ), where τ2 = η−1

2 = (1, . . . , n)(n + 1, . . . , 2n) ∈ S2n.
The total contribution is then(

〈R,R| ⊗ 〈R,R |
)
| ρ, σ〉 ∼

(nR)k(τ2σ) (nR)k(σ)

(nR nR)2n , (3.4)

Note that for any ‘disconnected’ σ ∈ Sn×Sn this expression recovers the square of (2.18).
However, disconnected permutations are not allowed because we need to restrict to A2n.
In particular, we have that for σ ∈ A2n the following inequality holds

k(τ2σ) + k(σ) ≤ 2n . (3.5)

Assuming that nR < nR, (3.4) and (3.5) show that the quantum noise for the Rényi
entropy is suppressed by

∆(R)
n

Z(R)
n

∼ 1
nR

. (3.6)
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We emphasize that, for finite dimensional systems, nR ∼ dR is expected to generally be
the dimensionality of the subsystem, which scales with the total entropy as efRS , given a
fraction 0 < fR < 1/2 (here we are assuming that S = logN accounts for almost the total
dimensionality of the system). Therefore, the quantum noise is expected to be suppressed
by exp(−fR S).

In a similar way, we can generalize our results to the m-th long-time moment

(
Z(R)
n − Z(R)

n

)m
≈

∑
σ∈Amn

(
〈R,R|⊗m

)
| ρ, σ〉 , (3.7)

where Amn ⊂ Smn consists of totally connected permutations between all of the Z(R)
n

factors. Again, the R-loops do not notice the different tracing pattern, while the R-loops
do. The estimation is then

(
〈R,R|⊗m

)
| ρ, σ〉 ∼

(nR)k(τmσ) (nR)k(σ)

(Neff)2n , (3.8)

where τm = (1, . . . , n) . . . (n(m − 1), . . . , nm) ∈ Snm. In this case, any totally connected
permutation σ ∈ Amn will satisfy k(τmσ) + k(σ) ≤ mn− (m− 2).

These considerations lead to the conclusion that the long-time averaging induces an
effective probability distribution P(Z(R)

n ) for the value of the Rényi entropy which is ex-
tremely peaked at the average value (2.13), with a variance (3.2) which is exponentially
suppressed in the effective number of degrees of freedom log nR � 1. The typical timescale
for quantum fluctuations is the Heisenberg time tH ∼ (∆E)−1, where ∆E is the average
energy difference between the eigenstates participating in |Ψ〉. We expect that in general
these fluctuations are effectively ‘frozen’ for timescales t� tH and that the Rényi entropy
is ‘equilibrated’ with a value given by (2.13).

4 Equilibrium approximation for Rényi entropies

As we have seen, Rényi entropies are very fine-grained measures of the system that retain
the information about the initial state |Ψ〉 for arbitrarily long times. In this section, we will
make further assumptions about the Hamiltonian H to approximate the long-time values
of Rényi entropies for a general class of initial states by the corresponding ‘equilibrium
values’ arising from different thermodynamic ensembles.

To start, we can consider the reduced set of initial states for which the energy wavefunc-
tion ci is delocalized enough such that it excites a large fraction of the energy eigenstates
of the band. More precisely, let Neff/N = 1 − x2 for some x � 1. For such states, the
microscopic equilibration density matrix ρ will be very close to the microcanonical density
matrix on the band with respect to the trace distance, ||ρ− ρmc||1 . x. In this case, it is
obvious that the long-time purity (2.7) will be given at leading order in x by

Z(R)
2 ≈

(
Z(R)

2

)
eq

= TrR
(
TrR ρmc

)2 + TrR (TrR ρmc)2 − 1
N

〈
Z(R)

2

〉
, (4.1)
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where ρmc is the microcanonical density matrix on the band, and〈
Z(R)

2

〉
= N−1 ∑

i

TrR(TrR |Ei〉 〈Ei|)
2 , (4.2)

is the average purity of the energy eigenstates of the band. The first two terms in the
expression (4.1) exactly match the microcanonical equilibrium approximation of [5], while
the extra term in our approximation comes from the exact unitary description and it is
subleading by a factor of N−1.

The requirement x � 1 is too restrictive. In order to make more general statements
corresponding to a much larger set of initial states, we will need to make an extra assump-
tion about the structure of the Hamiltonian. A particularly convenient guiding principle
to study quantum chaos is to look at properties of eigenstates of typical Hamiltonians, and
to see which of these properties could be approximate features of the chaotic Hamiltonian
H. One such property is the typicality of the chaotic eigenstates with respect to ‘small’
observables, which is the essence of the eigenstate thermalization hypothesis (ETH) [14–16].

Our assumption about H will be a lot milder, since we are not going to consider the
properties of single eigenstates,3 but rather averaged properties over a large number of
them. Given a state |Ψ〉 involving a large number of eigenstates Neff, consider the density
matrix ρ0 = Π|Ψ〉 ρmc Π|Ψ〉 that is constructed by projecting the microcanonical density
matrix ρmc into the Neff-dimensional subspace generated by the eigenstates in which |Ψ〉
has larger support. Of course, ρ0 is a really good approximation of the microscopic density
matrix

||ρ− ρ0||1 ≤
√
N Tr (ρ− ρ0)2 ≤ 2x

Neff
. (4.3)

Note the extra factor of N−1
eff coming from the fact that ρ0 is a much better approximation

to the state ρ than ρmc.
Let Seff = logNeff be the ‘microcanonical entropy’ of ρ0. We expect that, whenever this

entropy is comparable to the entropy of the band, (S−Seff)/S � 1, then generally the sub-
set of eigenstates taking part in ρ0 will be a good representative of the full microcanonical
ensemble for any quantity which has desirable ‘convergence’ properties, and in particular
for the entanglement spectrum of R and R. Under this assumption, initial states involving
a large fraction of the entropy of the band will reproduce the microcanonical value for the
long-time average of the Rényi entropy

Z(R)
n ≈

(
Z(R)
n

)
eq

=
∑
σ∈Sn

〈R,R | ρmc, σ〉 +
∑
π∈Π∗n

απ |Sπ|
∑

σ∈Sn/Sπ

〈R,R |Pπ| ρmc, σ 〉 .

(4.4)
A similar approximation can be done in terms of the canonical ensemble. The ther-

modynamic entropy can be smoothly defined by eS(E) ≡ E
∑
i δε(E −Ei), where δε is the

‘regularized Dirac delta’ of width ε that accounts for the discreteness of the spectrum. For
the inverse temperature β = ∂S/∂E evaluated at the energy of the band, the ensemble

3An alternative approach would be to study the equilibration value of the Rényi entropy for initial states
involving a few eigenstates, possibly by assuming some property about the chaotic eigenstates like [17] or
by considering typical eigenstates [18–20].
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trace distance can be evaluated from a saddle point approximation at large S and yields
the well-known result

||ρmc − ρβ ||1 ∼ O(S−1) , (4.5)

where ρβ = e−βH/Zβ is the canonical density matrix and Zβ = Tr e−βH is the canonical
partition function.

For delocalized initial states |Ψ〉 that excite a large number of eigenstates of the band,
we can also approximate their long-time average purity (2.7) by the canonical equilibration
value

Z(R)
2 ≈

(
Z(R)

2

)
eq, β

= TrR
(
TrR ρβ

)2 + TrR (TrR ρβ)2 − 1
Zβ
Z(R)

2,β , (4.6)

where
Z(R)

2,β = (Zβ)−1 ∑
i

e−2βEi TrR(TrR |Ei〉 〈Ei|)
2 . (4.7)

The sums are now implicitly ranging over all of the eigenstates of the Hamiltonian. In
a completely analogous way, from (2.13) we can obtain the canonical approximation for
higher Rényi entropies

Z(R)
2 ≈

(
Z(R)
n

)
eq, β

=
∑
σ∈Sn

〈R,R | ρβ , σ〉 +
∑
π∈Π∗n

απ |Sπ|
∑

σ∈Sn/Sπ

〈R,R |Pπ| ρβ , σ 〉 .

(4.8)
To further elucidate the structure of the equilibrium approximation for canonical equi-

libration, let us reintroduce the basis {|r, r〉} of HR ⊗HR. We can write down each term
in (4.8) in this basis in the compact notation

〈R,R | ρβ , σ〉 =
∑

ri,ri,r′i,r
′
i

∏
i

δrir′
η(i)

δri
r′i
〈ri, ri | ρβ | r′σ(i), r

′
σ(i)〉 , (4.9)

〈R,R |Pπ | ρβ , σ〉 =
∑

ri,ri,r′i,r
′
i

∏
i

∏
B∈π

∏
a,b∈B

δrcrd δ
rc
rd
δrir′
η(i)

δri
r′i
〈ri, ri | ρβ | r′σ(i), r

′
σ(i)〉 . (4.10)

For local theories, each of the terms in terms in (4.9) and (4.10) can be written as
an Euclidean path integral over n replicas of the system. The amplitudes correspond to
the Euclidean time-evolution by an amount β, with two different states inserted at the
boundaries of the strip, τ = 0 and τ = β. The delta functions determine the gluing pattern
of these n path integrals. To be more specific, let Φi(τ) ≡ {Φµ

i (τ,x)} denote the collective
set of fields on the i-th replica, and let SE [Φ(τ)] be the Euclidean action of the theory. In
this notation we have

Znβ 〈R,R| ρβ ,σ〉=
∫ n∏

i=1
DΨiDΨ̃iδ(Ψi|R−Ψ̃i|R)δ(Ψi|R−Ψ̃i|R)

∫ Φi(β)=Ψi

Φi(0)=Ψ̃σ(i)

DΦi(τ)e−SE [Φ(τ)] ,

(4.11)
and

Znβ 〈R,R|Pπ| ρβ ,σ〉=
∫ n∏

i=1

∏
B∈π

∏
a,b∈B

DΨiDΨ̃iδ(Ψi|R−Ψ̃i|R)δ(Ψi|R−Ψ̃i|R)δ(Ψa|R−Ψb|R)

×δ(Ψ̃a|R−Ψ̃b|R)
∫ Φi(β)=Ψi

Φi(0)=Ψ̃σ(i)

DΦi(τ)e−SE [Φ(τ)] . (4.12)
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We have shown that for a general class of initial states, the long-time averaged values of
Rényi entropies will yield a version of the equilibrium ansatze of [5] for the microcanonical
and canonical ensembles, with extra terms that contribute at the level of the non-planar
permutations. In our derivation, we mainly used quantum ergodicity of the Hamiltonian H,
and a restriction to initial states involving a large number of eigenstates of the microcanon-
ical band. Similar results can also be obtained by Haar averaging Z(R)

n either over initial
states |Ψ〉 in the microcanonical band or over time-evolution operators. Our derivation, on
the other hand, directly applies to atypical initial states that remain atypical for t < tH .

5 Black hole in a box and replica wormholes

So far, we have been quite general in our discussion about the nature of the chaotic many-
body system under consideration. In this section, we will describe the relevance of the
‘equilibrium approximation’ for Rényi entropies in the context of AdS/CFT systems de-
scribing black holes in equilibrium.

We consider a system consisting of a holographic CFT on a spatial sphere Sd−1 of
radius `AdS, which we denote HR . The CFT sphere is contained in an external ‘radiation
box’ HR with no dynamical gravity, and of finite volume Ld, with L > `AdS. The full
Hamiltonian of the system is

H = HR + HR + Hint , (5.1)

where HR is the weakly coupled Hamiltonian of the box, HR is the CFT Hamiltonian,
and Hint is a small interaction that allows for transparent boundary conditions in the
gravitational description of the system. The Hamiltonian (5.1) will satisfy the spectral
requirements introduced in section 2, which are mainly inherited from the properties of the
black hole band of the CFT Hamiltonian.

The system is initialized at a state |Ψ〉 =
∑
i ci |Ei〉 that belongs to a high-energy

microcanonical band of total energy E � L−1. For our purposes we take |Ψ〉 to be a
semiclassical state of this band such as, for instance, some configuration of matter in AdS.
We will assume that the state |Ψ〉 involves a large number Neff of eigenstates of the band.
Under time-evolution, the matter will eventually collapse and form a large black hole in
AdS. The size of this black hole will depend on the size of the radiation box L, where we
are assuming that the energy is sufficiently large compared to L−1, i.e. EL & (L/lP )α for
some α > 1 that depends on the dimension.

Strictly speaking, this black hole is not an equilibrium state, since the state vec-
tor |Ψ(t)〉 will indefinitely explore the Neff-dimensional ergodic torus, TNeff . In particu-
lar, there will be quasi-periodic quantum fluctuations entering at Heisenberg timescales
tH ∼ (∆E)−1, where ∆E is the average energy difference between the energy eigenstates
participating in |Ψ〉. In the very long run, at timescales tP ∼ E−1 expNeff, these fluc-
tuations will coherently lead to Poincaré recurrences. For certain decaying correlation
functions, the quantum noise becomes the leading contribution at late times, and thus
the Lorentzian semiclassical description of the state is not good enough to reproduce this
non-perturbative quantum gravitational effect [21–28].
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The required time teq for the effective equilibration of the entanglement spectrum of ρR
is expected to be really small compared to tH . For the local Hamiltonian HR, entanglement
is expected to propagate in the form of a wavefront at an effective lightcone velocity veff [29–
36] and thus timescale for equilibration for the degrees of freedom of the box is of the order
teq ∼ L/veff. For the black hole degrees of freedom, information spreading occurs much
faster, so we expect that the entanglement of these degrees of freedom equilibrates after a
few scrambling times teq ∼ ts.

For t & teq we have provided general arguments in the previous sections to declare
that the Rényi entropies of the radiation will equilibrate to values which are approximately
given by (4.8), that is

TrR ρnR(t) ≈ TrR ρnR ≈ (TrR ρnR)eq, β , (5.2)

where β = ∂S/∂E is the inverse temperature associated to the microcanonical band. As-
suming that the interaction Hint is small, we can neglect its contribution to the canonical
ensemble and perform the factorization

ρβ = e−βH

Zβ
≈ e−βHR

ZRβ
⊗ e−βHR

ZRβ
. (5.3)

For notational purposes, we will defining the following quantities

ZRnβ = TrR
(
e−βHR

)n
, (5.4)

ZRnβ = TrR
(
e−βHR

)n
, (5.5)

which are in fact related to the thermal Rényi entropies on each of the subsystems.
For the factorized equilibration density matrix (5.3) the canonical equilibration value

of the purity (4.6) simplifies and yields

(
TrR ρ2

R

)
eq
≈

ZR2β
(ZRβ )2 +

ZR2β

(ZRβ )2
−

ZR2β
(ZRβ )2

ZR2β

(ZRβk)2
, (5.6)

Note that the first two terms correspond to e−S
R
β and e−S

R
β from the definition of the

thermal second Rényi entropy SRβ and SRβ of each of the subsystems. The equilibrated
value of the purity in terms of the second Rényi entropies is then(

TrR ρ2
R

)
eq
≈ e−S

R
β + e−S

R
β − e−(SRβ +SRβ ) . (5.7)

We will now analyze the origin of each term in (5.6) from the point of view of the
CFT (R system). First of all, there is an overall normalization of this expression which is
given by (Zβ)2 ≈ (ZRβ )2 (ZRβ )2 due to the form of the canonical density matrix (5.3). The
numerator of the first term involves a CFT path integral (ZRβ )2 which precisely cancels the
R−part of this normalization. Therefore, this term corresponds to two disconnected CFT
path integrals which in bulk variables will be dominated by a disconnected saddle consisting
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of two copies of the Euclidean black hole at inverse temperature β. This disconnected term
matches the contribution of the ‘disconnected saddle’ in previous replica calculations in
gravity.4

On the other hand, the second term corresponds to the CFT path integral ZR2β and
corresponds to two Euclidean strips of length β, interpreted in this context as two copies
of the CFT system, which are glued together in such a way that they form a single thermal
circle of length 2β. Since the replicas are already connected through the boundary con-
ditions, in bulk terms this path integral will be dominated by an Euclidean black hole at
inverse temperature 2β which will connect the two replicas.5 This connected term matches
the contribution of the ‘replica wormhole’ in previous replica calculations in gravity.

These observations lead to the hypothesis introduced in [5] that replica computations of
the purity of the radiation using the gravitational path integral (TrR ρ2

R)grav are effectively
reproducing each term of the equilibrium approximation (5.7).

However, the interpretation of the third term in (5.6) and (5.7) as arising from a
subleading gravitational saddle is less clear. In fact, we can rewrite (5.7) as

(
TrR ρ2

R

)
eq
≈

(
e−S

R
β + e−S

R
β

) (
1 − e−S

R
β

∞∑
m=0

(−1)m e
−m
(
SRβ −S

R
β

))
. (5.8)

In JT gravity models [1–3] the suppression in powers of SRβ agrees heuristically with the
genus expansion in powers of the extremal entropy S0, so these terms might appear at
the level of higher genus saddles of the gravitational path integral. However, there is a
somewhat obscure minus sign for each handle arising from the global minus sign of the last
term in (5.7). A possibility is that this term is prescribed from the long-time average in
the exact unitary description, and that it goes beyond the semiclassical gravitational path
integral. In this sense, it can be viewed as a ‘counterterm’ to restore exact unitarity at the
level of subleading saddles of the previous two quantities, ZR2β and (ZRβ )2.

Generalizing these results to higher Rényi entropies is again a matter of combinatorics.
Let |σ| ≡ k(σ) denote the number of cycles of σ ∈ Sn, each of length {s1, . . . , s|σ|}, and
similarly for σ′ = τσ for the cycle lengths {s′1, . . . , s′|σ′|}, where τ = (1, . . . , n). Given a
non-trivial partition π ∈ Πn\{πe} and a permutation σ ∈ Sn, let σπ ∈ Sn be the ‘coarse-
grained’ permutation that is constructed from σ by the rule of merging two of its cycles
(a1, . . . , aLs) and (b1, . . . , bLm) whenever some a and some b belong to the same ‘box’ Bl ∈ π.
Let |σπ| < |σ| denote the number of cycles of this permutation, of length {q1, . . . , q|σπ |},
and similarly for σ′π, for the lengths {q′1, . . . , q′|σ′π |}. In this notation, we can compute (4.8)

4In the model of [1], the radiation Hamiltonian HR is considered to be a projector into k states of the
radiation, which gives ZR

nβ = e−nβ k or equivalently SRβ = − log k.
5We assume that the temperature of the system is well above the Hawking-Page temperature T � R−1

so that the dominant saddle in ZR
2β is still a black hole.
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for the product density matrix (5.3), which gives

(TrR ρnR)eq ≈
∑
σ∈Sn

ZRs′1β
. . . ZRs′|σ′|β

ZRs1β
. . . ZRs|σ|β

(ZRβ ZRβ )n

+
∑
π∈Π∗n

απ |Sπ|
∑

σ∈Sn/Sπ

ZRq′1β
. . . ZRq′

|σ′π |
β Z

R
q1β

. . . ZRq|σπ |β

(ZRβ ZRβ )n
. (5.9)

In the first sum, only the σ = e contribution is related to a totally disconnected path
integral (ZRβ )n, with the dominant bulk saddle being n copies of the Euclidean black hole at
inverse temperature β. The rest of the terms involve a leading contribution of at least a con-
nected geometry coming from (Zsβk) for s > 1. The connectivity pattern of these leading ge-
ometries is ultimately related to the topology of the replica wormhole that reproduces each
term, which also follows the hierarchy between ‘planar’ and ‘non-planar’ contributions [1].
The gravitational replica calculation of the Rényi entropy of the radiation, (TrR ρnR)grav,
seems to be effectively capturing each term of the equilibrium approximation (5.2).

For the second sum, the terms are again reminiscent of further suppressed contributions
to the gravitational path integral, and they are responsible for restoring the exact unitary
description of the equilibrated value. In this case, the extra terms involve the coefficients
απ which do not seem to emerge from a boundary path integral like (4.12), but rather seem
to be combinatorial coefficients prescribed by the long-time average.

We will now consider the situation of an evaporating black hole in this setup. We will
first introduce the previous system inside a larger box R′ of length L′ � L. Let us couple
the small box to the large one by a Hamiltonian Hev responsible for evaporation, in such a
way that radiation escapes slowly compared to the equilibration time teq of the small box
(see figure 4). This ‘adiabatic approximation’ is a natural assumption for standard black
hole evaporation. For example, for a Schwarzschild black hole the evaporation time is of
the order of tev ∼ β SBH, while the equilibration timescale for the black hole degrees of
freedom is of the order of the scrambling time teq ∼ β logSBH.

Under this approximation, we can divide the full evaporation process in epochs of time
∆t, with teq � ∆t� tev. For example, we can consider ∆t as the time that it takes for the
black hole to loose 1% of its initial entropy. At epoch k, the system inside the small box
will have energy Ek, which is a monotonically decreasing function of k. We are assuming
that the initial energy E is so large that even after many emissions, say when it has lost
99% of its initial entropy, Ek is still large enough to correspond to a stable microcanonical
black hole in AdS.

Consider the radiation subsystem rad = R ∪ R′. The Rényi entropies and many
observables of the small box rapidly equilibrate, and therefore we can perform a slightly
stronger equilibrium approximation

Trrad ρnrad,k(t) ≈
(
Trrad ρnrad,k

)
eq
≈ Trrad ρnrad,k

∣∣∣
no ev

. (5.10)

The long-time average in the last estimation is taken in a different system where no evap-
oration is allowed. This ‘eternal’ system consists on a black hole inside the box of length
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Figure 4. Setup of the model of an evaporating black hole.

L, both at inverse temperature βk associated to the energy of the epoch, Ek, and no inter-
action with the larger box L′. In this way, we can perform the long-time integration with
no risk of loosing track of the black hole subsystem.

For simplicity, we consider the case in which HR =
∑
ω a†ω aω is a free Hamilto-

nian, with the corresponding one-particle Hamiltonian h =
∑
ω |ω〉 〈ω|. The one-particle

canonical partition functions are defined as zn(β) =
∑
ω e
−nβω, and sn(β) the correspond-

ing Rényi entropy. Let δs be the total number of degrees of freedom emitted in between
epochs. Once each emission happens, we can take L′ to be arbitrarily large and assume
from locality that the emitted quanta do not interact with previously emitted radiation.
Under this assumptions, the state ρk that approximates the equilibrium properties of |Ψ(t)〉
at epoch k is the product state

ρk = e−β1h δs ⊗ . . . ⊗ e−βk−1h δs ⊗ e−βkHR ⊗ e−βkHR . (5.11)

The equilibrium approximation (5.10) for this density matrix leads to the purity of the
radiation (

Trrad ρ2
rad,k

)
eq
≈ e

−(SR′k +SRβk
) + e

−SRβk − e
−(SR′k +SRβk+SRβk ) (5.12)

where SR′k = δs
∑k−1
j=1 s2(βj) is the total second Rényi entropy emitted before the epoch.

Similar considerations hold for higher Rényi entropies.
We have shown that the equilibrium approximation for the purity of the radia-

tion (5.12) reproduces an exact Page curve. At each epoch, all the terms in (5.12) can
be formulated as Euclidean path integrals over the corresponding subsystems. In particu-
lar, the second term corresponds at leading order to a connected saddle of the gravitational
path integral. Remarkably, (5.12) yields an exact pure state for the radiation ρR at the end
of evaporation, even though the adiabatic approximation becomes completely unjustified
at the last stages, where the emission timescale is comparable to the scrambling time of the
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black hole. The last term of (5.12) with the corresponding minus sign is responsible for this
effect. As we have argued, this minus sign seems to be prescribed from the exact unitary de-
scription of the equilibrated purity. Similar considerations hold for higher Rényi entropies.

6 Conclusions and outlook

In this note we have analyzed the equilibration of Rényi entropies under mild assump-
tions about the chaotic spectral properties of the Hamiltonian of a many-body quantum
system. The ergodic long-time average provides a microscopic equilibrium value for the
Rényi entropy (2.13) which retains information about the initial state of the system. The
averaged quantum noise relative to the long-time value is exponentially suppressed in the
microcanonical entropy whenever the subsystem comprises a non-negligible fraction of the
full system.

For initial states that excite a large number of energy eigenstates of the microcanonical
band, the long-time average of the Rényi entropy is approximated by the microcanoni-
cal (4.4) or the canonical (4.8) equilibrium ansatze of [5], with some extra structure that
contributes at the level of non-planar permutations. For local systems, each of the terms
in the canonical equilibrium approximation for the n-th Rényi entropy can be formulated
as an Euclidean path integral over n replicas of the system. The extra structure corre-
sponds to path integrals (4.12) with a more complicated pattern of connectivity between
the replicas, which is imposed by the extra projections.

Our results have certain similarities with Rényi entropies for Haar-typical states in
the microcanonical band [37–42], although we did not assume randomness of the initial
state nor of the Hamiltonian. Our considerations apply to atypical initial states which
remain atypical for Heisenberg timescales under generic k-local time evolution [43]. It
would be interesting to further investigate the scope of our results for states containing a
few eigenstates of the Hamiltonian, or even at the level of single chaotic eigenstates, where
all the terms in (2.13) become comparable [17–20].

In the context of AdS/CFT systems describing the semiclassical formation of a black
hole that reaches equilibrium with its radiation, the equilibrium approximation yields (5.7)
for the purity of the radiation, and (5.9) for the higher Rényi entropies. These expressions
have the same form as the replica calculations in semiclassical gravity, and the connection
is strengthen from the point of view of the CFT path integral that reproduces each term
of the equilibrium approximation. We leave the potential identification of the subleading
terms of the equilibrium approximation with subleading effects of the semiclassical path
integral for future investigation.

The case of the evaporating black hole can also be treated in this formalism under the
adiabatic approximation that allows to divide the evaporation process in quasi-equilibrium
epochs. A stronger version of the equilibrium approximation yields the purity at each
epoch (5.12), where βk = β(tk) is the inverse temperature of the black hole at time tk.
Each of the terms in (5.12) has also a formulation in terms of an Euclidean path integral
over replicas of the whole system, which is given at leading order by a gravitational saddle.
The last term in (5.12) is responsible for recovering an exact pure state of the radiation
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at the end of evaporation. It would be interesting to understand whether the semiclassical
path integral is able to capture this term with the minus sign in front, and in general the
απ coefficients of the corresponding terms for higher Rényi entropies.
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A Moments of ergodic long-time averaging

In this appendix, we compute the value of several long-time integrals for a Hamiltonian
with no rational spectral order. The integrals correspond to certain complex moments of
the homogeneous probability distribution on the ergodic torus TN . We will define the n-th
moment as the following integral:

e
−it
(

n∑
s=1

Eis −Ejs

)
= lim

T→∞

1
T

∫ T

0
dt e
−it
(

n∑
s=1

Eis −Ejs

)
, (A.1)

where the value of the i and j indices is unspecified in the range from 1 to N .
Generally, the integral as a principal value will only be non-zero when the overall phase

vanishes. For instance, the first moment yields a delta function

e−it(Ei−Ej) = δij . (A.2)

For the second moment, the final expression will consist of more terms than the naive
permutation of the indices. The reason is that we need to be careful with the over-counting
of configuration in which i1 = i2, since this particular case must yield

e−it(2EI−Ej1−Ej2 ) = δIj1 δ
I
j2 = δ

(I
j1
δ
I)
j2
, (i1 = i2 = I) . (A.3)

The explicit general formula that captures the above case is

e−it(Ei1+Ei2−Ej1−Ej2 ) = 2 δ(i1
j1
δ
i2)
j2

(
1− 1

2δ
i1
i2

)
, (A.4)

where we are not using the convention of summing repeated indices for the last term.
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Let us now proceed to the case of the third moment. There can be multiple possibilities
for coincident i-indices. The first one is that only two of them coincide, like for instance
i1 = i2 6= i3. This case will be given by

e−it(2EI+Ei3−Ej1−Ej2−Ej3 ) = 3!
2! δ

(I
j1
δIj2 δ

i3)
j3
, (i1 = i2 = I 6= i3) , (A.5)

where the prefactor arises from the double-counting of the permutations that swap the
equal I-indices. It can also be the case that all three i-indices coincide. In that case, the
prefactor must be different

e−it(3EI−Ej1−Ej2−Ej3 ) = δIj1 δ
I
j2 δ

I
j3 = δ

(I
j1
δIj2 δ

I)
j3
, (i1 = i2 = i3 = I) (A.6)

One can easily check that the fomula that encapsulates all the above cases is given by

e−it(Ei1+Ei2+Ei3−Ej1−Ej2−Ej3 ) = 3! δ(i1
j1
δi2j2δ

i3)
j3

(
1 − 1

2δ
i1
i2
− 1

2δ
i2
i3
− 1

2δ
i3
i1

+ 2
3 δ

i1
i2
δi2i3

)
.

(A.7)
The generalization for general n is straightforward once we do a little bit of combina-

torics. The integral will have the form

e
−i
(

n∑
s=1

Eis −Ejs

)
= n! δ(i1

j1
. . . δ

in)
jn

∑
π∈Πn

απ
∏
B∈π

∏
a,b∈B

δiaib . (A.8)

Let us explain this formula in more detail. The prefactor just represents the naive
ways of assigning the i indices to the j indices. The sum is over the set of partitions of the
set Nn = {1, 2, . . . , n}, denoted by Πn. A given partition π = {B1, . . . , Bk} just represents
that indices in each of the blocks Bi are equal. For example, for n = 7, the partition π =
{{3, 4}, {2, 5}, {1, 6, 7}} represents that i3 = i4, i2 = i5 and i1 = i6 = i7. This is the reason
for the two products, the first one being over the blocks of the partition, and the second
one over indices in each of the blocks, which must be set equal with the delta function. The
number of terms in the sum is therefore the number of partitions of a set of n elements,
which is called the Bell number Bn. This number grows super-exponentially for large n.

Now, we need to fix the απ coefficients in front of each of the terms in the sum. We
will do this recursively. First of all, the trivial partition πe = {{1}, {2}, . . . , {n}} that
represents the counting when all indices are different will have απe = 1. For a generic
partition π = {B1, . . . , Bk}, the total number of configurations that should be counted is
just given by the ways to arrange n elements on different boxes of sizes |Bi| = ni, that is,
n!/ (n1! . . . nk!). The reason is that all permutations that can be related by a permutation
of the identical indices leave the partition invariant.

The coefficient απ will only depend on the size of the boxes n1, . . . , nk. That is, it
depends on the equivalence class of the partition, where two partitions are equivalent if
their B’s have the same number of elements. These equivalence classes are just given by
the partitions of the natural number n, which are all the ways to decompose n as a sum
of positive integers. For instance, the trivial partition πe is the only element of the class
n = 1+1+ . . .+1 ≡ [1n]. All the partitions which have a pair, like {{1, 2}, {3}, . . . , {n}} or
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π [1n] [2, 1n−2] [3, 1n−3] [22, 1n−4] [4, 1n−4] [3, 2, 1n−5] [5, 1n−5]

απ 1 −1
2

2
3

1
4 −17

8
5
12

7
15

Table 1. First few values of απ for the finest partitions.

{{7, 56}, {1}, {2}, . . . , {n}}, will belong to the class n = 2+1+. . .+1 ≡ [2, 1n−2]. Partitions
that consist of a triplet will belong to the class n = 3 + 1 + . . . + 1 ≡ [3, 1n−3]. Partitions
with two distinct pairs will be of the class n = 2 + 2 + 1 + . . .+ 1 ≡ [22, 1n−4], and so on.

Let us start from all partitions of the class [2, 1n−2], that is, π consists of just one pair.
Already the trivial partition πe accounts for n! cases of this kind. All other terms in (A.8) do
not contribute since we are assuming that only two indices are equal, and therefore only the
actual partition and possibly finer partitions can only contribute. We therefore have that

n!
2! = n!

(
1 + α[2,1n−2]

)
⇒ α[2,1n−2] = −1

2 . (A.9)

For triplets, i.e. partitions in the class [3, 1n−3], we have that the trivial partition term
counts n! such cases, but some of the [2, 1n−2] partitions can also contribute. In particular,
there are

(3
2
)
such partitions that contribute. We therefore have

n!
3! = n!

(
1 +

(
3
2

)
α[2,1n−2] + α[3,1n−3]

)
⇒ α[3,1n−3] = 2

3 . (A.10)

For two doublets, i.e. partitions in the class [22, 1n−4], we would have
n!

2!2! = n!
(
1 + 2α[2,1n−2] + α[22,1n−4]

)
⇒ α[22,1n−4] = 1

4 . (A.11)

For quadruplets, i.e. partitions in the class [4, 1n−4], the result would be

n!
4! =n!

(
1 +

(
4
2

)
α[2,1n−2] +

(
4
3

)
α[3,1n−3] +

(
4
2

)
α[22,1n−4] + α[4,1n−4]

)
⇒ α[4,1n−4] =−17

8 .

(A.12)
For a general partition π = {B1, . . . , Bk}, only when we know all the coefficients for

finer partitions π′ < π will we be able to solve for the coefficient through the following
condition

n!
n1! . . . nk!

= n!
∑
π′≤π

απ′ ⇒ απ = 1
n1! . . . nk!

−
∑
π′<π

απ′ . (A.13)

For example, let us recover (A.7) from this general formula, by substituting n = 3.
The Bell number is in this case B3 = 5. The list of partitions of N3 is

πe = {{1}, {2}, {3}} ∈ [13] , (A.14)
{{1, 2}, {3}} ∈ [2, 1] , (A.15)
{{2, 3}, {1}} ∈ [2, 1] , (A.16)
{{1, 3}, {2}} ∈ [2, 1] , (A.17)
{{1, 2, 3}} ∈ [3] . (A.18)
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The coefficient for all these partitions can be read from table 1. The formula (A.8)
then particularizes exactly to (A.7).

The case for n = 4 will consist of B4 = 15 terms, which can be read from the table

e
−i
(

4∑
s=1

Eis−Ejs

)
= 4!δ(i1

j1
δi2j2δ

i3
j3
δ
i4)
j4

(
1− 1

2δ
i1
i2
− 1

2δ
i1
i3
− 1

2δ
i1
i4
− 1

2δ
i3
i2
− 1

2δ
i4
i2
− 1

2δ
i4
i3

(A.19)

+ 2
3 δ

i2
i1
δi3i2 + 2

3 δ
i1
i2
δi2i4 + 2

3 δ
i1
i3
δi3i4 + 2

3 δ
i2
i3
δi3i4 + 1

4 δ
i1
i2
δi3i4 + 1

4 δ
i1
i3
δi2i4 + 1

4 δ
i1
i4
δi2i3 −

17
8 δi1i2δ

i2
i3
δi3i4

)
.

The case n = 5 already has B5 = 52 terms, so writing (A.8) in an explicit form becomes
really tedious.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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