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1 Introduction

We study examples of symplectic duality, that is, duality between the Higgs and Coulomb
branches of a 3-dimensional N = 4 SUSY theory. Mathematically, this is a duality between
varieties with a complex-symplectic (or even hyperKähler) structure admitting a rotating
circle action.

We study quivers which are candidates for the symplectic duals of universal hyper-
Kähler implosions for various groups. We briefly recall some relevant properties of these
implosions here, referring the reader to [2–4] for a more detailed description.

The universal hyperKähler implosion for a complex reductive group G = KC with
maximal compact subgroup K, is supposed to be a complex-symplectic variety, that is
in fact hyperKähler in a suitable stratified sense. It has a complex-symplectic action
of KC × TC, where T is the maximal torus of K. This action is supposed to be the
complexification of a hyperKähler action of the compact group K × T . Moreover, the
dimension of the implosion is equal to the dimension of KC × TC.

HyperKähler reduction of the implosion by T , or equivalently complex-symplectic re-
duction by the complex torus TC, will give the Kostant varieties of the Lie algebra kC,
that is, the varieties we get by fixing the values of all Ad-invariant polynomials on this
Lie algebra. In particular, reduction at zero gives the nilpotent cone NG. This is consis-
tent with the dimension statements above, as each Kostant variety has dimension equal to
dimKC− rankKC. The remaining KC action on the implosion then descends to the natu-
ral action on the Kostant varieties. We can thus think of the implosion as a master space
which yields the Kostant varieties on reduction by the torus action at the appropriate level.

The implosion also has a description as a Geometric Invariant Theory quotient by the
maximal unipotent subgroup N of G = KC. Explicitly, the implosion is the GIT quotient

(G× n◦) // N (1.1)

where n◦ denotes the annihilator of n = Lie N in the dual Lie algebra g∗. We can view this
quotient as the complex-symplectic quotient, in the GIT sense, of the cotangent bundle
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T ∗G by N . The left action of G on T ∗G survives, but the right action is broken to a
TC action, giving the required action on the implosion. We recall that Kronheimer has
shown the existence of a complete hyperKähler metric on T ∗G, invariant under the action
of K ×K.

On choosing an invariant inner product on g, we may identify n◦ with the Borel algebra
b. Complex-symplectic reduction by TC = B/N then fixes the Cartan component of b to be
zero, and replaces the N quotient by a B quotient, yielding the GIT quotient (G× n) //B.
The fact that this gives the nilpotent cone is just the statement that the Springer resolution
G ×B n of the nilpotent cone is an affinisation map. We can view the implosion in this
way as occupying an intermediate position between the cotangent bundle T ∗G and the
nilpotent cone–the implosion is the symplectic reduction in the GIT sense of T ∗G by the
maximal unipotent, and further reduction by the complex torus yields the nilpotent cone.

In [3] two of the authors and Swann produced the implosion for K = SU(n) as a
hyperKähler quiver variety. As a complex-symplectic variety the implosion is known to
exist for general K by work of Ginzburg-Riche [5] (we note that as N is nonreductive it is
a nontrivial result that the quotient exists as an algebraic variety).

Implosion spaces should admit symplectic duals — in particular as mentioned above
the SU(n) implosion is a hyperKähler quotient of a linear space at level zero, so is an affine
variety with a conical structure and has a Sp(1) action rotating the complex structures.

The implosion spaces for SU(n) are intimately related to the Higgs branches of theories
with baryonic symmetries and hence there is a strong physical motivation to study these
spaces. More generally, hyperKähler quotients by groups of classical type are known to
play an important role in various physical constructions. In this context, implosion can be
seen as an abelianization of this process, as the quotient by a non-abelian group is replaced
by a quotient by its maximal torus.

In this paper we present candidates for the duals of the implosions for K = SO(2n)
and SO(2n + 1), extending the discussion for SU(n) in [1]. One test that we will perform
is to check that the dual spaces give the correct symmetry group of the original implosion.
Another check is on the dimension, using Nakajima’s observation that if the Higgs branch
is the hyperKähler quotient of a linear space M by a compact group H, then the Coulomb
branch should be birational to the quotient by the Weyl group of the cotangent bundle of
the complexified dual maximal torus of H; hence

dimR(Coulomb branch) = 4 rank H. (1.2)

We also do some checks that the hyperKähler quotient of the implosion by the torus action
gives the nilpotent cone, as expected.

2 Bouquet for orthogonal groups

For this section, we will focus on quivers whose Coulomb branch is the nilpotent cone of a
complex semisimple group G = KC. We introduce the process of explosion where a flavour
node of rank n is exploded into n rank 1 gauge nodes. These unbalanced nodes generate
the required Abelian symmetries in the Coulomb branch, as required for the implosion.
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The number of rank 1 nodes is chosen so as to preserve the balancing condition for the
remaining nodes in the original quiver, so that the G symmetry in the Coulomb branch is
preserved as well, so the implosion has commuting symmetries of G and its maximal torus
as required.

For unitary quivers this is well understood where we start with a T [SU(n)] theory with
SU(n) flavour node, n ≥ 2. We then explode the SU(n) flavour node into n U(1) gauge
nodes (recall that one has to ungauge an overall U(1) in the resulting unframed quiver).

n− 1 n

1

1

1

1

n

Quiver for the nilpotent cone NSU(n)

Explosion

Exploded quiver

1 2 1 2 n− 1n− 2

(2.1)

The resulting quiver has the global symmetry changed from SU(n) to SU(n) × U(1)n−1.
In [1] various computational checks for the duals of these examples were made, including
calculating the Hilbert series, verifying the dimension of the global symmetry group and
checking Nakajima’s equality, and checking that torus reduction yielded the nilpotent cone.

We now extend this to orthosymplectic quivers following the extension in the math-
ematical literature in [4]. We adopt the usual convention in our diagrams that red nodes
with label m denote orthogonal groups SO(m),1 and blue nodes with label 2k denote sym-
plectic groups USp(2k) = Sp(k). We recall that a USp(2k) gauge node is balanced if the
neighboring SO(mj) nodes satisfy:

4k = −2 +
∑

j

mj (2.2)

and an SO(m) node is balanced if the neighboring USp(2kj) nodes satisfy:

2m = 2 +
∑

j

2kj (2.3)

Note that for unframed unitary-orthosymplectic quivers, without SO(m) nodes with
odd m, the gauge group G is take to be the product of the groups Gi associated to the
nodes i, modulo a diagonal Z2:

G =
(∏

i

Gi

)
/Z2. (2.4)

This is not a choice of convention, but rather a necessity. Taking the gauge group to be∏
iGi yields a different Coulomb branch which differs by a Z2 quotient [7].
1The choice of SO or O is important here as the Coulomb branch is sensitive to discrete factors in the

gauge groups. For orthosymplectic quivers that are closures of maximal nilpotent orbits of SO(2n) and
SO(2n + 1), the Coulomb branch Hilbert series are computed explicitly in [6] and contains only SO and
USp gauge groups.
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We start by looking at the Coulomb branch of quivers that are nilpotent cones of
SO(2n) and SO(2n+ 1) for n ≥ 2. These are given explicitly in [8]. The unrefined Hilbert
series of the nilpotent cone of G takes a simple form:

HSNG
= PE

dim(G)t2 −
rk(G)∑
i=1

t2di

 (2.5)

where di are the degrees of Casimir invariants of G and PE is the plethystic exponential.
For quivers whose Coulomb branch is the nilpotent cone of SO(2n), the flavour node is
SO(2n) which we explode into n U(1) = SO(2) gauge groups. The USp(2n− 2) node thus
remains balanced, as do the nodes further down the chain. The Coulomb branch Hilbert
series for the exploded quivers take a more complicated form and perturbative Hilbert
series are presented in table 1.

Let us demonstrate this for n = 3 which gives us the following explosion:

2 2 4 4 6 2 2 4 4

1

1

1

Quiver for NSO(6)

Explosion

Exploded quiver (2.6)

Since the orthosymplectic quiver is unframed we ungauge a diagonal Z2, as stated in (2.4).
The Coulomb branch Hilbert series can be readily computed and is found to be the same
as the Coulomb branch Hilbert series of the exploded unitary quiver in (2.1) for n = 4.
This is not surprising due to the isomorphism so(6) ∼= su(4) but nevertheless validates our
approach in extending the explosion procedure to orthosymplectic quivers.

For general n ≥ 2, we thus have:

2 2 4 4 2n− 2 2n 2 2 4 4 2n− 2

1

1

1

1

n

Quiver for NSO(2n)

Explosion

Exploded quiver

(2.7)
Note that for n = 2, the exploded quiver has Coulomb branch H4.

The resulting global symmetry is the expected SO(2n)×U(1)n for n > 2. The Hilbert
series and plethystic logarithm for several members of this family are given in table 1. The
coefficient of t2 is

2n2 = n+ 2n(2n− 1)/2 = rank SO(2n) + dim SO(2n) , (2.8)
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in agreement with the dimension of the global symmetry group. The group by which we
hyperKähler quotient has rank n+2

∑n−1
i=1 i = n2, and the implosion has complex dimension

2n2 so real dimension 4n2, so Nakajima’s equality is satisfied.
For quivers whose Coulomb branch is the nilpotent cone of SO(2n + 1), the flavour

node is an USp(2n) (the Langlands dual of SO(2n+ 1)). After explosion, the flavour node
explodes into n U(1) nodes. For purposes of the balancing condition at the SO(2n) node,
the U(1) nodes behave the same as C1 = USp(2) (see the discussion in [7], for example)
hence the SO(2n) node remains balanced.

2 2 4 4 2n 2n 2 2 4 4 2n

1

1

1

1

n

Quiver for NSO(2n+1)

Explosion

Exploded quiver

(2.9)
The Hilbert series and plethystic logarithm for several members of this family are given

in table 2.
There might be concerns about the nature of the bouquet nodes and why they are U(1)

rather than SO(2) or USp(2). For the so(2n) type quivers in (2.7), the SO(2n) flavour node
explodes into n SO(2) nodes. Since SO(2) ∼= U(1), we can use either one. If we take instead
the so(2n + 1) quivers in (2.9), the flavour group is USp(2n) so in theory we can try to
explode it into n USp(2) nodes. This computation is done in table 3. Unfortunately, the
global symmetry does not match the quivers we require for the explosion quiver family
(since there are no U(1)n factors). However, it does give interesting results such as for
n = 4, where there is a symmetry enhancement from SO(9) to F4.

Another argument for the explosion of the rank n flavour nodes into n U(1) gauge
nodes follows from the property that taking the hyperKähler quotient of the exploded
quivers by U(1)n returns the quiver for the nilpotent cone, going from right to left in (2.7)
and (2.9). This is satisfied by all our exploded quivers, hence making them good candi-
dates for unitary-orthosymplectic quiver counterparts to the well known cases with unitary
quivers (2.1).

The SO(2n+ 1) universal implosion should have symmetry group SO(2n+ 1)×U(1)n,
whose complex dimension is 2n(n+ 1). We see that this appears as the t2 coefficient in the
Hilbert series for the displayed examples.

We can also check that this is consistent with Nakajima’s picture. The group by which
we perform the hyperKähler quotient has rank 2

∑n
i=1 i = n(n+ 1), and the implosion has

real dimension 4n(n+ 1), as expected.

2.1 HyperKähler quotient

Let us look at T [G], the nilpotent cone of G = SU(n), SO(2n), SO(2n + 1) and its ex-
plosion T̃ [G]. As shown in [1], one can recover T [G] from the exploded quiver through
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hyperKähler quotient.
C (T [G]) = C

(
T̃ [G]

)
///U(1)rank(G) (2.10)

It is well known that orthosymplectic gauge groups lack the U(1)J topological symme-
try that allows us to refine the Coulomb branch Hilbert series. However, we can partially
refine the Coulomb branch Hilbert series by assigning fugacities zi with i = 1, . . . , n for the
bouquet of n U(1) gauge nodes. The fugacities carry the U(1)J topological charge under
each of the U(1) gauge nodes. On the level of the Hilbert series the hyperKähler quotient
with respect to these charges takes the following form:

HST [G](t) = (1− t2)n
∮ n∏

j=1

dzj

2πizj
HS

T̃ [G](zj ; t) (2.11)

where G = SU(n), SO(2n), SO(2n+ 1).
The ability to do this further justifies our choice of using a bouquet of n U(1) nodes

for T̃ [SO(2n + 1)] rather than a bouquet of n USp(2) gauge nodes. This is because
USp(2) ∼= SU(2) does not have a U(1)J topological symmetry with which we can refine our
Hilbert series.

Let us demonstrate this with T̃ [SO(5)]:

(1− t2)2
∮ dz1dz2

(2πi)2z1z2
HS

T̃ [SO(5)](z1, z2; t) =

(1− t2)2
∮ dz1dz2

(2πi)2z1z2

[
1 + 12t2 +

(
4(1 + z2

1)(1 + z2
2)

z1z2

)
t3.

+
(

77 + 5
z2

1
+ 5z2

1 + 5
z2

2
+ 5z2

2

)
t4 + . . .

]
= 1 + 10t2 + 54t4 + · · · = HST [SO(5)](t)

(2.12)

An exact computation with the refined Hilbert series is time consuming so we checked and
matched the results to order t40 using perturbative computations.

Integer and half-integer magnetic lattice. In [7], it has been pointed out for un-
framed orthosymplectic quivers made of SO(2n), USp(2k) and U(m) gauge groups, one
can ungauge an overall diagonal Z2. The effect of ungauging this Z2 translates to changing
the magnetic lattice of the gauge groups to include half-integer magnetic charges. There-
fore, we can write the Hilbert series as HS = HSZ + HSZ+ 1

2
where HSZ comes from integer

magnetic charge contributions and HSZ+ 1
2
from half-integer magnetic charge contributions.

One thing to notice is that all the operators from HSZ+ 1
2
carry non-trivial U(1)J charges

from every U(1) node in the bouquet. Therefore, the contribution from HSZ+ 1
2
is zero after

taking a hyperKähler quotient. This result is expected because taking a hyperKähler quo-
tient over a U(1) gauge node is equivalent to turning it into a U(1) flavor node. Therefore,
even if we quotient over one of the U(1) nodes in the bouquet, it changes the exploded
quiver from an unframed orthosymplectic quiver to a framed orthosymplectic quiver. And
for a framed orthosymplectic quiver, the magnetic lattice only contains integer magnetic
charges and the Hilbert series is HSZ.

– 6 –
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Orbit Quiver Global
Symmetry Hilbert Series Plethystic

Logarithm

so(6)
2 2 4 4

1

1

1

SO(6)
×

U(1)3

1+18t2 +32t3 +206t4 +544t5 +1993t6 +
5344t7 +15531t8 +39040t9 +98672t10 +
O
(
t12)

18t2 + 32t3 +
35t4 − 32t5 −
305t6 − 672t7 −
59t8 + 4864t9 +
15662t10 +
O
(
t11)

so(8)
2 2 4 4 6 6

1 1

1 1

SO(8)
×

U(1)4

1 + 32t2 + 527t4 + 6144t6 + 57782t8 +
466656t10 +3339801t12 +21550576t14 +
126756294t16 + 685145416t18 +
3426352669t20 +O

(
t22)

32t2 − t4 +
192t6 − 194t8 +
672t10 +O

(
t11)

so(10)
2 2 4 4 6 6 8 8

1 1

1 1

1
SO(10)
×

U(1)5

1 + 50t2 + 1274t4 + 22050t6 +
291649t8 + 3145771t10 + 28843013t12 +
231437604t14 + 1660782225t16 +
10838595181t18 + 65196668471t20 +
O
(
t22)

50t2−t4 +99t8 +
411t10 +O

(
t11)

so(12)
2 2 4 4 6 6 8 8 10 10

1 1

1 1 1

1

SO(12)
×

U(1)6

1 + 72t2 + 2627t4 + 64752t6 +
1212821t8 + 18410088t10 +
235885925t12 + 2623730304t14 +
2048t15 +25859417578t16 +145408t17 +
229405181384t18 + 5232640t19 +
1854541984877t20 + 127229952t21 +
O
(
t22)

72t2− t4 +−t8 +
144t10 +O

(
t11)

so(14) 2 2 4 4 6 6 8 8 10 10 12 12

1 1

1 1 1

1

1

SO(14)
×

U(1)7

1 + 98t2 + 4850t4 + 161602t6 +
4078073t8 + 83129872t10 +
1425752755t12 +O

(
t14) 98t2 − t4 − t8 +

O
(
t11)

Table 1. Quivers whose Coulomb branches are the nilpotent cones of SO(2n) for n = 3, 4, 5, 6, 7 are fully ‘exploded’. The SO(2n) flavour node
turns into n U(1) gauge nodes. The Hilbert series and the plethystic logarithm are provided.
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Orbit Quiver Global Symmetry Hilbert Series Plethystic Logarithm

so(5)
2 2 4

1

1

SO(5)×U(1)2

1+12t2 +16t3 +97t4 +176t5 +
612t6 + 1168t7 + 3054t8 +
5728t9 +12640t10 +22768t11 +
44842t12 + 77312t13 +
140220t14 + 231936t15 +
394955t16 + 629232t17 +
1019236t18 + 1570512t19 +
2442031t20 +O

(
t22)

12t2 + 16t3 +
19t4 − 16t5 −
116t6−192t7 +
33t8 +1152t9 +
2764t10 +
O
(
t12)

so(7)
2 2 4 4 6

1

1

1

SO(7)×U(1)3

1 + 24t2 + 299t4 + 2682t6 +
19687t8 + 125058t10 +
705840t12 + 3592368t14 +
16656892t16 + 70957310t18 +
279781688t20 +O

(
t22)

24t2 − t4 +
106t6−107t8 +
252t10+O

(
t12)

so(9)
2 2 4 4 6 6 8

1 1

1 1

SO(9)×U(1)4

1 + 40t2 + 819t4 +
11440t6 + 122661t8 +
1077552t10 + 8086902t12 +
53392192t14316944489t16 +
1720172104t18 +
8648640839t20 +O

(
t22)

40t2 − t4 +
71t8 + 184t10 +
O
(
t12)

so(11)
2 2 4 4 6 6 8 8 10

1 1

1 1

1 SO(11)×U(1)5

1 + 60t2 + 1829t4 +
37760t6 + 593834t8 +
7586742t10 + 82007875t12 +
771321698t14 + 1024t15 +
6443119425t16 + 60416t17 +
48554821508t18+1811456t19+
334196827069t20 +
36792320t21 +O

(
t22)

60t2 − t4 −
t8 + 110t10 −
111t12 +
1024t15 +
O
(
t16)

so(13)
2 2 4 4 6 6 8 8 10 10 12

1 1

1 1 1

1

SO(13)×U(1)6

1 + 84t2 + 3569t4 +
102256t6 + 2222324t8 +
39073328t10 + 578877666t12 +
7432109337t14 +
84404062467t16 +
861258507989t18 +
7994156173400t20 + 4096t21 +
O
(
t22)

84t2 − t4 −
t8 + 142t12 −
143t14 − t16 −
t20 + 4096t21 +
O
(
t22)

Table 2. Quivers whose Coulomb branches are the nilpotent cones of SO(2n+ 1) for n = 2, 3, 4, 5, 6 are fully ‘exploded’. The USp(2n) flavour node
turns into n U(1) gauge nodes. The Hilbert series and the plethystic logarithm are provided.
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3 Bouquet for symplectic groups

Throughout this section, n is an integer ≥ 2. Above, bouquets for G = SU(n), SO(2n),
SO(2n+ 1) are investigated. The reason we haven’t investigated G = USp(2n) is because
the orthosymplectic quivers are all ‘bad’. In particular, some of the gauge nodes have
negative balance. Therefore, the monopole formula diverges and we cannot test any of
our conjectures through explicit computation. However, orthosymplectic quivers whose
Coulomb branch are conjectured to be closures of G = USp(2n) nilpotent orbits had been
studied through other means, in particular through brane configurations in [8–10]. With
this, one can construct the quiver for T [USp(2n)] where the USp(2n) global symmetry can
be read off following a new set of balancing conditions. Since the quivers are obtained from
brane configurations which are not sensitive to the difference between SO and O gauge
groups, we will stick with their algebras so in this section. For usp(2k), we need so(mj)
neighboring nodes such that 4k =

∑
j mj . For so(2m + 1), we need usp(2kj) neighboring

nodes such that 4m+2 =
∑

j 2kj . For 2n nodes arranged linearly satisfying these balancing
conditions will give a USp(2n). For T [USp(2n)], the flavor node is so(2n+1) and the gauge
node it is connected to is usp(2n). A very natural partition of the bouquet is into so(1)
and n u(1)s. Here, we know that the global symmetry for U(1) with n flavors where n > 2
is U(1). Therefore, the global symmetry of the following explosion based on the balance
of the gauge nodes give the expected Gglobal = USp(2n) × U(1)n. Note that the sum of
the ranks of the groups at the gauge nodes is n +

∑n
i=1 i +

∑n−1
i=1 i = n(n + 1), as in the

SO(2n+ 1) case discussed in the previous section.

1 2 3 4 2n 2n+ 1 1 2 3 4 2n

1

1

1

1

n

Quiver for NUSp(2n)

Explosion

Exploded quiver

1

(3.1)
Another natural partition is into a so(3) and n − 1 u(1)s. The exploded quiver takes

the following form:

1 2 3 4 2n 2n+ 1 1 2 3 4 2n

1

1

1

1

n− 1

Quiver for NUSp(2n)

Explosion

Exploded quiver

3

(3.2)
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However, the Coulomb branch for a SO(3) gauge group with n flavors has trivial global
symmetry (no contribution at order t2 in the Hilbert series) for n ≥ 3. Therefore, the global
symmetry is USp(2n)×U(1)n−1 which is not the expected result for implosion. Based on
the argument from global symmetry, we suggest the correct explosion is as in (3.1).

Comment on bad quivers. Since the quivers in this section are bad, and hence cannot
be checked with current Hilbert series techniques, we should address what we know exactly
about their moduli space. We will only consider the simplest example, the left quiver for
n = 1 in (3.1). There is a choice to make, whether the leftmost gauge node is an SO(1)
or O(1). The difference in moduli space is drastic. If we pick SO(1) then the theory
is equivalent to USp(2) with 4 fundamental half hypermultiplets. The classical Higgs
branch of this theory is the union of two cones, d2 = C2/Z2 ∪ C2/Z2. It is the nilpotent
cone of O(4). There is a Z2 = O(1) symmetry exchanging the two cones. The Coulomb
branch of this theory is D2 = (R3 × S1)/Z2, where the Z2 acts on both the R3 and the
S1. The resulting space has two singular points, which are both of A1 type [11]. The
O(1) symmetry exchanges the two singularities. The classical Higgs branch is distorted
quantum mechanically. In the full moduli space each C2/Z2 cone in the classical Higgs
branch emanates from a different singularity of the Coulomb branch.

We can now gauge the O(1) symmetry, leading to the second choice in (3.1), the
leftmost node now being O rather than SO. The resulting moduli space is much simpler.
The two cones in the Higgs branch are identified with each other, as are the two singularities
in the Coulomb branch. The Coulomb branch of this quiver is expected to be C2/Z2 [8]. We
can summarise this in figure 1, depicting the moduli spaces by their Hasse diagram [12, 13],
using red for Coulomb branch and blue for Higgs branch directions.

Since the Coulomb branch in the latter case is a hyper-Kähler cone, its Hilbert Series
is computable. However the monopole formula does not give the desired result, but rather
diverges. This is because something goes wrong with the conformal dimension formula for
‘bad’ quivers. One could hope to adjust to this formula for certain cases, where the quiver
is bad, but the Coulomb branch is a cone. We leave this for future work.

A A bouquet of USp(2) nodes

In this section, we list some interesting results for the explosion of T [SO(2n+ 1)] quivers
with the choice of a bouquet of USp(2) gauge nodes rather than U(1) gauge nodes that is
discussed in section 2.

For a USp(2) gauge group with n flavors, we need n ≥ 3, otherwise the gauge node has
negative imbalance and the monopole formula diverges. The first such case is T [SO(7)],
where a bouquet of USp(2) gauge nodes takes the form:

2 2 4 4 6 6 2 2 4 4 6

Quiver for NSO(7)

Explosion

Exploded quiver

2

2

2

(A.1)
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Quiver Moduli Space Hasse diagram

SO(1) 2 3

=
2 O(4) O(1)

A1 A1 A1 A1

O(1) 2 SO(3) A1 A1

Figure 1. Depiction of the difference in moduli space choosing O(1) over SO(1) in the left quiver
of (3.1) for n = 1. In the Hasse diagram red lines denote Coulomb branch directions, while blue
lines denote Higgs branch directions.

We see here that all the gauge nodes are balanced, yet the Coulomb branch Hilbert series
diverges. This is not too surprising as a quiver can be bad even if none of the individual
gauge nodes are bad. This is often observed for orthosymplectic quivers.

For n ≥ 4, the Coulomb branch Hilbert series no longer diverges. Using the fact
that the Coulomb branch of USp(2) gauge group with n flavors and n ≥ 3 has trivial
global symmetry, we know that the global symmetry of the exploded quiver will just be
SO(2n + 1). This is reported in table 3. However, for n = 4, there is a contribution from
HSZ+ 1

2
at order t2, hence enhancing the global symmetry. The enhancement from HSZ+ 1

2
comes in the spinor representation of SO(9) which results in F4 of dimension 52.
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Orbit Quiver Global
Symmetry Hilbert Series Plethystic

Logarithm

so(9)
2 2 4 4 6 6 8

2 2

2 2

F4

1 + 52t2 + 1455t4 + 28834t6 +
449122t8 + 5793780t10 + 63853945t12 +
613989328t14 + 5232181818t16 +
40010832518t18 + 277431116267t20 +
O
(
t22)

52t2 + 77t4 +
26t6 − 2394t8 −
5442t10+O

(
t12)

so(11)
2 2 4 4 6 6 8 8 10

2 2

2 2

2 SO(11)

1 + 55t2 + 1544t4 + 32t5 + 29535t6 +
1888t7 + 433464t8 + 56608t9 +
5209798t10+1151360t11+53454368t12+
17885120t13 + 482022542t14 +
226457760t15 + 3904141695t16 +
2435618944t17 + 28892424245t18 +
22895407232t19 + +198088208252t20 +
192087708320t21 +O

(
t22)

55t2 + 4t4 +
32t5 + 55t6 +
128t7 − t8 +
160t9 + 429t10 +
O
(
t11)

so(13) 2 2 4 4 6 6 8 8 10 10 12

2 2

2 2 2

2

SO(13)

1 + 78t2 + 3086t4 + 82550t6 +
1679237t8 + 64t9 + 27703312t10 +
5312t11 + 386049641t12 + 223040t13 +
4673378944t14 + 6315904t15 +
50165955517t16 + 135683648t17 +
485045344353t18 + 2358618624t19 +
4276770597522t20 + 34556791744t21 +
O
(
t22)

78t2 + 5t4 +
77t8 + 64t9 +
O
(
t11)

Table 3. Quivers whose Coulomb branches are the nilpotent cones of SO(2n + 1) for n = 4, 5, 6 are fully ‘exploded’. The USp(2n) flavour node
turns into n USp(2) gauge nodes. The Hilbert series and the plethystic logarithm are provided.
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