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1 Introduction

Computational complexity is relevant to the study of quantum gravity in (at least) two

ways: in its traditional role as a measure of the difficulty of carrying out tasks [1]; and as

a possible holographic dual for properties of the spacetime behind horizons [2–4].

Harlow and Hayden [1] studied the complexity of the task of distilling a single qubit

of information from Hawking radiation. They argued that the complexity of distillation

grows exponentially with the entropy S of the black hole.

Later, in the context of the AdS/CFT duality, one of us proposed a holographic iden-

tification between the computational complexity of an entangled pair of boundary states

and the size of the Einstein-Rosen bridge in the dual two-sided black hole [2].

At first sight there seems to be some tension between these two roles of complexity.

While the complexity of decoding Hawking radiation is exponential in S, the volume of the

wormhole connecting the black hole to its radiation is only polynomial.

The source of the discrepancy is that we are using two different definitions of com-

plexity. The decoding task [1] is only hard because we are restricted to act solely on

the radiation outside the black-hole horizon. In ref. [2] there is no such restriction. The

distinction between restricted and unrestricted complexity will be a central theme of this

paper. In particular we will be interested in the distinction between the holographic dual

of unrestricted complexity, which was the subject of [2–4], and the holographic dual of

restricted complexity, which will be a subject we will develop in this paper. The main

point of this paper is not to prove the Harlow-Hayden conjecture — like almost everything

else in complexity theory this is too hard — but to explain how it may be related to the

geometry of wormholes.

Consider one possible decoding ‘strategy’ for distilling information while acting solely

on the Hawking radiation.1 The first step in this strategy is to gather the radiation and

collapse it into a second black hole. This new black hole is entangled with the first black

hole, and the entanglement can be interpreted, according to ER=EPR [5], as a wormhole

connecting them. At the Page time the wormhole would have a volume of order S2, far

less than the exponential complexity claimed by Harlow and Hayden, but still too large to

easily implement the decoding. The next step would be to apply unitary operations to the

second black hole in order to shorten the wormhole and bring it to the thermofield-double

state. In that state the two horizons have no separation between them, and the structure

of the entanglement is especially simple. Once this is accomplished the decoding should be

easy. The only potentially hard step in this strategy, therefore, is shortening the wormhole.

Since the only potentially hard step is shortening the wormhole, and since the Harlow-

Hayden argument shows that decoding information from the Hawking radiation alone is

indeed exponentially hard, we conclude that shortening the wormhole from one side must

be exponentially hard. This situation suggests that there must be some kind of obstruction

in the wormhole, an obstruction which prevents us from efficiently shortening the wormhole

from one side. Moreover this obstruction cannot be large volume, since the volume is not

large.

1We emphasize that this strategy is chosen more for illustrative clarity than engineering practicality.
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Figure 1. A spatial slice through a ‘Python’s Lunch’ geometry. On the far left, the wormhole opens

up to one asymptotic region with infinite cross-sectional area; on the far right, the wormhole opens

up to the other asymptotic region also with infinite cross-sectional area. In AdS-Schwarzschild black

holes the cross-sectional area reaches a minimum in the middle of the wormhole, and increases on

either side. By contrast, in the Python’s Lunch geometry the cross-sectional area first shrinks, then

grows, then shrinks, then grows again, giving rise to a bulge in the middle of the wormhole — the

eponymous Lunch. AL and AR are the areas of the minimal surfaces on each side and Amax is the

area of the luncheon bulge.

In this paper we will conjecture that the geometric obstruction is a bulge in the worm-

hole, which because of its shape we call the “Python’s Lunch”, as depicted in figure 1. We

will estimate the complexity of bypassing the Python’s Lunch, and find that, consistent

with the Harlow-Hayden claim, it is indeed exponential. In eq. (4.6) we will conjecture

that the restricted complexity is dual to the size of the Python’s Lunch via

CR[UPL] ∼ exp

[
1

2

Amax −AR
4G~

]
, (1.1)

where Amax is the maximum cross-section of the wormhole and AR is the size of the throat

connecting the wormhole to the radiation.2 In eq. (4.8) we will make a covariant general-

ization of this conjecture. This proposal for the geometric dual of the restricted complexity

is complementary to existing conjectures about the geometric duals to unrestricted com-

plexity [2–4].

Despite our focus on restricted complexity, in section 7 we find that one-sided Python’s

Lunches can also teach us about unrestricted complexity. We suggest an improvement to

the definition of unrestricted holographic complexity conjectured to be dual to volume

& action in refs. [2–4]. Specifically, we argue that these conjectures should have defined

complexity to permit not only unitary gates but also non-unitary projections.

2 The shortening of wormholes

In much of what follows we will assume that black holes can be modeled as “quantum

computers” by which we mean collections of N qubits evolving by means of k-local all-to-

2This conjecture is expected to be valid for states with semi-classical geometry where complexity of the

state on bulk degrees of freedom is not very large.
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all Hamiltonians or discrete gates. The number of qubits is determined by the entropy of

the black hole,3

N ∼ S. (2.1)

We will encounter both (unitary) operator complexity and relative state complexity.

The complexity of a unitary operator U may be defined as the minimal number of

2-qubit gates g needed to prepare it; in other words the smallest n for which

U = gngn−1 . . . g1. (2.2)

There are other definitions but for our purposes this definition will do. The complexity of

U will be denoted by C(U). By construction, it satisfies

C(U) = C(U †) . (2.3)

The relative complexity of two states |ψ〉 and |φ〉 is defined as the complexity of the

least complex unitary that connects them |ψ〉 = U |φ〉. In other words it is the minimum

number of gates required to transform |φ〉 to |ψ〉,

|ψ〉 = U |φ〉 = gngn−1 . . . g1|φ〉.

Relative complexity is denoted by C(ψ, φ). Due to eq. (2.3), it is symmetric in its arguments

C(ψ, φ) = C(φ, ψ). (2.4)

Unitary matrices represent operators,

U =
∑
IJ

UIJ |I〉〈J | (2.5)

where I, J label a complete basis of N qubit states in the computational basis. The same

matrix plays a second role in representing a maximally entangled state of 2N qubits,

|Ψ〉 =
1

2N/2

∑
IJ

UIJ |I〉|J̄〉, (2.6)

where |J̄〉 is the time reversal of |J〉.
A special case is UIJ = δIJ which describes the infinite temperature thermofield-double

state,

|TFD〉
∣∣∣
T=∞

=
1

2N/2

∑
I

|I〉|Ī〉 . (2.7)

The infinite temperature |TFD〉 state may also be written as a product of N Bell pairs,

|TFD〉
∣∣∣
T=∞

= |Bell〉⊗N . (2.8)

The thermofield-double state of a two-sided black hole is a finite temperature state of

an infinite number of qubits, but is often modeled as an infinite temperature state of a

3Modeling black holes as a quantum computer has been extremely fruitful in the study of quantum

information scrambling [6, 7], onset of random matrix behavior [8] and derivation of the RT formula [9].
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finite number of qubits. We too will make that approximation, so by |TFD〉 we will mean

the state in eq. (2.8). The state |TFD〉 is the simplest case of a maximally entangled state.

The two subsystems called A and B are under the control of Alice and Bob respectively.

The natural evolution of the system is governed by an overall Hamiltonian which is the

sum of two non-interacting terms,

H = HA ⊗ 1 + 1⊗HB . (2.9)

For simplicity we will assume that the two Hamiltonians are identical and real (so that we

don’t have to worry about the details of time reversal).

The natural time evolution operator is a product,

U(t) = UA(t)⊗ UB(t) = e−iHAt ⊗ e−iHBt. (2.10)

We will define the time-evolved state |TFD(t)〉 by

|TFD(t)〉 ≡ U(t)|TFD〉 . (2.11)

In the maximally entangled case |TFD(t)〉 can be constructed by evolving on only one side

for a total time 2t,

|TFD(t)〉 ≡ UA(t)⊗ UB(t) |TFD〉
= UA(2t)⊗ 1 |TFD〉
= 1⊗ UB(2t) |TFD〉 . (2.12)

As t evolves, the linearly growing complexity of the state is dual to the linearly growing

volume of the wormhole. For sub-exponential times the complexity is the sum of the

complexity of UA(t) and UB(t) which is equal to the complexity of UA(2t) and of UB(2t).

Given the evolved state |TFD(t)〉 Alice can return it to the initial TFD by applying

U †A(2t). We will think of doing this in a series of small steps of low complexity,

|TFD〉 = (U †A)ε(U †A)ε · · · (U †A)ε|TFD(t)〉. (2.13)

Pictorially Alice is shortening the long wormhole by a series of incremental small steps, as

illustrated in figure 2.

Bob may also accomplish the shortening by acting on |TFD(t)〉 with U †B(2t), or Alice

and Bob may act together with U †B(t1)U †A(2t− t1).

Here are some questions to consider:

• Why might one be interested in shortening a wormhole? There are a number of

reasons. One that we have already mentioned is that it would be a step in decoding

Hawking radiation.

A second would involve the use of the entanglement as a resource for quan-

tum teleportation. Quantum teleportation requires the use of pre-existing entangled

qubits. Not only must these qubits be entangled, they must also be brought to have

low complexity in order to successfully teleport. In the language of ER=EPR, if we

want to make a wormhole traversable [10, 11], we first need to make it as short as

possible.

– 4 –
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Figure 2. Successive spatial slices through the wormhole. Since the two sides are maximally

entangled, Alice is able to shorten the wormhole by unitary operations UA ⊗ 1 that act only on

her side.

• Why might one want to shorten the wormhole by processes which do not couple the

two sides? If the two sides are being used to communicate over a long distance then

coupling them quantum-mechanically may be unfeasible. Thus there are practical

reasons why one might be interested in the complexity of shortening a wormhole by

acting on it from one side.

• Are there situations in which it is easy to shorten a wormhole by interactions which

involve both sides, but in which it is extremely difficult to do so from one side?

• Most of all we are interested in whether the answer to the previous question correlates

with geometric properties of the wormhole, and if so, what properties?

With regard to this last question, we will argue that there is a particular kind of geo-

metric obstruction which prevents us from efficiently shortening a wormhole by one-sided

operations, even though the wormhole has small volume and can be easily shortened by

two-sided operations. The shape of the obstruction suggests the name “Python’s Lunch”.

3 Restricted and unrestricted complexity

The restricted complexity CR of a maximally entangled state of 2N qubits is the number of

gates needed to construct it from the TFD state under the restriction that all gates act only

– 5 –
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Figure 3. Left: the quantum circuit that prepares UA(t) ⊗ UB(t)|TFD〉. Right: the quantum

circuit that prepares UA(2t)⊗ 1|TFD〉. The two states are the same.

on one side.4 We will sometime use CR,A to indicate that the restriction is on a specific

subsystem (A in this case). Without loss of generality we can assume the gates all act

on Alice’s side or we may distribute them symmetrically between the two sides. A useful

picture is provided by the tensor network (TN) description. The state |Ψ〉 is represented

as a TN as in figure 3.

The restricted relative complexity of |Ψ〉 and |TFD〉 is also the complexity of the

unitary operator U corresponding to |ψ〉, as defined in (2.5).

By acting with a layer of gates on Alice’s side, a layer can be removed from the TN. By

repeating this operation enough times, as in figure 4, the state can be brought to the simple

state |TFD〉. The minimal number of gates needed to carry out the shortening operation

defines5 the restricted complexity of |Ψ〉.
The restricted complexity would be an appropriate measure of the difficulty of the task

of shortening the wormhole if the two computers were too far apart to directly couple.

The unrestricted complexity CU is the number of 2-qubit gates needed to complete the

shortening task, allowing for gates which couple the two computers. Figure 5 shows such

an unrestricted circuit.

It is obvious that CR ≥ CU . In this paper we will be interested in the conditions

under which the restricted complexity may be exponentially larger than the unrestricted

4What we call the ‘restricted complexity’, Aaronson [12] calls the ‘separable complexity’.
5Note that this definition of complexity is in terms of processes which bring the state back to a simple

state rather than processes which prepare the state starting with the simple state. For circuits built from

unitary gates the two are the same, but for more general concepts of complexity that may make use of

non-unitary elements the two may differ significantly. Later we will consider tensor networks that include

non-unitary elements such as projections where this distinction is relevant.
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Figure 4. By acting with UA(t)† ⊗ 1 in a series of incremental k-local steps, Alice can undo time

evolution, thus mapping UA(t)⊗ 1|TFD〉 back to |TFD〉.

Figure 5. A unitary UAB cannot in general be decomposed as UA ⊗ UB . In the example in this

figure, the horizontal red links between the left and right sides represent gates which couple qubits

on the two sides.
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Figure 6. The tensor network that corresponds to the Python’s Lunch geometry. The throats and

bulge (where the girth is constant) are composed of unitary gates, whereas the shoulders (where

the girth changes) involve projections like those shown in figure 7.

complexity. This subject is not new; it was introduced by Harlow and Hayden [1] in the

context of black hole physics, and elaborated on by Aaronson [12]. Our particular interest

is to understand this large gap between restricted and unrestricted complexity through the

geometry of the wormholes connecting entangled systems. The question is: can we identify

the situations in which CR � CU from the shape of the wormhole? To put it another way,

can we identify a geometric obstruction to shortening the wormhole from one side?

If the state |Ψ〉 was prepared by acting with restricted gates on |TFD〉, and if the num-

ber of such gates is not exponentially large, we expect CU = CR. On the other hand if |Ψ〉
was prepared from |TFD〉 by a circuit that allows interaction between the two computers,

then we expect CR,A � CU (assuming the circuit is longer than the scrambling length). In

particular if the number of unrestricted gates used in preparing |Ψ〉 is enough to scramble

the system then Harlow and Hayden have argued that the restricted complexity CR,A will

be exponential in N, and the same for CR,B. At the same time the unrestricted complexity

may be no bigger than polynomial in N .

4 The Python’s Lunch

We now come to the Python’s Lunch geometry: a wormhole with a bulge, as illustrated

in figures 1 and 6. For simplicity we will assume that it consists of three regions, all of

length polynomial in N , where N denotes the entropy (number of qubits). The two outer

regions have area AL ≈ N · (4G~) and AR ≈ (1 + γ)N · (4G~), where γ > 1 is a numerical

constant. The bulge between the two outer regions has larger area,

Amax = (1 + α)N · (4G~), (4.1)

where α > γ is a constant independent of N . In order to count as a Python’s Lunch, we

will mostly assume that the length must be larger than the scrambling time t∗ ∼ logN .

An alternative way to look at this geometry is as the tensor network (TN) in figure 6

which prepares a two-sided state.

If all the vertices in the tensor network were unitary gates, the number of qubits would

be the same for every vertical cross-section, but tensor networks (unlike standard quantum

circuits) allow certain non-unitary vertices called isometries. Inspection of figure 6 shows

– 8 –
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i

j

k

|0i

Figure 7. An isometry of |i〉 → |j〉|k〉, represented as the projection of a unitary matrix. Such

components make up the ‘shoulders’ on the Python’s lunch shown in figure 6, where the |0〉 ‘leg’ is

omitted.

Figure 8. Zooming in on the ‘shoulder’ of the Python’s Lunch in figure 6.

that some of the vertices involve three edges; those are the isometries. They occur in the

transition regions where the area varies.

An isometry can be thought of as a unitary gate in which one of the legs has been

projected onto the state |0〉 as shown in figure 7. This allows us to draw the TN as a

collection of edges connecting unitary gates, but with a subset of the edges being projected.

A portion of the TN with isometries is shown in figure 8. Reading the tensor network from

left to right, the tensor network expands when we input an ancilla qubit, and contracts

when we post-select on a qubit. In general, the number of input ancilla qubits, mL = αN ,

can be different from the number of post-selected qubits, mR = (α− γ)N = βN .

One question is whether the operator defined by the TN in figure 6 is approximately

unitary, or equivalently, is the two-sided state that it defines approximately maximally

entangled? So long as the right end of the tensor network is larger than the left end (at

leading order), the TN will generically be an almost perfect isometry from the left to the

right. The state on the left will therefore be almost exactly maximally entangled with the

state on the right. We shall assume that this is indeed the case.

With this assumption the TN can be shortened from the right by one-sided unitary

operations. But the question is how many one-sided k-local operations are required? If

the TN is small — say of polynomial size — one might conclude that the number of gates

should also be small, but that is not the case.

4.1 Using ancilla qubits

Let’s consider an initial state |I〉 in the computational basis and act on it with the TN,

inserted from the left side. The output state is

|ψ〉 ∝ 〈0|⊗mR UTN|I〉 |0〉⊗mL , (4.2)

– 9 –
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where UTN is the original map from left to right defined by the tensor network, |I〉 is the

input state on the left, and |ψ〉 is the normalized output state on the right side after post-

selection. We will be interested in the relative complexity of |I〉 and |ψ〉, when we allow

Alice to prepare mL ancilla qubits that start at |0〉 and in the end mR qubits finish in |0〉
state.

We begin on the left side of figure 6, and working from left to right, apply the unitary

gates. The isometries on the left ‘shoulder’ of the Python’s Lunch are straightforward; we

simply couple in the ancilla and treat the isometries as unitary circuit elements.

But when we arrive at the right ‘shoulder’ the isometries correspond to final state

projections (post-selections). Final state projections are not physically implementable

processes, so we must do something new. That new thing is measurement: as Alice arrives

at each isometry she simply measures the dangling qubit in figure 8 in the Z basis.6 If she

gets 0 she moves on to the next isometry and repeats the process. If at the end of all the

isometries all measurements give 0 she moves on to the right of the TN and at the end she

has prepared |ψ〉.
However, if she measures 1 at some point she starts over and repeats the entire process,

until she succeeds in obtaining 0 for all post-selected qubits. On average she will have to

repeat the procedure 2mR times, for mR post-selected qubits.7 The total number of gates

she will have to apply is of order

2mR · CTN

where CTN is the number of nodes in the TN.

If this were the minimal protocol we would say that the complexity C(ψ, I) is of order

2mRCTN.8 However, in the appendix we show that there is a more efficient quantum

procedure using a version of Grover’s algorithm (which was applied to a similar problem

by Kitaev and Yoshida in ref. [13]).

4.2 The complexity of the Python’s Lunch

In appendix A.2, we describe a protocol that uses Grover search to prepare the |ψ〉⊗|0〉⊗mR

from an initial state |I〉⊗ |0〉mL with a unitary circuit using 2
mR
2 CTN gates. Assuming that

the length of the lunch is greater than the scrambling time, there is no reason to think that

the task can be performed with fewer gates, thus implying that

C(ψ, I) ≈ 2
mR
2 · CTN . (4.3)

Our initial version of this protocol works only for a single fixed input state |I〉.
In contrast, we are really interested in finding a unitary operation UPL that satisfies

|ψ〉 |0〉mR = UPL |I〉 |0〉mL (4.4)

6Of course, measurements are still not unitary and so are not traditionally allowed when calculating

the complexity of a state. In contrast, the faster Grover-search protocol that we discuss below is genuinely

unitary.
7Here we assume that the bulge of the tensor network is longer than scrambling time. This assumption

is made to insure that the distribution over post-selected qubits is uniform and is given by 1/2mR .
8As before, this assumes that we allow measurements in our definition of complexity.

– 10 –
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for any input state |I〉.9 In appendix A.4, we such a ‘state-independent’ protocol by a

variant on the usual Grover-search algorithm.

Our state-independent protocol succeeds with high probability for any input state |I〉,
given either the assumption that there exists an exact isometry from left-to-right, or simply

the assumption that the right system is parametrically larger than the left system and that

the tensor network is scrambling (and so can be modelled using 2-designs). The complexity

of this protocol is again given by 2
mR
2 CTN.

Since we have no good reason to think that a faster algorithm exists, we conjecture that

C[UPL] ≈ 2
mR
2 · CTN . (4.5)

Since we have assumed that mR is a finite fraction of N, i.e., mR = βN , the complexity of

UPL is exponential in N.

That is our main technical result: that the complexity of a TN is expected to be

O
(

2
mR
2 CTN

)
where mR is the difference between the maximal area of the lunch and the

area of the right side (or, more generally, the larger side). In particular when mR ∼ N the

complexity is exponential in the number of qubits N at either end. The surprising point

about this result is that the TN that prepares C(UPL) can be as small as CTN ∼ N logN.

We can now use the analogy between tensor networks and bulk geometry to conjecture a

relationship between the restricted complexity and the geometry of a Python’s Lunch.

Restricted complexity conjecture. In a Python’s Lunch geometry with min-max-

min areas AL,Amax and AR, and with the assumption AL < AR, we conjecture that the

restricted complexity on the right system is

conjecture: CR[UPL] = (const.)× CTN · exp

[
1

2

(Amax −AR)

4G~

]
, (4.6)

where CTN denotes the size of the tensor network and is related to the volume/action of

the wormhole (CTN = V/G~lAdS) from the CV/CA conjectures [2–4].

In particular, if AL ≈ N · (4G~), Amax ≈ (1 +α)N · (4G~), and AR ≈ (1 + γ)N · (4G~)

the complexity of decoding from the right system alone is

CR[UPL] ≈ (const.)× CTN · e(α−γ)N/2, (4.7)

where CTN ≥ N logN .

4.3 Post-selection is superpolynomial

In the previous subsection we argued that we can decode Hawking radiation by projecting

out m qubits, and provided a version of a Grover search [14, 15] that allows to do this

projection with a unitary that has complexity
√

2m. Can we rule out the possibility that

there is an even faster algorithm that can perform this projection?

On the one hand, we can almost certainly rule out the possibility that there could

be an exponentially faster algorithm. There cannot be an algorithm that projects onto m

9This requirement is not sufficient to specify UPL completely. Instead, our conjecture is that the minimal

complexity of any unitary operator, satisfying (4.4), is given by (4.5).
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qubits in a time that scales polynomially with m. Or — more precisely — if there were

such an algorithm then it would contradict widely held conjectures about computational

complexity theory. The complexity class of decision problems you can solve on a quantum

computer if you were allowed post-selections (including post-selections onto states with

exponentially small amplitude) is called PostBQP. It has been shown [16] that PostBQP is

a fantastically powerful class — it is equal to the class PP. Conversely, if you could use a

normal quantum computer to implement exponentially rare projections in polynomial time,

this would imply BQP=PostBQP. Taking these results together would imply BQP=PP.

But PP is a very large class that contains all sorts of problems not believed to be efficiently

soluble on a quantum computer, including NP.10 It would therefore be in gross violation

of widely held complexity assumptions if we could post-select in a time polynomial in m.

On the other hand, it is not obvious how to rule out the existence of a polynomially

faster algorithm, that would still take a time exponential in m. It is not obvious that there

can’t be a protocol that would improve (say) the square root to a cube root. (The effect

of such a speed up would be to change the coefficient in the exponent of the conjecture

eq. (4.6) from 1/2 to 1/3.) It has been proved that Grover search amongst d items cannot

be implemented faster than π
4

√
d [17–19],11 but we have an advantage not available in the

Grover task, which is that we know in advance which final state we wish to post-select on.

4.4 Covariant Lunches

So far in this paper, to determine whether the spacetime contains a Python’s Lunch we

have implicitly assumed the existence of some preferred choice of bulk Cauchy slice. This

is, in large part, a limitation of the tensor network toy models that we have been using

to guide us and which resemble a bulk Cauchy slice rather than a full bulk spacetime.

However, for the non-static spacetimes that we will be considering in future sections, it is

not obvious how the correct slice should be chosen.

In earlier work, the complexity was conjectured to be dual to the volume of the maximal

volume slice. An obvious possibility is to work entirely within this slice.

10Let us see how the ability to post-select would allow us to solve problems in NP. The classic NP-

complete problem is 3SAT. An instance of 3SAT is a map f(~x) from m Boolean variables to one Boolean

variable (1=true or 0=false). Supposing there is exactly one assignment ~x that makes f(~x) come up true,

our job is to find it. This problem is in NP because given a candidate ~xanswer it is easy to check whether

f(~xanswer) = 1; on the other hand it may be hard to find ~xanswer. On a quantum computer, we could test all

the possibilities at once by building a circuit that implements Ucircuit|~x〉|0〉 = |~x〉|f(~x)〉 and then plugging

in an superposition over all possible inputs,

Ucircuit

(
1√
d

∑
~x

|~x〉|0〉

)
=

1√
d
|~xanswer〉|1〉+

1√
d

∑
~x 6=~xanswer

|~x〉|0〉,

but this generally doesn’t help, because even though the wavefunction ‘knows’ the answer, linearity means

there is no measurement we can do that has more than an O(1/d) chance of success that can induce the

wavefunction to tell us what it knows. If we were able to project on the (exponentially in m = log d)

unlikely outcome that a measurement of the final qubit is |1〉, then we could find |~xanswer〉 in one step.
11There are also other known lower bounds for more general classes of algorithms that perform amplitude

amplification [20–22] and which are closely related to our state-independent protocol from appendix A.4.
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However, the covariant surface that is analogous to the minimal cut through a tensor

network is the HRT surface [23–25], the minimal area extremal surface homologous to

one end of the wormhole. For spacetimes where quantum effects are important, such as

evaporating black holes, it is, more precisely, the minimal generalized entropy quantum

extremal surface,12 also known as the Engelhardt-Wall (EW) surface [26, 27].

The existence of a second, locally minimal cut is analogous to the existence of a second

extremal surface, satisfying the same homology constraint. In all the cases that we will

consider, there will also be a third extremal surface, that lies in between the first two

surfaces, and has a larger generalized entropy than either. This third surface has an

important qualitative difference compared to the other two surfaces: we cannot choose a

Cauchy slice within which any small (but not necessarily local) deformation of this third

extremal surface will increase its area (or generalized entropy). In particular, this means

that it cannot ever be the HRT (or EW) surface, which is always globally minimal within

some Cauchy slice [28, 29]. Instead of corresponding to one of the narrow constrictions at

the ends of the python, this third surface is a covariant definition of the maximum size of

the bulge in the middle of the lunch.

In general, none of these surfaces will lie in the maximal volume slice. We therefore

should not expect the correct covariant definition of a Python’s Lunch to involve the

maximal volume slice (although, in many examples, such as evaporating black holes, the

maximal volume slice will also look like a Python’s Lunch). Instead, we should think of

a Python’s Lunch as being defined by this set of three extremal surfaces, the two ‘end

surfaces’ and the ‘bulge surface’ in the middle. With this new covariant definition of

Python’s Lunch we can modify our conjecture.

Restricted complexity conjecture (covariant version). In a covariant Python’s

Lunch geometry with min-max-min generalized entropies S
(gen)
L , S

(gen)
max and S

(gen)
R , and with

the assumption S
(gen)
L < S

(gen)
R , the restricted complexity on the right system is,

conjecture: CR[UPL] = (const.)× CTN · exp

[
1

2

(
S(gen)

max − S(gen)
R

)]
, (4.8)

where again CTN denotes the size of tensor network.

Naively, a covariant Python’s Lunch seems a very specific and unusual feature of a

spacetime. It needs to feature three extremal surfaces. Moreover the bulge surface needs

to have greater area (or generalized entropy) than either end surface, and, unlike the

end surfaces, within any Cauchy slice there should exist small deformations of the bulge

surface that decrease its area (or generalized entropy). Nevertheless, every example that

we consider of a spacetime with more than one extremal surface will turn out to have a

Python’s Lunch.

12The generalized entropy of a surface ΣB is S(gen)(ΣB) = A(ΣB)/4G~ + Sbulk(ΣB), where the first

term is the area of the surface ΣB , which should be homologous to boundary region B, and the second is

von Neumann entropy of the bulk fields contained in the corresponding entanglement wedge (the region

between B and ΣB). A quantum extremal surface is a surface that is an extremum of the generalized

entropy.
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In appendix B, we explain this phenomenon. We use ‘maximin’ techniques [28, 29]

to sketch an argument that almost all spacetimes with more than one extremal surface

will contain a Python’s Lunch. Specifically, we argue that one can generically find a third

extremal surface by considering ‘foliations’ of a Cauchy slice from one extremal surface to

the other, taking the maximal area (or generalized entropy) surface within that foliation,

minimizing the maximum over all foliations, and then maximizing the resulting ‘minimax’

surface over all Cauchy slices. We call this a ‘maximinimax’ prescription for finding the

bulge surface.

5 Evaporating black holes

In this section we will see how a Python’s Lunch explains the exponential difficulty of

decoding Hawking radiation.

After the Page time an evaporating black hole is maximally entangled with its own

Hawking radiation [30]. Harlow and Hayden [1] asked how hard it is to isolate a degree

of freedom r in the radiation that is entangled with a particular quantum b of Hawking

radiation that is about to be emitted by the black hole (the AMPS task [31]). A highly

related task is to decode the state of a small unknown diary thrown into the (known) black

hole, just from the state of the Hawking radiation.13 This is the Hayden-Preskill decoding

task [32] and is also expected to be exponentially hard. If we can get the black hole and

Hawking radiation into a simple state, both tasks are simple. The difficulty in doing either

task comes from the exponentially large restricted complexity of the combined state of the

black hole and Hawking radiation.

Building on earlier ideas in [33, 34], it was shown in [35–39] that the information-

theoretic achievability (or otherwise) of the Hayden-Preskill and Harlow-Hayden tasks

could be understood holographically using entanglement wedge reconstruction.14 After

the Page time, a large part of the interior of the black hole is in the entanglement wedge

of the early Hawking radiation, and so is encoded in the radiation.15 This is essentially

a holographic derivation of black hole complementarity and ER=EPR [47, 48]. We shall

now see that the exponential computational difficulty of the Harlow-Hayden and Hayden-

Preskill tasks can likewise be understood holographically as coming from the existence of

a Python’s Lunch.

5.1 Preliminary example

We will consider a preliminary example. Consider a quantum computer initialized at t = 0

in some simple state |I〉 which then evolves for a time greater than the scrambling time t∗.

The qubits are then split into two subsystems, Alice’s and Bob’s shares A and B. The two

13If the diary is maximally entangled with a reference system then the Hayden-Preskill task is the same

as the Harlow-Hayden task except the degree of freedom r now needs to purify the reference system instead

of a late-time Hawking quantum.
14The idea of entanglement wedge reconstruction was originally conjectured in [28, 40, 41], and established

in [42–44] using the ideas of [45, 46].
15In this context, the entanglement wedge of the Hawking radiation is defined as the bulk domain of

dependence bounded by the EW surface.
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Figure 9. A scrambled system of 2N qubits can be separated into Alice’s and Bob’s subsystems

which due to the scrambling are close to a maximally entangled state. Since they are maximally

entangled, it must be possible to shorten the wormhole by restricted unitary operations.

subsystems continue to evolve for a short time but with no coupling between them. The

process is illustrated16 in figure 9. Let us imagine sweeping across the TN by a series of

cuts which foliate it as in figure 10. It is obvious that the number of qubits crossed by the

cuts first increases and then decreases. At its maximum the number of qubits in at least

N logN. Therefore the geometry of the associated wormhole has a Python’s Lunch.

Because the system is scrambled at time t the subsystems A and B are approximately

maximally entangled. It follows that Alice can act unitarily on her side in order to bring

the system to a state close to the TFD. The arguments of the previous section show that

the restricted complexity is exponential in N although the number of vertices in the TN is

much smaller.

5.2 Hawking radiation

In this section we will explain how the Python’s lunch geometry appears during the evap-

oration of a black hole. Note that, for the moment, we are restricting our attention to a

single Cauchy slice through this black hole — a generic ‘nice’ Cauchy slice that stays close

to the black-hole horizon. For concreteness we can take it to be the maximal volume slice.

In section 5.3, we will discuss the full covariant description of this lunch.

A classical one-sided black hole (Bob’s black hole) in a pure state is not connected to

any purifying system by a wormhole. But it is connected to a growing “bridge to nowhere”

(BTN) whose volume represents the complexity of the state. This is shown schematically

in figure 11.

Starting at the horizon and moving into the BTN the area remains constant for most of

its length until it quickly shrinks at the far end. The whisker-like lines at the end represent

16The black-hole dynamics is better characterized by a 2-local circuit without geometric locality, but due

to the authors’ artistic limitations we will present the illustrations in a geometrically local 1d lattice.
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Figure 10. A foliation of the tensor network of figure 9 which interpolates between Alice’s side

and Bob’s side. It is clear from the figure that the number of qubits cut by the slices increases and

then decreases as the foliation sweeps round.

Figure 11. Successive spatial slices through a one-sided non-evaporating black hole that formed

from collapse. The “whiskers” on the left side depict the infalling matter. The ‘bridge to nowhere’

grows and becomes elongated as the complexity increases.
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Figure 12. Successive spatial slices through a one-sided evaporating black hole that formed from

collapse. The red dots mark where Hawking particles were emitted.

the infalling matter which originally created the black hole. As time increases the BTN

grows.

Evaporation modifies this picture and effectively turns the one-sided system into a two-

sided system. The black hole becomes entangled with its own Hawking radiation which in

effect becomes a second side. The process which was explained in [5] is depicted in figure 12

as a time-sequence at times t1 < t2 < t3. As the black hole radiates the area of its horizon

decreases. In the figure this is shown as a decrease in the thickness of the BTN as one moves

from left to right. The interior modes that purify Hawking radiation are shown as red dots.

The partners of Hawking radiation emitted later in the evaporation are at the furthest right

of the diagram. These interior modes are entangled with the Hawking radiation, and so they

have an entropy that contributes to the generalized entropy of any region containing them,

but not containing the Hawking radiation, or vice versa. Alternatively, in the language of

ER=EPR, they can be thought as being connected by a Planck-area “micro-wormhole” to

the Hawking radiation. The homology constraint forces us to cut these micro-wormholes,

which increases the generalized entropy.

Now suppose that Alice collects the radiation in a second system A shown as an

elongated ellipse in figure 13. System A will now be connected to the bridge-to-nowhere

via either bulk entanglement/micro-wormholes.

Let us assume that, like a tensor network, the entropy of the Hawking radiation is

given by the ‘minimal cut’ through this Cauchy slice, where the size of a cut is given by

its generalized entropy. Of course, in general, this will only be true if we have chosen

our Cauchy slice appropriately. However, we will be able to derive the correct qualitative

conclusions by just studying the maximal volume slice.

We construct “cuts” separating A from the boundary at the right end of the “fish tail”.

The cuts can be characterized by an area. In figure 14, we see a series of such cuts as we

sweep from A to the fishtail.

The generalized entropy of each cut consists of two contribution. One is the portion

that cuts through the bulk entanglement between the interior and the Hawking radia-

tion. The second contribution comes from the classical area required to cut the bridge-to-

nowhere. Let us track the generalized entropy as the cut proceeds:

• In the first cut in figure 14 the only contribution to the generalized entropy comes

from the bulk entanglement. That contribution is proportional to the entropy in the

radiation.
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Figure 13. The ‘expandable space blimp’. The one-sided wormhole from figure 12, now showing the

bulk entanglement connecting the distant Hawking particles to their anchor points on the red dots.

Figure 14. A non-temporal sweep of spatial cuts through the expandable space blimp geometry

of figure 13, analogous to the sweep of the spatial slices in figure 10.

• The next cut also cuts the entanglement between the interior and the radiation.

However, it also cuts across the largest part of the BTN. We see that there is a quick

increase in the generalized entropy of the cut.

• In the third and fourth cuts in figure 14, the cut moves to the right. As it does so

the both contributions to the generalized entropy decrease.

• The final cut in figure 14 only cuts across the bridge-to-nowhere near the horizon of

the black hole.

The evolution of the generalized entropy of the cut is shown in figure 15.

There are two minima to the generalized entropy. One is the cut through the bulk

entanglement represented by the green lines in the top picture. As we sweep across the

generalized entropy makes a fairly sudden increase, and then a slow gradual decrease to a

second minimum — the horizon — at the fishtail. Up to subtleties involving the choice of

Cauchy slice, these two minima correspond to the two quantum extremal surfaces found

in [35, 36].

Early on, the horizon area Ahor (or, more precisely, the Bekenstein-Hawking entropy

Ahor/4GN ) is much larger than the bulk entanglement between the interior and the Hawk-
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Figure 15. The size of the cut for the slices of figure 14 as a function of the sweep parameter. For

t < tpage, the minimum generalized entropy cut is at the beginning, when the bulk entanglement

between the black hole and the Hawking radiation is being cut. For t < tpage, the minimum

generalized entropy cut is near the end, when the cut is near the black hole horizon. In both

cases, the largest cut comes near the beginning, when the generalized entropy is the sum of the

semiclassical entropy of the radiation, plus the initial Bekenstein-Hawking entropy of the black hole.

ing radiation. At a very late time the horizon shrinks to zero while the bulk entanglement

becomes very large.

At some point there is a crossover where the two minima are degenerate. This defines

the Page time. Because the evaporation is irreversible, this happens when the horizon area

Ahor is slightly larger than half its initial area A0 (for Schwarzschild black holes in our

universe it happens when Ahor ∼ 0.6A0 [49]).

The important point is that the geometry has a Python’s Lunch separating the two

minima. The generalized entropy at the maximum of the bulge is

A0

4GN
+ Srad . (5.1)

Now, suppose that, just after the Page time, Alice, who controls the Hawking radiation,

wants to apply gates or a Hamiltonian to shrink the wormhole to the TFD associated with

the black hole of area Ahor. Assuming that the analogy between a tensor network and the

Cauchy slice holds, the protocol in the appendix she can do so in a time that is O(S)eA0/8GN .

This is consistent with the restricted complexity being exponentially large.

Of course, so far we have only considered one way of sweeping through the Cauchy

slice, from one minimal cut to the other. If we could find another way of sweeping through

the slice that had a smaller maximal generalized entropy, it would suggest that a more

efficient protocol exists, since in a tensor network less post-selection would be required.
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Figure 16. At late times, a more efficient way of sweeping between the two minimal cuts is to create

two cuts near the horizon, and then to sweep one of these cuts “backwards” along the wormhole.

In fact, as far as we can tell, the way of sweeping through the slice just described

should be optimal both before and shortly after the Page time. However, at late times,

an alternative way of sweeping through the slice becomes preferable. We now analyze this

second way of sweeping through the slice, which is shown in figure 16.

• In the first cut in figure 16 the only contribution to the generalized entropy comes

from the bulk entanglement and is proportional to the entropy in the radiation, as

before.

• The next cut also cuts the bulk entanglement between the interior and the radiation.

However, it also includes an additional “double cut” near the horizon. This gives an

additional area contribution equal to 2Ahor/4GN .

• In the third and fourth cuts in figure 16, one half of the double cut moves to the left.

As it does so, its area increases, but the bulk entanglement decreases. Because black

hole evaporation is irreversible, the second effect is slightly larger than the first, and

so the generalized entropy slowly decreases.

• Finally, the left-moving cut reaches the end of the bridge-to-nowhere and disappears.

The generalized entropy therefore has a sharp decrease by A0/4GN .

The evolution of the generalized entropy of the cut is shown in figure 17. The gener-

alized entropy quickly increases as the double cut is added, reaching its maximum size of

Srad + 2
Ahor

4GN
. (5.2)

It then slowly decreases, before a final sudden drop by A0/4GN .
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Figure 17. A comparison of the generalized entropy as a function of sweep parameter for the

‘forwards’ (figure 14) and ‘reverse’ (figure 16) ways of sweeping through the bridge to nowhere.

Initially, the generalized entropy of both is given by Srad. The forwards sweep quickly increases by

A0/4GN and then steadily decreases as the sweep moves along the bridge-to-nowhere. The reverse

sweep quickly increases by 2Ahor/4GN , slowly decreases as the cut moves backwards along the

bridge-to-nowhere, and then finally quickly decreases by A0/4GN . The reverse sweep has a smaller

maximum size, and hence is more efficient, when Ahor < A0/2.

As shown in figure 17, this method of sweeping through the bridge-to-nowhere is there-

fore more efficient than the forwards sweep when Ahor < A0/2. Note that this transition

happens strictly after the Page time, which, although commonly described as happening

at the halfway point in the evaporation, happens when Ahor > A0/2.

5.3 The covariant Lunch

Of course, as discussed in section 4.4, the correct covariant definition of a Python’s Lunch

is not given by the shape of a single Cauchy slice, but by a set of three quantum extremal

surfaces, the two end surfaces and the bulge surface in the middle. However, as discussed

in appendix B, there exist Cauchy slices within which the most efficient ‘sweep’ has locally

minimal generalized entropy at the end surfaces, and locally maximal generalized entropy

at the bulge surface. We can think of these as the Cauchy slices where the tensor network

analogy is valid.

For an evaporating black hole, the location of the end surfaces were calculated in [35,

36]. The first end surface is the empty surface, containing no points. Its generalized entropy

is simply the semiclassical entropy Srad of the Hawking radiation. The second end surface,

which becomes the EW surface after the Page time, lies at a radius that is O(GN ) inside

the horizon of the black hole, and at an infalling, or retarded, time that is one scrambling

time in the past of the current boundary time. Its generalized entropy is given at leading

order by the Bekenstein-Hawking entropy Ahor/4GN .
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The bulge surface was obviously less of a focus in [35, 36], because it is never the EW

surface. However, the bulge surface that corresponds to the maximum size in the ‘forwards

sweep’ was briefly discussed in [36]. For a one-sided black hole formed from collapse, it lies

inside the infalling matter that created the black hole. As the black hole forms, a classical

apparent horizon appears that moves outwards in a spacelike direction towards the lightlike

event horizon (which, being teleological, formed before the infalling matter even arrived).

After the infalling matter has passed through and the black hole begins to evaporate, the

classical apparent horizon ends up a Planckian radial distance outside the event horizon.

When no greybody factors are present, we can use eqs. (89) and (90) from [35] to see that

there will exist a quantum extremal surface, at sufficiently late times, at a radius

r = rs(v)− GNcevap

3(d− 1)Ωd−1r
d−2
s

, (5.3)

where rs(v) is the Schwarzschild radius (and hence the radius of the apparent horizon) in

the ingoing Vaidya metric describing the black hole, cevap is the number of two-dimensional

bosonic modes (i.e. number of angular momentum modes in higher dimensions) involved

in the evaporation, and Ωd−1 is the volume of the unit (d− 1)-sphere, and at an infalling

time v when

rhor(v) = rs(v) +
GNcevap

3(d− 1)Ωd−1r
d−2
s

. (5.4)

What is the infalling time v when is eq. (5.4) satisfied? Since the apparent horizon rs(v) goes

from far inside to a Planckian distance outside the event horizon rhor(v), a solution must

exist (assuming the metric is smooth) somewhere inside the infalling matter. Generally it

will be near the end of the infalling matter, when the apparent horizon has approached

within a Planckian radial distance of the event horizon.

The early time bulge surface is shown in figure 18. We note that its generalized entropy

is indeed approximately equal to the initial Bekenstein-Hawking entropy of the black hole,

plus the entropy of the Hawking radiation, as expected from our analysis of the maximal

volume Cauchy slice (see [35, 36] for explicit calculations).

What about at late times, when our analysis of the maximal-volume slice suggested

that a ‘reverse sweep’ through the bridge-to-nowhere was optimal? In this case, we expect

that the dominant bulge surface should consist of the union of two spheres, both close to

the late-time horizon. In general, calculating the location of an extremal surface with this

topology is considerably harder than finding extremal surfaces consisting of a single sphere.

However, it is possible for JT gravity plus free Dirac fermions. We study this theory in

appendix C. As hoped, we find an extremal surface that consists of two points (or zero-

spheres). Both points lie one scrambling time in the infalling past of the current boundary

time, just like the late-time EW surface. However, as shown in figure 19, both points are

spacelike separated from, and further inside the horizon than, the EW surface. This is

consistent with this surface being the maximum generalized entropy surface in a sweep

through a Cauchy slice that goes from the empty surface to the late-time EW surface.

Consistent with our expectations based on a single Cauchy slice, the generalized entropy

of this surface is approximately 2Ahor/4GN + Srad.
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Figure 18. The covariant bulge surface at early times (i.e. for the ‘forwards’ sweep) lies inside the

infalling matter that forms the black hole. It lies a Planckian radial distance inside the apparent

horizon (dashed line), at an infalling time when the apparent horizon is itself a Planckian radial dis-

tance inside the event horizon (solid line). Its generalized entropy is approximately A0/4GN + Srad.

Figure 19. The covariant bulge surface (black) at late times (i.e. for the ‘reverse’ sweep) consists

of two spheres (or points in two dimensions). Both lie slightly inside the EW surface (red), which

determines the Hawking radiation entanglement wedge EA (green) and the entanglement wedge EB
of the system containing the black hole (blue).
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5.4 The time dependence of the restricted complexity

Using our covariant restricted complexity conjecture from section 4.4, we can now make a

precise conjecture about how the restricted complexity of the evaporating black hole state

evolves over the course of the evaporation. We show a plot of log CR against A0−Ahor over

the course of the entire evaporation in figure 20.

There are three distinct phases to this evolution. Before the Page time, the EW

surface is empty, with generalized entropy Srad, while the bulge surface is the forwards-

sweep surface, with generalized entropy Srad + A0/4GN . Finally, the larger end surface

has generalized entropy Ahor/4GN . According to our conjecture in eq. (4.8), the restricted

complexity is controlled by the difference in generalized entropy between the bulge surface

and the larger end surface. It is given by

CR = O

(
t exp

[
1

2

(
Srad +

A0 −Ahor

4GN

)])
. (5.5)

The factor of t here comes from the volume of the lunch, which controls CTN according to

the conjectures of refs. [2–4].

The first phase transition happens at the Page time, where the EW surface becomes

nonempty. This means that the larger end surface becomes the empty surface, with gen-

eralized entropy Srad. The restricted complexity is therefore

CR = O

(
t exp

[
A0

8GN

])
, (5.6)

and only changes linearly with time.

Finally, when Ahor = A0/2, we have a second phase transition. This time, it is the

bulge surface that changes. It becomes the reverse-sweep surface, with generalized entropy

Srad + 2Ahor/4GN . The restricted complexity begins to decrease, and is given by

CR = O

(
t exp

[
Ahor

4GN

])
. (5.7)

Importantly, as the black hole completely evaporates the exponent tends to zero, and the

restricted complexity becomes O(t). This is exactly what we expect. The black hole has

completely evaporated and so we have a one-sided system again. The restricted complexity

will therefore be equal to the unrestricted complexity, which is O(t).

6 Python’s Lunches beyond black hole evaporation

Black hole evaporation is an inherently quantum mechanical phenomenon. It violates

the null energy condition (NEC), for example, even when all the quantum fields in the

theory would classically obey the NEC. One might therefore think that Python’s Lunches

themselves are an inherently quantum mechanical phenomenon and cannot exist in classical

spacetimes. As we shall see, this is not at all true. Instead, there are numerous important

examples, beyond black hole evaporation, of both classical and quantum lunches.
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Figure 20. A plot of our conjecture for log CR over the course of the black hole evaporation. For

the purposes of this plot we have assumed Srad = 1.5(A0 −Ahor).

It is important to note that, in many of these examples, the size of the lunch is fixed

in the semiclassical limit. This means that we would not expect a tensor network toy

model to fully scramble the degrees of freedom over the course of the lunch. We should

therefore be somewhat circumspect in conjecturing that the restricted complexities are

actually exponentially large in these cases.

The first, and simplest, example of a Python’s Lunch is a two-sided black hole with a

heavy brane, sitting in the Einstein-Rosen bridge, as shown in figure 21. The backreaction

of the brane on the spacetime separates the left and right horizons, creating a Python’s

Lunch. The two end surfaces lie on the left and right bifurcation surfaces, while the bulge

surface lies at the intersection of the brane world line with the static slice.17 Unlike an

evaporating black hole, this spacetime does not violate the null energy condition. How-

ever, it cannot be created from the thermofield-double state using semiclassical unitary

Lorentzian evolution, because the entire worldline of the brane lies behind the black hole

horizon. It can be created using a simple Euclidean path integral, as shown in figure 21, but

Euclidean evolution is not unitary. Both facts are consistent with the restricted complexity

of the state being very large.18

A second classical example of a Python’s lunch is a one-sided black hole, formed from

collapse. This is shown in figure 22. The two ends of the python are just two halves of

the single boundary. The bulging lunch in the middle is just the bridge-to-nowhere. On

each side of the black hole there are classical extremal surfaces, which form the ends of

the lunch. What about the bulge surface? At sufficiently early times, it seems likely that

17Formally, in the classical spacetime, we would need to smear the energy of the brane out slightly in

order to have a smooth spacetime and hence an actual extremal surface here. This will inevitably happen

once we include quantum effects.
18In this case, it is not obvious that even the unrestricted unitary complexity of the state should be small.

In fact, we should probably expect it to be large, because there is a nonempty extremal surface even for

the combined left and right boundaries, see section 7.1.
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(a)

(b) (c)

Figure 21. Adding a positive tension brane to the center of the Einstein-Rosen bridge separates the

left and right horizons, creating a Python’s Lunch. The Lorentzian geometry of such a state in shown

in (a). A Cauchy slice is shown in (b). Such a state can be easily constructed using a Euclidean path

integral with a heavy operator insertion halfway between the left and right boundaries, as shown in

(c). However it cannot be easily constructed using unitary evolution from the thermofield-double

state.

Figure 22. A one-sided black hole forms a Python’s Lunch between one half of the boundary,

region A, and the other half, region Ā. There is an extremal surface either side of the black hole,

with the ‘bridge-to-nowhere’ of the black hole forming the bulging lunch.

the bulge surface will go inside the horizon (for that matter, at sufficiently early times

the end surfaces will also go inside the horizon). However, we would expect the area of

any extremal surface going inside the horizon to grow with time. At late times, we should

instead expect the bulge surface to ‘wrap around’ the horizon. Indeed, for a BTZ black

hole, it will be a self-intersecting geodesic that winds once around the horizon.

It is easy to see that the unrestricted complexity of this one-sided black hole state

is small. It will be proportional to the time since the black hole first formed. However,

because this time evolution couples the two halves of the boundary, then we should expect

the restricted complexity to be very large, at least at late times. Again, the existence of a

Python’s Lunch corresponds to a large gap between restricted and unrestricted complexity.

A more quantum example, closer in spirit to the single-sided black hole evaporation

studied in section 5.2, but with a connected classical geometry everywhere, goes as follows.
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Figure 23. Coupled evolution of the thermofield-double state creates a quantum lunch in a classical

python. The classical cross-section of the wormhole remains constant in size, but there is long range

entanglement between the two sides, which increases the generalized entropy of a cut through the

middle of the wormhole.

We start with the thermofield-double state, and then evolve it forwards in time, but with

a small coupling between the left and right boundaries. This coupling will mix Hawking

radiation between the two exteriors, causing Hawking radiation from the right to end up

falling into the black hole from the left and vice versa.

Because the two sides of the black hole are in thermal equilibrium with one another, the

size of the black hole will stay approximately constant. There will be no ‘classical’ Python’s

Lunch. However the coupling between the two sides will create long-range entanglement

between the quantum fields at each end of the wormhole, via Hawking radiation escaping

one end and then falling into the other. This creates a quantum lunch (in a classical

python). See figure 23.

Again, the unrestricted complexity of the state should be small, because it was created

by a simple unitary evolution from the thermofield-double state. However, this evolution

coupled the two sides, and so the restricted complexity may well be large.

Our final example of a Python’s Lunch is the AdS3 vacuum. If we divide the boundary

into two connected halves, as with the one-sided black hole discussed earlier in this section,

there is no Python’s Lunch. However, if each end of the python itself consists of two

disconnected regions, as shown in figure 24, a lunch appears. There are two topologically

distinct end extremal surfaces, plus a self-intersecting bulge surface in the middle. This

suggests that the restricted complexity of constructing the vacuum state without coupling

these two complementary disjoint regions may be very large. However, the small volume

of the lunch suggests that it won’t be fully scrambling and so our restricted complexity

conjecture (4.6) may not apply. It is not the aim of this paper to revisit the details

of complexity = action proposal but rather briefly discuss several examples that will be

helpful to distinguish between unrestricted unitary complexity and size of tensor network

with non-unitary elements.

7 What is holographic complexity?

There have been various proposed definitions for the bulk quantity that is to be holograph-

ically dual to boundary complexity. The two most prominent proposals have been the
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Figure 24. Even the AdS3 vacuum contains a Python’s Lunch when viewed as a python from the

boundary region A consisting of two disjoint intervals to its complementary region Ā.

volume of the maximal-volume slice [2], and the action of the Wheeler-de Witt patch [3, 4].

In practice, these two proposals tend to give similar answers.

Dual to this abundance of promising bulk quantities is the abundance of promising

boundary quantities. Various definitions of boundary complexity have been considered.

The original suggestion was that it should be unitary circuit complexity (the minimal

number of simple gates, from a given primitive gate set, required to build the state from a

simple starting point). There is also a ‘continuous’ variant on the unitary circuit complexity,

which is defined using the Nielsen geometry [50]. Finally, there is the intuition that the

volume of a slice is dual to the size of a tensor network required to build the state. As

we have seen in this paper, this is different from the unitary circuit complexity, because a

tensor network may contain non-unitary elements.

One way to make a highly complex state with a small volume/action is to have the state

of the bulk fields be highly complex. This suggest that the holographic complexity should

have a ‘quantum correction’, similar to the quantum corrections to the Ryu-Takayanagi

formula, given by the complexity of the state of the bulk fields.

As we have seen in this paper, even when the bulk fields are in a simple state, the

restricted unitary circuit complexity may be much larger than the volume/action, if the

geometry contains a Python’s Lunch. This is not a contradiction with the conjectures

of refs. [2–4], since the unrestricted complexity is still small, and comparable to the vol-

ume/action. This has been the case in most of the discussion of this paper. However, as we

shall see in this section, there are examples one can construct that the unrestricted unitary

circuit complexity can be much larger than the volume/action if we consider states that

are prepared using non-unitary processes and therefore may contain ‘one-sided Python’s

Lunches’. This is true even when the bulk state is very simple. This suggests that the more
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Figure 25. A one-sided black hole is allowed to evaporate, and then the Hawking radiation is

measured. This produces a pure black hole microstate with interior modes that are in some simple

state that depends on the measurement outcome. In the maximal volume slice, there is a local

minimum of the generalized entropy near the horizon, where the area is smallest.

general and correct dual quantity to the holographic complexity is the size of the tensor

network required to make the quantum state, or equivalently the circuit complexity where

non-unitary post-selections onto the outcomes of simple measurements are allowed.

7.1 Measuring radiation and one-sided lunches

Suppose we take a one-sided black hole, and allow it to evaporate as in section 5.2. However,

rather than storing the radiation in a second system, we instead measure it in some complete

basis. This basis does not have to be complicated: it can be a product basis, for example.

The black hole will now be in a pure state; in particular, the interior modes that were

previously entangled with the Hawking radiation will now be in a pure state that depends

on the measurement outcome.

The resulting bulk geometry can be thought of as a ‘one-sided Python’s Lunch’, with

a bridge to nowhere which is largest at the end and then becomes gradually smaller as one

approaches a quantum extremal surface near the horizon, as shown in figure 25. The exact

location of this quantum extremal surface is hard to calculate, but it is easy to show that

it should exist, as argued in figure 26.

The volume of the maximal volume slice, and the action of the Wheeler-de Witt patch

will grow linearly with the time the black hole was allowed to evaporate for. We expect

that this will also be the size of the minimal tensor network needed to describe the state.

However, if this tensor network resembles the bulk geometry, its cross-section will be largest

at the end of the wormhole and then become smaller near the horizon. Such a tensor

network cannot generically be produced by a unitary circuit of the same size, without

allowing post-selection.

Instead, applying our restricted complexity conjecture, in the special case where one

system is trivial and so the restricted complexity is actually just the unrestricted complex-

ity, we find that the unitary circuit complexity should be proportional to exp[(S
(gen)
max −

S
(gen)
R )/2], where S

(gen)
R ≈ Ahor/4GN is the generalized entropy of the quantum extremal

surface that we just discussed and S
(gen)
max ≈ A0/4GN is the generalized entropy of a bulge

surface inside the infalling matter that first formed the black hole.
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Figure 26. To argue that a nonempty quantum extremal surface should exist for the pure state of

a two-dimensional black hole, after measuring Hawking radiation, we consider Cauchy slices that

asymptote to the maximal volume slice in the distant past, but which are allowed to vary elsewhere.

In particular, we allow the slice to vary at infalling times approximately one scrambling time in

the past of the current boundary time (this is where the non-empty extremal surface was found

in [35, 36]). As shown in figure 25, such slices should have a local minimum in their generalized

entropy near the horizon. If we vary the Cauchy slice too far into the interior of the black hole, this

local minimum will become small because the area becomes small. Conversely, if we push the slice

too close to the past lightcone, the bulk entropy will become very small, which will also decrease

the generalized entropy. By choosing our Cauchy slice to maximize the generalized entropy of this

local minima, we would necessarily find a non-empty extremal surface, in a location similar to the

surface found in [35, 36].

This is exactly what we should expect. The state was prepared using a measurement,

which can only be reproduced deterministically by using post-selection, or by using Grover

search, as discussed in section 4 and appendix A. The complexity of this process is indeed

exponential in the number of post-selected qubits.

One might worry that this conclusion seems wrong: what about if we just reversed

time, ignoring the fact that the measurement had happened, until we got back to a time

before the black hole ever formed? Once there was no black hole, it would presumably be

easy to get back to a simple state using a simple circuit. The answer (see [33, 35, 36, 51]

for similar discussion) is that, by measuring the Hawking radiation, we necessarily create

a small positive-energy localized shock that approaches the horizon of the black hole as we

go backwards in time. At an infalling time approximately the scrambling time in the past,

the backreaction of this shock becomes significant and it turns the black hole into a white

hole. If we continue to evolve the boundary backwards in time, the black hole will never

disappear and the interior modes will never escape. Instead we will just see a time-reversed

version of Hawking radiation coming out of the newly created white hole. This is shown

in figure 27.

How does this correspond to a tensor network model? As we evolve time backwards,

the simplest tensor network describing the state initially becomes smaller, as the reverse

time evolution undoes tensors that were previously added to the network by the forward

evolution. However, we cannot ‘undo’ the projections created by the measurement of

Hawking radiation. At one scrambling time in the past, these projections will have infected
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(a) (b)

Figure 27. (a) Penrose diagram for the spacetime of a one-sided black hole, with the Hawking

radiation extracted and then measured. (b) If we reverse the time evolution after the measurement

is done, the black hole won’t disappear as one might naively expect. Instead, at one scrambling

time in the past, the backreaction from the measurement (shown in red as a small shockwave) will

create a white hole. The interior partners of the Hawking radiation will therefore never escape from

behind the horizon.

the entire cross section of the network. Further backwards time evolution cannot remove

any more tensors from the network, and so instead will have to add new tensors: the size

of the simplest tensor network therefore ‘bounces’ from this minimal size and begins to

increase. This corresponds to the appearance of the white hole horizon.

Another example of a one-sided Python’s Lunch is the brane-in-a-wormhole state dis-

cussed at the start of section 6. In that section, we used it as an example of a two-sided

lunch. However, the union of the left and right extremal surfaces is homologous to the

union of the left and right boundaries. We therefore have a non-empty classical extremal

surface for the union of the two boundaries, which creates a one-sided Python’s Lunch. This

suggests that even the unrestricted unitary complexity of the state may be very large. This

is perfectly consistent, since we only know how to prepare such a state using a non-unitary

Euclidean evolution.

We have argued that states with a non-empty extremal surface for the entire global

boundary (i.e. a one-sided Python’s Lunch) have high unrestricted unitary complexity. A

good consistency check on this claim is that such states cannot be created by semiclassical

Lorentzian evolution from states with a Cauchy slice that is entirely within the causal wedge

of the boundary. This is indeed true: the entanglement wedge, defined using any extremal

surface (not just the HRT surface) must contain the causal wedge, and hence the entire

spacetime, by standard focussing arguments (this requires the generalized second law or

quantum focussing conjecture [52] in the case of quantum extremal surfaces). It is therefore

entirely consistent that they should always have very high unitary circuit complexity.

7.2 Post-selected state complexity

The black hole with measured Hawking radiation appears to be a counterexample to the

idea that unitary circuit complexity equals volume/action. The volume and action only

grow linearly with the time the black hole is allowed to evaporate for, but the size of the
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simplest unitary circuit required to produce the state appears to grow exponentially. One

response to this problem is to note that this state could only be produced by measuring

Hawking radiation, and that a measurement really corresponds to entangling the state

with an ancilla measurement apparatus. If we include the measurement apparatus, the

unrestricted complexity of the state (including the measurement apparatus) will still be

small.

This argument is somewhat unsatisfying. It would be nice to have a boundary quantity

(such as complexity) that corresponds to volume/action even for states that can only be

produced using post-selection, or by Euclidean path integrals as with the first example

from section 6.

There is an obvious candidate quantity. We just redefine the notion of state complexity

to allow post-selection onto simple states (say |0〉). Equivalently, we define it as the size of

the smallest tensor network required to make the state.

With the usual definitions the complexity of creating a state from a simple state is the

same as the complexity of starting with the state in question and returning to the simple

state. But when post-selections are allowed, this changes.19 The relevant complexity is

Cp(I, ψ) i.e. the complexity of creating the state |ψ〉, from, the simple state |0〉⊗n, using

both unitary gates and simple projections.

For specific states |ψ〉, allowing projections may dramatically reduce the number of

operations required, as we have seen. However, for typical states, projections don’t buy

you much. As we shall see below with a counting argument, it still takes ∼ 4N operations

to get to the most general state.

As an aside, it is worth noting that it doesn’t significantly matter whether we allow

post-selection at arbitrary intermediate points in the state preparation process, or only

at the end after all the unitary gates have been applied. This is because we can always

implement the desired post-selection by using a unitary operator that ‘measures’ the rel-

evant register into an ancilla quantum register (this is sometimes called a von Neumann

measurement of the first kind) and then post-selecting the ancilla register after all the other

unitaries have been applied.

7.3 Post-selected complexity can be exponential

The maximal unitary circuit complexity of an N qubit state scales exponentially with N .

This can be established with a counting argument. On the one hand Hilbert space is

double-exponentially huge

number of ε-balls in N -qubit Hilbert space ∼ 22N . (7.1)

On the other hand, the number of states that can be made with C gates (for definiteness,

let’s say we have a universal 2-local gate together with a 1-local phase) is merely exponen-

tially large. At each step, we can apply our 2-local gate in one of
(
N
2

)
places, or apply our

19Note that Cp(I, ψ) 6= Cp(ψ, I), where Cp(·, ·) is relative state complexity, when projection into simple

states is allowed. In fact, going from |ψ〉 to |I〉 is trivial if post-selection is allowed, with Cp(ψ, I) ≤ N .
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1-local phase in one of
(
N
1

)
places, so

#states .

((
N

2

)
+

(
N

1

))C
. (7.2)

In order to reach all the states, C must be exponentially big.

However we have now changed our definition of ‘complexity’. We have given our-

selves the power not only to apply 2-local gates, but also to project the first m-qubits to

|00000000〉. Since this increases our power, it decreases the complexity. This gives rise to

the state synthesis version of the PostBQP complexity class, and as we saw in section 4.3

this is fantastically powerful — there are many quantum states that would normally be

exponentially hard to make that are now easy. Are they, in fact, all now easy?

Let’s prove that the answer to this question is ‘no’. We will argue that even granting

ourselves the power to post-select, there are still states that are exponentially hard to

make. This can again be established with a counting argument. We have more options

than before. At each step, as well as applying our 2-local gate or our 1-local phase, we

can also project on the first m qubits20 for any 1 ≤ m ≤ N . Thus the number of different

states we can make is

#states .

((
N

2

)
+

(
N

1

)
+N

)C
, (7.3)

which — the point is — is still only exponentially big. We still need exponentially large C
to hit all of the double-exponentially numerous ε-balls.

It would be nice to have a definition of post-selected state complexity that did not rely

on a choice of discretization of the Hilbert space into ε-balls. For unitary state complexity,

one such definition is the smallest geodesic distance from the identity to a unitary taking

one state to the other in the so-called Nielsen geometry [50]. This is a right-invariant (but

not left-invariant) metric on the space of unitaries where distances are much smaller in

simple directions (generated by k-local Hamiltonians) than in other directions.

However, if we allow post-selection on a single qubit, then any state can be prepared

using a unitary that has arbitrarily small complexity as measured by the Nielsen geometry.

The reason for this is that the Nielsen metric (like any metric) is continuous. Hence the

complexity of a unitary mapping

|0〉|ψ〉 → |0〉|ψ〉+ ε|1〉|φ〉 (7.4)

can be made arbitrarily small by making ε sufficiently small. However, we can always

post-select onto |1〉 and produce |φ〉, no matter how small ε is.

Instead, it seems like the right continuous measure of post-selected state complexity

would be to make the cost of the post-selection be log p, where p is the probability of

obtaining the correct measurement outcome. For typical states where the amplitudes of

the post-selected outcomes are not exceptionally large or small, this still corresponds to

having an O(1) cost for each post-selected qubit.

20Notice that it would not have made a difference had we given ourselves the power to post-select any m

qubits in the computational basis, since using just m swap gates we can always move the desired qubits to

the front. On the other hand, it would have made a huge difference had we given ourselves the power to

post-select in any basis — then all state synthesis is trivial, since we just post-select onto the desired state!
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8 Summary

This paper has addressed an apparent inconsistency between the holographic complexity

conjectures [2–4] and the Harlow-Hayden result [1]. The inconsistency is manifest in an

evaporating black hole slightly after the Page time: on the one hand, the volume or action

of the black hole is only polynomial in the entropy S, and thus the holographic complexity

must be moderate; on the other hand, Harlow & Hayden argue that the complexity of

decoding the Hawking radiation must be exponentially large. The difference arises from

using different definitions of complexity. The holographic complexity conjectures relate the

volume/action of the geometry to unrestricted complexity, which allows gates that span

the entire system; whereas Harlow & Hayden’s result is about restricted complexity, which

forbids gates that couple the interior of the black hole to the previously emitted Hawking

radiation.

This distinction motivated us to ask: if action or volume are the geometric duals of

unrestricted complexity [2–4], what is the geometric dual of restricted complexity? We

conjectured an answer. Exponentially large restricted complexity corresponds to the ex-

istence of a geometrical feature that we call a “Python’s lunch”. In a Python’s lunch,

the cross-sectional area of the wormhole grows and then shrinks again, in a min-max-min

pattern. The restricted complexity, we conjectured in eq. (4.6), is given by the exponential

of the difference between the area of the maximum and the area of the larger of the two

flanking minima.

We tested this conjecture in a toy tensor-network model, and found agreement with the

Harlow-Hayden estimate. We then made a covariant version of our conjecture, eq. (4.8),

by replacing the min and max areas of the Python’s Lunch with generalized entropies

of appropriate quantum extremal surfaces. With this generalization, we studied several

examples of the Python’s Lunch and estimated the restricted complexities in each case,

including evaporating black holes, one-sided pure-state black holes, and empty AdS with

two disjoint intervals. In all cases where we were able to test our conjecture, the restricted

complexity was consistent with the size of the Python’s Lunch.

Lastly, in section 7 we returned to the subject of unrestricted complexity. We studied

the example of black holes that have had all their Hawking radiation measured, and which

therefore have been rendered pure. Using this example, we reconsidered exactly which

boundary quantity it is that is holographically dual to the volume or action of the worm-

hole. In refs. [2–4] it was conjectured that this quantity is the unrestricted unitary circuit

complexity, which means the allowed primitive gates are all unitary. Instead, we argued

that the definition of unrestricted holographic complexity should also permit non-unitary

post-selection — holographic complexity should allow projections onto simple states.
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A Complexity of post-selection

A lemma we will use repeatedly in this appendix is that if an N -qubit state |ψ〉 is simple,

then so too is the unitary

|ψ〉 is simple → Uψ ≡ 1− 2|ψ〉〈ψ| is simple . (A.1)

This unitary flips the sign of the |ψ〉 component of a wavefunction, while leaving all or-

thogonal components unchanged. Let’s explicitly construct a simple circuit that does this.

First, note that what it means for |ψ〉 to be simple is precisely that there is a simple unitary

U|0̄〉→|ψ〉 that connects it to the reference state, |ψ〉 = U|0̄〉→|ψ〉|0̄〉. We can therefore write

Uψ = U|0̄〉→|ψ〉 U0̄ U
†
|0̄〉→|ψ〉; (A.2)

this first transforms to a basis in which the |ψ〉 component of the wavefunction becomes

the |0̄〉 component, then flips the phase of the |0̄〉 component, then transforms back again.

This construction upper bounds the complexity

C
[
Uψ

]
≤ 2 C

[
U|0̄〉→|ψ〉

]
+ C
[
U0̄

]
= 2 C

[
|ψ〉
]
+ C
[
U0̄

]
. (A.3)

We can understand the factor of 2 in this equation as arising from the fact that to make

1− 2|ψ〉〈ψ| the protocol sweeps twice over the circuit that manufactures the state, first to

unmake it (the 〈ψ| part) then to make it again (the |ψ〉 part).

A.1 Projecting on a ququit

Suppose we have a simple unitary U that maps a simple state to a superposition

U |s〉|1〉 =
|α〉|1〉+ |β〉|2〉+ |γ〉|3〉+ |δ〉|4〉

2
. (A.4)

Since U is simple, and |s〉|1〉 is easy to make, the right-hand side must also be easy to make.

• Question: how complex can it be to make |α〉|1〉?

As we will see, the answer is “not complex”.

One simple strategy to make |α〉|1〉 is just to make U |s〉|1〉 and then measure the last

ququit. Sometimes we’ll find the last ququit to be |2〉, |3〉, or |4〉; if that happens we throw

the state away and start over. Other times we’ll find the last ququit to be |1〉 and can

declare victory. In this way we can make an |α〉-factory that has efficiency 1
4 .

For some situations, this simple strategy suffices. But if the projection is a step buried

deep within a larger circuit, starting again might not be so easy. Or if our initial state

is entangled with another state that we do not control, then starting again might be

impossible. And if we want to project not 1 ququit but N ququits, the probability of

success falls like 2−2N .
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The solution to this problem is to use a close cousin of Grover’s algorithm, as we will

now explore. First, let’s define the ‘pre-image’ of the four possible answers we could have

gotten

|α̃〉 ≡ U †|α〉|1〉 ; |β̃〉 ≡ U †|β〉|2〉 ; |γ̃〉 ≡ U †|γ〉|3〉 ; |δ̃〉 ≡ U †|δ〉|4〉, (A.5)

so that |s〉|1〉 = 1
2(|α̃〉+ |β̃〉+ |γ̃〉+ |δ̃〉). Next observe that it is simple to make the operator

Uα̃ that flips the sign of the |α̃〉 term in a wavefunction while leaving the other terms

invariant. We can do this by evolving the state with U , doing a sign-flip controlled on the

last ququit being |1〉, and then evolving back with U †

V ≡ 1− 2|α̃〉〈α̃| = U †
(
1⊗ (1− 2|1〉〈1|)

)
U. (A.6)

Finally, since |s〉|1〉 is by assumption easy to build, it must also be easy to build the operator

that flips everything except |s〉|1〉,

Us ≡ 2|s〉〈s| ⊗ |1〉〈1| − 1. (A.7)

Now we concatenate these easy operations to give the desired projection

V |s〉|1〉 =
1

2
(−|α̃〉+ |β̃〉+ |γ̃〉+ |δ̃〉) (A.8)

UsV |s〉|1〉 = |α̃〉 (A.9)

U
[
UsV

]
|s〉|1〉 = |α〉|1〉 . (A.10)

Note that the only reason this worked was because there was an easily addressed ququit

to diagnose the final branch. If we just had U |s〉 = |α〉+ |β〉+ |γ〉+ |δ〉 then this method

wouldn’t have worked, and indeed couldn’t have worked since there is such a decomposition

for any |α〉, even if U is the identity.

A.2 Projecting on a qudit

The case of the last subsection was misleadingly easy: we needed only a single implemen-

tation of UsV to hit the target state exactly. More generally, we may wish to project onto

the value of a qudit, where we can think of d = 2m for m qubits or m/2 ququits. And it

may be that the amplitudes of the states are not evenly distributed. Let’s start with an

initial state |s〉 |0〉⊗n on total of k qubits with n-ancillary qubits at state |0〉. Then, we

wish to project (post-select) onto the outcome of m qubits. The output state after the

unitary U is applied can be expressed as

U |s〉|0〉⊗n = sin θ|α〉|0〉⊗m + cos θ|β〉 , (A.11)

where |β〉 is any normalized state with 〈0|⊗m|β〉 = 0. Repeating the procedure of the last

subsection gives

U
[
UsV

]
|s〉|0〉⊗n = sin 3θ|α〉|0〉⊗m + cos 3θ|β〉 . (A.12)

where we denote by

Us = 2|s〉〈s| ⊗ |0〉〈0|⊗n − 1 (A.13)

V = U †
(
1⊗ (1− 2|0〉〈|⊗m)

)
U (A.14)
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for n ancillary and m postselected qubits. We see that in the last subsection we got lucky,

since sin θ = 1
2 → sin 3θ = sin 3π6 = 1. For more general θ, a single iteration will not yield

the desired projection. Iterating l times gives

U
[
UsV

]l
|s〉|0〉⊗n = sin[(2l + 1)θ]|α〉|0〉⊗m + cos[(2l + 1)θ]|β〉 . (A.15)

Thus the number of iterations to implement the projection is given by (2l + 1)θ = π
2 so

number of implementations of
[
UsV

]
=

π

4θ
− 1

2
. (A.16)

When U |s〉|0〉⊗n is an equal superposition of d(= 2m) states, we have θ = arcsin[1/
√
d] and

this gives the celebrated large-d Grover scaling l ∼ π
4

√
d.

Finally, we must confront the possibility that eq. (A.16) does not give a whole number.

This is problematic since in general even if a U is easy to implement,
√
U may be hard.

We could lower our ambitions by implementing the integer part of n and settling for being

approximate. But we can do better. We first introduce a fresh qubit, and then use it to

bleed some of amplitude out of sin θ|α〉|0〉⊗m

|s̄〉 = UφU |s〉|0〉⊗n|0〉 = cosφ sin θ|α〉|0〉⊗m|0〉+ sinφ sin θ|α〉|0〉⊗m|1〉+ |other〉. (A.17)

Then we repeat the iterative procedure using |s̄〉 instead of |s〉|0〉⊗n and I instead of U ,

and carefully choose φ to land on the next integer greater than π
4θ − 1

2 ,

number of implementations of Us̄V =

⌈
π

4θ
− 1

2

⌉
. (A.18)

Even though it is in general not easy to implement a fractional power of an easy unitary,

for the specific unitaries we are considering it is.

Let us see what this analysis means for the simplest possible case, that of an evenly

split qubit, with θ = π
4 . Equation (A.12) made the situation look hopeless — we would

just cycle in a loop forever, θ = π
4 → 3π

4 → π
4 → 3π

4 → . . . , never getting any closer to

the target state. But now we see that the correct procedure it to first add an extra qubit,

and then use φ = π
4 to transform the pair of qubits to an even superposition of a ququit,

returning us to the exactly implementable example of section A.1.

A.3 Projecting on very unlikely outcomes

Suppose we wish to project onto a final state that has tiny amplitude, θ � 1. For example,

we may have an equal superposition over m qubits with large m, giving θ = 2−m/2. How

complex is this projection? Let us examine three possible methods:

• Measure-and-pray. If we measure the qubits and hope for the right answer, the

probability that we get lucky is θ2, giving

measure-and-hope method: complexity ∼ θ−2 = d = 2m . (A.19)
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• All-at-once Grover-style projection. Using the method of section A.2, we saw in

eq. (A.18) that we can effect a square-root speed up,

all-at-once Grover: complexity ∼ θ−1 =
√
d = 2m/2 . (A.20)

• Step-by-step Grover-style projection. In eq. (A.20), we simultaneously projected onto

the values of all the target qubits. An alternative strategy would be to project on

each target ququit in turn, so that each individual projection is then onto a state

that is not particularly unlikely. As discussed in appendix A.1, the complexity of

projecting onto the first ququit is 3C(U), because we have to implement the unitary

U three times to do the post-selection. What about the projection onto the second

ququit? Now the unitary U has been replaced by the unitary U ′ that also does

the projection onto the first ququit. So the complexity of this second projection

is 3C(U ′) = 9C(U). It should be clear that the complexity of projecting onto each

ququit grows exponentially. The complexity of the full projection is therefore

step-by-step Grover: complexity ∼ 3m/2 , (A.21)

since there are m/2 ququits.

Summary: to project on m qubits, guess-and-check costs 2m, all-at-once-Grover costs

O(2m/2), and one-by-one-Grover costs O(3m/2). The winning strategy is to project on all

the qubits at once, as in section A.2. The complexity of doing so is O(2m/2).

A.4 Removing the state dependence

So far we have only tried to construct a unitary that produces a single output state |α〉,
given input |s〉 |0〉⊗n and unitary U . We used a unitary sequence

U
[(

2|s〉〈s| ⊗ |0〉〈0|⊗n − 1
)
U †
(
1⊗ (1− 2|0〉〈0|⊗m)

)
U
]l

(A.22)

that works only for the particular input state |s〉.
Our actual task is somewhat more complicated. We need to construct a unitary circuit

that produces the same output as our post-selected circuit for any input state |s〉. In other

words, we want to find a unitary Ũ , such that for any input state |s〉 we have

Ũ |s〉 |0〉⊗n = C |0〉⊗m 〈0|⊗m U |s〉 |0〉⊗n , (A.23)

where U is a simple unitary, C is a numerical constant. It turns out that we can easily adapt

our construction from previous section to produce such a unitary if such a unitary Ũ exists

at all. Our construction is very closely related to robust oblivious amplitude amplification,

which was independently introduced in [20–22]. We became aware of this work after this

section of the manuscript had been completed.

Importantly, for the moment, we shall assume that an exact unitary Ũ exists that

exactly satisfies (A.23). We shall discuss what happens when Ũ can only approximately

satisfy (A.23) at the end of this subsection.
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Let |i〉 be a computational basis for the input Hilbert space. By our assumption that

there exists some unitary Ũ satisfying (A.23), it follows that

〈i| 〈0|⊗n U † |0〉⊗m 〈0|⊗m U |j〉 |0〉⊗n =
1

C2
δij . (A.24)

This implies that

U |i〉 |0〉⊗n = sin θ |αi〉 |0〉⊗m + cos θ |βi〉 , (A.25)

where θ is independent of i and sin θ = 1/
√
C, 〈αi|αj〉 = 〈βi|βj〉 = δij and

〈0|⊗m |βi〉 = 0 (A.26)

for all i. We can get rid of state dependence of the original protocol by replacing Us
in (A.13) with

W = 1⊗
(

2|0〉〈0|⊗n − 1
)
. (A.27)

This is independent of the input state |s〉. For an arbitrary state |s〉, we again have

U |s〉|0〉⊗n = sin θ|α〉|0〉⊗m + cos θ|β〉 , (A.28)

and one can check that

U
[
WV

]
|s〉|0〉⊗n = sin 3θ|α〉|0〉⊗m + cos 3θ|β〉 . (A.29)

The key step is that (A.25) implies

〈0|⊗n U †
[
cos θ|α〉|0〉⊗m − sin θ|β〉

]
= 0 . (A.30)

Repeating the process N times gives

U
[
WV

]l
|s〉|0〉⊗n = sin[(2l + 1)θ]|α〉|0〉⊗m + cos[(2l + 1)θ]|β〉 . (A.31)

The rest of the argument is identical to that in appendix A.2, proving that

U
[(

1⊗ (2|0〉〈0|⊗n − 1)
)
U †
(
1⊗ (1− 2|0〉〈0|⊗m)

)
U
]l

(A.32)

will output state |α〉 |0〉m with very high probability for any |s〉 and l = π/4θ iterations

of the Grover step. For typical values of θ ∼ 2−m/2, the complexity is O[C(U)2−m/2] as

before.

It is important to note that the protocol we just constructed relied crucially on the

assumption that there exists an exact unitary Ũ satisfying eq. (A.23). If it is instead

only approximate (a more realistic assumption), we can run into problems because we are

applying an exponentially long circuit: small errors at each stage can add up to become

very large.

We now argue that this will not be the case so long as n � m � 1 and U is scram-

bling. (If U is not scrambling we expect that much more efficient circuits may well exist
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anyway.) Scrambling unitaries are well modeled by typical elements of unitary 2-designs.

We want to show that a Grover search using (A.32) and a fixed number of repetitions

(independent of |ψ〉) will work for an arbitrary input state |ψ〉. This implies that the first

and second moment calculations will be exactly given by Haar averages using Weingarten

coefficients [53]. Specifically, we first compute the mean of the sin2 θ,

sin2 θ = EU∈Haar

∥∥〈0|⊗m U |s〉 |0〉⊗n∥∥
2

=
1

2m
. (A.33)

In addition, we would like to estimate the variance of the sin2 θ. We can also compute this

quantity since it only involves two copies of U and two copies of U †,

∆θ = var[sin2 θ] = EU∈Haar

∥∥〈0|⊗m U |s〉 |0〉⊗n∥∥2

2
− 1

4m
=

1

2k+m
(A.34)

where k is the total number of qubits. This implies that,

sin2 θ ≈ 2−m +O(2−(k+m)/2) , (A.35)

where k is the total number of qubits. It follows that we can assume θ2 = 2−m for the

state with exponentially small error.

In the state-independent protocol, we use W instead of the state-dependent projector

Us. This results in additional errors if Ũ is not an exact unitary. However, this error in

each Grover step can be bounded. The error for a fixed unitary U is

εU =
∥∥∥((|s〉 〈s| − 1)⊗ |0〉 〈0|⊗n

)
U †
(
1⊗ (1− 2|0〉〈0|⊗m)

)
U |s〉 |0〉⊗n

∥∥∥
2
.

Again we can use that U is an element of a 2-design and calculate the mean of the εU .

Again, one can do those integrals using Weingarten coefficients [53] and arrive at,

ε = EU∈Haar

(
εU

)
=

1

2n
. (A.36)

The amplitude of being mapped into a wrong state in each Grover step is
√
ε = 2n/2.

Our state independent protocol requires application of (A.32) 2m/2 times, so the total

accumulated error will be given by
√

2m−n, which is exponentially small in the limit of

interest, when n� m� 1. This completes our argument.

B Maximinimax prescription for the bulge surface

In this appendix, we argue that spacetimes with more than one extremal surface gener-

ically contain Python’s Lunches. To do so, we use a variant on the maximin arguments

introduced by Wall in ref. [28]. Such arguments have numerous subtleties and require

considerable effort to rule out as many edge cases as possible. We shan’t worry too much

about such details here; instead we will just give physics-level arguments that justify our

construction. We shall restrict our attention to classical spacetimes obeying the null en-

ergy condition (NEC), although it is possible to generalize maximin arguments to include

quantum effects [29].

– 40 –



J
H
E
P
0
8
(
2
0
2
0
)
1
2
1

Our starting assumption is the existence of two spacelike-separated extremal surfaces,

the HRT surface χ1 and an additional surface χ2, homologous to the same boundary region.

The HRT surface χ1 can be found by a maximin prescription, where one finds the globally

minimal area surface within some Cauchy slice, and then maximises that area over all

Cauchy slices. The second extremal surface χ2 must have equal or larger area. Generically

it will have larger area; we will assume that this is indeed the case.

Let us temporarily assume that there exists a Cauchy slice, within which any suf-

ficiently small deformation of χ2, which preserves the homology constraint but which is

not necessarily local, will increase its area. (We shall consider the alternative possibility

below.) If we deform C2 in a sufficiently small neighborhood of χ2, we should then be able

to find a new Cauchy slice, still containing χ1 ∪ χ2, on which χ2 is minimal within a small

neighborhood and χ1 is still globally minimal. This will be important later.

We define the Wheeler-de Witt patch W1,2 as the bulk domain of dependence of any

spacelike slice bounded by χ1∪χ2. We can then construct a new surface χ3 by the following

maximinimax procedure.

First we choose some Cauchy slice C3 for the Wheeler-de Witt patch W1,2.21

Next, we choose a smooth non-degenerate function φ3 : C3 → [0, 1], where φ3(χ1) = 0

and φ3(χ2) = 1. Morally, the level sets of the function φ3 define a foliation of C3. However,

it is somewhat more general than this because the topology of the level set can change if

φ3 has critical points. Formally, this is known as a ‘sweepout’ of C3. It is necessary both

for physical reasons, since in general an extremal surface may have arbitrary topology, so

long as it satisfies the homology constraint, and for mathematical reasons, to prevent the

appearance of singularities in the surface if we insist that it have the ‘wrong’ topology.

Finally, we choose the level set φ−1
3 (x3) for x3 ∈ [0, 1] of maximal area. Note that

the level set φ−1
3 (x) will be singular if x is a critical value of φ3, but so long as φ3 is non-

degenerate, the singularities will be at isolated points and the area of the surface should

still be well defined.

Having found the surface χ3 = φ−1
3 (x3) of maximal area, we minimise that maximal

area over all allowed functions φ3. Finally, we maximize that minimax area over all Cauchy

slices for W . We call the resulting surface the maximinimax surface χ3. In other words,

we have

χ3 = φ−1
3 (x3), (B.1)

where the level set φ−1
3 (x3) is defined by the maximinimaximization

max
C3

min
φ3

max
x3

A(φ−1
3 (x)) . (B.2)

Provided a unique maximinimax surface χ3 exists22 and does not lie at the boundary of

any of the spaces we are optimizing over, it will be extremal, since, at linear order, an

arbitrary variation of the surface χ3 can be achieved by a linear combination of variations

in C3, φ3 and x3.

21Note that this is a Cauchy slice for the patch W1,2 but not a Cauchy slice for the entire spacetime.
22If the surface was non-unique, one would have to worry about stability issues.
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We shall not try to rigorously prove that this will be true (even generically). After

all, we have not even tried to rigorously define our construction — the geometric measure

theory [54] required to do so would be well beyond the scope of this paper. However we

shall make a few comments about why we expect that a maximinimax surface should exist

and not lie at the various boundaries of the optimization space we are searching over.

So long as φ3 is smooth and non-degenerate, the area of the level set should be a

continuous function on a compact interval, and so a maximal area surface should exist.

One might worry that the minimization over functions φ3 could approach a function

that is not smooth and non-degenerate, for which a maximal area level set is not well

defined. Our understanding of the results of Almgrem-Pitts min-max theory [55–57] is

that this will not end up being the case. Instead, the minimax surface χ3 ∈ C3 should be

a well defined varifold and will be a smooth (possibly self-intersecting) submanifold if the

spacetime dimension is less than seven. Intuitively, it is reasonable to expect that, as the

function φ3 becomes more badly behaved, the maximal area surface should only increase,

rather than decrease in area.

Similarly, we expect any bad behavior in the Cauchy slice C3 will tend to decrease the

area of the minimax surface. Hence a maximinimax surface χ3 should exist and be well

behaved. For more detailed arguments in this direction, see [28]. For known examples,

involving timelike de Sitter boundaries, where maximin surfaces do not exist, see [58].

How could the maximinimax surface χ3 end up on the boundary of the space of surfaces

we are searching over? Firstly, the maximinimax surface χ3 could have nonzero intersection

with χ1∪χ2. Suppose this intersection were not a connected component of χ3 (and χ1∪χ2).

Since the surface χ3 cannot ever go outside the Wheeler-de Witt patch W1,2 and χ1 and

χ2 are extremal, there must be some point where χ3 has nonzero mean curvature, within

the Cauchy slice, where it bends ‘inwards’ into W . We could then decrease the max area

of a level set in φ3 by deforming φ3 slightly to make the surface χ3 moves slightly inwards

at this point, which gives the desired contradiction.

What about if the intersection is a connected component? In that case, the entire

connected component will already be extremal and we don’t need to worry about it. One

might, of course, worry that χ3 could end up being the same as either χ1 or χ2, in which

case we wouldn’t have really found a new extremal surface. However this is impossible,

since, by assumption, there exists a Cauchy slice where any small deformation of χ1 or

χ2 will increase their area, and hence neither can have maximal area within any φ3. The

min-max surface in this Cauchy slice will have a larger area than either χ1 or χ2, which

rules out either χ1 or χ2 being maximinimax.

Finally, one might worry that points in χ3 might end up lightlike separated from either

other points in χ3, or points in χ1 or χ2. The first cannot happen, because of arguments

similar to those in [28]. If a) the minimax surface contained a null segment, the area of the

minimax could always be increased by a sufficiently small deformation of the Cauchy slice

near this null segment. However, if b) the minimax surface did not contain a null segment,

it could not be extremal within the Cauchy slice (using focussing arguments for generic

spacetimes), which the minimax should be since its variation is unconstrained so long as it

doesn’t intersect χ1 or χ2. The second cannot happen because (using focussing in a generic
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spacetime) we could then increase the area of the minimax surface by deforming φ3 so that

the level set is locally deformed along the lightcone towards χ1 or χ2.

We also note that the maximinimax construction automatically guarantees that the

bulge surface χ3 has larger area than either χ1 or χ2.

Having shown that an intermediate bulge surface exists between χ1 and χ2 whenever

χ2 is minimal with respect to any small deformation within some fixed Cauchy slice, we

now consider the opposite case, where there exist small deformations of χ2 which decrease

the area of χ2 within any Cauchy slice. In this case, χ2 cannot be an end surface and so

must instead itself be the bulge surface. Without loss of generality, we assume that χ1 is

contained in the interior Int[χ2] of χ2.23

We shall also assume that, in any Cauchy slice, there exist small deformations of

χ2 that a) decrease the area and b) lie entirely in the exterior Ext[χ2] (defined as the

complement of the interior Int[χ2]). The alternative possibility, where there exist Cauchy

slices where only deformations that enter the interior can decrease the area, but none where

no deformations can decrease the area, should be non-generic and can be interpreted as

the bulge surface and one end surface degenerating into one another.

We can now use the usual maximin construction, to find a second end surface χ3. We

simply constrain our search to Cauchy slices containing χ2, and to surfaces within that

Cauchy slice that are entirely in the exterior Ext[χ2]. As before, to show extremality, we

just need a) for the maximin surface to exist and b) for variations of the Cauchy slice be

sufficient to freely vary the maximin surface.

The arguments for both are essentially identical to those for the original maximin

construction. The only new potential obstructions that need to be ruled out are the

maximin surface either a) intersecting, or b) being lightlike separated from, the surface χ2.

In the first case, if the intersection was not a connected component the maximin surface

would have to bend inwards somewhere, which contradicts its minimality within the Cauchy

slice. Any intersection on a connected component will be automatically extremal. Finally,

the surface χ3 cannot simply be equal to χ2, since, by assumption, χ2 does not have globally

minimal area within any Cauchy slice.

What about the possibility of lightlike separation from χ2? By focussing arguments

in a generic spacetime, the change in area from a lightlike deformation of the surface χ3

towards χ2 (in direction ka) would have to be positive at linear order. Since χ3 is minimal

within the Cauchy slice, there must be some spacelike direction ra pointing away from

the lightcone for which the change in area is nonnegative at linear order. However, this

implies a deformation in a timelike direction ta (that makes χ3 spacelike separated from

χ2) must increase the area at linear order, in contradiction with the maximality of the

Cauchy slice.24

Finally, we note that, since χ3 is minimal within a slice containing χ2, it must have

smaller area than χ2. We therefore conclude that the generic situation when more than

23Recall that the two surfaces cannot ever be timelike separated. They also can’t intersect, because then

generic perturbations would presumably make them be timelike separated.
24We are ignoring issues about stability here.
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one extremal surface exists if to have a Python’s Lunch: three extremal surfaces, with the

middle bulge surface having larger area than either end surface.

C Explicit calculation of the late-time bulge surface

In this appendix, we explicitly calculate the location of the extremal surface that forms the

bulge surface at late times in a particular theory. The theory is JT gravity with c Dirac

fermions, and we consider a black hole that is evaporating using transparent boundary

conditions, as in [36, 37]. Dirac fermions are the only conformal field theory for which

the calculation is possible, since they are the only conformal field theory for which the

two-interval von Neumann entropy is known analytically.

We note that this surface only becomes the bulge surface when the horizon area, which,

in the case of JT gravity is the horizon dilaton value φ+ φ0, is less than half of its initial

value.25 This means that the initial black hole cannot have been in the regime φ � φ0

where JT gravity is justified as the dimensional reduction of a near extremal black hole.

Nonetheless, a) there is no obvious problem (other than UV issues which are unimportant

for this calculation) with defining JT gravity as a theory in its own right when φ & φ0 and

b) it provides a calculable example of an extremal surface that should also exist in more

general examples of evaporating black holes.

The JT gravity action is given by

S =
φ0

16πGN

[∫
M
d2x
√−gR+ 2

∫
∂M

K

]
+

1

16πGN

[∫
M
d2x
√−gφ(R+ 2) + 2

∫
∂M

φbK

]
+ SCFT[g],

(C.1)

where the scalar field φ is called the dilaton and SCFT[g] is the action for the CFT (in

this case c Dirac fermions) in the gravitational background. We also impose boundary

conditions

gtt|bdy =
1

ε2
, φ = φb =

φ̄r
ε
, (C.2)

where t is the physical boundary time, φ̄r is the fixed renormalized boundary dilaton value

and ε is small.

The metric of a static black hole in JT gravity is given by

ds2 = − 4π2 T 2 du dv

sinh2[πT (u− v)]
, (C.3)

with the dilaton profile given by

φ = 2φ̄rπ T coth[πT (u− v0)]. (C.4)

25In fact, if we started with a two-sided black hole, which is generally the case in JT gravity, then the

horizon area needs to be less than half of the increase in horizon area from the initial energy thrown into

the two-sided black hole, before the evaporation began.
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Here u and v are the advanced and retarded times respectively. The Bekenstein-Hawking

entropy SBH is given by

SBH =
φhor + φ0

4GN
=

2φ̄rπ T

4GN
+ S0 (C.5)

where φhor is the horizon dilaton value and S0 = φ0/4GN is the extremal entropy.

To extend our coordinate system behind the horizon we simply define the Kruskal-like

coordinate U = − exp(−2πTu). We find

ds2 = −e2πTv 8πTdUdv

(1 + Ue2πTv)2
, (C.6)

and

φ = 2φ̄rπT
1− Ue2πTv

1 + Ue2πTv
. (C.7)

In the near-horizon region Ue2πTv � 1, these simplify to

ds2 = −e2πTv8πTdUdv, (C.8)

and

φ = 2φ̄rπT
[
1− 2Ue2πTv

]
. (C.9)

In the semiclassical limit, an evaporating black hole is well approximated by an ingoing

Vaidya metric, where we simply promote the temperature T to be a slowly varying function

of the infalling time v. The change in temperature is determined by the rate of energy loss

from the black hole, where we have

2πφ̄r
4GN

dT

dv
=
dSBH

dv
=

1

T

dM

dv
= −πcT

12
. (C.10)

Here the first equality uses (C.5), the second equality is the first law of black-hole thermo-

dynamics and the last equality is the (1 + 1)-dimensional Stefan-Boltzmann law. It follows

that, in the near horizon region, we have

1

4GN

∂φ

∂v
= − φ̄r(2πT )22Ue2πTv

4GN
− πTc

12
, (C.11)

and

1

4GN

∂φ

∂U
= −4πT φ̄re

2πTv

4GN
. (C.12)

We now briefly review the calculation of the location of the nonempty ‘end surface’,

which is the EW surface after the Page time. This surface consists of a single point (U0, v0).

This calculation was previously done for JT gravity in [36], although our strategy is more

similar to [35].
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Let the ‘current’ boundary time be t = 0. The outgoing modes are in the vacuum

state with respect to U . Outgoing modes in the interval U0 ≥ U ≥ −1 are included in the

entanglement wedge of the boundary; modes with U ≥ U0 are outside the wedge, while

modes with U ≤ −1 have already escaped the spacetime. The entropy of the outgoing

modes is therefore given by

S
(out)
bulk =

c

6
log

U0 + 1√
ε

(ext)
U ε

(bdy)
U

(C.13)

where ε
(ext)
U and ε

(bdy)
U are the cut-offs in units of U at the extremal surface (U0, v0) and

the boundary respectively. Since the near horizon metric (C.8) is independent of U , we

can choose ε
(ext)
U and the entropy S

(in)
bulk of the ingoing modes to both be independent of U .

We therefore find

∂Sbulk

∂U0
=

c

6(U0 + 1)
. (C.14)

What about the ingoing modes? These are in the vacuum state with respect to the physical

infalling time v. It follows that their entropy is given by

S
(in)
bulk =

c

6
log

|v0|√
ε

(ext)
v ε

(bdy)
v

, (C.15)

where ε
(ext)
v and ε

(bdy)
v are the cut-offs in units of v on the ingoing modes at the extremal

surface (U0, v0) and boundary respectively. Since in the semiclassical limit we will have

v0 → −∞, one might think that the gradient ∂Sbulk/∂v vanishes.

However, this argument would be naive. To correctly renormalize the entropy we need

to keep the proper cut-off

εprop =

√
g(ε

(ext)
U ∂/∂U, ε

(ext)
v ∂/∂v) (C.16)

fixed as we vary the surface. From (C.8), we therefore need

ε
(ext)
U ε(ext)

v ∝ e−2πTv. (C.17)

Hence

∂Sbulk

∂v
=
πTc

6
. (C.18)

The location of the extremal surface now follows from extremizing the generalized entropy

S(gen) = (φ+ φ0)/4GN + Sbulk. (C.19)

We find

∂S(gen)

∂U
= −4πT φ̄re

2πTv

4GN
+

c

6(U0 + 1)
= 0 (C.20)
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and

∂S(gen)

∂v
= − φ̄r(2πT )22U0e

2πTv

4GN
+
πTc

12
= 0 (C.21)

which implies

U0 =
1

3
v0 = − 1

2πT
log

16(S − S0)

c
, (C.22)

in agreement with the results from [36].

We are now ready to attempt our actual task: calculating the location of the late-

time bulge surface. This is the union of two points (U1, v1) and (U2, v2), where we assume

U2 > U1 and v2 < v1 (since the points need to be spacelike separated). In fact, if we

started with a two-sided black hole, the bulge surface really consists of three points, where

the third point (U3, v3) lies close to the other ‘end surface’, near the initial bifurcation

surface of the two-sided black hole. In the semiclassical limit we have U3 = exp(O(1/GN ))

and v3 = −O(1/GN ). The corrections to the generalized entropy gradient for (U3, v3) from

the existence of the additional points (U1, v1) and (U2, v2) are therefore highly suppressed

and we can treat (U3, v3) as lying exactly on the quantum extremal end surface.

The outgoing entropy is now the entropy of the union of the two intervals [−1, U1] and

[U2, U3], which for c Dirac fermions is given by (see [59])

S
(out)
bulk =

c

6
log

(U3 + 1)(U1 + 1)(U3 − U2)(U2 − U1)

(U3 − U1)(U2 + 1)

√
εU3εU2εU1ε

(bdy)
U

 , (C.23)

where εU3 , εU2 , εU1 and ε
(bdy)
U are the outgoing mode cut-offs in units of U at U3, U2,

U1 and the boundary respectively. Since U3 = exp(O(1/GN )), terms involving U3 do not

contribute to the gradient of the entropy.

Formally, the ingoing entropy should be calculated by a similar formula for the two

intervals [v3, v2] and [v1, 0]. However, since v1 = −O(logGN ) and v2 − v3 = O(1/GN ),

while we shall find that v1 − v2 = O(1/T ), for our purposes we can approximate

S
(in)
bulk =

c

6
log

v1 − v2√
εv2εv1

+ . . . , (C.24)

where εv1 and εv2 are the ingoing cut-offs in units of v at v1 and v2 respectively, and we

have elided constant terms. As before, to correctly renormalize the entropy, we need

εviεUi ∝ e2πTvi . (C.25)

Extremizing the generalized entropy, using (C.11), (C.12), (C.23) and (C.24), we find

∂S(gen)

∂U1
= − c

6(U2 − U1)
+

c

6(U1 + 1)
− 2(S − S0)e2πTv1 = 0, (C.26)

∂S(gen)

∂U2
=

c

6(U2 − U1)
− c

6(U2 + 1)
− 2(S − S0)e2πTv2 = 0, (C.27)
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∂S(gen)

∂v1
= −2(2πT )(S − S0)U1e

2πTv1 +
πTc

12
+

c

6(v1 − v2)
= 0, (C.28)

∂S(gen)

∂v2
= −2(2πT )(S − S0)U2e

2πTv2 +
πTc

12
− c

6(v1 − v2)
= 0. (C.29)

This set of equations can be solved numerically. We find

(U1, v1) =

(
0.874, v0 −

0.410

2πT

)
, (U2, v2) =

(
28.8, v0 −

5.81

2πT

)
. (C.30)

As expected, we have U2 > U1 > U0 and v2 < v1 < v0.

Finally, we note that the classical contribution to the generalized entropy for this

surface is 2(φ0 + 2πT φ̄r).
26 Meanwhile, up to subleading corrections, (C.23) is equal to

c/6 logU3, which is the entropy of the interior partners of the Hawking radiation. Hence,

at leading order, the bulk von Neumann entropy is simply the entropy Srad of the Hawking

radiation. We therefore find that the total generalized entropy at leading order is 2SBH +

Srad, where SBH is the final Bekenstein-Hawking entropy of the black hole.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] D. Harlow and P. Hayden, Quantum Computation vs. Firewalls, JHEP 06 (2013) 085

[arXiv:1301.4504] [INSPIRE].

[2] L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys. 64 (2016)

24 [Addendum ibid. 64 (2016) 44] [arXiv:1403.5695] [INSPIRE].

[3] A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action, and

black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].

[4] A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic Complexity

Equals Bulk Action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].

[5] J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61

(2013) 781 [arXiv:1306.0533] [INSPIRE].

[6] A. Nahum, S. Vijay and J. Haah, Operator Spreading in Random Unitary Circuits, Phys.

Rev. X 8 (2018) 021014 [arXiv:1705.08975] [INSPIRE].

[7] V. Khemani, A. Vishwanath and D.A. Huse, Operator spreading and the emergence of

dissipation in unitary dynamics with conservation laws, Phys. Rev. X 8 (2018) 031057

[arXiv:1710.09835] [INSPIRE].

[8] H. Gharibyan, M. Hanada, S.H. Shenker and M. Tezuka, Onset of Random Matrix Behavior

in Scrambling Systems, JHEP 07 (2018) 124 [Erratum JHEP 02 (2019) 197]

[arXiv:1803.08050] [INSPIRE].

26We will not worry about the time-dependence of the temperature here, since we are only interested in

the answer at leading order.

– 48 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP06(2013)085
https://arxiv.org/abs/1301.4504
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1301.4504
https://doi.org/10.1002/prop.201500092
https://doi.org/10.1002/prop.201500092
https://arxiv.org/abs/1403.5695
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.5695
https://doi.org/10.1103/PhysRevD.93.086006
https://arxiv.org/abs/1512.04993
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.04993
https://doi.org/10.1103/PhysRevLett.116.191301
https://arxiv.org/abs/1509.07876
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.07876
https://doi.org/10.1002/prop.201300020
https://doi.org/10.1002/prop.201300020
https://arxiv.org/abs/1306.0533
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1306.0533
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021014
https://arxiv.org/abs/1705.08975
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.08975
https://doi.org/10.1103/PhysRevX.8.031057
https://arxiv.org/abs/1710.09835
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.09835
https://doi.org/10.1007/JHEP07(2018)124
https://doi.org/10.1007/JHEP02(2019)197
https://arxiv.org/abs/1803.08050
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.08050


J
H
E
P
0
8
(
2
0
2
0
)
1
2
1

[9] P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter and Z. Yang, Holographic duality

from random tensor networks, JHEP 11 (2016) 009 [arXiv:1601.01694] [INSPIRE].

[10] P. Gao, D.L. Jafferis and A.C. Wall, Traversable Wormholes via a Double Trace

Deformation, JHEP 12 (2017) 151 [arXiv:1608.05687] [INSPIRE].

[11] J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys.

65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].

[12] S. Aaronson, The Complexity of Quantum States and Transformations: From Quantum

Money to Black Holes, arXiv:1607.05256 [INSPIRE].

[13] B. Yoshida and A. Kitaev, Efficient decoding for the Hayden-Preskill protocol,

arXiv:1710.03363 [INSPIRE].

[14] L.K. Grover, A fast quantum mechanical algorithm for database search, in STOC ’96 ,

proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,

Philadelphia, Pennsylvania, U.S.A., May 1996, Association for Computing Machinery, New

York NY U.S.A. (1996), pp. 212–219.

[15] L.K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev.

Lett. 79 (1997) 325 [quant-ph/9706033] [INSPIRE].

[16] S. Aaronson, Quantum computing, postselection, and probabilistic polynomial-time,

quant-ph/0412187.

[17] C.H. Bennett, E. Bernstein, G. Brassard and U. Vazirani, Strengths and weaknesses of

quantum computing, SIAM J. Comput. 26 (1997) 1510 [INSPIRE].

[18] M. Boyer, G. Brassard, P. Høyer and A. Tapp, Tight bounds on quantum searching, Fortschr.

Phys. 46 (1998) 493.

[19] C. Zalka, Grover’s quantum searching algorithm is optimal, Phys. Rev. A 60 (1999) 2746

[quant-ph/9711070] [INSPIRE].

[20] D.W. Berry, A.M. Childs, R. Cleve, R. Kothari and R.D. Somma, Simulating Hamiltonian

dynamics with a truncated Taylor series, Phys. Rev. Lett. 114 (2015) 090502

[arXiv:1412.4687].

[21] A. Gilyén, S. Arunachalam and N. Wiebe, Optimizing quantum optimization algorithms via

faster quantum gradient computation, in proceedings of the 30th ACM-SIAM Symposium on

Discrete Algorithms (SODA 2019), San Diego, California, U.S.A., 6–9 January 2019, SIAM

(2019), pp. 1425–1444 [arXiv:1711.00465].

[22] A. Gilyén, Y. Su, G.H. Low and N. Wiebe, Quantum singular value transformation and

beyond: Exponential improvements for quantum matrix arithmetics, in STOC 2019 ,

proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,

Phoenix, AZ, U.S.A., 23–26 June 2019, Association for Computing Machinery, New York NY

U.S.A. (2019), pp. 193–204.

[23] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[24] V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement

entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

[25] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090

[arXiv:1304.4926] [INSPIRE].

– 49 –

https://doi.org/10.1007/JHEP11(2016)009
https://arxiv.org/abs/1601.01694
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.01694
https://doi.org/10.1007/JHEP12(2017)151
https://arxiv.org/abs/1608.05687
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.05687
https://doi.org/10.1002/prop.201700034
https://doi.org/10.1002/prop.201700034
https://arxiv.org/abs/1704.05333
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.05333
https://arxiv.org/abs/1607.05256
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.05256
https://arxiv.org/abs/1710.03363
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.03363
https://doi.org/10.1145/237814.237866
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1103/PhysRevLett.79.325
https://arxiv.org/abs/quant-ph/9706033
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C79%2C325%22
https://arxiv.org/abs/quant-ph/0412187
https://doi.org/10.1137/S0097539796300933
https://inspirehep.net/search?p=find+J%20%22SIAM%20J.Comput.%2C26%2C1510%22
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
https://doi.org/10.1103/PhysRevA.60.2746
https://arxiv.org/abs/quant-ph/9711070
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CA60%2C2746%22
https://doi.org/10.1103/PhysRevLett.114.090502
https://arxiv.org/abs/1412.4687
https://arxiv.org/abs/1711.00465
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/hep-th/0603001
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0603001
https://doi.org/10.1088/1126-6708/2007/07/062
https://arxiv.org/abs/0705.0016
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0705.0016
https://doi.org/10.1007/JHEP08(2013)090
https://arxiv.org/abs/1304.4926
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.4926


J
H
E
P
0
8
(
2
0
2
0
)
1
2
1

[26] N. Engelhardt and A.C. Wall, Quantum Extremal Surfaces: Holographic Entanglement

Entropy beyond the Classical Regime, JHEP 01 (2015) 073 [arXiv:1408.3203] [INSPIRE].

[27] X. Dong and A. Lewkowycz, Entropy, Extremality, Euclidean Variations, and the Equations

of Motion, JHEP 01 (2018) 081 [arXiv:1705.08453] [INSPIRE].

[28] A.C. Wall, Maximin Surfaces, and the Strong Subadditivity of the Covariant Holographic

Entanglement Entropy, Class. Quant. Grav. 31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].

[29] C. Akers, N. Engelhardt, G. Penington and M. Usatyuk, Quantum Maximin Surfaces, to

appear.

[30] D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291

[gr-qc/9305007] [INSPIRE].

[31] A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or

Firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

[32] P. Hayden and J. Preskill, Black holes as mirrors: Quantum information in random

subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].

[33] A. Almheiri, Holographic Quantum Error Correction and the Projected Black Hole Interior,

arXiv:1810.02055 [INSPIRE].

[34] P. Hayden and G. Penington, Learning the Alpha-bits of Black Holes, JHEP 12 (2019) 007

[arXiv:1807.06041] [INSPIRE].

[35] G. Penington, Entanglement Wedge Reconstruction and the Information Paradox,

arXiv:1905.08255 [INSPIRE].

[36] A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield, The entropy of bulk quantum fields

and the entanglement wedge of an evaporating black hole, JHEP 12 (2019) 063

[arXiv:1905.08762] [INSPIRE].

[37] A. Almheiri, R. Mahajan, J. Maldacena and Y. Zhao, The Page curve of Hawking radiation

from semiclassical geometry, JHEP 03 (2020) 149 [arXiv:1908.10996] [INSPIRE].

[38] G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole

interior, arXiv:1911.11977 [INSPIRE].

[39] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, Replica Wormholes

and the Entropy of Hawking Radiation, JHEP 05 (2020) 013 [arXiv:1911.12333] [INSPIRE].

[40] M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic

entanglement entropy, JHEP 12 (2014) 162 [arXiv:1408.6300] [INSPIRE].

[41] B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The Gravity Dual of a

Density Matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].

[42] D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative

entropy, JHEP 06 (2016) 004 [arXiv:1512.06431] [INSPIRE].

[43] X. Dong, D. Harlow and A.C. Wall, Reconstruction of Bulk Operators within the

Entanglement Wedge in Gauge-Gravity Duality, Phys. Rev. Lett. 117 (2016) 021601

[arXiv:1601.05416] [INSPIRE].

[44] J. Cotler, P. Hayden, G. Penington, G. Salton, B. Swingle and M. Walter, Entanglement

Wedge Reconstruction via Universal Recovery Channels, Phys. Rev. X 9 (2019) 031011

[arXiv:1704.05839] [INSPIRE].

– 50 –

https://doi.org/10.1007/JHEP01(2015)073
https://arxiv.org/abs/1408.3203
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.3203
https://doi.org/10.1007/JHEP01(2018)081
https://arxiv.org/abs/1705.08453
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.08453
https://doi.org/10.1088/0264-9381/31/22/225007
https://arxiv.org/abs/1211.3494
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1211.3494
https://doi.org/10.1103/PhysRevLett.71.1291
https://arxiv.org/abs/gr-qc/9305007
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9305007
https://doi.org/10.1007/JHEP02(2013)062
https://arxiv.org/abs/1207.3123
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1207.3123
https://doi.org/10.1088/1126-6708/2007/09/120
https://arxiv.org/abs/0708.4025
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0708.4025
https://arxiv.org/abs/1810.02055
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.02055
https://doi.org/10.1007/JHEP12(2019)007
https://arxiv.org/abs/1807.06041
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.06041
https://arxiv.org/abs/1905.08255
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.08255
https://doi.org/10.1007/JHEP12(2019)063
https://arxiv.org/abs/1905.08762
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.08762
https://doi.org/10.1007/JHEP03(2020)149
https://arxiv.org/abs/1908.10996
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.10996
https://arxiv.org/abs/1911.11977
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.11977
https://doi.org/10.1007/JHEP05(2020)013
https://arxiv.org/abs/1911.12333
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.12333
https://doi.org/10.1007/JHEP12(2014)162
https://arxiv.org/abs/1408.6300
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.6300
https://doi.org/10.1088/0264-9381/29/15/155009
https://arxiv.org/abs/1204.1330
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1204.1330
https://doi.org/10.1007/JHEP06(2016)004
https://arxiv.org/abs/1512.06431
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.06431
https://doi.org/10.1103/PhysRevLett.117.021601
https://arxiv.org/abs/1601.05416
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.05416
https://doi.org/10.1103/PhysRevX.9.031011
https://arxiv.org/abs/1704.05839
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.05839


J
H
E
P
0
8
(
2
0
2
0
)
1
2
1

[45] T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic

entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].

[46] A. Almheiri, X. Dong and D. Harlow, Bulk Locality and Quantum Error Correction in

AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].

[47] L. Susskind, L. Thorlacius and J. Uglum, The Stretched horizon and black hole

complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].

[48] J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61

(2013) 781 [arXiv:1306.0533] [INSPIRE].

[49] D.N. Page, Time Dependence of Hawking Radiation Entropy, JCAP 09 (2013) 028

[arXiv:1301.4995] [INSPIRE].

[50] M.A. Nielsen, M.R. Dowling, M. Gu and A.C. Doherty, Quantum computation as geometry,

Science 311 (2006) 1133.

[51] I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS2 gravity,

arXiv:1707.02325 [INSPIRE].

[52] R. Bousso, Z. Fisher, S. Leichenauer and A.C. Wall, Quantum focusing conjecture, Phys.

Rev. D 93 (2016) 064044 [arXiv:1506.02669] [INSPIRE].

[53] B. Collins, Moments and Cumulants of Polynomial random variables on unitary groups, the

Itzykson-Zuber integral and free probability, Int. Math. Res. Not. 17 (2003) 953

[math-ph/0205010].

[54] H. Federer, Geometric measure theory, Springer (2014).

[55] W.K. Allard, Notes on the theory of varifolds, in Théorie des variétés minimales et
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