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1 Introduction

Applications of conformal field theory (CFT) in high-energy and condensed matter physics

are well-known, as is the connection between gravity and CFTs. Motivation for renewed

interest in CFTs includes the plethora of fruitful advances of the bootstrap program [3, 4]

in more than two dimensions. (The modern bootstrap literature is vast. It spans many

interesting numerical results [5–44], a variety of impressive analytic results [45–73], work

involving global symmetries [74–93] and higher-spin fields [94–99], as well as lectures and

reviews [100–103].) The starting point for the bootstrap are the conformal blocks, which

are the building blocks of the four-point correlation functions. Calculating conformal blocks

beyond two dimensions has proved daunting, and only a few cases were successfully worked

out almost twenty years ago [104, 105] (see also [106–109] for earlier work). With the

revival of interest in the conformal bootstrap, several new results for conformal blocks

were developed more recently [110–159] using a variety of different methods.
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A different approach for the computation of conformal blocks was recently proposed

in [1, 2]. It relies on using the operator product expansion (OPE) in the embedding

space [160–163]. The framework for embedding space OPE was introduced in [164–169],

with further developments presented in [170–172]. This approach can be applied to yield

any conformal block in general spacetime dimensions. In this formalism, operators in

arbitrary Lorentz representations are uplifted to the embedding space in a uniform manner

using products of spinor representations alone. Derivatives naturally occur in the OPE, and

hence it is of interest to fully determine their action in order to directly obtain the blocks.

These were evaluated explicitly in [1, 2] for any expression that may potentially arise in any

M -point function. With the action of derivatives already in hand, computing conformal

blocks just requires finding the projection operators for irreducible Lorentz representations

and then performing appropriate replacements of terms with the corresponding expressions

obtained from derivatives in the OPE.

In this work, we derive several four-point conformal blocks using the approach de-

veloped in [1, 2]. We have two main goals here. One is to illustrate how the formalism

performs in practice. Another is to validate the approach by comparing the results with

the existing ones in the literature whenever available. Some of the ingredients needed here,

in particular, the projection operators and three-point tensor structures, were studied in

detail in [173, 174]; we rely on those results in this paper.

An interesting aspect of the present approach is that all conformal blocks computed

here can be expressed in terms of the Gegenbauer polynomials onto which particular sub-

stitution rules are then applied. The Gegenbauer polynomials are functions of a variable

X, and a set of substitution rules transforms X into the final answer.

This paper is organized as follows: we start with an overview of our method and main

results in section 2. Section 3 expresses all four-point correlation functions in terms of the

conformal blocks. The conformal blocks themselves are obtained by contracting two ten-

sor structures, each originating from the OPE, with the so-called “pre-conformal blocks”.

These pre-conformal blocks depend primarily on the Lorentz quantum numbers of the ex-

changed quasi-primary operator. They are computed in two steps using the corresponding

hatted projection operators. In the first step, the projection operators are transformed

using the three-point tensorial function. In the second step, the result is transformed fur-

ther by a four-point conformal substitution rule yielding the proper conformal quantity.

The resulting pre-conformal blocks are linear combinations of tensorial objects, which in-

volve the generalized Exton G-functions of the conformal cross-ratios. The contractions of

the pre-conformal blocks with the two tensor structures can be facilitated with the help

of several contiguous relations, leading to the standard conformal blocks. In this work,

all pre-conformal blocks and conformal blocks are computed in the s-channel. Section 4

illustrates how the formalism can be applied to derive pre-conformal blocks and conformal

blocks in a series of examples. The conformal blocks are all written in terms of appropriate

conformal substitutions on the Gegenbauer polynomials. As such, the conformal blocks

presented here are the final answers that do not contain any derivatives. Comparison with

the existing literature demonstrates the validity of the approach. Finally, section 5 con-

cludes, pointing out the importance of hatted projection operators and tensor structures
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in the computation of pre-conformal blocks and conformal blocks, respectively. The reader

interested in the general method based on the OPE is referred to [1, 2] for an extensive

exposition of the formalism.

For certain computations, the answers are applicable in d ≥ 3 only, since in that case

extra tensor structures appear which must be taken into account appropriately. Those

cases should be clear from the context. Moreover, although the formalism works for any

spacetime signature, the emphasis here is on Lorentz signature.

2 Overview of methods and results

Here we provide an overview of the main methods used and the most important results

found in this work. Readers familiar with [1, 2] are advised to skip directly to section 3.

As the results obtained here are highly technical in nature, a bird’s-eye view may be of

advantage. For this, the reader is encouraged to consult this section before delving into

the details of the methods and results.

Throughout, we work in the (d + 2)-dimensional embedding space with light-cone

coordinates denoted by ηA. The most important tool used here is the OPE described

in (3.1). The fact that the OPE converges absolutely at finite separation in a CFT has the

powerful consequence that it can be exploited as a tool to compute M -point functions in

terms of (M − 1)-point functions. Here we apply the embedding space OPE to determine

four-point functions from three-point functions.

The differential operator D(d,hijk−na/2,na)
12 appearing in the OPE (3.1) exhibits several

useful properties explored in [1, 2]. Notably, this operator features derivatives with respect

to η2 only and therefore commutes with all other coordinates. Further, the superscript

label na on the operator denotes the number of vector indices, which are frequently omitted

whenever it is clear from the context how they are contracted. Setting na = n, it was found

earlier that D12 satisfies the identity

D(d,h,n)A1···An
12 η

An+1

2 · · · ηAn+k

2 = (η1 · η2)
k
2D(d,h,n+k)A1···An+k

12 ,

which implies that the action of D12 on any string of coordinates η2 with free Lorentz

indices may be absorbed into D12 by simply shifting the index n appropriately. As may be

foreseen from the above property, D(d,h,n)A1···An
12 is symmetric under the interchange of any

pair of indices; moreover, it is also traceless upon contraction with the metric gA1A2 .

What is perhaps the most consequential result of [1, 2] is that the action of D(d,h,n)
12 on

an arbitrary product Πi 6=2(ηi · η2)pi can be evaluated explicitly for the most general quan-

tity appearing in M -point correlation functions. The expression for any CFT correlation

function features coordinates with Lorentz indices that take care of the spin of a given

operator and powers of (ηi · ηj) that account for the scaling dimension of the operator

in question. Thus, D(d,h,n)
12 can be used to construct higher-point functions for operators

in arbitrary Lorentz representations. The resulting expressions generated by the present

method are naturally found in closed form with no derivatives or integrals that need to be

evaluated. An M -point function is therefore given in terms of D(d,h,n)
12 acting on a function

with M −1 points. However, the upshot is that the action of the OPE differential operator
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has been determined in complete generality. Notwithstanding, even with general formu-

las known, obtaining the final particular expressions in a given case can be cumbersome.

This is because correlators of spinning operators often contain many terms, with each term

generically associated with different indices h and n in D(d,h,n)
12 , thus leading to complicated

formulas. For three and four points, the relevant action of D(d,h,n)
12 on the coordinates is

described in (3.6) and (3.16), respectively.

Another crucial ingredient of the calculations described here relates to the treatment

of operators with spin. In this work, we denote Lorentz representations of SO(d) by their

Dynkin indices (N1, N2, . . . , Nr), where r is the rank of SO(d). Here we useN1e1+N2e2+. . .

in place of (N1, N2, . . .), interchangeably. We take all operators to carry spinor indices only,

as spinor representations are faithful and an arbitrary representation may be obtained from

a product of spinors. Transformation properties of operators under conformal transforma-

tions are encoded by the half-projectors (T N
12 Γ) appearing in the OPE and correlation

functions, for instance in (3.1) and (3.2), where N denotes the representation of a given

operator. The half-projectors are present to translate objects from products of spinor

indices into appropriate combinations of vector indices with a given symmetry under per-

mutations if the representation is bosonic and a combination of vector indices and one

spinor index if the representation is fermionic. The half-projectors play essentially spec-

tator roles and are in place to ensure that all expressions transform properly. The more

conventional expressions with operators carrying vector indices instead of spinor indices

can be obtained trivially by contracting the operators with half-projectors, for example

(TNΓ) ∗ ON , where the ∗ denotes the full contraction of the spinor indices.

As mentioned, the half-projectors serve the function of group-theoretic bookkeeping for

the external operators. The half-projectors square to form projection operators, denoted

by P̂N , hence the half-projector terminology. The projectors act on the vector indices

for bosonic representations, or vector indices and one spinor index for fermionic ones,

given a specific representation N . The projectors appear in our formulas for the exchange

operators, for example in (3.13).

The central expression that leads directly to the four-point blocks is (3.13). This

result is applicable to exchanged or external operators of any Lorentz representation. The

expression for J̄ illustrates how the invocation of the OPE, and specifically the action of

the derivative D12, are applied in practice. One needs to keep track of the different ways

in which η2 appears in the expression. In particular, it may carry free Lorentz indices,

denoted by (η̄2)s2 , or be found in dot products present inside the conformal cross ratios

denoted x3 and x4. Each individual power of (η̄2)s2xr33 x
r4
4 is accordingly replaced by the

corresponding Ī12;34 function that was obtained from the OPE in [1, 2]. In this fashion, the

computation of the blocks has been reduced to substitutions and bookkeeping. Obtaining

the final expressions for the blocks necessitates contracting the indices on J̄ with the

representations of the external operators. This is accomplished by contraction with the

group-theoretic structures at
12m
ij and bt

34
klm, which ultimately leads to the result in (3.14).

Let us now give an overview of the concrete examples considered in this paper. Here

we work out five distinct sets of conformal blocks with the following choices of external

operators: four scalars, three scalars and an antisymmetric tensor, two scalars and two
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vectors. In all cases, the exchanged operators are either the `-index traceless symmetric

tensor or in the mixed `e1 +e2 representation. From the perspective of our framework, we

have found that the most convenient way to express the blocks is in terms of substitution

rules on the Gegenbauer polynomials.

The simplest example of this is the scalar block with symmetric traceless tensor ex-

change `e1. The expression for the block, (4.13), contains a purely numerical normaliza-

tion factor ω and the `-th Gegenbauer polynomial C
(d/2−1)
` (X) of weight d/2 − 1 that

depends on the conformal cross-ratios. This expression completely encodes the block

when combined with the associated substitution rule. Here the special variable X =
1
2 [(α4 − α3)x4 − (α3 − α2)x3] depends on the cross-ratios x3 = u

v and x4 = u and on place-

holder variables α2,3,4. Once the Gegenbauer polynomial has been expanded in terms of

powers of X and in turn X is expressed in terms of α2,3,4 and x3,4 one obtains a finite power

series C
(d/2−1)
` (X) =

∑
c`;s2,s3,s4,r3,r4α

s2
2 α

s3
3 α

s4
4 x

r3
3 x

r4
4 . Each term in the series is replaced

by the function Ī12;34, whose arguments depend on the powers s2,3,4 and r3,4. The expres-

sion obtained in this way agrees directly with [119]; moreover, the recursion relation (4.16),

given in [104], is satisfied.

All other blocks exhibit very similar, albeit more involved, structures. The depen-

dence on the conformal cross-ratios is given in terms of the Gegenbauer polynomials, see

for example (4.26) and (4.27). These encode some of the blocks for the symmetric tensor

`e1 exchange with the scalar-vector-scalar-vector external operators. The meaning of these

expressions is exactly the same as before. The block in (4.26) consists of two Gegenbauer

polynomials, while the one in (4.27) of four polynomials. Every one of the Gegenbauer poly-

nomials is associated with a substitution rule that specifies the expressions corresponding

to powers of α2,3,4 and x3,4 upon expansion of X. The crux of the calculation involves find-

ing the Gegenbauer polynomials and their associated substitution rules. We do not find

it useful, other than for direct comparison with the literature, to expand the expressions

completely, as this is straightforward. In the context of our formalism, conformal blocks

given in terms of the Gegenbauer polynomials and the associated substitution rules are in

fact the final expressions.

In practice, we have found it most convenient to work with what we term the “mixed

basis.” Oftentimes, we use the OPE to obtain four-point functions from the three-point

ones but do not exploit the OPE directly to obtain the three-point from the two-point

functions. The price of convenience is that we end up with one basis of group-theoretic

structures for the OPE and another basis for the three-point functions. The mixed basis

blocks are denoted with mixed brackets, for example GN
(a|b]. The transformation from one

basis to another are linear and are discussed in section 4.2.

3 Four-point correlation functions

In this section, we compute four-point correlation functions in the embedding space with

the help of the OPE, as laid out in [1, 2]. The procedure is analogous to the one used

to obtain three-point correlation functions from the OPE [174]. The result combines a

group-theoretic part, which depends on the Lorentz irreducible representation of the ex-

changed quasi-primary operator, and a scalar part, which involves simple powers of the
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conformal cross-ratios. The latter is fixed by the conformal dimensions of the exchanged

and the external quasi-primary operators. Afterward, some simple substitution rules are

introduced to transform these objects into tensorial functions appearing in four-point cor-

relation functions, namely the conformal blocks.

3.1 OPE and four-point correlation functions

Four-point correlation functions can be computed from the OPE [1, 2]

Oi(η1)Oj(η2) = (T N i
12 Γ)(T Nj

21 Γ) ·
∑
k

Nijk∑
a=1

ac
k

ij at
12k
ij

(η1 · η2)pijk
· D(d,hijk−na/2,na)

12 (T12Nk
Γ) ∗ Ok(η2),

pijk =
1

2
(τi + τj − τk), hijk = −1

2
(χi − χj + χk),

τO = ∆O − SO, χO = ∆O − ξO, ξO = SO − bSOc, (3.1)

where ∆O is the scaling dimension of the operator in question; SO is the operator spin,

defined to be half the number of its spinor indices; τO is the twist; while ξO is a parameter

that is either 0 for bosonic or 1
2 for fermionic operators. The spin SO is either an integer or

a half-integer and does not provide a complete description of an operator representation,

which can only be specified by the weights. Further, the OPE coefficients ac
k

ij are purely

numerical, while the half-projectors T N
ij Γ and the tensor at

12k
ij carry Lorentz indices, as does

the differential operator D12. For now, we have suppressed all Lorentz indices for brevity.

They will be restored shortly, but we stress that this statement applies to arbitrary operator

representations.

The OPE yields four-point correlation functions from three-point ones as

〈Oi(η1)Oj(η2)Ok(η3)O`(η4)〉 = (T N i
12 Γ)(T Nj

21 Γ) ·
∑
m

Nijm∑
a=1

(−1)2ξm ac
m

ij at
12m
ij

(η1 · η2)pijm

· D(d,hijm−na/2,na)
12

· (T12NmΓ) ∗ 〈Ok(η3)O`(η4)Om(η2)〉 .

(3.2)

Three-point correlation functions can also be obtained from the OPE (3.1), see [174], as

can be the two-point correlation functions [173].

Upon inserting the result of [174] in (3.2), the four-point correlation functions assume

the form

〈Oi(η1)Oj(η2)Ok(η3)Ol(η4)〉 (3.3)

=
(T Ni

12 Γ){Aa}(T Nj

21 Γ){Bb}(T Nk
34 Γ){Cc}(T N l

43 Γ){Dd}

(η1 · η2)
1
2 (τi−χi+τj+χj)(η1 · η3)

1
2 (χi−χj+χk−χl)(η1 · η4)

1
2 (χi−χj−χk+χl)(η3 · η4)

1
2 (−χi+χj+τk+τl)

×
∑
m

Nijm∑
a=1

Nklm∑
b=1

(−1)2ξmλNmac
m

ij bcklm(at
12m
ij )

{Ee}{F}
{aA}{bB} (bt

34
klm){cC}{dD}{e′E′}{F ′}

×
[

(η1 · η2)(η3 · η4)

(η1 · η3)(η1 · η4)

]hijm

D(d,hijm−na/2,na)

12{F}

[
(η1 · η2)(η3 · η4)

(η1 · η4)(η2 · η3)

]−hklm
[

(η1 · η2)(η3 · η4)

(η1 · η3)(η2 · η4)

]−hlkm

×

(
η2 · Γ P̂Nm

21 · P̂Nm
23 η3 · Γ

(η2 · η3)

) {E′′e′′}

{eE}

(J̄
(d,hklm,nb,∆m,Nm)
34;2 )

{E′e′}{F ′}
{e′′E′′} ,
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where the three-point correlation function quantities are

acijk =
∑
l

ac
l

ij c
1

lk , at
12
ijk = at

12kC

ij [(C−1
Γ )]2ξk(g)n

k
v (g)na , (3.4)

and λNk
is a normalization constant chosen such that the two-point tensor structures are

orthonormalized [173]. The sets of Lorentz/spinor (upper/lower case, respectively) indices

{Aa}, {Bb}, {Cc}, {Dd} correspond to the external operators, the indices {Ee} to the

exchanged operator, while the set {F} is associated with the OPE differential operator

D12 in (3.1). Both primed and unprimed indices appear for {Ee} and {F}, as the projec-

tor operators PNm
ij carry both upper and lower indices. We should note that the tensor

structures at
12m
ij and bt

34
klm serve to contract the indices among the half-projectors T N

ij Γ

and the projectors PNm
ij to the representation of the exchanged operator and the differ-

ential operator. There are no restrictions on the Lorentz representations of any operators

in (3.3).

Before delving into a discussion of the conformal substitution rule, we find it necessary

to explicitly display the three-point tensorial function.

3.2 Three-point tensorial function

In (3.3), the three-point tensorial quantity ¯̄J
(d,h,n,∆,N)
34;2 is known from the three-point cor-

relation functions [174] and is obtained by a simple conformal substitution, namely1

¯̄J
(d,h,n,∆,N)
34;2 = (¯̄η2 · Γ P̂N

24 · P̂N
34

¯̄η4 · Γ)cs3

≡ ¯̄η2 · Γ P̂N
24 · P̂N

34
¯̄η4 · Γ

∣∣∣(g)s0 (¯̄η2)s2 (¯̄η3)s3 (¯̄η4)s4→(g)s0 (¯̄η2)s2 (¯̄η3)s3

×Ī(d,h−n/2−s4,n+s4;χ+s2/2−s3/2+s4/2)
34

, (3.5)

where the metric g, and coordinates ¯̄ηi carry Lorentz indices, but we have only exhibited

their total numbers denoted by the powers s0,2,3,4. The three-point tensorial function is

Ī
(d,h,n;p)
34 =

∑
q0,q2,q3,q4≥0

q̄=2q0+q2+q3+q4=n

S(q0,q2,q3,q4)ρ
(d,h;p)K(d,h;p;q0,q3,q4,q2), (3.6)

and it is obtained from a general M -point result in [1, 2].

The totally symmetric tensor, the prefactor and the K-function appearing in (3.6) are

S
A1···Aq̄
(q0,q2,q3,q4) = g(A1A2 · · · gA2q0−1A2q0 ¯̄η

A2q0+1

2 · · · ¯̄ηA2q0+q2
2

× ¯̄η
A2q0+q2+1

3 · · · ¯̄ηA2q0+q2+q3
3

¯̄η
A2q0+q2+q3+1

4 · · · ¯̄ηAq̄)4 ,

ρ(d,h;p) = (−2)h(p)h(p+ 1− d/2)h,

K(d,h;p;q0,q3,q4,q2) =
(−1)q̄−q0−q3−q4(−2)q̄−q0 q̄!

q0!q2!q3!q4!

(−h− q̄)q̄−q0−q4(p+ h)q̄−q0−q3
(p+ 1− d/2)−q0−q3−q4

,

(3.7)

1Departing from the notation used in [174], homogeneized quantities for three-point correlation functions

are denoted by double bars to avoid confusion with homogeneized quantities for four-point correlation

functions, denoted by single bars.
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with q̄ = 2q0 + q2 + q3 + q4. In the totally symmetric tensor, the homogeneized embedding

space coordinates are defined as

¯̄ηAi =
(ηj · ηk)

1
2

(ηi · ηj)
1
2 (ηi · ηk)

1
2

ηAi , (3.8)

with (i, j, k) a cyclic permutation of (2, 3, 4). Clearly, the three-point tensorial function is

totally symmetric and traceless with respect to the embedding space metric. As such, it

satisfies the following contiguous relations [1, 2]:

g · Ī(d,h,n;p)
34 = 0,

¯̄η3 · Ī(d,h,n;p)
34 = Ī

(d,h+1,n−1;p)
34 ,

¯̄η4 · Ī(d,h,n;p)
34 = ρ(d,1;−h−n)Ī

(d,h,n−1;p)
34 ,

¯̄η2 · Ī(d,h,n;p)
34 = Ī

(d,h+1,n−1;p−1)
34 .

(3.9)

Since ¯̄J
(d,h,n,∆,N)
34;2 is contracted with the tensor structure bt

34
k`m in (3.3) and the latter com-

mutes through the differential operator D(d,h−n/2,n)
12 , the contiguous relations (3.9) can be

very handy in simplifying the quantity ¯̄J
(d,hklm,nb,∆m,Nm)
34;2 ·bt34

klm when computing conformal

blocks. One can also express ¯̄J
(d,hklm,nb,∆m,Nm)
34;2 · bt34

klm in a generic basis of tensor structures

by constructing it with the help of the quantities A34, ε34, Γ34 and A34 · ¯̄η2.

For future convenience, we also define K̃(d,h;p;q0,q3,q4,q2) = ρ(d,h;p)K(d,h;p;q0,q3,q4,q2), which

will appear in the construction of the pre-conformal blocks.

3.3 Rules for four-point correlation functions

The last two lines in (3.3) are homogeneous of degree zero in all four embedding space

coordinates. Following [1, 2], they can be re-expressed in terms of the homogeneized

embedding space coordinates

η̄A1 =
(η3 · η4)

1
2

(η1 · η3)
1
2 (η1 · η4)

1
2

ηA1 , η̄A2 =
(η1 · η3)

1
2 (η1 · η4)

1
2

(η1 · η2)(η3 · η4)
1
2

ηA2 ,

η̄A3 =
(η1 · η4)

1
2

(η3 · η4)
1
2 (η1 · η3)

1
2

ηA3 , η̄A4 =
(η1 · η3)

1
2

(η3 · η4)
1
2 (η1 · η4)

1
2

ηA4 ,

(3.10)

and the conformal cross-ratios

x3 =
(η1 · η2)(η3 · η4)

(η1 · η4)(η2 · η3)
=
u

v
, x4 =

(η1 · η2)(η3 · η4)

(η1 · η3)(η2 · η4)
= u. (3.11)

Hence, the last two lines of (3.3) can be represented by the following function:

J̄
(d,h1,n1,h2,n2,∆,N)
34;21 =

[
(η1 · η2)(η3 · η4)

(η1 · η3)(η1 · η4)

]h1

D(d,h1−n1/2,n1)
12

[
(η1 · η2)(η3 · η4)

(η1 · η4)(η2 · η3)

]−h2

(3.12)

×
[

(η1 · η2)(η3 · η4)

(η1 · η3)(η2 · η4)

]χ+h2
(
η2 · Γ P̂N

21 · P̂N
23 η3 · Γ

(η2 · η3)

)
· ¯̄J

(d,h2,n2,∆,N)
34;2

= D̄(d,h1−n1/2,n1)
12 x−h2

3 xχ+h2
4

(
η2 · Γ P̂N

21 · P̂N
23 η3 · Γ

(η2 · η3)

)
· ¯̄J

(d,h2,n2,∆,N)
34;2 ,
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which depends primarily on the exchanged quasi-primary operator, most importantly, on

its irreducible representation N under the Lorentz group. Using the definition of the three-

point tensorial function (3.5) and the general result of [1, 2] for the action of the differential

operator, we find that there exists a simple conformal substitution rule for (3.12), analogous

to the one in the three-point case [174]. It can be explicitly and concisely given as

J̄
(d,h1,n1,h2,n2,∆,N)
34;21

= 22ξ(¯̄η2 · Γ P̂N
21 · P̂N

23 · P̂N
24 · P̂N

34
¯̄η4 · Γ)cs3,cs4

≡ 22ξ (¯̄η2 · Γ P̂N
21 · P̂N

23 · P̂N
24 · P̂N

34
¯̄η4 · Γ)cs3

∣∣∣
(η̄2)s2x

r3
3 x

r4
4 →Ī

(d,h1−n1/2−s2,n1+s2;−h2+r3,χ+h2+r4)
12;34

,

(3.13)

where only P̂N
24 and P̂N

34 are expressed in terms of the homogeneized three-point embedding

space coordinates (3.8) for the three-point conformal substitution (3.5). After the three-

point conformal substitution has been implemented but before the four-point one is per-

formed, all the embedding space coordinates are re-expressed in terms of the homogeneized

four-point embedding space coordinates (3.10) and the conformal cross-ratios (3.11), with

the homogeneized three-point quantities (3.8) given by

¯̄η2 =
√
x3x4η̄2, ¯̄η3 =

√
x3

x4
η̄3, ¯̄η4 =

√
x4

x3
η̄4.

The four-point tensorial function Ī
(d,h,n;p3,p4)
12;34 appearing in the conformal substitution

rule (3.3) is described in more detail below.

A few comments on (3.13) above may be useful here. As was the case for three-point

functions in (3.5), this expression is valid for any operator spins. The J̄-function can be

regarded as a pre-conformal block. It depends primarily on the Lorentz group irreducible

representation N of the exchanged quasi-primary operator. Any conformal block with an

exchanged operator in a given representation N can be obtained by appropriate group

theory contractions as described below.

The dependence on the exchange operator is clear as the substitutions are performed on

a combination of the projection operators into the representation N denoted PN
ij . Explicit

examples of projection operators are in (4.1) and (4.5). The remaining inputs that deter-

mine the J̄-function are numerical. These are three real numbers related to the conformal

dimensions of all quasi-primary operators, two integers associated with the two symmetric-

traceless irreducible representations appearing in the two tensor structures described below,

and the spacetime dimension. Consequently, once the irreducible representation of the ex-

changed quasi-primary operator is fixed, the pre-conformal blocks (i.e. the J̄-functions) are

completely determined from the corresponding hatted projection operator.2

2Hatted projection operators are discussed in [173].
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After using the conformal substitution rule (3.13), the four-point correlation func-

tions (3.3) become

〈Oi(η1)Oj(η2)Ok(η3)Ol(η4)〉

=
(T Ni

12 Γ){Aa}(T Nj

21 Γ){Bb}(T Nk
34 Γ){Cc}(T N l

43 Γ){Dd}

(η1 · η2)
1
2 (τi−χi+τj+χj)(η1 · η3)

1
2 (χi−χj+χk−χl)(η1 · η4)

1
2 (χi−χj−χk+χl)(η3 · η4)

1
2 (−χi+χj+τk+τl)

×
∑
m

Nijm∑
a=1

Nklm∑
b=1

(−1)2ξmλNmac
m

ij bcklm(at
12m
ij )

{Ee}{F}
{aA}{bB} (bt

34
klm){cC}{dD}{e′E′}{F ′}

× (J̄
(d,hijm,na,hklm,nb,∆m,Nm)
34;21 )

{E′e′}{F ′}
{F}{eE} .

The equation above is valid for all four-point correlation functions irrespective of the ir-

reducible representations of the quasi-primary operators. Moreover, the nontrivial part of

the computation corresponds to the contraction of the hatted projection operators. The

conformal substitution rule (3.13) leading to the pre-conformal blocks is trivial.

The two tensor structures,3 which dictate the two integers mentioned above, are then

needed to contract the remaining dummy indices, which leads to

〈Oi(η1)Oj(η2)Ok(η3)Ol(η4)〉

=
(T Ni

12 Γ){Aa}(T Nj

21 Γ){Bb}(T Nk
34 Γ){Cc}(T N l

43 Γ){Dd}

(η1 · η2)
1
2 (τi−χi+τj+χj)(η1 · η3)

1
2 (χi−χj+χk−χl)(η1 · η4)

1
2 (χi−χj−χk+χl)(η3 · η4)

1
2 (−χi+χj+τk+τl)

×
∑
m

Nijm∑
a=1

Nklm∑
b=1

ac
m

ij bcklm(G
ij|m|kl
(a|b) ){aA}{bB}{cC}{dD},

(3.14)

with the conformal blocks

G
ij|m|kl
(a|b) = (−1)2ξmλNmat

12m
ij · J̄ (d,hijm,na,hklm,nb,∆m,Nm)

34;21 · bt34
klm.

As mentioned earlier, the contiguous relations (3.9) and (3.20) can be quite helpful in

computing the conformal blocks. Therefore, it might be more efficient to contract the pre-

conformal blocks with the appropriate tensor structures before performing all conformal

substitutions, which results in the expression

G
ij|m|kl
(a|b) =

λNmat
12m
ij ·

(
(−x3)2ξm η̄2 · Γ P̂Nm

21 · P̂Nm
23 η̄3 · Γ(¯̄η2 · Γ P̂Nm

24 · P̂Nm
34

¯̄η4 · Γ)cs3 · bt34
klm

)
cs4
,

(3.15)

for the conformal blocks, with the conformal substitution rules (3.5) and (3.13), respec-

tively.

3Tensor structures are discussed in [174].
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3.4 Four-point tensorial function

From the results of [1, 2], the four-point tensorial function Ī
(d,h,n;p3,p4)
12;34 is given by

Ī
(d,h,n;p3,p4)
12;34 =

∑
q0,q1,q2,q3,q4≥0

q̄=2q0+q1+q2+q3+q4=n

S(q)ρ
(d,h;p3+p4)xp3+p4+h+q0+q2+q3+q4

3 K
(d,h;p3,p4;q0,q1,q2,q3,q4)
12;34;3 (x3; y4),

(3.16)

with the totally symmetric tensor S(q)

S
A1···Aq̄
(q) = g(A1A2 · · · gA2q0−1A2q0 η̄

A2q0+1

1 · · · η̄A2q0+q1
1 · · · η̄Aq̄−q4+1

4 · · · η̄Aq̄)4 , (3.17)

q̄ = 2q0 + q1 + q2 + q3 + q4 and y4 = 1− x3/x4.

The K-function is simply a shifted version of the Exton G-function,

K
(d,h;p;q)
12;34;3 (x3; y4) =

(−1)q0+q3+q4(−2)q̄−q0 q̄!

q0!q1!q2!q3!q4!

(−h−q̄)q̄−q0−q2(p3)q3(p3+p4+h)q̄−q0−q1
(p3 + p4)q3+q4(p3 + p4+1−d/2)−q0−q1−q2

(p4)q4

×K(d+2q̄−2q0,h+q0+q2;p3+q3,p4+q4)
12;34;3 (x3; y4),

(3.18)

where

K
(d,h;p3,p4)
12;34;3 (x3; y4)=

∑
n4,n34≥0

(−h)n34(p3)n34(p3 + p4 + h)n4

(p3 + p4)n4+n34(p3+p4+1−d/2)n34

(p4)n4

n34!(n4−n34)!
yn4

4

(
x3

y4

)n34

= G(p4, p3 + p4 + h, p3 + p4 + 1− d/2, p3 + p4;u/v, 1− 1/v).

(3.19)

Here G(α, β, γ, δ;x, y) is the usual Exton G-function [109], which can be expressed in terms

of the well-known fourth Appel functions as [175]

G(α, β, γ, δ;x, 1− y) =
Γ(δ)Γ(δ − α− β)

Γ(δ − α)Γ(δ − β)
F4(α, β, γ, α+ β + 1− δ;x, y)

+
Γ(δ)Γ(α+ β − δ)

Γ(α)Γ(β)
yδ−α−βF4(δ − α, δ − β, γ, δ − α− β + 1;x, y).

As was the case for the three-point tensorial function, the four-point tensorial function

satisfies contiguous relations that can greatly simplify computations. They are given by

g · Ī(d,h,n;p)
12;34 = 0,

η̄1 · Ī(d,h,n;p3,p4)
12;34 = Ī

(d,h+1,n−1;p3,p4)
12;34 ,

η̄2 · Ī(d,h,n;p3,p4)
12;34 = ρ(d,1;−h−n)Ī

(d,h,n−1;p3,p4)
12;34 ,

η̄3 · Ī(d,h,n;p3,p4)
12;34 = Ī

(d,h+1,n−1;p3−1,p4)
12;34 ,

η̄4 · Ī(d,h,n;p3,p4)
12;34 = Ī

(d,h+1,n−1;p3,p4−1)
12;34 .

(3.20)

Further details are provided in [1, 2].

Finally, for future convenience, we define

G
ij|m|kl
(n1,n2,n3,n4,n5)A1···An

= ρ(d,(`+s2−s3−s4+n1)/2;−hijm−(`+n2)/2)x−s33 x−s44 (3.21)

×Ī(d,hijm−(s2−s3−s4+n3)/2,n;−hklm+(r3−r4+n4)/2,χm+hklm−(r3−r4+n5)/2)

12;34 A1···An .

This quantity will appear frequently in the conformal substitutions for the conformal blocks,

where the meaning of `, si and ri will become clear.
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4 Examples of four-point correlation functions

In this section, we explicitly demonstrate how to compute the pre-conformal blocks and

conformal blocks using the formalism introduced in [1, 2]. Examples illustrating both

computational paths explained in the previous section are given: conformal blocks will be

computed either directly from pre-conformal blocks or using (3.15). The advantage of the

pre-conformal blocks is that they can be used in any four-point correlation function where

one of the exchanged quasi-primary operators is in the appropriate irreducible representa-

tion of the Lorentz group. Moreover, they only require the knowledge of the corresponding

hatted projection operator.

4.1 Pre-conformal blocks

The pre-conformal blocks (3.13) are some of the most fundamental objects leading to the

conformal blocks. They are straightforward to compute once the corresponding hatted

projection operators are known. However, due to the proliferation of indices, they are

not always expressible in a manner convenient for exposition. Because the substitution

rules (3.5) and (3.13) are trivial, the pre-conformal blocks can be easily generated with

the help of any convenient symbolic computation program. Hence, in the following, only

some simple pre-conformal blocks are shown explicitly. Once the pre-conformal block for

a specific irreducible representation is known, it can subsequently be used to obtain any

conformal block with the corresponding exchanged quasi-primary operator.

4.1.1 Symmetric-traceless exchange

Since the hatted projection operator for quasi-primary operators in the symmetric-traceless

irreducible representation `e1 is

(P̂`e1)
µ′1···µ′`

µ`···µ1 (4.1)

=

b`/2c∑
i=0

(−`)2i

22ii!(−`+ 2− d/2)i
g(µ1µ2

g(µ′1µ
′
2 · · · gµ2i−1µ2ig

µ′2i−1µ
′
2ig

µ′2i+1
µ2i+1 · · · g µ′`)

µ`)
,

the ¯̄J-functions (3.5) become

( ¯̄J
(d,h2,n2,∆,0)
34;2 ){F

′} = Ī
(d,h2−n2/2,n2;∆){F ′}
34 ,

( ¯̄J
(d,h2,n2,∆,e1)
34;2 )

E′{F ′}
E′′ = g E′

E′′ Ī
(d,h2−n2/2,n2;∆){F ′}
34 − ¯̄η3E′′ Ī

(d,h2−n2/2−1,n2+1;∆)E′{F ′}
34

− ¯̄ηE
′

2 Ī
(d,h2−n2/2−1,n2+1;∆+1)
34

{F ′}
E′′

+ Ī
(d,h2−n2/2−2,n2+2;∆+1)
34

E′{F ′}
E′′ ,

(4.2)
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for the irreducible representations 0 and e1, respectively. Then, the pre-conformal

blocks (3.13) are given by

(J̄
(d,h1,n1,h2,n2,∆,0)
34;21 )

{F ′}
{F} = (Ī

(d,h2−n2/2,n2;∆){F ′}
34 )cs4

=
∑

q0,q2,q3,q4≥0
2q0+q2+q3+q4=n2

g(F ′1F
′
2 · · · gF

′
2q0−1F

′
2q0 η̄

F ′2q0+1

3 · · · η̄
F ′2q0+q3
3 η̄

F ′2q0+q3+1

4 · · · η̄
F ′2q0+q3+q4
4

× K̃(d,h2−n2/2;∆;q0,q3,q4,q2)(x
(q2+q3−q4)/2
3 x

(q2−q3+q4)/2
4 η̄

F ′2q0+q3+q4+1

2 · · · η̄
F ′n2

)

2 )cs4

= K̃(d,h2−n2/2;∆;0,0,0,n2)Ī
(d,h1−n1/2−n2,n1+n2;−h2+n2/2,∆+h2+n2/2)
12;34

{F ′}
{F} ,

(4.3)

for scalar exchange and

(J̄
(d,h1,n1,h2,n2,∆,e1)
34;21 )

E′{F ′}
{F}E = (A E′

123E Ī
(d,h2−n2/2,n2;∆){F ′}
34 )cs4

− (
√
x3x4η̄

E′
2 A E′′

123E Ī
(d,h2−n2/2−1,n2+1;∆+1)
34

{F ′}
E′′ )cs4

+ (A E′′
123E Ī

(d,h2−n2/2−2,n2+2;∆+1)
34

E′{F ′}
E′′ )cs4 ,

(4.4)

or, more explicitly,

(J̄
(d,h1,n1,h2,n2,∆,e1)
34;21 )

E′{F ′}
{F}E

=

[
K̃(d,h2−n2/2;∆;0,0,0,n2) +

2K̃(d,h2−n2/2−2;∆+1;1,0,0,n2)

(n2 + 2)(n2 + 1)

]
×
[
g E′
E Ī

(d,h1−n1/2−n2,n1+n2;−h2+n2/2,∆+h2+n2/2)
12;34

{F ′}
{F}

−η̄E′1 Ī
(d,h1−n1/2−n2−1,n1+n2+1;−h2+n2/2,∆+h2+n2/2)
12;34

{F ′}
{F}E

]
−

[
K̃(d,h2−n2/2−1;∆;0,0,0,n2+1)+

K̃(d,h2−n2/2−1;∆+1;0,1,0,n2)

n2 + 1
− K̃

(d,h2−n2/2−2;∆+1;0,1,0,n2+1)

n2 + 2

]
×
[
η̄3E Ī

(d,h1−n1/2−n2−1,n1+n2+1;−h2+n2/2+1,∆+h2+n2/2)
12;34

E′{F ′}
{F}

−Ī(d,h1−n1/2−n2−2,n1+n2+2;−h2+n2/2+1,∆+h2+n2/2)
12;34

E′{F ′}
{F}E

]
−

[
K̃(d,h2−n2/2−1;∆+1;0,0,1,n2)

n2 + 1
− K̃(d,h2−n2/2−2;∆+1;0,0,1,n2+1)

n2 + 2

]
×
[
η̄4E Ī

(d,h1−n1/2−n2−1,n1+n2+1;−h2+n2/2,∆+h2+n2/2+1)
12;34

E′{F ′}
{F}

−Ī(d,h1−n1/2−n2−2,n1+n2+2;−h2+n2/2,∆+h2+n2/2+1)
12;34

E′{F ′}
{F}E

]
−

[
2K̃(d,h2−n2/2−1;∆;1,0,0,n2−1)

n2 + 1
− 2K̃(d,h2−n2/2−2;∆+1;1,1,0,n2−1)

(n2 + 2)(n2 + 1)

]

×
[
η̄3Eg

E′(F ′1 Ī
(d,h1−n1/2−n2+1,n1+n2−1;−h2+n2/2,∆+h2+n2/2−1)
12;34

F ′2···F ′n2
)

{F}

−gE′(F ′1 Ī(d,h1−n1/2−n2,n1+n2;−h2+n2/2,∆+h2+n2/2−1)
12;34

F ′2···F ′n2
)

{F}E

]
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+
2K̃(d,h2−n2/2−2;∆+1;1,0,1,n2−1)

(n2 + 2)(n2 + 1)

×
[
η̄4Eg

E′(F ′1 Ī
(d,h1−n1/2−n2+1,n1+n2−1;−h2+n2/2−1,∆+h2+n2/2)
12;34

F ′2···F ′n2
)

{F}

−gE′(F ′1 Ī(d,h1−n1/2−n2,n1+n2;−h2+n2/2−1,∆+h2+n2/2)
12;34

F ′2···F ′n2
)

{F}E

]
−

[
2K̃(d,h2−n2/2−1;∆+1;1,0,0,n2−1)

n2 + 1
− 2n2K̃

(d,h2−n2/2−2;∆+1;1,0,0,n2)

(n2 + 2)(n2 + 1)

]

×
[
g

(F ′1
E Ī

(d,h1−n1/2−n2,n1+n2;−h2+n2/2,∆+h2+n2/2)
12;34

F ′2···F ′n2
)E′

{F}

−η̄(F ′1
1 Ī

(d,h1−n1/2−n2−1,n1+n2+1;−h2+n2/2,∆+h2+n2/2)
12;34

F ′2···F ′n2
)E′

{F}E

]
+

8K̃(d,h2−n2/2−2;∆+1;2,0,0,n2−2)

(n2 + 2)(n2 + 1)

×
[
gE
′(F ′1g

F ′2
E Ī

(d,h1−n1/2−n2+2,n1+n2−2;−h2+n2/2−1,∆+h2+n2/2−1)
12;34

F ′3···F ′n2
)

{F}

−gE′(F ′1 η̄F
′
2

1 Ī
(d,h1−n1/2−n2+1,n1+n2−1;−h2+n2/2−1,∆+h2+n2/2−1)
12;34

F ′3···F ′n2
)E′

{F}E

]
,

for vector exchange. Here, we first used the contiguous relations (3.9) and afterwards

performed the substitutions to the four-point homogeneized embedding space coordi-

nates (3.10). Finally, we implemented the conformal substitution (3.13) to get the pre-

conformal blocks, after taking into account the possible simplifications stemming from con-

traction with the tensor structure bt
34
klm, due to its double-transversality and tracelessness.

The corresponding results for `e1 with larger ` are obtained in a similar manner,

although they become quite complicated to display due to the proliferation of indices. The

complexity of the pre-conformal blocks stems from their universality: they generate all

the corresponding conformal blocks once they are contracted with the appropriate tensor

structures.

4.1.2 `e1 + e2 exchange

For the exchange of quasi-primary operators in the `e1 + e2 representation, the projection

operator is simply [119]

(P̂`e1+e2)
µ′1···µ

′
`ν
′
1ν
′
2

ν2ν1µ`···µ1

=

b`/2c∑
i=0

aig
ν′1

[ν1
g

ν′2
ν2] g(µ1µ2

g(µ′1µ
′
2 · · · gµ2i−1µ2ig

µ′2i−1µ
′
2ig

µ′2i+1
µ2i+1 · · · g µ′`)

µ`)

+

b(`−1)/2c∑
i=0

big
[ν′1

[ν1
g

(µ′1
ν2] g

ν′2]

(µ1
gµ2µ3

gµ
′
2µ
′
3 · · · gµ2iµ2i+1

gµ
′
2iµ
′
2i+1g

µ′2i+2
µ2i+2 · · · g µ′`)

µ`)

+

b(`−1)/2c∑
i=0

cig
[ν′1

[ν1
gν2](µ1

gν
′
2](µ′1gµ2µ3

gµ
′
2µ
′
3 · · · gµ2iµ2i+1

gµ
′
2iµ
′
2i+1g

µ′2i+2
µ2i+2 · · · g µ′`)

µ`)
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+

b(`−2)/2c∑
i=0

dig[ν1(µ1
g[ν′1(µ′1g

µ′2
ν2] g

ν′2]
µ2 gµ3µ4

gµ
′
3µ
′
4 · · · gµ2i+1µ2i+2

gµ
′
2i+1µ

′
2i+2g

µ′2i+3
µ2i+3 · · · g µ′`)

µ`)

+

b(`−2)/2c∑
i=0

ei

(
g[ν1(µ1

g
[ν′1

ν2] g
ν′2]

µ2 g(µ′1µ
′
2 + g[ν′1(µ′1g

ν′2]

[ν1
g

µ′2
ν2] g(µ1µ2

)
× gµ3µ4

gµ
′
3µ
′
4 · · · gµ2i+1µ2i+2

gµ
′
2i+1µ

′
2i+2g

µ′2i+3
µ2i+3 · · · g µ′`)

µ`) , (4.5)

with

ai =
2

`+ 2

(−`)2i

22ii!(−`+ 2− (d/2 + 1))i
,

ci = −(`− 2i)[(2i+ 3)d+ 2(i+ 2)`− 4(i+ 1)]

(d+ `− 2)(d+ 2`− 2i− 2)
ai,

bi = (`− 2i)ai, di =
2(i+ 1)(d+ 2`)

d+ `− 2
ai+1, ei = −2(i+ 1)ai+1.

It is straightforward to compute the corresponding pre-conformal blocks from the substitu-

tion rules (3.5) and (3.13). However, as the number of free indices is already large for ` = 0

(four free indices in total), the final result is cumbersome and not necessarily enlightening

by itself. We therefore do not display it directly here, although we did use it to compare

with the conformal blocks for ` = 0 and ` = 1 obtained later.

We would like to note that, apart from the prefactor 2/(` + 2), the coefficients ai
in (4.5) are identical to those appearing in the hatted projection operator for `e1 (4.1)

with d → d + 2. This observation, which comes about from the equivalent role played

by ` in all towers of irreducible representations Nm = N + `e1, will have far-reaching

consequences later on.

4.2 Conformal blocks and four-point correlation functions

On the one hand, the conformal blocks can be obtained directly from the pre-conformal

blocks. On the other, they can be computed in two steps, exploiting the contiguous relations

to simplify the contraction with the tensor structures after the first conformal substitution.

In both cases, the final result is the same, although it is more efficient to use the contiguous

relations to simplify the conformal blocks. The convenience of the pre-conformal blocks is

that they are fully determined as soon as the irreducible representation of the exchanged

quasi-primary operator is known.

Here we have computed the conformal blocks for four four-point correlation functions:

symmetric-traceless exchange in scalar-scalar-scalar-scalar, symmetric-traceless exchange

in scalar-scalar-scalar-e2, symmetric-traceless exchange and `e1 + e2 exchange in scalar-

vector-scalar-vector, and symmetric-traceless exchange in scalar-scalar-vector-vector. In all

cases, all the possible exchanged quasi-primary operators are considered, and the confor-

mal blocks in all OPE channels are obtained, allowing the implementation of the conformal

bootstrap. The first, third and fourth four-point correlation functions are chosen for com-

parison with the literature, while the second set of conformal blocks is a proof-of-concept

example, which shows that we are able to compute any conformal block, albeit in a sim-
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ple example with only one tower of exchanged quasi-primary operators with one tensor

structure each.4

The conformal blocks G
ij|m|kl
(a|b) (3.15) are naturally obtained in the OPE tensor structure

basis. Indeed, the tensor structures used to compute the conformal blocks are the ones

appearing in the OPE. However, since three-point correlation functions appear directly

in (3.15), it is possible to obtain the conformal blocks G
ij|m|kl
[a|b] in the three-point function

tensor structure basis. Obviously, the conformal blocks obtained from the OPE tensor

structures are linear combinations of those obtained from the three-point function tensor

structures. Therefore, the conformal blocks in the latter basis are obtained from the former

ones with the help of (invertible) transformation matrices Rijm and Rklm as

G
ij|m|kl
[a|b] = (Rijm)aa′(Rklm)bb′G

ij|m|kl
(a′|b′) (4.6)

The distinction is irrelevant when there is just a single conformal block (the transformation

matrices are simply multiplicative factors), but in cases with more than one block, the

difference is important. We will see later that the best way of representing conformal

blocks originates from a mixed basis of tensor structures,

G
ij|m|kl
(a|b] = (Rklm)bb′G

ij|m|kl
(a|b′) ,

where bt
34
k`m are natural three-point function tensor structures, while at

12m
ij are natural OPE

tensor structures. The examples below will clarify this distinction.

To simplify the notation, in the following, conformal blocks will be denoted by GN
(a|b),

GN
[a|b] or GN

(a|b] for an exchanged quasi-primary operator in the irreducible representation

N with the OPE or three-point function tensor structures a and b, irrespective of the

four-point correlation function under consideration.

4.2.1 Symmetric-traceless exchange in scalar-scalar-scalar-scalar

For our first example, we focus on the classic case of symmetric-traceless exchange in

the four-point correlation function of four scalars. It is straightforward to compute the

conformal blocks (3.15) from the pre-conformal blocks (4.3) and (4.4). Here we have only

one tensor structure of each type; hence, the indices a and b are superfluous.

For scalar exchange, the normalization constant and tensor structures are simply λ0 =

1t
12m
ij = 1t

34
klm = 1. These result in

G 0
(1|1) = ρ(d,hklm;∆m)Ī

(d,hijm,0;−hklm,∆m+hklm)
12;34

= ρ(d,hijm;∆m)ρ(d,hklm;∆m)x
∆m+hijm
3 K

(d,hijm;−hklm,∆m+hklm)
12;34;3 (x3; y4)

= ρ(d,hijm;∆m)ρ(d,hklm;∆m)
(u
v

)∆m+hijm

×G(∆m + hklm,∆m + hijm,∆m + 1− d/2,∆m;u/v, 1− 1/v),

(4.7)

4The number of conformal blocks increases quite quickly for generic four-point correlation functions.

For example, e1 + e2 exchange in spinor-(e1 + er)-scalar-e2 already has 24 different blocks. Such a large

number of conformal blocks is not convenient for the format of a typical article.
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while for vector exchange, the normalization constant is λe1 = 1/
√
d, and the tensor

structures are (1t
12m
ij )EF = AEF12 /

√
d and (1t

34
klm)E′F ′ = A34E′F ′/

√
d, giving

G e1

(1|1) =
(−2)hklm+1/2(hklm + 1/2)(d− 1−∆m)

d3/2
(∆m + 1)hklm−1/2(∆m + 1− d/2)hklm−1/2

×
[

1

x4
Ī

(d,hijm+1/2,0;−hklm−1/2,∆m+hklm+1/2)
12;34

+
(2hijm + 1)(2hijm − 1 + d)

2
Ī

(d,hijm−1/2,0;−hklm−1/2,∆m+hklm+1/2)
12;34

− 1

x3
Ī

(d,hijm+1/2,0;−hklm+1/2,∆m+hklm−1/2)
12;34

+
(2hijm + 1)(2hijm − 1 + d)

2
Ī

(d,hijm−1/2,0;−hklm+1/2,∆m+hklm−1/2)
12;34

]
. (4.8)

Up to a different normalization, these results match with the usual ones found in the

literature [104].

The other conformal blocks for the `e1 irreducible representations can be obtained in

the same manner, although it is simpler to rely on the contiguous relations after the first

conformal substitution. Indeed, from the three-point correlation functions [174]

λ`e1( ¯̄J
(d,hklm,`,∆m,`e1)
34;2 · 1t34

klm)E′′` ···E
′′
1

=
(−2)hklm−`/22``!(hklm − `/2 + 1)`(d− 1−∆m)`

(d+ 2`− 2)(d− 1)`−1

×(∆m+`)hklm−`/2(∆m+1−d/2)hklm−`/2 ¯̄η4E′′`
· · · ¯̄η4E′′1

,

the tensor structure, see (4.1),

(1t
12m
ij )E1···E`F1···F` = λ`e1

b`/2c∑
i=0

(−`)2i

22ii!(−`+ 2− d/2)i
A(E1E2

12 A(F1F2

12 · · · AE2i−1E2i

12 AF2i−1F2i

12

×AE2i+1F2i+1

12 · · · AE`)F`)12 ,

and the normalization constant λ`e1 =
√
`!/[(d+ 2`− 2)(d− 1)`−1], the conformal blocks

are given by (with na = `)

G `e1

(1|1) =
(−2)hklm−`/22``!(hklm − `/2 + 1)`(d− 1−∆m)`

(d+ 2`− 2)(d− 1)`−1
(∆m + `)hklm−`/2(∆m + 1− d/2)hklm−`/2

× (1t
12m
ij )E1···E`F1···F`

(
x
−`/2
3 x

`/2
4 (P̂`e1

21 · P̂
`e1
23 )

{E′′}
{E} η̄4E′′`

· · · η̄4E′′1

)
cs4

=
(−2)hklm−`/22``!(hklm − `/2 + 1)`(d− 1−∆m)`

(d+ 2`− 2)(d− 1)`−1
(∆m + `)hklm−`/2(∆m + 1− d/2)hklm−`/2

× (1t
12m
ij )E1···E`F1···F`

b`/2c∑
i=0

(−`)2i

22ii!(−`+ 2− d/2)i

(
x
−`/2
3 x

`/2
4 (η̄4 · A23 · η̄4)i

× A12(E1E2
· · · A12E2i−1E2i

(A123 · η̄4)E2i+1
· · · (A123 · η̄4)E`)

)
cs4

.

(4.9)
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Since the metrics gEiEj and the embedding space coordinates η̄1Ei commute with the

conformal substitution and vanish once contracted with the tensor structure, only the

i = 0 term survives in (4.9). The expression then simplifies to

G `e1

(1|1) =
(−2)hklm−`/22``!(hklm − `/2 + 1)`(d− 1−∆m)`

(d+ 2`− 2)(d− 1)`−1
(∆m + `)hklm−`/2(∆m + 1− d/2)hklm−`/2

× (1t
12m
ij )E1···E`F1···F`

(
x
−`/2
3 x

`/2
4 (A123 · η̄4)E1 · · · (A123 · η̄4)E`

)
cs4

=
(−2)hklm−`/22``!(hklm − `/2 + 1)`(d− 1−∆m)`

(d+ 2`− 2)(d− 1)`−1
(∆m + `)hklm−`/2(∆m + 1− d/2)hklm−`/2

× λ`e1

b`/2c∑
i=0

(−2)i(−`)2i

22ii!(−`+ 2− d/2)i
gE1E2 η̄F1

1 η̄F2
2 · · · gE2i−1E2i η̄

F2i−1

1 η̄F2i
2

×AE2i+1F2i+1

12 · · · AE`F`
12

(
x
−`/2
3 x

`/2
4 (A123 · η̄4)E1

· · · (A123 · η̄4)E`

)
cs4

.

(4.10)

In the last equality above, we removed the explicit symmetrizations over the sets of {F}
and {E} due to the symmetry properties of the Ī-functions and the product of A123 · η̄4,

respectively. We also used the fact that only the metrics gEiEj in the trace terms do not

vanish when contracted.

Moreover, the contiguous relations (3.20) were used to transform AFiFj12 into −2η̄Fi1 η̄
Fj
2 .

Contracting the embedding space metrics and using simple relations for the product of

A-metrics, we obtain

G `e1

(1|1) =
(−2)hklm−`/22``!(hklm − `/2 + 1)`(d− 1−∆m)`

(d+ 2`− 2)(d− 1)`−1
(∆m + `)hklm−`/2(∆m + 1− d/2)hklm−`/2

× λ`e1

b`/2c∑
i=0

(−2)i(−`)2i

22ii!(−`+ 2− d/2)i
η̄F1

1 η̄F2
2 · · · η̄

F2i−1

1 η̄F2i
2 A

E2i+1F2i+1

12 · · · AE`F`
12

×
(
x
−`/2
3 x

`/2
4 (η̄4 · A23 · η̄4)i(A123 · η̄4)E2i+1

· · · (A123 · η̄4)E`

)
cs4

=
(−2)hklm−`/22``!(hklm − `/2 + 1)`(d− 1−∆m)`

(d+ 2`− 2)(d− 1)`−1
(∆m + `)hklm−`/2(∆m + 1− d/2)hklm−`/2

× λ`e1

b`/2c∑
i=0

(−`)2i

i!(−`+ 2− d/2)i
η̄F1

1 η̄F2
2 · · · η̄

F2i−1

1 η̄F2i
2 A

E2i+1F2i+1

12 · · · AE`F`
12

×
(
x
−`/2+i
3 x

−`/2+i
4 [x4(η̄4 − η̄2)− x3(η̄3 − η̄2)]E2i+1 · · · [x4(η̄4 − η̄2)− x3(η̄3 − η̄2)]E`

)
cs4

.

(4.11)

From the contiguous relations (3.20), it is clear that the metrics gEiFi lead to vanishing
contributions. Indeed, if the conformal substitution is performed on terms containing η̄2Ej ,
they lead to traces which vanish identically. Moreover, if the conformal substitution is
done on terms with (x4η̄4 − x3η̄3)Ej , the two contributions cancel due to the contiguous

relations (3.20). Thus, in (4.11) one can replace AEiFi12 by −η̄Ei1 η̄Fi2 − η̄
Ei
2 η̄Fi1 . However, the
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contractions with −η̄Ei1 η̄Fi2 vanish identically, leading to

G `e1

(1|1) =
(−2)hklm−`/22``!(hklm − `/2 + 1)`(d− 1−∆m)`

(d+ 2`− 2)(d− 1)`−1
(∆m + `)hklm−`/2(∆m + 1− d/2)hklm−`/2

× λ`e1

b`/2c∑
i=0

(−1)`(−`)2i

i!(−`+ 2− d/2)i
η̄F1

1 η̄F2
2 · · · η̄

F2i−1

1 η̄F2i
2 η̄

E2i+1

2 η̄
F2i+1

1 · · · η̄E`
2 η̄F`

1

×
(
x
−`/2+i
3 x

−`/2+i
4 [x4(η̄4 − η̄2)− x3(η̄3 − η̄2)]E2i+1 · · · [x4(η̄4 − η̄2)− x3(η̄3 − η̄2)]E`

)
cs4

.

(4.12)

At this point, we only need to proceed with the conformal substitution (3.13) and the

contiguous relations (3.20). Moreover, the contractions are straightforward since all the

E-indices are symmetrized and the Ī-functions are totally symmetrized. Hence, the indices

can be forgotten and (4.12) can be rewritten efficiently as

G `e1

(1|1) =
(−2)hklm+`/22``!(hklm − `/2 + 1)`(d− 1−∆m)`

(d+ 2`− 2)(d− 1)`−1
(∆m + `)hklm−`/2(∆m + 1− d/2)hklm−`/2

× λ`e1

b`/2c∑
n=0

(−`)2n

22nn!(−`+ 2− d/2)n

[
(α4 − α2)x4 − (α3 − α2)x3

2

]`−2n

s

= ω(hklm,∆m, `)
(
C

(d/2−1)
` (X)

)
s
,

(4.13)

where the normalization constant is

ω(hklm,∆m, `) =
(−2)hklm+`/22``!(hklm − `/2 + 1)`(d− 1−∆m)`

(d+ 2`− 2)(d− 1)`−1

× (∆m + `)hklm−`/2(∆m + 1− d/2)hklm−`/2
λ`e1`!

2`(d/2− 1)`
,

the C
(d/2−1)
` (X) are the usual Gegenbauer polynomials in terms of the variable

X =
(α4 − α2)x4 − (α3 − α2)x3

2
, (4.14)

and the s-substitution is

s : αs22 α
s3
3 α

s4
4 x

r3
3 x

r4
4 → G

ij|m|kl
(0,0,0,0,0)

= ρ(d,(`+s2−s3−s4)/2;−hijm−`/2)x−s33 x−s44

× Ī(d,hijm−(s2−s3−s4)/2,0;−hklm+(r3−r4)/2,∆m+hklm−(r3−r4)/2)
12;34

= ρ(d,(`+s2−s3−s4)/2;−hijm−`/2)ρ(d,hijm−(s2−s3−s4)/2;∆m)x
∆m+hijm−(s2+s3−s4)/2
3 x−s44

×K(d,hijm−(s2−s3−s4)/2;−hklm+(r3−r4)/2,∆m+hklm−(r3−r4)/2)
12;34;3 (x3; y4)

= ρ(d,(`+s2−s3−s4)/2;−hijm−`/2)ρ(d,hijm−(s2−s3−s4)/2;∆m)(u/v)∆m+hijm−(s2+s3−s4)/2u−s4

×G(∆m+hklm− (r3−r4)/2,∆m+hijm − (s2−s3−s4)/2,∆m+1−d/2,∆m;u/v; 1−1/v).
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Here, the αi are placeholders for the s-substitution that enable a very convenient form

for the conformal blocks. Indeed, (4.13) gives all the exchanged conformal blocks once

the simple s-substitution is performed. The latter is straightforwardly determined by first

contracting the η̄Ei2 with the η̄3Ei and η̄4Ei , followed by the usual conformal substitution

with the contiguous relations for the η̄Fi1 and the remaining η̄Ei2 and η̄Fi2 . Finally, the explicit

dependence on the dummy summation index n is transformed into a dependence on ` and

si or ri so that the final substitution can be pulled outside of the sum. The presence of `,

si and ri in (3.21) should now be clear. The explicit form (4.13) in terms of Gegenbauer

polynomials with proper substitutions is natural from the `e1 projection operator and it

is an interesting feature that generalizes to all conformal blocks. Moreover, it allows for a

very effective way of determining conformal blocks for larger `.

Although (4.13) is our final result, we can obtain more explicit equations for the

conformal blocks that can be compared with the literature. For example, using the binomial

expansion for X, the conformal blocks (4.13) can be rewritten as [119]

G `e1

(1|1) =
ω(hklm,∆m, `)

Γ(d/2− 1)

b`/2c∑
n1=0

`−2n1∑
n2=0

`−2n1−n2∑
n3=0

n2∑
n4=0

(−1)n1+n2+n3+n4Γ(`− n1 + d/2− 1)

n1!Γ(`− 2n1 + 1)

(
`− 2n1

n2

)
×
(
`− 2n1 − n2

n3

)(
n2

n4

)
ρ(d,n1+n2;−hijm−`/2)x−n3

3 x−`+2n1+n2+n3
4

× Ī(d,hijm+`/2−n1−n2,0;−hklm−`/2+n1+n3+n4,∆m+hklm+`/2−n1−n3−n4)
12;34

=
ω(hklm,∆m, `)

Γ(d/2− 1)

b`/2c∑
n1=0

`−2n1∑
n2=0

`−2n1−n2∑
n3=0

n2∑
n4=0

(−1)n1+n2+n3+n4Γ(`− n1 + d/2− 1)

n1!Γ(`− 2n1 + 1)

(
`− 2n1

n2

)
×
(
`− 2n1 − n2

n3

)(
n2

n4

)
ρ(d,n1+n2;−hijm−`/2)x−n3

3 x−`+2n1+n2+n3
4

×
G 0

(1|1)

ω(hklm,∆m, 0)

∣∣∣∣∣
hijm→hijm+`/2−n1−n2,hklm→hklm+`/2−n1−n3−n4

,

(4.15)

where G 0
(1|1) is the conformal block for scalar exchange.

Here we have noted that [see (3.16)]

Ī
(d,hijm+`/2−n1−n2,0;−hklm−`/2+n1+n3+n4,∆m+hklm+`/2−n1−n3−n4)
12;34

= ρ(d,hijm+`/2−n1−n2;∆m)x
∆m+hijm+`/2−n1−n2

3

G(∆m + hklm + `/2− n1 − n3 − n4,∆m + hijm + `/2− n1 − n2,∆m + 1

− d/2,∆m;u/v, 1− 1/v),

and that

G 0
(1|1) = ω(hklm,∆m, 0)ρ(d,hijm;∆m)x

hijm+∆m

3 G(∆m + hklm,∆m + hijm,∆m + 1

− d/2,∆m, u/v, 1− 1/v),
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so that

Ī
(d,hijm+`/2−n1−n2,0;−hklm−`/2+n1+n3+n4,∆m+hklm+`/2−n1−n3−n4)
12;34

=
G 0

(1|1)

ω(hklm,∆m, 0)

∣∣∣∣∣
hijm→hijm+`/2−n1−n2,hklm→hklm+`/2−n1−n3−n4

.

From the recurrence relation for Gegenbauer polynomials, it is also easy to get the recur-

rence relation for the conformal blocks (4.13) as [104]

G `e1

(1|1) = ω(hklm,∆m, `)

(
2`+ d− 4

`
XC

(d/2−1)
`−1 (X)− `+ d− 4

`
C

(d/2−1)
`−2 (X)

)
s

=
2`+ d− 4

2`

[
ω(hklm,∆m, `)

ω(hklm + 1/2,∆m, `− 1)

1

x4

(
G

(`−1)e1

(1|1)

)
hijm→hijm+1/2
hklm→hklm+1/2

+
ω(hklm,∆m, `)

ω(hklm + 1/2,∆m, `−1)

(2hijm + `)(2hijm + `− 2 + d)

2

(
G

(`−1)e1

(1|1)

)
hijm→hijm−1/2
hklm→hklm+1/2

− ω(hklm,∆m, `)

ω(hklm − 1/2,∆m, `− 1)

1

x3

(
G

(`−1)e1

(1|1)

)
hijm→hijm+1/2
hklm→hklm−1/2

− ω(hklm,∆m, `)

ω(hklm−1/2,∆m, `−1)

(2hijm + `)(2hijm + `− 2 + d)

2

(
G

(`−1)e1

(1|1)

)
hijm→hijm−1/2
hklm→hklm−1/2

]

+
`+ d− 4

`

ω(hklm,∆m, `)

ω(hklm,∆m, `− 2)

(2hijm + `)(2hijm + `− 2 + d)

2
G

(`−2)e1

(1|1) .

(4.16)

Forgetting about the natural OPE normalization used here and normalizing as is usually

done in the literature, we find that the properly-normalized conformal blocks (4.15) and

the recurrence relation (4.16) agree with [119], once the Ī-functions have been re-expressed

in terms of the Exton G-function, thus demonstrating that (4.13) is indeed correct.

4.2.2 Symmetric-traceless exchange in scalar-scalar-scalar-e2

In the previous example, the conformal blocks in the natural OPE basis were computed

directly from the pre-conformal blocks for ` = 0 and ` = 1 and from the general definition

for all `. Here, we will compute the conformal blocks directly in the mixed basis.

For a symmetric-traceless exchange in the four-point correlation function of three

scalars and one e2, there is only a single tensor structure per OPE; thus, there is only

one conformal block per exchanged quasi-primary operator. The tensor structure in the

OPE basis is given by

(1t
12m
ij )E1···E`F1···F` = λ`e1(g)`P̂`e1

12 ,

where the indices were suppressed on the right-hand side. Meanwhile, the natural three-

point tensor structure is chosen to be

λ`e1R`(
¯̄J
(d,hklm,`,∆m,`e1)
34;2 · 1t34

klm)D2D1{E′′} = gD1E′′1
¯̄η2D2

¯̄η4E′′2
· · · ¯̄η4E′′`

,
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where R` is the appropriate transformation matrix, i.e. the multiplicative factor that nor-

malizes the three-point correlation functions as on the right-hand side.

Using (3.15) and proceeding as in the previous case, the conformal blocks turn out

to be

G `e1

(1|1] = (at
12m
ij )E1···E`F1···F`

(
x
−(`−2)/2
3 x

`/2
4 η̄2D2A123E1D1(A123 · η̄4)E2 · · · (A123 · η̄4)E`

)
cs4

=λ`e1

b`/2c∑
i=0

(−`)2i

22ii!(−`+2−d/2)i
A(E1E2

12 AF1F2
12 · · · AE2i−1E2i

12 AF2i−1F2i

12 AE2i+1F2i+1

12 · · · AE`)F`12

×
(
x
−(`−2)/2
3 x

`/2
4 η̄2D2A123E1D1(A123 · η̄4)E2 · · · (A123 · η̄4)E`

)
cs4
.

(4.17)

However, here it is necessary to separate the E1 index from the symmetrized set of indices

{E}, since only {E2, . . . , E`} are explicitly symmetrized on the last line of (4.17). Extract-

ing the E1 index leads to two different contributions, which would later give two different

Gegenbauer polynomials with appropriate conformal substitutions, if it were not for the

antisymmetry properties of e2. Indeed, one has

G `e1

(1|1] = λ`e1

b`/2c∑
i=0

(−`)2i

22ii!(−`+ 2− d/2)i

×
[
`− 2i

`
A(E`E2

12 AF1F2
12 · · · AE2i−1E2i

12 AF2i−1F2i

12 AE2i+1F2i+1

12 · · · AE`−1)F`−1

12 AE1F`
12

+
2i

`
AE1(E2

12 AF1F2
12 · · · AE2i−1E2i

12 AF2i−1F2i

12 AE2i+1F2i+1

12 · · · AE`)F`12

]
×
(
x
−(`−2)/2
3 x

`/2
4 η̄2D2A123E1D1(A123 · η̄4)E2 · · · (A123 · η̄4)E`

)
cs4
,

(4.18)

where the remaining symmetrization over the set {E2, . . . , E`} can now be neglected. At

this point, the computation is completely analogous to the one leading to the conformal

blocks for scalar exchange in correlation functions of four scalars, and gives

G `e1

(1|1] = λ`e1

b`/2c∑
i=0

(−2)i(−`)2i

22ii!(−`+2−d/2)i

[
`− 2i

`
gE`E2 η̄F1

1 η̄F2
2 · · · gE2i−1E2i η̄

F2i−1

1 η̄F2i
2 A

E2i+1F2i+1

12 · · · AE1F`
12

+
2i

`
gE1E2 η̄F1

1 η̄F2
2 · · · gE2i−1E2i η̄

F2i−1

1 η̄F2i
2 A

E2i+1F2i+1

12 · · · AE`F`
12

]
×
(
x
−(`−2)/2
3 x

`/2
4 η̄2D2

A123E1D1
(A123 · η̄4)E2

· · · (A123 · η̄4)E`

)
cs4

= λ`e1

b`/2c∑
i=0

(−2)i(−`)2i

22ii!(−`+ 2− d/2)i

[
(−2)i

`− 2i

`
η̄F1

1 η̄F2
2 · · · η̄

F2i−1

1 η̄F2i
2 A

E2i+1F2i+1

12 · · · AE`F`
12

×
(
x
−(`−2)/2+i
3 x

`/2−i
4 η̄2D2

A123E`D1
(A123 · η̄4)E2i+1

· · · (A123 · η̄4)E`−1

)
cs4

+ (−2)i−1 2i

`
η̄F1

1 η̄F2
2 · · · η̄

F2i−1

1 η̄F2i
2 A

E2i+1F2i+1

12 · · · AE`F`
12

×
(
x
−(`−2)/2+i−1
3 x

`/2−i+1
4 η̄2D2(A23 · η̄4)D1(A123 · η̄4)E2i+1 · · · (A123 · η̄4)E`

)
cs4

]
.

(4.19)
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Clearly, (4.19) implies two different Gegenbauer polynomials, but the second one has a

vanishing coefficient since (A23 ·η̄4)D1 can be replaced by −x3η̄2D1 without loss of generality

due to its contraction with the half-projector for e2. The antisymmetry of the same half-

projector implies that the second term vanishes, leading to

G `e1

(1|1] = λ`e1

b`/2c∑
i=0

(−1)`(`− 2i)(−`)2i

i!`(−`+ 2− d/2)i
η̄F1

1 η̄F2
2 · · · η̄

F2i−1

1 η̄F2i
2 η̄

E2i+1

2 η̄
F2i+1

1 · · · η̄E`2 η̄F`1

×
(
x
−(`−2)/2+i
3 x

`/2−i
4 η̄2D2A123E`D1(A123 · η̄4)E2i+1 · · · (A123 · η̄4)E`−1

)
cs4

= λ`e1

(−1)`(`− 1)!

(d/2)`−1

(
C
d/2
`−1(X)

)
s
,

(4.20)

with the conformal substitution

s : αs22 α
s3
3 α

s4
4 x

r3
3 x

r4
4

→ η̄2D1
G
ij|m|kl
(−1,0,1,1,−1)D2

− η̄1D1
G
ij|m|kl
(1,0,3,1,−1)D2

− x−1
3 G

ij|m|kl
(−1,0,3,3,−1)D1D2

+G
ij|m|kl
(1,0,5,3,−1)D1D2

= ρ(d,(`−1+s2−s3−s4)/2;−hijm−`/2)x−s33 x−s44

× η̄2D1
Ī

(d,hijm−(s2−s3−s4+1)/2,1;−hklm+(r3−r4+1)/2,∆m+hklm−(r3−r4−1)/2)
12;34 D2

− ρ(d,(`+1+s2−s3−s4)/2;−hijm−`/2)x−s33 x−s44

× η̄1D1 Ī
(d,hijm−(s2−s3−s4+3)/2,1;−hklm+(r3−r4+1)/2,∆m+hklm−(r3−r4−1)/2)
12;34 D2

= −ρ(d,(`−1+s2−s3−s4)/2;−hijm−`/2)ρ(d,hijm−(s2−s3−s4+1)/2;∆m)

×
{

1 +
[∆m + hijm − (s2 − s3 − s4 + 1)/2][−hijm + (s2 − s3 − s4 − 1)/2 + 1− d/2]

[∆m + hijm − (s2 − s3 − s4 + 3)/2][∆m + hijm − (s2 − s3 − s4 + 3)/2 + 1− d/2]

}
× x∆m+hijm−(s2+s3−s4+1)/2

3 x−s44 η̄1[D1
η̄2D2]

×K(d+2,hijm−(s2−s3−s4+1)/2;−hklm+(r3−r4+1)/2,∆m+hklm−(r3−r4−1)/2)
12;34;3 (x3; y4),

In the first equality of (4.20), a modified version of the argument based on the contiguous

relations presented earlier was used to show that AE`F`12 can nonetheless be replaced by

−η̄E`2 η̄F`1 . Moreover, in the conformal substitution, all terms symmetric under the inter-

change of D1 and D2 were discarded, and the final result was written explicitly in terms

of the K-function, which is simply the Exton G-function. As shown in the first line, with-

out this simplification, the conformal substitution would have four different contributions,

originating from the four different terms appearing in A123E`D1 .

Finally, it is important to note that the conformal blocks (4.20) exist only for ` ≥ 1,

as predicted by the tensor product decomposition. Furthermore, as expected from general

arguments, the conformal blocks can be expressed with the help of Gegenbauer polynomials

written in terms of the variable X (4.14), which is a very convenient feature. Obviously,

it is always possible to obtain explicit solutions and recurrence relations for the conformal

blocks (4.20), following (4.15) and (4.16) respectively, although it is unnecessary.

4.2.3 Symmetric-traceless exchange in scalar-vector-scalar-vector

To elaborate on the mixed basis, we now return to the pre-conformal blocks (4.3) and (4.4)

to compute the conformal blocks for symmetric-traceless exchange in scalar-vector-scalar-

vector four-point correlation functions.
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For scalar exchange, the normalization constant is λ0 = 1 and there is only one ten-

sor structure per OPE, given by (1t
12m
ij ) F

B = A F
12B /

√
d and (1t

34
klm)DF ′ = A34DF ′/

√
d

respectively. From the pre-conformal block (4.3), we find

G 0
(1|1) =

1

d
K̃(d,hklm−1/2;∆m;0,0,0,1)A F

12B A34DF ′ Ī
(d,hijm−3/2,2;−hklm+1/2,∆m+hklm+1/2)
12;34

F ′
F

=
1

d
K̃(d,hklm−1/2;∆m;0,0,0,1)g F

B gDF ′ Ī
(d,hijm−3/2,2;−hklm+1/2,∆m+hklm+1/2)
12;34

F ′
F

=
1

d
K̃(d,hklm−1/2;∆m;0,0,0,1)Ī

(d,hijm−3/2,2;−hklm+1/2,∆m+hklm+1/2)
12;34 BD.

(4.21)

In the second equality, the transversality of the half-projectors appearing in the four-point

correlation function (3.14) was used to simplify the tensor structures.

This result can obviously be expanded in terms of the Exton G-function as in (3.16),

showing that the conformal block agrees with the one found in the literature [119]. However,

since the Ī-functions have such nice properties, we do not find it useful to do so.

For vector exchange, there are two tensor structures per OPE, leading to four different

conformal blocks. These are given by

(1t
12m
ij ) EF1F2

B =

√
2

(d− 1)(d+ 2)

[
A (F1

12B AF2)E
12 − 1

d
A E

12B A
F1F2
12

]
,

(2t
12m
ij ) E

B =
1√
d
A E

12B ,

(1t
34
klm)DE′F ′2F ′1 =

√
2

(d− 1)(d+ 2)

[
A34D(F ′1

A34F ′2)E′ −
1

d
A34DE′A34F ′1F

′
2

]
,

(2t
34
klm)DE′ =

1√
d
A34DE′ .

(4.22)

These tensor structures are the natural OPE tensor structures, i.e. they are natural from

the point of view of the OPE (3.1). However, they are not the natural three-point function

tensor structures, since they do not lead to simple three-point correlation functions. With

the normalization constant λe1 = 1/
√
d, the latter are computed from

λe1(R1) b
1 ( ¯̄J

(d,hklm,nb,∆m,e1)
34;2 · bt34

klm)DE′′ = ¯̄η2D ¯̄η4E′′ ,

λe1(R1) b
2 ( ¯̄J

(d,hklm,nb,∆m,e1)
34;2 · bt34

klm)DE′′ = gDE′′ ,
(4.23)

where the transformation matrix is

R1 = −
√
d(d− 1)(d/2 + 1)∆m

(∆m − 1)(∆m + 1− d)ρ(d,hklm;∆m)

×

 (∆m−1)hklm+∆m(∆m−d/2)
2(∆m+hklm)(hklm)2

d2+2(∆m−1)hklm+2∆2
m−d(2∆m+1)√

d(d−1)(d/2+1)(∆m+hklm)
∆m−d/2
2(hklm)2

− (d−2)(∆m−d)√
d(d−1)(d/2+1)

 .

Clearly, the use of both the natural OPE tensor structures at
12m
ij (4.22) and three-point

function tensor structures bt
34
klm (4.23) in (3.15) simplifies greatly the computation of con-

formal blocks. Indeed, the simplest conformal blocks are obtained in this mixed basis.
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With the pre-conformal block (4.4), the conformal blocks are thus

G e1

(1|1] =
(d− 2)(hijm + 1)(2hijm + d)

d
√

(d− 1)(d/2 + 1)

×
[
Ī

(d,hijm−2,2;−hklm+1,∆m+hklm)
12;34 BD − Ī

(d,hijm−2,2;−hklm,∆m+hklm+1)
12;34 BD

+
2

d− 2

(
η̄3B Ī

(d,hijm−1,1;−hklm+1,∆m+hklm)
12;34 D − η̄4B Ī

(d,hijm−1,1;−hklm,∆m+hklm+1)
12;34 D

)
+

d

(d− 2)(hijm + 1)(2hijm + d)

(
1

x3
Ī

(d,hijm−1,2;−hklm+1,∆m+hklm)
12;34 BD

− 1

x4
Ī

(d,hijm−1,2;−hklm,∆m+hklm+1)
12;34 BD

)]
,

G e1

(1|2] =
(d− 2)(hijm + 1)(2hijm + d)

d
√

(d− 1)(d/2 + 1)

×
[
Ī

(d,hijm−2,2;−hklm+1,∆m+hklm)
12;34 BD − η̄1D Ī

(d,hijm−1,1;−hklm,∆m+hklm)
12;34 B

+
2

d− 2

(
η̄3B Ī

(d,hijm−1,1;−hklm+1,∆m+hklm)
12;34 D − gBD Ī

(d,hijm,0;−hklm,∆m+hklm)
12;34

)
+

d

(d− 2)(hijm + 1)(2hijm + d)

(
1

x3
Ī

(d,hijm−1,2;−hklm+1,∆m+hklm)
12;34 BD

−η̄2D Ī
(d,hijm,1;−hklm,∆m+hklm)
12;34 B

)]
,

(4.24)

and

G e1

(2|1] =
1√
d

[
Ī

(d,hijm−2,2;−hklm+1,∆m+hklm)
12;34 BD − Ī

(d,hijm−2,2;−hklm,∆m+hklm+1)
12;34 BD

−η̄3B Ī
(d,hijm−1,1;−hklm+1,∆m+hklm)
12;34 D + η̄4B Ī

(d,hijm−1,1;−hklm,∆m+hklm+1)
12;34 D

]
,

G e1

(2|2] =
1√
d

[
Ī

(d,hijm−2,2;−hklm+1,∆m+hklm)
12;34 BD + gBD Ī

(d,hijm,0;−hklm,∆m+hklm)
12;34

−η̄1D Ī
(d,hijm−1,1;−hklm,∆m+hklm)
12;34 B − η̄3B Ī

(d,hijm−1,1;−hklm+1,∆m+hklm)
12;34 D

]
,

(4.25)

once the transformation matrix R1 has been used to rotate to the mixed basis.

The remaining symmetric-traceless exchange can be investigated more straightfor-

wardly from the definition (3.15). In general, there are two tensor structures per OPE,

which are simple generalizations of the above, and are given by

(1t
12m
ij )

E1···E`F1···F`+1

B = λ(`+1)e1
(g)`P̂(`+1)e1

12 , (2t
12m
ij )

E1···E`F1···F`−1

B = λ`e1(g)`P̂`e1
12 g,

(1t
34
klm)DE′`···E

′
1F
′
`+1···F

′
1

= λ(`+1)e1
P̂(`+1)e1

34 (g)`+1, (2t
34
klm)DE′`···E

′
1F
′
`−1···F

′
1

= λ`e1P̂
`e1
34 (g)`,

where the indices have been suppressed on the right-hand side. Again, these are the natural

OPE tensor structures. However, as mentioned above, the conformal blocks are easiest to

display in the mixed basis. The relation between the natural three-point function tensor
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structures and the natural OPE tensor structures is given by

λ`e1(R`)
b

1 ( ¯̄J
(d,hklm,nb,∆m,`e1)
34;2 · bt34

klm)D{E′′} = ¯̄η2D ¯̄η4E′′1
· · · ¯̄η4E′′`

,

λ`e1(R`)
b

2 ( ¯̄J
(d,hklm,nb,∆m,`e1)
34;2 · bt34

klm)D{E′′} = gDE′′1
¯̄η4E′′2

· · · ¯̄η4E′′`
,

with the corresponding transformation matrix R`. Although it is not necessary here, the

latter can be easily computed from the three-point correlation functions.

Adapting the steps leading to the conformal blocks for scalar-scalar-scalar-scalar four-

point correlation functions, while being careful with the explicit symmetrizations appearing

in the tensor structures as in the scalar-scalar-scalar-e2 four-point correlation functions,

the conformal blocks in the mixed basis are given by

G `e1

(1|1] = λ(`+1)e1

(−1)``!

(d/2)`

[(
C
d/2
` (X)

)
s1
(1|1)

−
(
C
d/2
`−1(X)

)
s2
(1|1)

]
, (4.26)

with the conformal substitutions

s1
(1|1) : αs22 α

s3
3 α

s4
4 x

r3
3 x

r4
4 → G

ij|m|kl
(0,1,3,1,−1)BD,

s2
(1|1) : αs22 α

s3
3 α

s4
4 x

r3
3 x

r4
4 → η̄4BG

ij|m|kl
(1,1,2,0,−2)D −G

ij|m|kl
(1,1,4,0,−2)BD

− η̄3BG
ij|m|kl
(1,1,2,2,0)D +G

ij|m|kl
(1,1,4,2,0)BD,

as well as

G `e1

(1|2] = λ(`+1)e1

(−1)`+1(`− 1)!

(d/2)`

[(
C
d/2
`−1(X)

)
s1
(1|2)

− d

2

(
C
d/2+1
`−1 (X)

)
s2
(1|2)

+
d

2

(
C
d/2+1
`−2 (X)

)
s3
(1|2)

− d

2

(
C
d/2+1
`−3 (X)

)
s4
(1|2)

]
,

(4.27)

with the conformal substitutions

s1
(1|2) : αs22 α

s3
3 α

s4
4 x

r3
3 x

r4
4 → gBDG

ij|m|kl
(1,1,0,0,0) − η̄1DG

ij|m|kl
(1,1,2,0,0)B − η̄3BG

ij|m|kl
(1,1,2,2,0)D +G

ij|m|kl
(1,1,4,2,0)BD,

s2
(1|2) : αs22 α

s3
3 α

s4
4 x

r3
3 x

r4
4 → η̄2DG

ij|m|kl
(−1,1,0,0,0)B − η̄1DG

ij|m|kl
(1,1,2,0,0)B − x

−1
3 G

ij|m|kl
(−1,1,2,2,0)BD +G

ij|m|kl
(1,1,4,2,0)BD,

s3
(1|2) : αs22 α

s3
3 α

s4
4 x

r3
3 x

r4
4 → η̄2D

[
η̄4BG

ij|m|kl
(0,1,−1,−1,−1) −G

ij|m|kl
(0,1,1,−1,−1)B − η̄3BG

ij|m|kl
(0,1,−1,1,1) +G

ij|m|kl
(0,1,1,1,1)B

]
− η̄1D

[
η̄4BG

ij|m|kl
(2,1,1,−1,−1) −G

ij|m|kl
(2,1,3,−1,−1)B − η̄3BG

ij|m|kl
(2,1,1,1,1) +G

ij|m|kl
(2,1,3,1,1)B

]
− x−1

3

[
η̄4BG

ij|m|kl
(0,1,1,1,−1)D −G

ij|m|kl
(0,1,3,1,−1)BD − η̄3BG

ij|m|kl
(0,1,1,3,1)D +G

ij|m|kl
(0,1,3,3,1)BD

]
+ η̄4BG

ij|m|kl
(2,1,3,1,−1)D −G

ij|m|kl
(2,1,5,1,−1)BD − η̄3BG

ij|m|kl
(2,1,3,3,1)D +G

ij|m|kl
(2,1,5,3,1)BD

−Gij|m|kl(0,1,3,1,−1)BD,

s4
(1|2) : αs22 α

s3
3 α

s4
4 x

r3
3 x

r4
4 → η̄4BG

ij|m|kl
(1,1,2,0,−2)D −G

ij|m|kl
(1,1,4,0,−2)BD − η̄3BG

ij|m|kl
(1,1,2,2,0)D +G

ij|m|kl
(1,1,4,2,0)BD,

and

G `e1

(2|1] = λ`e1

(−1)`−1(`− 1)!

(d/2)`−1

[(
C
d/2
`−1(X)

)
s1
(2|1)

−
(
C
d/2
`−2(X)

)
s2
(2|1)

]
, (4.28)
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with the conformal substitutions

s1
(2|1) : αs22 α

s3
3 α

s4
4 x

r3
3 x

r4
4 → η̄4BG

ij|m|kl
(−1,−1,2,0,−2)D −G

ij|m|kl
(−1,−1,4,0,−2)BD

− η̄3BG
ij|m|kl
(−1,−1,2,2,0)D +G

ij|m|kl
(−1,−1,4,2,0)BD,

s2
(2|1) : αs22 α

s3
3 α

s4
4 x

r3
3 x

r4
4 → G

ij|m|kl
(−2,−1,3,1,−1)BD,

and finally

G `e1

(2|2] = λ`e1

(−1)`−1(`− 1)!

`(d/2)`−1

[(
C
d/2
`−1(X)

)
s1
(2|2)

+
d

2

(
C
d/2+1
`−2 (X)

)
s2
(2|2)

− d

2

(
C
d/2+1
`−3 (X)

)
s3
(2|2)

−
(
C
d/2
`−2(X)− d

2
C
d/2+1
`−4 (X)

)
s4
(2|2)

]
,

(4.29)

with the conformal substitutions

s1
(2|2) : αs22 α

s3
3 α

s4
4 x

r3
3 x

r4
4 →

gBDG
ij|m|kl
(−1,−1,0,0,0) − η̄1DG

ij|m|kl
(−1,−1,2,0,0)B − η̄3BG

ij|m|kl
(−1,−1,2,2,0)D +G

ij|m|kl
(−1,−1,4,2,0)BD,

s2
(2|2) : αs22 α

s3
3 α

s4
4 x

r3
3 x

r4
4 →

η̄2D

[
η̄4BG

ij|m|kl
(−2,−1,−1,−1,−1) −G

ij|m|kl
(−2,−1,1,−1,−1)B − η̄3BG

ij|m|kl
(−2,−1,−1,1,1) +G

ij|m|kl
(−2,−1,1,1,1)B

]
− η̄1D

[
η̄4BG

ij|m|kl
(0,−1,1,−1,−1) −G

ij|m|kl
(0,−1,3,−1,−1)B − η̄3BG

ij|m|kl
(0,−1,1,1,1) +G

ij|m|kl
(0,−1,3,1,1)B

]
− x−1

3

[
η̄4BG

ij|m|kl
(−2,−1,1,1,−1)D −G

ij|m|kl
(−2,−1,3,1,−1)BD − η̄3BG

ij|m|kl
(−2,−1,1,3,1)D +G

ij|m|kl
(−2,−1,3,3,1)BD

]
+ η̄4BG

ij|m|kl
(0,−1,3,1,−1)D −G

ij|m|kl
(0,−1,5,1,−1)BD − η̄3BG

ij|m|kl
(0,−1,3,3,1)D +G

ij|m|kl
(0,−1,5,3,1)BD,

s3
(2|2) : αs22 α

s3
3 α

s4
4 x

r3
3 x

r4
4 →

η̄2DG
ij|m|kl
(−3,−1,0,0,0)B − η̄1DG

ij|m|kl
(−1,−1,2,0,0)B − x

−1
3 G

ij|m|kl
(−3,−1,2,2,0)BD +G

ij|m|kl
(−1,−1,4,2,0)BD

+
[
η̄4BG

ij|m|kl
(−1,−1,2,0,−2)D −G

ij|m|kl
(−1,−1,4,0,−2)BD − η̄3BG

ij|m|kl
(−1,−1,2,2,0)D +G

ij|m|kl
(−1,−1,4,2,0)BD

]
,

s4
(2|2) : αs22 α

s3
3 α

s4
4 x

r3
3 x

r4
4 → G

ij|m|kl
(−2,−1,3,1,−1)BD.

Clearly, only (4.26) exists for ` = 0 and matches with (4.21) once the proper rescaling

necessary to convert from the purely OPE basis of the latter to the mixed basis of

the former is done. Moreover, for ` = 1, all the conformal blocks (4.26), (4.27), (4.28)

and (4.29) match the conformal blocks (4.24) and (4.25) obtained from the pre-conformal

blocks rotated to the mixed basis. Finally, as for all previous four-point correlation

functions, the conformal blocks are easily displayed as Gegenbauer polynomials in terms

of the variable X (4.14). They can be expanded explicitly as in (4.15), and recurrence

relations can be found as in (4.16).

Before proceeding, it is interesting to note the similarities between the conformal

blocks (4.26) and (4.28) and their respective conformal substitutions. As can be seen above,

other similarities occur, mostly due to their common origin, mainly the OPE. Moreover,

in s3
(2|2) the two terms in red merge. They were kept separate to exhibit the similarities in

the overall rule.
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4.2.4 `e1 + e2 exchange in scalar-vector-scalar-vector

In the case of `e1 + e2 exchange in scalar-vector-scalar-vector four-point correlation func-

tions, there is only one tensor structure per OPE. As before, the easiest way to obtain the

conformal blocks is to work in the mixed basis. The OPE and three-point tensor structures

are simply

(1t
12m
ij )

E1···E`+2F1···F`+1

B = λ`e1+e2((g)`+2P̂`e1+e2
12 g)E1···E`+2F`+1···F1

B,

λ`e1+e2R`(
¯̄J
(d,hklm,`+1,∆m,`e1+e2)
34;2 · 1t34

klm)D{E′′} = gDE′′1
¯̄η4E′′2

· · · ¯̄η4E′′`+2
,

where on the right-hand side the indices B and F1 are matched to E1 and E2, respectively,

and R` is the transformation matrix which is just a multiplicative factor introduced for

proper normalization of the three-point correlation functions. It is understood that E1 and

E2 (respectively B and F1) are the e2 indices of the `e1+e2, hence they are antisymmetrized

as in (4.5).

Following the arguments presented above, it is easy to obtain

G `e1+e2
(1|1] = λ`e1+e2

(−1)`+12`!

(`+ 2)(d/2)`

×

[(
XC

d/2
` (X)− 2`−2+3d/2

`− 2 + d
C
d/2
`−1(X) +

d

2
X2C

d/2+1
`−1 (X)− dXCd/2+1

`−2 (X) +
d

2
C
d/2+1
`−3 (X)

)
s1

− 1

2

(
C
d/2
` (X) +

d

2
XC

d/2+1
`−1 (X)− d(d/2− 2)

`− 2 + d
C
d/2+1
`−2 (X)

)
s2

+
1

2

(
2`− 2 + 3d/2

`− 2 + d
C
d/2
`−1(X) +

d(`+ d/2)

`− 2 + d
XC

d/2+1
`−2 (X)− d

2
C
d/2+1
`−3 (X)

)
s3

−1

2

(
2`− 2 + 3d/2

`− 2 + d
XC

d/2
`−1(X) +

d(`+ d/2)

`− 2 + d
X2C

d/2+1
`−2 (X)− d

2
XC

d/2+1
`−3 (X)

)
s4

]
,

(4.30)

with the conformal substitutions

s1 : αs22 α
s3
3 α

s4
4 x

r3
3 x

r4
4 → gBDG

ij|m|kl
(1,1,0,0,0) − η̄1DG

ij|m|kl
(1,1,2,0,0)B − η̄3BG

ij|m|kl
(1,1,2,2,0)D +G

ij|m|kl
(1,1,4,2,0)BD

s2 : αs22 α
s3
3 α

s4
4 x

r3
3 x

r4
4 → η̄2D

[
η̄4BG

ij|m|kl
(0,1,−1,−1,−1) −G

ij|m|kl
(0,1,1,−1,−1)B − η̄3BG

ij|m|kl
(0,1,−1,1,1) +G

ij|m|kl
(0,1,1,1,1)B

]
− η̄1D

[
η̄4BG

ij|m|kl
(2,1,1,−1,−1) −G

ij|m|kl
(2,1,3,−1,−1)B − η̄3BG

ij|m|kl
(2,1,1,1,1) +G

ij|m|kl
(2,1,3,1,1)B

]
− x−1

3

[
η̄4BG

ij|m|kl
(0,1,1,1,−1)D −G

ij|m|kl
(0,1,3,1,−1)BD − η̄3BG

ij|m|kl
(0,1,1,3,1)D +G

ij|m|kl
(0,1,3,3,1)BD

]
+ η̄4BG

ij|m|kl
(2,1,3,1,−1)D −G

ij|m|kl
(2,1,5,1,−1)BD − η̄3BG

ij|m|kl
(2,1,3,3,1)D +G

ij|m|kl
(2,1,5,3,1)BD,

s3 : αs22 α
s3
3 α

s4
4 x

r3
3 x

r4
4 → η̄4BG

ij|m|kl
(1,1,2,0,−2)D −G

ij|m|kl
(1,1,4,0,−2)BD − η̄3BG

ij|m|kl
(1,1,2,2,0)D +G

ij|m|kl
(1,1,4,2,0)BD

+ η̄2DG
ij|m|kl
(−1,1,0,0,0)B − η̄1DG

ij|m|kl
(1,1,2,0,0)B − x

−1
3 G

ij|m|kl
(−1,1,2,2,0)BD +G

ij|m|kl
(1,1,4,2,0)BD,

s4 : αs22 α
s3
3 α

s4
4 x

r3
3 x

r4
4 → G

ij|m|kl
(0,1,3,1,−1)BD.

The observation that the coefficients in the projection operator for `e1 + e2 are related to

those in the projection operator for `e1 and the fact that the latter lead to Gegenbauer

polynomials explain why all conformal blocks can be displayed as appropriate conformal

substitutions of Gegenbauer polynomials in the variable X.
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4.2.5 Symmetric-traceless exchange in scalar-scalar-vector-vector

For completeness, in our final example, we determine the conformal blocks for scalar-

scalar-vector-vector four-point correlation functions, which would then empower us to fully

implement the bootstrap for correlation functions of two scalars and two vectors.

In the mixed basis, the necessary inputs are the tensor structures for symmetric-

traceless exchange, which are

(1t
12m
ij )E1···E`F1···F` = λ`e1(g)`P̂`e1

12 ,

λ`e1(R`)
b

1 ( ¯̄J
(d,hklm,nb,∆m,`e1)
34;2 · bt34

klm)CD{E′′} = ¯̄η2C ¯̄η2D ¯̄η4E′′1
· · · ¯̄η4E′′`

,

λ`e1(R`)
b

2 ( ¯̄J
(d,hklm,nb,∆m,`e1)
34;2 · bt34

klm)CD{E′′} = gCD ¯̄η4E′′1
· · · ¯̄η4E′′`

,

λ`e1(R`)
b

3 ( ¯̄J
(d,hklm,nb,∆m,`e1)
34;2 · bt34

klm)CD{E′′} = gCE′′1
¯̄η2D ¯̄η4E′′2

· · · ¯̄η4E′′`
,

λ`e1(R`)
b

4 ( ¯̄J
(d,hklm,nb,∆m,`e1)
34;2 · bt34

klm)CD{E′′} = gDE′′1
¯̄η2C ¯̄η4E′′2

· · · ¯̄η4E′′`
,

λ`e1(R`)
b

5 ( ¯̄J
(d,hklm,nb,∆m,`e1)
34;2 · bt34

klm)CD{E′′} = gCE′′1 gDE′′2
¯̄η4E′′3

· · · ¯̄η4E′′`
.

Once again, the indices were suppressed on the right-hand side of the natural OPE ten-

sor structure, and the transformation matrix R` leads to the natural three-point tensor

structures.

The conformal blocks are thus

G `e1

(1|1] = λ`e1

(−1)``!

(d/2− 1)`

(
C
d/2−1
` (X)

)
s(1|1)

, (4.31)

with the conformal substitution

s(1|1) : αs22 α
s3
3 α

s4
4 x

r3
3 x

r4
4 → G

ij|m|kl
(0,0,4,2,−2)CD,

followed by

G `e1

(1|2] = λ`e1

(−1)``!

(d/2− 1)`

(
C
d/2−1
` (X)

)
s(1|2)

, (4.32)

with the conformal substitution

s(1|2) : αs22 α
s3
3 α

s4
4 x

r3
3 x

r4
4 → gCDG

ij|m|kl
(0,0,0,0,0),

as well as

G `e1

(1|3] = λ`e1

(−1)`(`− 1)!

(d/2)`−1

[(
C
d/2
`−1(X)

)
s1
(1|3)

−
(
C
d/2
`−2(X)

)
s2
(1|3)

]
, (4.33)

with the conformal substitutions

s1
(1|3) : αs22 α

s3
3 α

s4
4 x

r3
3 x

r4
4 → η̄2CG

ij|m|kl
(−1,0,1,1,−1)D − η̄1CG

ij|m|kl
(1,0,3,1,−1)D

− x−1
3 G

ij|m|kl
(−1,0,3,3,−1)CD +G

ij|m|kl
(1,0,5,3,−1)CD,

s2
(1|3) : αs22 α

s3
3 α

s4
4 x

r3
3 x

r4
4 → G

ij|m|kl
(0,0,4,2,−2)CD,
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and

G `e1

(1|4] = λ`e1

(−1)`(`− 1)!

(d/2)`−1

[(
C
d/2
`−1(X)

)
s1
(1|4)

−
(
C
d/2
`−2(X)

)
s2
(1|4)

]
, (4.34)

with the conformal substitutions

s1
(1|4) : αs22 α

s3
3 α

s4
4 x

r3
3 x

r4
4 → η̄2DG

ij|m|kl
(−1,0,1,1,−1)C − η̄1DG

ij|m|kl
(1,0,3,1,−1)C

− x−1
3 G

ij|m|kl
(−1,0,3,3,−1)CD +G

ij|m|kl
(1,0,5,3,−1)CD,

s2
(1|4) : αs22 α

s3
3 α

s4
4 x

r3
3 x

r4
4 → G

ij|m|kl
(0,0,4,2,−2)CD,

and finally

G `e1

(1|5] = λ`e1

(−1)`(`− 2)!

(d/2)`−1

[(
C
d/2
`−2(X)

)
s1
(1|5)

+
d

2

(
C
d/2+1
`−2 (X)

)
s2
(1|5)

−d
2

(
C
d/2+1
`−3 (X)

)
s3
(1|5)

+
d

2

(
C
d/2+1
`−4 (X)

)
s4
(1|5)

]
,

(4.35)

with the conformal substitutions

s1
(1|5) : αs22 α

s3
3 α

s4
4 x

r3
3 x

r4
4 → gCDG

ij|m|kl
(0,0,0,0,0),

s2
(1|5) : αs22 α

s3
3 α

s4
4 x

r3
3 x

r4
4 → η̄2C

[
η̄2DG

ij|m|kl
(−2,0,−2,0,0) − η̄1DG

ij|m|kl
(0,0,0,0,0) − x

−1
3 G

ij|m|kl
(−2,0,0,2,0)D +G

ij|m|kl
(0,0,2,2,0)D

]
− η̄1C

[
η̄2DG

ij|m|kl
(0,0,0,0,0) − η̄1DG

ij|m|kl
(2,0,2,0,0) − x

−1
3 G

ij|m|kl
(0,0,2,2,0)D +G

ij|m|kl
(2,0,4,2,0)D

]
− x−1

3

[
η̄2DG

ij|m|kl
(−2,0,0,2,0)C − η̄1DG

ij|m|kl
(0,0,2,2,0)C − x

−1
3 G

ij|m|kl
(−2,0,2,4,0)CD +G

ij|m|kl
(0,0,4,4,0)CD

]
+ η̄2DG

ij|m|kl
(0,0,2,2,0)C − η̄1DG

ij|m|kl
(2,0,4,2,0)C − x

−1
3 G

ij|m|kl
(0,0,4,4,0)CD +G

ij|m|kl
(2,0,6,4,0)CD,

s3
(1|5) : αs22 α

s3
3 α

s4
4 x

r3
3 x

r4
4 → η̄2DG

ij|m|kl
(−1,0,1,1,−1)C − η̄1DG

ij|m|kl
(1,0,3,1,−1)C − x

−1
3 G

ij|m|kl
(−1,0,3,3,−1)CD +G

ij|m|kl
(1,0,5,3,−1)CD

+ {C ↔ D},

s4
(1|5) : αs22 α

s3
3 α

s4
4 x

r3
3 x

r4
4 → G

ij|m|kl
(0,0,4,2,−2)CD.

In this example, there are two conformal blocks for ` = 0, four conformal blocks for ` = 1,

and five conformal blocks for ` > 1, as expected from the tensor product decomposition.

4.2.6 Conformal blocks as linear combinations of Gegenbauer polynomials

with substitutions

All of the examples above led to expressions for conformal blocks given by linear combi-

nations of Gegenbauer polynomials with appropriate conformal substitutions. On the one

hand, noting the identical simplifications that occur in the procedure leading to the confor-

mal blocks, we anticipate that there are generic Feynman-like rules for the corresponding

conformal substitutions that can be deduced from the previous examples, starting from the

mixed basis.

On the other hand, the presence of Gegenbauer polynomials in terms of the variable

X might at first seem intriguing. The origin of the variable X is clear, as it is directly

obtained from the A-metric contractions. We can also argue that the Gegenbauer poly-

nomials appear for any tower of conformal blocks with exchanged quasi-primary operators
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in N + `e1. Indeed, starting from the mixed basis, the three-point correlation function

does not have any special features. Then, the three-point function is multiplied by hatted

projection operators at different embedding space coordinates. In [174], it was proved that

the hatted projection operators merged into one hatted projection operator constructed

from the two A-metrics. Subsequently, the result is transformed into the conformal block

with the help of the conformal substitution (3.13) and contractions with the tensor struc-

ture. At this point, the implicit hatted projection operator can be extracted from the

tensor structure, as described in [174], moving all the nontrivial `-dependence to the hat-

ted projection operators. Now, from the tensor product decomposition, we know that the

hatted projection operator for N + `e1 can be obtained from the tensor product of N and

`e1. In that product, one must subtract the smaller irreducible representations. The trace

ones are easily discarded, while the non-trace ones can be removed by simply demanding

that the resulting projection operator satisfy the proper symmetries. Hence, the hatted

projection operator for N + `e1 is built from the fixed projection operator for N and the

projection operator for `e1. The latter carries the `-dependence through its coefficients,

see (4.1). The coefficients, which re-sum into simple Gegenbauer polynomials, ultimately

lead to linear combinations of Gegenbauer polynomials after the steps necessary to deter-

mine the conformal substitutions are completed. Hence, in a fixed four-point correlation

function, conformal blocks for a tower of quasi-primary operators in irreducible representa-

tions N +`e1 are expressed as linear combinations of Gegenbauer polynomials with proper

conformal substitutions, in agreement with the examples above. Moreover, the conformal

substitutions replace the variable X by Ī-functions, which are tensorial generalizations of

the Exton G-function, without derivatives.

5 Discussion and conclusion

We have shown how to obtain conformal blocks using the method described in [1, 2].

Given the agreement with several results in the literature obtained using other methods,

and our earlier calculations of two- and three-point functions in [173, 174], it is clear that

the approach is sound. Using the OPE in embedding space, one can indeed systematically

build up M -point functions from (M − 1)-point functions and so on and obtain explicit

expressions for M -point functions. As we have already stressed, the method is universal

and is not limited to any particular Lorentz representation or spacetime dimension.

This claim is that the result (3.15) for the conformal blocks is completely general, with

the conformal substitution rules given by (3.5) and (3.13), respectively. All that one needs

to supply in order to determine a particular conformal block of interest are some group-

theoretic quantities, namely the projection operators for the exchanged representations

and the tensor structures. The method rests on the embedding space OPE framework,

which was carefully developed in [1, 2] and was subsequently placed on a firmer footing

in [173, 174]. The examples described above serve to illustrate the application of the method

in practice. In each case, one first determines the form of the three-point tensor structures

for the left and right OPE and then supplies the appropriate projector for the exchanged

operator. Together, these objects comprise all the input data needed for a specific block.
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Next, one directly inserts this data into the general formula for the conformal blocks given

in (3.15) and extracts the relevant linear combination of Gegenbauer polynomials, with

each term coupled to its associated substitution rule. That is the overall idea behind

the universal formula presented here. The method is general, because arbitrary Lorentz

representations may be considered, and the only components which vary from case to case

are the group-theoretic input data.

Now, the general procedure for obtaining conformal blocks is described in section 3,

and it involves starting with the hatted projection operators and then performing substi-

tutions. The two required substitutions involve first the three-point tensorial function and

then the four-point tensorial function on the outcome of the first substitution. Carrying

out the conformal substitutions is straightforward but can become tedious for four-point

correlation functions of quasi-primary operators in large irreducible representations. Ob-

taining the hatted projection operators is perhaps less straightforward, but can also be

done systematically by starting with small representations and then working up to larger

ones. It is likely that the procedure for computing conformal blocks could be automated

and handled by a computer program.

The intermediate expressions for the blocks involving the Gegenbauer polynomials,

which lead to the actual conformal blocks through the s-substitutions, are certainly in-

triguing. Based on the examples we have worked out, we argued that this feature is general

and applicable to other conformal blocks. Moreover, it should be possible to codify the

procedure for obtaining the appropriate conformal substitutions as a set of Feynman-like

rules. This will be addressed in a future publication.

While many of the conformal blocks derived here were already known, it was useful to

rederive such results using the new method. Looking ahead to what can be accomplished

with this method soon, we consider tackling several specific conformal blocks. One of

the most fundamental objects for exploring CFTs is the four-point function involving four

energy-momentum tensors. Because of the sheer number of blocks involved in a four-point

function of energy-momentum tensors, this will be the subject of a separate publication.

Looking further ahead, we hope that our approach will be useful for both the numerical

and analytic bootstrap. Despite an enormous amount of progress, it is apparent that CFTs

have a rich and complicated structure that has not been fully explored yet.
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