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1 Introduction

The powerful tool of integrability (for a review see [1]) is behind all the recent advances

in understanding the celebrated gauge-gravity correspondence [2] (for a set of pedagogical

introductions see [3, 4]) in the planar limit. On the gauge theory side, using Bethe ansatz

techniques [5], the matrix of the anomalous dimensions can be diagonalized through the

mapping to the Hamiltonian of an integrable spin chain. The magnons are the fundamental

single particle excitations that propagate on the BMN vacuum and integrability implies

that every scattering process factorizes in a scattering between two magnons. The role

of integrability is pivotal not only in determining the spectrum of N = 4 SYM at any

value of the coupling but also in the computation of higher point correlation functions (see

e.g. [6–11]).

The strong coupling dual of the magnons are semi-classical string solutions on AdS5×
S5, the so-called giant magnons [12–15]. They are open strings moving in a subspace of the

five-sphere with finite angular extent. Another class of classical solutions that we will focus

our attention in the current paper is the single spikes [16, 17]. They have finite angular

amplitude and wind infinitely many times around an angular direction.

Over the years there is a lot of attention on integrable deformations of the original

AdS/CFT construction. Recent activity is coming from the null dipole deformation of

the N = 4 SYM and more precisely on the integrability issues that arise, as they were

discussed [18]. There, a test of the Schrödinger holography is provided by matching the

anomalous dimensions of long gauge theory operators with the prediction at strong coupling

of certain BMN-like strings (see also [19]).
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In [20] semi-classical string solutions living in the Schrödinger spacetime were con-

structed. They are the counterparts of the giant magnon and the single spike solutions of

the undeformed AdS5×S5, since in the limit of zero deformation they flow to the ordinary

giant magnon and single spike of the undeformed background. The solutions live in an S3

subspace of the five-sphere in which the B-field has non-zero components. Furthermore,

the solutions are not point like but extend in the Schrödinger part of the metric.1

In [23] three-point correlation functions involving two heavy operators and a light

one were calculated using holography in a Schrödinger background. These are the first

results in the literature of three-point function computations involving extended string

solutions. In [24] the pp-wave geometry of the Schrödinger background was constructed.

The spectrum of the bosonic excitations was derived and compelling agreement with the

giant magnon dispersion relation, previously obtained in [20], was found. In [25] the giant

graviton solution of the Schrödinger pp-wave geometry [24] was constructed. The solution

exhibits an intriguing behavior as the deformation parameter varies, which is suggestive of

a spontaneous breaking of conformal invariance. Finally, pulsating strings solutions in the

Schrödinger background were constructed in [26].

The aim of this work is to continue in the direction of further studying the gauge/gravity

correspondence, in order to relate the non-supersymmetric Schrödinger background to its

dual null dipole-deformed N = 4 SYM [27–29]. To that extent, in this paper we will further

elaborate on the classical string solutions that were constructed in [20]. We will calculate

the finite size (exponential) corrections to the infinite size dispersion relation of the single

spin giant magnon and of the single spin single spike solutions. The solutions live in a S3

subspace of the five-sphere, extent in the Schrödinger part of the metric and in the limit

of zero deformation the finite size dispersion relations flow to the undeformed AdS5 × S5

counterparts [30, 31].

The paper is organized as follows: in section 2 we review the single spin giant magnon

and the single spin single spike solutions in the Schrodinger background. The ansatz for

the solutions was introduced in [20, 23] but the boundary conditions are revised in order

to accommodate the finite size corrections. In section 3 we focus on the giant magnon case

and we calculate the explicit expressions for the conserved charges. Afterwards, we expand

the dispersion relation around the infinite size limit and the zero deformation limit. In

section 4 we focus on the single spike case and after calculating the explicit expressions

for the conserved charges we expand the dispersion relation around the infinite size limit.

We conclude the paper in section 5. In appendices A and B we present details of the

computations of the main text.

2 Classical string solutions on Sch5 × S3

In this section we will review the single spin giant magnon and the single spin single spike

solutions in the Schrodinger Sch5×S5 background, that were initially presented in [20, 23].

1Giant-magnon like solutions with a different dispersion relation were studied in [21], while giant magnons

and spiky strings living on the Schrödinger Sch5 × T 1,1 and the corresponding dispersion relations were

studied in [22].
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More specifically, in [23] the dispersion relations for the infinite size single spin giant magnon

and the infinite size single spin single spike were presented, and it is those relations that

in the next section we will generalize to include the finite size corrections.

We consider the following consistent truncation of the 10d Schrodinger Sch5 × S5

background on a sphere2

ds2 = −
(

1 +
µ2

Z4

)
dT 2 +

1

Z2

(
2dTdV + dZ2

)
+ dη2 + sin2 η dϕ2

1 + cos2 η dϕ2
2 (2.1)

that is supplemented with a B-field

B =
µ

Z2
dT ∧

(
sin2 η dϕ1 + cos2 η dϕ2

)
(2.2)

where η ∈ [0, π/2], ϕ1 ∈ [0, 2π) and ϕ2 ∈ [0, 2π) are the ranges of the variables along S3.

2.1 Ansatz and equations of motion

We consider the following ansatz for both solutions

T = κ τ , V = α τ + Vy(y) , Z = Z0 , η =
1

2
θy(y) ,

ϕ1 = ω τ +
κµ

Z2
0

σ + Ψy(y) & ϕ2 = − κµ
Z2
0

σ (2.3)

where we have defined the variable y as

y ≡ c σ − d τ . (2.4)

The explicit expressions for the functions Vy(y), θy(y) and Ψy(y) that appear in the ansatz

will be determined through the equations of motion and the Virasoro constraints, while κ,

α, Z0, ω and µ are constants.

Notice that even if we are considering single spin solutions, the string needs to move

inside an S3, rather than an S2, subspace of the 5-sphere. In order to have a dispersion

relation that depends on the deformation, we are forced to switch on a third angle inside

the 5-sphere. This is not something unusual when we study the motion of classical strings

inside deformations of the AdS space (e.g. see the case of the giant magnon inside the

beta-deformed AdS5 × S5 background [32]).

The equations for V ′y(y) and Ψ′y(y) in terms of the new function u(y),3 are given in

appendix A, while the equation of motion for Z and one of the Virasoro constraints give

us the following two conditions

AT dZ
2
0 − 2Aφ c µ + α c2 − d2 κZ2

0 = 0 (2.5)

and
Aφ ω

d
− AT κ

2 d
+

1

Z2
0

(
ακ

2
+
Aφ κµ

c

)
= 0 . (2.6)

2With respect to the notation of [20] for the S3, we have performed a change of variables: θ = 2 η,

ψ = ϕ1 + ϕ2 and φ = ϕ1 − ϕ2. Details about the consistency of the truncation can be found in [20].
3The functions θy(y) and u(y) are related as follows: u ≡ cos2

(
θy
2

)
.
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The equation of motion for u(y) is coming from the other Virasoro constraint and it is

(u′)2

2
+ W(u) = 0 with W(u) = − 2u

(
β6 u

2 + β4 u + β2
)

(2.7)

where the constants β2, β4 & β6 are listed in appendix A. It is possible to rewrite equa-

tion (2.7) in the following way

u′ = 2

√
|β6|u (up − u) (u − um) with um < u < up (2.8)

where

up =
1

2

− β4
β6

+

√(
β4
β6

)2

− 4
β2
β6

 & um = − 1

2

β4
β6

+

√(
β4
β6

)2

− 4
β2
β6

 .
(2.9)

In the infinite size limit, where β6 < 0, β4 > 0 and β2 = 0, the bending point of the string

is at um = 0.

2.2 Boundary conditions

In this subsection we will impose boundary conditions to the equations of motion of the

previous subsection, in analogy to the infinite size case of [20].

Solving (2.5) with respect to AT we obtain the following expression

AT =
1

dZ2
0

(
2Aφ c µ − α c2 + d2 κZ2

0

)
. (2.10)

Substituting (2.10) in (A.1) and imposing that V ′y vanishes at the bending point u = um
we obtain the following two solutions for the constant Aφ

Aφ =
α

2 c κ µ2

[
c2 κµ + c d ω Z2

0 + d2 κµ
]

single spin giant magnon (2.11)

Aφ =
c α

2µ
single spin single spike . (2.12)

Substituting the expression for AT and Aφ (from (2.10) and (2.11) respectively) in (2.9),

we express um (of the giant magnon) in terms of the auxiliary quantity WGM, as follows

um = 1−WGM with WGM =
αZ2

0

κµ2
. (2.13)

The expression for up (of the giant magnon) becomes

up = 1− v2WGM

[
1 +

1− v2

v

∆GM

WGM + 2 v∆GM

]2
with ∆GM =

α

µω
& v =

d

c
.

(2.14)

The expressions for Z0 and κ in terms of the auxiliary quantities WGM and ∆GM are

Z0 =

√
κ

α
µ
√
WGM & κ = ω

[
WGM + 2 v∆GM +

(
1 + v2

) ∆2
GM

WGM

]1/2
. (2.15)
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Notice, that the undeformed limit of the expressions above is for ∆GM → 0 (or equivalently

α→ 0) and the infinite size limit is for WGM → 1.

A similar analysis can be performed also for the single spin single spike case. Now the

starting point for the value of the constant Aφ will be (2.12). The expression for um (of

the single spike) in terms of the auxiliary quantity WSS becomes

um = 1−WSS with WSS =
α

µ v

(
ω +

2κµ

v Z2
0

)−1
. (2.16)

The expression for up (of the single spike) becomes

up = 1− v2WSS with v =
c

d
(2.17)

and for later convenience we introduce the following auxiliary quantity ∆SS

∆SS =
µω

α
. (2.18)

The expressions for Z0 and κ in terms of the auxiliary quantities WSS and ∆SS are

Z0 =

√
2καWSS ∆SS

ω
√

1− vWSS ∆
& κ =

ω√
WSS ∆SS

. (2.19)

Notice, that the undeformed limit of the expressions above is for ∆SS → 1
vWSS

(or equiva-

lently Z0 →∞) and the infinite size limit is for WSS → 1.

3 Single spin giant magnon

In this section we compute the conserved charges for the single spin giant magnon solution

and construct the dispersion relation. The detailed analysis for the calculation of the

dispersion relation in the infinite size limit appears in [20, 23]. In this section we focus on

the finite size corrections of the aforementioned relation.

The four conserved charges, that originate from the partial derivatives of the Polyakov

action and the subsequent integration, for the giant magnon solution become4

E

2T
=

1− v2
√
up

W

W + 2 v∆

[
W + 2 v∆ +

(
1 + v2

) ∆2

W

]1/2
K(1− ε) (3.1)

µM

2T
=

1− v2
√
up

∆

W + 2 v∆
K(1− ε) (3.2)

J

2T
=

1
√
up

[
1− v2W

W + 2 v∆

(
W +

1 + v2

v
∆

)]
K(1− ε)−√up E(1− ε) (3.3)

∆ϕ

2
=
vW +

(
1 + v2

)
∆

(W + 2 v∆)
√
up

[
W

1− up
Π

(
− up

1− up
(1− ε) , 1− ε

)
−K(1− ε)

]
(3.4)

4In order for the notation not to clutter, in this section W is WGM from (2.13) and ∆ is ∆GM from (2.14).
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where ε is the ratio between um and up of the giant magnon solution

ε =
um
up

(3.5)

and K(1− ε), E(1− ε) and Π
(
− up

1−up (1− ε) , 1− ε
)

are the complete elliptic integrals of

the first, the second and the third kind. In appendix B we have gathered all the expressions

that define those integrals. The finite size corrections we will calculate are in powers of

the ratio ε when this ratio is small. For this reason we expand the parameters v and W in

powers of ε as follows

v = v0 + (v1 + v2 log ε) ε & W = W0 +W1 ε (3.6)

and the presence of the logarithmic term is for the compensation of the logarithmic terms

that come from the expansion of the elliptic integrals. Using the definition for ε from (3.5)

and the condition ∆ϕ = p, it is possible to determine all the coefficients of the above

expansion. The coefficients of the W expansion are simple expressions and do not depend

on the deformation parameter ∆

W0 = 1 & W1 = − sin2 p

2
. (3.7)

On the contrary, the coefficients of the v expansion depend on the deformation parameter

and they have analytic but non illuminating expressions. We list them in appendix B and

more specifically in equations (B.4), (B.5) and (B.6). Here we present the expansion of the

coefficients around the undeformed values, namely for small values of ∆. For the coefficient

v0 the expansion becomes

v0
cos p2

= 1−
sin2 p

2

cos p2
∆ +O(∆3) (3.8)

for the coefficient v1 it is

v1
1
4 sin2 p

2 cos p
2 (1− 4 ln 2)

= 1 +
2− 6 sin2 p

2 − 8 cos2 p
2 ln 2

cos p
2 (1− 4 ln 2)

∆ +O(∆3) (3.9)

and for the coefficient v2 it is

v2
1
4 sin2 p

2 cos p
2

= 1 + 2 cos
p

2
∆ +O(∆3) . (3.10)

Notice here, that the current calculation of finite size corrections in the dispersion relation

of the giant magnon only makes sense in the limit of small ∆. Increasing the value of the

deformation parameter, increases the ratio between um and up and as a result cancels the

expansion in small ε. The expansion is justified only for small values of ∆.

From the zeroth order term in the expansion of J , we obtain the expression of ε

for J � T

ε = 16 exp

[[
− J

T sin p
2

− 2

] [
1−∆ cos

p

2

]]
(3.11)

where we have expanded the exponent in powers of ∆.
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Using all those ingredients it is possible to expand the dispersion relation of the gi-

ant magnon. The zeroth order term provides the infinite size result while the first order

correction depends on the value of ∆. For small values of ∆ the dispersion relation is√
E2 − µ2M2 − J

2T sin p
2

− 1 = −4 sin2 p

2
e
− J
T sin

p
2
−2

(3.12)

+2 ∆2

[
J2

T 2
cos2

p

2
+ 2

J

T
cos p sin

p

2
− 4 sin4 p

2

]
e
− J
T sin

p
2
−2
.

For ∆ = 0 we obtain the undeformed result of [30] (see also [31]) and in the infinite size

limit the r.h.s. of the finite size dispersion relation vanishes.

4 Single spin single spike

In this section, we compute the conserved charges for the single spin single spike solution

and construct the dispersion relation. The detailed analysis for the calculation of the

dispersion relation in the infinite size limit appears in [20, 23]. In this section we focus on

the finite size corrections of the aforementioned relation.

The four conserved charges for the single spike solution become5

E

2T
=

√
1

v2
− 1
√

1− εK(1− ε) (4.1)

µM

2T
=

1

2
(1− vW ∆)

√
1

v2
− 1

√
1− v2 ε K(1− ε) (4.2)

J

2T
=

√
1− v2

1− v2 ε

[
E(1− ε)− εK(1− ε)

]
(4.3)

∆ϕ

2
=

√
1− v2 ε
1− v2

[ [
v +

1− v2

2 v
(1− vW ∆)

]
K(1− ε)− 1

v
Π

(
1− 1

v2
, 1− ε

)]
(4.4)

where the constant W can be expressed as a function of ε as follows

W =
1− ε

1− v2 ε
(4.5)

and ε is again the ratio between um and up (of the single spike). The next step is to expand

v in powers of ε (see equation (3.6)), substitute it in the expression for J/T from (4.3) and

impose that J/T remains finite. In that way, we determine the value of the coefficients v0,

v1 and v2 in terms of the finite quantity J/T

v20 = 1− 1

4

J2

T 2
, v1 = − 1− v20

4 v0

[
1 + 4 ln 2− 2 v20

]
& v2 =

1− v20
4 v0

. (4.6)

5In this section W is WSS from (2.16) and ∆ is ∆SS from (2.18).
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From the ε-expansion of ∆ϕ, we obtain the expression for ε as a function of ∆ϕ and J/T

ε = 16 exp

−4
√

4− J 2

J

∆ϕ+ arcsin
(
J
2

√
4− J 2

)
2 + ∆

√
4− J 2

 with J =
J

T
. (4.7)

Using all those ingredients it is possible to expand the dispersion relation of the single

spike. The zeroth order term provides the infinite size result while the first order correction

depends on the value of ∆. Here contrary to the giant magnon result the expressions are

simple and we do not expand in powers of the deformation. The finite size dispersion

relation is

1

2T

[
E − µM −∆ϕ

]
− p

2
= 4 sin2 p

2
tan

p

2
exp

[
− ∆ϕ+ p

tan p
2

2

1 + ∆ cos p2

]
(4.8)

where we have used the identification that was introduced in [17]

arcsin

(
J

2T

)
=

p

2
. (4.9)

The undeformed result of [31] is realized for ∆ = cos−1 p2 (this is the same value of ∆ for

which Z0 →∞) and in the infinite size limit the r.h.s. of the finite size dispersion relation

vanishes.

5 Conclusions

In this paper we have elaborated on the dispersion relations of semi-classical string solutions

that live in the Schrödinger spacetime, that is conjectured to be the gravity dual of the null

dipole CFT. We have calculated the finite size corrections to the infinite size dispersion

relation of the single spin giant magnon and of the single spin single spike solutions. The

leading order corrections have the usual exponential form, characteristic for the finite size

corrections also in the original AdS5×S5 background, dressed with expressions that depend

on the deformation parameter. In the limit of zero deformation, the solutions and their

finite size dispersion relations become those of the single spin giant magnon and single

spin single spike of the undeformed AdS5 × S5 background. Furthermore, in the infinite

size limit the correction term vanishes and we obtain the known infinite size dispersion

relations. Even if the solutions presented in this paper are single spin they live in an S3

subspace of the five-sphere. In order to have a dispersion relation that depends on the

deformation, we are forced to let the string move inside an S3, instead of the S2 that the

string would move in the undeformed counterpart.

A number of important directions remains to be addressed. In the current paper we

have calculated the finite size corrections for the single spin giant magnon and single spike.

It would be interesting to generalize the computation for the dyonic giant magnon and

single spike. The string solutions and the corresponding infinite size dispersion relations

have been studied in [20]. In a very recent interesting approach, the classical exponential

corrections to the dispersion relations of the GKP string, of the giant magnon and of the

– 8 –
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single spike have been expressed in terms of Lambert W-function [33–35]. In this way the

leading, sub-leading and next-to-sub-leading series of the classical exponential corrections

to the dispersion relations of the aforementioned string configurations have been calculated.

It would be very interesting to follow this path in the Schrödinger geometry in order to

expand the computation of the current paper beyond the leading order.
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A Useful expressions from the analysis of the classical string solutions

In this appendix we gather all the useful (but lengthy and not particularly illuminating)

expressions from the detailed analysis of the classical string solutions, that is presented in

section 2.

The derivative of the function Vy(y) with respect to y in terms of u(y) is given by

V ′y(y) =
1

c2 − d2

[
(d κ−AT )Z2

0 − αd+ c µω

(
1 +

2 d κµ

cω Z2
0

)
(1 − u(y))

]
(A.1)

while the derivative of the function Ψy(y) with respect to y is given by

Ψ′y(y) =
1

c2 − d2

[
2Aφ

1 − u(y)
− dω − 2 c κ µ

Z2
0

]
. (A.2)

The constants β2, β4 & β6 from the equation of motion for the function u(y) in (2.7) are

given by the following expressions

β4 =
1

c dZ2
0 (c2 − d2)2

[
− 2Aφ

(
cZ2

0 ω + d κµ
) (
c2 + d2

)
− 4Aφ c

2 d κµ (A.3)

+c κ
(
c2 − d2

) [
Z2
0 (AT − d κ) + αd

]
+

2 c d

Z2
0

(
cZ2

0 ω + 2 d κµ
)2 ]

β6 = − c2 ω2

(c2 − d2)2

(
1 +

2 d κµ

cω Z2
0

)
< 0 & β2 + β4 + β6 = −

4A2
φ

(c2 − d2)2
. (A.4)

B Elliptic integrals and ε expansion coefficients of the parameter v

In this appendix we gather all the useful expressions for the definitions of the elliptic inte-

grals (of the first, second and third type) that we used to express the conserved quantities,

– 9 –
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both for the giant magnon and single spike solutions. These are∫ up

um

du√
u (up − u) (u − um)

=
2
√
up

K(1− ε) (B.1)

∫ up

um

√
u du√

(up − u) (u − um)
= 2
√
up E(1− ε) (B.2)∫ up

um

du

(1− u)
√
u (up − u) (u − um)

=
2

(1− up)
√
up

Π

(
um − up
1− up

|1− ε
)
. (B.3)

The expressions for the ε expansion coefficients of the parameter v in the single spin giant

magnon solution of section 3 are

v0 =
1

2 ∆


√√√√1 + 4 ∆

[
∆ cos p+ cos

p

2

√
1− 4 ∆2 sin2 p

2

]
− 1

 (B.4)

v2 =

(
1− v20

) [
v0 +

(
1 + v20

)
∆
]

4 (1 + 2 v0 ∆)

1 +

(
1− v20

)
∆2

1 + 2 ∆
[
v0 −∆

(
1− v20

) ]
 (B.5)

v1
v2

=
v0 (1− 4 ln 2)

[
1 + 2 ∆2

(
1 + v20

)]
−∆ (3 + 4 ln 2) + v20 ∆ (7− 12 ln 2)

(1 + 2 v0 ∆)
[
v0 +

(
1 + v20

)
∆
] . (B.6)
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