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ABSTRACT: We study finite size corrections to the semiclassical string solutions of the
Schrodinger spacetime. We compute the leading order exponential corrections to the infi-
nite size dispersion relation of the single spin giant magnon and of the single spin single
spike solutions. The solutions live in a S® subspace of the five-sphere and extent in the
Schrodinger part of the metric. In the limit of zero deformation the finite size dispersion
relations flow to the undeformed AdSs x S® counterparts and in the infinite size limit the
correction term vanishes and the known infinite size dispersion relations are obtained.
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1 Introduction

The powerful tool of integrability (for a review see [1]) is behind all the recent advances
in understanding the celebrated gauge-gravity correspondence [2] (for a set of pedagogical
introductions see [3, 4]) in the planar limit. On the gauge theory side, using Bethe ansatz
techniques [5], the matrix of the anomalous dimensions can be diagonalized through the
mapping to the Hamiltonian of an integrable spin chain. The magnons are the fundamental
single particle excitations that propagate on the BMN vacuum and integrability implies
that every scattering process factorizes in a scattering between two magnons. The role
of integrability is pivotal not only in determining the spectrum of N' = 4 SYM at any
value of the coupling but also in the computation of higher point correlation functions (see
e.g. [6-11]).

The strong coupling dual of the magnons are semi-classical string solutions on AdSs x
S®, the so-called giant magnons [12-15]. They are open strings moving in a subspace of the
five-sphere with finite angular extent. Another class of classical solutions that we will focus
our attention in the current paper is the single spikes [16, 17]. They have finite angular
amplitude and wind infinitely many times around an angular direction.

Over the years there is a lot of attention on integrable deformations of the original
AdS/CFT construction. Recent activity is coming from the null dipole deformation of
the N' = 4 SYM and more precisely on the integrability issues that arise, as they were
discussed [18]. There, a test of the Schrodinger holography is provided by matching the
anomalous dimensions of long gauge theory operators with the prediction at strong coupling
of certain BMN-like strings (see also [19]).



In [20] semi-classical string solutions living in the Schrédinger spacetime were con-
structed. They are the counterparts of the giant magnon and the single spike solutions of
the undeformed AdSs x S°, since in the limit of zero deformation they flow to the ordinary
giant magnon and single spike of the undeformed background. The solutions live in an S3
subspace of the five-sphere in which the B-field has non-zero components. Furthermore,
the solutions are not point like but extend in the Schrédinger part of the metric.!

In [23] three-point correlation functions involving two heavy operators and a light
one were calculated using holography in a Schrodinger background. These are the first
results in the literature of three-point function computations involving extended string
solutions. In [24] the pp-wave geometry of the Schrédinger background was constructed.
The spectrum of the bosonic excitations was derived and compelling agreement with the
giant magnon dispersion relation, previously obtained in [20], was found. In [25] the giant
graviton solution of the Schrodinger pp-wave geometry [24] was constructed. The solution
exhibits an intriguing behavior as the deformation parameter varies, which is suggestive of
a spontaneous breaking of conformal invariance. Finally, pulsating strings solutions in the
Schrodinger background were constructed in [26].

The aim of this work is to continue in the direction of further studying the gauge/gravity
correspondence, in order to relate the non-supersymmetric Schrodinger background to its
dual null dipole-deformed N' = 4 SYM [27-29]. To that extent, in this paper we will further
elaborate on the classical string solutions that were constructed in [20]. We will calculate
the finite size (exponential) corrections to the infinite size dispersion relation of the single
spin giant magnon and of the single spin single spike solutions. The solutions live in a S°
subspace of the five-sphere, extent in the Schrodinger part of the metric and in the limit
of zero deformation the finite size dispersion relations flow to the undeformed AdSs x S°
counterparts [30, 31].

The paper is organized as follows: in section 2 we review the single spin giant magnon
and the single spin single spike solutions in the Schrodinger background. The ansatz for
the solutions was introduced in [20, 23] but the boundary conditions are revised in order
to accommodate the finite size corrections. In section 3 we focus on the giant magnon case
and we calculate the explicit expressions for the conserved charges. Afterwards, we expand
the dispersion relation around the infinite size limit and the zero deformation limit. In
section 4 we focus on the single spike case and after calculating the explicit expressions
for the conserved charges we expand the dispersion relation around the infinite size limit.
We conclude the paper in section 5. In appendices A and B we present details of the
computations of the main text.

2 Classical string solutions on Schy x S3

In this section we will review the single spin giant magnon and the single spin single spike
solutions in the Schrodinger Schs x S° background, that were initially presented in [20, 23].

! Giant-magnon like solutions with a different dispersion relation were studied in [21], while giant magnons
and spiky strings living on the Schrédinger Schs x TH1 and the corresponding dispersion relations were
studied in [22].



More specifically, in [23] the dispersion relations for the infinite size single spin giant magnon
and the infinite size single spin single spike were presented, and it is those relations that
in the next section we will generalize to include the finite size corrections.

We consider the following consistent truncation of the 10d Schrodinger Schs x S®
background on a sphere?

2
I 1 .
ds® = — <1 + Z4> dT? + 72 (2dTdV + dZ2) +dn? + sin®nde? + cos®ndes  (2.1)
that is supplemented with a B-field

B = % dT N (sin2 ndpy + cos®n Cl(pg) (2.2)
where n € [0,7/2], ¢1 € [0,27) and s € [0,27) are the ranges of the variables along S3.

2.1 Ansatz and equations of motion

We consider the following ansatz for both solutions

1
T =kT, V=ar+ Vy(y), Z = Zy, n:§9y(y),
K K
901:w7+Z—l;a+‘I/y(y) & ¢2:—7§0 (2.3)
0 0

where we have defined the variable y as
y=co—dr. (2.4)

The explicit expressions for the functions V,,(y), 6,(y) and ¥, (y) that appear in the ansatz
will be determined through the equations of motion and the Virasoro constraints, while &,
«, Zp, w and p are constants.

Notice that even if we are considering single spin solutions, the string needs to move
inside an S2, rather than an S?, subspace of the 5-sphere. In order to have a dispersion
relation that depends on the deformation, we are forced to switch on a third angle inside
the 5-sphere. This is not something unusual when we study the motion of classical strings
inside deformations of the AdS space (e.g. see the case of the giant magnon inside the
beta-deformed AdSs x S° background [32]).

The equations for Vj(y) and W;(y) in terms of the new function u(y),?

are given in
appendix A, while the equation of motion for Z and one of the Virasoro constraints give
us the following two conditions

ArdZg — 2Agcp + ac® — d*KrZE =0 (2.5)

and

i~ 2d 722

A A 1 A
0¥ I8 (0‘2” + M“) — 0. (2.6)
C

2With respect to the notation of [20] for the S*, we have performed a change of variables: § = 27,
¥ = @1 + 2 and ¢ = p1 — 2. Details about the consistency of the truncation can be found in [20].

3The functions 0, (y) and u(y) are related as follows: u = cos® (%y)



The equation of motion for u(y) is coming from the other Virasoro constraint and it is

(u;)Z + W(u) =0 with W(u) = —2u (66 U2+54u 4 ,32) (2.7)

where the constants (9, 54 & B are listed in appendix A. It is possible to rewrite equa-
tion (2.7) in the following way

u = 2\/|ﬁ6|u (up — u) (u — up) with w, <u <u, (2.8)

where

_ 1] B B\ P2 I A e Bi\> B
3 ‘ﬁﬁ\/(ﬁJ B ] B Mﬂﬁﬁ) B

(2.9)
In the infinite size limit, where Bg < 0, 84 > 0 and 2 = 0, the bending point of the string
is at u,, = 0.

2.2 Boundary conditions

In this subsection we will impose boundary conditions to the equations of motion of the
previous subsection, in analogy to the infinite size case of [20].
Solving (2.5) with respect to Ar we obtain the following expression

1
Ap = —2<2A¢cu—a62+d2n23>. (2.10)
dZ;
Substituting (2.10) in (A.1) and imposing that V,; vanishes at the bending point u = w,
we obtain the following two solutions for the constant Ay

Ay = 5 @ 5 Erp+ cdwZi + d? /i,u} single spin giant magnon (2.11)
CK
ca . . .
Ay = o single spin single spike . (2.12)
1

Substituting the expression for Ap and Ay (from (2.10) and (2.11) respectively) in (2.9),
we express U, (of the giant magnon) in terms of the auxiliary quantity Wgay, as follows

aZ?
U = 1—Wanm with Won = — . (2.13)
K
The expression for u, (of the giant magnon) becomes
9 1— 02 AaMm ? . a d
up, = 1 —v"Wam |1+ v Woni T 20 Dot with AGM:M—W & v:E.
(2.14)
The expressions for Zy and x in terms of the auxiliary quantities Wy and Agy are
A2 1/2
Zy = \/E;“/WGM & k=w [WGM+2UAGM+ (1+07) W%;ﬁ . (2.15)



Notice, that the undeformed limit of the expressions above is for Agy — 0 (or equivalently
a — 0) and the infinite size limit is for Wgym — 1.

A similar analysis can be performed also for the single spin single spike case. Now the
starting point for the value of the constant Ay will be (2.12). The expression for w,, (of
the single spike) in terms of the auxiliary quantity Wgsg becomes

9 -1
U = 1 —Wes with Weg = — <w+ Hl;) . (2.16)
Xy, vz

The expression for u, (of the single spike) becomes

c
u, = 1—v?*Wsg with v = p (2.17)
and for later convenience we introduce the following auxiliary quantity Agg

Ags = H¥ (2.18)
«

The expressions for Zy and k in terms of the auxiliary quantities Wgg and Agg are

V2kaWsg A
Zo= YERAESSESS g o Y (2.19)
w\/l—UWSsA VWSSASS
Notice, that the undeformed limit of the expressions above is for Agg — UWl/SS (or equiva-

lently Zy — o0) and the infinite size limit is for Wgg — 1.

3 Single spin giant magnon

In this section we compute the conserved charges for the single spin giant magnon solution
and construct the dispersion relation. The detailed analysis for the calculation of the
dispersion relation in the infinite size limit appears in [20, 23|. In this section we focus on
the finite size corrections of the aforementioned relation.

The four conserved charges, that originate from the partial derivatives of the Polyakov

action and the subsequent integration, for the giant magnon solution become*

E 1 —v? w

2T Vip W4+2vA

57 1/2
W +20A+ (1+0%) ﬁ/] K(1 —¢) (3.1)

uM 1 —? A K
2T Vi, WH+20A

2 1 2
P W <W—|— +v A)

(1-¢) (3.2)

J 1

2T vy
Ap B UW+(1—|—U2) A

2 (W+204) /g,

o - K(1—¢) — i, B(1—¢) (3.3)

W 1'[( Up (1—6),1—e>—K(1—e)] (3.4)

1—up _1—up

4In order for the notation not to clutter, in this section W is Wy from (2.13) and A is Agwm from (2.14).



where € is the ratio between u,, and u, of the giant magnon solution

Um,
= 3.5
¢ up ( )

and K(1 —¢), E(1 —¢€) and II (— lﬁip (1 —€),1 —€) are the complete elliptic integrals of
the first, the second and the third kind. In appendix B we have gathered all the expressions
that define those integrals. The finite size corrections we will calculate are in powers of
the ratio ¢ when this ratio is small. For this reason we expand the parameters v and W in

powers of € as follows
v =12+ (v1+v2 loge)e & W = Wy+Wie (3.6)

and the presence of the logarithmic term is for the compensation of the logarithmic terms
that come from the expansion of the elliptic integrals. Using the definition for € from (3.5)
and the condition Ay = p, it is possible to determine all the coefficients of the above
expansion. The coefficients of the W expansion are simple expressions and do not depend
on the deformation parameter A

Wo=1 & Wi = —sin2§. (3.7)

On the contrary, the coefficients of the v expansion depend on the deformation parameter
and they have analytic but non illuminating expressions. We list them in appendix B and
more specifically in equations (B.4), (B.5) and (B.6). Here we present the expansion of the
coeflicients around the undeformed values, namely for small values of A. For the coefficient
vg the expansion becomes

s 2p
sin“ £
S = 1-—ZA+0(AY) (3.8)
cos § cos §
for the coefficient vy it is
1 2—6sin® 5 —8 cos? £ In2 3
=1+ A+ 0(A 3.9
1 sin? Lcos £ (1—41n2) cos 5(1—41n2) (&%) (8:9)
and for the coefficient vs it is
V2 b 3
—n——— = 1+4+2cos= A+ O(A”). 3.10
1 sin? Zcos 2 2 (A% (3.10)

Notice here, that the current calculation of finite size corrections in the dispersion relation
of the giant magnon only makes sense in the limit of small A. Increasing the value of the
deformation parameter, increases the ratio between u,, and u, and as a result cancels the
expansion in small €. The expansion is justified only for small values of A.

From the zeroth order term in the expansion of J, we obtain the expression of e
for J > T

¢ = 16exp H—Tsmg —2] [1 ~A Cosg]] (3.11)

where we have expanded the exponent in powers of A.



Using all those ingredients it is possible to expand the dispersion relation of the gi-
ant magnon. The zeroth order term provides the infinite size result while the first order
correction depends on the value of A. For small values of A the dispersion relation is

JE2 — 2 M2 - g Ly,
—1:—4mﬁgeTm% (3.12)

2T sing

J? J =52
*COS2§+2—cospsin£—4sin4B e Tsinh 7

2 A2
+ T2 T 2 2

For A = 0 we obtain the undeformed result of [30] (see also [31]) and in the infinite size
limit the r.h.s. of the finite size dispersion relation vanishes.

4 Single spin single spike

In this section, we compute the conserved charges for the single spin single spike solution
and construct the dispersion relation. The detailed analysis for the calculation of the
dispersion relation in the infinite size limit appears in [20, 23|. In this section we focus on
the finite size corrections of the aforementioned relation.

The four conserved charges for the single spike solution become®

;%: ;%—1ti?Kﬂ—d (4.1)
%:%(1—UWA) %—1mK(1—6) (42)
£;:VCi§iEu—@—eKu—@] (4.3)
%ﬁ:: iii?[v+1;:2ﬂfwﬂVAﬂIq1—@“iH<1—;y1—€>] (4.4)

where the constant W can be expressed as a function of € as follows

1—e¢
W= - 4.5

1—v2e¢ (45)

and e is again the ratio between u,, and u, (of the single spike). The next step is to expand

v in powers of € (see equation (3.6)), substitute it in the expression for J/T from (4.3) and

impose that J/T remains finite. In that way, we determine the value of the coefficients v,
v1 and v in terms of the finite quantity J/T

5 1J? 1—v3 11—}

=1 = - [1+4m2-24] =
U 17z U Tog +41n vy & v

o (4.6)

®In this section W is Wgs from (2.16) and A is Agg from (2.18).



From the e-expansion of Ay, we obtain the expression for € as a function of Ay and J/T

6—]6Mp—%Vi;j2A¢+jﬁ?<ij;;ja WMh\7:£. (4.7)

Using all those ingredients it is possible to expand the dispersion relation of the single

N

spike. The zeroth order term provides the infinite size result while the first order correction
depends on the value of A. Here contrary to the giant magnon result the expressions are
simple and we do not expand in powers of the deformation. The finite size dispersion
relation is

1
— |E—uM — Ay —g:élsin

2P P _Ap+p 2
2T

— tan —ex
2 P tanf 1+ A cos?

: (4.8)

where we have used the identification that was introduced in [17]

= —, 4,
arcsin <2 > 9 ( 9)

The undeformed result of [31] is realized for A = cos™! L (this is the same value of A for
which Zy — 00) and in the infinite size limit the r.h.s. of the finite size dispersion relation
vanishes.

5 Conclusions

In this paper we have elaborated on the dispersion relations of semi-classical string solutions
that live in the Schrédinger spacetime, that is conjectured to be the gravity dual of the null
dipole CFT. We have calculated the finite size corrections to the infinite size dispersion
relation of the single spin giant magnon and of the single spin single spike solutions. The
leading order corrections have the usual exponential form, characteristic for the finite size
corrections also in the original AdSs x S® background, dressed with expressions that depend
on the deformation parameter. In the limit of zero deformation, the solutions and their
finite size dispersion relations become those of the single spin giant magnon and single
spin single spike of the undeformed AdSs x S® background. Furthermore, in the infinite
size limit the correction term vanishes and we obtain the known infinite size dispersion
relations. Even if the solutions presented in this paper are single spin they live in an S°
subspace of the five-sphere. In order to have a dispersion relation that depends on the
deformation, we are forced to let the string move inside an S3, instead of the S? that the
string would move in the undeformed counterpart.

A number of important directions remains to be addressed. In the current paper we
have calculated the finite size corrections for the single spin giant magnon and single spike.
It would be interesting to generalize the computation for the dyonic giant magnon and
single spike. The string solutions and the corresponding infinite size dispersion relations
have been studied in [20]. In a very recent interesting approach, the classical exponential
corrections to the dispersion relations of the GKP string, of the giant magnon and of the



single spike have been expressed in terms of Lambert W-function [33-35]. In this way the
leading, sub-leading and next-to-sub-leading series of the classical exponential corrections
to the dispersion relations of the aforementioned string configurations have been calculated.
It would be very interesting to follow this path in the Schrodinger geometry in order to
expand the computation of the current paper beyond the leading order.
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A Useful expressions from the analysis of the classical string solutions

In this appendix we gather all the useful (but lengthy and not particularly illuminating)
expressions from the detailed analysis of the classical string solutions, that is presented in
section 2.

The derivative of the function Vj,(y) with respect to y in terms of u(y) is given by

2d K p
cw Zg

V,(y) =

) - u(y»] (A1)

while the derivative of the function ¥, (y) with respect to y is given by

1

C

24,
T uly 22
u(y) 0

(A.2)

The constants (2, 84 & B¢ from the equation of motion for the function u(y) in (2.7) are
given by the following expressions

1 2 2 2 2
s = Cng(C2—d2)2 — 24, (Czow-l-d/i,u) (c +d)—4A¢c dru (A.3)

2 2 2 2cd 9 9

e (¢ = &) [28 (Ar —dr) +ad) + T (cZ3w+2drp)

0
¢ w? 2dkp 442

T 0 & =l (Ad
% (2 — a2)? ( chg) < B+ Ba+ B (2 — d2)2 (A.4)

B Elliptic integrals and € expansion coefficients of the parameter v

In this appendix we gather all the useful expressions for the definitions of the elliptic inte-
grals (of the first, second and third type) that we used to express the conserved quantities,



both for the giant magnon and single spike solutions. These are

Up du 2

= K(1l—¢ B.1
e K0 (B.1)
/ N fdz — - 2 /iy B(l — €) (B.2)

/u:p (1 —u) u (up — u) (u — up) B (1—ui)\/@n(u1—u:p|1_6>- (B.3)

The expressions for the e expansion coefficients of the parameter v in the single spin giant
magnon solution of section 3 are

1 / p
- L _ 2 2
W= oA 1+4A Acosp—i—cos2 1 —4A2?sin 2] 1 (B.4)
1— v} 1+v3) A 1 —03) A?
vy = (1 —v§) [vo+ (1+v5) A 14 (1 —v5) (B.5)
4(1+2w4) 1424 fop— A (1-13) |
v v (1-4m2) 1+2A% (1+v5)] —A(B+4In2)+v5A (7T-121n2) (B.:6)

) (14+2v0A) [vo+ (1+v3) A
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