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1 Introduction

Cosmological models describing our universe in its present and future state, as well as

in its very early stages, exhibit solutions which are close to a pure de Sitter space-time.

Observations are nowadays bringing new and tight constraints, that narrow deviations from

these models. It is then an important and timely question to ask whether string theory, as

a candidate for a fundamental theory of nature, is able to generate a four-dimensional (4d)

de Sitter space-time, or slight deviations thereof. As for now, it appears difficult to get

from string theory such a de Sitter solution, in a setting where regimes and approximations
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are well-controlled [1]. This situation has even led to conjectures [2–10] in the context of

the swampland program, which to various extents, prevent quantum gravity from having

(quasi) de Sitter solutions. In string theory, the simplest framework, and thus one having

good chances to be well-controlled, is that of classical de Sitter solutions (see e.g. [11] for

a review). These are 10d solutions with a 4d de Sitter space-time times a 6d compact

manifold, in a classical regime of string theory, i.e. specific solutions of a 10d supergravity

theory. The simplicity of the setup, allowing only few ingredients, however comes at a

price: this option is plagued by many no-go theorems, in agreement with the swampland

conjectures, which forbid any de Sitter solution in a large part of parameter space. The

remaining part is the one of interest in this paper: we will find there new de Sitter solutions

of 10d type IIB supergravity, and we will discuss to what extent they correspond to classical

string backgrounds.

Obtaining classical de Sitter solutions in heterotic string has been excluded in [12–15].

In the literature, the main focus has thus been on type IIA/B 10d supergravities, with

Dp-branes and orientifold Op-planes [10, 11, 16–52]. While this framework is the one of

interest here, the question of stringy de Sitter solutions has also been tackled recently in

various interesting alternatives, including [53–66]. Most of the works on classical de Sitter

solutions in type II supergravities consider a certain ansatz and setup: the 6d internal space

is a group manifold M, the fluxes are constant and the Op/Dp sources are “smeared” (see

section 5 on this last point). In this framework, the no-go theorems on the existence of

solutions leave very little possibilities: with Op/Dp sources of single size p, having de Sitter

solutions requires p = 4, 5 or 6, as well as a non-zero F6−p Ramond-Ramond flux. Further

constraints of this kind were obtained, such as the need of M to be negatively curved

(see [11] for more). The only known 10d supergravity de Sitter solutions obeying this

ansatz certainly fall in this small part of parameter space: they were found in type IIA

in [21, 22, 28, 31, 43], with intersecting O6/D6 and F0 6= 0. Another, seemingly T-dual de

Sitter solution, was found in type IIB with O5/O7 sources [25].

This small part of parameter space where such de Sitter solutions are still allowed

was explored in [42], and a strong similarity was noticed between the cases of intersecting

O6/D6 and O5/D5. In particular, a simplification in the equations would occur if sources

share No = p − 5 common internal directions, for p ≥ 5. This number is also the one

allowing the source configuration to preserve some supersymmetry. While this is verified

for the known solutions of [31], with O6/D6 and No = 1, this observation motivates a search

for de Sitter solutions in type IIB with intersecting O5/D5 sources that do not overlap on

the 6d manifold, i.e. No = 0. This is the starting point of this paper, and we display our

source configuration in table 1. In addition, as explained in section 2.1.2, we cannot have

O5 along all 6d directions, together with constant fluxes: the orientifold projection would

then set F1 = 0, preventing us from finding de Sitter solutions.

We detail in section 2.1 the ansatz of our solutions and the set of equations and

constraints to solve. The numerical procedure used to find solutions is then presented in

section 2.2 and appendix B. It allows us to find 17 new de Sitter solutions of type IIB

supergravity, with intersecting O5/D5 on group manifolds, listed explicitly in appendix A,

as well as a new Minkowski solution given in section 2.4. Our method allows for a maximal
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Space dimensions 1 2 3 4 5 6 7 8 9

O5, D5 ⊗ ⊗ ⊗ ⊗ ⊗
(O5), D5 ⊗ ⊗ ⊗ ⊗ ⊗

(D5) ⊗ ⊗ ⊗ ⊗ ⊗

Table 1. O5/D5 source configuration considered in this paper: they are along the three extended

space dimensions, and some of the 6d ones. There is no overlap along the internal dimensions. Also,

we do not allow for O5 along all directions. Parentheses indicate that the presence of the source is

optional.

freedom in the structure constants encoding the group manifold. This has the drawback of

making the underlying 6d geometry a little obscure, and in particular, it does not guarantee

a priori the compactness of M. We discuss this issue in section 2.3 and appendix C, while

establishing the compactness in 4 solutions.

All known de Sitter solutions of 10d supergravities with intersecting Op/Dp were found

to be perturbatively unstable. Many stability studies were performed in the literature,

either formally or based on concrete examples [11, 19, 31, 32, 35, 36, 38, 39, 41, 43, 44]. In

section 3.1 and appendix D, we introduce the tools to study the stability of our solutions: a

4d effective theory capturing some scalar fluctuations around our 10d solutions. Building on

previous works [10, 11, 36, 39, 44], we consider a 4-field scalar potential V (ρ, τ, σ1, σ2) and

compute the scalar field kinetic terms. This material is sufficient to show in section 3.2 that

all our 17 de Sitter solutions are unstable, and we compute in table 2 the corresponding

ηV parameters. More comments and a useful lemma on the mass matrix are given in

section 3.3.

Despite their perturbative instability, it remains crucial to determine whether our de

Sitter supergravity solutions correspond as well to classical string backgrounds. Indeed, it

is for now unclear that any of the known de Sitter solutions of 10d supergravity achieves

this. This question has been recently investigated in various settings [11, 43, 45, 46, 50],

in relation to some swampland conjectures [5, 9] that forbid this possibility in asymptotic

limits in field space. We introduce in section 4.1 the requirements to be met by our

solutions, as well as 10d tools to test them in this regard. Part of these requirements

are then successfully verified by some of our solutions in section 4.2, where we highlight

differences with previous treatments of this matter in the literature. We also indicate

limitations in our procedure, related to the absence of a detailed knowledge of the 6d

geometry, as mentioned previously. The group manifolds of our solution 14 and 15 are

however well identified and understood, so a complete analysis for those will be provided

in a companion paper [67].

More context and references for each of the above topics are provided at the beginning

of sections 2, 3 and 4, and a summary of our results is given in section 5. Few open

questions and future directions are also discussed there.
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2 De Sitter solutions: existence

In this section, we report on the existence of new de Sitter solutions of 10d type IIB su-

pergravity with intersecting D5 or O5 sources. We first present the mathematical problem

to solve in section 2.1, namely the equations and constraints as well as our ansatz for a

solution. We then present in section 2.2 and appendix B the procedure used to find such

solutions numerically, together with an example of solution found, and further character-

istics; the full set of 17 solutions found is given in appendix A. We further discuss the

issue of compactness of the 6d group manifold, and we prove the compactness for 4 of our

solutions, in section 2.3 and appendix C. We finally present a new Minkowski solution and

make further comments in section 2.4.

2.1 Setting the stage

2.1.1 Solution ansatz

In this paper, we are interested in solutions of 10d type IIB supergravity with D5-branes

and orientifold O5-planes as sources. We follow supergravity conventions of [40], and those

of [42] regarding intersecting sources. We consider here a standard solution ansatz presented

in [11], to which we refer for more detail. The 10d space-time is split as a product of a 4d

de Sitter space-time, of metric gµν , and a 6d compact group manifold M, of metric gmn.

The 10d metric reads

ds210 = gµνdxµdxν + gmndymdyn . (2.1)

We do not include a warp factor, so the sources can be viewed as “smeared”, or rather,

some equations can be considered integrated. We come back in section 5 to the question

of a localized version of our solutions. The reason for our ansatz is that we will consider

intersecting sources, for which a localized description is notoriously difficult to obtain. For

the same reason, we take a constant dilaton eφ = gs. The 6d metric is expressed in a flat

basis in terms of 1-forms ea as follows

ds26 = gmndymdyn = δabe
aeb , ea = eamdym , dea = −1

2
fabce

b ∧ ec , (2.2)

where the last equation is the Maurer-Cartan equation. It defines fabc which will here be

taken constant, and thus correspond to structure constants of a Lie algebra. This algebra

underlies the group manifold M. Compactness of the latter requires faac = 0 (with sum),

a condition to be used from now on. The fabc can be related in full generality to spin

connection coefficients (see e.g. appendix A of [68]), so the 6d Ricci tensor in the flat basis

can be expressed as

2 Rcd = −f bacfabd − δbgδahfhgcfabd +
1

2
δahδbjδciδdgf

i
ajf

g
hb , (2.3)

where we specified to a compact group manifold. In the following, we will additionally

restrict ourselves to work in a basis of {ea} such that faac = 0 without sum, for convenience.

This is a priori a further restriction on the ansatz, even though many group manifolds admit

such a basis. Finally, in our ansatz, the fluxes are captured by the purely internal 3-form
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H and 1-, 3-, 5-forms Fq=1,3,5. We further restrict to constant fluxes, meaning that the

flux components in the flat basis are taken constant. With this ansatz, we will see that all

entries in the equations to be solved are constant.

In our ansatz, each source O5 or D5 is along the three extended space dimensions, and

is wrapping two internal flat directions. For each source, we then split the 1-forms into the

two sets {ea||} and {ea⊥}, taken globally distinct. Every flat index can then be specified

as being parallel or transverse to a given source. For instance, for any internal q-form Fq,

we denote by a label (n) its number of legs along a source, with 0 ≤ n ≤ 2, meaning

Fq =
1

q!
F (0)
q a1⊥...aq⊥

ea1⊥∧ . . .∧eaq⊥ +
1

(q − 1)!
F (1)
q a1||a2⊥...aq⊥

ea1||∧ea2⊥∧ . . .∧eaq⊥ + . . . , (2.4)

and each F
(n)
q a1...aq is here constant. Each source defines naturally parallel and transverse

volume forms, vol|| and vol⊥, in terms of the {ea||} and {ea⊥}. Few more useful conventions

on our forms include

ε1...6 = 1 , vol|| ∧ vol⊥ = vol6 = d6y
√
|g6| = e1 ∧ . . . ∧ e6, (2.5)

∗6 (ea1 ∧ . . . ∧ eaq) =
1

(6− q)!
δa1b1 . . . δaqbqεb1...bqcq+1...c6e

cq+1 ∧ . . . ∧ ec6 , ∗26Aq = (−1)qAq,

Aq ∧ ∗6Aq = vol6 |Aq|2 , |Aq|2 = Aq a1...aqAq b1...bqδ
a1b1 . . . δaqbq/q!,

and for p = 5 Op/Dp sources, one has ∗6vol⊥ = vol|| , ∗6vol|| = vol⊥.

In the following, we will consider intersecting sources, and follow notations of [42]. We

will have several sets I = 1, . . . , N of parallel O5/D5 that intersect each other. This means

that each set wraps a specific pair of internal dimensions. In other words, {{ea||I }, {ea⊥I }}
and {{ea||J }, {ea⊥J }} are different for I 6= J . The above indices || and ⊥ then get a further

label I, to specify the set they refer to and corresponding directions. The trace T10 of the

source energy momentum tensor TMN then gets decomposed into the contributions of each

set I: T10 =
∑

I T
I
10. Each of the T I10 is proportional to N I

s = N I
O5
−N I

D5
, the number of

sources in the set I, given by the difference of the number of O5 and D5; see (4.4). We

further restrict ourselves to the case where the sets do not overlap each other, and are

orthogonal in the flat basis.1 This choice leaves two possibilities: N = 2 or N = 3. The

former can be studied through the latter by setting T I=3
10 = 0, and we will do so. However,

whether O5 are present in each set or not makes a difference, and we will come back to

this point. Without loss of generality, we then place the N = 3 sets along internal flat

directions (12), (34), (56), i.e. defining the following volume forms

I = 1 : vol||1 = e1 ∧ e2 , vol⊥1 = e3 ∧ e4 ∧ e5 ∧ e6 ,
I = 2 : vol||2 = e3 ∧ e4 , vol⊥2 = e1 ∧ e2 ∧ e5 ∧ e6 ,
I = 3 : vol||3 = e5 ∧ e6 , vol⊥3 = e1 ∧ e2 ∧ e3 ∧ e4 .

(2.6)

As explained in the following, the set I = 1 will contain O5, the set I = 2 may contain

some as well, while the set I = 3 will not.

1In general, one would introduce overlap numbers δ
a||J
a||I

, indicating the number of common directions

between the two sets I, J [42]. We restrict to the case of homogeneous overlap where there is only one

number ∀I, J 6= I, δ
a||J
a||I

= No, and take No = 0. This matches the natural number No = p − 5 for

Op/Dp [42] as mentioned in the Introduction.
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2.1.2 Orientifold projection

Having O5 requires to impose the orientifold projection, leading to important restrictions.

For each O5, the only possible non-zero structure constants are the following

fa||b⊥c⊥ , f
a⊥

b⊥c|| , f
a||
b||c|| . (2.7)

The choice of working in a basis where faac = 0 without sum implies for an O5 that

fa||b||c|| = 0, leaving us with only two types of structure constants. The components (2.4)

of the fluxes are also limited by the projection to the following

O5 : F
(0)
1 , F

(1)
3 , F

(2)
5 , H(0), H(2) . (2.8)

In addition, F5 = F
(2)
5 implies ∗6F5 = (∗6F5)

(0), entering the equations. Finally, one has to

impose these restrictions for the O5 present in each source set I. This leads to an important

observation: if O5 are present in each of the N = 3 sets, then any internal direction is

parallel to one O5. This implies that F1 = F
(0)
1 , by definition a purely transverse form

with constant component, has to vanish. This flux is however mandatory to get de Sitter

solutions with intersecting p = 5 sources (see e.g. [11]). As mentioned in the Introduction,

we conclude that one cannot have N = 3 with O5 along each set. Rather, we will have one

set with only D5. We still need to have O5 [16] (in the case of intersecting sources, this is

reflected in T10 > 0, while the T I10 can be of different signs [42]). In short, our set I = 1

will always contain O5, the set I = 2 may contain some, and the set I = 3 does not. This

is implemented in the constraint T 3
10 ≤ 0.2

Even though we may only have O5 in one set along (12), we now impose for simplicity

the projection for possible O5 in sets I = 1 and I = 2. A first projection along (12) of

one O5 keeps 28 flux components and 36 structure constants. Out of those, the second one

along directions (34) only leaves the following variables

F1 : F1 5 , F1 6 ,

F3 : F3 315 , F3 316 , F3 325 , F3 326 , F3 415 , F3 416 , F3 425 , F3 426 ,

F5 : F5 34125 , F5 34126 ,

H : H125 , H126 , H345 , H346 , (2.9)

fa||2 b⊥2
c⊥2

: f315 , f316 , f325 , f326 , f415 , f416 , f425 , f426 ,

fa⊥2 b⊥2
c||2

: f153 , f163 , f154 , f164 , f253 , f263 , f254 , f264 ,

f513 , f523 , f514 , f524 , f613 , f623 , f614 , f624 ,

where the structure constants could equivalently be classified according to the set I = 1.

The second projection reduces the number of independent variables to 16 fluxes and 24

structure constants. With the 3 source contributions T I10, this adds up to 43 variables.

Those will enter the equations to be solved, that we now detail.

2Requiring a de Sitter solution through R4 > 0 implies that T10 > 0, as can be seen e.g. in (2.24),

giving T 1
10 > 0 or T 2

10 > 0. If T 1
10 < 0, one can still have O5 in the set I = 1, their contribution is simply

dominated by that of D5. We then do not need to impose more constraint. In practice, all our solutions

will have T 1
10 > 0.

– 6 –
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2.1.3 Equations

Given the ansatz for de Sitter solutions with O5/D5 (p = 5 in the following) presented in

section 2.1.1, the type IIB supergravity equations to solve, in 10d string frame, are the

following equations of motion (e.o.m.) and Bianchi identities (BI)

• the fluxes e.o.m.

d(∗6H)− g2s(F1 ∧ ∗6F3 + F3 ∧ ∗6F5) = 0 , (2.10)

d(∗6F1) +H ∧ ∗6F3 = 0 , (2.11)

d(∗6F3) +H ∧ ∗6F5 = 0 , (2.12)

d(∗6F5) = 0 , (2.13)

• the fluxes BI

dH = 0 , (2.14)

dF1 = 0 , (2.15)

dF3 −H ∧ F1 = −
∑
I

T I10
p+ 1

vol⊥I
, (2.16)

dF5 −H ∧ F3 = 0 , (2.17)

• the dilaton e.o.m.

2R4 + 2R6 + gs
T10
p+ 1

− |H|2 = 0 , (2.18)

• the 4d Einstein equation (equivalent to its trace)

4R4 = 2gs
T10
p+ 1

− 2|H|2 − g2s(2|F3|2 + 4|F5|2) , (2.19)

• the 6d (trace-reversed) Einstein equation

Rab =
g2s
2

(
F1 aF1 b+

1

2!
F3 acdF

cd
3 b +

1

2 · 4!
F5 acdefF

cdef
5 b − 1

2
∗6 F5 a ∗6 F5 b

)
+

1

4
HacdH

cd
b +

gs
2
Tab +

δab
16

(
−gsT10 − 2|H|2 − 2g2s |F3|2

)
, (2.20)

with Tab =
∑
I

δ
a||I
a δ

b||I
b δa||I b||I

T I10
p+ 1

, (2.21)

• the Riemann BI or Jacobi identity

fae[bf
e
cd] = 0 . (2.22)

On group manifolds, the Riemann BI is indeed equivalent to the Jacobi identity of the

algebra, see e.g. (3.5) of [69]. Finally, to guarantee the validity of the solution, one should

also check

– 7 –
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• Additional requirements:

de Sitter: R4 > 0 , orientifold projection(s) , compactness of M . (2.23)

The orientifold projection has been imposed in section 2.1.2 by selecting the non-zero flux

components and structure constants, up to the requirement T 3
10 ≤ 0, consistent with the

placement of the sources. In other words, using the variables (2.9) makes these projections

satisfied, and we will do so when looking for solutions. Ensuring the compactness of M
amounts to identify the underlying algebra and manifold, and verify the existence of a

lattice. This is a non-trivial task that we will discuss in detail in section 2.3. Once all these

equations and constraints are solved, one may discuss the consistency of such a supergravity

solution as a classical string background: we turn to this question in section 4.

The trace of the 6d Einstein equation combined with above equations leads to the

following useful expression [42]

R4 = gs
T10
p+ 1

− g2s
∑

q=1,3,5

|Fq|2 . (2.24)

It can be traded for one of the R4 expressions above. This equation provides the re-

quirement of having T10 > 0 [16] also for intersecting sources, i.e. the need here of some

orientifold.

With the ansatz of section 2.1.1, several simplifications occur in the above equations.

To start with, the e.o.m. for F1 (2.11) and the BI for F5 (2.17) are trivially satisfied: the

left-hand side are both 6-forms which on the one hand are odd under O5 projections, while

on the other hand, they are proportional to the form vol6 which is even, given the fluxes

are constants. So these forms vanish identically. We also get simplifications in the 6d

Einstein equations. Indeed, for any set I, one can decompose the flat indices into the basis

a||I , a⊥I
. The internal Einstein equation can be decomposed into parallel components a||b|| ,

transverse ones a⊥b⊥ , and “off-diagonal” ones a||b⊥ , for each set. For a set where there is

an O5, the projection imposes important constraints. This reasoning was presented at the

beginning of section 3.2 of [11] for parallel sources, and it still holds here with intersecting

ones, the key point being that the source term (2.21) remains here diagonal

For our sets (2.6) of O5/D5 : Tab = diag

(
T 1
10

p+ 1
,
T 1
10

p+ 1
,
T 2
10

p+ 1
,
T 2
10

p+ 1
,
T 3
10

p+ 1
,
T 3
10

p+ 1

)
,

(2.25)

with p = 5. The consequence is that the off-diagonal a||I b⊥I
Einstein equations for I with

an O5 projection are trivially satisfied. With an O5 along I = 1, 2, or equivalently using

the variables (2.9), we are left with only the diagonal blocks of the Einstein equations, i.e. 9

equations. In the next subsection, we turn to solving this whole set of equations.

Before doing so, let us briefly consider the impact on the above equations of including

anti-D5-branes (D̄5) to our sets of sources. We denote the contribution of D̄5 to the set I

by T̄ I10. As a convention, in a case without O5 and where the distribution of D5 is precisely

the same as that of D̄5, one has T̄ I10 = T I10. This is consistent with the fact that an D̄5 has

the same tension as a D5, and the source energy momentum tensor comes from the DBI

– 8 –
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action which carries the tension. We thus have T̄ I10 ≤ 0 with conventions of [40]. Among the

above equations, the dilaton and Einstein equations are then formally unchanged provided

T10 =
∑
I

T I10 + T̄ I10 , Tab =
∑
I

δ
a||I
a δ

b||I
b δa||I b||I

T I10 + T̄ I10
p+ 1

. (2.26)

On the contrary, an D̄5 has opposite charge with respect to a D5, which affects the WZ

source action, and thus modifies the Bianchi identity (2.16). It gets rewritten as

dF3 −H ∧ F1 = −
∑
I

T I10 − T̄ I10
p+ 1

vol⊥I
. (2.27)

Without considering D̄5 any further, we are now going to solve the equations.

2.2 De Sitter solutions

We are looking for de Sitter solutions of 10d type IIB supergravity with intersecting O5/D5

sources. We have presented a solution ansatz in section 2.1.1 and 2.1.2. The problem

then amounts to solving a large system of equations given in section 2.1.3, subject to the

constraints

R4 > 0 , T 3
10 ≤ 0 , (2.28)

where the last condition is related to the placement of O5 and their projection. Also, we

treatR4 as a combination of the variables that should have a definite sign. So the equations

depend on 43 variables, the flux components and structure constants of (2.9), allowed by the

orientifold projections, and the three source contributions T I10. In components, this reduces

to a set of 46 scalar equations. Although they are at most quadratic in the variables, this

remains a computationally demanding problem to solve.

To find solutions, we develop a numerical procedure presented in appendix B. It allows

us to find numerical solutions to a very good accuracy: the equations are typically satisfied

up to a typical maximal error ε ∼ 10−15. This should be compared to the value of R4 that

would always fall into the interval [10−3, 10−1] (making it clear that we are not finding a

Minkowski solution), or the value of the variables in the solutions, that are always in the

range [10−4, 10]. These values are reasonably large compared to the numerical error. The

accuracy could also be checked against a case of a no-go theorem, e.g. F1 = 0, for which

the error could not be made lower than ε ∼ 10−5.

When looking for solutions, we usually obtain a non-zero value for most of the variables.

A next step is then to look for simpler solutions, where several variables are either vanishing

or related to one another. It is especially important to reduce the number of non-zero

structure constants, to help identifying the underlying algebra and verify the compactness

of the internal space, as we will discuss in section 2.3. Starting with a general solution, we

then incrementally set the variables with smaller value to zero, while checking that one still

has a good solution. Further educated guesses allow us to eventually reduce considerably

the number of non-zero variables in our solutions.
With this procedure, we obtain 17 de Sitter solutions, that we list explicitly in ap-

pendix A. Let us give here one example: solution 16. The values of the variables have
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16 significant digits, but we round them here for the sake of readability. The non-zero
variables take the following values

f2
35 = −0.35847, f2

45 = 0.95728, f2
46 = −0.59118, f3

15 = 0.21904, f3
16 = 0.18899,

f4
15 = 0.11460, f6

14 = −0.045686, f3
25 = −f4

15, f1
45 = −f2

35, gsF1 5 = −0.38308,

gsF3 136 = 0.35228, gsF3 235 = 0.50883, gsF3 236 = 1.0454, F3 246 = F3 136,

H125 = 0.039232, H126 = −0.093956, H345 = −0.012542, H346 = 0.29391,

gsT
1
10 = 10, gsT

2
10 = 1.0654, gsT

3
10 = −0.28655. (2.29)

For this solution, we have R4 = 0.049845 and ε ∼ 10−16.

More generally, all our 17 solutions have a vanishing F5, and a non-zero T 3
10. In

addition, we managed to set to zero some structure constants in 10 solutions. The solution

14 is very special for several reasons, one being that it is the only solution with T 2
10 < 0.

With only T 1
10 > 0, this solution falls into the small subset described in section 4.4 of [11],

that is very constrained. We verify in particular for this solution 14 the constraint (4.30)

of [11] by computing the quantity

λ1 = −
δcdf b⊥1 a||1c⊥1

fa||1 b⊥1
d⊥1

1
2δ
abδcdδijf

i||1 a⊥1
c⊥1

f j||1 b⊥1
d⊥1

= 0.0020380 , (2.30)

which is indeed between 0 and 1 as required there.

Finally, as detailed in appendix B, there seems to be no solution with T 2
10 = 0 = T 3

10,

which would correspond to a solution with parallel sources. This is in agreement with

conjecture 1 of [11]. Also, there seems to be no solution with only 1 or 2 non-vanishing

structure constants. In comparison, the smallest number of non-zero fabc found is 7 (at

least in this basis), in solution 15.

As mentioned in section 2.1.3, for a given solution, we are left to check the compactness

of the 6d internal manifold M, through the existence of a lattice. We turn to this task in

the next section.

2.3 Compactness and basis choice

The solutions have been searched on 6d group manifolds, defined by a set of structure

constants corresponding to an underlying Lie algebra. To make sense of our solutions in a

compactification context, we need to identify each of these group manifolds, and verify that

they are compact. To that end, one should check that the group manifold admits a lattice,

i.e. a discrete subgroup that provides discrete identifications of the coordinates allowing to

make it compact. For instance, a circle can be viewed as the non-compact group (R,+)

divided by the lattice Z, the coordinate identification being then x ∼ x+ 1. The existence

of a lattice is not always guaranteed: see [29, 31] for reviews.

Identifying the group manifolds and verifying the existence of a lattice first requires

to identify the underlying algebra. Lie algebras, through Levi decomposition, split as a

semi-direct sum into semi-simple algebras and solvable algebras. The most general algebras

can be a mixture of both, see e.g. examples in [31], and we will restrict here ourselves for

simplicity to the solvable ones. For example, nilpotent algebras, or almost-abelian solvable

algebras, two subsets of solvable algebras, are known to admit lattices [29]. Lattices have
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been shown to exist or to be excluded for further instances of solvable algebras in e.g. [70].

So we should first identify the underlying algebra.

The difficulty in doing so is that algebras are defined up to isomorphisms, for instance

relabelings of directions or other change of basis. In our search for solutions, we have let the

structure constants be free variables (subject to the Jacobi identities). The directions were

from the start made appropriate to the sources, i.e. parallel or transverse to them. This is

reflected in the fact that our metric was simply δab in that basis. It is however possible to

pick another basis, less convenient with respect to sources directions, where the metric is

more involved, but where the algebra appears much simpler, in particular exhibiting less

structure constants. It is typically in such a basis that the (isomorphism class of) algebra

is given in classification tables, as those of [29] or [70]. In addition, for illustration, there

exist 164 indecomposable six-dimensional solvable algebras, including 24 nilpotent ones. It

is thus not a simple task to identify our algebras within the classified ones.

Fortunately, some properties are inherent to the algebra, i.e. basis independent. The

first one is whether it is solvable, and in that case, what is its nilradical: see [29] for

definitions. These are simple properties that can be determined given the set of non-zero

structure constants. We thus verify that our solutions 1 to 13 are not on solvable algebras.

One reason is certainly the high number of structure constants, which probably hints at a

mixture of semi-simple and solvable; we refrain from identifying those. Solutions 14 to 17

are on solvable, non-nilpotent algebras. To find them in the algebra classification of [70],

we further identify their nilradical. We give details on these identifications in appendix C,

and summarize here our results.

Solutions 16 and 17 admit as nilradical a five-dimensional, indecomposable, two-step

nilpotent algebra, identified as g5.3. This allows us to further identify the algebra for

these two solutions as being g−16.76 in table 27 of [70]. Indeed, we determine explicitly an

isomorphism for each algebra of these solutions to the algebra g−16.76. According to Theorem

8.3.4 of [70] and the following remark there, this algebra admits a lattice. We conclude that

the group manifold for these two solutions can be made compact. The identified algebra

remains complicated, as well as the details of its lattice, so the corresponding geometry of

the group manifold is not easy to describe.3 We will then not focus more on the geometry

of M for these two solutions.

We proceed similarly for solutions 14 and 15, which turn out to be much simpler. Their

nilradical is the four-dimensional abelian algebra, denoted n = 4g1. With changes of basis,

we can bring the algebras of both solutions to have only four structure constants. It is

then easy to see that both algebras are decomposable, into two three-dimensional solvable

algebras, each of nilradical 2g1. For solution 15, we identify the algebra as being g−13.4⊕g−13.4,

and for solution 14, we get g03.5 ⊕ g03.5. All of those admit lattices, so the group manifolds

of these two solutions can be made compact. This time, their geometry is simple, and we

will come back to them.

To conclude, for 4 out of 17 solutions, lattices could be found so the manifold can

be made compact. This ends the validity checks of these de Sitter solutions of type IIB

3It is in addition not guaranteed that one-forms in that basis are globally defined: see [29] for a discussion

on this. Having globally defined forms may require a further change of basis, not necessarily simple here.
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supergravity. For the remaining 13 solutions, we do not know for now. Let us emphasize

once more the role of the choice of basis: our choice provided the simple metric δab and

directions appropriate to the sources. The change of basis or isomorphisms considered

above and in appendix C reduce the number of structure constants, but also act on the

metric, generating off-diagonal terms (see (C.15)). The initial freedom in choosing the

structure constants and setting the sources directions eventually corresponds to a freedom

in a generic 6 × 6 metric gab; the simplicity gained in having fewer structure constants is

traded for the initial simplicity of the metric δab. From this perspective, it is thus unclear

whether one basis is simpler when searching for solutions.

2.4 Minkowski solutions

While looking for de Sitter solutions, we encountered accidentally few Minkowski solutions.
Most of them had a single set of sources, and fell into the class of [71], but one Minkowski
solution found had two intersecting sets, both containing O5. The list of known Minkowski
solutions with intersecting sources on group manifolds is short and given in section 5 of [42].
So the one found here is new, to the best of our knowledge. It is given as follows

f2
35 = −0.39104, f4

16 = 1.3741,

gsF1 5 = 1, gsF1 6 = −0.39696, gsF3 245 = −1.3897, gsF3 246 = −0.33164, (2.31)

H125 = 0.23785, H126 = −0.84691, H345 = −0.24101, H346 = −0.57067,

gsT
1
10 = 3.2199, gsT

2
10 = 15.972, gsT

3
10 = 0.

The 6d manifold is Nil3 ⊕Nil3, the direct sum of twice the three-dimensional nilmanifold

Nil3. One is along directions 235 (with fiber 2) and the other 416 (with fiber 4). The

sources wrap directions 12, and 34, thus going across these two subspaces. Given that this

solution is not listed in [42] and references therein, it is likely not to be supersymmetric; it

would be interesting to verify this point.

Studying possible relations between de Sitter and Minkowski solutions is interesting:

indeed, if the latter can be obtained as a limit of the former, this can have implications for

stability, as shown e.g. in theorems like those of [38, 41]. According to the list of known

solutions of section 5 in [42], no Minkowski solution with intersecting sources has been

found on the group manifolds identified in section 2.3 for our de Sitter solutions. There is

one possible exception of a fluxless, i.e. purely geometric solution on g03.5 ⊕ g03.5, since the

latter can be made Ricci flat: see section 2.4 of [72]. Apart from this, the above de Sitter

solutions thus appear so far isolated. However, the new Minkowski solution (2.31) could

correspond to a limit of the de Sitter solution 14 on g03.5⊕g03.5 and solution 15 on g−13.4⊕g−13.4.

Indeed, by setting to 0 two of the four structure constants in those de Sitter solutions, one

goes from these solvmanifolds to the nilmanifolds of the Minkowski solution. Taking that

limit can either be done by setting directly to 0 the number in the structure constant,

or sending to infinity a ratio of radii entering there (see section 4). These limits can

nevertheless not be viewed strictly speaking as smooth limits, since one eventually changes

the manifold topology. To be sure that the Minkowski solution (2.31) corresponds to such

limits of the de Sitter solutions found, one should further analyse the flux components as

well as the sources contributions, and we leave this to future work.
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3 De Sitter solutions: stability

In this section, we analyse the stability of the de Sitter solutions presented in section 2.2. As

mentioned in the Introduction, all known de Sitter solutions of type II supergravities with

intersecting Op/Dp sources have been found classically unstable. To show this, one should

study fluctuations around a given solution. This is typically done using a 4d effective theory

with scalar fields, and studying the scalar potential. The de Sitter solution is then a critical

point of this potential, and the instability corresponds to this point being a maximum

along one (tachyonic) field direction. The works [19, 38, 39, 41] have provided a better

understanding of what appears to be a systematic tachyon in these de Sitter solutions. The

focus was on the case where a de Sitter solution is close to a no-scale Minkowski one of

4d N = 1 supergravity. The tachyon would then align with the sgoldstino direction in the

Minkowski limit. In spite of these interesting results, and others detailed below, it remains

unclear whether a tachyon is indeed present in all possible classical de Sitter solutions (see

conjecture 2 of [11]). This motivates us to test the stability of the new de Sitter solutions

obtained in this paper.

For previously known de Sitter solutions, a full N = 1 4d supergravity theory and its

scalar potential have been used to analyse the stability. Given the solutions were found on

group manifolds with constant fluxes and smeared sources, the 4d gauged supergravity used

was most likely a consistent truncation of the 10d theory. Here, we do not have at hand

the analogous 4d supergravity that would correspond to our 10d setting with intersecting

O5/D5, even though it may exist in the literature. Instead, we will proceed with a more

drastic, though standard, truncation, where we only keep 4 scalar fields and freeze any

other. The analysis is simpler, the relation to 10d is straightforward, and if a tachyonic

mode is found within these few fields, it is sufficient to prove an instability; we come back

to this point in section 3.3.

The volume ρ and 4d dilaton τ are well-known 4d scalar fields first introduced in [17].

In [36], it was proposed to consider a third one, σ, distinguishing the internal volumes

parallel and transverse to the sources. In addition, the tachyon was proposed to lie among

these few scalars. This idea was successfully checked on some examples in [36, 39]. The

full scalar potential V (ρ, τ, σ) was worked-out for parallel sources in [44] and V (ρ, τ, σI)

for intersecting sources in [11]; see also [10] for an overview and a proper derivation of

the F5, F6 terms which are more subtle. This potential was further used in an attempt

to formally prove the presence of a systematic tachyon among these scalar fields [11, 44].

We now present in section 3.1 the 4-field potential V (ρ, τ, σ1, σ2) to be used, as well as the

kinetic terms for these scalars, that are computed in detail in appendix D. We use this

material in section 3.2 to show that all our 17 solutions are tachyonic. We compute the

corresponding parameter ηV and summarize the results in table 2. We finally comment in

section 3.3 on the impact on the mass matrix of including more fields in a theory, thanks

to a useful lemma.
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3.1 The 4d scalar potential and kinetic terms

Starting with 10d type IIA/B supergravity action with Op/Dp sources, one can consider

scalar fluctuations around background valued 10d fields, denoted with 0 when necessary.

The background will be for us the above de Sitter solutions, whose ansatz was given in

section 2.1.1. Introducing the scalar fluctuations in the 10d action, and integrating over

the 6d compact manifold, one obtains a 4d theory for these 4d scalars coupled to gravity.

Going to 4d Einstein frame, one eventually obtains the 4d action

S =

∫
d4x
√
|g4|

(
M2
p

2
R4 −

1

2
gij∂µφ

i∂µφj − V

)
, (3.1)

with the field space metric gij , a scalar potential V depending on the scalar fields φi, and

the 4d reduced Planck mass Mp given here by

M2
p =

1

κ210

∫
d6y
√
|g06| g

−2
s . (3.2)

The convention for Mp differs by a factor of 2 with respect to [44]. In the following and in

appendix D, we briefly discuss the derivation of the 4d action (3.1), i.e. that of the scalar

potential V and the kinetic terms. We refer to section 4 of [11] for details, or to [10] for an

overview, and only focus here on few points specific to our setting.

The scalar fields φi are ρ, τ, σI=1,2,3, obtained by fluctuating the 6d metric and the

10d dilaton. By definition, their background value is ρ = τ = σI = 1. Given our sets of

sources (2.6), the metric fluctuations read as follows on the 1-forms

e1,2 =
√
ρσA1 σ

B
2 σ

B
3 (e1,2)0 , e3,4 =

√
ρσB1 σ

A
2 σ

B
3 (e3,4)0 , e5,6 =

√
ρσB1 σ

B
2 σ

A
3 (e5,6)0 ,

(3.3)

where A = p − 9, B = p − 3, i.e. here p = 5 and A = −4, B = 2. As observed already

in [11, 36] for O6/D6, one of the fluctuations is in fact redundant. Indeed, one can set

σ3 = 1 and recover it thanks to the following rescaling,

ρ→ ρ σ2B+A
3 , σ1,2 → σ1,2 σ

−1
3 . (3.4)

From now on we then only consider the dependence on ρ, τ, σI=1,2.

To illustrate the derivation of the potential, let us consider the 6d Ricci scalar obtained

on general grounds from (2.3)

− 2R6 = f bac f
a
be δ

ec +
1

2
faef f

g
bc δ

eb δfc δga . (3.5)

Around their background value, the metric fluxes are expressed as

fabc = (fabc)
0 ρ−

1
2

∏
I

σ
1
2
(PI(a)−PI(b)−PI(c))

I , (3.6)

where PI(a) = A if a ∈ {a||I}, and PI(a) = B if a ∈ {a⊥I
}. For instance, one has

f135 = (f135)
0 ρ−

1
2 σ

A
2
−B

1 σ
−A

2
2 . (3.7)

– 14 –



J
H
E
P
0
8
(
2
0
2
0
)
0
7
6

From (3.6), we see that the 6d Ricci scalar (3.5) gets an overall factor of ρ−1 from its

fluctuation along the volume modulus. We then focus on its fluctuations along σ1, σ2,

denoted R6(σ1, σ2) for simplicity. It splits into 6 distinct pieces, as follows

R6(ρ, σ1, σ2) = ρ−1R6(σ1, σ2) (3.8)

= ρ−1
(
R1σ

−8
1 σ42 +R2σ

4
1σ
−8
2 +R3σ

4
1σ

4
2 +R4σ

−2
1 σ−22 +R5σ

4
1σ
−2
2 +R6σ

−2
1 σ42

)
,

with R1 = −1

2

∑(
fa||1 a||2a||3

)2
, R2 = −1

2

∑(
fa||2 a||3a||1

)2
,

R3 = −1

2

∑(
fa||3 a||1a||2

)2
, R4 = −

∑
fa||1 a||2a||3f

a||2 a||1a||3
,

R5 = −
∑

fa||2 a||3a||1f
a||3 a||2a||1

, R6 = −
∑

fa||3 a||1a||2f
a||1 a||3a||2

,

where we used the fabc entering our variables (2.9). In the above, each sum contains 8

terms, and we dropped the label 0 for readability. We give these terms explicitly in (D.17).

For the fluxes and sources contributions to the potential, we follow [11]. For the fluxes

in particular, the powers of σI are determined by the number n of legs parallel to a given

set of sources. For RR fluxes, there is only one n for all sets, so the σI enter with the same

power. For H, the two components H(0), H(2) get exchanged under the two sets I = 1, 2

as one can see in our variables (2.9). We obtain

|Fq|2 = ρ−q(σ1σ2)
−nA−(q−n)B|F 0

q |2 (with Fq = F (n)
q ) , (3.9)

|H|2 = ρ−3σ−2A−B2 σ−3B1 (|H(0)1 |2)0 + ρ−3σ−2A−B1 σ−3B2 (|H(2)1 |2)0 . (3.10)

We eventually obtain the following 4-field scalar potential (using the simplified notation

where we drop integrals and the label 0)

2

M2
p

V (ρ, τ, σ1, σ2) = −τ−2ρ−1R6(σ1, σ2) (3.11)

+
1

2
τ−2ρ−3

(
σ−2A−B2 σ−3B1 |H(0)1 |2 + σ−2A−B1 σ−3B2 |H(2)1 |2

)
− gs τ−3 ρ−

1
2

(
σA1 σ

B
2

T 1
10

6
+ σB1 σ

A
2

T 2
10

6
+ σB1 σ

B
2

T 3
10

6

)
+

1

2
g2s τ

−4 (ρ2(σ1σ2)−B|F1|2 + (σ1σ2)
−A−2B|F3|2

)
,

where we set from now on F5 = 0 for simplicity (see [10] for the derivation of this term);

this flux vanishes in all our solutions. Setting to their background value σ1 = σ2 = 1, one

recovers the standard 2-field potential V (ρ, τ), first derived in IIA in [17]. We will also

make use of it.
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We can now compute the coefficients for each of our 17 de Sitter solutions. For instance,

for solution 16 given as an example in (2.29), the potential reads

2

M2
p

V (ρ, τ, σ1, σ2) = τ−2ρ−1
(
0.054981σ41σ

−8
2 + 0.082159σ−21 σ−22 (3.12)

+ 0.76145σ42σ
−8
1 + 0.0010436σ41σ

4
2

)
+

1

2
τ−2ρ−3

(
0.010366σ61σ

−6
2 + 0.086538σ62σ

−6
1

)
− 1

6
τ−3ρ−

1
2
(
1.0654σ21σ

−4
2 + 10σ22σ

−4
1 − 0.28655σ21σ

2
2

)
+

1

2
τ−4

(
1.5999 + 0.14675 ρ2σ−21 σ−22

)
.

We check, for each of our 17 solutions, that the first derivatives ∂φiV all vanish at ρ =

τ = σ1 = σ2 = 1, and that we precisely recover the value R4 = 4
M2

p
V (1, 1, 1, 1). These

consistency checks between 10d and 4d were shown formally in [11].

For completeness, let us consider additional contributions T̄ I10 from D̄5, mentioned at

the end of section 2.1.3. From the derivation of the potential, one can see that only the

DBI term of the source action contributes, and this term has the same sign as for D5.

Therefore, in the potential, one should simply make the replacement

T I10 → T I10 + T̄ I10 . (3.13)

We now do not consider D̄5 any further, but we will come back to them in section 5.

The above potential is the one entering (3.1). We now rewrite this 4d action with its

kinetic terms, computed on general grounds in appendix D

S =

∫
d4x
√
|g4|

(
M2
p

2
R4 − V (ρ, τ, σ1, σ2) (3.14)

−
M2
p

2

(
3

2ρ2
(∂ρ)2 +

2

τ2
(∂τ)2 + 12

(
1

σ21
(∂σ1)

2 +
1

σ22
(∂σ2)

2 − 1

σ1σ2
∂µσ1∂

µσ2

)))

=

∫
d4x
√
|g4|

(
M2
p

2
R4 − V (ρ, τ, σ1, σ2) (3.15)

−
M2
p

2

(
3

2
(∂ ln ρ)2 + 2(∂ ln τ)2 + 9

(
∂ ln

σ1
σ2

)2

+ 3 (∂ ln(σ1σ2))
2

))
.

From (3.15) we can read-off canonically normalized scalar fields. Since the potential is

written in terms of σ1,2, we will rather use (3.14) at the cost of having a non-diagonal field
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space metric gij . It is given by

gij = M2
p



3

2ρ2
0 0 0

0
2

τ2
0 0

0 0
12

σ21
− 6

σ1σ2

0 0 − 6

σ1σ2

12

σ22


. (3.16)

We now have all the tools to study the stability of our de Sitter solutions.

3.2 Stability analysis

Each of our 17 de Sitter solutions matches in 4d an extremum of the potential V (3.11)

along the four fields φi ∈ {ρ, τ, σ1, σ2}, at φi=1,...,4 = 1. To study the stability of such a

solution, we consider the mass matrix gik∇k∂jV = gikHkj , with ∂i ≡ ∂/∂φi and the field

space metric gij given in (3.16). At an extremum, the Hessian Hjk is computed as follows

Hjk ≡ ∇j∂kV = ∂j∂kV − Γijk�
��*

0
∂iV = ∂j∂kV . (3.17)

We then compute the mass matrix and its eigenvalues, which correspond to masses2. If

one eigenvalue is negative, we have a tachyon. Note that since gik is positive definite, the

eigenvalues of the Hessian have the same signs, so one can also read off the presence of a

tachyon from Hjk. By definition, the latter corresponds to a maximum of the potential in

one direction. We further obtain the eigenvector associated to the negative eigenvalue of

the mass matrix, to deduce the tachyonic direction in field space (at the extremum): we

denote it ~v, specified along (ρ, τ, σ1, σ2).

The result is that for each of our 17 de Sitter solutions, there is always one unstable

direction, corresponding to a tachyon. For 11 solutions, the tachyon is found already

within the (ρ, τ)-subspace, meaning that studying the 2-field potential V (ρ, τ) is sufficient

(see table 2). For the 6 other solutions, one needs the four fields. This is consistent with

the proposal of [36], that the tachyon should systematically lie in this 4-field space, and

sometimes already among the two fields (ρ, τ).

As an example, for solution 16 given in (2.29), the eigenvalues of the mass matrix4 and

the tachyonic eigenvector are given by

masses2 = (1.6235, 0.26174, 0.12567, −0.035395) , (3.18)

~v = (0.48957, 0.83657, 0.20509, 0.13567) .

We observe that the contribution of each field direction to ~v is similar for every solution

(see appendix A), with in particular most of the tachyon carried by the τ direction. We

illustrate this instability in figure 1 by displaying the 4-field potential along the tachyonic

direction at the extremum, and along another, stabilized, direction.

4One verifies that Mp drops out of the mass matrix. The dimension of the masses is then given by that

of the coefficients in the scalar potential. As we will see in section 4, the unit for a mass is then 1/(2πls).
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Figure 1. Potential 2
M2

p
V (ρ, τ, σ1, σ2) around its de Sitter extremum corresponding to solution

16. The potential is displayed along a fluctuation s around σ1 = 1, and another one t along the

tachyonic direction (1, 1, 1, 1) + t~v, where ~v is the eigenvector associated to the negative eigenvalue

of the mass matrix, at the extremum. At s = t = 0, we verify the positive maximum along one

direction, and minimum along the other one.

Solution 1 2 3 4 5 6 7 8 9

−ηV 2-field 0.46553 1.0463 1.1819 1.0778 1.2315 0.95707 1.0209 0.57612 0.96718

−ηV 4-field 2.8544 2.7030 2.9334 2.8966 2.9703 2.9146 2.5101 2.7790 2.2494

Solution 10 11 12 13 14 15 16 17

−ηV 2-field · 1.1916 · · · 0.17914 · ·
−ηV 4-field 2.0908 2.9354 2.7548 2.9518 1.7067 2.9336 2.8404 2.8748

Table 2. Values of −ηV obtained for each of our 17 de Sitter solutions, either with the 2-field

potential V (ρ, τ) or the 4-field one V (ρ, τ, σ1, σ2). A dot · means that ηV (ρ, τ) > 0.

To characterize more precisely the observed instability, we compute the parameter ηV

ηV =
M2
p

V
×minimal eigenvalue of gij∇j∂kV , (3.19)

at the extremum, where φi = 1. The values of ηV obtained for the 17 solutions are

listed in table 2, both for the 2-field and 4-field potential. For the latter, we find that

ηV ∈ [−2.9703,−1.7067], with an average value of −2.7000 and a median value of −2.8544.

This is in good agreement the refined de Sitter swampland conjecture of [5]: the latter

requires ηV ≤ −c′ ∼ −O(1).

We can compare these values of ηV to those obtained for type IIA solutions (see e.g. [7]

and [21, 22]): most of the latter are below −3.6, with the exception of one at −2.5. Similarly,

for the only solution found in IIB so far [25], the value obtained is −3.1. To compute these

older values of ηV , all scalar fields of a 4d effective action were used, while here we only
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considered a subset of 2 or 4 fields. For this reason, the values in table 2 should actually

be considered as an upper bound on ηV , and this may explain the small difference with

the older values. We discuss this point in greater detail in the next subsection.

3.3 A mathematical property of the mass matrix

Let us introduce the following relevant lemma, reminiscent of the Sylvester criterion

(see [32]).

Lemma. Let M be a square symmetric matrix of finite size, and A an upper left square

block of M . Let µ1 be the minimal eigenvalue of M and α any eigenvalue of A. Then one

has µ1 ≤ α.

Proof. Let us denote by n the size n × n of M . Because M is symmetric, it can be

diagonalised to D with orthogonal matrices O, such that M = ODO>. Let µi=1,...,n be the

eigenvalues of M , i.e. the diagonal entries of D. Up to relabelling, we call µ1 the smallest,

i.e. µ1 ≤ µi. Let us now consider any n-vector X of components xi and X ′ = O>X of

components x′i. One has
∑

i(x
i)2 = ||X||2 = ||X ′||2. We further introduce the quadratic

form

q(X) = X>MX = X ′
>
DX ′ =

∑
i

µi(x
′i)2 ≥

∑
i

µ1(x
′i)2 = µ1||X||2 . (3.20)

We now turn to A which is also symmetric. We then consider an eigenvector Y of A (thus

of non-zero norm), with eigenvalue α: AY = αY . We complete Y to a n-vector Ỹ by

adding 0’s as components. We then compute q(Ỹ ) = Y >AY = α||Y ||2 = α||Ỹ ||2. Using

the inequality (3.20), we deduce µ1 ≤ α.

This lemma has important consequences regarding the mass matrix and ηV . From it,

we conclude that adding more fields to a theory, i.e. adding lines and columns to the mass

matrix, can only lower its minimal eigenvalue. It implies that ηV will be lowered when

including more fields. It also implies that a tachyon cannot be removed by introducing

more fields, rather the lowest tachyonic squared mass would only get lowered. This is

conceptually important since we consider most of the time theories that are truncations to

a finite set of fields.

As mentioned above, this could explain why our values for ηV are higher than those

obtained in previously known solutions. It is also fair to say that the settings are different:

previous solutions were in type IIA, or type IIB with different sources. There is thus a priori

no reason to recover the same values. Another illustration of this idea is the comparison

between the ηV value computed with the 2-field potential, and that with the 4-field one.

For the 2-field cases having a tachyon, we obtain ηV ∈ [−1.2315,−0.17914], with an average

value of −0.89956 and median value of −1.0209. This is significantly higher than the ηV
obtained with all four fields, as can be seen in table 2. Once again, ηV is lowered with

more fields.

Finally, let us consider the potential along each of the fields (ρ, τ, σ1, σ2) close to the

de Sitter solution. For instance, we display it in figure 2 for solution 16 given in (2.29).
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Figure 2. Slices of the potential 2
M2

p
V (ρ, τ, σ1, σ2) along each of the four fields, close to the de

Sitter extremum at φi = 1.

For each of our solutions, we observe that ∂2
φi
V > 0 at the extremum, for each of the

four fields. We verify that every diagonal entry of the mass matrix at the extremum is

also positive, for each solution. This is reminiscent of the results of section 3.3 of [44] on

stability (see however a note on those in [10]). It was shown there that ∂2ρ V > 0 for such

classical de Sitter solutions, irrespectively of whether sources are parallel or intersecting.

We deduce from this observation that the tachyon, at least in our solutions, always stems

from the off-diagonal entries of the Hessian or of the mass matrix. This is consistent with

the above lemma. If true in general, this observation indicates that using only diagonal

entries to prove the presence of a tachyon is then not appropriate. Such a method was

developed in [11, 44], and the present observation may explain why this attempt failed.

This discussion illustrates also the fact that one should be careful with apparent ex-

trema of the scalar potential that appear in slices of field space. For instance, we noticed

for all our solutions that the potential displayed along the two fields (ρ, τ) or some other

subset of the 4-field directions (ρ, τ, σ1, σ2) exhibited, away from our 10d solution, other

apparent critical points. Some of these even looked like de Sitter minima. However, such

points, which appeared critical along some field directions, were not found to be extrema

in all four field directions. Finding a de Sitter solution thus remains a non-trivial result.
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4 The classical regime of string theory

The main motivation for having de Sitter solutions of 10d type II supergravities is that

they may correspond to classical and perturbative backgrounds of string theory. This

would hold if some conditions are satisfied. For instance, one usually requires a small gs
and a large internal 6d volume, to neglect string loop and α′ corrections; we detail these

requirements more precisely in section 4.1. Recent works [11, 43, 45, 46, 50] have argued, in

various settings, in favor of an absence of de Sitter solutions in asymptotic regimes of string

theory, e.g. in a parametrically controlled classical perturbative regime corresponding to

10d supergravity. This is in line with swampland conjectures [5, 9], that generalise the

Dine-Seiberg argument [73]. In other words, as summarized in conjecture 3 of [11], even

though one may find de Sitter solutions of 10d supergravities, those may not satisfy the

conditions that would establish them as classical string backgrounds. Loopholes to such

arguments have however been pointed-out in [11, 45, 74]. In particular, an important

distinction to be made is the difference between some scalar fields having large but finite

values, versus the asymptotic behaviour and infinite distance limit in field space. The

former may actually be more relevant for physics: an obvious example is the size of the

internal dimensions that has to be much larger than the string length, but small when

compared to observational bounds. Such a “grey zone” in field space could accommodate

interesting classical de Sitter solutions, that may not survive in an asymptotic limit.

The aim of this section is to test our de Sitter solutions in that respect. We introduce

the necessary tools in section 4.1 and present more precisely the conditions to be verified.

We use a 10d language as in [11], rather than performing a more common 4d study of

the volume and dilaton; we will see that this allows more precise checks, and discuss the

relation between the two. We start testing the validity of our solutions in the classical

regime in section 4.2. A certain subset of the requirements are successfully checked on

4 solutions, going beyond what has been done previously in the literature and shedding

light on the above discussion. However, a complete check is only possible with a detailed

knowledge of the 6d geometry. Indeed, a proper flux quantization, the count of the number

of orientifolds, and the lattice quantization conditions (involving the fabc) all require to

know precisely the 6d group manifold. As explained in section 2.3, it is only the case for

solutions 14 and 15. Their complete study is delayed to a companion paper [67].

4.1 Requirements and setting

The first requirement for a classical string background is gs � 1, to neglect quantum cor-

rections. In addition, to avoid α′ corrections, all lengths should be bigger than the string

length ls. If our 6d manifold M is made of 6 circles of radius ra=1,...,6, we should require

ra � ls. Two stringy requirements have in addition to be fulfilled, for the supergravity

quantities to match string objects. First, the number of orientifolds N I
Op

in each set I is

determined by the geometry: it corresponds to the number of fixed points under the invo-

lution in the transverse directions, and is thus finite. Secondly, the harmonic components

of fluxes, i.e. the fluxes through cycles in homology, have to be quantized: they are given

in terms of integers denoted below Nq a1...aq . Finally, a requirement is inherent to having a
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compact group manifold (see section 2.3): the lattice imposes quantization conditions on

the structure constants fabc. We summarize these five requirements as follows

gs � 1 , ra � ls , N I
Op

finite , Nq a1...aq ∈ Z , fabc quantized . (4.1)

Several of these requirements need a detailed knowledge of the group manifold geom-

etry, namely an explicit expression of globally defined ea, with the lattice action on local

coordinates. It is obvious for the quantization of fabc, to start with. Determining the

fixed points of the orientifold involution, and thus the value of N I
Op

, also depends on this

knowledge. Finally, determining the harmonic components of fluxes depends in practice

on knowing explicitly the cycles and corresponding ea; the condition on Nq a1...aq is then

affected. The mere values of the structure constants fabc, known for each solution, is not

straightforwardly giving us the knowledge of the geometry, as explained in section 2.3 and

appendix C. In particular, changes of basis are typically needed to reach appropriate ea.

For this reason, we will only perform in the following some checks among the list (4.1),

giving a first illustration of such an analysis.

Let us define the quantities entering the requirements (4.1), and relate them to the

variables in our 10d solutions. We follow notations of section 5 of [11]. We first introduce

“radii” formally as follows

2πra =

∫
ea . (4.2)

These one-form integrals are strictly speaking not necessarily well-defined, and this should

rather be viewed as a normalization convention. These integrals depend on the details of

the geometry, and we can thus not compute them generically. In practice, we will only need

certain combinations of one-forms entering e.g. appropriate flux components. So we only

assume for now that the relevant one-form combinations provide well-defined integrals,

compatible with the convention (4.2). The flux quantization condition along directions

ea1 ∧ . . . ∧ eaq is then written as

1

(2πls)q−1

∫
a1...aq

Fq = Nq a1...aq ∈ Z ⇒ Fq a1...aq =
Nq a1...aq

2πls

lqs
ra1 . . . raq

, (4.3)

valid also for the H-flux. In absence of more knowledge on the geometry, we ask for a

quantization of all flux components, which is actually overconstraining since some fluxes

might not be in cohomology. We also trade the integer condition for simply having numbers

bigger than 1: indeed, since a change of basis could be needed, having precise integers does

not make sense at this stage.

We turn to the sources. Using the definition of T I10 [40] and the smeared ansatz, we

obtain the general expression

T I10
p+ 1

= (2p−5N I
Op
−N I

Dp
)
(2πls)

7−p
√
g⊥I

⇒ Here :
T I10
6

=
N I
s

(2πls)2
l4s

ra1⊥I . . . ra4⊥I
, (4.4)

with the number of sources given by N I
s = N I

O5
−N I

D5
. The fixed value of N I

O5
thus gives

an upper bound to N I
s . On our group manifolds, this number is likely to be comparable

to that on a torus, which is N I
O5

= 16 for an O5. In the following, we first restrict to
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N I
s ≤ 100, before turning to 16. Here again, we trade the integer condition for numbers

bigger than 1 (in absolute value).

Finally, even if not addressed here, let us mention the structure constants. The scaling

of fabc with the radii is clear from the Maurer-Cartan equations, so we can introduce the

numbers Nabc as follows

fabc =
ra

rbrc
Nabc

2π
=
Nabc

2πls

rals
rbrc

. (4.5)

The quantization of the structure constants depends on the lattice of the compact manifold.

It translates, in each case, into some discretization conditions on the Nabc.

From these definitions, we see that the dimension of these quantities is given by powers

of the fundamental length 2πls. We can consistently consider adimensional quantities, by

multiplying them by the appropriate power of 2πls. Equivalently, one verifies that all

e.o.m. and BI are invariant under the following scaling

Fq new = 2πls Fq old , f
a
bc new = 2πls f

a
bc old , T

I
10 new = (2πls)

2 T I10 old . (4.6)

The new adimensional quantities, with appropriate gs factors as in (4.8), are the ones to

be identified with the numerical values obtained in our solutions. Furthermore, we express

from now on the radii in units of ls, i.e. redefine them as

ranew =
raold
ls

, (4.7)

such that the physical requirement becomes ra � 1. We now summarize the problem to be

solved: given our de Sitter solutions, one should find a set of variables {gs, ra, Nq a1...aq , N
I
s },

defined as follows

gsFq a1...aq =
gsNq a1...aq

ra1 . . . raq
, gsT

I
10 =

6gsN
I
s

ra1⊥I . . . ra4⊥I
, (4.8)

such that

0 < gs ≤ 10−1 , ra ≥ 10 , N I
s ≤ 100 , |N I

s | ≥ 1 , |Nq a1...aq | ≥ 1 . (4.9)

Having a hierarchy of order 10 is a minimal requirement, to test the possibility of reaching

a classical regime. Physically, stronger constraints would be preferred, in particular on the

radii. At this stage, it is unclear how much room we have for this, but we will come back

to it in [67]. We now check the requirements (4.9) on our solutions.

4.2 Testing the solutions

Overall λ-rescaling. To test our solutions against the constraints (4.9), we consider as

a warmup the quantity gsT
1
10. In many of our solutions (see appendix A), this quantity

was set equal to 10, providing us with a scale when looking for solutions as explained in

appendix B. We now obtain the following equation to solve

10 = gsT
1
10 = 6× gs

1

r3r4r5r6
N1
s . (4.10)
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Asking for gs ≤ 10−1, ra ≥ 10, we get N1
s > 105, which is too big: we cannot satisfy the

requirements (4.9).

One could however consider different solutions, obtained by transforming ours using

a symmetry of the e.o.m. and BI. A typical example of such a transformation is a scaling

symmetry. The first one to consider is an overall rescaling, which diminishes every quantity

in the solution. It corresponds to an overall scaling of the potential, which does not

change its critical points. So we consider a solution tilde, obtained by a scaling with a real

parameter λ > 0

F̃q =
1

λ
Fq , f̃abc =

1

λ
fabc , T̃ I10 =

1

λ2
T I10 . (4.11)

This leaves all equations of section 2.1.3 and the constraints (2.28) invariant, so we obtain

again a de Sitter solution. Coming back to our problem, we now satisfy the require-

ments (4.9) on the quantity gsT̃
1
10 if we pick λ > 102. From now on, we always include this

λ-rescaling.

Equal radii ra = r. To test our (rescaled) solutions against the constraints (4.9), we first

consider for simplicity all radii to be equal to one value r. Satisfying the requirements (4.9)

in that case should correspond to the 4d analysis involving only the dilaton and volume. In

the literature, several such 4d studies concluded negatively. Here, we verify as well on our

17 solutions that upon this simplification, it is very difficult to satisfy the constraints (4.9):

it is only possible for 3 solutions, which remain far from having the admissible N I
s ≤ 16.

To show this, a simple test can be performed. As identified in [11], the two following

ratios are critical in these discussions

g2sF
2
1 a

gsT 1
10

,
H2
a1a2a3

gsT 1
10

, (4.12)

where we take the smallest of the F1 and H flux components. Interestingly, these ratios

are independent of the scaling λ. With all radii equal to r, one obtains

N2
1 a =

g2sF
2
1 a

gsT 1
10

6N1
s

gsr2
, N2

H a1a2a3 =
H2
a1a2a3

gsT 1
10

6N1
s gsr

2 , (4.13)

and we take here T 1
10 > 0. Requiring that both flux integers are greater than 1, we obtain

the following inequalities

N1
s ≥

gsT
1
10

6g2sF
2
1 a

gsr
2 , N1

s ≥
gsT

1
10

6H2
a1a2a3

1

gsr2
⇒ N1

s ≥
gsT

1
10

6gs|F1 aHa1a2a3 |
. (4.14)

Using the last inequality, it is straightforward to show that all 17 solutions, except 3, must

have N1
s > 100, thus violating the constraints (4.9). These constraints can be satisfied for

the remaining 3 solutions: we then obtain the following values

Solution 10: N1
s = 44.923 , Solution 12: N1

s = 92.591 , Solution 17: N1
s = 98.719 ,

(4.15)

where we display the biggest among N I=1,2
s . These values remain far from N I

s ≤ 16, so we

conclude negatively in this simple analysis.

– 24 –



J
H
E
P
0
8
(
2
0
2
0
)
0
7
6

Different radii values ra. Crucially, the situation changes when considering different

radii ra. Allowing them to take different values, e.g. having internal hierarchies among

them, certainly gives more room to satisfy the constraints (4.9). The need for such internal

hierarchies was already advocated in [11]. We now obtain that 8 of our 17 (rescaled)

solutions verify the requirements (4.9) with different radii values. In addition, 4 solutions

admit N I
s ≤ 16, as detailed below. This point is then important, and doing such a refined

analysis in 4d may also lead to different conclusions than previously obtained.

To start with, the following solutions satisfy the constraints (4.9)

Solution 3: N2
s = 92.542 , Solution 5: N2

s = 93.546 , Solution 11: N2
s = 91.922 ,

(4.16)

Solution 14: N1
s = 30.269 , (4.17)

where we display the highest value of N I=1,2
s . The solution 14 is special, as discussed

around (2.30): it is the only one with T 2
10 < 0, leading to the automatically satisfied

constraint N2
s < 0 < 100, as is already the case for all solutions with N3

s . Then, 4 other

solutions satisfy the constraints (4.9), now with N I
s ≤ 16. The corresponding parameters

are given as follows

Solution 10 (with λ = 1222.4) : (4.18)

N1
s = 7.6063 , N2

s = 7.6573 , N3
s = −1.0986 , gs = 0.0079125 ,

r1 = 19.707 , r2 = 24.897 , r3 = 20.599 , r4 = 23.661 , r5 = 10.487 ,

r6 = 10.557 ,

N1 5 = 1.0843 , N1 6 = 1.0915 , NH 125 = 3.9469 , NH 126 = −1.2691 , NH 345 = 2.7847 ,

NH 346 = −3.0850 , N3 135 = −59.411 , N3 136 = −330.36 , N3 145 = 240.55 ,

N3 146 = −113.37 , N3 235 = −256.59 , N3 236 = 23.890 , N3 245 = 182.70 , N3 246 = −183.91 .

Solution 12 (with λ = 3252.5) : (4.19)

N1
s = 3.8129 , N2

s = 3.7502 , N3
s = −1.1896 , gs = 0.0049920 ,

r1 = 21.330 , r2 = 139.02 , r3 = 48.433 , r4 = 18.181 , r5 = 17.040 ,

r6 = 10.420 ,

N1 5 = 1.0495 , NH 125 = −6.5720 , NH 126 = −2.5142 , NH 345 = 1.1946 , NH 346 = −2.2290 ,

N3 135 = 535.90 , N3 136 = −197.23 , N3 146 = −20.407 , N3 235 = 46.069 ,

N3 236 = −1056.5 , N3 245 = 581.73 , N3 246 = 591.19 .

Solution 16 (with λ = 2240.8) : (4.20)

N1
s = 15.679 , N2

s = 14.954 , N3
s = −1.1373 , gs = 0.043724 ,

r1 = 226.94 , r2 = 30.146 , r3 = 33.202 , r4 = 23.017 , r5 = 260.92 ,

r6 = 10.358 ,

N1 5 = −1.0202 , NH 125 = 31.252 , NH 126 = −2.9713 , NH 345 = −1.1160 , NH 346 = 1.0383 ,

N3 136 = 280.63 , N3 235 = 1356.3 , N3 236 = 110.62 , N3 246 = 25.843 .
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Solution 17 (with λ = 621.44) : (4.21)

N1
s = 15.389 , N2

s = 14.582 , N3
s = −1.1706 , gs = 0.051272 ,

r1 = 121.54 , r2 = 15.696 , r3 = 11.537 , r4 = 19.689 , r5 = 77.044 ,

r6 = 10.446 ,

N1 5 = 1.0352 , NH 125 = −25.948 , NH 126 = −3.7303 , NH 345 = −1.1411 ,

NH 346 = −1.2029 , N3 136 = −135.73 , N3 235 = 319.44 , N3 236 = −54.882 , N3 246 = 29.915 .

From these values, we observe some internal hierarchies among the radii, as expected [11].

Some hierarchies are also present in the flux “integers”, in agreement with [45]. The

solution 12, that allows N I
s < 4, is particularly interesting.

As mentioned previously, it does not make sense to check further the requirements (4.1)

for the solution to be in the classical regime, without a detailed knowledge of the 6d

geometry. In particular, identifying explicitly the lattice of the group manifold is only

achieved for solutions 14 and 15, as explained in section 2.3. For the other solutions, we

cannot check constraints on the fabc and Nabc, or determine precisely the upper bound on

N I
s . As a change of basis on the forms is probably needed, it is also not worth trying to

obtain integers for {Nq a1...aq , N
I
s }. Finally, quantizing only the harmonic flux components

would actually reduce the number of constraints, but those cannot be determined for

now. So we stop here the test of whether the de Sitter solutions found are in a classical

string regime: we conclude positively for 4 solutions, regarding the requirements (4.9) with

N I
s ≤ 16. This study already goes beyond what has been done so far in the literature in 4d

frameworks, and provides an interesting illustration of the idea of the “grey zone” discussed

at the beginning of this section. A complete analysis will be performed on solutions 14 and

15 in the companion paper [67].

5 Summary and outlook

In this paper, we have found and studied 17 new de Sitter solutions of 10d type IIB

supergravity with intersecting D5-branes and O5 orientifold planes, on 6d group manifolds.

The solutions were found numerically, following a method described in section 2.2 and

appendix B, allowing us to solve the 10d equations and constraints introduced in section 2.1.

A last constraint, the compactness of the 6d group manifold, remains difficult to verify

as explained in section 2.3 and appendix C, but we could establish it successfully for 4

solutions. The 17 solutions are listed explicitly in appendix A. Such de Sitter solutions were

expected [42] because of the formal similarity with the type IIA setting with intersecting

O6/D6, where most de Sitter solutions were previously found [21, 22, 28, 31, 43]. However,

the solutions found here remain truly new, in the sense that they are not T-dual to the

latter, nor to the only other 10d type IIB supergravity de Sitter solutions known, with

O5/O7 sources [25]. Our solutions could rather be T-dual to other, yet undiscovered, de

Sitter solutions having intersecting O4/D4 and O6/D6 sources. Finally, our search for

solutions accidentally led to the discovery of a new Minkowski solution with intersecting

O5/D5, discussed in section 2.4.
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All our de Sitter solutions were found to be perturbatively unstable. To show this, we

analysed a corresponding 4d scalar potential depending only on four fields, V (ρ, τ, σ1, σ2),

building on [10, 11, 36, 39, 44]. A tachyonic direction was always found in this 4-field space

at the de Sitter critical point, as explained in section 3. The details of the potential and

the scalar fields kinetic terms are given in section 3.1 and appendix D. Thanks to those we

computed the values of ηV at the critical points, and summarized them in table 2. They

are in agreement with the swampland refined de Sitter conjecture of [5]. Further comments

on these values and a related mathematical lemma are given in section 3.3.

Finally, an important question is whether our 10d supergravity de Sitter solutions are

classical string backgrounds. A list of corresponding requirements on the 10d solution is

introduced and discussed in section 4.1, including e.g. a small string coupling, gs � 1,

or large internal 6d radii compared to the string length, ra � ls, etc. . Testing some of

these conditions however requires a detailed knowledge of the 6d geometry, namely the flux

quantization, the count of the number of orientifold planes, and the lattice quantization

conditions. For now, we only have a good understanding of the geometry for our solutions

14 and 15, this difficulty is related to the matter of compactness of the group manifold. In

section 4.2, we then test the validity of our de Sitter solutions as classical string backgrounds

against a less complete list of requirements, while still going beyond what has been done

previously in the literature. In particular, we show that allowing for six different radii,

instead of a single volume modulus, provides a useful flexibility to solve the constraints.

As a result, 4 of our de Sitter solutions pass successfully these first tests, and are thus good

candidates of classical de Sitter string backgrounds. Interestingly, these solutions exhibit

internal hierarchies among their radii, as well as their flux integers. A complete study of

the solutions 14 and 15 is delayed to the companion paper [67].

Several aspects of this work call for further investigations. To start with, a more thor-

ough search for solutions could be pursued, with possible improvements on our numerical

methods. We could also get some inspiration from our solutions to search with a sharper

ansatz. In particular, having few structure constants remains an important advantage when

dealing with the compactness issue and the identification of the 6d geometry. In addition,

it would be interesting to identify the non-solvable algebras appearing in our solutions,

and test the compactness of their 6d manifold, as explained in section 2.3. Solutions 10

and 12 would be prime targets for this, because they appeared as promising candidates of

classical de Sitter solutions in section 4.2. We also note that, as discussed in [3, 31, 44],

we have not found any de Sitter solution on a nilmanifold (see however the Minkowski

solution of section 2.4), a point that could be worth understanding better. Other aspects

are the lessons learned from our stability study, using the 4-field potential V (ρ, τ, σ1, σ2).

This could be useful to a generic identification of the tachyon, possibly joining previous

proposals [19, 36, 39, 41]. It may also allow to obtain a general bound on ηV , that should

be compared to several swampland conjectures [5, 75, 76]. More generally, it would inter-

esting to study whether our setting can be subject to instabilities recently discussed in [77].

Finally, the discussion on the classical regime of string theory highlights various subtleties

on this topic. The flexibility offered by having different radii instead of a single volume

modulus motivates a further study of the known type IIA de Sitter solutions, previously
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analysed in that respect in [43, 45, 46]. In 4d approaches, this would require to include

more scalar fields; alternatively, one could aim at reproducing the analysis in the 10d lan-

guage used here. Our discussion also emphasized the difference between an asymptotic

limit in field space or a parametric control, versus a “grey zone” where fields remain finite

but take large/small enough values to accommodate a classical regime. De Sitter solutions

might be forbidden in the former, but some of our solutions may lie in the latter field space

region. We note that this could be enough for relevant physics, since some fields, even

though large, admit observational upper bounds, as for instance the 6d radii.

Beyond the question of the classical regime, or the verification of compactness, the

main criticism against our solutions is a standard one on intersecting sources: they are

“smeared” [30, 78, 79].5 We prefer to view our solutions as solving an integrated version

of the equations, which trades functions (warp factor, dilaton) and distributions (source δ-

functions) for constants; see a discussion in [3]. The question remains whether a localized

version exists; it would capture the backreaction of our O5/D5. This is a well-known

supergravity problem [80–83]: while localized solutions exist for parallel sources, e.g. [84],

they are most of the time unknown for intersecting ones (see however [85–87] in anti-de

Sitter). It is also unclear whether finding a localized solution in supergravity is relevant:

indeed, the backreaction of sources is a priori important only close to them, where stringy

contributions should also be taken into account. In any case, it is often believed that this

problem could be cured in full string theory. Interestingly, this question has reappeared

recently in the context of the swampland, with the conjectures [75, 76]. The anti-de Sitter

solution [88] is a counter-example to the latter. The main criticism against this solution

is again its non-localized intersecting sources. This has motivated a (partial) localization

of this anti-de Sitter solution [89, 90]. It would be very interesting to study our de Sitter

solutions with intersecting sources in this new light.

Finally, it could be interesting to add anti-D5-branes to our setting. Deforming this

way our solutions, one can hope to find another tachyonic de Sitter extremum of the

potential, and close to it, a de Sitter minimum. This program indeed worked in the

example considered in [91], that only had few scalar fields. The intuition behind this idea

is that staying close enough to the tachyonic point maintains the other directions stabilised,

while a tuned D̄5 contribution to the potential can generate a minimum along the tachyonic

direction. Given this new de Sitter minimum, a remaining step would then be to verify

that it is a solution to the 10d equations, in particular to the flux Bianchi identities. Each

step in this program is nevertheless difficult, and we have not succeeded for now, starting

with our de Sitter solutions. One complication in our setting is the presence of D5 along

directions (56): D̄5 can then not be added there without triggering an instability. A way

out could be that the deformed solution admits T 3
10 = 0, but this remains unlikely given

5Contrary to D-branes, smearing O-planes is particularly prohibited, since by definition, an O-plane

stands at a fixed point. It is worth noting that our solution 14 is special since, as discussed around (2.30),

it is the only one with T 2
10 < 0. This means that it can be interpreted as having O5-planes only along the

set I = 1, i.e. directions (12). It could then be interesting to localize first these sources, while those along

orthogonal directions could remain as smeared branes.
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that we have not found any such de Sitter solution. We hope to come back to this idea in

future work.

Despite having unstable de Sitter solutions with ηV < −1, it could still be interesting

to construct from them cosmological models. In multi-field inflation, one can actually

construct viable models in such situations when allowing for non-geodesic motion or strong

bending in field space (see e.g. [92–96]). To that end, having a more complete 4d theory

from our 10d setting than the one considered in this work could be useful, e.g. to have

a better control on the 4d mass spectrum. A good starting point for that could be the

supergravity theory considered for the de Sitter solution with O5/O7 [25]. We hope to

come back to these interesting questions in the future.
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A List of de Sitter solutions

We give in this appendix the explicit list of 17 de Sitter solutions found in this work, and

discussed in section 2.2. The numerical values displayed correspond to quantities in units

of 2πls, as explained around (4.6). To ease the use of these solutions, e.g. to manipulate

them in Mathematica, we hide the dependence on gs and the indices of the components are

put inside square brackets: T10[I] stands for gs T
I
10, F1[a] for gs F1 a, F3[a, b, c] for gs F3 abc,

H[a, b, c] for Habc and f [a, b, c] for fabc. The values are rounded to 5 significant digits (if

less are displayed this means that the following digits are zero in the rounded value), except

for the interesting solutions 10, 12, 14, 15, 16, 17, which are displayed with 16 digits. Only

the non-vanishing variables are given. For each solution, we also provide the values of R4

and R6, the 4 eigenvalues of the mass matrix gikHkj for the 4-field potential V (ρ, τ, σ1, σ2),

and the tachyonic eigenvector ~v associated to the negative eigenvalue (see section 3.2).
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Solution 1.

T10[1]→ 0.47704, T10[2]→ 0.30751, T10[3]→ −0.053848, F1[5]→ 0.067964, F1[6]→ −0.16337,

F3[1, 3, 5]→ 0.029423, F3[1, 3, 6]→ 0.042531, F3[1, 4, 5]→ 0.071507, F3[1, 4, 6]→ 0.25908,

F3[2, 3, 5]→ −0.0029428, F3[2, 3, 6]→ −0.011609, F3[2, 4, 5]→ −0.026656, F3[2, 4, 6]→ −0.056824,

H[1, 2, 5]→ −0.089255, H[1, 2, 6]→ −0.020459, H[3, 4, 5]→ −0.10652, H[3, 4, 6]→ −0.0097439,

f [1, 3, 5]→ −0.20034, f [1, 3, 6]→ −0.019633, f [1, 4, 5]→ 0.075638, f [1, 4, 6]→ −0.060835,

f [2, 3, 5]→ 0.078361, f [2, 3, 6]→ −0.045623, f [2, 4, 5]→ −0.019626, f [2, 4, 6]→ 0.012723,

f [3, 1, 5]→ 0.0062025, f [3, 1, 6]→ −0.013864, f [3, 2, 5]→ 0.042311, f [3, 2, 6]→ −0.061633,

f [4, 1, 5]→ 0.016689, f [4, 1, 6]→ −0.051754, f [4, 2, 5]→ −0.16991, f [4, 2, 6]→ −0.037573,

f [5, 1, 3]→ −0.0012195, f [5, 1, 4]→ 0.00029436, f [5, 2, 3]→ −0.046738, f [5, 2, 4]→ 0.011281,

f [6, 1, 3]→ −0.00050733, f [6, 1, 4]→ 0.00012246, f [6, 2, 3]→ −0.019444, f [6, 2, 4]→ 0.0046932 .

R4 = 0.011482 , R6 = −0.062461 ,

masses2 = (0.086586, 0.048623, 0.044431,−0.0081936) , ~v = (0.512, 0.83441, 0.15942, 0.12727) .

Solution 2.

T10[1]→ 0.46469, T10[2]→ 0.4183, T10[3]→ −0.13527, F1[5]→ −0.054338, F1[6]→ 0.09419,

F3[1, 3, 5]→ 0.19696, F3[1, 3, 6]→ 0.029077, F3[1, 4, 5]→ −0.14439, F3[1, 4, 6]→ −0.018361,

F3[2, 3, 5]→ −0.14504, F3[2, 3, 6]→ −0.023914, F3[2, 4, 5]→ 0.1403, F3[2, 4, 6]→ 0.01418,

H[1, 2, 5]→ −0.0061166, H[1, 2, 6]→ 0.019678, H[3, 4, 5]→ 0.0072392, H[3, 4, 6]→ 0.029453,

f [1, 3, 5]→ −0.043274, f [1, 3, 6]→ −0.12877, f [1, 4, 5]→ −0.0053473, f [1, 4, 6]→ −0.19337,

f [2, 3, 5]→ 0.11672, f [2, 3, 6]→ 0.095978, f [2, 4, 5]→ 0.12856, f [2, 4, 6]→ 0.073781,

f [3, 1, 5]→ −0.075441, f [3, 1, 6]→ 0.10485, f [3, 2, 5]→ −0.017193, f [3, 2, 6]→ 0.10796,

f [4, 1, 5]→ 0.070637, f [4, 1, 6]→ −0.11098, f [4, 2, 5]→ 0.033071, f [4, 2, 6]→ −0.091882,

f [5, 1, 3]→ −0.028108, f [5, 1, 4]→ −0.027949, f [5, 2, 3]→ 0.084778, f [5, 2, 4]→ 0.0843,

f [6, 1, 3]→ −0.016215, f [6, 1, 4]→ −0.016124, f [6, 2, 3]→ 0.048908, f [6, 2, 4]→ 0.048633 .

R4 = 0.01048 , R6 = −0.072118 ,

masses2 = (0.12192, 0.054898, 0.02209,−0.0070818) , ~v = (0.59801, 0.78544, 0.083651, 0.13587) .

Solution 3.

T10[1]→ 0.72554, T10[2]→ 0.56275, T10[3]→ −0.11084, F1[5]→ −0.046697, F1[6]→ −0.14894,

F3[1, 3, 5]→ −0.3778, F3[1, 3, 6]→ −0.053076, F3[1, 4, 5]→ 0.078924, F3[1, 4, 6]→ −0.0016181,

F3[2, 3, 5]→ 0.0067415, F3[2, 3, 6]→ −0.015912, F3[2, 4, 5]→ −0.0036507, F3[2, 4, 6]→ −0.003343,

H[1, 2, 5]→ −0.011276, H[1, 2, 6]→ 0.046065, H[3, 4, 5]→ −0.028408, H[3, 4, 6]→ 0.039204,

f [1, 3, 5]→ 0.036555, f [1, 3, 6]→ 0.1166, f [1, 4, 5]→ −0.13275, f [1, 4, 6]→ 0.25613,

f [2, 3, 5]→ −0.0070935, f [2, 3, 6]→ −0.022625, f [2, 4, 5]→ −0.075855, f [2, 4, 6]→ −0.077621,

f [3, 1, 5]→ 0.055343, f [3, 1, 6]→ 0.077441, f [3, 2, 5]→ 0.08688, f [3, 2, 6]→ −0.23348,

f [4, 1, 5]→ −0.012378, f [4, 1, 6]→ −0.0034012, f [4, 2, 5]→ −0.06379, f [4, 2, 6]→ −0.017528,

f [5, 1, 4]→ −0.009863, f [5, 2, 4]→ −0.050828, f [6, 1, 4]→ 0.0030922, f [6, 2, 4]→ 0.015935 .

R4 = 0.019772 , R6 = −0.1156 ,

masses2 = (0.1202, 0.074661, 0.042293,−0.014499) , ~v = (0.5718, 0.79714, 0.1371, 0.13717) .
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Solution 4.

T10[1]→ 0.35972, T10[2]→ 0.52854, T10[3]→ −0.061607, F1[5]→ −0.055616, F1[6]→ −0.089616,

F3[1, 3, 5]→ −0.2955, F3[1, 3, 6]→ 0.14475, F3[1, 4, 5]→ 0.053224, F3[1, 4, 6]→ −0.01737,

F3[2, 3, 5]→ 0.036808, F3[2, 3, 6]→ −0.033252, F3[2, 4, 5]→ −0.043811, F3[2, 4, 6]→ 0.014833,

H[1, 2, 5]→ −0.0044838, H[1, 2, 6]→ 0.014822, H[3, 4, 5]→ 0.01242, H[3, 4, 6]→ 0.0093064,

f [1, 3, 5]→ 0.021656, f [1, 3, 6]→ 0.044792, f [1, 4, 5]→ −0.026067, f [1, 4, 6]→ 0.2064,

f [2, 3, 5]→ −0.018528, f [2, 3, 6]→ −0.033604, f [2, 4, 5]→ 0.05014, f [2, 4, 6]→ −0.013342,

f [3, 1, 5]→ −0.057579, f [3, 1, 6]→ 0.011876, f [3, 2, 5]→ −0.18459, f [3, 2, 6]→ −0.18172,

f [4, 1, 5]→ 0.0086028, f [4, 1, 6]→ 0.040689, f [4, 2, 5]→ 0.01433, f [4, 2, 6]→ 0.052753,

f [5, 1, 3]→ −0.00083758, f [5, 1, 4]→ −0.021022, f [5, 2, 3]→ −0.0009261, f [5, 2, 4]→ −0.023244,

f [6, 1, 3]→ 0.00051981, f [6, 1, 4]→ 0.013047, f [6, 2, 3]→ 0.00057474, f [6, 2, 4]→ 0.014425 .

R4 = 0.010644 , R6 = −0.079291 ,

masses2 = (0.081167, 0.046349, 0.018831,−0.0077075) , ~v = (0.59942, 0.77513, 0.12971, 0.15182) .

Solution 5.

T10[1]→ 0.5488, T10[2]→ 0.49801, T10[3]→ −0.09235, F1[5]→ −0.1363, F1[6]→ −0.035535,

F3[1, 3, 5]→ −0.058902, F3[1, 3, 6]→ −0.32976, F3[1, 4, 5]→ 0.011126, F3[1, 4, 6]→ 0.1021,

F3[2, 3, 5]→ −0.0067774, F3[2, 3, 6]→ 0.0038507, F3[2, 4, 6]→ −0.005906, F3[2, 4, 5]→ F3[2, 4, 6],

H[1, 2, 5]→ −0.041183, H[1, 2, 6]→ 0.015758, H[3, 4, 5]→ −0.034816, H[3, 4, 6]→ 0.018389,

f [1, 3, 5]→ −0.12993, f [1, 3, 6]→ −0.033873, f [1, 4, 5]→ −0.20816, f [1, 4, 6]→ 0.095049,

f [2, 3, 5]→ 0.025631, f [2, 3, 6]→ 0.0066821, f [2, 4, 6]→ 0.04532, f [3, 1, 5]→ −0.054525,

f [3, 2, 5]→ 0.22297, f [3, 2, 6]→ −0.099548, f [4, 1, 5]→ 0.0012519, f [4, 1, 6]→ 0.018843,

f [4, 2, 5]→ 0.006346, f [4, 2, 6]→ 0.095521, f [5, 1, 4]→ 0.0025089, f [5, 2, 4]→ 0.012718,

f [6, 1, 4]→ −0.0096234, f [6, 2, 4]→ −0.048783, f [2, 4, 5]→ f [2, 4, 6], f [3, 1, 6]→ −f [2, 4, 6] .

R4 = 0.016346 , R6 = −0.094138 ,

masses2 = (0.091114, 0.065509, 0.03436,−0.012138) , ~v = (0.56953, 0.79882, 0.14606, 0.12724) .

Solution 6.

T10[1]→ 0.18633, T10[2]→ 0.099822, T10[3]→ −0.023249, F1[5]→ −0.06428, F1[6]→ −0.034831,

F3[1, 3, 5]→ 0.01078, F3[1, 3, 6]→ −0.026777, F3[1, 4, 5]→ −0.016182, F3[1, 4, 6]→ 0.033328,

F3[2, 3, 5]→ −0.015359, F3[2, 3, 6]→ 0.10935, F3[2, 4, 5]→ −0.0041419, F3[2, 4, 6]→ −0.14142,

H[1, 2, 5]→ −0.024728, H[1, 2, 6]→ −0.0016963, H[3, 4, 5]→ −0.020168, H[3, 4, 6]→ 0.016339,

f [1, 3, 5]→ −0.043546, f [1, 3, 6]→ −0.03002, f [1, 4, 5]→ −0.040593, f [1, 4, 6]→ −0.024861,

f [2, 3, 5]→ 0.10185, f [2, 3, 6]→ −0.050296, f [2, 4, 5]→ 0.10301, f [2, 4, 6]→ 0.0087766,

f [3, 1, 5]→ 0.03814, f [3, 1, 6]→ −0.032997, f [3, 2, 5]→ −0.005429, f [3, 2, 6]→ −0.022669,

f [4, 1, 5]→ −0.09408, f [4, 1, 6]→ 0.0059857, f [4, 2, 5]→ 0.0090268, f [4, 2, 6]→ 0.025832,

f [5, 1, 3]→ 0.0098816, f [5, 1, 4]→ 0.0044069, f [5, 2, 3]→ 0.0036326, f [5, 2, 4]→ 0.0016201,

f [6, 1, 3]→ −0.018236, f [6, 1, 4]→ −0.008133, f [6, 2, 3]→ −0.006704, f [6, 2, 4]→ −0.0029898 .

R4 = 0.004057 , R6 = −0.025322 ,

masses2 = (0.030262, 0.013323, 0.0092559,−0.0029562) , ~v = (0.56648, 0.80047, 0.14645, 0.12997) .
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Solution 7.

T10[1]→ 0.32241, T10[2]→ 0.25405, T10[3]→ −0.1001, F1[5]→ 0.027908, F1[6]→ 0.079651,

F3[1, 3, 5]→ 0.057728, F3[1, 3, 6]→ −0.0003245, F3[1, 4, 5]→ −0.11383, F3[1, 4, 6]→ 0.0043009,

F3[2, 3, 5]→ 0.12422, F3[2, 3, 6]→ 0.015909, F3[2, 4, 5]→ −0.18375, F3[2, 4, 6]→ −0.010172,

H[1, 2, 5]→ −0.0042465, H[1, 2, 6]→ −0.014838, H[3, 4, 5]→ 0.014738, H[3, 4, 6]→ −0.016011,

f [1, 3, 5]→ −0.0078082, f [1, 3, 6]→ −0.14573, f [1, 4, 5]→ 0.01363, f [1, 4, 6]→ −0.059324,

f [2, 3, 5]→ 0.14929, f [2, 3, 6]→ −0.10111, f [2, 4, 5]→ 0.11852, f [2, 4, 6]→ −0.081211,

f [3, 1, 5]→ −0.036299, f [3, 1, 6]→ −0.10329, f [3, 2, 5]→ 0.0019146, f [3, 2, 6]→ 0.028735,

f [4, 1, 5]→ 0.045777, f [4, 1, 6]→ 0.12971, f [4, 2, 5]→ 0.0092216, f [4, 2, 6]→ −0.044147,

f [5, 1, 3]→ 0.0014146, f [5, 1, 4]→ 0.0011256, f [5, 2, 3]→ 0.1058, f [5, 2, 4]→ 0.084183,

f [6, 1, 3]→ −0.00049565, f [6, 1, 4]→ −0.00039437, f [6, 2, 3]→ −0.037071, f [6, 2, 4]→ −0.029496 .

R4 = 0.0064113 , R6 = −0.045751 ,

masses2 = (0.09705, 0.033829, 0.014147,−0.0040233) , ~v = (0.61748, 0.7735, 0.071634, 0.12359) .

Solution 8.

T10[1]→ 0.19717, T10[2]→ 0.14783, T10[3]→ −0.021473, F1[5]→ −0.078205, F1[6]→ 0.0049412,

F3[1, 3, 5]→ −0.0099514, F3[1, 3, 6]→ 0.011265, F3[1, 4, 5]→ −0.053599, F3[1, 4, 6]→ 0.17075,

F3[2, 3, 5]→ 0.018747, F3[2, 3, 6]→ −0.029133, F3[2, 4, 5]→ −0.051305, F3[2, 4, 6]→ 0.085993,

H[1, 2, 5]→ 0.015719, H[1, 2, 6]→ 0.0048415, H[3, 4, 5]→ 0.03184, H[3, 4, 6]→ 0.023596,

f [1, 3, 5]→ −0.12703, f [1, 3, 6]→ 0.028513, f [1, 4, 5]→ 0.012977, f [1, 4, 6]→ 0.014053,

f [2, 3, 5]→ −0.086914, f [2, 3, 6]→ −0.033169, f [2, 4, 5]→ −0.025341, f [2, 4, 6]→ −0.026465,

f [3, 1, 5]→ −0.011566, f [3, 1, 6]→ 0.00064098, f [3, 2, 5]→ −0.0058617, f [3, 2, 6]→ 0.00062058,

f [4, 1, 5]→ 0.046748, f [4, 1, 6]→ 0.031485, f [4, 2, 5]→ −0.077789, f [4, 2, 6]→ −0.091042,

f [5, 1, 3]→ 0.00041274, f [5, 1, 4]→ 0.00029964, f [5, 2, 3]→ −0.00115, f [5, 2, 4]→ −0.00083489,

f [6, 1, 3]→ 0.0065325, f [6, 1, 4]→ 0.0047425, f [6, 2, 3]→ −0.018202, f [6, 2, 4]→ −0.013214 .

R4 = 0.0042994 , R6 = −0.030339 ,

masses2 = (0.03168, 0.015949, 0.010753,−0.002987) , ~v = (0.57994, 0.78615, 0.14473, 0.15715) .

Solution 9.

T10[1]→ 0.35204, T10[2]→ 0.32339, T10[3]→ −0.12879, F1[5]→ 0.05975, F1[6]→ −0.058962,

F3[1, 3, 5]→ 0.11186, F3[1, 3, 6]→ 0.059735, F3[1, 4, 5]→ −0.21025, F3[1, 4, 6]→ −0.094019,

F3[2, 3, 5]→ 0.042689, F3[2, 3, 6]→ 0.030822, F3[2, 4, 5]→ −0.060858, F3[2, 4, 6]→ −0.043124,

H[1, 2, 5]→ 0.0086458, H[1, 2, 6]→ −0.0086346, H[3, 4, 5]→ −0.0085054, H[3, 4, 6]→ −0.015009,

f [1, 3, 5]→ −0.1416, f [1, 3, 6]→ −0.23025, f [1, 4, 5]→ −0.06172, f [1, 4, 6]→ −0.10511,

f [2, 3, 5]→ 0.065963, f [2, 3, 6]→ −0.095767, f [2, 4, 5]→ 0.06644, f [2, 4, 6]→ −0.079327,

f [3, 1, 5]→ 0.00092451, f [3, 1, 6]→ −0.011556, f [3, 2, 5]→ −0.061413, f [3, 2, 6]→ 0.061127,

f [4, 1, 5]→ −0.0068416, f [4, 1, 6]→ 0.018309, f [4, 2, 5]→ 0.1371, f [4, 2, 6]→ −0.13586,

f [5, 1, 3]→ −0.13707, f [5, 1, 4]→ −0.061505, f [5, 2, 3]→ 0.0067551, f [5, 2, 4]→ 0.0030311,

f [6, 1, 3]→ −0.1389, f [6, 1, 4]→ −0.062327, f [6, 2, 3]→ 0.0068453, f [6, 2, 4]→ 0.0030716 .

R4 = 0.0065997 , R6 = −0.051929 ,

masses2 = (0.15427, 0.045378, 0.015301,−0.0037113) , ~v = (0.6478, 0.75245, 0.047002, 0.10938) .
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Solution 10.

T10[1]→ 10, T10[2]→ 10, T10[3]→ −0.3259120382713294, F1[5]→ 1, F1[6]→ 1,

F3[1, 3, 5]→ −0.1349772714306872, F3[1, 3, 6]→ −0.7456107008676475,

F3[1, 4, 5]→ 0.4757995474652397, F3[1, 4, 6]→ −0.2227565010250167,

F3[2, 3, 5]→ −0.4614346028465642, F3[2, 3, 6]→ 0.0426792857654753,

F3[2, 4, 5]→ 0.2860470205462396, F3[2, 4, 6]→ −F3[2, 4, 5], H[1, 2, 5]→ 0.9376250941912930,

H[1, 2, 6]→ −0.2994901148924934, H[3, 4, 5]→ 0.6659796477910178,

H[3, 4, 6]→ −0.7329190688589823, f [1, 3, 6]→ −0.1969129428812132,

f [1, 4, 5]→ −0.2753236733652662, f [1, 4, 6]→ 0.3984487144549955,

f [2, 4, 5]→ −0.0799090201373039, f [2, 4, 6]→ 0.3243522244088599,

f [3, 1, 6]→ −0.2002924300421296, f [3, 2, 5]→ 0.4230701843222834,

f [3, 2, 6]→ −0.0284354195594737, f [4, 2, 5]→ −0.1236377141499939,

f [4, 2, 6]→ 0.5018478206399179, f [6, 2, 4]→ −0.0889546337076675,

f [1, 3, 5]→ f [1, 3, 6], f [3, 1, 5]→ f [3, 1, 6], f [5, 2, 4]→ −f [6, 2, 4] .

R4 = 0.05046560105547959 , R6 = −0.7152057317272771 ,

masses2 = (5.0863, 1.233, 0.57277,−0.026378) , ~v = (0.50049, 0.81331, 0.21722, 0.20212) .

Solution 11.

T10[1]→ 0.72539, T10[2]→ 0.57602, T10[3]→ −0.11238, F1[5]→ −0.046382, F1[6]→ −0.14989,

F3[1, 3, 5]→ −0.37962, F3[1, 3, 6]→ −0.054102, F3[1, 4, 5]→ 0.078715, F3[1, 4, 6]→ −0.00035418,

F3[2, 3, 5]→ 0.0058597, F3[2, 3, 6]→ −0.014748, F3[2, 4, 6]→ −0.0036669, F3[2, 4, 5]→ F3[2, 4, 6],

H[1, 2, 5]→ −0.011716, H[1, 2, 6]→ 0.045795, H[3, 4, 5]→ −0.02785, H[3, 4, 6]→ 0.039606,

f [1, 3, 5]→ 0.036064, f [1, 3, 6]→ 0.11655, f [1, 4, 5]→ −0.13436, f [1, 4, 6]→ 0.25498,

f [2, 3, 5]→ −0.0072143, f [2, 3, 6]→ −0.023314, f [2, 4, 5]→ −0.075938, f [2, 4, 6]→ −0.077789,

f [3, 1, 5]→ 0.056116, f [3, 2, 5]→ 0.086816, f [3, 2, 6]→ −0.23712, f [4, 1, 5]→ −0.012879,

f [4, 1, 6]→ −0.0033548, f [4, 2, 5]→ −0.064383, f [4, 2, 6]→ −0.016771, f [5, 1, 4]→ −0.010266,

f [5, 2, 4]→ −0.05132, f [6, 1, 4]→ 0.0031768, f [6, 2, 4]→ 0.015881, f [3, 1, 6]→ −f [2, 4, 6] .

R4 = 0.02004 , R6 = −0.11684 ,

masses2 = (0.12054, 0.076154, 0.042724,−0.014706) , ~v = (0.5719, 0.7971, 0.13641, 0.13769) .
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Solution 12.

T10[1]→ 7.7271771858613970, T10[2]→ 2.2569215718539540, T10[3]→ −0.1443613520399306,

F1[5]→ 1, F3[1, 3, 5]→ 0.4942839801759979, F3[1, 3, 6]→ −0.2974725565593828,

F3[1, 4, 6]→ −0.0819919421531531, F3[2, 3, 5]→ 0.0065197489236415,

F3[2, 3, 6]→ −0.2445092180276900, F3[2, 4, 5]→ 0.2193161877900493,

F3[2, 4, 6]→ 0.3644682080232862, H[1, 2, 5]→ −0.4230470081250839,

H[1, 2, 6]→ −0.2646546977657695, H[3, 4, 5]→ 0.2589549673229080,

H[3, 4, 6]→ −0.7901065711295830, f [1, 4, 5]→ −0.1277833635641377,

f [1, 4, 6]→ −0.5365645111668850, f [2, 3, 5]→ −0.4614839479014394,

f [2, 4, 5]→ −0.1062270206129369, f [2, 4, 6]→ −0.0551085436402409,

f [3, 1, 5]→ −0.0119865546470415, f [3, 2, 5]→ 0.2444904911694590,

f [4, 1, 5]→ −0.0650526285279246, f [4, 1, 6]→ −0.2731570906621740,

f [6, 1, 4]→ 0.0984021196994866, f [3, 1, 6]→ −f [2, 4, 6] .

R4 = 0.059663051023583824 , R6 = −0.4094726936749863 ,

masses2 = (2.7155, 0.63285, 0.25637,−0.04109) , ~v = (0.46387, 0.85232, 0.19198, 0.1467) .

Solution 13.

T10[1]→ 10, T10[2]→ 0.77399, T10[3]→ −0.20221, F1[5]→ 0.82894, F3[1, 3, 5]→ 0.1905,

F3[1, 3, 6]→ 0.00375, F3[1, 4, 6]→ −0.0039311, F3[2, 3, 5]→ −0.46675, F3[2, 3, 6]→ −0.57687,

F3[2, 4, 5]→ 0.0022733, F3[2, 4, 6]→ 0.67087, H[1, 2, 5]→ 0.17259, H[1, 2, 6]→ −0.00071525,

H[3, 4, 5]→ 0.0026425, H[3, 4, 6]→ −0.78712, f [1, 4, 6]→ −0.19142, f [2, 3, 5]→ −0.66446,

f [2, 4, 5]→ −0.54418, f [2, 4, 6]→ 0.46713, f [3, 1, 5]→ −0.10243, f [3, 1, 6]→ 0.1473,

f [3, 2, 5]→ −0.041972, f [4, 1, 6]→ −0.17985, f [6, 1, 4]→ 0.058422 .

R4 = 0.037791 , R6 = −0.5941 ,

masses2 = (2.3792, 0.59264, 0.10413,−0.027888) , ~v = (0.41291, 0.87252, 0.22255, 0.13672) .

Solution 14.

T10[1]→ 10, T10[2]→ −0.0885069318066244, T10[3]→ −0.7765198126057072,

F1[5]→ −0.2739820106484752, F3[1, 3, 5]→ −0.5612239678297053,

F3[1, 3, 6]→ 0.7199875113561189, F3[1, 4, 6]→ 0.0527969424771896,

F3[2, 3, 5]→ 0.6773312203822072, F3[2, 3, 6]→ −0.3132864455247597,

F3[2, 4, 6]→ 0.1780541307257305, H[1, 2, 5]→ −0.0045785440625781,

H[3, 4, 6]→ 0.2288818622936161, f [1, 4, 5]→ 0.8435712996340920,

f [1, 4, 6]→ 0.6715419200224235, f [2, 3, 5]→ −0.2892985071257778,

f [2, 4, 5]→ −0.0614203186917094, f [2, 4, 6]→ −0.8104719938914240,

f [3, 1, 5]→ 0.0162126509210115, f [3, 2, 5]→ 0.0134334990107109,

f [6, 1, 4]→ 0.4131042712391767 .

R4 = 0.022658272206244612 , R6 = −0.7577021085288538 ,

masses2 = (1.9928, 0.24874, 0.02597,−0.0096679) , ~v = (0.11993, 0.95779, 0.06937, 0.25189) .
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Solution 14′ (see appendix C).

T10[1]→ 10, T10[2]→ −0.0885069318066244, T10[3]→ −0.7765198126057072,

F1[5]→ −0.2739820106484752, H[1, 2, 5]→ −0.0045785440625781,

H[3, 4, 5]→ −0.2875146945871226, H[3, 4, 6]→ 0.2288818622936161,

F3[1, 3, 5]→ −2.7580681436956810, F3[1, 3, 6]→ 1.0980873478564690,

F3[1, 4, 5]→ −8.9169397596149600, F3[1, 4, 6]→ 3.4691323044710350,

F3[2, 3, 5]→ 1.0708724813659480, F3[2, 3, 6]→ −0.3132864455247597,

F3[2, 4, 5]→ 3.3175634705051610, F3[2, 4, 6]→ −0.8579415960403540,

f [1, 4, 6]→ 0.6715419200224235, f [2, 3, 5]→ −0.2892985071257778,

f [3, 2, 5]→ 0.0134334990107109, f [6, 1, 4]→ 0.4131042712391767,

g12 → 1.2068822060495703, g34 → −3.3068641863224433, g56 → 1.2561707236473398 .

R4 ,R6 unchanged .

Solution 15.

T10[1]→ 10, T10[2]→ 0.4966295777593360, T10[3]→ −0.1058505594207743,

F1[5]→ 0.1394435290122775, F3[1, 3, 6]→ 0.0034027792189916,

F3[1, 4, 6]→ −0.0003267933126085, F3[2, 3, 5]→ 0.0090828099128681,

F3[2, 3, 6]→ −1.1496878282089060, F3[2, 4, 5]→ −0.0048365319588065,

F3[2, 4, 6]→ 0.6091051220227705, H[1, 2, 6]→ −0.0001845709594129,

H[3, 4, 5]→ −0.0010888652794866, f [2, 3, 5]→ −0.6020820458095239,

f [2, 4, 5]→ −1.1306855450590460, f [3, 1, 5]→ −0.0698547712340311,

f [3, 1, 6]→ −0.1916598129974718, f [3, 2, 5]→ −0.0588533218001099,

f [4, 1, 6]→ 0.1020574931847763, f [6, 1, 4]→ 0.0153448261959478 .

R4 = 0.019443278089360194 , R6 = −0.8853409197705556 ,

masses2 = (1.6415, 0.057392, 0.031507,−0.01426) , ~v = (0.60222, 0.77078, 0.17269, 0.11581) .

Solution 15′ (see appendix C).

T10[1]→ 10, T10[2]→ 0.4966295777593360, T10[3]→ −0.1058505594207743,

F1[5]→ 0.1394435290122775, F3[1, 3, 5]→ −0.0107806592596513,

F3[1, 3, 6]→ 1.3680017138866560, F3[1, 4, 5]→ 0.0259862634523308,

F3[1, 4, 6]→ −3.2923433827652360, F3[2, 3, 5]→ 0.0090828099128681,

F3[2, 3, 6]→ −1.1496878282089060, F3[2, 4, 5]→ −0.0218936788185686,

F3[2, 4, 6]→ 2.7681720095568790, H[1, 2, 6]→ −0.0001845709594129,

H[3, 4, 5]→ −0.0010888652794866, f [2, 3, 5]→ −0.6020820458095239,

f [3, 2, 5]→ −0.0588533218001099, f [4, 1, 6]→ 0.1020574931847763,

f [6, 1, 4]→ 0.0153448261959478,

g12 → 1.1869299658443528, g34 → 1.8779592464658086 .

R4 ,R6 unchanged .
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Solution 16.

T10[1]→ 10, T10[2]→ 1.0653924581926100, T10[3]→ −0.2865487441401781,

F1[5]→ −0.3830798073971085, F3[2, 3, 5]→ 0.5088261106821323,

F3[2, 3, 6]→ 1.0453549102326770, F3[2, 4, 6]→ 0.3522836755847258, F3[1, 3, 6]→ F3[2, 4, 6],

H[1, 2, 5]→ 0.0392319041342279, H[1, 2, 6]→ −0.0939555787571918,

H[3, 4, 5]→ −0.0125416177756354, H[3, 4, 6]→ 0.2939059636978374,

f [2, 3, 5]→ −0.3584729155627473, f [2, 4, 5]→ 0.9572822432446080,

f [2, 4, 6]→ −0.5911827525101534, f [3, 1, 5]→ 0.2190447474382595,

f [3, 1, 6]→ 0.1889887396788805, f [4, 1, 5]→ 0.1145962804793664,

f [6, 1, 4]→ −0.0456860378765839, f [3, 2, 5]→ −f [4, 1, 5], f [1, 4, 5]→ −f [2, 3, 5] .

R4 = 0.0498453380802234 , R6 = −0.8996299138736688 ,

masses2 = (1.6235, 0.26174, 0.12567,−0.035395) , ~v = (0.48957, 0.83657, 0.20509, 0.13567) .

Solution 17.

T10[1]→ 10, T10[2]→ 1.1283773832265060, T10[3]→ −0.3209376228220143,

F1[5]→ 0.4281135811392881, F3[2, 3, 5]→ 0.7295336312279515,

F3[2, 3, 6]→ −0.9244213776567620, F3[2, 4, 6]→ 0.2952514287937376, F3[1, 3, 6]→ −F3[2, 4, 6],

H[1, 2, 5]→ −0.1097182799067921, H[1, 2, 6]→ −0.1163339858329525,

H[3, 4, 5]→ −0.0405195014515629, H[3, 4, 6]→ −0.3150079434109206,

f [2, 3, 5]→ −0.3272913073142077, f [2, 4, 5]→ −0.8339260055526270,

f [2, 4, 6]→ −0.7780888837446737, f [3, 1, 6]→ −0.2873520591201465,

f [4, 1, 5]→ −0.1208702926537678, f [6, 1, 4]→ 0.0578627940639531,

f [1, 4, 5]→ f [2, 3, 5], f [3, 2, 5]→ f [4, 1, 5] .

R4 = 0.05683770674055544 , R6 = −0.8942359209665893 ,

masses2 = (1.6346, 0.33106, 0.14162,−0.04085) , ~v = (0.48741, 0.84003, 0.20034, 0.12901) .

B Numerical procedure

To find de Sitter solutions of type IIB supergravity with intersecting O5/D5, a problem

presented in section 2.1, we developed a numerical procedure in Wolfram Mathematica 12.

We commented on this procedure in section 2.2, and we now detail it in this appendix.

The problem amounts to solving 46 scalar equations involving 43 variables, subject to the

constraints (2.28). We first rewrite each of the 46 equations in the form Ei = 0 , i =

1, . . . , 46, and consider

s ≡
46∑
i=1

E2
i . (B.1)

Then, s vanishes at one of its minima if and only if all the equations are satisfied. One

can thus look for solutions by using minimization with constraints algorithms, such as

NMinimize. Without the constraints (2.28), it is known that s possesses multiple zeros

that correspond for instance to Minkowski solutions, some of which we recovered as sanity
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checks (see section 2.4). For de Sitter solutions, the roots of s should then fall into the

subspace of parameters obeying the constraints (2.28).

The solutions considered here are numerical. Thus, for a given output of the mini-

mization algorithm (denoted p̄ ∈ R43), one needs criteria to decide whether it is likely to

be an approximation of an exact solution. The most obvious criteria are the following:

• The value of s at the output p̄, denoted ∆ ≡ s(p̄), should be very close to 0.

• One should check that each equation is solved separately to a good accuracy and

compute the maximal error, ε ≡ maxi|Ei(p̄)|. This is the most relevant quantity, but

note that it is strongly related to the previous one by ∆ ∼ ε2.

• The value of R4 at the output should not be too small, to ensure that we are not

dealing with some numerical error around a Minkowski solution.

In practice, we restrict to outputs with ∆ ∼ ε2 ∼ 10−30. Indeed, we noticed a strong

distinction between outputs with this level of accuracy and others, which were by far less

precise. This level of precision is actually what we obtain while recovering known solutions

of some simple equations: for instance one can minimize s = (x2 − 2)2 with the technique

described below, and one gets p̄ ≈ ±
√

2 with ∆ ∼ 10−30. Here, the best accuracy obtained

for a solution is ∆ ∼ 10−33. The value obtained for R4 would always fall into the interval

[10−3, 10−1] which is way larger than ε. Also, the values obtained for the variables are

always in the range [10−4, 10], which is reasonably large compared to the magnitude of the

numerical error. Finally, the accuracy obtained in a known no-go situation, e.g. by setting

F1 = 0, is at best ∆ ∼ 10−10, allowing a clear distinction.

To obtain our solutions, we followed the procedure below:

• First, we numerically minimize the function s together with the constraints (2.28),

with NMinimize. To avoid the algorithm converging too easily towards Minkowski

solutions, we actually minimize s/R2
4 instead. Regarding the parameters, we used the

method RandomSearch with SearchPoints → 50 and Tolerance → 0. It is useful

to set one variable to a fixed value to avoid NMinimize starting with initial points

where R2
4 is close to 0 (potentially returning a 1/0 error). We often set T 1

10 = 10.

Note that this value can later be rescaled, as we do for instance with λ in section 4.

The restricted number of search points allows to obtain a first result p̄1 in a short

amount of time, which will be refined in the following steps.

• One can then look for a much more accurate solution, p̄2, in a small region around

p̄1. To do that, we construct a small ball centered in p̄1 with a radius r = r0 ×√
∆1, with initially the constant r0 ∼ O(1), and we then tune it a posteriori to

obtain the best accuracy. We then run a FindMinimum of s restricted to this ball,

now with high AccuracyGoal → 100 and PrecisionGoal → 100. This is quasi-

instantaneous. One can then adjust the radius by tuning r0: a ball with larger

radius more likely contains a good solution, but a too large radius might refrain the

FindMinimum from converging at all.
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• If the radius can easily be adjusted such that ∆2 ∼ 10−30 with R4 > 10−3, then we

consider p̄2 to be a satisfactory solution.

We obtained this way 17 solutions as further described in section 2.2.

Finally, we note that there seems to be no solution with T 2
10 = 0 = T 3

10, even when one

increases the number of initial points in NMinimize to 500, and when one does not impose

the orientifold projection along (34) (see section 2.1.2), thus allowing for more variables.

We also looked for solutions with a fixed number of non-zero structure constants, namely

1 or 2. For those cases there was no output of the NMinimize with ∆ < 10−3, which makes

it unlikely that solutions should be found around these points. In other words, it seems

that there are no solutions with only 1 or 2 non-vanishing structure constants. We refer to

section 2.2 for more comments.

C Change of basis and algebra identification

In this appendix, we discuss changes of basis and further tools allowing us to identify

the algebras underlying the 6d group manifolds in solutions 14 to 17, as discussed in

section 2.3. We start with solutions 16 and 17. Solution 17 has the following non-zero

structure constants

Solution 17: f145, f
2
35, f

2
45, f

2
46, f

3
16, f

3
25, f

4
15, f

6
14 , (C.1)

while solution 16 has the same set together with f315. The following change of basis

ea 6=2′ = ea , e2
′
= e2 +

f315
f325

e1 (C.2)

leaves all structure constants of solution 16 invariant except

f315
′
= 0 , f245

′
= f245 +

f145f
3
15

f325
6= 0 , (C.3)

where we verified f245
′ 6= 0 given the values in the solution. The change of basis (C.2) thus

brings the set of non-zero structure constants to (C.1), i.e. that of solution 17. From this

set, one identifies the following nilradical, with non-zero structure constants

n = {1, 2, 3, 4, 6} , f246, f
3
16, f

6
14 , (C.4)

where the numbers in n are the directions of the contributing algebra vectors. One verifies

that this is a five-dimensional, indecomposable, two-step nilpotent algebra, identified as

g5.3 in [70]. Since algebras generated from (C.1) are unimodular and indecomposable

(especially given their n is five-dimensional and indecomposable), the identification of the

nilradical implies that algebras of solutions 16 and 17 are among the two of table 27 of [70].

According to Theorem 8.3.4 and the following remark there, both algebras of that table

admit a lattice, so it is the case of our algebras as well. For completeness, we determine

an isomorphism for each algebra of solutions 16 and 17 to the algebra g−16.76 in table 27
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of [70]: this identifies them completely.6 We also verify the absence of an isomorphism to

the second algebra of that table.

We proceed similarly for solutions 14 and 15. Here are their structure constants and

nilradical

Solution 14: f145, f
1
46, f

2
35, f

2
45, f

2
46, f

3
15, f

3
25, f

6
14 , n = {1, 2, 3, 6} , (C.5)

Solution 15: f235, f
2
45, f

3
15, f

3
16, f

3
25, f

4
16, f

6
14 , n = {2, 3, 4, 6} , (C.6)

and their nilradical is in both cases the four-dimensional abelian algebra, denoted n = 4g1
in [70]. They are unimodular, and they look indecomposable, but given that their nilradical

is decomposable, one may have a doubt. This point needs to be settled for the identification

of the algebra. Let us first focus on solution 15: we can perform the following change of

basis

ea 6=2,3′ = ea , e2
′
= e2 +

f315
f325

e1 , e3
′
= e3 − f316

f416
e4 (C.7)

that leaves all structure constants invariant except

f315
′
= f316

′
= 0 , f245

′
= f245 + f235

f316
f416

= 0 . (C.8)

The fact f245
′

= 0 comes at first sight as a surprise, and is obtained with the values of

solution 15. It can be understood as due to the Jacobi identity along 2, expressed as

∀b, c, d, f2e[bf ecd] = 0⇔ f245f
4
16 + f235f

3
16 = 0 for the set (C.6) . (C.9)

This way, we are left with only four structure constants

Solution 15′ : f235
′
, f325

′
, f416

′
, f614

′
, (C.10)

which form two pairs along 2, 3, 5 and 1, 4, 6. The algebra is then decomposable, into two

three-dimensional solvable algebras, each of nilradical 2g1. Given the signs of the structure

constants, they are both identified as g−13.4 in [70]. The latter admits a lattice, and so does

the algebra g−13.4 ⊕ g−13.4 of our solution 15.

The same happens with our solution 14: we perform the change of basis

ea 6=2,3,6′ = ea , e2
′
= e2 +

f315
f325

e1 , e3
′
= e3 +

f146f
2
45 − f145f246
f146f235

e4 , e6
′
= e6 +

f145
f146

e5

(C.11)

where one verifies that the coefficient in front of e4 is non-zero. This leaves all structure

constants invariant except

f145
′
= f245

′
= f315

′
= 0 , f246

′
= f246 + f146

f315
f325

= 0 . (C.12)

6A first step in doing so is the following relabeling on the set (C.1)

1→ 5, 2→ 3, 3→ 1, 4→ 4, 5→ 6, 6→ 2 , f1
25, f

1
36, f

2
45, f

3
16, f

3
24, f

3
46, f

4
56, f

5
46 .

The resulting set of structure constant is close to that in the table.
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Again the last annihilation can be verified on the values of solution and holds thanks to

the Jacobi identity

∀b, c, d, f3e[bf ecd] = 0⇔ f315f
1
46 + f325f

2
46 = 0 for the set (C.5) . (C.13)

We are left with only four structure constants

Solution 14′ : f235
′
, f325

′
, f146

′
, f614

′
, (C.14)

which form two pairs along 2, 3, 5 and 1, 4, 6. As for solution 15, the algebra is then

decomposable, into two three-dimensional solvable algebras, each of nilradical 2g1. The

signs of the structure constants are different than those of solution 15, both sets are now

identified as g03.5 in [70]. That algebra admits a lattice, and so does the algebra g03.5 ⊕ g03.5
of our solution 14. We conclude that for these 4 solutions, lattices could be found so their

manifold M can be made compact, as further discussed in section 2.3.

For completeness, we give here the new metric obtained for solutions 14 and 15 after

the change of basis. With e′ = Me as in (C.7) and (C.11), the metric goes from δab to

gab with g = M−> δM−1. For convenience, we write down g−1: in both solutions, it is

expressed in terms of the initial structure constants as follows

g−1 =



1 g12

g12 1 + (g12)2

1 + (g34)2 g34

g34 1

1 g56

g56 1 + (g56)2


, (C.15)

Solution 14′ : g12 =
f315
f325

, g34 =
f146f

2
45 − f145f246
f146f235

, g56 =
f145
f146

,

Solution 15′ : g12 =
f315
f325

, g34 = −f
3
16

f416
, g56 = 0 .

Note that the two changes of basis preserve the sources pairs of directions, i.e. the pairs

(12), (34), (56) remain among themselves. One even has e1 ∧ e2 = e1
′ ∧ e2′, etc., so the

sources volume forms and contributions T I10 are unchanged. Similarly, the new metric is

block diagonal in (12), (34), (56), each block remaining of determinant 1. This will be useful

in [67]. We give explicitly in appendix A the numerical solutions 14′ and 15′ obtained after

the change of basis (C.11) and (C.7); the flux components, as well as the other variables,

are then expressed in the ea′ basis.

D 4d kinetic terms

In this appendix we compute on general grounds kinetic terms for 4d scalar fields, as in

the 4d action (3.1), obtained from certain fluctuations in a 10d theory. We consider the

following 10d metric, with 4 and 6-dimensional diagonal blocks

ds210 = τ−2(x) gµν(x) dxµdxν+ρ(x) gmn(x, y) dymdyn , µ = 0, . . . , 3, m = 4, . . . , 9 . (D.1)
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The metric gµν will eventually correspond to the 4d Einstein frame metric. For now, we

compute the 10d Ricci scalar, with Levi-Civita connection

R10 = τ2R4 + ρ−1R6 −∇µ
(
3τ4∂µτ−2 + τ2ρ−1gmn∂µ(ρgmn)

)
(D.2)

− 9

2
τ6(∂τ−2)2 − 2τ4∂µτ

−2∂µ(ρgmn)ρ−1gmn

− τ2

4
∂µ(ρgmn)ρ−1gmn∂µ(ρgpq)ρ

−1gpq +
τ2

4
∂µ(ρgmn)∂µ(ρ−1gmn) ,

where gµν is used to define covariant derivatives, lift indices, and in the squares. Here and

in the rest of this appendix, R6 denotes the Ricci scalar for gmn in (D.1), with purely 6d

derivatives. We already factored out the ρ-dependency, so it will eventually correspond

to R6(σ1, σ2) in (3.8). We now perform an integration by parts of the previous total

derivative, with a prefactor that will be justified below. In particular, the derivative being

4d, purely 6d dependent quantities denoted in the integral by the dots do not matter. With

g4 = det gµν we get∫
d4x
√
|g4|τ−2 . . .R10 (D.3)

=

∫
d4x
√
|g4| . . .

(
R4 + τ−2ρ−1R6 −

3

2
τ4(∂τ−2)2 − τ2∂µτ−2∂µ(ρgmn)ρ−1gmn

− 1

4
∂µ(ρgmn)ρ−1gmn∂µ(ρgpq)ρ

−1gpq +
1

4
∂µ(ρgmn)∂µ(ρ−1gmn)

)
.

For any invertible matrix A

∂µ ln detA = Tr(A−1∂µA) . (D.4)

Therefore, if det gmn = g6 is independent of xν , one deduces gmn∂µgmn = 0. This simplifies

drastically the previous expression towards∫
d4x
√
|g4|τ−2 . . .R10 (D.5)

=

∫
d4x
√
|g4| . . .

(
R4 + τ−2ρ−1R6 −

3

2
τ4(∂τ−2)2 − 6τ2ρ−1∂µτ

−2∂µρ

− 9ρ−2(∂ρ)2 − 3

2
ρ−2(∂ρ)2 +

1

4
∂µ(gmn)∂µ(gmn)

)
.

We now provide some context. We start with the 10d action

S =
1

2κ210

∫
d10x

√
|g10|e−2φ

(
R10 + 4(∂φ)210

)
, (D.6)

where the square is made with the 10d metric, and κ10 is a constant. We now take

eφ = eφ0(y)eδφ(x) and τ = e−δφρ
3
2 . With the metric (D.1), the previous action first becomes

S =
1

2κ210

∫
d4x
√
|g4|τ−2

∫
d6y
√
|g6|e−2φ0

(
R10 + 4(∂φ)210

)
. (D.7)
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If we now restrict to the case where g6 is independent of xµ, this justifies the integral

prefactor of (D.3), and we can use the result of the computation (D.5). In addition, one

computes

4(∂φ)210 = 4(∂φ0)
2
6 + 9ρ−2(∂ρ)2 + τ4(∂τ−2)2 + 6τ2ρ−1∂µτ

−2∂µρ . (D.8)

Combined with (D.5), we finally obtain

S =
1

2κ210

∫
d4x
√
|g4|

∫
d6y
√
|g6|e−2φ0

(
R4 + τ−2ρ−1R6 + 4(∂φ0)

2
6 (D.9)

− 1

2
τ4(∂τ−2)2− 3

2
ρ−2(∂ρ)2+

1

4
∂µ(gmn)∂µ(gmn)

)
.

Introducing

τ̂ =
√

2Mp ln τ , ρ̂ =

√
3

2
Mp ln ρ , M2

p =
1

κ210

∫
d6y
√
|g6|e−2φ0 , (D.10)

V =
1

2κ210

∫
d6y
√
|g6|e−2φ0

(
− τ−2ρ−1R6 − 4(∂φ0)

2
6

)
, (D.11)

we rewrite the above in the form of the 4d action (3.1), namely

S =

∫
d4x
√
|g4|

(
M2
p

2
R4 −

1

2

(
(∂τ̂)2 + (∂ρ̂)2 − 1

4
M2
p ∂µ(gmn)∂µ(gmn)

)
− V

)
. (D.12)

This formula, especially the 1
4∂µ(gmn)∂µ(gmn), matches the one used in appendix B of [11]

to compute the kinetic term of the third scalar field σ; we will use it here again for several

σI . Also, we match the conventions used in [11, 44], especially to derive the potential V ,

up to a redefinition of the 4d reduced Planck mass M2
p = 2M2

4 (there). While V is the same,

the reduced potential Ṽ = V/M2
4 used there is then altered by a factor of 2.

We now compute the kinetic terms for two fields σI=1,2(x), as e.g. those of section 3.1.

They are defined as follows

gmndymdyn = σA1 σ
B
2 δabe

aeb + σA1 σ
A
2 δcde

ced + σB1 σ
A
2 δefe

eef + σB1 σ
B
2 δghe

geh , (D.13)

where a, b = 1, . . . , p− 3−N0 , c, d = p− 3−N0 + 1, . . . , p− 3 ,

e, f = p− 3 + 1, . . . , 2(p− 3)−N0 , g, h = 2(p− 3)−N0 + 1, . . . , 6 ,

i.e. σAI is along p − 3 directions and σBI along 9 − p ones, and the related sources 1 and

2 share N0 common parallel directions. One has ea = eamdym where the vielbein eam(y)

does not depend on 4d coordinates. In addition, the powers, A = p− 9, B = p− 3, verify

A(p−3)+B(9−p) = 0. This allows to have g6 independent of xµ. This is most easily seen

by introducing the diagonal matrix M (we indicate in subscript the size of the blocks)

gmndymdyn = Mabe
aeb , (D.14)

M = diag
(
{σA1 σB2 }p−3−N0 , {σA1 σA2 }N0 , {σB1 σA2 }p−3−N0 , {σB1 σB2 }9−p−(p−3−N0)

)
,

g6 = (det e)2detM = (det e)2(σ1σ2)
A(p−3)+B(9−p) = (det e)2 .
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The kinetic terms for the σI is then given as above by

−1

4
∂µ(gmn)∂µ(gmn) = −1

4
∂µ(Mab)∂

µ(Mab) (D.15)

=
1

4

(
(−6AB)(σ−2

1 (∂σ1)2 + σ−2
2 (∂σ2)2)− 12(B2 − 6N0)(σ1σ2)−1∂σ1∂σ2

)
=

3

4

(
(−AB +B2 − 6N0)

(
∂ ln

σ1
σ2

)2

+(−AB − (B2 − 6N0))
(
∂ ln(σ1σ2)

)2)
.

It is easy from the last line to define canonical fields σ̂I . One also reproduces the result

of [11] for one σ by setting σ2 = 1. Applying this result to the case of this paper, i.e. p = 5

and N0 = 0, we obtain

S =

∫
d4x
√
|g4|

(
M2
p

2
R4 − V (D.16)

− 1

2

(
(∂τ̂)2 + (∂ρ̂)2 + 12M2

p

(
(∂ lnσ1)

2 + (∂ lnσ2)
2 − ∂ lnσ1∂ lnσ2

) ))
.

We rewrite this formula in (3.14).

Finally, the fluctuation of the 6d Ricci scalar contributes through six terms to the

scalar potential V as in (3.8). We give here the explicit contributions:

−2R1 =
(
f135

)2
+
(
f136

)2
+
(
f145

)2
+
(
f146

)2
+
(
f235

)2
+
(
f236

)2
+
(
f245

)2
+
(
f246

)2
,

−2R2 =
(
f315

)2
+
(
f316

)2
+
(
f325

)2
+
(
f326

)2
+
(
f415

)2
+
(
f416

)2
+
(
f425

)2
+
(
f426

)2
,

−2R3 =
(
f513

)2
+
(
f3514

)2
+
(
f523

)2
+
(
f524

)2
+
(
f613

)2
+
(
f614

)2
+
(
f623

)2
+
(
f624

)2
,

−R4 = f135 f
3
15 + f136 f

3
16 + f235 f

3
25 + f236 f

3
26

+ f145 f
4
15 + f146 f

4
16 + f245 f

4
25 + f246 f

4
26 , (D.17)

−R5 = f351 f
5
31 + f451 f

5
41 + f352 f

5
32 + f452 f

5
42

+ f361 f
6
31 + f461 f

6
41 + f362 f

6
32 + f462 f

6
42 ,

−R6 = f513 f
1
53 + f514 f

1
54 + f523 f

2
53 + f524 f

2
54

+ f613 f
1
63 + f614 f

1
64 + f623 f

2
63 + f624 f

2
64 ,

where we drop the background label 0 for simplicity.
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