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1 Introduction

String theory is usually formulated using the world-sheet approach. This expresses all

perturbative amplitudes in string theory as integrals over the moduli spaces of Riemann

surfaces with punctures, with the integrands computed in terms of appropriate correlation

functions in the world-sheet conformal field theory of matter and ghost fields. However the

integrands are often singular at the boundaries of the moduli spaces, leading to singular

integrals. In many cases one can nevertheless define the integral by analytic continuation in

the external momenta. However in some cases, involving mass renormalization and vacuum

shift, analytic continuation in external momenta is not enough to remove the divergences.

In these cases we need to use string field theory to get well defined finite answers for all

physical quantities [1].

The problem becomes particularly acute in the presence of D-instantons1 — D-branes

with Dirichlet boundary condition along all non-compact directions including (euclidean)

time, since open strings living on such D-branes do not carry any momenta and therefore

the divergences cannot be removed by analytic continuation in external momenta. Often

one can give physical arguments as to why the divergences cancel [4–6]; however since

this requires combining different amplitudes, after cancelling divergences we are left with

a finite ambiguity that cannot be fixed. A particular example of this arose in a recent

analysis of D-instanton contribution to two dimensional string theory [7]. However, since

string field theory is a regular ultra-violet finite quantum field theory with well defined

action (up to field redefinition) we do not expect any ambiguity to arise in computation of

amplitudes in string field theory. Indeed, one such ambiguity in the two dimensional string

1D-instantons have been recently explored in string field theory in a different context — as classical

solution on multiple D3-branes [2, 3]. Our goal here is to study perturbation theory in the presence of

D-instantons.
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theory was eventually resolved using string field theory, leading to results in agreement

with those in the dual matrix model [8].

The divergences in the world-sheet theory in the presence of D-instantons arise from

various sources. The first source comprises the collective coordinates of the D-instanton

associated with the freedom of translating the D-instanton along the space-time directions

transverse to the brane. These collective coordinates correspond to zero modes in string

field theory2 — modes with vanishing quadratic term in the action. Therefore the prop-

agator diverges, leading to divergences in the perturbative amplitude. In the world-sheet

description, these show up as logarithmic divergences in the integral over the moduli spaces

of Riemann surfaces with punctures. While the conventional world-sheet approach does not

give us a systematic procedure for dealing with these divergences, the treatment of these

collective modes in string field theory is the same as in ordinary quantum field theory.

Instead of treating these modes perturbatively, we leave them unintegrated at the begin-

ning, evaluate the Feynman diagrams using the propagators of the other modes, and after

summing over all the Feynman diagrams we integrate over the collective modes. This is ex-

pected to recover the energy-momentum conserving delta function which is initially absent

in the presence of D-instantons, since space-time translation invariance is broken. This

gives an unambiguous procedure for treating the divergence associated with the collective

modes. Indeed this treatment of the collective modes was used in [8] to fix a constant in

two dimensional string theory that remains ambiguous in the usual word-sheet approach.

The second source of divergence in the perturbative amplitudes, expressed as integrals

over moduli spaces of punctured Riemann surfaces, can be traced to open string tachyons

if they are present. Normally theories with tachyons are not sensible, unless we can find

a new field configuration where tachyons are absent, but D-instantons are different in this

respect. The presence of tachyonic open string state on a D-instanton implies that the

D-instanton represents a saddle point of the action and therefore the weight factor eS

in the path integral has a local extremum instead of a local maximum at the solution.

Nevertheless such instantons may give sensible contribution to the path integral, as was

convincingly demonstrated in the recent analysis in two dimensional string theory [7, 9].

In fact, D-instantons with tachyonic mode may be present even in supersymmetric string

theories, e.g. the non-BPS D-instanton in the type IIA string theory. From the point of

view of string field theory, since the open string modes do not carry momentum, there is no

difficulty in carrying out perturbation theory with tachyons — the propagator of a mode

of mass m is given by 1/m2 irrespective of whether m2 is positive or negative. However its

world-sheet representation, where we represent 1/m2 as
∫∞
0 ds e−m

2 s, diverges for m2 < 0.

Therefore, if instead of using the world-sheet representation of the amplitude we use the

string field theory representation, there is no divergence in perturbation theory. This has

been discussed extensively in [10, 11].

There is a third source of divergence that will be the main focus of this paper. This is

due to the presence of additional open string zero modes on the D-instanton that are not

associated with the collective coordinates of the D-instanton. For D-instantons in bosonic
2Note that the relevant part of string field theory, describing open strings living on the D-instanton, is

a zero dimensional field theory. Therefore we shall use the words mode and field interchangeably.
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string theory, these are associated with the pair of states |0〉 and c1c−1|0〉. These states

satisfy the Siegel gauge condition b0|Ψ〉 = 0 that is normally used in string field theory, but

the associated fields have vanishing kinetic term. Therefore the propagators associated with

these modes are infinite and perturbative amplitudes diverge. Furthermore, in this case we

cannot remove these divergences by treating them as collective modes. The remedy turns

out to be to alter the gauge fixing procedure in the zero mode sector — instead of using

the gauge fixed action we use the original gauge invariant action in this sector. Of course

this can not be done in an ad hoc fashion, but we show that the Batalin-Vilkovisky (BV)

formalism [12–14], that underlies the formulation of open-closed string field theory [15–17],

allows us to do this. The net effect of this is that instead of using the states |0〉 and c1c−1|0〉
in the expansion of the string field, we need to use the states |0〉 and c0|0〉 in the expansion.

This leads to well defined perturbation expansion without any divergent propagator.

The rest of the paper is organized as follows. In section 2 we review the organization

of the terms in D-instanton perturbation theory. In particular we discuss why we must

include in our analysis certain class of disconnected diagrams but exclude other classes

of disconnected diagrams. In section 3 we discuss various types of divergences that arise

in perturbation theory in the presence of D-instantons and their remedy. In particu-

lar, section 3.1 discusses the divergences due to the collective coordinates and open string

tachyons, section 3.2 discusses the divergences due to the zero modes from the ghost sector,

and section 3.3 contains a summary of the algorithm needed to tackle all the divergences

systematically. In section 4 we demonstrate the need for this new treatment of the ghost

zero modes by analyzing a specific amplitude — a disk amplitude with four external col-

lective modes of the open string. We show that in order to get the correct result, we must

include the contribution of the out of Siegel gauge mode, associated with the state c0|0〉,
in the computation. In section 5 we discuss similar issues for the ghost sector zero modes

for D-instantons in superstring theory.

2 Diagrammatics of D-instanton contribution

Let us consider a quantum field theory with instanton solutions. In order to identify the

instanton contribution to the Green’s function of a collection of operators, which we shall

denote by O, we shall divide the path integral over the fields Φ into different sectors labelled

by their instanton number. For simplicity we shall analyze the contribution up to one

instanton sector, but the analysis can be easily generalized to the multi-instanton sector.

We denote by Φp the fluctuations around the vacuum solution and by ΦI the fluctuations

around the single instanton solution, and express the correlation function of O as3

〈O〉 =

∫
DΦp exp[Sp]O +N e−C/gs

∫
DΦI exp[SI ]O∫

DΦp exp[Sp] +N e−C/gs
∫
DΦI exp[SI ]

, (2.1)

where −C/gs is the instanton action and N is a normalization constant that gives the

ratio of the integration measure in the instanton sector and in the perturbative sector. Sp

3Throughout the paper we shall use the convention that the action S appears in the integrand of

Euclidean path integral as eS .

– 3 –



J
H
E
P
0
8
(
2
0
2
0
)
0
7
5

denotes the action of the fluctuating fields Φp around the vacuum solution and SI denotes

the action of the fluctuating fields ΦI around the one instanton solution.

If the instanton under consideration represents a D-instanton in string theory, then the

various terms in this expansion have clear interpretation.
∫
DΦp exp[Sp]O gives the ampli-

tudes containing world-sheets that do not have any boundary ending on the D-instanton,

but we must allow world-sheets with multiple disconnected components, including vacuum

bubbles which do not have any external vertex operator insertion.
∫
DΦI exp[SI ]O gives

the perturbative amplitudes containing world-sheets that may have multiple disconnected

components, possibly including vacuum bubbles, but at least one of the world-sheets must

have at least one boundary ending on the D-instanton. The factors in the denominator

have similar interpretation, except that there is no external vertex operator insertion.

Keeping terms containing at most one power of e−C/gs , we can expand (2.1) as

〈O〉 =

∫
DΦp exp[Sp]O∫
DΦp exp[Sp]

+N e−C/gs
∫
DΦI exp[SI ]O∫
DΦp exp[Sp]

−N e−C/gs
∫
DΦp exp[Sp]O∫
DΦp exp[Sp]

∫
DΦI exp[SI ]∫
DΦp exp[Sp]

. (2.2)

We can now interpret the various terms in string theory as follows.

1. The first term is the perturbative amplitude, possibly containing disconnected world-

sheets but there should be no boundary ending on D-instanton. The division by the

denominator removes from this all factors containing disconnected bubbles. However,

disconnected world-sheets are still allowed as long as each component has at least one

vertex operator insertion.

2. The second term represents amplitudes in the instanton background, but the division

by the denominator removes all factors containing disconnected bubbles in the pertur-

bative amplitude. Note that we do not remove bubbles in the instanton background.

For D-instantons this means that we sum over world-sheets for which each connected

component has either insertion of an external vertex operator, or a boundary ending

on the D-instanton, or both.

3. The third term is a subtraction term containing product of two factors. The first

one represents the perturbative amplitude with the bubble diagrams removed. The

second term represents vacuum bubble diagrams in the presence of the instanton, but

containing no factors with perturbative vacuum bubble. For D-instantons this means

that we must remove all diagrams in which all the external state vertex operators end

on world-sheets without any boundary ending on the D-instanton, even if they are

multiplied by vacuum bubbles containing boundaries that do end on the D-instanton.

Therefore the rules for computing a single D-instanton contribution to a given amplitude

is to sum over all world-sheet diagrams, possibly containing disconnected components, but

subject to the following conditions:

1. Each of these disconnected components must have either at least one boundary ending

on the D-instanton or at least one closed string vertex operator.

– 4 –
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2. At least one of the disconnected components must have both, a boundary ending on

the D-instanton and a closed string vertex operator insertion.

Each such contribution will be multiplied by a single factor of N e−1/gs , irrespective of the

number of disconnected components it has.

3 Dealing with divergences

We shall use string field theory to evaluate the D-instanton contribution to the physical

amplitudes. As will be explained shortly, this is needed to deal with infrared divergences.

The string field theory that is relevant for this problem is the interacting field theory of

open and closed strings, with open strings satisfying boundary conditions associated with

the D-instanton. The collection of open and closed string fields together correspond to the

set of fields ΦI in (2.1)), ((2.2), with the open strings describing modes that are localized on

the D-instanton and closed strings describing modes that are not localized on the instanton.

In contrast, the modes Φp with action Sp in (2.1)), ((2.2) are described by closed string

field theory without any D-instanton background.

In any amplitude, the external states of interest will be closed strings (or in general

situation open strings living on D-branes other than D-instantons) — the open strings

living on the transient D-instantons do not correspond to asymptotic states. However,

a subset of the open string fields represent the collective coordinates of the D-instanton,

associated with translation along space-time directions, and we cannot carry out the usual

perturbation theory in which these zero modes propagate in the internal state, — they

have divergent propagator. Therefore in the path integral over the string fields ΦI in (2.2),

we must leave these zero modes unintegrated while integrating over all other open string

fields, and carry out integration over these zero modes at the very end. In perturbation

theory, this means that we must subtract these zero mode contributions from the internal

open string propagators, allow arbitrary number of these zero modes to appear as exter-

nal states together with the closed string states, sum over all Feynman diagrams and all

possible number of insertions of the zero mode fields φ in amplitudes with a given set of

external closed string states, and at the end integrate over these zero modes φ explicitly.

On physical grounds, these zero mode integrals are expected to restore the space-time mo-

mentum conserving delta functions that are otherwise missing in the amplitudes in the

presence of D-instantons. In the following we shall discuss the systematic procedure for

doing this analysis in string field theory.4

3.1 Tachyons and collective modes

The world-sheet expressions for the amplitudes in string theory often diverge from the

region where certain number of vertex operators come together, or, more generally, when

a Riemann surface with punctures degenerates. Since the divergences of interest to us will

4The only ambiguity that does not seem to be resolved in the current formulation of string field theory

is the overall normalization constant N in (2.1), (2.2). This is related to the freedom of adding a constant

to the string field theory action around the D-instanton.
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arise from integration over the open string fields, we shall focus exclusively on these —

divergences associated with closed strings, if present, can be dealt with by following the

procedure described in [10]. The origin of these divergences in string field theory can be

understood by noting that the world-sheet approach replaces the 1/L0 factor in the Siegel

gauge open string propagator by:

1/L0 →
∫ 1

0
dq qL0−1 . (3.1)

This is an identity for L0 > 0 but fails for L0 ≤ 0. For L0 < 0 the left hand side is well

defined but the right hand side is divergent. The world-sheet description of the amplitude

uses the right hand side and is therefore divergent, while string field theory uses the left

hand side and gives a finite result. Therefore such divergences in the world-sheet amplitude

may be dealt with simply by suitably parametrizing the moduli space of Riemann surfaces

near degeneration points by variables induced from string field theory, including q, and

then replacing integrals of the form
∫ 1
0 dq q

β−1 by 1/β for β < 0.

For L0 = 0 both sides diverge. This is a reflection of the presence of zero mode(s) in the

open string sector. While the world-sheet approach does not provide us with a systematic

way of dealing with these divergences, in string field theory typically the zero modes would

have definite interpretation and therefore there is an unambiguous procedure for dealing

with them. In this subsection we shall describe the procedure for dealing with one set of

these zero modes — those associated with the collective coordinates of the D-instanton.

We shall denote these zero modes collectively by φ. As already mentioned, the solution

string field theory offers for dealing with such zero modes is to first carry out the path

integral over all string fields other than φ, for fixed background φ, and then carry out

the integration over φ explicitly. In the world-sheet computation, this translates to the

following algorithm [8]:

1. Removing integration over these zero modes in the path integral corresponds to re-

moving the singular contributions due to these zero modes from the internal open

string propagators of the Feynman diagrams. In the world-sheet description, this re-

quires parametrizing the moduli space of Riemann surfaces near degeneration points

by variables induced from string field theory, including q, and then removing the

singular contribution to the integral proportional to
∫ 1
0 dq/q due to these zero modes.

2. Since we are supposed to carry out the path integral with fixed background φ, we

have to compute amplitudes with external φ states (and closed string states) even

though we are ultimately interested in amplitudes with external closed strings only.

Near each degeneration point we follow the subtraction scheme mentioned in point 1.

3. After computing the relevant amplitude in background φ, we carry out integration

over φ. This is expected to restore momentum conservation that is broken in the

presence of a single D-instanton. For example if ξ denotes the set of collective coor-

dinates associated with space-time translation and p denotes the total momentum of

– 6 –
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external closed strings in an amplitude, then the amplitude is expected to be propor-

tional to eip.ξ so that integration over ξ gives a factor of δ(p). However, this may not

be manifest, since the modes φ that arise from string field theory may be related to

the collective coordinates ξ by a field redefinition. In that case, the easiest way to see

the momentum conserving delta function arising out of the zero mode integration will

be to try to use a specific version of string field theory in which the modes φ coming

from string field theory coincide with the collective coordinates ξ without any field

redefinition [8]. In such cases one recovers the momentum conserving delta function

directly from the integration over the zero modes φ arising in string field theory. Al-

ternatively, one could use a generic version of string field theory but find the explicit

field redefinition that relates the open string modes φ to the collective coordinates ξ

that have the coupling proportional to eip.ξ [18]. The Jacobian associated with this

field redefinition will have to be taken into account in the analyis. After this one can

carry out the integration over the ξ modes and recover the momentum conserving

delta function.

Before concluding this subsection, we shall describe the vertex operator for the zero

modes associated with the collective coordinates. Let us for definiteness, consider the zero

mode associated with translation along the (euclidean) time coordinate. The unintegrated

world-sheet vertex operator associated with the corresponding open string state is given

by c ∂X where b, c denote the usual world-sheet ghost fields and X is the world-sheet

scalar labelling the time direction. The zero modes associated with translation along other

directions can be described in a similar way.

3.2 Ghost zero modes and the inadequacy of Siegel gauge

Collective coordinates are not the only open string zero modes in string field theory in

the presence of a D-instanton — there are other zero modes arising in the ghost sector

that require different treatment. In order to understand this we need to begin with a brief

review of the BV formalism [12–14].

In the BV formalism for open-closed string field theory [16, 17], we take a generic

open string field |Ψo〉 or closed string field |Ψc〉 to be a state in the world-sheet CFT

of arbitrary ghost number (subject to the condition b−0 |Ψc〉 = 0 = L−0 |Ψc〉 for closed

string fields) and expand it as linear combination of a complete set of basis states.5 The

coefficients of expansion are the dynamical variables of the theory, with the coefficients of

the open string states of ghost number ≤ 1 and closed string states of ghost number ≤ 2

considered as fields, and the coefficients of the open string states of ghost number ≥ 2 and

closed string states of ghost number ≥ 3 considered as anti-fields. Up to signs, the pairing

between fields and anti-fields is done via BPZ inner product, with an insertion of c−0 in the

inner product of closed string states. For example, if |ϕr〉 denotes a basis of open string

states of ghost number ≤ 1 and |ϕr〉 is a basis of open string states of ghost number ≥ 2,

satisfying the orthonormality condition 〈ϕr|ϕs〉 = δrs , and if we expand the open string

5We define b±0 = (b0 ± b̄0), L±
0 = (L0 ± L̄0) and c±0 = (c0 ± c̄0)/2. Furthermore, we assign ghost number

1 to c, c̄ and ghost number −1 to b, b̄.
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field as
∑

r {ψr|ϕr〉+ ψr|ϕr〉}, then ψr is the anti-field of ψr up to a sign. Similarly if

|φr〉 denotes a basis of closed string states of ghost number ≤ 2 and |φr〉 is a basis of

closed string states of ghost number ≥ 3, each annihilated by b−0 and L−0 , and satisfying

the orthonormality condition 〈φr|c−0 |φs〉 = δrs , and if we expand the closed string field as∑
r {χr|φr〉+ χr|φr〉}, then χr is the anti-field of χr up to a sign. It is however possible

to define new fields and anti-fields by making a symplectic transformation that preserves

the anti-bracket. Therefore if we introduce new orthonormal basis |ϕ̃r〉 and |ϕ̃r〉 for open

string states and |φ̃r〉 and |φ̃r〉 for closed string states, with 〈ϕ̃r|ϕ̃s〉 = δrs , 〈ϕ̃r|ϕ̃s〉 = 0,

〈ϕ̃r|ϕ̃s〉 = 0 and 〈φ̃r|c−0 |φ̃s〉 = δrs , 〈φ̃r|c−0 |φ̃s〉 = 0, 〈φ̃r|c−0 |φ̃s〉 = 0, and expand the open

string field as
∑

r{ψ̃r|ϕ̃r〉+ ψ̃r|ϕ̃r〉} and the closed string field as
∑

r{χ̃r|φ̃r〉+ χ̃r|φ̃r〉}, then

we can treat ψ̃r and χ̃r as fields and ψ̃r and χ̃r as the corresponding anti-fields up to sign.

In the BV formalism, the path integral of string field theory, weighted by the exponen-

tial of the action, is to be carried out over a Lagrangian submanifold, which corresponds

to setting the anti-fields to zero, possibly after making a symplectic transformation. The

result of the path integral can be shown to be (formally) independent of the choice of

the Lagrangian submanifold. If we use the original definition of fields and anti-fields and

define the Lagrangian submanifold to be the subspace ψr = 0, χr = 0, then the remaining

open string fields have ghost number ≤ 1 and the remaining closed string fields have ghost

number ≤ 2. Ghost number conservation then implies that the action depends only on the

open string fields of ghost number 1 and closed string fields of ghost number 2, i.e. the

classical fields. The integration over the open fields of ghost number ≤ 0 and closed string

fields of ghost number ≤ 1 decouple for physical amplitudes, and effectively corresponds

to division by the volume of the gauge group. The resulting path integral can be identified

as the conventional path integral over all the fields without any gauge fixing, since all the

classical fields — open string fields of ghost number 1 and closed string fields of ghost num-

ber 2, are to be integrated over. This is formally the correct path integral, but produces

singular perturbation expansion, since the gauge symmetry remains unfixed. In particular

the kinetic operator will have zero eigenvalues due to the presence of pure gauge states of

the form QB|s〉.
On the other hand, if we choose to expand the string fields in the new basis |ϕ̃r〉, |ϕ̃r〉,

|φ̃r〉 and |φ̃r〉, satisfying

c0|ϕ̃r〉 = 0, b0|ϕ̃r〉 = 0, c+0 |φ̃
r〉 = 0, b+0 |φ̃r〉 = 0, (3.2)

and define the Lagrangian submanifold by setting ψ̃r and χ̃r to zero, then the remaining

open string field
∑

r ψ̃
r|ϕ̃r〉 and the closed string field

∑
r χ̃

r|φ̃r〉 satisfy the Siegel gauge

conditions b0|Ψo〉 = 0, b+0 |Ψc〉 = 0. The resulting path integral is now carried out over

fields of all ghost numbers and corresponds to the usual gauge fixed path integral, leading

to well defined perturbation theory in a generic open-closed string field theory. We shall see

however that in the presence of D-instantons this procedure leads to singular path integral.

For open string fields living on D-instantons, which do not carry any momentum,

special care is needed to deal with the ghost excitations carrying L0 = 0. For this let us

consider the basis states |0〉, c0|0〉, c1c−1|0〉 and c1c0c−1|0〉, and expand the open string

– 8 –
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field in this sector as

ψ1 c0|0〉+ ψ2|0〉+ ψ1 c1c−1|0〉+ ψ2 c1c0c−1|0〉 . (3.3)

In the original formulation, ψ1 and ψ2 are fields and ψ1 and ψ2 are anti-fields. Therefore

the gauge invariant path integral will correspond to setting ψ1 and ψ2 to 0. On the other

hand the Siegel gauge path integral will correspond to setting ψ1 and ψ2 to 0. However

in this case the quadratic term in the action, being proportional to L0, does not depend

on the remaining fields ψ2 and ψ1 that multiply the L0 = 0 states. This makes the path

integral over ψ2 and ψ1 ill defined in perturbation theory. In particular these will lead to

additional logarithmic divergences in the loop amplitudes of the type (3.1) with L0 = 0

which cannot be regarded as due to the collective modes and therefore cannot be removed by

the procedure described in section 3.1. This is already visible e.g. in the annulus amplitude

analyzed in [7]. To solve this problem we shall choose the Lagrangian submanifold in this

sector to be ψ1 = 0, ψ2 = 0, corresponding to the original definition of fields and anti-fields.

In this case the quadratic term in the action, proportional to 〈Ψ|QB|Ψ〉, does depend on ψ1

since c0|0〉 is not BRST invariant, but does not depend on ψ2 since |0〉 is BRST invariant.

In fact once we integrate out the modes with L0 > 0, for which we can use Siegel gauge

condition without any problem, the only field in the expansion of |Ψo〉 multiplying ghost

number 6= 1 state is ψ2 and as a result the whole effective action becomes independent of

ψ2 due to ghost number conservation of world-sheet correlators. Therefore the integration

over ψ2 factors out of the path integral, and its contribution can be absorbed into the

overall normalization factor (N in (2.2)), leading to well defined perturbation theory.

To understand this point better, it will be useful to recall the physical significance

of ψ2 integration. Since ψ2 is the coefficient of a ghost number 0 state |0〉 of the open

string, it represents a gauge transformation parameter, or equivalently the ghost field cor-

responding to the gauge transformation parameter. BRST invariance of |0〉 shows that the

gauge transformation under consideration actually represents a rigid gauge transformation.

Indeed, this can be identified with the rigid U(1) gauge transformation under which any

open string stretching from the D-instanton to another D-brane picks up a constant phase.

Therefore integration over ψ2 corresponds to division by the volume of this U(1) group.

Since this is a constant factor, dropping this integral just changes the overall normalization

that can be absorbed in N .

However, as in the case of the collective coordinates discussed earlier, the open string

gauge transformation parameter (equivalently ghost field) ψ2 may be related to the rigid

U(1) gauge transformation parameter θ by a complicated field dependent normalization.

This can be detected by comparing the gauge transformation in open string field theory

generated by ψ2|0〉 with the U(1) gauge transformation that gives a simple phase eiθ for

any open string stretching from the D-instanton to another D-brane. If there is such a non-

trivial field dependent normalization relating ψ2 and θ, we need to change variable from

ψ2 to θ, regarding both as grassmann odd ghost fields, and then drop the integration over

θ. The Jacobian associated with this change of variables will contribute to the integration

measure and therefore to the effective action as in the case of integration over the open

string zero mode φ discussed earlier.
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To summarize, while in the L0 6= 0 sector we continue to use the Siegel gauge condition

b0|Ψo〉 = 0, in the L0 = 0 sector we use the original definition of fields and anti-fields to

define the Lagrangian submanifold, i.e. set the components of the open string field with

ghost number ≥ 2 to zero. This removes the contribution due to the ghost zero modes from

the propagator. Therefore, in the perturbative amplitudes, we can remove the q−1 terms

in (3.1) arising due to ghost zero modes, just as we would remove the q−1 terms arising

from the zero modes associated with the collective coordinate. However we now have to

explicitly include the contribution from the ψ1 propagator — a contribution that is absent

in the usual world-sheet expression for the amplitude.

In order to evaluate the contribution to the amplitude due to the ψ1 field, we shall

need the form of the quadratic term in the action of the field ψ1. For later use we shall

compare this with the quadratic term in the action for the tachyon field ψ0 multiplying

c1|0〉. If we expand the open string field |Ψo〉 of ghost number 1 as

|Ψo〉 = ψ0c1|0〉+ ψ1c0|0〉+ · · · , (3.4)

then the quadratic term in the action is given by,

1

2
〈Ψo|QB|Ψo〉 =

1

2
(ψ0)2 + (ψ1)2 + · · · , (3.5)

where we have used {QB, c0} = 2 c1c−1, the normalization convention

〈0|c1c0c−1|0〉 = 1 , (3.6)

and the fact that the BPZ conjugation, that takes |Ψo〉 to 〈Ψo|, is generated by z →
−1/z. It follows from (3.5) that the propagator of the tachyon ψ0 is −1, which agrees

with (3.1). (3.5) also shows that in the same normalization, the propagator for ψ1 is −1/2.

3.3 Summary of the algorithm

We can summarize the procedure for dealing with the divergences associated with open

string degeneration as follows:

1. We compute amplitudes involving external on-shell closed string states and arbitrary

number of insertions of the on-shell open string zero modes φ associated with space-

time translation of the D-instanton. These amplitudes can be expressed as integral

over the moduli space of punctured Riemann surfaces.

2. Near any degeneration where a pair of open string punctures are sewed together

by a long strip, we change variables so that the integral over the moduli space of

Riemann surface is expressed as an integral over the parameters arising from string

field theory. One of them corresponds to the sewing parameter q that comes from

Schwinger parameter representation of the propagator as given in (3.1). Others are

integration parameters that enter into the definition of the interaction vertex of string

field theory. In case of multiple degenerations where the Riemann surface has several

long strips, there are multiple sewing parameters q1, q2, · · · , — one for each open

string propagator.
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3. We expand the integrand as a power series in q. Using (3.1), an integral of the type∫ 1
0 dqq

−1+h is replaced by 1/h both for h > 0 and for h < 0, as long as h 6= 0. For

multiple degenerations, we do this for each variable qi.

4. A term in the integral of the form
∫ 1
0 dq q

−1 is set to zero. This corresponds to

dropping the path integral over the Siegel gauge states with L0 = 0. These include

the zero modes φ associated with collective coordinates, as well as the zero modes ψ1,

ψ2 introduced in (3.3). The justification for dropping the path integral over ψ1 and ψ2

has been described in section 3.2. On the other hand, as discussed in section 3.1, the

integration over the zero modes corresponding to collective coordinates is supposed

to be carried out at the end.

5. We need to compare the open string field theory gauge transformation generated

by ψ2|0〉 with the simple U(1) gauge transformation that gives a phase eiθ for any

open string stretched from the D-instanton to another D-brane. If ψ2 and θ are

related by field dependent normalization, we need to change variable from ψ2 to θ,

regarding both as grassmann odd ghost fields, and then drop integration over θ. The

Jacobian associated with this change of variables needs to be taken into account in

all subsequent computations.

6. We now need to add the contribution from the intermediate ψ1 state for each open

string propagator. This requires computing the relevant amplitude involving insertion

of the states c0|0〉 and multiplying it by the ψ1 propagator computed from (3.5). Since

c0|0〉 is not a primary state, the result will depend on the choice of local coordinate

system in which the corresponding vertex operator is inserted. This information

comes from string field theory.

7. The range 0 ≤ q ≤ 1 typically will span a subspace of the full moduli space near a

degeneration point. We can carry out integration over the rest of the moduli space

using the original variables, since there are no divergences coming from this region.

This corresponds to contribution from contact term vertices in string field theory.

8. After computing the amplitudes by summing over all Feynman diagrams, we sum

over all possible number of insertions of φ for a given set of external closed string

states. This gives a function of the zero modes φ. We then integrate over φ to get

the D-instanton contribution to the closed string amplitude. On general grounds

we expect that there exists appropriate change of variables from φ to the collective

coordinates ξ so that integration over φ reduces to a form proportional to
∫
dξ eip.ξ,

where p is the total momentum carried by the external closed strings in an amplitude.

This will recover the momentum conserving delta function δ(p).

4 Disk four point function

In this section we shall illustrate the breakdown of the Siegel gauge in the perturbative

amplitudes. We shall consider the φ-φ-φ-φ four point function on the disk, where, for
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definiteness, we shall choose φ to be the collective mode associated with the freedom

of translating the D-instanton along the (euclidean) time direction. Since this is a tree

amplitude, and since ψ1 is not a classical field, we shall not see the need for dropping ψ1 in

the computation of this amplitude, but we shall see the need for including the contribution

from the field ψ1 separately. Furthermore, since the φ-φ-φ three point coupling vanishes

due to time reversal symmetry, we shall not need to remove the contribution of the φ field

in the internal propagator.

Amplitudes of this type have been analyzed previously in [19–22] for computing ef-

fective potential of massless fields. However these computations used a particular form of

string interaction vertex which has an additional Z2 symmetry known as twist symmetry,

and due to the use of twist symmetric three point vertex, they did not encounter tree level

breakdown of Siegel gauge for this amplitude. Nevertheless a field closely related to ψ1 was

discussed in [22] (called ϕ2 there) in the context of heterotic string theory, where it was

observed that the coupling of this field to a pair of massless fields vanishes due to a specific

symmetry, and therefore this field does not appear as intermediate state in the four point

scattering amplitude. The role of twist symmetry in our analysis will be discussed later in

this section.

Even though our eventual interest is in computing amplitudes with one or more external

closed strings, a disk 4-point function with four φ’s could arise as a disconnected part of an

amplitude with closed strings, e.g. the product of a disk one-point function of a closed string

and disk four point function of open strings. For this reason, it is important to evaluate

this amplitude. Our analysis will be independent of whether the other coordinates are

compact or non-compact, and they may even be replaced by a c = 25 Liouville theory,

representing two dimensional string theory.

Before we proceed with the actual computation, let us discuss what result one should

expect. The amplitude under consideration can be interpreted as the contribution to

the φ4 term in the effective action after integrating out all the open string modes other

than those associated with the collective coordinates. Since the effective action should

be independent of the collective coordinates, and since the field φ is associated with the

collective coordinate describing translation of the D-instanton along the time direction, the

effective action should not depend on φ. One might worry that φ may be related to the

actual collective coordinate by a field redefinition. However, since the effective action is

altogether independent of the collective coordinates, no field redefinition can produce a φ

dependence of the effective action. Therefore we expect the four point amplitude to vanish.

This is what we shall now proceed to verify.

If we denote the world-sheet scalar field corresponding to the time coordinate by X,

then the unintegrated vertex operator for φ is c∂X and the integrated vertex operator is

∂X. Then, up to a constant of proportionality, the amplitude is given by:

A =

∫ 1

0
dy 〈c∂X(0)∂X(y)c∂X(1)c∂X(∞)〉 =

∫ 1

0
dy

{
1

y2
+

1

(1− y)2
+ 1

}
. (4.1)

Note that we have included the contribution from only the 0 ≤ y ≤ 1 region since the

contribution from the other regions are related to these by permutation of the external
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states accompanied by SL(2,R) transformations, and since all external states are identical,

they produce identical contributions. The integral (4.1) diverges from the y = 0 and y = 1

regions. In particular, near y = 0 and y = 1 the integrand in (4.1) has double poles

indicating tachyon propagation. This is expected, since the operator product of ∂X with

itself generates an identity operator. There is however no ∂X in the operator product of

∂X with itself, therefore we do not need to subtract any collective coordinate contribution

from the internal propagator. Our goal will be to show how to extract a finite result

from (4.1) following the procedure described in section 3. As we shall see, we also need

to include the additional contribution due to the ψ1 propagator that is not present in the

usual perturbative world-sheet amplitudes.

In order to proceed, we need to introduce the three point interaction vertex of three

open strings. For external off-shell open string states A1, A2, A3 the vertex takes the form:

〈f1 ◦A1(0) f2 ◦A2(0) f3 ◦A3(0)〉 , (4.2)

where f1, f2 and f3 are three conformal transformations, and f ◦ A is the conformal

transform of A by f . We shall choose the functions fi such that f1(0) = 0, f2(0) = 1,

f3(0) = ∞. We also take the vertex to be cyclically symmetric by requiring that the

transformation

z → 1

1− z
, (4.3)

cyclically permutes f1(w), f2(w) and f3(w). This makes the vertex invariant under cyclic

permutation of A1, A2 and A3. In principle the vertex needs to be fully (anti-)symmetrized

under the permutations of A1, A2 and A3. This can be done by averaging over the per-

mutations of the Ai’s, but since the vertices we shall use will always have two identical

external states, this will be automatic.

For simplicity we shall take the fi’s to be SL(2,R) transformations. The most gen-

eral SL(2,R) transformations satisfying the desired properties are labelled by a pair of

parameters α and γ:

f1(w1) =
2w1

2α+ w1(1− γ)
, f2(w2) =

2α+ w2(1− γ)

2α− w2(1 + γ)
, f3(w3) = −2α− w3(1 + γ)

2w3
.

(4.4)

We shall take α to be a large number and ignore terms involving negative powers of α,

although all final results are independent of α. Denoting by z the global coordinate on

the upper half plane, we can identify z with fi(wi) neat wi = 0. Inverting these relations

we get:

w1 = α
2 z

2− z + γ z
, w2 = 2α

z − 1

z + 1 + γ(z − 1)
, w3 = 2α

1

1 + γ − 2 z
. (4.5)

We shall now consider the s, t and u-channel diagrams obtained by gluing a pair of these

vertices. Since the external states are all identical, it is sufficient to consider only one of

these diagrams — the others give identical contribution. We shall call this the contribution

from the amplitude with a propagator — to be distinguished from the contribution from

the four point interaction vertex which does not have a propagator. For this we introduce
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two upper half planes labelled by z, z′ and local coordinates wi, w
′
i with 1 ≤ i ≤ 3 on each

of these planes and make the identification:

w2w
′
2 = −q . (4.6)

Using (4.5) we get:

4α2 z − 1

z + 1 + γ(z − 1)

z′ − 1

z′ + 1 + γ(z′ − 1)
= −q . (4.7)

The four external punctures of the four point function are located at z = 0,∞ and z′ =

0,∞. In the z plane they are located at

z =∞, z = 0, z′ =∞ ⇒ z =
4α2 + (γ2 − 1)q

4α2 + (1 + γ)2q
, z′ = 0 ⇒ z =

4α2 + (1− γ)2 q

4α2 + (γ2 − 1)q
.

(4.8)

We shall now make an SL(2,R) transformation to bring three of the punctures at 0, 1

and ∞, keeping the fourth puncture between 0 and 1. Under SL(2,R) transformation

ẑ = z
4α2 + (γ2 − 1)q

4α2 + (1− γ)2 q
, (4.9)

the punctures are located at:

ẑ =∞, ẑ = 0,

ẑ =
4α2 + (γ2 − 1)q

4α2 + (1− γ)2 q

4α2 + (γ2 − 1)q

4α2 + (1 + γ)2q
ẑ = 1 .

= 1− q

α2
+

(1 + γ2)q2

2α4
+O

(
q3

α6

)
, (4.10)

On the other hand under SL(2,R) transformation

z̃ = 1− 1

z

4α2 + (γ2 − 1)q

4α2 + (1 + γ)2 q
, (4.11)

the punctures are located at

z̃ = 1, z̃ =∞,

z̃ = 0, z̃ = 1− 4α2 + (γ2 − 1)q

4α2 + (1 + γ)2 q

4α2 + (γ2 − 1)q

4α2 + (1− γ)2 q

=
q

α2
− (1 + γ2)q2

2α4
+O

(
q3

α6

)
. (4.12)

Eqs. (4.8), (4.10) and (4.12) give equivalent representations of the puncture locations for

the Feynman diagrams with a propagator.

Let us now turn to the amplitude (4.1). For analyzing the singular contribution to (4.1)

from near y = 1, we denote the location of the third puncture in (4.10) by y. This gives:

1− y =
q

α2
− (1 + γ2)q2

2α4
+O(q3/α6) . (4.13)
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The range 0 ≤ q ≤ 1 corresponds to:

1− 1

α2
+

(1 + γ2)

2α4
+O(α−6) ≤ y ≤ 1 . (4.14)

We also have

(1− y)−2dy = −α2 q−2 dq +O(α−2) . (4.15)

Our strategy will be to change variable from y to q in the range (4.14) and interpret the

contribution from this region as coming from Feynman diagram with a propagator, with the

divergence in the integrand as due to tachyon propagating along the internal propagator.6

Therefore we write∫ 1

0
dy (1− y)−2 =

∫ 1− 1
α2

+
(1+γ2)

2α4
+O(α−6)

0
dy (1− y)−2 + α2

∫ 1

0

dq

q2
+O(α−2) . (4.16)

Using (3.1), we get the replacement rule:∫ 1

0
dq q−2 ⇒ −1 . (4.17)

Substituting this into (4.16) we get:∫ 1

0
dy (1− y)−2 = −1 +

{
1

α2
− (1 + γ2)

2α4

}−1
− α2 +O(α−2) =

γ2 − 1

2
+O(α−2) . (4.18)

Such change of variable should also be done for the y−1 and 1 terms, but since they are

not singular at y = 1, the change of variable will have no effect on the value of the integral.

Similarly for evaluating the integral
∫ 1
0 dy y

−2, which is singular near y = 0, we denote

the last puncture in (4.12) by y. This gives

y = 1− 4α2 + (γ2 − 1)q

4α2 + (1 + γ)2 q

4α2 + (γ2 − 1)q

4α2 + (1− γ)2 q
=

q

α2
− (1 + γ2)q2

2α4
+O(

q3

α6
) . (4.19)

In this case the range 0 ≤ q ≤ 1 corresponds to

0 ≤ y ≤ 1

α2
− (1 + γ2)

2α4
+O(α−6) . (4.20)

Also we have

dy y−2 = α2 q−2 dq +O(α−2) . (4.21)

Following the same strategy as before, we write∫ 1

0
dy y−2 = α2

∫ 1

0
dq q−2 +

∫ 1

1
α2
− (1+γ2)

2α4
+O(α−6)

dy y−2 +O(α−2) . (4.22)

6Physically, the contribution from the region (4.14) may be regarded as coming from the s-channel

diagram, the contribution from the region (4.20) may be regarded as coming from the t-channel diagram,

and the contribution from the rest of the region of y-integration may be interpreted as coming from the four

point contact interaction. For the particular cyclic ordering we have chosen, there is no u-channel diagram.
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After using the replacement rule (3.1) for the first term, we get,∫ 1

0
dy y−2 = −α2 − 1 +

{
1

α2
− (1 + γ2)

2α4

}−1
+O(α−2) =

γ2 − 1

2
+O(α−2) . (4.23)

Finally we also have the non-singular integral∫ 1

0
dy = 1 . (4.24)

Adding (4.18), (4.23) and (4.24), taking α→∞ limit, and using (4.1), we get

A = γ2 . (4.25)

This however is not the full story. As argued in section 3.2, we also need to add to

this the contribution due to the ψ1 exchange. From (3.5) we see that this contribution is

similar to the tachyon exchange contribution Aψ0 , except for two differences. First, due

to the absence of the 1/2 factor multiplying the (ψ1)2 term in (3.5), the ψ1 propagator is

1/2 of the tachyon propagator and we shall have a factor of 1/2. Second, while Aψ0 will

be proportional to the square of the φ-φ-ψ0 three point coupling Cφφψ0 , the ψ1 exchange

contribution Aψ1 will be proportional to the square of the φ-φ-ψ1 three point coupling

Cφφψ1 . Therefore we have:

Aψ1 =
1

2
Aψ0 (Cφφψ1/Cφφψ0)2 . (4.26)

The total tachyon exchange contribution to the amplitude Aψ0 is given by the terms

in (4.16) and (4.22) from the
∫ 1
0 dq q

−2 part of the integral. Using the replacement rule (3.1),

we get:

Aψ0 = −2α2 . (4.27)

The three point coupling with a pair of on-shell fields φ, with vertex operators c ∂X inserted

at 0 and ∞, and an off-shell field with vertex operator V inserted at 1, is given by

〈c∂X(0) f2 ◦ V (0) c∂X(∞)〉 , (4.28)

where f2 has been given in (4.4). For the tachyon V = c and we have

f2 ◦ c(0) = f ′2(0)−1 c(f2(0)) = α c(1) . (4.29)

Furthermore, SL(2,R) invariance gives,

〈c∂X(0) c(z) c∂X(∞)〉 = C z , (4.30)

where the normalization constant C depends on the normalization and signature of X.

Using (4.29) and (4.30) we get,

Cφφψ0 = 〈c∂X(0)αc(1) c∂X(∞)〉 = C α . (4.31)
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On the other hand, for ψ1, V = ∂c and we have

f2 ◦ ∂c(0) = ∂c(f2(0))− f ′′2 (0)

f ′2(0)2
c(f2(0)) = ∂c(1)− (1 + γ)c(1) . (4.32)

Using (4.30) we get

Cφφψ1 = 〈c∂X(0) {∂c(1)− (1 + γ)c(1)} c∂X(∞)〉 = −C γ . (4.33)

Substituting (4.27), (4.31) and (4.33) into (4.26), we get

Aψ1 =
1

2
(−2α2)

γ2

α2
= −γ2 . (4.34)

Adding (4.34) to (4.25) we get the net contribution to the φ-φ-φ-φ four point function:

Aφφφφ = A+Aψ1 = γ2 − γ2 = 0 . (4.35)

This is consistent with the identification of φ with the collective coordinate up to field

redefinition.

Note that if we had set γ = 0, then Cφφψ1 would have vanished, and as a result there

would be no ψ1 exchange contribution. This is related to the fact that for γ = 0 the

functions f1, f2 and f3 defined in (4.4) are not only cyclically permuted under the SL(2,R)

transformation (4.3), but also has full permutation symmetry, up to a change in the sign

of the arguments wi. For example the z → 1 − z transformation exchanges w1 ↔ −w2

and sends w3 to −w3. This leads to a ‘twist symmetric’ three point vertex where the

twist symmetry is a Z2 symmetry that assigns quantum number (−1)h+1 to a component

field that multiplies a world-sheet state of L0 eigenvalue h [23, 24]. Under this symmetry

transformation the tachyon ψ0 is even since it multiplies the state c1|0〉 of L0 eigenvalue

−1, the zero mode field φ is odd and the field ψ1 is odd. Therefore Cφφψ1 vanishes but

Cφφψ0 does not vanish. For this reason, it is convenient to use a twist symmetric vertex

by setting γ = 0, since this will avoid propagating ψ1 in tree amplitudes. However ψ1 will

still propagate in the loop and its contribution need to be included separately.

5 Superstrings

The problem with zero modes of D-instantons associated with world-sheet ghosts in not

unique to bosonic string theory. If we denote by | − 1〉 the NS sector vacuum with picture

number −1, then the analog of the expansion (3.3) for the NS sector string field can be

written as7

ψ1 β−1/2c0c1| − 1〉+ ψ2 β−1/2c1| − 1〉+ ψ1 γ−1/2c1| − 1〉+ ψ2 γ−1/2c0c1| − 1〉 , (5.1)

where βn and γn are the modes of the superghost fields β, γ. Based on ghost number

counting of states, we shall regard ψ1 and ψ2 as fields and ψ1 and ψ2 as their corresponding

7In the Ramond sector, the full BV formalism requires a doubling of the string fields [17, 25–27], but

this can be avoided in the NS sector by identifying the two sets of string fields. For simplicity of notation,

this is the approach we are adopting here.
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anti-fields. Siegel gauge fixing corresponds to choosing a Lagrangian submanifold that sets

ψ1 and ψ2 to zero. In the resulting gauge fixed action, ψ1 and ψ2 appear as zero modes,

causing perturbation theory to diverge. As in the case of bosonic string theory, the remedy

is to choose a different Lagrangian submanifold by setting ψ1 and ψ2 to zero. In this case

the mode ψ2 decouples from the action by ghost number conservation. On the other hand

the mode ψ1 has a non-zero kinetic term, and its contribution must be included separately

in the perturbation theory.

A similar analysis can be carried out in the Ramond sector using the identification of

fields and anti-fields described in [17].
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