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siderable attention because their rates can be calculated quite precisely within the stan-

dard model (SM), where the missing energy is carried away by an undetected neutrino-

antineutrino pair. Beyond the SM, clean theoretical predictions can also be made regarding

these processes. One such prediction is the so-called Grossman-Nir (GN) bound, which

states that the branching fractions of the KL and K+ modes must satisfy the relation
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long as the hadronic transitions change isospin by ∆I = 1/2. In this paper we extend the

study of these modes to include new-physics scenarios where the missing energy is due to

unobserved lepton-number-violating neutrino pairs, invisible light new scalars, or pairs of

such scalars. The new interactions are assumed to arise above the electroweak scale and

described by an effective field theory. We explore the possibility of violating the GN bound

through ∆I = 3/2 contributions to the K → π transitions within these scenarios and find

that large violations are only possible in the case where the missing energy is due to an

invisible light new scalar.
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1 Introduction

The rare kaon decays KL → π0νν̄ and K+ → π+νν̄ are known as the “golden modes”

of kaon physics because they can be predicted quite precisely within the standard model

(SM) and are potentially sensitive to the presence of new physics (NP) beyond it [1, 2].

Consequently they have received a great deal of theoretical and experimental attention.

The SM predictions for their branching fractions have been known for many years [3–10],

and their current values are [11–13] B(KL → π0νν̄)SM = (3.0± 0.2)× 10−11 and B(K+ →
π+νν̄)SM = (8.5± 0.5)× 10−11, which suffer mostly from parametric uncertainties. These

numbers, and their counterparts in many NP scenarios, respect a particularly interesting

prediction, the so-called Grossman-Nir bound [14], which states that B(KL → π0νν̄) .
4.3B(K+ → π+νν̄). A key assumption behind this statement is that the K → π transition

proceeds from an interaction which changes isospin by ∆I = 1/2.

On the experimental side, the KOTO collaboration at J-PARC in 2018 set an upper

limit on the neutral mode based on the data collected in 2015 [15]: B(KL → π0νν̄)KOTO15 <

3.0 × 10−9 at 90% confidence level (CL). For the charged mode, the combined BNL

E787/E949 experiments had earlier yielded B(K+ → π+νν̄)E949 =
(
1.73+1.15

−1.05

)
× 10−10 [16,

17]. Last year the NA62 collaboration [18] at CERN reported the preliminary limit

– 1 –



J
H
E
P
0
8
(
2
0
2
0
)
0
3
4

B(K+ → π+νν̄)NA62 < 1.85× 10−10 at 90% CL [19]. All of these results are in agreement

with the SM but leave open a window for NP. This possibility is very intriguing, especially

in light of the recent preliminary observation by KOTO of three candidate events in the

KL → π0νν̄ signal region [20], with a single event sensitivity of 6.9 × 10−10 having been

achieved. If interpreted as signal, they imply a decay rate about two orders of magnitude

higher than the SM prediction and in conflict with the experimentally established GN

bound B(KL → π0νν̄)GN < 4.3B(K+ → π+νν̄)NA62 = 8.0× 10−10 at 90% CL.

It is interesting that there are NP scenarios which can overcome this requisite. For

instance, as was first pointed out in ref. [21], the branching fraction of KL → π0X , with X

being an invisible particle with mass mX chosen to be around the pion mass, can exceed the

aforementioned cap of 8.0 × 10−10 because quests for the charged channel K+ → π+X do

not cover the mX ∼ mπ region to avoid the sizable K+ → π+π0 background [17, 18]. This

kinematic loophole has been exploited in recent attempts [22–28] to account for KOTO’s

anomalous events. As another example, imposing the condition mK+ − mπ+ < mX <

mK0 −mπ0 renders the K+ → π+X channel closed (here X can be more than one invisible

particle), whereas KL → π0X with a big rate can still happen [29]. For other mX ranges,

the stringent restriction on K+ → π+X can be evaded or weakened if X is a particle with an

average decay length bigger than the KOTO detector size but less than its E949 and NA62

counterparts [22–26]. Most of these cases, while still fulfilling the GN relation, only appear

to contradict it by enhancing B(KL → π0X ) substantially above B(KL → π0νν̄)max
GN . In a

framework of effective field theory with only SM fields, the introduction of (predominantly)

∆I = 1/2 interactions which change lepton flavor/number or possess new sources of CP

violation also would not bring about a disruption of the GN bound [30, 31]. On the other

hand, it has been proposed that in the presence of additional light particles mediating these

decays the GN bound could be violated [32].

In terms of the branching-fraction ratio rB = B(KL → π0νν̄)/B(K+ → π+νν̄), the GN

bound has a theoretical model-independent maximum of rGN
B = 4.3, which differs much

from the central value rSM
B = 0.36 of the SM prediction. A key ingredient in the derivation

of the GN inequality is the assumption that the K → π transitions are mediated by a

two-quark s ↔ d operator, which necessarily carries isospin 1/2 and leads to a ratio of

amplitudes for the neutral and charged modes given by A∆I=1/2
K0→π0 /A

∆I=1/2
K+→π+ = −1/

√
2. A

true violation of the GN relation requires the K → π transitions to occur via a ∆I = 3/2

interaction as well, and this possibility has recently been investigated in refs. [31, 33]. A

pure ∆I = 3/2 operator would result in an amplitude ratio A∆I=3/2
K0→π0 /A

∆I=3/2
K+→π+ =

√
2 and

thus translate into r
∆I=3/2
B . 17 [31].

In this paper we present a systematic study on how to overcome the GN bound with

quark-level operators in the context of effective field theory (EFT). Given that the measure-

ments of interest look for K → πX with X standing for one or more particles carrying away

missing energy (Emiss), we will consider for X several different possibilities: a neutrino-

antineutrino pair (νν̄), a pair of neutrinos (νν) or antineutrinos (ν̄ν̄), an invisible light

new scalar boson (S), and a pair of these scalars (SS). Since an operator directly giving

rise to ∆I = 3/2 K → πX transitions has to contain at least four light-quark fields, the

minimal mass dimension of such an operator is seven, eight, nine, and ten for X = S, SS,
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νν or ν̄ν̄, and νν̄, respectively. Being unobserved in the experiments, the neutrinos may

have different flavors and can also be replaced by new invisible light fermions. We suppose

that the new particles are invisible because they are sufficiently long-lived to escape detec-

tion, decay invisibly, or are stable. We will look at a complete set of operators with the

lowest dimension necessary for each of these cases, assuming that the interactions of the

new light particles with the quarks can be described by an EFT approach valid above the

electroweak-symmetry breaking scale.

Before embarking in a detailed study, it is instructive to present a simple dimensional-

analysis estimate for the scale Λnp of NP that is needed in order to produce a rate of

K → πX that is comparable in size to the SM rate. To this end, it is useful to recall the

effective Hamiltonian responsible for K → πνν̄ in the SM,

HSM =
Gf√

2

g2V ∗tsVtdX(xt)

16π2
s̄γµ(1− γ5)d

∑
`

ν̄`γ
µ(1− γ5)ν` + H.c. (1.1)

in the conventional notation [13], where X(xt) ' 1.5 from top-quark loops. In contrast, a

generic NP operator which induces a ∆I = 3/2 transition in the process K → πX can be

written as

LNP =
1

Λ2+nX
np

C s̄Γ1uūΓ2d X + H.c. , (1.2)

where nX tells the mass dimension of X (so nνν = 3, nS = 1, nSS = 2, etc.), the coefficient

C is a constant, and Γ1,2 represent gamma matrices. At the amplitude level, the LNP

contribution to K → πX relative to the SM top-quark contribution is then

ANP

ASM
∼ 3.8× 105 C

(
v

Λnp

)2(mK

Λnp

)nX

, (1.3)

where the large numerical factor reflects the one-loop and CKM-angle suppression of the

SM coefficient, v = 2−1/4G
−1/2
f = 246 GeV indicates the electroweak scale, and the relevant

hadronic scale is taken to be the kaon mass, mK . If the NP is defined to enter LNP with C of

order one (so any loop or mixing-angle suppression factor is absorbed into Λnp), the result

in eq. (1.3) implies that Λnp ∼ 2.2 TeV, 275 GeV, 78 GeV for nX = 1, 2, 3, respectively,

correspond to NP effects at the same level as the SM contribution.

The EFT that we employ in this paper only makes sense for Λnp > v. Otherwise,

the organization of effective operators in terms of their dimensionality breaks down. This

suggests that scenarios with X = S could amplify the rate of KL → π0X to the level implied

by the three KOTO events; scenarios with X = SS may increase the corresponding rate

compared to its SM counterpart by factors of 2; and that scenarios in which X = νν or ν̄ν̄

or νν̄ can only modify the K → π + Emiss rates marginally.

We will explore all these possibilities in detail to quantify how the underlying NP

interactions influence these kaon decays. To handle a low-energy process involving hadrons,

it is necessary to hadronize the quark-level operators at the mass scale where it takes place.

For our investigation, this entails computing the effects of QCD renormalization group

(RG) running from the electroweak (EW) scale to the chiral-symmetry breaking scale and
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subsequently matching the resulting operators to a low-energy chiral Lagrangian suitable

to describe the K → π+Emiss transitions. In all the cases, we present numerical results

illustrating the range of values which the ratio rB can take when the NP scale is under a

couple of TeV.

The arrangement of the rest of the paper is as follows. In section 2 we study how

the GN bound can be violated through K → πνν, πν̄ν̄ caused by ∆I = 3/2 interactions

in the EFT framework where the operators respect the SM gauge symmetries (SMEFT).

In section 3 we extend the SMEFT with the addition of a SM-gauge-singlet scalar S and

carry out a similar analysis with K → πS, πSS. In section 4, we draw our conclusions.

We relegate some extra details to appendices, including the RG running of the four-quark

parts of the operators pertaining to K → πS(S) and their low-energy chiral bosonization.

2 GN-bound violation via EFT operators for K → π2ν

2.1 EFT operators for K → π2ν

In this section we restrict the fields of the EFT to only those in the minimal SM. Ac-

cordingly, in the kaon decays of concern the missing energy is carried away by a pair of

SM neutrinos (2ν). It may have no or nonzero lepton number depending on whether the

underlying interaction is lepton-number conserving or violating, respectively. If the small

contributions to K → π2ν from long-distance physics [1, 30, 34–36] are neglected,1 the

only possible way to break the GN bound significantly in this case is through the inclusion

of ∆I = 3/2 operators having nonleptonic parts with at least four quark fields [31, 33]. It

follows that the lowest dimension of quark-neutrino operators with ∆I = 3/2 components

is nine.

In the SMEFT treatment the effective operators constructed must be singlets under

the SM gauge group SU(3)C×SU(2)L×U(1)Y , while in the low-energy effective field theory

(LEFT) the operators are to be singlets only under the strong and electromagnetic gauge

group SU(3)C×U(1)em. This means that there are in general more requirements on the

SMEFT operators than on the LEFT ones, which makes the number of quark operators

relatively less in the former case. Since furthermore there is still no discovery of new

particles beyond the SM, we will rely on the SMEFT to perform our examination.

The fundamental fields (with their SM gauge group assignments) available to con-

struct the pertinent operators are the U(1)Y gauge field B (1, 1, 0), the SU(2)L gauge field

W (1, 3, 0), the SU(3)C gluon field G (8, 1, 0), the Higgs doublet H (1, 2, 1/2), the left-handed

quark doublet Q (3, 2, 1/6), the right-handed quark fields u (3, 1, 2/3) and d (3, 1,−1/3),

the left-handed lepton doublet L (1, 2,−1/2), and the right-handed charged lepton field

e (1, 1,−1). All the quarks and leptons come in three families. In the SMEFT approach,

operators with four quarks and two neutrinos are necessarily of dimension nine (dim-9) or

higher.

1We also ignore isospin-breaking effects due to the u- and d-quark mass difference and electroweak

radiative corrections.
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If lepton number is conserved in the decays of concern,2 the responsible operator nec-

essarily involves a pair of L and L̄, which supplies the νν̄ pair in K → πνν̄. One can always

utilize some appropriate Fierz relations to arrange the lepton fields such that they appear

in the operators in the form L̄γµL or L̄DµγρL, with Dµ being a covariant derivative. To

join L̄γµL with four quark fields to form an operator that is a singlet under the SM gauge

group, the quark portion needs to have a Lorentz index to contract with the one in the lep-

ton current. The possible lowest-dimension quark parts are (Q̄γµQ, q̄γµq)(Q̄q, q̄Q), where

q may be u or d as appropriate, but they have odd numbers of Q and hence are not SU(2)L
singlets yet. These quark combinations can be made singlets by incorporating the Higgs

field H, and so the full quark-lepton operators have dimension ten (dim-10). Additionally,

one can insert Dµ in (Q̄q, q̄Q)(Q̄q, q̄Q) to form singlets, and the resulting operators are also

of dim-10. If the lepton bilinear is L̄DµγρL instead, the lowest-dimensional possibilities

of the four-quark portion are q̄γµqq̄γρq, gµρQ̄qq̄Q, Q̄σµρqq̄Q, Q̄qq̄σµρQ, and Q̄γµQQ̄γρQ.

Again the singlet quark-lepton operators constructed are of dim-10.

If lepton-number violation is allowed, the situation is different, as we have K →
πνν, πν̄ν̄. The lepton bilinear of the lowest dimension can be organized in the form L̄Lc(
L̄σµρL

c
)

or its Hermitian conjugate, the superscript c signifying charge conjugation. One

can attach the bilinear to Q̄qq̄Q or q̄Qq̄Q
(
Q̄σµρqq̄Q, Q̄qq̄σµρQ, or q̄σµρQq̄Q

)
to form a

SM-gauge singlet. Thus, the resulting operators have dim-9, which is less than that of the

lepton-number-conserving ones mentioned in the previous paragraph. Hereafter in this sec-

tion, we concentrate on the dim-9 operators and later briefly comment on the dim-10 case.

It has been shown that all dim-9 SMEFT operators do not preserve lepton and/or

baryon numbers [37]. We will not be interested in the baryon-number violating ones, as

our aim is to study how dim-9 operators give rise to K → πνν, πν̄ν̄ and can violate the GN

bound. In the following we enumerate all of those containing one strange quark, s, and two

neutrinos or antineutrinos. Upon imposing the SM gauge symmetries and applying Fierz

transformations, we find the independent operators that can induce K → πν̄ν̄ to be3

Oopxy,αβ1 = εijδkl(QkoγµQ
j
p)(dxγ

µuy)Lci
{αL

l
β} ,

Õopxy,αβ1 = εijδkl(QkoγµQ
j
p][dxγ

µuy)Lci
{αL

l
β} ,

Oopxy,αβ2 = εijδkl(QkoγµQ
j
p)(dxγρuy)L

ci
[ασ

µρLlβ] ,

Õopxy,αβ2 = εijδkl(QkoγµQ
j
p][dxγρuy)L

ci
[ασ

µρLlβ] ,

Oopxy,αβ3 = εikεjl(doQ
i
p)(dxQ

j
y)L

ck
{αL

l
β} ,

Õopxy,αβ3 = εikεjl(doQ
i
p][dxQ

j
y)L

ck
{αL

l
β} ,

Oopxy,αβ4 = εikεjl(doQ
i
p)(dxσµωQ

j
y)L

ck
[α σ

µωLlβ] ,

Õopxy,αβ4 = εikεjl(doσµρQ
i
p)(dxσ

ρ
ω Q

j
y)L

ck
[α σ

µωLlβ] , (2.1)

2In this and the next paragraph, we suppress the family labels of the SM fermion fields. Generally these

processes may change quark and/or lepton flavors.
3The factorization of the quark and lepton components is guaranteed by the application of Fierz trans-

formations.
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where o, p, x, y (α, β) denote quark (lepton) family indices, summation over the SU(2)L
indices i, j, k, l = 1, 2 is implicit, and the leptonic scalar (tensor) currents have been

arranged to be symmetric (antisymmetric) in their family indices with the convention

A{αBβ} = (AαBβ + AβBα)/2 and A[αBβ] = (AαBβ − AβBα)/2. The two brackets (, )

and [ , ] in the quark bilinears distinguish the two different ways of color contraction in

the products of four quark fields to form color invariants: q̄m1 q
m
2 q̄

n
3q

n
4 = (q̄1q2)(q̄3q4) and

q̄m1 q
n
2 q̄

n
3q

m
4 = (q̄1q2][q̄3q4), with the color labels m, n = 1, 2, 3 being summed over. Each

of the operators is accompanied by an unknown Wilson coefficient Ci, so that Copxy,αβ1

belongs to Oopxy,αβ1 , etc. The Hermitian conjugates of Oopxy,αβ1,2,3,4 and Õopxy,αβ1,2,3,4 contribute

to K → πνν.

As already stated, we assume that the SMEFT operators in eq. (2.1) arise from NP

above the EW scale. Consequently, to address their potential impact on K → πνν, πν̄ν̄,

we will first take into account the QCD effects causing the coefficients to evolve from

the NP scale down to the hadronic scale, which we select to be the conventional chiral-

symmetry breaking scale Λχ = 4πFπ ' 1.2 GeV with Fπ being the pion decay constant.

Subsequently, we will rely on chiral perturbation theory [38–40], in conjunction with spu-

rion techniques [41–43], to derive the meson-neutrino operators which contribute to the

amplitudes for the kaon decays. Based on the chiral power-counting arguments in this

procedure, the operators in eq. (2.1) with the leptonic scalar density are of momentum

order p0, whereas those with the leptonic tensor current are of order p2. This implies that

the latter operators yield contributions to the amplitudes which are suppressed relative

to those of the former by the factor pKpπ/Λ
2
χ ∼ 0.05. Therefore, upon singling out the

operators in eq. (2.1) pertaining to K → πνν, πν̄ν̄ and neglecting those with the leptonic

tensor current, in what follows we can focus on

Ousdu1 = (uLγµsL)(dRγ
µuR)J , Õusdu1 = (uLγµsL][dRγ

µuR)J ,

Oudsu1 = (uLγµdL)(sRγ
µuR)J , Õudsu1 = (uLγµdL][sRγ

µuR)J ,

Oddds3 = (dRdL)(dRsL)J , Õddds3 = (dRdL][dRsL)J ,

Oddsd3 = (dRdL)(sRdL)J , Õddsd3 = (dRdL][sRdL)J , (2.2)

where fL,R = (1∓ γ5)f/2 and the neutrino part is expressed as J = (νcανβ)/(1 + δαβ).

2.2 Evaluation of hadronic matrix elements at low energies

In treating the kaon decay amplitudes, the contributions of the operators generated by NP

above the EW scale are to be evaluated at the low energy of interest. This entails dealing

with the QCD RG running of the Wilson coefficients by resumming the large logarithms

due to the ratio of the EW scale to the chiral-symmetry breaking scale, Λχ, the running

between the NP and EW scales having been neglected. We can use the one-loop QCD

running results of ref. [43],

µ
d

dµ

(
Cuxyu1

C̃uxyu1

)
= −αs

2π

(
− 3
N 0

3 6CF

)(
Cuxyu1

C̃uxyu1

)
,

µ
d

dµ

(
Cddxy3

C̃ddxy3

)
= −αs

2π

(
2
N + 6CF − 4 2

N − 4CF + 2
4
N − 2 − 2

N − 2CF − 2

)(
Cddxy3

C̃ddxy3

)
, (2.3)
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where in the superscripts xy = sd or ds, the color number N = 3, and CF = (N2 −
1)/(2N) = 4/3 is the second Casimir invariant of the color group SU(3)C . Taking the

EW scale to be the W -boson mass mW , from the solutions to these RG equations [43] we

arrive at

Cuxyu1 (Λχ) = 0.88Cuxyu1 (mW ) ,

C̃uxyu1 (Λχ) = 2.74 C̃uxyu1 (mW ) + 0.62Cuxyu1 (mW ) ,

Cddxy3 (Λχ) = 1.82Cddxy3 (mW )− 0.34 C̃ddxy3 (mW ) ,

C̃ddxy3 (Λχ) = 0.52 C̃ddxy3 (mW )− 0.08Cddxy3 (mW ) . (2.4)

In the matching to chiral perturbation theory (χPT), the neutrino bilinear in a dim-9

operator behaves as a fixed external source. Thus, we only have to work with the quark

portion of the operator. Suppose the latter has been decomposed into a sum of irreducible

representations of the chiral group SU(3)L × SU(3)R under which the quarks transform as

qL,a → L̂ap qL,p , qR,c → qR,p R̂
†
pc , qR,a → R̂ap qR,p , qL,c → qL,p L̂

†
pc , (2.5)

where the indices a, c, p = 1, 2, 3 refer to the flavor space, summation over p is implicit, L̂ ∈
SU(3)L, and R̂ ∈ SU(3)R. Given that an irreducible representation has the general form

Oq = Tcd,ab
(
qχ1,c Γ1qχ2,a

)(
qχ3,d

Γ2qχ4,b

)
, (2.6)

where the Tcd,ab represent pure numbers which depend on the irrep under consideration, the

flavor indices a, b, c, d = 1, 2, 3 are summed over, χ1,2,3,4 = L,R, and Γ1,2 designate combi-

nations of Dirac matrices, then promoting T to be a spurion field that transforms properly

together with the chiral transformations of quarks would render Oq chirally invariant.

On the χPT side, we introduce the standard matrices for the lightest octet of pseu-

doscalar mesons,

Σ = ξ2 , ξ = exp

(
iΠ√
2F0

)
, Π =


π0
√

2
+ η√

6
π+ K+

π− − π0
√

2
+ η√

6
K0

K− K̄0 −
√

2
3 η

 , (2.7)

where F0 = Fπ/1.0627 ≈ 87 MeV is the meson decay constant in the chiral limit. Under

chiral transformations the Σ and ξ matrices transform as

Σ→ L̂ΣR̂† , ξ → L̂ξÛ † = ÛξR̂† , (2.8)

and so Û ∈ SU(3)V depends on the meson fields. From the second formula, in terms of

matrix elements we have

ξab → L̂ap(ξÛ †)pb = (Ûξ)ap(R̂†)pb , (ξ†)ab → R̂ap(ξ†Û †)pb = (Ûξ†)ap(L̂†)pb . (2.9)

How to construct the leading-order (LO) mesonic interactions from the quark operators

has been prescribed previously in the literature [41–43]. Accordingly, eq. (2.9) implies that

the matching to χPT involves the substitutions [43]

qL,a ⇒ ξ†%a , qL,a ⇒ ξa% , qR,a ⇒ ξ%a , qR,a ⇒ ξ†a% , (2.10)

where the free indices % are to be contracted when forming an operator with Tcd,ab.

– 7 –
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For a given quark operator, the first step in the matching is to decompose it according

to the irreducible representations (irreps) of the chiral group SU(3)L×SU(3)R. One can

easily see that Ousdu1 , Õusdu1 , Oudsu1 , and Õudsu1 in eq. (2.2) belong to the 8L × 8R irrep of

the chiral group, while Oddds3 , Õddds3 , Oddsd3 , and Õddsd3 belong to the 6L × 6̄R. Then, after

applying eq. (2.10), one associates with the mesonic counterpart of each irrep a low energy

constant girrep, which encodes nonperturbative QCD effects and is to be determined usually

by fitting to data or a model calculation.

For example, the LEC associated with Ousdu1 = (uLγµsL)(dRγ
µuR)J , which transforms

as the 8L × 8R under the chiral group, can be called g8×8, and the leading-order chiral

realization of Ousdu1 is derived via the procedure

Ousdu1 ⇒ F 4
0

4
g8×8 ξ

†
ϑ1ξ3%ξς2ξ

†
1ϕ δϑϕδ%ς J =

F 4
0

4
g8×8 (ξξ)32(ξ†ξ†)11J =

F 4
0

4
g8×8 Σ32Σ†11J

⇒
g8×8

4
F 2

0

(
3√
2
π0K̄0 − π+K−

)
J +

ig8×8

4
√

2
F 3

0 K̄
0J + · · · , (2.11)

where F 4
0 /4 is a normalization factor [42], other contractions among ε, %, ς, ϕ in the first

line vanish due to the unitarity of ξ, and the ellipsis stands for terms with the η field

and more than two meson fields. This result is independent of the Lorentz and color

structures of Ousdu1 and follows from its transformation properties as an irrep of the chiral

group. Evidently, g8×8 has mass dimension two. This example can be understood from

the perspective of bosonization of each quark bilinear: Fierz-transforming Qusdu1 yields

−2ūmLu
n
Rs̄

n
Ld

m
R which is summed over the color labels m, n and has a lower-order chiral

realization than (uLγµsL)(dRγ
µuR) being naively taken to correspond to the higher order

(∂µΣΣ†)31(Σ†∂µΣ)12 due to the derivatives. If the operator comprised instead solely left-

handed quarks, (uLγµsL)(dLγ
µuL), its chiral realization would have to be of the form

(∂µΣΣ†)op(∂µΣΣ†)xy because no scalar density can be constructed with such quarks.

In table 1 we provide the chiral realization of the quark component of each of the

operators in eq. (2.2) according to their chiral irreps. In the last column, we display the

leading-order contributions to the K → π transitions in terms of the mesonic operators

QS1/2 = F 2
0

(
K+π− − 1√

2
K0π0

)
, QS3/2 = F 2

0

(
K+π− +

√
2K0π0

)
, (2.12)

or their Hermitian conjugates, which correspond to definite isospin changes ∆I = 1/2 and

3/2, respectively.4 It is worth noting that in the combination 5QS1/2− 2QS3/2, which occurs

in all of the lines in table 1 and hence also implicitly in eq. (2.11), the size of the K0π0

term relative to the K+π− one is three times that in QS1/2 alone. It follows that every one

of these operators can potentially break the GN relation.

The table also shows that each operator with a tilde and its counterpart without it

have the same chiral realization but their LECs are different. This is attributable to the

fact that the chiral realization of a quark-level operator relies only on its representation

4For completeness, in appendix A we give the decomposition of the quark part of each of the operators

in eq. (2.2) in terms of their ∆I = 1/2, 3/2 components.
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Operator Chiral irrep Chiral realization Contributions to K → π

Ousdu1 8L × 8R
1
4F

2
0 g8×8Σ32Σ†11 − 1

12g8×8

(
5QS†1/2 − 2QS†3/2

)
Õusdu1 8L × 8R

1
4F

2
0 g̃8×8Σ32Σ†11 − 1

12 g̃8×8

(
5QS†1/2 − 2QS†3/2

)
Oudsu1 8L × 8R

1
4F

2
0 g8×8Σ23Σ†11 − 1

12g8×8

(
5QS1/2 − 2QS3/2

)
Õudsu1 8L × 8R

1
4F

2
0 g̃8×8Σ23Σ†11 − 1

12 g̃8×8

(
5QS1/2 − 2QS3/2

)
Oddds3 6L × 6̄R

1
4F

2
0 g6×6̄

Σ22Σ32 − 1
12g6×6̄

(
5QS†1/2 − 2QS†3/2

)
Õddds3 6L × 6̄R

1
4F

2
0 g̃6×6̄

Σ22Σ32 − 1
12 g̃6×6̄

(
5QS†1/2 − 2QS†3/2

)
Oddsd3 6L × 6̄R

1
4F

2
0 g6×6̄

Σ23Σ22 − 1
12g6×6̄

(
5QS1/2 − 2QS3/2

)
Õddsd3 6L × 6̄R

1
4F

2
0 g̃6×6̄

Σ23Σ22 − 1
12 g̃6×6̄

(
5QS1/2 − 2QS3/2

)
Table 1. The chiral representation and realization of the four-quark portion of each of the effective

dim-9 operators in eq. (2.2) relevant to the K → π processes. In the last column, QS1/2 and QS3/2
are the mesonic operators defined in eq. (2.12) and correspond to ∆I = 1/2 and 3/2 transitions,

respectively.

under the chiral group, whereas the LEC encodes QCD effects. Numerically, we adopt the

values of the LECs extracted from ref. [42] which employed χPT to connect the matrix

elements of π+ → π− transitions to kaon-mixing matrix elements for which lattice QCD

results were available. Thus, we have

g8×8 = −2.9 GeV2 , g̃8×8 = −12.4 GeV2 ,

g6×6̄ = 2.7 GeV2 , g̃6×6̄ = −0.91 GeV2 . (2.13)

2.3 Numerical analysis

From the results of the preceding subsection, we can write down the effective interactions

pertinent to K+ → π+νν, π+ν̄ν̄ and KL → π0νν, π0ν̄ν̄, namely

Cusdu1 Ousdu1 + H.c. ⇒
g8×8

4
F 2

0

[
3

2

(
Cusdu1 J + Cusdu∗1 J†

)
π0KL − Cusdu∗1 J†π−K+

]
,

Cudsu1 Oudsu1 + H.c. ⇒
g8×8

4
F 2

0

[
3

2

(
Cudsu1 J + Cudsu∗1 J†

)
π0KL − Cudsu1 Jπ−K+

]
,

Cddds3 Oddds3 + H.c. ⇒
g6×6

4
F 2

0

[
3

2

(
Cddds3 J + Cddds∗3 J†

)
π0KL − Cddds∗3 J†π−K+

]
,

Cddsd3 Oddsd3 + H.c. ⇒
g6×6

4
F 2

0

[
3

2

(
Cddsd3 J + Cddsd∗3 J†

)
π0KL − Cddsd3 Jπ−K+

]
, (2.14)
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and analogous expressions for the tilded operators, where J† = (ναν
c
β)/(1 + δαβ). With

these, we arrive at the decay amplitudes

AKL→π0νανβ =
3

8
F 2

0

(
C∗A + C∗B

)
ναν

c
β , AK+→π+νανβ = −1

4
F 2

0 C
∗
B ναν

c
β ,

AKL→π0ν̄αν̄β =
3

8
F 2

0

(
CA + CB

)
νcανβ , AK+→π+ν̄αν̄β = −1

4
F 2

0 CA ν
c
ανβ , (2.15)

involving the effective coupling constants

CA = g8×8C
udsu
1 (Λχ) + g̃8×8C̃

udsu
1 (Λχ) + g6×6C

ddsd
3 (Λχ) + g̃6×6C̃

ddsd
3 (Λχ) ,

CB = g8×8C
usdu
1 (Λχ) + g̃8×8C̃

usdu
1 (Λχ) + g6×6C

ddds
3 (Λχ) + g̃6×6C̃

ddds
3 (Λχ) , (2.16)

which implicitly carry the neutrino family labels α and β. From eq. (2.15), we obtain the

spin-summed absolute squares∑
spins

|AKL→π0νανβ |
2 =

9

32
F 4

0

∣∣CA + CB
∣∣2ŝ , ∑

spins

|AK+→π+νανβ |
2 =

1

8
F 4

0 |CB|2ŝ ,

∑
spins

|AKL→π0ν̄αν̄β |
2 =

9

32
F 4

0

∣∣CA + CB
∣∣2ŝ , ∑

spins

|AK+→π+ν̄αν̄β |
2 =

1

8
F 4

0 |CA|2ŝ , (2.17)

where ŝ = (p1 + p2)2. The νανβ and ν̄αν̄β channels having no interference with each other,

their branching fractions add up to

B(KL → π0νανβ) + B(KL → π0ν̄αν̄β) =
9F 4

0

16

|CA + CB|2

1 + δαβ

τKL
2mK0

∫
dΠ3ŝ

= 1.42× 10−9 |ĈA + ĈB|2

1 + δαβ
,

B(K+ → π+νανβ) + B(K+ → π+ν̄αν̄β) =
F 4

0

8

(
|CA|2 + |CB|2

)
1 + δαβ

τK+

2mK+

∫
dΠ3ŝ

= 6.98× 10−11 |ĈA|2 + |ĈB|2

1 + δαβ
, (2.18)

where τKL and τK+ stand for the measured KL and K+ lifetimes [13], the factor 1/(1 +

δαβ) in each equation accounts for the identical particles in the final state if α = β, and

dΠ3 denotes the three-body phase-space factor. Also, in eq. (2.18) we have defined the

dimensionless parameters

ĈA = (50 GeV)5
[
Cudsu1 (mW ) + 3.3C̃udsu1 (mW )− 0.55Cddsd3 (mW ) + 0.15C̃ddsd3 (mW )

]
,

ĈB = (50 GeV)5
[
Cusdu1 (mW ) + 3.3C̃usdu1 (mW )− 0.55Cddds3 (mW ) + 0.15C̃ddds3 (mW )

]
,

(2.19)

which incorporate eq. (2.4) for the RG-running effects on the parameters between µ = Λχ
and µ = mW and eq. (2.13) for the LEC values.
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Assuming that the operators involve only one pair of α and β 6= α, since these modes

do not interfere with the SM ones, we can combine eq. (2.18) with their SM counterparts

to find

B(KL → π0 + Emiss) = B(KL → π0νν̄)SM + B(KL → π0νανβ) + B(KL → π0ν̄αν̄β) ,

B(K+ → π+ + Emiss) = B(K+ → π+νν̄)SM + B(K+ → π+νανβ) + B(K+ → π+ν̄αν̄β) .

(2.20)

Accordingly, the definition of rB should be modified, and we now have

rB =
B(KL → π0 + Emiss)

B(K+ → π+ + Emiss)
= rSM
B +

(rNP
B − rSM

B )ε

1 + ε
≤ 0.36 +

40.3ε

1 + ε
, (2.21)

where

rNP
B =

B(KL → π0νανβ) + B(KL → π0ν̄αν̄β)

B(K+ → π+νανβ) + B(K+ → π+ν̄αν̄β)
=

20.3
∣∣ĈA + ĈB

∣∣2∣∣ĈA∣∣2 +
∣∣ĈB∣∣2 ≤ 40.6 ,

ε =
B(K+ → π+νανβ) + B(K+ → π+ν̄αν̄β)

B(K+ → π+νν̄)SM

. (2.22)

The most recent measurement B(K+ → π+νν̄)NA62 < 1.85× 10−10 at 90% CL [19] entails

that ε . 1 and consequently rB is capped to be about 20.5. This can accommodate KOTO’s

anomalous events [20].

Imposing on eq. (2.20) the KOTO 15 [15] and NA62 [19] limits and further assuming

that the only nonvanishing coefficients are Cudsu1 (mW ) = Cusdu1 (mW ) = Λ−5
np , we have

B(KL → π0 + Emiss) = 3.0× 10−11 + 5.7× 10−9

(
50 GeV

Λnp

)10

≤ 3.0× 10−9 ,

B(K+ → π+ + Emiss) = 8.5× 10−11 + 1.4× 10−10

(
50 GeV

Λnp

)10

≤ 1.85× 10−10 , (2.23)

where the first number in each line is the corresponding SM central value [11–13]. The

stronger of the empirical limits, from KOTO in the first line, translates into Λnp & 53 GeV.

In figure 1 we illustrate the dependence of B(KL → π0 + Emiss) and B(K+ → π+ +

Emiss) in eq. (2.23) on Λnp. Also plotted are the corresponding SM predictions and limits

from KOTO [15] and NA62 [19]. We see that the NP needs to have an effective scale

Λnp = O(60 GeV) if it is to be responsible for the KOTO anomaly. The preferred Λnp is

significantly below the EW scale ∼ v ' 246 GeV, which implies that for Λnp ∼ v the dim-9

operators would have negligible impact on K → π+Emiss and thus respect the GN bound.

If we repeat the above steps with the dim-10 operators discussed earlier, a scaling

factor of v/Λnp will accompany them. As mentioned in subsection 2.1, they conserve

lepton number and hence, if not flavor-violating, interfere with the SM contribution. For

Λnp < v, this scaling factor helps raise Λnp slightly, but the latter still will not be very

close to the EW scale, ∼ v, if the NP presence in K → π+Emiss is to be within the current

experimental sensitivity reaches. Hence for Λnp & v the dim-10 operators would also have

very little influence on these modes.
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dim
-9: K

L →
π 0
νν/νν

KOTO bound

SM: KL→π0νν

dim
-9: K

+
→
π
+
νν/νν

NA62 bound

SM K+→π+νν

40 60 80 100
10-11

10-10

10-9

10-8

ΛNP [GeV]

B
(K

→
π
+
in
v)

Figure 1. The branching fractions of K → πνν, πν̄ν̄ arising from the dim-9 operators versus the

NP scale Λnp for the example described in the text. Also displayed are the corresponding SM

predictions for K → πνν̄ (red and blue horizontal bands) and upper limits from KOTO [15] and

NA62 [19] (blue and red horizontal thin lines). The light-blue region is excluded by the KOTO

bound. The blue dot corresponds to KOTO’s three events.

3 GN-bound violation via EFT operators for K → πS or πSS

In the preceding section, the problem of the NP scale Λnp being too low can be ascribed to

the high dimension of the SMEFT operators. As sketched in section 1, any NP that can

induce KL → π0X with a rate exceeding the SM expectation without conflicting with the

K+ data must have an effective scale Λnp which goes roughly as
(
23000 TeV2mn

K

)
1/(2+n),

where mK is the kaon mass and n the mass dimension of the field content of X . Therefore,

one way to increase Λnp is by reducing the dimension of the operators, which is 6+n. If in

the dim-9 operators examined above the neutrino pair, which has n = 3, is replaced with

a scalar field S, which has n = 1, the dimension of the operators can be decreased by 2

and in turn Λnp can be raised to the TeV level. If X = SS instead, the scale will become

Λnp = O(v). In this section, we explore how SMEFT four-quark operators supplemented

with S, which we take to be real and a singlet under the SM gauge group, can give rise to

K → πS transitions which break the GN bound. Moreover, we apply a similar treatment

to the K → πSS case.

3.1 Operators and matching

As is clear from the last paragraph, SMEFT operators that directly give rise to K → πS

at leading order have to be of dimension seven (dim-7). Since S is a SM-gauge singlet, the

quark portions of these operators are none other than the SMEFT dimension-six (dim-6)

four-quark operators [44, 45] which contribute to nonleptonic kaon decays. In the first

column of table 2, we list these dim-6 operators in the Warsaw basis [45]. In the middle

column, we exhibit the relevant operators with one s-quark field in the LEFT approach [46].

The third column contains the results for the Wilson coefficients at the electroweak scale
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SMEFT operators LEFT operators Matching at the EW scale

Q
(1)
qq = (Q̄γµQ)(Q̄γµQ) O

V,LL
ddsd = (dLγµdL)(sLγ

µdL) C
V,LL
ddsd = C

(1),1121
qq + C

(3),1121
qq

Q
(3)
qq = (Q̄τ IγµQ)(Q̄τ IγµQ) O

V 1,LL
uusd = (uLγµuL)(sLγ

µdL) C
V 1,LL
uusd = C

(1),1121
qq − 1

3C
(3),1121
qq

O
V 8,LL
uusd = (uLT

AγµuL)(sLT
AγµdL) C

V 8,LL
uusd = 4C

(3),1121
qq

Qdd = (d̄γµd)(d̄γµd) O
V,RR
ddsd = (dRγµdR)(sRγ

µdR) C
V,RR
ddsd = C1121

dd

Q
(1)
ud = (ūγµu)(d̄γµd) O

V 1,RR
uusd = (uRγµuR)(sRγ

µdR) C
V 1,RR
uusd = C

(1),1121
ud

Q
(8)
ud = (ūTAγµu)(d̄TAγµd) O

V 8,RR
uusd = (uRT

AγµuR)(sRT
AγµdR) C

V 8,RR
uusd = C

(8),1121
ud

Q
(1)
qu = (Q̄γµQ)(ūγµu) O

V 1,LR
sduu = (sLγµdL)(uRγ

µuR) C
V 1,LR
sduu = C

(1),2111
qu

Q
(8)
qu = (Q̄TAγµQ)(ūTAγµu) O

V 8,LR
sduu = (sLT

AγµdL)(uRT
AγµuR) C

V 8,LR
sduu = C

(8),2111
qu

Q
(1)
qd = (Q̄γµQ)(d̄γµd) O

V 1,LR
sddd = (sLγµdL)(dRγ

µdR) C
V 1,LR
sddd = C

(1),2111
qd

Q
(8)
qd = (Q̄TAγµQ)(d̄TAγµd) O

V 8,LR
sddd = (sLT

AγµdL)(dRT
AγµdR) C

V 8,LR
sddd = C

(8),2111
qd

Q
(1)
qd = (Q̄γµQ)(d̄γµd) O

V 1,LR
uusd = (uLγµuL)(sRγ

µdR) C
V 1,LR
uusd = C

(1),1121
qd

Q
(8)
qd = (Q̄TAγµQ)(d̄TAγµd) O

V 8,LR
uusd = (uLT

AγµuL)(sRT
AγµdR) C

V 8,LR
uusd = C

(8),1121
qd

O
V 1,LR
ddsd = (dLγµdL)(sRγ

µdR) C
V 1,LR
ddsd = C

(1),1121
qd

O
V 8,LR
ddsd = (dLT

AγµdL)(sRT
AγµdR) C

V 8,LR
ddsd = C

(8),1121
qd

Q
(1)
quqd = εij(Q̄

iu)(Q̄jd) O
S1,RR
uusd = (uLuR)(sLdR) C

S1,RR
uusd = C

(1),1121
quqd

Q
(8)
quqd = εij(Q̄

iTAu)(Q̄jTAd) O
S8,RR
uusd = (uLT

AuR)(sLT
AdR) C

S8,RR
uusd = C

(8),1121
quqd

O
S1,RR
udsu = (uLdR)(sLuR) C

S1,RR
uusd = −C(1),2111

quqd

O
S8,RR
udsu = (uLT

AdR)(sLT
AuR) C

S8,RR
uusd = −C(8),2111

quqd

Q
(1)†
quqd = εij(ūQ

i)(d̄Qj) O
S1,LL
uusd = (uRuL)(sRdL) C

S1,LL
uusd = C

(1),1112∗
quqd

Q
(8)†
quqd = εij(ūT

AQi)(d̄TAQj) O
S8,LL
uusd = (uRT

AuL)(sRT
AdL) C

S8,LL
uusd = C

(8),1112∗
quqd

O
S1,LL
udsu = (uRdL)(sRuL) C

S1,LL
udsu = −C(1),1112∗

quqd

O
S8,LL
udsu = (uRT

AdL)(sRT
AuL) C

S8,LL
udsu = −C(8),1112∗

quqd

Table 2. Columns 1 and 2: the SMEFT and LEFT four-quark operators contributing to K →
πS(S). Column 3: the results for the Wilson coefficients at the electroweak scale from the matching

of the former operators onto the latter.

from the matching of the SMEFT operators onto the LEFT operators [46]. For the K → πS

and K → πSS transitions, we just multiply all those operators by an S field and a pair

of them, respectively, and the matched Wilson coefficients should be understood as new

parameters associated with the operators.

Similarly to what was done in section 2, to examine the impact of each of the dim-

6 LEFT operators in table 2, we begin by decomposing their four-quark combinations in
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terms of the irreducible representations of the chiral group, SU(3)L×SU(3)R. Subsequently,

for each of the irreps we derive the chiral realization, as prescribed in subsection 2.2, and

complement it with a low-energy constant. Finally, the resulting meson operators are

expressed as combinations of their isospin components. The first column of table 3 lists

the LEFT operators in table 2 according to their irreps. In the second column we collect

the mesonic operators pertinent to the K → π processes. The ones corresponding to the

four-quark operators with purely left-handed or right-handed quarks are written in terms

of the ∆I = 1/2 and 3/2 combinations

QV1/2 = F 2
0

(
∂µK

+∂µπ− − 1√
2
∂µK

0∂µπ0

)
,

QV3/2 = F 2
0

(
∂µK

+∂µπ− +
√

2∂µK
0∂µπ0

)
, (3.1)

respectively. The other entries in the second column involve QS1/2 and QS3/2 which were

already defined in eq. (2.12). More details on the bosonization of the irreps are relegated

to appendix C. In this table, we also see that there are more LECs than in table 1. For

g1×8 and g1×27, which are dimensionless, we adopt

g8×1 = 3.65 , g27×1 = 0.303 (3.2)

from ref. [47], whereas g8×8, g̃8×8, g
6×6̄

, and g̃
6×6̄

are already given in eq. (2.13). Moreover,

the parity invariance of the QCD suggests that we can set

g1×8 = g8×1 , g1×27 = g27×1 ,

g6̄×6 = g6×6̄ , g3̄×3 = g3×3̄ (3.3)

and assume analogous relations for the corresponding LECs with a tilde. For the value of

g3×3̄, there is no estimation yet in literature, and so one can resort to the vacuum saturation

approximation (VSA) which yields g3×3̄ = g6×6̄ = B2
0 ' 4 GeV2 with B0 = m2

π/(mu +

md) = m2
K/(mu + ms) and quark masses at a renormalization scale of 1 GeV. Evidently

the VSA number for g3×3̄ is not too far from g6×6̄ = 3.2 GeV2 in eq. (2.13). Additionally,

one can implement simple scaling to estimate g̃
3×3̄

= g
3×3̄

g̃
6×6̄

/g
6×6̄
' 1.4 GeV2.

It is worth pointing out that, unlike those in table 1, the operators in table 3 individ-

ually either respect the GN inequality or are dominated by portions which do, partly due

to the LEC values employed above. The first two sections of the table contain operators

in the latter category as they have QV1/2 parts with g8×1 ' 12g27×1. The operators in

the remaining sections of the table belong to the first category, such as O
V 1,LR
sduu , which by

itself does not affect KL → π0 transitions due to its chiral realization being proportional to

2QS1/2+QS3/2 = 3F 2
0K

+π−, and O
V 1,LR
sddd , which generates QS1/2+2QS3/2 ∝ K

+π−+K0π0/
√

2

whose two terms have the same relative size as their counterparts in QS1/2, albeit with the

opposite relative sign. Nevertheless, there are countless combinations of the various oper-
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Chiral irrep Contributions to K → π

O
V,LL
ddsd = O

V,LL
ddsd

∣∣
27×1

+ O
V,LL
ddsd

∣∣
8×1

1
18g27×1

(
2QV1/2 − 5QV3/2

)
+ 1

6g8×1QV1/2

O
V 1,LL
uusd = O

V 1,LL
uusd

∣∣
27×1

+ O
V 1,LL
uusd

∣∣
8×1

1
18g27×1

(
QV1/2 + 5QV3/2

)
− 1

3g8×1QV1/2

O
V 8,LL
uusd = O

V 8,LL
uusd

∣∣
27×1

+ O
V 8,LL
uusd

∣∣
8×1

1
54g27×1

(
QV1/2 + 5QV3/2

)
+ 11

36g8×1QV1/2

O
V,RR
ddsd = O

V,RR
ddsd

∣∣
1×27

+ O
V,RR
ddsd

∣∣
1×8

1
18g1×27

(
2QV1/2 − 5QV3/2

)
+ 1

6 g1×8QV1/2

O
V 1,RR
uusd = O

V 1,RR
uusd

∣∣
1×27

+ O
V 1,RR
uusd

∣∣
1×8

1
18g1×27

(
QV1/2 + 5QV3/2

)
− 1

3g1×8QV1/2

O
V 8,RR
uusd = O

V 8,RR
uusd

∣∣
1×27

+ O
V 8,RR
uusd

∣∣
1×8

1
54g1×27

(
QV1/2 + 5QV3/2

)
+ 11

36g1×8QV1/2

O
V 1,LR
sduu = O

V 1,LR
sduu

∣∣
8×8

+ O
V 1,LR
sduu

∣∣
8×1

1
6g8×8

(
2QS1/2 +QS3/2

)
O
V 8,LR
sduu = O

V 8,LR
sduu

∣∣
8×8

+ O
V 8,LR
sduu

∣∣
8×1

− 1
36

(
g8×8 − 3g̃8×8

) (
2QS1/2 +QS3/2

)
O
V 1,LR
sddd = O

V 1,LR
sddd

∣∣
8×8

+ O
V 1,LR
sddd

∣∣
8×1

− 1
12g8×8

(
QS1/2 + 2QS3/2

)
O
V 8,LR
sddd = O

V 8,LR
sddd

∣∣
8×8

+ O
V 8,LR
sddd |8×1

1
72

(
g8×8 − 3g̃8×8

) (
QS1/2 + 2QS3/2

)
O
V 1,LR
uusd = O

V 1,LR
uusd

∣∣
8×8

+ O
V 1,LR
uusd

∣∣
1×8

1
6g8×8

(
2QS1/2 +QS3/2

)
O
V 8,LR
uusd = O

V 8,LR
uusd

∣∣
8×8

+ O
V 8,LR
uusd

∣∣
1×8

− 1
36

(
g8×8 − 3g̃8×8

) (
2QS1/2 +QS3/2

)
O
V 1,LR
ddsd = O

V 1,LR
ddsd |8×8 + O

V 1,LR
ddsd

∣∣
1×8

− 1
12g8×8

(
QS1/2 + 2QS3/2

)
O
V 8,LR
ddsd = O

V 8,LR
ddsd |8×8 + O

V 8,LR
ddsd

∣∣
1×8

1
72

(
g8×8 − 3g̃8×8

) (
QS1/2 + 2QS3/2

)
O
S1,RR
uusd = O

S1,RR
uusd

∣∣
6̄×6

+ O
S1,RR
uusd

∣∣
3×3̄

− 1
24g6̄×6

(
5QS1/2 + 4QS3/2

)
+ 1

8g3×3̄QS1/2

O
S8,RR
uusd = O

S8,RR
uusd

∣∣
6̄×6

+ O
S8,RR
uusd

∣∣
3×3̄

1
144

(
g6̄×6 − 3g̃6̄×6

) (
5QS1/2 + 4QS3/2

)
− 1

48

(
g3×3̄ − 3g̃3×3̄

)
QS1/2

O
S1,RR
udsu = O

S1,RR
udsu

∣∣
6̄×6

+ O
S1,RR
udsu

∣∣
3×3̄

− 1
24g6̄×6

(
5QS1/2 + 4QS3/2

)
− 1

8g3×3̄
QS1/2

O
S8,RR
udsu = O

S8,RR
udsu

∣∣
6̄×6

+ O
S8,RR
udsu

∣∣
3×3̄

1
144

(
g6̄×6 − 3g̃6̄×6

) (
5QS1/2 + 4QS3/2

)
+ 1

48

(
g3×3̄ − 3g̃3×3̄

)
QS1/2

O
S1,LL
uusd = O

S1,LL
uusd

∣∣
6×6̄

+ O
S1,LL
uusd

∣∣
3̄×3

− 1
24g6×6̄

(
5QS1/2 + 4QS3/2

)
+ 1

8g3̄×3QS1/2

O
S8,LL
uusd = O

S8,LL
uusd

∣∣
6×6̄

+ O
S8,LL
uusd

∣∣
3̄×3

1
144

(
g6×6̄ − 3g̃6×6̄

) (
5QS1/2 + 4QS3/2

)
+ 1

48

(
g3̄×3 − 3g̃3̄×3

)
QS1/2

O
S1,LL
udsu = O

S1,LL
udsu

∣∣
6×6̄

+ O
S1,LL
udsu

∣∣
3̄×3

− 1
24g6×6̄

(
5QS1/2 + 4QS3/2

)
− 1

8g3̄×3QS1/2

O
S8,LL
udsu = O

S8,LL
udsu

∣∣
6×6̄

+ O
S8,LL
udsu

∣∣
3̄×3

1
144

(
g6×6̄ − 3g̃6×6̄

) (
5QS1/2 + 4QS3/2

)
+ 1

48

(
g3̄×3 − 3g̃3̄×3

)
QS1/2

Table 3. The chiral representations and realizations of the LEFT four-quark operators contributing

to K → πS(S). In the second column, QV,S1/2 and QV,S3/2 are the mesonic operators defined in

eqs. (2.12) and (3.1) and correspond, respectively, to ∆I = 1/2 and 3/2 transitions. For O V 1,LR
q1q2q3q4

and O V 8,LR
q1q2q3q4 in rows 7–14, the contributions of the 8×1 and 1×8 terms are chirally subleading

compared to their 8×8 counterparts and therefore dropped from the second column.
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ators which could bring about the breaking of the GN bound. Simple instances include

O
V,LL
ddsd −

6

11
O
V 8,LL
uusd ⇒ 10

99
g27×1

(
QV1/2−

13

4
QV3/2

)
=
−5

22
g27×1F

2
0

(
∂µK

+∂µπ−+
5
√

2

3
∂µK

0∂µπ0

)
,

O
V 1,LR
sduu +3O V 1,LR

sddd ⇒ 1

12
g8×8

(
QS1/2−4QS3/2

)
= −1

4
g8×8F

2
0

(
K+π−+

3√
2
K0π0

)
. (3.4)

We conclude that judicious choices for the coefficients of the operators would need to

be made in order to evade the bound in a significant manner.5 We will encounter more

examples later on.

3.2 Numerical analysis

Summing the mesonic operators in table 3 multiplied by their respective Wilson coefficients

leads to the effective Lagrangian LKπS responsible for K → πS. We can express it as

LKπS = F0

(
a1K

+π− − b1√
2
K0π0

)
S +

1

F0

(
a2∂µK

+∂µπ− − b2√
2
∂µK

0∂µπ0

)
S + H.c.

⊃ F0

[
a1K

+π− − (Re b1)KLπ
0
]
S +

1

F0

[
a2∂µK

+∂µπ− − (Re b2)∂µKL∂
µπ0
]
S , (3.5)

where a1,2 and b1,2 are dimensionless constants comprising linear combinations of the Wil-

son coefficients Cs, namely

a1 =
1

24
F0

[
6
(

2CV 1,LR
sduu − C

V 1,LR
sddd + 2CV 1,LR

uusd − C
V 1,LR
ddsd

)
g8×8

−
(

2CV 8,LR
sduu − C

V 8,LR
sddd + 2CV 8,LR

uusd − C
V 8,LR
ddsd

)(
g8×8 − 3g̃8×8

)
− 9

(
C
S1,LL
uusd + C

S1,LL
udsu + C

S1,RR
uusd + C

S1,RR
udsu

)
g6×6̄

+
3

2

(
C
S8,LL
uusd + C

S8,LL
udsu + C

S8,RR
uusd + C

S8,RR
udsu

) (
g6×6̄ − 3g̃6×6̄

)
+ 3

(
C
S1,LL
uusd − C

S1,LL
udsu + C

S1,RR
uusd − C

S1,RR
udsu

)
g3×3̄

− 1

2

(
C
S8,LL
uusd − C

S8,LL
udsu + C

S8,RR
uusd − C

S8,RR
udsu

) (
g3×3̄ − 3g̃3×3̄

) ]
Λχ

, (3.6)

b1 =
1

24
F0

[
6
(
C
V 1,LR
sddd + C

V 1,LR
ddsd

)
g8×8 −

(
C
V 8,LR
sddd + C

V 8,LR
ddsd

) (
g8×8 − 3g̃8×8

)
+ 3

(
C
S1,LL
uusd + C

S1,LL
udsu + C

S1,RR
uusd + C

S1,RR
udsu

)
g6×6̄

− 1

2

(
C
S8,LL
uusd + C

S8,LL
udsu + C

S8,RR
uusd + C

S8,RR
udsu

) (
g6×6̄ − 3g̃6×6̄

)
5This conclusion is in line with what has been argued qualitatively in [32], namely that for heavy

mediators four-quark operators, especially those of the types in the first two sections of table 3, might not

be able to cause K → πS decays to violate the GN bound by more than a factor of a few. As our examples

demonstrate, preference for the ∆I = 3/2 components of the operators is required to achieve substantial

violations.
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+ 3
(
C
S1,LL
uusd − C

S1,LL
udsu + C

S1,RR
uusd − C

S1,RR
udsu

)
g3×3̄

− 1

2

(
C
S8,LL
uusd − C

S8,LL
udsu + C

S8,RR
uusd − C

S8,RR
udsu

)
g3×3̄

]
Λχ

, (3.7)

a2 =
1

36
F 3

0

[
6
(
C
V,LL
ddsd + C

V,RR
ddsd − 2CV 1,LL

uusd − 2CV 1,RR
uusd

) (
g8×1 − g27×1

)
+
(
C
V 8,LL
uusd + C

V 8,RR
uusd

) (
11g8×1 + 4g27×1

) ]
Λχ
, (3.8)

b2 =
1

36
F 3

0

[
6
(
C
V,LL
ddsd + C

V,RR
ddsd

) (
g8×1 + 4g27×1

)
− 6

(
C
V 1,LL
uusd + C

V 1,RR
uusd

) (
2g8×1 + 3g27×1

)
+
(
C
V 8,LL
uusd + C

V 8,RR
uusd

) (
11g8×1 − 6g27×1

) ]
Λχ
, (3.9)

the subscript Λχ indicating that the Cs on the right-hand sides are evaluated at µ = Λχ.

These coefficients scale as Λ−3
np .

For K → πSS, the interaction Lagrangian LKπSS has an expression similar to SLKπS ,

namely

LKπSS =

(
â1K

+π− − b̂1√
2
K0π0

)
S2 +

(
â2 ∂µK

+∂µπ− − b̂2√
2
∂µK

0∂µπ0

)
S2

F 2
0

+ H.c.

(3.10)

The dimensionless parameters â1,2 and b̂1,2 are the same in form as a1,2F0 and b1,2F0,

respectively, but with the Wilson coefficients now denoted by Ĉs, which scale as Λ−4
np because

the underlying quark-level operators are of dimension eight.

3.2.1 K → πS

From LKπS , we obtain the amplitudes for K → πS to be

AK+→π+S = a1F0 + a2
m2
K+ +m2

π+ −m2
S

2F0
,

AKL→π0S = −Re b1 F0 − Re b2
m2
K0 +m2

π0 −m2
S

2F0
, (3.11)

and hence the branching fractions

B(K+ → π+S) = τK+

√
(m2

K+ −m2
π+)2 − (2m2

K+ + 2m2
π+ −m2

S)m2
S

16πm3
K+

×

∣∣∣∣∣a1 + a2
m2
K+ +m2

π+ −m2
S

2F 2
0

∣∣∣∣∣
2

F 2
0 , (3.12)

B(KL → π0S) = τKL

√
(m2

K0 −m2
π0)2 − (2m2

K0 + 2m2
π0 −m2

S)m2
S

16πm3
K0

×

∣∣∣∣∣Re b1 + Re b2
m2
K0 +m2

π0 −m2
S

2F 2
0

∣∣∣∣∣
2

F 2
0 . (3.13)
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To account for the KOTO anomaly, one could consider various possibilities. For illustration,

we look at a scenario in which the only contributing operators are those with purely right-

handed quarks: O
V,RR
ddsd and O

(V 1,V 8),RR
uusd . This implies that a1 = b1 = 0 and

a2 =
F 3

0

6

[(
C
V,RR
ddsd − 2CV 1,RR

uusd +
11

6
C
V 8,RR
uusd

)
g8×1 −

(
C
V,RR
ddsd − 2CV 1,RR

uusd − 2

3
C
V 8,RR
uusd

)
g27×1

]
Λχ

,

b2 =
F 3

0

6

[(
C
V,RR
ddsd − 2CV 1,RR

uusd +
11

6
C
V 8,RR
uusd

)
g8×1 +

(
4CV,RRddsd − 3CV 1,RR

uusd − C
V 8,RR
uusd

)
g27×1

]
Λχ

.

(3.14)

Moreover, we select CV,RRddsd = 2CV 1,RR
uusd − (11/6)CV 8,RR

uusd to make the g8×1 terms above vanish,

changing eq. (3.14) to

a2 =
5F 3

0

12
g27×1C

V 8,RR
uusd (Λχ) , b2 =

25F 3
0

18
g27×1

(
3

5
C
V 1,RR
uusd (Λχ)− C

V 8,RR
uusd (Λχ)

)
, (3.15)

with which, for mS = 0, we arrive at

r̃NP
B =

B(KL → π0S)

B(K+ → π+S)
= 4.13

(17.6 Re b2)2

|17.4 a2|2
= 47

∣∣∣∣∣∣∣
Re
[
C
V 8,RR
uusd (Λχ)− 0.6 CV 1,RR

uusd (Λχ)
]

C
V 8,RR
uusd (Λχ)

∣∣∣∣∣∣∣
2

.

(3.16)

It is worth remarking that the potential enlargement of r̃NP
B in this equation can be expected

from the fact that it arises from the quark operators O
V,RR
ddsd and O

(V 1,V 8),RR
uusd which, as

rows 4–6 in table 3 show, in the absence of the g8×1 portions, generate the combinations

2QV1/2 − 5QV3/2 and QV1/2 + 5QV3/2 of the mesonic operators defined in eq. (3.1) and hence

all contain significant ∆I = 3/2 components. Clearly, a much amplified r̃NP
B can be easily

realized with some more tuning of the parameters in eq. (3.16).

To be more precise in our numerical treatment, we again must take into account the

QCD RG running of the coefficients from the EW scale, which we choose to be the W -

boson mass mW as before, down to the chiral-symmetry breaking scale Λχ. The pertinent

one-loop RG equations are available in ref. [48], from which we collect the formulas in

appendix B. We use them to get

C
V 1,RR
uusd (Λχ) = 1.07 CV 1,RR

uusd (mW )− 0.19 CV 8,RR
uusd (mW ) ,

C
V 8,RR
uusd (Λχ) = 1.31 CV 8,RR

uusd (mW )− 0.86 CV 1,RR
uusd (mW )− 0.16 CV,RRddsd (mW ) , (3.17)

which enter eq. (3.15) and depend on other coefficients. To simplify things further, we can

pick C
V 1,RR
uusd (mW ) = C

V,RR
ddsd (mW ) = 0 and C

V 8,RR
uusd (mW ) = Λ−3

np , which lead to r̃NP
B = 51

in eq. (3.16). This exceeds the maximum rGN
B = 4.3 of the GN bound by more than 10

times. For this example, in figure 2 we depict B(K → πS) as functions of the S mass mS

with Λnp = 1 TeV (left panel) and 800 GeV (right panel). In the figure, we also exhibit

the upper limits on B(KL → π0S) and B(K+ → π+S) at 90% CL from KOTO 2015 [15]
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KOTO: KL→π0S

GN: KL→π0S

BNL: K+→π+S

dim-7: KL→π0S
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Figure 2. The branching fractions of K → πS versus the S mass mS induced by the dim-

7 operators with NP scales Λnp = 1 TeV (left panel) and 800 GeV (right panel), compared to

the experimental upper limits from KOTO 2015 [15] and BNL [17] along with the standard GN

constraint on KL → π0S from the BNL result. The blue and black curves are related by B(KL →
π0S)GN = 4.3B(K+ → π+S)BNL.

and BNL [17], respectively, along with the empirical GN constraint based on the BNL

result: B(KL → π0S)GN < 4.3B(K+ → π+S)BNL, which is reflected by the blue and black

curves in each graph. If Λnp = 1 TeV, the left panel reveals that the GN inequality is not

respected in the mS . 110 MeV region, while the current experimental limits are satisfied.

If Λnp is smaller, it is possible to break the GN bound with higher mS values, such as

170 MeV . mS . 240 MeV in the right panel for Λnp = 800 GeV. We conclude that it can

be violated by dim-7 EFT operators with a NP scale Λnp = O(1 TeV).

3.2.2 K → πSS

For the three-body decays K → πSS, the amplitudes are

AK+→π+SS = 2â1 + â2
m2
K+ +m2

π+ − ŝ
F 2

0

,

AKL→π0SS = −2 Re b̂1 − Re b̂2
m2
K0 +m2

π0 − ŝ
F 2

0

, (3.18)

where ŝ designates the invariant mass squared of the SS pair. These bring about another

modified definition of rB,

rB =
B(KL → π0 + Emiss)

B(K+ → π+ + Emiss)
=
B(KL → π0νν̄)SM + B(KL → π0SS)

B(K+ → π+νν̄)SM + B(K+ → π+SS)
. (3.19)

As before, we have many options regarding the parameters which can yield a violation

of the GN bound. This time we entertain the possibility that the operators with purely

left-handed or right-handed quarks do not contribute, implying that â2 = b̂2 = 0 and so
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Figure 3. The branching fractions of K → πSS induced by the dim-8 operators as functions of

the NP scale Λnp for mS = 0, as described in the text. Also displayed are the corresponding SM

predictions for K → πνν̄ (red and blue horizontal bands) and upper limits from KOTO [15] and

NA62 [19] (blue and red horizontal thin lines). The light-blue region is excluded by the KOTO

bound. The blue dot corresponds to KOTO’s three events.

the branching fractions become, for mS = 0,

B(K+ → π+SS) =
τK+

29π3m3
K+

∫
Π3|MK+→π+2S |2 =

τK+ |â1|2

27π3m3
K+

∫
Π3 = 7× 1011|â1|2 ,

B(KL → π0SS) =
τKL

29π3m3
K0

∫
Π3|MKL→π02S |2 =

τKL(Re b̂1)2

27π3m3
K0

∫
Π3 = 3× 1012(Re b̂1)2 .

(3.20)

Supposing additionally that â1 and b̂1 come only from the g8×8 terms in eqs. (3.6) and (3.7)

and setting C
V 1,LR
sddd /2 = C

V 1,LR
ddsd = C

V 1,LR
uusd = C

V 1,LR
sduu = Λ−4

np , we derive

â1 =
F 2

0

4

g8×8

Λ4
np

, b̂1 =
F 2

0

4

3g8×8

Λ4
np

. (3.21)

In figure 3 we plot the resulting branching fractions of K → πSS as functions of Λnp.

Evidently, in this particular instance, to boost B(KL → π0SS) to a level within KOTO’s

current sensitivity reach would need Λnp to be no more than roughly 200 GeV. As can be

inferred from this graph in conjunction with eq. (3.19), for Λnp above this value the GN

bound is no longer violated.

4 Summary and conclusions

Motivated by the recent preliminary observation of three anomalous events of KL → π0νν̄

by the KOTO collaboration, we study in detail the possibility of having new physics re-

sponsible for enhancing the K → π+Emiss modes over their SM expectations. We explore

two types of scenarios:

– 20 –



J
H
E
P
0
8
(
2
0
2
0
)
0
3
4

• NP above the EW scale represented by quark-neutrino interactions which do not

preserve lepton flavor/number.

• NP above the EW scale with new scalar particles that are sufficiently light to be

produced in K → π+Emiss decays.

The NP is described with an effective Lagrangian above the EW scale that respects the

gauge symmetries of the SM. In all the cases considered, we specifically look for true

violations of the Grossman-Nir bound through four-quark ∆I = 3/2 interactions.

The NP effects are classified according to the mass dimensionality of the necessary

operators. To this end, we catalogue all the operators that can give rise to the reaction

K → πX with X standing for one or more particles carrying away the missing energy.

As itemized above, we allow X to comprise: a neutrino-antineutrino pair (νν̄), a pair of

neutrinos (νν) or antineutrinos (ν̄ν̄), an invisible light new scalar boson (S), and a pair

of these scalars (SS). These cases require a minimal dimensionality of ten, nine, seven,

and eight, respectively. On general grounds, we argue that the scenarios with new scalars

(dim-7 or -8 operators) are consistent with sizable boosts in the rate of KL → π0+Emiss

for NP scales above the EW scale.

We construct the effective Lagrangian for each of the cases and, after identifying the

∆I = 3/2 components of the operators, we discuss the renormalization group running of

the couplings down to a hadronic scale followed by the matching of the operators onto chiral

perturbation theory. We present numerical results illustrating the scale of the NP needed

to amplify the KL → π0+Emiss rate above the GN bound obtained from the measurements

of K+ → π++Emiss.

We find that the production of a single light new scalar via ∆I = 3/2 interactions

permits enlargements in the KL → π0+Emiss rate that are big enough to appear in the

KOTO experiment, and we clarify this with figure 2. This is achievable with some degree

of tuning among the coefficients of the operators. Our results are attained for stable new

scalars, but long-lived ones would also work as they have weaker constraints [17].

The production of a pair of the new light scalars could have substantial rate gains

over the SM but not above the GN bound. We depict this in figure 4,6 where the blue

area illustrates that increases over the SM by factors of a few are possible while keeping

Λnp ≥ v [in contrast, to exceed the bound (explain the KOTO events) would require

Λnp < 200 GeV (Λnp ∼ 160 GeV), as indicated in figure 3]. With a different choice of

parameters, the charged mode could also be amplified by a similar amount.

The production of two neutrinos, on the other hand, suffers from relatively much

greater Λnp suppression. The restriction Λnp ≥ v results in very small rises over the SM,

completely within the uncertainty of the SM predictions and thus unobservable.

6To draw the blue region, we use again the example in eq. (3.20), with â1 = F 2
0 g8×8/

(
4Λ4

np

)
as in

eq. (3.21), but now let Re b̂1 vary under the condition 0 ≤ |Re b̂1| ≤ 3|â1| and demand Λnp ≥ v. With

regard to the operator coefficients in eqs. (3.6) and (3.7), one way to accomplish this is to arrange 2CV 1,LR
sduu −

C
V 1,LR
sddd + 2CV 1,LR

uusd − C
V 1,LR
ddsd = Λ−4

np and 0 ≤ C
V 1,LR
sddd + C

V 1,LR
ddsd ≤ 3, having taken the others to vanish.
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Figure 4. The branching fractions of K → π+Emiss: in red the 90%-CL SM predictions; in green

the 1σ BNL E787/E949 result; in brown the 90% NA62 exclusion; in grey the GN bound; and in

blue a region accessible with K → πSS for parameters chosen to enhance mostly the neutral mode

with a NP scale Λnp ≥ v.

We conclude that continued improvement of the KOTO upper bound on KL →
π0+Emiss, even at current levels which are much above the GN bound, provides relevant

constraints on possible new physics scenarios.
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A Isospin decomposition of quark parts of dim-9 operators

In this appendix, for completeness we write down the decomposition of the quark portion

of each of the dim-9 operators in eq. (2.2) into its ∆I = 1/2, 3/2 components. This will

allow us to see clearly the difference between them. Since additionally each operator also

causes a definite change ∆I3 in the third isospin component, we can first group them

according to their ∆I3 values and then express them as linear combinations of their ∆I

terms. Inspecting the operators, we find that Ousdu1 , Õusdu1 , Oddds3 , and Õddds3 have ∆I3 = 1/2,

whereas Oudsu1 , Õudsu1 , Oddsd3 , and Õddsd3 have ∆I3 = −1/2. Employing the Clebsch-Gordan

decomposition rule, we then get the following results:

• The ∆I3 = 1/2 operators:

Ousdu1 = −1

3
Ousdu1,∆I=1/2 +

1

3
Ousdu1,∆I=3/2 , Oddds3 =

1

3
Oddds3,∆I=1/2 −

1

3
Oddds3,∆I=3/2 , (A.1)
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with their components of definite ∆I being given by

Ousdu1,∆I=1/2 =
[(
dLγµsL

)(
uRγ

µuR
)
− 2
(
uLγµsL

)(
dRγ

µuR
)
−
(
dLγµsL

)(
dRγ

µdR
)]
J ,

Ousdu1,∆I=3/2 =
[(
dLγµsL

)(
uRγ

µuR
)

+
(
uLγµsL

)(
dRγ

µuR
)
−
(
dLγµsL

)(
dRγ

µdR
)]
J ,

Oddds3,∆I=1/2 =
[(
uRuL

)(
dRsL) +

(
dRuL

)(
uRsL

)
+ 2
(
dRdL

)(
dRsL

)]
J ,

Oddds3,∆I=3/2 =
[(
uRuL

)(
dRsL

)
+
(
dRuL

)(
uRsL

)
−
(
dRdL

)(
dRsL

)]
J , (A.2)

and similarly Õusdu1 and Õddds3 .

• The ∆I3 = −1/2 operators:

Oudsu1 = −1

3
Oudsu1,∆I=1/2 +

1

3
Oudsu1,∆I=3/2 , Oddsd3 =

1

3
Oddds3,∆I=1/2 −

1

3
Oddds3,∆I=3/2 , (A.3)

with their components of definite ∆I being given by

Oudsu1,∆I=1/2 =
[(
uLγµuL

)(
sRγ

µdR
)
− 2
(
uLγµdL

)(
sRγ

µuR
)
−
(
dLγµdL

)(
sRγ

µdR)
]
J ,

Oudsu1,∆I=3/2 =
[(
uLγµuL

)(
sRγ

µdR
)

+
(
uLγµdL

)(
sRγ

µuR
)
−
(
dLγµdL

)(
sRγ

µdR)
]
J ,

Oddsd3,∆I=1/2 =
[(
uRuL

)(
sRdL) +

(
uRdL

)(
sRuL) + 2(dRdL

)(
sRdL

)]
J ,

Oddsd3,∆I=3/2 =
[(
uRuL

)(
sRdL

)
+
(
uRdL

)(
sRuL)− (dRdL

)(
sRdL)

]
J , (A.4)

and similarly Õudsu1 and Õddsd3 .

B RG running of dim-6 four-quark operators for K → πS(S)

The 1-loop QCD RG equations of the Wilson coefficients of the LEFT dim-6 quark oper-

ators relevant to the K → πS(S) transitions are given by [48]

µ
d

dµ



C
V,LL
ddsd

C
V 1,LL
uusd

C
V 8,LL
uusd

C
V 1,LR
sduu

C
V 8,LR
sduu

C
V 1,LR
sddd

C
V 8,LR
sddd


= −αs

2π



−20
9 0 − 1

18 0 − 1
18 0 − 1

18

0 0 −4
3 0 0 0 0

−4
3 −6 5

3 0 −1
3 0 −1

3

0 0 0 0 4
3 0 0

−4
3 0 −1

3 6 −22
3 0 −1

3

0 0 0 0 0 0 4
3

−4
3 0 −1

3 0 −1
3 6 −22

3





C
V,LL
ddsd

C
V 1,LL
uusd

C
V 8,LL
uusd

C
V 1,LR
sduu

C
V 8,LR
sduu

C
V 1,LR
sddd

C
V 8,LR
sddd


, (B.1)

µ
d

dµ


C
S1,LL
uusd

C
S8,LL
uusd

C
S1,LL
udsu

C
S8,LL
udsu

 = −αs
2π


8 −8

9 −
32
9 −

56
27

−4 −8
3

8
3 −22

9

−32
9 −

56
27 8 −8

9
8
3 −22

9 −4 −8
3




C
S1,LL
uusd

C
S8,LL
uusd

C
S1,LL
udsu

C
S8,LL
udsu

 . (B.2)
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The solutions to these equations between the electroweak scale, which we take to be µ =

mW , and the chiral symmetry breaking µ = Λχ = 4πFπ ' 1.2 GeV are

C
V,LL
ddsd

C
V 1,LL
uusd

C
V 8,LL
uusd

C
V 1,LR
sduu

C
V 8,LR
sduu

C
V 1,LR
sddd

C
V 8,LR
sddd


µ=Λχ

=



0.76 0.00 −0.01 −0.00 −0.00 −0.00 −0.00

0.01 1.07 −0.19 0.00 0.00 0.00 0.00

−0.16 −0.86 1.31 −0.01 −0.03 −0.01 −0.03

−0.01 0.00 −0.00 1.05 0.11 −0.00 −0.00

−0.09 0.01 −0.03 0.51 0.43 −0.01 −0.02

−0.01 0.00 −0.00 −0.00 −0.00 1.05 0.11

−0.09 0.01 −0.03 −0.01 −0.02 0.51 0.43





C
V,LL
ddsd

C
V 1,LL
uusd

C
V 8,LL
uusd

C
V 1,LR
sduu

C
V 8,LR
sduu

C
V 1,LR
sddd

C
V 8,LR
sddd


µ=mW

,

(B.3)
C
S1,LL
uusd

C
S8,LL
uusd

C
S1,LL
udsu

C
S8,LL
udsu


µ=Λχ

=


2.97 −0.03 −1.17 −0.36

−1.01 0.71 0.84 −0.16

−1.17 −0.36 2.97 −0.03

0.84 −0.16 −1.01 0.71




C
S1,LL
uusd

C
S8,LL
uusd

C
S1,LL
udsu

C
S8,LL
udsu


µ=mW

. (B.4)

All of these formulas are also valid for the chirality-flipped counterparts of the operators.

C Chiral structure and hadronization of quark operators forK → πS(S)

Here we collect the SU(3)L × SU(3)R irreducible representations of the dim-6 four-quark

operators examined in section 3 and the corresponding mesonic operators decomposed into

their ∆I = 1/2, 3/2 components. Adopting the normalization convention of ref. [42] for

the chiral realization of each operator,7 we have

O
V,LL
ddsd |27×1 =

1

5

[
(4dLγ

µdL−sLγµsL)(sLγµdL)−(uLγ
µdL)(sLγµuL)

]
−1

5
(qLγ

µqL)(sLγµdL)

⇒ 1

12
g27×1F

4
0

[
4L̃µ22L̃

µ
23−L̃µ33L̃

µ
23−L̃µ21L̃

µ
13

]
⊃ 1

18
g27×1

(
2QV1/2−5QV3/2

)
,

(C.1)

O
V,LL
ddsd |8×1 =

1

5
[(uLγ

µdL)(sLγµuL)−(uLγ
µuL)(sLγµdL)]+

2

5
(qLγ

µqL)(sLγµdL)

⇒ 1

12
g8×1F

4
0

[
L̃µ21L̃

µ
13−L̃µ11L̃

µ
23

]
⊃ 1

6
g8×1QV1/2 , (C.2)

O
V 1,LL
uusd |27×1 =

1

5
[3(uLγ

µuL)(sLγµdL)+2(uLγ
µdL)(sLγµuL)]−1

5
(qLγ

µqL)(sLγµdL)

⇒ 1

12
g8×1F

4
0

[
3L̃µ11L̃

µ
23+2L̃µ21L̃

µ
13

]
⊃ 1

18
g27×1

(
QV1/2+5QV3/2

)
, (C.3)

O
V 1,LL
uusd |8×1 =

2

5
[(uLγ

µuL)(sLγµdL)−(uLγ
µdL)(sLγµuL)]+

1

5
(qLγ

µqL)(sLγµdL)

⇒ 1

6
g8×1F

4
0

[
L̃µ11L̃

µ
23−L̃µ21L̃

µ
13

]
⊃−1

3
g8×1QV1/2 , (C.4)

7Particularly (sLγµdL)(sLγ
µdL) ⇒ 5

12
g27×1F

4
0 L̃µ23L̃

µ
23 and (sLγµdL)(sRγ

µdR) ⇒ 1
4
g8×8F

4
0 Σ23Σ†23

among the operators with purely left-handed quarks and quarks of mixed chirality, respectively.
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O
V 8,LL
uusd |27×1 =

1

3
O
V 1,LL
uusd |27×1 , (C.5)

O
V 8,LL
uusd |8×1 =

11

30
[(uLγ

µdL)(sLγµuL)−(uLγ
µuL)(sLγµdL)]+

1

15
(qLγ

µqL)(sLγµdL)

⇒ 11

72
g8×1F

4
0

[
L̃µ21L̃

µ
13−L̃µ11L̃

µ
23

]
⊃ 11

36
g8×1QV1/2 , (C.6)

O
V 1,LR
sduu |8×8 =(sLγµdL)

[
(uRγ

µuR)−1

3
(qRγ

µqR)

]
⇒ F 4

0

4
g8×8Σ21Σ†13⊃

1

6
g8×8

(
2QS1/2+QS3/2

)
, (C.7)

O
V 8,LR
sduu |8×8 =−1

6
(sLγµdL)

[
(uRγ

µuR)−1

3
(qRγ

µqR)

]
+

1

2
(sLγµdL]

{
[uRγ

µuR)−1

3
[qRγ

µqR)

}
⇒−1

6

F 4
0

4

(
g8×8−3g̃8×8

)
Σ21Σ†13⊃

1

36

(
3g̃8×8−g8×8

) (
2QS1/2+QS3/2

)
, (C.8)

O
V 1,LR
sddd |8×8 =(sLγµdL)

[
(dRγ

µdR)−1

3
(qRγ

µqR)

]
⇒ F 4

0

4
g8×8Σ22Σ†23⊃−

1

12
g8×8

(
QS1/2+2QS3/2

)
, (C.9)

O
V 8,LR
sddd |8×8 =−1

6
(sLγµdL)

[
(dRγ

µdR)−1

3
(qRγ

µqR)

]
+

1

2
(sLγµdL]

{
[dRγ

µdR)−1

3
[qRγ

µqR)

}
⇒−1

6

F 4
0

4

(
g8×8−3g̃8×8

)
Σ22Σ†23⊃

1

72

(
g8×8−3g̃8×8

) (
QS1/2+2QS3/2

)
, (C.10)

O
S1,LL
uusd |6×6̄ =

1

2
[(uRuL)(sRdL)+(uRdL)(sRuL)]

⇒ 1

2

F 4
0

4
g6×6̄ (Σ23Σ11+Σ13Σ21)⊃− 1

24
g6×6̄

(
5QS1/2+4QS3/2

)
, (C.11)

O
S1,LL
uusd |3̄×3 =

1

2
[(uRuL)(sRdL)−(uRdL)(sRuL)]

⇒ 1

2

F 4
0

4
g3̄×3 (Σ23Σ11−Σ13Σ21)⊃ 1

8
g3̄×3QS1/2 , (C.12)

O
S8,LL
uusd |6×6̄ =− 1

12
[(uRuL)(sRdL)+(uRdL)(sRuL)]+

1

4
{(uRuL][sRdL)+(uRdL][sRuL)}

⇒ F 4
0

84

(
g6×6̄−3g̃6×6̄

)
(Σ23Σ11+Σ13Σ21)⊃

g
6×6̄
−3g̃

6×6̄

144

(
5QS1/2+4QS3/2

)
,

(C.13)

O
S8,LL
uusd |3̄×3 =− 1

12
[(uRuL)(sRdL)−(uRdL)(sRuL)]+

1

4
{(uRuL][sRdL)−(uRdL][sRuL)}

⇒−F
4
0

48

(
g3̄×3−3g̃3̄×3

)
(Σ23Σ11−Σ13Σ21)⊃

3g̃3̄×3−g3̄×3

48
QS1/2 , (C.14)

O
S1,LL
udsu |6×6̄ =O

S1,LL
uusd |6×6̄ , O

S1,LL
udsu |3̄×3 =−O S1,LL

uusd |3̄×3 ,

O
S8,LL
udsu |6×6̄ =O

S8,LL
uusd |6×6̄ , O

S8,LL
udsu |3̄×3 =−O S8,LL

uusd |3̄×3 , (C.15)
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where qT = (u, d, s) and L̃µij = (Σ∂µΣ†)ij . For the chirality-flipped counterparts of these

operators, the irreducible components and chiral realizations can be obtained from the

above results by making the exchanges L↔ R and Σ↔ Σ†. We observe that among these

operators O
V,LL
ddsd |8×1, O

V 1,LL
uusd |8×1, O

V 8,LL
uusd |8×1, O

S1,LL
uusd,udsu|3̄×3, and O

S8,LL
uusd,udsu|3̄×3 generate

exclusively ∆I = 1/2 interactions.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J.S. Hagelin and L.S. Littenberg, Rare Kaon Decays, Prog. Part. Nucl. Phys. 23 (1989) 1

[INSPIRE].

[2] L.S. Littenberg, The CP-violating Dacay KL → π0νν̄, Phys. Rev. D 39 (1989) 3322

[INSPIRE].

[3] F. Mescia and C. Smith, Improved estimates of rare K decay matrix-elements from Kl3

decays, Phys. Rev. D 76 (2007) 034017 [arXiv:0705.2025] [INSPIRE].

[4] T. Inami and C.S. Lim, Effects of Superheavy Quarks and Leptons in Low-Energy Weak

Processes KL → µµ̄, K+ → π+νν̄ and K0 ↔ K̄0, Prog. Theor. Phys. 65 (1981) 297

[Erratum ibid. 65 (1981) 1772] [INSPIRE].

[5] G. Buchalla and A.J. Buras, The rare decays K → πνν̄, B → Xνν̄ and B → l+l−: An

Update, Nucl. Phys. B 548 (1999) 309 [hep-ph/9901288] [INSPIRE].

[6] J. Brod, M. Gorbahn and E. Stamou, Two-Loop Electroweak Corrections for the K → πνν̄

Decays, Phys. Rev. D 83 (2011) 034030 [arXiv:1009.0947] [INSPIRE].

[7] A.J. Buras, M. Gorbahn, U. Haisch and U. Nierste, Charm quark contribution to

K+ → π+νν̄ at next-to-next-to-leading order, JHEP 11 (2006) 002 [Erratum JHEP 11

(2012) 167] [hep-ph/0603079] [INSPIRE].

[8] J. Brod and M. Gorbahn, Electroweak Corrections to the Charm Quark Contribution to

K+ → π+νν̄, Phys. Rev. D 78 (2008) 034006 [arXiv:0805.4119] [INSPIRE].

[9] G. Isidori, F. Mescia and C. Smith, Light-quark loops in K → πνν̄, Nucl. Phys. B 718

(2005) 319 [hep-ph/0503107] [INSPIRE].

[10] A.F. Falk, A. Lewandowski and A.A. Petrov, Effects from the charm scale in K+ → π+νν̄,

Phys. Lett. B 505 (2001) 107 [hep-ph/0012099] [INSPIRE].

[11] CKMfitter Group, CP violation and the CKM matrix: Assessing the impact of the

asymmetric B factories, Eur. Phys. J. C 41 (2005) 1 [hep-ph/0406184] [INSPIRE].

[12] CKMfitter Group, (2020) http://ckmfitter.in2p3.fr/.

[13] Particle Data Group, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001

[INSPIRE].

[14] Y. Grossman and Y. Nir, KL → π0νν̄ beyond the standard model, Phys. Lett. B 398 (1997)

163 [hep-ph/9701313] [INSPIRE].

[15] KOTO collaboration, Search for the KL → π0νν and KL → π0X0 decays at the J-PARC

KOTO experiment, Phys. Rev. Lett. 122 (2019) 021802 [arXiv:1810.09655] [INSPIRE].

– 26 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0146-6410(89)90007-0
https://inspirehep.net/search?p=find+J%20%22Prog.Part.Nucl.Phys.%2C23%2C1%22
https://doi.org/10.1103/PhysRevD.39.3322
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD39%2C3322%22
https://doi.org/10.1103/PhysRevD.76.034017
https://arxiv.org/abs/0705.2025
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0705.2025
https://doi.org/10.1143/PTP.65.297
https://inspirehep.net/search?p=find+J%20%22Prog.Theor.Phys.%2C65%2C297%22
https://doi.org/10.1016/S0550-3213(99)00149-2
https://arxiv.org/abs/hep-ph/9901288
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9901288
https://doi.org/10.1103/PhysRevD.83.034030
https://arxiv.org/abs/1009.0947
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1009.0947
https://doi.org/10.1088/1126-6708/2006/11/002
https://doi.org/10.1007/JHEP11(2012)167
https://doi.org/10.1007/JHEP11(2012)167
https://arxiv.org/abs/hep-ph/0603079
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0603079
https://doi.org/10.1103/PhysRevD.78.034006
https://arxiv.org/abs/0805.4119
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0805.4119
https://doi.org/10.1016/j.nuclphysb.2005.04.008
https://doi.org/10.1016/j.nuclphysb.2005.04.008
https://arxiv.org/abs/hep-ph/0503107
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0503107
https://doi.org/10.1016/S0370-2693(01)00343-4
https://arxiv.org/abs/hep-ph/0012099
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0012099
https://doi.org/10.1140/epjc/s2005-02169-1
https://arxiv.org/abs/hep-ph/0406184
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0406184
http://ckmfitter.in2p3.fr/
https://doi.org/10.1103/PhysRevD.98.030001
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD98%2C030001%22
https://doi.org/10.1016/S0370-2693(97)00210-4
https://doi.org/10.1016/S0370-2693(97)00210-4
https://arxiv.org/abs/hep-ph/9701313
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9701313
https://doi.org/10.1103/PhysRevLett.122.021802
https://arxiv.org/abs/1810.09655
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.09655


J
H
E
P
0
8
(
2
0
2
0
)
0
3
4

[16] E949 collaboration, New measurement of the K+ → π+νν̄ branching ratio, Phys. Rev. Lett.

101 (2008) 191802 [arXiv:0808.2459] [INSPIRE].

[17] BNL-E949 collaboration, Study of the decay K+ → π+νν̄ in the momentum region

140 < Pπ < 199 MeV/c, Phys. Rev. D 79 (2009) 092004 [arXiv:0903.0030] [INSPIRE].

[18] NA62 collaboration, First search for K+ → π+νν̄ using the decay-in-flight technique, Phys.

Lett. B 791 (2019) 156 [arXiv:1811.08508] [INSPIRE].

[19] G. Ruggiero, New Result on K+ → π+νν̄ from the NA62 Experiment, in proceedings of the

International Conference on Kaon Physics 2019 (KAON2019), Perugia, Italy, 10–13

September 2019.

[20] S. Shinohara, Search for the rare decay KL → π0νν̄, in proceedings of the International

Conference on Kaon Physics 2019 (KAON2019), Perugia, Italy, 10–13 September 2019.

[21] K. Fuyuto, W.-S. Hou and M. Kohda, Loophole in K → πνν̄ Search and New Weak Leptonic

Forces, Phys. Rev. Lett. 114 (2015) 171802 [arXiv:1412.4397] [INSPIRE].

[22] T. Kitahara, T. Okui, G. Perez, Y. Soreq and K. Tobioka, New physics implications of recent

search for KL → π0νν̄ at KOTO, Phys. Rev. Lett. 124 (2020) 071801 [arXiv:1909.11111]

[INSPIRE].

[23] D. Egana-Ugrinovic, S. Homiller and P. Meade, Light Scalars and the KOTO Anomaly, Phys.

Rev. Lett. 124 (2020) 191801 [arXiv:1911.10203] [INSPIRE].

[24] P.S.B. Dev, R.N. Mohapatra and Y. Zhang, Constraints on long-lived light scalars with

flavor-changing couplings and the KOTO anomaly, Phys. Rev. D 101 (2020) 075014

[arXiv:1911.12334] [INSPIRE].

[25] J. Liu, N. McGinnis, C.E.M. Wagner and X.-P. Wang, A light scalar explanation of (g − 2)µ
and the KOTO anomaly, JHEP 04 (2020) 197 [arXiv:2001.06522] [INSPIRE].

[26] Y. Liao, H.-L. Wang, C.-Y. Yao and J. Zhang, An imprint of a new light particle at KOTO?,

arXiv:2005.00753 [INSPIRE].

[27] Y. Jho, S.M. Lee, S.C. Park, Y. Park and P.-Y. Tseng, Light gauge boson interpretation for

(g − 2)µ and the KL → π0 + (invisible) anomaly at the J-PARC KOTO experiment, JHEP

04 (2020) 086 [arXiv:2001.06572] [INSPIRE].

[28] J.M. Cline, M. Puel and T. Toma, A little theory of everything, with heavy neutral leptons,

JHEP 05 (2020) 039 [arXiv:2001.11505] [INSPIRE].

[29] M. Fabbrichesi and E. Gabrielli, Dark-sector physics in the search for the rare decays

K+ → π+νν̄ and KL → π0νν̄, Eur. Phys. J. C 80 (2020) 532 [arXiv:1911.03755]

[INSPIRE].

[30] T. Li, X.-D. Ma and M.A. Schmidt, Implication of K → πνν̄ for generic neutrino

interactions in effective field theories, Phys. Rev. D 101 (2020) 055019 [arXiv:1912.10433]

[INSPIRE].

[31] X.-G. He, X.-D. Ma, J. Tandean and G. Valencia, Breaking the Grossman-Nir Bound in

Kaon Decays, JHEP 04 (2020) 057 [arXiv:2002.05467] [INSPIRE].

[32] R. Ziegler, J. Zupan and R. Zwicky, Three Exceptions to the Grossman-Nir Bound,

arXiv:2005.00451 [INSPIRE].

[33] X.-G. He, G. Valencia and K. Wong, Constraints on new physics from K → πνν̄, Eur. Phys.

J. C 78 (2018) 472 [arXiv:1804.07449] [INSPIRE].

– 27 –

https://doi.org/10.1103/PhysRevLett.101.191802
https://doi.org/10.1103/PhysRevLett.101.191802
https://arxiv.org/abs/0808.2459
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0808.2459
https://doi.org/10.1103/PhysRevD.79.092004
https://arxiv.org/abs/0903.0030
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0903.0030
https://doi.org/10.1016/j.physletb.2019.01.067
https://doi.org/10.1016/j.physletb.2019.01.067
https://arxiv.org/abs/1811.08508
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.08508
https://doi.org/10.1103/PhysRevLett.114.171802
https://arxiv.org/abs/1412.4397
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.4397
https://doi.org/10.1103/PhysRevLett.124.071801
https://arxiv.org/abs/1909.11111
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.11111
https://doi.org/10.1103/PhysRevLett.124.191801
https://doi.org/10.1103/PhysRevLett.124.191801
https://arxiv.org/abs/1911.10203
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.10203
https://doi.org/10.1103/PhysRevD.101.075014
https://arxiv.org/abs/1911.12334
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.12334
https://doi.org/10.1007/JHEP04(2020)197
https://arxiv.org/abs/2001.06522
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.06522
https://arxiv.org/abs/2005.00753
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.00753
https://doi.org/10.1007/JHEP04(2020)086
https://doi.org/10.1007/JHEP04(2020)086
https://arxiv.org/abs/2001.06572
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.06572
https://doi.org/10.1007/JHEP05(2020)039
https://arxiv.org/abs/2001.11505
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.11505
https://doi.org/10.1140/epjc/s10052-020-8103-7
https://arxiv.org/abs/1911.03755
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.03755
https://doi.org/10.1103/PhysRevD.101.055019
https://arxiv.org/abs/1912.10433
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.10433
https://doi.org/10.1007/JHEP04(2020)057
https://arxiv.org/abs/2002.05467
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.05467
https://arxiv.org/abs/2005.00451
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.00451
https://doi.org/10.1140/epjc/s10052-018-5964-0
https://doi.org/10.1140/epjc/s10052-018-5964-0
https://arxiv.org/abs/1804.07449
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.07449


J
H
E
P
0
8
(
2
0
2
0
)
0
3
4

[34] D. Rein and L.M. Sehgal, Long Distance Contributions to the Decay K+ → π+νν̄, Phys.

Rev. D 39 (1989) 3325 [INSPIRE].

[35] G. Buchalla and G. Isidori, The CP conserving contribution to KL → π0νν̄ in the standard

model, Phys. Lett. B 440 (1998) 170 [hep-ph/9806501] [INSPIRE].

[36] M. Lu and M.B. Wise, Long distance contributions to K+ → π+νν̄, Phys. Lett. B 324

(1994) 461 [hep-ph/9401204] [INSPIRE].

[37] A. Kobach, Baryon Number, Lepton Number, and Operator Dimension in the Standard

Model, Phys. Lett. B 758 (2016) 455 [arXiv:1604.05726] [INSPIRE].

[38] J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158

(1984) 142 [INSPIRE].

[39] J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the

Strange Quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].

[40] J. Kambor, J.H. Missimer and D. Wyler, The Chiral Loop Expansion of the Nonleptonic

Weak Interactions of Mesons, Nucl. Phys. B 346 (1990) 17 [INSPIRE].

[41] M.L. Graesser, An electroweak basis for neutrinoless double β decay, JHEP 08 (2017) 099

[arXiv:1606.04549] [INSPIRE].

[42] V. Cirigliano, W. Dekens, M. Graesser and E. Mereghetti, Neutrinoless double beta decay

and chiral SU(3), Phys. Lett. B 769 (2017) 460 [arXiv:1701.01443] [INSPIRE].

[43] Y. Liao, X.-D. Ma and H.-L. Wang, Effective field theory approach to lepton number violating

decays K± → π∓l±l±: short-distance contribution, JHEP 01 (2020) 127

[arXiv:1909.06272] [INSPIRE].

[44] W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor

Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

[45] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the

Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

[46] E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-Energy Effective Field Theory below the

Electroweak Scale: Operators and Matching, JHEP 03 (2018) 016 [arXiv:1709.04486]

[INSPIRE].

[47] V. Cirigliano, G. Ecker, H. Neufeld and A. Pich, Isospin breaking in K → ππ decays, Eur.

Phys. J. C 33 (2004) 369 [hep-ph/0310351] [INSPIRE].

[48] E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-Energy Effective Field Theory below the

Electroweak Scale: Anomalous Dimensions, JHEP 01 (2018) 084 [arXiv:1711.05270]

[INSPIRE].

– 28 –

https://doi.org/10.1103/PhysRevD.39.3325
https://doi.org/10.1103/PhysRevD.39.3325
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD39%2C3325%22
https://doi.org/10.1016/S0370-2693(98)01088-0
https://arxiv.org/abs/hep-ph/9806501
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9806501
https://doi.org/10.1016/0370-2693(94)90223-2
https://doi.org/10.1016/0370-2693(94)90223-2
https://arxiv.org/abs/hep-ph/9401204
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9401204
https://doi.org/10.1016/j.physletb.2016.05.050
https://arxiv.org/abs/1604.05726
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.05726
https://doi.org/10.1016/0003-4916(84)90242-2
https://doi.org/10.1016/0003-4916(84)90242-2
https://inspirehep.net/search?p=find+J%20%22Annals%20Phys.%2C158%2C142%22
https://doi.org/10.1016/0550-3213(85)90492-4
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB250%2C465%22
https://doi.org/10.1016/0550-3213(90)90236-7
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB346%2C17%22
https://doi.org/10.1007/JHEP08(2017)099
https://arxiv.org/abs/1606.04549
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.04549
https://doi.org/10.1016/j.physletb.2017.04.020
https://arxiv.org/abs/1701.01443
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.01443
https://doi.org/10.1007/JHEP01(2020)127
https://arxiv.org/abs/1909.06272
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.06272
https://doi.org/10.1016/0550-3213(86)90262-2
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB268%2C621%22
https://doi.org/10.1007/JHEP10(2010)085
https://arxiv.org/abs/1008.4884
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1008.4884
https://doi.org/10.1007/JHEP03(2018)016
https://arxiv.org/abs/1709.04486
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.04486
https://doi.org/10.1140/epjc/s2003-01579-3
https://doi.org/10.1140/epjc/s2003-01579-3
https://arxiv.org/abs/hep-ph/0310351
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0310351
https://doi.org/10.1007/JHEP01(2018)084
https://arxiv.org/abs/1711.05270
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.05270

	Introduction
	GN-bound violation via EFT operators for K -> pi 2 nu
	EFT operators for K -> pi 2 nu
	Evaluation of hadronic matrix elements at low energies
	Numerical analysis

	GN-bound violation via EFT operators for K -> pi S or pi SS
	Operators and matching
	Numerical analysis
	K -> pi S
	K -> pi SS


	Summary and conclusions
	Isospin decomposition of quark parts of dim-9 operators
	RG running of dim-6 four-quark operators for K -> pi S(S)
	Chiral structure and hadronization of quark operators for K -> pi S(S)

