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1 Introduction

Scattering amplitudes in perturbative quantum field theory have since long been the source

of ever-renewing interplay between beautiful mathematics and realistic applications. This is

arguably even more so the case for the simplest interacting four-dimensional gauge-theory,

maximally supersymmetric or N = 4 super Yang-Mills (SYM) in the planar limit. For

example, while the algebraic structure of a relevant class of functions known as multiple
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polylogarithms (MPLs) was well-established in the mathematics literature for some time [1–

3], it was its application for the first time in a physics context in this theory [4], which led

to an explosion of important phenomenological two-loop results, starting with [5].

While more complicated functions are certainly known to appear in generic quantum

field theories at two loops [6] and beyond, arguments at the level of the integrand [7] sug-

gest that (appropriately normalised [8–11]) amplitudes in the maximally helicity violating

(MHV) or next-to-MHV (NMHV) configuration in N = 4 SYM are MPLs of weight 2L at

L loops for any number of external legs. A function F is defined to be an MPL of weight

n if its total differential obeys

dF =
∑
φβ

F φβd lnφβ , (1.1)

such that F φα is a MPL of weight n − 1 and so on, with the above recursive definition

terminating with the usual logarithms on the left-hand side at weight one, and (weight

zero) rational numbers accompanying the total differentials on the right-hand side. The

symbol [4] is a convenient tool encapsulating this recursive definition by mapping F to an

n-fold tensor product, where the set φβ in (1.1) is placed on the rightmost factor, the d log

argument of the analogous relation for dF φα is placed on the next-to-rightmost factor, and

so forth. The union of all d log arguments such as φβ from all the tensor product factors

is the symbol alphabet, and it evidently encodes the singularity and discontinuity structure

of the function F .

At low orders, the symbol alphabet (in fact, the entire amplitude) may be obtained

by direct Feynman diagram [12, 13] or symmetry-related [14, 15] computations. More

generally, however, there is evidence [16] that the symbol aphabet is dictated by another

intriguing mathematical object known as a (Grassmannian) cluster algebra [17–20]. In

particular, this object is naturally defined in the space of kinematics of the n-particle am-

plitude, which coincides with the Gr(4, n) Grassmannian, thanks to the dual conformal

symmetry [21–25] of the theory.1 More precisely, the space of kinematics is a certain quo-

tient of the Grassmannian, the configuration space (of n points in complex projective space

P3) G̃r(4, n), as can be most easily seen by using kinematic variables known as momen-

tum twistors [26], which conveniently realise the aforementioned symmetry (a pedagogical

introduction on momentum twistors is contained in [27]).

More recently, it has been realised that cluster algebras also provide more ‘local’ infor-

mation. Namely they provide not only the entire symbol alphabet, but also which letters

thereof are allowed to appear in adjacent entries of the symbol [28]. This property of

cluster adjacency has also been extended to the rational factors that may be present in

the amplitudes [29], for more recent applications see [30–33]. Very interestingly, while the

direct physical origin of cluster adjacency remains obscure, for the space of functions with

physical branch cuts containing six- and seven-particle amplitudes, cluster adjacency is

equivalent to the physically more transparent extended Steinmann relations2 [35–37].

1In particular, this dual conformal symmetry also implies that only normalised amplitudes with n ≥ 6

have nontrivial kinematic dependence, and are therefore of interest.
2Cluster adjacency/extended Steinmann relations do not hold in the original, BDS normalisation [8] of
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Thanks to the knowledge of the symbol alphabet, cluster adjacency/extended Stein-

mann relations or more generally the analytic structure of the amplitude, a bootstrap method

has been developed, which enables its construction without ever having to resort to Feyn-

man diagrams. It at most requires information on the behaviour of the amplitude in certain

kinematic regions, such as the multi-Regge [38–49] or collinear limit [50–58], which may be

independently and relatively simply be obtained by other means, and has been successfully

applied through seven loops for the six-particle amplitude [11, 59–66] and through four

loops for the (symbol of the) seven-particle amplitude [30, 34, 67]. In principle, the prob-

lem of determining the amplitude (symbol) with n = 6, 7 legs in N = 4 SYM is thus solved,

subject to limitations in (still orders of magnitude less compared to Feynman diagrams)

computational power.

Despite this progress, a serious conceptual and practical obstacle prevents its straight-

forward generalisation to amplitudes with n ≥ 8: in this case, the corresponding Gr(4, n)

Grassmannian cluster algebra becomes infinite, even though the amplitude can only have a

finite number of symbol letters at fixed loop order. While the symbol alphabet (of size pos-

sibly increasing with the loop order) may still be contained in the cluster algebra, the fact

that we have infinite possibilities to choose from means that in reality we know very little

about the analytic structure of the amplitude, and certainly not enough to bootstrap it.

Hope for overcoming this obstacle has recently been raised thanks to yet another

intriguing connection, between scattering amplitudes and the geometry of tropical Grass-

mannians Tr(k, n) [68], or more accurately tropical configuration spaces T̃r(k, n), inheriting

the additional quotienting of Grassmannians mentioned before. This connection has first

been established in the context of tree-level amplitudes in a generalised biadjoint scalar

theory [69, 70]. These arise as an extension of the Cachazo-He-Yuan formulation [71, 72]

of the corresponing amplitudes in ‘usual’ (cubic) biadjoint scalar theory as an integral over

P1, to an integral over Pk−1. Other aspects of these amplitudes have been studied more

recently in [73–76].

Building on the geometric picture for amplitudes in the k = 2 case [77], it was eluci-

dated in [78] that the (canonically ordered) generalised biadjoint scalar amplitude is equal

to the volume of a region of T̃r(k, n), which we shall denote as the totally positive tropical

configuration space3 T̃r+(k, n) [79]. In [78], it was also pointed out that cluster algebras

provide triangulations of T̃r+(k, n), and that the nature of infinities of the former can be

interpreted as an infinitely redundant decomposition of the finite volume of the latter into

smaller simplices. Therefore a possible way to cure the infinities is to prevent these redun-

dant triangulations, which in essence picks out a particular finite subset of the variables of

the cluster algebra.

In this paper, we test and explore the implications of this ‘tropical selection rule’.

Given that redundant triangulations have been observed to occur also in finite cluster

algebras, and preventing them leads to certain ‘beyond-cluster adjacency’ restrictions on

the amplitude. However they are obeyed in the more recent, BDS-like normalisation [9–11] (as also reviewed

in [34]), and it is the latter that we will use in section 4.
3In the literature, T̃r+(k, n) is often also called totally positive tropical Grassmannian by abuse of

notation.
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which letters can appear next to each other in the symbol, we first study T̃r+(4, 7), or

equivalently the seven-particle amplitude. By comparing these beyond-cluster adjacency

predictions with existing data on the amplitude through four loops [30, 34, 67], we establish

that the NMHV amplitude does not satisfy them, namely T̃r+(4, 7) is ‘too small’ to contain

the NMHV helicity configuration. At the same time, the present data suggests that the

MHV amplitude does satisfy the T̃r+(4, 7)-adjacency, as well as certain additional beyond-

cluster adjacency restrictions. In other words, we find that T̃r+(4, 7) is sufficient to describe

the MHV amplitude, albeit, in a sense, ‘too big’.

Armed with this intuition, we then move on to study T̃r+(4, 8) and its tropical se-

lection rule. In this manner, we obtain a finite set of 356 cluster (A-)variables, which is

expected to contain the rational symbol letters of the eight-particle MHV amplitude. The

complete alphabet is also expected to contain square roots of the cluster variables, since

the latter are also contained in the four-mass one-loop box (see for example [80]), which

starts contributing to the amplitude for n ≥ 8. While these cannot appear in the cluster

algebra per se, using a simple example of a rank-two affine cluster algebra, we show that

it is possible to obtain square roots of very similar type, as a limit of an infinite mutation

sequence. We find this example very relevant, given that the rank-two algebra considered

is in fact a subalgebra of the Gr(4, 8) cluster algebra.

In our view, these results provide evidence that the relation between cluster algebras

and tropical geometry may offer great promise for unravelling the analytic structure of

N = 4 amplitudes, even though further work will be needed to flesh out the details. Before

concluding, we also revisit the finite Gr(3, 8) cluster algebra, and show how to obtain the

associated T̃r+(3, 8) generalised biadjoint scalar amplitude in a form containing a near-

minimal amount of spurious poles.

This paper is organised as follows. We first review some general notions of tropical

geometry and the construction of the Grassmannian and configuration space as well as their

tropical versions in section 2. Following this, we give a quick overview of cluster algebras

in section 3 and review their connection to the totally positive tropical configuration space.

Section 4 contains our analysis of T̃r+(4, 7) and its implications for the seven-particle

amplitude, whereas in section 5 we focus on T̃r+(4, 8) and present its predictions for the

rational symbol letters of the eight-particle alphabet.

Then, in section 6 we show how square roots can arise as limits of cluster algebras.

Section 7 deals with T̃r+(3, 8) and the more compact representation we can obtain for

the corresponding generalised biadjoint scalar amplitude, and finally section 8 contains

our conclusions and outlook. Two appendices supplement the main text, reviewing the

web-parameterisation of the T̃r+(k, n) [79], as well as the general construction of cluster

algebras with coefficients [20].

Results similar to the ones presented in this paper, have been also independently

obtained in [81, 82].

2 Tropical geometry and Grassmannians

Tropical geometry is a relatively new field in mathematics, whose cornerstone is the map-

ping of polynomials, used to define algebraic varieties, to piecewise linear functions, defining
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in turn geometric objects known as polyhedral complexes. In this manner, it sometimes

allows to answer questions about the former, in the much simpler context of the latter.

There are many good introductory texts [83] as well as reviews on the subject [84–86].

Here, we will briefly review the basic concepts following [68, 78, 79] with a focus on

introducing the totally positive tropical configuration space. The relation of its building

blocks, known as rays, to the variables of Grassmannian cluster algebras, which will be

discussed in the next section, will lie at the core of our analysis. We will use italic text

to emphasize the main concepts and definitions, and also provide several examples to

illustrate them,4 as it is only relatively recently that they have been discovered by the

physics community.

2.1 Generalities on tropical geometry

In essence, tropical geometry is the algebraic geometry over the tropical semifield (R ∪
{∞} ,⊕,⊗), which is defined as the set of real numbers with infinity on which addition

is given by taking the minimum and multiplication by addition. The varieties that are

of interest to us are usually defined over the complex numbers C, such that we will only

discuss this case, also known as tropical geometry with constant coefficients. Replacing

this field by the tropical semifield allows us to construct the tropical variety as follows.

Given a polynomial f ∈ C [x1, . . . , xr] of the form f =
∑

a cax
ma1
1 . . . x

mar
r , where

ca ∈ C∗ ≡ C \ {0}, we associate a tropical counterpart to it by replacing addition and

multiplication as described above. We thus obtain, with the first sum to be understood as

tropical addition over the terms, the tropical polynomial

Trf =
∑
a

⊕
val (ca)⊗ x

⊗ma1
1 ⊗ · · · ⊗ x⊗marr = min

a

(
r∑
j=1

ma
j · xj

)
, (2.1)

where val denotes the valuation map, which in this case maps all elements of C∗ to zero and

zero to infinity. Similar to usual polynomials, we refer to the arguments of the minimum,

that is terms of the form
r∑
j=1

ma
j · xj , (2.2)

as the monomials of the tropical polynomial.

Example 2.1. We demonstrate this and the following constructions on an example. Con-

sider for this the polynomial g(x1, x2) = 2x31 + x−11 x2 − x22. The three constant coeffi-

cients, which are 2, 1 and −1, all vanish under the valuation. We thus obtain the tropical

polynomial

Trg = min (3x1,−x1 + x2, 2x2) . (2.3)

4So as to aid the reader, the beginning and end of each example along the text, will be denoted by

boldface font and the symbol, respectively.
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Figure 1. The tropical hypersurface associated to g = 2x31 + x−1
1 x2 − x22 is depicted in red.

As can be seen from (2.1), the tropical polynomial Trf is a piecewise linear function

from Rr to R. This function is linear and differentiable everywhere except where the

minimum is attained by at least two tropical monomials, which is where the function

passes between regions of linearity. The set of such points in Rr, that is where the function

is not regular, is defined as the tropical hypersurface V (Trf) associated to the polynomial.

Example 2.2. In our previous example, the tropical hypersurface associated to g is given

by the union of solutions to each of the equations

3x1 = −x1 + x2 ≤ 2x2 ,

3x1 = 2x2 ≤ −x1 + x2 , (2.4)

2x2 = −x1 + x2 ≤ 3x1 ,

which is where the tropical polynomial is non-linear. This region is given by V (Trg) =

{x2 = 4x1, x1 ≥ 0}∪ {x2 = 3/2x1, x1 ≤ 0}∪ {x2 = −x1, x1 ≥ 0} and illustrated in figure 1.

Note that the tropical hypersurface in this case is the union of three hypersurfaces in R2.

In what follows, we will also need the notion of a tropical variety, which parallels the

definition of an algebraic variety as the space of solutions to some polynomial equations.

That is, for some ideal I in C [x1, . . . , xr], the space of polynomials in x1, . . . , xr with

complex coefficients, the associated variety V (I) is the space of points in Cr where all

elements of the ideal vanish.5 The associated tropical variety is then constructed by taking

the intersection of the tropical hypersurfaces V (Trf) for all f ∈ I.

2.2 Grassmannians and configuration spaces

Let us start by reviewing the definition of the Grassmannian before turning to its tropical

version. The Grassmannian Gr(k, n) is defined as the space of k-dimensional planes passing

through the origin inside an n-dimensional space. Since a k-plane can be specified by a

basis of k vectors that span it, the Grassmannian may be equivalently described as the

5We remind the reader that an ideal is a subset of a ring closed under addition, such that any element

of the ideal multiplied with any element of the ring again lands inside the ideal.
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space of k × n matrices, modulo GL(k) transformations that correspond to a change of

basis.

For our purposes, a formulation of Gr(k, n) as the variety attached to a polynomial

ideal, as reviewed in the previous section, will be more convenient. We thus consider the

ring Z [p] of integer coefficient polynomials in the Plücker variables pi1...ik for 1 ≤ i1 <

· · · < ik ≤ n, which are nothing but the determinants made out of rows i1, . . . , ik of the

aforementioned n × k matrix. From here on we denote the number of distinct Plücker

variables of Gr(k, n) as

D =

(
n

k

)
. (2.5)

Due to their nature as determinants, which are not all independent, Plücker variables

will thus obey algebraic relations known as the Plücker relations,

pi1...ir[ir+1...ikpj1...jr+1]jr+2...jk = 0 , (2.6)

where square brackets denote total antisymmetrisation with respect to the enclosed indices.

These homogeneous polynomials form the Plücker ideal Ik,n in Z [p]. The projective

variety of this ideal, that is the set of zeros of these polynomials quotiented by global

rescalings of the Plücker variables, pi1...ik → t · pi1...ik with t ∈ C∗, can be identified with

the Grassmannian Gr(k, n). The dimension of this space is k(n− k).

Note that the Plücker relations are not only invariant under global rescaling but also

under the local scaling

pi1...ik → ti1 . . . tikpi1...ik , for t1, . . . , tn ∈ C∗ . (2.7)

If we further quotient the Grassmannian by this local scaling, we obtain the configuration

space (of n points in complex projective space Pk−1),

G̃r(k, n) ≡ Gr(k, n)/ (C∗)n−1 = Confn

(
Pk−1

)
. (2.8)

On the very right, we also include how the configuration space has been denoted in previous

literature, however here we will prefer the notation on the very left to stress its relation to

the Grassmannian. In what follows, we will denote the dimension of G̃r(k, n) by d, where

d = (k − 1)(n− k − 1) . (2.9)

To construct the tropical version of the Grassmannian Gr(k, n), we follow the general

procedure reviewed in section 2.1 and first compute the tropical version of the polynomial

generators of the Plücker ideal,

Ik,n → TrIk,n , pi1...ik → wi1...ik , (2.10)

where we have also changed the notation for the tropical Plücker variables, so as to better

distinguish them. We thus obtain a set of piecewise linear functions for each of which we

compute its tropical hypersurface, given as those points where the minimum is attained by

at least two tropical monomials.

– 7 –
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The tropical analogue of the local rescaling (2.7),

wi1...ik → ai1 + · · ·+ aik + wi1...ik (2.11)

for any a1, . . . , an ∈ R, is known as lineality, and it similarly leaves the equations for

the tropical hypersurfaces invariant. If we quotient by the global tropical scaling where

a1 = . . . = ak, we obtain the tropical Grassmannian Tr(k, n), whereas quotienting by the

local tropical scaling, we obtain the tropical configuration space6 T̃r(k, n).

In addition to the global and local scaling just considered, the tropical hypersur-

face conditions are also invariant under positive scalings of the tropical Plücker variables

wi1...ik → λwi1...ik for λ ∈ R+. This scaling follows from the homogeneity of the tropical

monomials of the Plücker relations, which in turn is a consequence of the Plücker relations

having constant C coefficients.

In this sense, solutions to all tropical hypersurface equations form rays, that is a half-

lines emanating from the origin of RD. The intersection of all these tropical hypersurfaces

thus forms a polyhedral fan in RD [68]. This means that it is a set of cones — convex

subregions of RD containing the origin — each of them obtained as the positive span of a

given collection of the rays.

Depending on the number of linearly independent rays, these cones may have differ-

ent dimensions, whereas the lower-dimensional cones arise as the boundaries of higher-

dimensional ones. These faces of the fan are usually summarised in terms its f -vector

f = (f1, . . . , fr), with fm being the number of m-dimensional faces. Here r denotes the

dimension of the fan, given by the highest dimensional cone. Tr(k, n) is a polyhedral fan

of k(n − k), whereas T̃r(k, n), a polyhedral fan of dimension (k − 1)(n − k − 1). Namely

tropicalisation does not change the dimension.

Example 2.3. We now demonstrate this general construction on the example of the trop-

icalisation of Gr(2, n). The Plücker ideals I2,n are generated by the polynomials

pijpml − pimpjl + pilpjm , 1 ≤ i < j < m < l ≤ n . (2.12)

Replacing addition with taking the minimum and multiplication with addition, we

obtain the tropicalised Plücker relations given by

min (wij + wml, wim + wjl, wil + wjm) , 1 ≤ i < j < m < l ≤ n. (2.13)

For any of these polynomials, the tropical hypersurface is given as the set of points in

Rn(n−1)/2 solving the system of three equations

wij + wml = wim + wjl ≤ wil + wjm ,

or wij + wml = wil + wjm ≤ wij + wml , (2.14)

or wil + wjm = wim + wjl ≤ wij + wml .

6Note that in both mathematics [68, 79] and physics literature [69, 70, 78], sometimes both Tr(k, n) and

T̃r(k, n) are referred to as the tropical Grassmannian, and are denoted as Tr(k, n), by abuse of notation.

The same terminology has also been used to denote the tropical variety obtained by tropicalising the Plücker

relations, but without quotienting by any scaling of the type (2.11), neither local nor global.
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Now restricting to Gr(2, 5), the tropical Plücker relations are given by equation (2.13)

with possible {i, j,m, l} index combinations given by {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5},
{1, 3, 4, 5} and {2, 3, 4, 5}.

For each of these we obtain the associated tropical hypersurfaces by equations of the

form (2.14). To obtain the points of the tropical Grassmannian, we have to solve all these

five sets of equations simultaneously. Due to the invariance of the tropical Plücker variables

under positive scalings, these solutions form rays in R10.

2.3 Totally positive tropical configuration space

As the previously defined valuation maps all complex constants to zero, the tropical Plücker

polynomials lose the information of the sign of the quadratic terms. For example, all

three terms in (2.12) end up with the same sign (+1) in the tropical polynomial (2.13).

Restoring this information leads to the notion of the totally positive part of the tropical

configuration space, denoted by T̃r+(k, n). Following [79], we will now demonstrate how it

can be constructed.

Note that while there is a very similar construction to obtain the totally positive

tropical Grassmannian Tr+(k, n),7 we will focus on the totally positive part of the tropical

configuration space, on which the remainder of this paper is based.

The rays of the fan of T̃r(k, n) are given as 1-dimensional intersections of tropical hyper-

surfaces. Equivalently, they are the simultaneous solution to the corresponding equations

of the type of (2.14). Each of these equations comes from setting two tropical monomials

equal, which in turn originate from the quadratic terms in the Plücker relations. One

way to define the totally positive tropical configuration space T̃r+(k, n) is to restrict the

equations for each tropical hypersurface to those that come from Plücker quadratics with

opposite signs [78, 79]. In the example of (2.14) this removes the equation in the middle.

A different way to construct T̃r+(k, n) is to use the interaction of positivity and param-

eterisation [79]. The totally positive part of the configuration space, denoted as G̃r+(k, n),

is obtained by restricting all Plücker variables and the local scalings to real, positive values.

As follows from the Plücker relations, the Plücker variables are not independent. In

fact, there are d independent variables required to describe G̃r+(k, n). By the means of

the web-parameterisation, the details of which are explained in appendix A, we obtain a

parameterisation of the Plücker variables in terms of the web-variables x1, . . . , xd.

We collect the parameterisations of the Plücker variables into the bijective parameter-

isation function

Φ :
(
R+
)d → G̃r+(k, n) . (2.15)

By construction this maps the d web-variables to a vector in (R+)
D

quotiented by local

scalings, eq. (2.7), whose components Φi1...ik are the lexicographically ordered, independent

parameterised Plücker variables pi1...ik (x1, . . . , xd).

7In fact, in [79] such a construction is presented for any affine variety over the ring of Puiseux series, of

which the Grassmannian is a special case.
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A parameterisation of the totally positive tropical configuration space T̃r+(k, n) can

now be obtained by tropicalising this parameterisation

Φi1...ik (x1, . . . , xd) = pi1...ik (x1, . . . , xd)

(TrΦ)i1...ik (x̃1, . . . , x̃d) = wi1...ik (x̃1, . . . , x̃d) ,

Tr

whereas we label the tropical web-variables as x̃1, . . . , x̃d. We thus obtain for every tropical

Plücker variable wi1...ik a tropical polynomial. Similar to before, collecting these parame-

terised tropical Plücker variables results in a parameterisation of the totally positive tropical

configuration space [79]

TrΦ : Rd → T̃r+(k, n) . (2.16)

This map not only is a parameterisation of T̃r+(k, n) but also encodes its structure.

Each tropical Plücker variable wi1...ik is a tropical polynomial in x̃1, . . . x̃d. For each tropical

polynomial, we compute the associated tropical hypersurface, which is a set of hypersurfaces

in Rd dividing the space into the regions of linearity of the piecewise linear function. We

thus obtain a complete fan8 in Rd for every Plücker variable, whose top-dimensional cones

are given by the regions of linearity of its tropical parameterisation. The simultaneous

refinement9 of all these fans results in the Speyer-Williams fan Fk,n, the fan associated to

T̃r+(k, n). Its top-dimensional cones describe the regions of linearity of TrΦ.

The simultaneous refinement equivalently amounts to taking the union of the tropical

hypersurfaces of all Plücker variables. These hypersurfaces together divide Rd into many

chambers, the cones of the fan Fk,n, which are precisely those regions, where all of the tropi-

cal parameterisations of the Plücker variables are linear simultaneously. The 1-dimensional

intersections of the hypersurfaces are the rays of this fan.

Example 2.4. Let us continue our previous example and construct the totally positive

tropical configuration space T̃r+(2, 5). By using the web-diagrams, we obtain the following

parameterisation of the Plücker variables

Φ (x1, x2) = (p12, p13, p14, p15, p23, p24, p25, p34, p35, p45) (x1, x2)

= (1, 1, 1, 1, 1, 1 + x1, 1 + x1 + x1x2, x1, x1 + x1x2, x1x2) . (2.17)

It immediately follows that when restricting the web-variables x1, x2 to real, positive values,

the Plücker variables are also real and positive. Furthermore, by direct computation we see

that the Plücker variables in this parameterisation satisfy the Plücker relations such that

this, upon identification of vectors related by positive local scaling, indeed parameterises

the totally positive configuration space.

8A d-dimensional fan is complete if the union of its cones covers the entire ambient space Rd.
9The simultaneous refinement of a set of fans is another fan, of which every cone is contained in one

cone of every fan. Pictorially, it can be imagined as overlaying all of the fans. This causes some of the

cones to intersect, creating new rays. Furthermore, this splits up the cones into smaller segments, which

are then taken as the cones of the new refined fan.
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Figure 2. Fan associated to the tropicalised Plücker variable w25 of T̃r+(2, 5). The rays are depicted

as dashed lines in blue, red and yellow, respectively. The cones are depicted in the composite color

of the two rays by which they are spanned.

To obtain the tropical version of the totally positive configuration space, we tropicalise

the parameterisation and obtain

TrΦ (x̃1, x̃2)

= (w12, w13, w14, w15, w23, w24, w25, w34, w35, w45) (x̃1, x̃2)

= (0, 0, 0, 0, 0,min (0, x̃1) ,min (0, x̃1, x̃1 + x̃2) , x̃1,min (x̃1, x̃1 + x̃2) , x̃1 + x̃2) . (2.18)

As before, we can associate a tropical hypersurface to each of the piecewise lin-

ear function in TrΦ as the set of points where the minimum is attained at least twice.

Considering for example the tropical parameterisation of w25, this leads to V (w25) =

{x̃1 = 0, x̃2 ≥ 0}∪{x̃2 = 0, x̃1 ≤ 0}∪{x̃2 + x̃1 = 0, x̃2 ≤ 0}. These three hypersurfaces form

a fan in R2 consisting of the three rays and cones depicted in figure 2.

Note that in the construction of the totally positive tropical configuration space we

tropicalised the parameterisations of all Plücker variables. We could, of course, also trop-

icalise only a subset of these variables thus obtaining a different polyhedral fan.10 In this

paper we will only focus on the full totally positive tropical configuration space, however,

these different fans might also be of interest to scattering amplitudes.

Let us also make clear in how far we refer to two different objects here. On the one

hand, we have the totally positive tropical configuration space T̃r+(k, n), a polyhedral fan

of dimension d embedded into RD quotiented by local scalings and part of the full tropical

configuration space. On the other hand we have Fk,n, a polyhedral fan of dimension d

embedded into Rd. Whereas the map TrΦ gives a parameterisation of the full totally

positive tropical configuration space, it furthermore maps the rays and cones of Fk,n to

those of T̃r+(k, n). It is in this sense that Fk,n captures the structure of T̃r+(k, n).

10Not tropicalising some Plücker variables amounts to the removal of the associated hypersurfaces from

the fan. In this sense we obtain a smaller fan, of which the full totally positive tropical configuration space

is a refinement.
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〈12〉

〈13〉

〈14〉

〈15〉

〈23〉

〈34〉

〈45〉

Figure 3. Quiver of the initial seed of the cluster algebra of Gr(2, 5).

3 Cluster algebras and their fans

Already in [79] it was pointed out that the totally positive tropical configuration space

T̃r+(k, n), which we reviewed in the previous section, is closely related to cluster algebras

associated to Grassmannians Gr(k, n). Before elaborating on this relation in subsection 3.2,

we will first briefly review cluster algebras and establish our conventions.

There exist many introductory reviews and original results about cluster algebras, both

purely from a mathematical point of view [17–20, 87, 88] as well as with an emphasis on

their application to scattering amplitudes [16]. Here we will restrict to the basic concepts

of cluster algebras associated to Grassmannians.

Note that in the previous section we denoted the Plücker variables as pi1...ik as is usual

in the mathematics literature. However, as is more usual in the discussion of cluster algebras

associated to Grassmannians, especially in their applications to scattering amplitudes, we

will from now on denote the Plücker variables as 〈i1 . . . ik〉.

3.1 Generalities on cluster algebras

As was demonstrated in [89], the coordinate ring of the Grassmannian Gr(k, n) naturally

carries the structure of a cluster algebra of rank d = (k−1)(n−k−1). This means that the

coordinate ring is generated by a distinguished set of generators, the cluster A-variables,

which are organised in overlapping clusters. Each cluster consists of d such variables

a = (a1, . . . , ad) as well as n frozen variables (ad+1, . . . , ad+n), the so-called coefficients.

Together, these are arranged as nodes in a quiver whose adjacency properties are

encoded in the antisymmetric integer adjacency matrix B. We denote the components of

this matrix as bij . Note that frozen nodes are never connected. In figure 3 we show as an

example the quiver of the initial seed of the Gr(2, 5) cluster algebra.

The clusters within the cluster algebra are related by an operation called mutation.

Starting from an initial seed (a0, B0) we can generate the entire algebra by mutating

the unfrozen variables in each cluster. Mutating a cluster (a, B) along the j-th variable,

denoted as µj , we obtain the new cluster (a′, B′). The adjacency matrix B′ is related to
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Figure 4. Cluster polytope of the cluster algebra of Gr(2, 6).

the previous one by

b′il =

{
−bil for i = j or l = j

bil + [−bij ]+ bjl + bij [bjl]+ otherwise
, (3.1)

whereas we use [x]+ = max (0, x). The cluster variables ai are unchanged for i 6= j and aj
is mutated according to

a′j = a−1j

(
d+n∏
i=1

a
[bij ]+
i +

d+n∏
i=1

a
[−bij ]+
i

)
. (3.2)

Note that the coefficients are called frozen variables as they are never mutated and do not

change under mutation. To every unfrozen node and thus A-variable in a cluster we further

associate a cluster X -variable, which is defined as

xi =

d+n∏
l=1

ablil . (3.3)

As is well described in [16], we can associate a convex polytope to a cluster alge-

bra [90, 91]. This polytope is constructed by associating to each cluster a vertex, which

are connected by lines corresponding to the mutations of the A-variables. In this sense we

obtain a d-dimensional finite polytope from a finite rank-d cluster algebra.

We obtain a rank d−m cluster subalgebra by additionally freezing m A-variables that

together appear in a cluster. Mutation is then restricted to the d−m unfrozen variables.

In the cluster polytope, this subalgebra is associated to a codimension-m face, which can

correspondingly be identified with the frozen variables.

For example, freezing all but one variable, we obtain a rank-1 cluster algebra with only

two variables, related by mutation. This is precisely the line connecting two vertices. In

figure 4 the cluster polytope of the cluster algebra of Gr(2, 6) is given as an example.

Before we can discuss the relation of cluster algebras to the totally positive tropical

configuration space we need one further component. We thus also attach the coefficient

matrix C to any cluster. We define C0 = 1 for the initial seed and its mutation for µj as

c′il =

{
−cil for i = j or l = j

cil − [cij ]+ bjl + cij [bjl]+ otherwise
. (3.4)

– 13 –



J
H
E
P
0
8
(
2
0
2
0
)
0
0
5

Algebra
Polytope Fan

Dim. Type Dim. Type

Cluster 0 Vertex d Cone

Mutation 1 Line d− 1 Facet
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

A-variable d− 1 Facet 1 Ray

Table 1. Comparison of the faces of a cluster algebra of rank d, its polytope and the cluster fan.

3.2 Cluster algebras and tropical configuration spaces

As was discussed in [78] we can identify the X -variables of the initial seed of the cluster

algebra with the web-coordinates of the totally positive tropical configuration space. Fur-

thermore, we can use the cluster algebra of Gr(k, n) to construct a fan in Rd that is closely

related to the fan of the totally positive configuration space.

For this we associate to each A-variable in the cluster algebra a ray g ∈ Rd, which can

also be obtained in terms of a mutation rule. In this way we get d rays for each cluster in

the algebra, which can be taken to form a cone. The cluster fan is then defined as the fan

consisting of these rays and cones.

To organize the rays of the A-variables of a cluster, we introduce the ray matrix G, a

real d × d matrix whose columns are given by the rays of the cluster. Similar to before,

the components are denoted by gij . Further following [78] we define the ray matrix of the

seed to be G0 = 1, that is the rays of the A-variables of the cluster seed are given by the

standard basis vectors.

When mutating a given cluster along the j-th variable, the ray matrix G mutates in

terms of the adjacency matrix of the cluster seed B0, the adjacency matrix B and the

coefficient matrix C of the current cluster according to

g′il =

{
gil for l 6= j

−gil +
∑d

m=1

(
gim [−bmj ]+ + b0im [cmj ]+

)
for l = j

. (3.5)

Performing all possible mutations, we obtain all rays and cones of the cluster fan, which

is a polyhedral fan in Rd. The cluster fan seems to have very special properties. All top-

dimensional cones are simplicial, that is the d rays of any cluster are linearly independent,

and all codimension-1 cones are shared between precisely two top-dimensional cones. This

latter property can be seen directly from the relation of this fan to the cluster polytope.

The cluster fan is equivalent to the dual of the cluster polytope. In this sense, a

dimension-m face of the fan corresponds to a codimension-m face of the cluster polytope.

For example, the codimension-1 faces of the fan correspond to the dimension-1 lines con-

necting precisely two clusters in the cluster polytope. This relation is further shown in

table 1.

As introduced in section 2.2 we express the number of dimension-m faces of the fan in

terms of its f -vector. With the equivalence of the cluster fan to the dual cluster polytope,
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Figure 5. Illustrative example for redundant rays and triangulations. We draw the intersection of

a simplicial cone of a 3-dimensional fan with the unit sphere S2 in black and that of two simplicial

cones of another fan in red. The black lines correspond to the tropical hypersurfaces with rays of

the associated fans at their intersections. The cone is further triangulated by two simplicial cones,

drawn in red, due to the redundant ray that only lies on one of the hypersurfaces.

the m-th component of the f -vector thus also captures the number of codimension-m faces

of the cluster polytope.

However, the most remarkable feature of the cluster fan is that it is a refinement

of the fan Fk,n of the totally positive tropical configuration space T̃r+(k, n), as was first

demonstrated by general techniques for T̃r+(3, 7) in [79] and for many other cluster algebras

in [78]. With the cluster fan being simplicial, this implies that it triangulates Fk,n and thus

the totally positive tropical configuration space. It is this relation that allows computations

of T̃r+(k, n) by the simple algebraic operations on the cluster algebra of Gr(k, n).

As can be seen for example in the case of Gr(3, 8), which is discussed in section 7,

in general the cluster algebra does not quite reproduce the rays of Fk,n. Some cones of

the totally positive tropical configuration space are redundantly triangulated. This occurs

whenever a ray associated to a cluster A-variable is a redundant ray, meaning that while

it is a ray of the cluster fan, it is not a ray of Fk,n. This is illustrated in figure 5.

In general, a ray is redundant if the number of linearly independent tropical hypersur-

faces it lies on, the ray rank, is less then the maximal value d−1. In this case, the ray does

not lie on a 1-dimensional intersection of tropical hypersurfaces and is thus redundant.

The cones of the cluster fan can be fused along redundant faces to obtain the fan of

the totally positive tropical configuration space. We consider a face of the cluster fan as a

redundant face if it is not actually a face of Fk,n but only apparent due to the triangulation

of a non-simplicial cone by simplicial cones of the cluster algebra. Just as for redundant

rays, we can determine whether a face is redundant or not by computing its face rank, the

number of linearly independent tropical hypersurfaces on which the face lies.

A dimension-m face is non-redundant if this number assumes the maximal value of

d−m. In practice, for any m we consider all dimension-m faces and fuse them along their

redundant dimension-(m− 1) boundaries, which are thus removed. This is illustrated in 6

for a pyramid with square base which is triangulated by two simplices.

4 Tr(4, 7) and cluster adjacency of (N)MHV seven-particle amplitudes

As we mentioned in the introduction, aside certain well-known rational factors, n-particle

amplitudes in planar N = 4 SYM theory can be expressed in terms of multiple poly-
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Figure 6. Illustrative example for fusing faces in triangulated cones. We draw the intersection

a non-simplicial cone (the pyramid) of a 4-dimensional fan with the unit sphere S3. This cone is

triangulated by two simplicial cones, drawn in red and blue. These two cones share a codimension-1

face along which we fuse. When doing so, the codimension-2 face on the base of pyramid is also

fused and thus deleted.

logarithms whose symbol alphabet consists of Gr(4, n) cluster A-variables, for n = 6, 7.

Particularly for n = 7, which will be the focus of this section, this alphabet consists of 42

letters, which may be chosen as [67]

a11 ∝ 〈2367〉 , a41 ∝ 〈2457〉 ,
a21 ∝ 〈2567〉 , a51 ∝ 〈1245〉 〈1367〉 − 〈1267〉 〈1345〉 , (4.1)

a31 ∝ 〈2347〉 , a61 ∝ 〈1356〉 〈1472〉 − 〈1372〉 〈1456〉 ,

(up to proportionality factors made out of powers of the frozen variables

〈k k + 1 k + 2 k + 4〉 which will not be relevant for our discussion) together with aij ob-

tained from ai1 by cyclically permuting all integer indices m→ (m+ j − 1) of the Plücker

variables,11 where the identification m+ n ∼ m (here n = 7) is implied.

In addition to the cyclic transformations we just described, the above alphabet is also

invariant under the flip or reflection m → n+ 1−m of the Plücker indices, and together

the two types of discrete transformations form the dihedral group. After employing the

supersymmetry of the theory, amplitudes with different external states can be combined to

form a superamplitude, and in the planar limit the latter can also be shown to be dihedrally

symmetric for any number of external particles, see for example [92].

We should note however, that the dihedral symmetry of the superamplitude does not

necessarily imply that its transcendental part, and thus the corresponding symbol alphabet,

should inherit this property. This is indeed true for the MHV superamplitude, whose

gluon component corresponds to the configuration where all but two gluons have positive

helicity; it is a consequence of the fact that it contains a single Nair-Parke-Taylor rational

factor [93], and thus both the latter and its transcendental coefficient must individually

respect dihedral symmetry. For the NMHV case however (where all but three gluons have

positive helicity) and beyond, there exist more than one independent rational factors and

associated transcendental coefficients. In general these cannot be chosen to respect the

dihedral symmetry separately, even though the entire superamplitude does.

11This is equivalent to cyclically permuting the columns of the 4×n matrix describing the G̃r(4, n) space

of kinematics, or in other words the momentum twistor variables [26].

– 16 –



J
H
E
P
0
8
(
2
0
2
0
)
0
0
5

Coming back to cluster algebras, more recently it has been observed [28, 29] that they

not only predict the symbol letters of N = 4 SYM (super)amplitudes, but also which

letters are allowed to appear in two consecutive entries of the symbol. This is the so-called

cluster adjacency property, which states that two letters can appear consecutively in the

symbol, if and only if there exists a cluster containing both of them.

For our current case of interest, the seven-particle amplitude, cluster adjacency implies

that only 840 out of the total 42 × 41 = 1722 ordered pairs of letters can appear next to

each other. In the aforementioned reference, it was checked that all then known seven-

particle property were consistent with this restriction, but in fact a subset of 784 out of

840 adjacencies occurred. In particular, the following cluster-adjacent pairs12

(a21, a64) & cyclic (4.2a)

(a31, a65) & cyclic (4.2b)

(a11, a41) & cyclic + parity (4.2c)

were seen to be missing from the amplitudes (although the pairs (4.2c) do appear in certain

integrals contributing to the amplitude). We will denote these putative missing pairs as

‘beyond-cluster adjacency’ restrictions. One of the main findings of this section is that

these pairs do appear in the amplitude at higher loops, which will also have important

implications for the geometry of the space of kinematics.

In particular, the statements of cluster adjacency have a geometric interpretation in

terms of the cluster polytope. Given two variables that together appear in a cluster we

can simultaneously freeze them, thus obtaining a cluster subalgebra whose rank compared

to the full algebra is reduced by two. This subalgebra appears in the cluster polytope as a

codimension-2 face. By cluster adjacency, the pairs of consecutive letters appearing in the

symbol of an amplitude are hence restricted to the codimension-2 faces of the polytope of

the associated cluster algebra.

In this way, the 840 allowed ordered pairs of the seven-particle amplitude are associ-

ated to the 399 codimension-2 faces of the E6 cluster polytope, each corresponding to an

unordered pair of distinct cluster variables, as well as the 42 pairs of equal cluster variables.

In this picture, the pairs further removed in beyond-cluster adjacency correspond to the

removal of the corresponding codimension-2 faces from the cluster polytope.

4.1 Cluster adjacency of Tr(4, 7)

As was first observed in [79], the geometry of the dual to the E6 cluster algebra polytope

is closely related to that of the totally positive configuration space T̃r+(4, 7). As was

described in [78] and reviewed above, the origin of that is the triangulation of F4,7 by the

cluster fan, which is equivalent to the dual of the cluster polytope.

Starting from the initial cluster of the E6 cluster algebra, we can use the mutation

rule eq. (3.5) to obtain the entire cluster algebra and hence the cluster fan. We find that

in accordance with the literature its f -vector is given by (42, 399, 1547, 2856, 2499, 833).

12Note that the sets (4.2a) and (4.2b) are related by a dihedral reflection.
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−e1 e2 + e4 − e6 (a35, a62)

e3 −e2 + e5 (a32, a66)

e4 −e1 + e3 + e5 − e6 (a37, a64)

−e6 e1 + e2 − e3 − e5 (a31, a65)

e1 − e2 e1 − e2 − e4 + e6 (a34, a61)

e2 − e3 e2 + e4 − e5 − e6 (a33, a67)

e1 − e4 e1 − e3 − e5 (a36, a63)

Table 2. Dimension-2 faces that are missing in F4,7 compared to the E6 cluster fan. In the first

two columns, the two rays spanning the face are given. In the final column we state the cluster

variables associated to these rays.

Fusing the cones of the triangulating fan along redundant faces, we obtain a fan with

f -vector (42, 392, 1463, 2583, 2163, 693), which is precisely that of F4,7 [79].

It can be checked that the interior of the obtained cones does not intersect any tropical

hypersurfaces as well as that all faces actually lie on tropical hypersurfaces and together

form a complete fan, implying that the cluster fan actually triangulates F4,7. Furthermore,

with all computations taking only on the order of minutes to complete, this highlights

the efficiency of using cluster algebras as a computational tool for totally positive tropical

configuration spaces.

The fusion of cones of the cluster fan translates to the fusion of vertices of the cluster

polytope, which correspond to the clusters of the cluster algebra. As can be seen from the

f -vectors, this results in the removal of seven codimension-2 faces from the polytope. The

corresponding dimension-2 faces of the cluster fan are each spanned by two rays. From the

correspondence of the rays with the cluster variables we can thus read off which pairs of

cluster variables are removed. The results are given in table 2. It turns out that the seven

faces removed in T̃r+(4, 7) with respect to the E6 cluster polytope are precisely those given

by eq. (4.2b).

Note that only the faces related to eq. (4.2b) and not their reflected counterparts are

missing in T̃r+(4, 7). This implies that the totally positive tropical configuration space is

not symmetric under a dihedral reflection, which as we mentioned at the beginning of this

section, is a symmetry of the cluster algebra and the associated superamplitudes. There

are two ways to complete F4,7 to a reflection symmetric fan — either by including the

missing faces or by further removing their reflection.

Further removing faces results in a fan with f -vector (42, 385, 1393, 2387, 1995, 651),

where the dimension-2 faces missing with respect to the E6 cluster fan are precisely those

given by eqs. (4.2a) and (4.2b). This fan was obtained by removing the reflection of the

seven missing dimension-2 faces, which in turn causes higher-dimensional faces to fuse in

a way reverse but equivalent to the fusing of cones described in section 3.2.

4.2 Cluster adjacency of seven-particle amplitudes

As stated in [28], general cluster adjacency was verified to be obeyed in all known MHV and

NMHV seven- as well as nine-point amplitudes and is believed to apply to any BDS-like

subtracted amplitude. Considering that the totally positive tropical configuration space
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Loops 1 2 3 4

MHV 42 210 371 371

NMHV 63 294 343 399

Cluster adjacency 399

+ eqs. (4.2a) & (4.2b) 385

+ eqs. (4.2c) 371

Table 3. Number of unordered pairs of distinct consecutive letters in the symbols of the seven-

particle amplitudes at given loop level. Note that all the found pairs obey general cluster adjacency,

that is the letters appear together in a cluster of the E6 cluster algebra. In the last three rows

we give the number of consecutive pairs of letters that are theoretically possible considering the

seven-particle alphabet and imposing only cluster adjacency or also the restrictions to it.

might explain (part of) the beyond-cluster adjacency property that was observed in seven-

point MHV amplitudes, one might wonder whether it serves as a more suited geometric

object than the cluster polytope to describe some of the structure of these amplitudes.

While it only captures the restriction of eq. (4.2b) and thus is still too large to properly

describe MHV amplitudes, it should at least not be too small. We therefore analyzed

the beyond-cluster adjacency properties of the known seven-particle MHV and NMHV

amplitudes by looking at all consecutive pairs of letters appearing in their symbols.

In [34, 67] the symbols of the seven-particle MHV amplitude up to four loops are given.

We found that up to two loops the set of pairs of consecutive letters is smaller then dictated

by the three restrictions of eqs. (4.2a), (4.2b) and (4.2c). Starting at three loops, however,

the set of pairs of consecutive letters in these amplitudes appears to stabilize with a total

number of 371 pairs. These are all pairs allowed by cluster adjacency with the exception

of those stated in all three restrictions.

In [14, 30, 34] the symbols of NMHV seven-particle amplitudes up to four loops are

given. Up to three loops, we again find that the set of pairs of consecutive letters is smaller

than dictated by beyond-cluster adjacency. At four loops, however, we find all 399 pairs of

consecutive letters in agreement with cluster adjacency, that is also the pairs of eqs. (4.2a)

and (4.2b) do appear. These results are also summarised in table 3.

The analysis of the adjacent letters in the MHV and NMHV seven-particle amplitudes

thus suggests that while the tropical configuration space T̃r+(4, 7) might explain the adja-

cency properties of MHV amplitudes, it is actually too large to fully describe them, at least

up to loop four. Furthermore, the totally positive tropical configuration space certainly is

too small to describe the adjacency properties of the NMHV amplitudes, whose pairs of

adjacent letters fully saturate those obtained by imposing cluster adjacency only.

4.3 Weight-2 words in seven-particle amplitudes

Not every tensor is the symbol of some function. A necessary and sufficient condition for

a tensor ∑
i1,...,ik

ci1...ik log ai1 ⊗ · · · ⊗ log aik (4.3)

– 19 –



J
H
E
P
0
8
(
2
0
2
0
)
0
0
5

Loops 1 2 3 4

MHV 1 98 489 531

NMHV 15 294 496 573

Integrability 1035

+ Cluster adjacency 573

+ eqs. (4.2a) & (4.2b) 559

+ eqs. (4.2c) 545

Table 4. Number of independent integrable weight-2 words appearing in the seven-particle ampli-

tudes at given loop level. Note that the sets are inclusive with increasing loop number, that is the

words appearing at lower loop are part of those at higher loop. In the last four rows we give the

number of independent weight-2 words that are theoretically possible considering the seven-particle

alphabet and imposing only integrability or also cluster adjacency or also the restrictions to it.

to be the symbol of some function is the integrability condition [94]. Considering weight-2

words, that is symbols consisting of two letters, this condition is given by∑
i,j

cijd log ai ∧ d log aj = 0 . (4.4)

We hence analyse the independent integrable weight-2 words that appear in the sym-

bols of the MHV and NMHV seven-particle amplitudes. In theory, the weight-2 words

could be formed out of all 42 seven-particle letters. Being the symbols of amplitudes, inte-

grability has to be imposed on these combinations. Further imposing cluster adjacency, we

obtain 573 independent integrable weight-2 words. If we also impose the beyond-cluster

adjacency restrictions (4.2a) and (4.2b), this number is further reduced to 559. These

numbers are listed in table 4.

Based on the same data as the analysis of cluster adjacency for seven-particle ampli-

tudes, the number of independent integrable weight-2 words that appear in these ampli-

tudes are displayed in table 4. Similar to before, we find that while the weight-2 integrable

words appearing in the MHV amplitudes up to four loops do not saturate the maximally

possible number and are thus compatible with beyond-cluster adjacency, the NMHV ampli-

tudes only follow cluster adjacency. At four loops, the restrictions of eqs. (4.2a) and (4.2b)

are too strict and do not hold for the NMHV seven-particle amplitude.

As for the pairs of adjacent letters, this data suggests that the totally positive tropical

configuration space is too small to properly describe the seven-particle NMHV amplitudes,

as the integrable weight-2 words again saturate those obtained by imposing cluster adja-

cency only. However, up to four loops the integrable weight-2 words in the seven-particle

MHV amplitude do not even saturate those obtained from beyond-cluster adjacency, even

with all three restrictions imposed. To confirm whether MHV amplitudes indeed saturate

this 545-dimensional space, it would be interesting to compute their 5-loop correction.

5 Tr(4, 8) and the rational eight-particle alphabet

As is generally known, the cluster algebras of Gr(4, n) for n ≥ 8 are infinite [89]. Assuming

that the cluster algebra always triangulates the totally positive tropical configuration space,
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Figure 7. Illustrative example of an infinitely redundantly triangulated cone. We draw a simplicial

cone of a 3-dimensional fan intersected with the unit sphere S2. The cones and the redundant

rays from the infinitely redundant triangulation are drawn in red, the non-redundant triangulation

in blue.

the infinity of the cluster algebra implies that the cluster fan redundantly triangulates some

cones of Fk,n with infinitely many simplicial cones. This is illustrated in figure 7.

However, as proposed in [78] the totally positive tropical configuration space T̃r+(4, n)

provides a selection rule to obtain a finite subset of these infinite cluster algebras. Whereas

the cluster fan triangulates Fk,n, the cluster algebra sometimes produces redundant trian-

gulations. These are triangulations that, using a redundant ray, divide a cone into more

simplicial cones than actually needed. If the cluster algebra is truncated whenever a cluster

with such redundant rays is encountered, mutation closes on a finite number of clusters.

In [78] it was stated that this truncated cluster algebra contains 169192 clusters with

356 variables. Using the mutation rule (3.5) we perform all possible mutations truncating

whenever we obtain a cluster with at least one redundant ray. This results in a non-complete

fan with f -vector

f4,8 = (356, 9408, 90248, 428988, 1144532, 1796936, 1648184, 817178, 169192) , (5.1)

thus confirming these results.

5.1 Reducing Plücker variables

As per the Laurent phenomenon, any cluster variable is a Laurent polynomial in the initial

variables. While this parameterisation in terms of the independent Plücker variables has

its advantages, for the applications to scattering amplitudes it is more practical to have

the letters in the most compact form. Furthermore, from this perspective, it is perfectly

fine if the letters depend on all, also dependent, Plücker variables.

The reader interested in the final form of the proposed rational eight-particle alphabet

may just skip directly to the next section. In order to demonstrate the general algorithm

presented here, we will make use of the example of a letter of degree two in the Plücker

variables given by

a =
〈1245〉 〈1567〉 〈3456〉+ 〈1256〉 〈1345〉 〈4567〉

〈1456〉
. (5.2)

By construction, we can parameterise all cluster variables as rational functions in the

variables of any cluster. For small cluster algebras, this is obtained by taking the cluster as
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the initial seed and performing all possible mutations. This, due to its size, is not practical

for the (truncated) cluster algebra of Gr(4, 8). However, once we have the alphabet in

terms of some initial cluster, we can identify the degree one letters that correspond to the

Plücker variables by comparing them in the unique web-parameterisation.

This, for example, allows us to identify the following Plücker variable in the Gr(4, 8)

cluster algebra

〈1245〉 〈1567〉 〈3456〉+ 〈1256〉 〈1345〉 〈4567〉+ 〈1235〉 〈1456〉 〈4567〉
〈1245〉 〈1456〉

= 〈3567〉 . (5.3)

Having identified a variable we can solve such rational expressions for any of the Plücker

variables, allowing us to exchange any variable in the parameterisation, for example 〈1456〉
by 〈3567〉.

By cluster mutation any cluster variable is given as a rational function whose denom-

inator is a monomial in the initial Plücker variables. To simplify this rational function,

we thus change the parameterisation by exchanging any of the factors in the denominator

with any of the other Plücker variables. In some cases, this causes the nominator to factor

in such a way that parts of the denominator can be canceled. In our example, we therefore

use the rational expression of the Plücker variables in terms of the initial ones to replace

〈1456〉. Using the expression for 〈3567〉 we obtain

a =
(〈1245〉 〈1567〉 〈3456〉+ 〈1256〉 〈1345〉 〈4567〉) (〈1245〉 〈3567〉 − 〈1235〉 〈4567〉)

〈1245〉 〈1567〉 〈3456〉+ 〈1256〉 〈1345〉 〈4567〉
, (5.4)

such that the denominator cancels out completely and we obtain the letter in the fully

simplified form of

a = 〈1245〉 〈3567〉 − 〈1235〉 〈4567〉 . (5.5)

Whereas in this simple example one such replacement was sufficient, we can in general

proceed in this way until there is no such change of parameterisation that simplifies the

rational variable in the sense of reducing the number of factors in the denominator. If

this does not result in the full denominator to cancel out, we attempt a different path of

iterated changes of parameterisation. Note that in this way we effectively scan through all

possible parameterisations. In fact, using this algorithm it was possible to eliminate the

complete denominator of all cluster variables.

5.2 Finite rational eight-particle alphabet

In total, we find 356 distinct unfrozen cluster A-variables. Together with the 8 frozen

variables, we thus obtain 356 dual conformally invariant rational letters. The full result

is contained in the text file OctagonAlphabet.m of the supplementary material. All of

the letters can be reduced to homogeneous polynomials in the Plücker variables and are,

grouped by their degree, given by

• 70 letters of degree one, the distinct Plücker variables 〈ijkl〉,

• 120 letters of degree two, 15 quadratic generators with cyclic orbit size 8,
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• 132 letters of degree three, 2 cubic generators with 2 cyclic images, 2 cubic generators

with 4 cyclic images and 15 cubic generators with 8 cyclic images,

• 32 letters of degree four, 4 quartic generators with 8 cyclic images and

• 10 letters of degree five, 1 quintic generator with 2 and 1 quintic generator with 8

cyclic images.

For simplicity, we state the letters only modulo cyclic transformations, that is up to

shifts of the Plücker indices i → (i + j) mod 8. Not considering the Plücker variables

〈ijkl〉 themselves, the alphabet is cyclically generated by 40 distinct letters, which are

summarised in tables 5 and 6. Note that we only give one possible representation, which is

related to other choices by the Plücker relations. However, using the web-parameterisation

of the Plücker variables as defined above, we can always express all the cluster A-variables

in terms of the initial x-variables. In this parameterisation, all Plücker relations are solved

therefore resulting in a unique representation.

For general cluster algebras, the Laurent phenomenon assures that any cluster variable

can be written as a Laurent polynomial in terms of the initial variables. As can be seen

from the results in the case of Gr(4, 8), in the case of cluster algebras of Grassmannians

there seems to be the much stronger statement that the variables are actual polynomials

in the Plücker variables with ±1.

Even when taking into account that we have the freedom to add any Plücker relation,

such that all integer coefficient may appear, the fact that we obtain actual polynomials

with integer coefficients that also do have a representation with ±1 coefficients only is quite

surprising. This is also present when passing to the web-parameterisation — in contrast

to the Plücker variables, the x-variables are well defined coordinates on the configuration

space — all cluster variables become polynomials with positive integer coefficients.

Note that this phenomenon is not restricted to the variables of the truncated cluster

algebra but it also holds for all further letters of the full cluster algebra that were tested.

Similar to the reflection completion of T̃r+(4, 7) for the seven-particle amplitudes we

analyse how the rational eight-particle alphabet behaves under dihedral symmetry. These

transformations consist of cyclic shifts on the Plücker indices i→ (i+ j) mod 8 as well as

dihedral flips i→ (9−i) mod 8. We find that while the eight-particle alphabet is complete

under the shift relations, it is not under dihedral flips. For example, flipping

〈1358〉 〈1367〉 〈2457〉 − 〈1267〉 〈1358〉 〈3457〉 − 〈1238〉 〈1567〉 〈3457〉 (5.6)

we obtain a letter which is not included in the eight-particle alphabet obtained from

the truncated cluster algebra, as can be seen by comparing them in the unique web-

parameterisation.

Again, there are two different ways to complete the alphabet under dihedral trans-

formations. Including the dihedral image of the alphabet, we find a total of 440 dual

conformally invariant rational letters. Completing the alphabet by removing those letters

whose dihedral images are not contained, we obtain 272 dual conformally invariant rational

letters. Note that all letters with degree four and five are not dihedrally complete in this
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Degree Cyclic Generator #

2

〈1457〉 〈2367〉 − 〈1237〉 〈4567〉
〈1235〉 〈1467〉 − 〈1234〉 〈1567〉
〈1245〉 〈3567〉 − 〈1235〉 〈4567〉

8

〈1256〉 〈4678〉 − 〈1246〉 〈5678〉 , 〈1235〉 〈4678〉 − 〈1234〉 〈5678〉
〈1256〉 〈3467〉 − 〈1267〉 〈3456〉 , 〈1256〉 〈1478〉 − 〈1278〉 〈1456〉
〈1245〉 〈3467〉 − 〈1234〉 〈4567〉 , 〈1236〉 〈1478〉 − 〈1234〉 〈1678〉
〈1256〉 〈1347〉 − 〈1234〉 〈1567〉 , 〈1256〉 〈3678〉 − 〈1236〉 〈5678〉
〈1245〉 〈2367〉 − 〈1267〉 〈2345〉 , 〈1346〉 〈1578〉 − 〈1345〉 〈1678〉
〈1267〉 〈1358〉 − 〈1235〉 〈1678〉 , 〈1347〉 〈2356〉 − 〈1237〉 〈3456〉

3

〈1236〉 〈1578〉 〈3457〉 − 〈1237〉 〈1578〉 〈3456〉 − 〈1235〉 〈1678〉 〈3457〉
2

〈1358〉 〈1367〉 〈2457〉 − 〈1267〉 〈1358〉 〈3457〉 − 〈1238〉 〈1567〉 〈3457〉
〈1258〉 〈1367〉 〈2456〉 − 〈1238〉 〈1567〉 〈2456〉 − 〈1258〉 〈1267〉 〈3456〉

4
〈1236〉 〈1567〉 〈2458〉 − 〈1238〉 〈1567〉 〈2456〉 − 〈1236〉 〈1245〉 〈5678〉
〈1245〉 〈1567〉 〈2378〉 − 〈1278〉 〈1567〉 〈2345〉 − 〈1237〉 〈1245〉 〈5678〉

8

〈1237〉 〈1568〉 〈3467〉 − 〈1237〉 〈1678〉 〈3456〉 − 〈1238〉 〈1567〉 〈3467〉
〈1237〉 〈1568〉 〈2467〉 − 〈1237〉 〈1678〉 〈2456〉 − 〈1238〉 〈1567〉 〈2467〉
〈1245〉 〈1568〉 〈3467〉 − 〈1245〉 〈1678〉 〈3456〉 − 〈1234〉 〈1568〉 〈4567〉
〈1256〉 〈1456〉 〈3478〉 − 〈1256〉 〈1478〉 〈3456〉 − 〈1234〉 〈1456〉 〈5678〉
〈1237〉 〈1458〉 〈2367〉 − 〈1237〉 〈1678〉 〈2345〉 − 〈1238〉 〈1457〉 〈2367〉
〈1256〉 〈1267〉 〈3478〉 − 〈1256〉 〈1278〉 〈3467〉 − 〈1234〉 〈1267〉 〈5678〉
〈1246〉 〈1478〉 〈3567〉 − 〈1278〉 〈1346〉 〈4567〉 − 〈1236〉 〈1478〉 〈4567〉
〈1246〉 〈1256〉 〈3478〉 − 〈1246〉 〈1278〉 〈3456〉 − 〈1234〉 〈1256〉 〈4678〉
〈1456〉 〈2357〉 〈3678〉 − 〈1678〉 〈2357〉 〈3456〉 − 〈1235〉 〈3678〉 〈4567〉
〈1358〉 〈1456〉 〈2367〉 − 〈1238〉 〈1567〉 〈3456〉 − 〈1236〉 〈1358〉 〈4567〉

〈1235〉 〈1678〉 〈2345〉 − 〈1238〉 〈1345〉 〈2567〉
+ 〈1237〉 〈1345〉 〈2568〉 − 〈1236〉 〈1578〉 〈2345〉
〈1246〉 〈1356〉 〈2378〉 − 〈1256〉 〈1378〉 〈2346〉
− 〈1236〉 〈1456〉 〈2378〉 − 〈1236〉 〈1278〉 〈3456〉
〈1246〉 〈1257〉 〈3458〉 − 〈1245〉 〈1278〉 〈3456〉
− 〈1248〉 〈1256〉 〈3457〉 − 〈1245〉 〈1267〉 〈3458〉
〈1256〉 〈3678〉 〈4578〉 − 〈1236〉 〈4578〉 〈5678〉

+ 〈1678〉 〈2345〉 〈5678〉 − 〈1345〉 〈2678〉 〈5678〉

Table 5. Cyclic generators of the eight-particle alphabet of degree 2 and 3. In the last column,

the size of the cyclic orbit of each generator is given. The generators whose dihedral flip is not

contained in the alphabet are highlighted in blue.

sense. In the same way as before, we may construct these geometries and their f -vectors

by deleting — or adding — the corresponding faces in F4,7.

The 440 rational letters we have obtained by taking the union of the A-variables of

the truncated cluster algebra of Gr(4, 8) with their image under dihedral flips have been

checked to be in agreement with those found by a different approach in [82].

– 24 –



J
H
E
P
0
8
(
2
0
2
0
)
0
0
5

Degree Cyclic Generator #

4

〈1245〉 〈1567〉 〈2378〉 〈3467〉 − 〈1278〉 〈1567〉 〈2345〉 〈3467〉

8

+ 〈1234〉 〈1237〉 〈4567〉 〈5678〉 − 〈1237〉 〈1245〉 〈3467〉 〈5678〉
− 〈1234〉 〈1567〉 〈2378〉 〈4567〉

〈1234〉 〈1567〉 〈1678〉 〈2345〉 − 〈1267〉 〈1348〉 〈1567〉 〈2345〉
+ 〈1267〉 〈1348〉 〈1457〉 〈2356〉 − 〈1238〉 〈1267〉 〈1457〉 〈3456〉

− 〈1234〉 〈1457〉 〈1678〉 〈2356〉

〈1237〉 〈1458〉 〈1567〉 〈2368〉 − 〈1238〉 〈1567〉 〈1678〉 〈2345〉
+ 〈1236〉 〈1238〉 〈1457〉 〈5678〉 − 〈1236〉 〈1237〉 〈1458〉 〈5678〉

− 〈1238〉 〈1457〉 〈1567〉 〈2368〉

〈1278〉 〈1678〉 〈2456〉 〈3456〉 − 〈1278〉 〈1456〉 〈2678〉 〈3456〉
+ 〈1256〉 〈1456〉 〈2678〉 〈3478〉 − 〈1256〉 〈1678〉 〈2456〉 〈3478〉
+ 〈1234〉 〈1678〉 〈2456〉 〈5678〉 − 〈1246〉 〈1278〉 〈3456〉 〈5678〉

− 〈1234〉 〈1456〉 〈2678〉 〈5678〉

5

〈1345〉 〈1458〉 〈1567〉 〈2367〉 〈2378〉 − 〈1367〉 〈1458〉 〈1567〉 〈2345〉 〈2378〉

2
+ 〈1237〉 〈1238〉 〈1345〉 〈4567〉 〈5678〉 − 〈1238〉 〈1345〉 〈1567〉 〈2378〉 〈4567〉
+ 〈1237〉 〈1367〉 〈1458〉 〈2345〉 〈5678〉 − 〈1235〉 〈1238〉 〈1678〉 〈3457〉 〈4567〉

− 〈1237〉 〈1345〉 〈1458〉 〈2367〉 〈5678〉
〈1235〉 〈1278〉 〈1678〉 〈2345〉 〈3456〉 − 〈1235〉 〈1245〉 〈1678〉 〈2378〉 〈3456〉

8
+ 〈1235〉 〈1245〉 〈1568〉 〈2378〉 〈3467〉 − 〈1235〉 〈1278〉 〈1568〉 〈2345〉 〈3467〉
+ 〈1234〉 〈1278〉 〈1568〉 〈2345〉 〈3567〉 − 〈1234〉 〈1245〉 〈1568〉 〈2378〉 〈3567〉
+ 〈1234〉 〈1238〉 〈1245〉 〈3567〉 〈5678〉 − 〈1235〉 〈1238〉 〈1245〉 〈3467〉 〈5678〉

Table 6. Cyclic generators of the eight-particle alphabet of degree 4 and 5. In the last column,

the size of the cyclic orbit of each generator is given. The generators whose dihedral flip is not

contained in the alphabet are highlighted in blue.

In analogy to the seven-particle case, where the intersection of the tropical fan with

its image under reflections was sufficient to describe the MHV amplitude and its adjacency

properties, it is reasonable to expect that the rational part of the eight-particle MHV

alphabet will be similarly contained in the 272 dihedrally complete letters mentioned above,

and in fact may even be a subset thereof. Apart from the seven-particle expectations, this

hypothesis is also the simplest that agrees with the available data on the 2-loop eight-

particle symbol [14] (which up to this order is fully rational).

In principle, this hypothesis could be tested by extending the amplitude bootstrap

method mentioned in the introduction [11, 30, 34, 37, 59–62, 64–67], so as to construct an

ansatz for the 3-loop MHV 8-particle amplitude, and fix it completely by comparing with

known data in the multi-Regge [38–49] and collinear limits [50–58]. It remains to be seen

whether this task is also computationally feasible in practice, as the size of linear systems

that need to be solved for the construction of the ansatz crucially depends on the number

of letters, which is an order of magnitude larger than e.g. the seven-particle case.
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6 Cluster sequences and square roots

In the previous section we discussed how to obtain the rational part of the eight-particle

alphabet from the infinite cluster algebra associated to Gr(4, 8). The rational letters,

however, are not the complete story. Further to them, it is expected that also non-rational

letters containing square roots appear in the symbols of eight-point NMHV amplitudes [95,

96]. These letters take the form of for example

filfjm ± (fimfjl − fijfml)±
√

(fijfml − fimfjl + filfjm)2 − 4fijfjmfmlfil , (6.1)

with fij = 〈ii+ 1jj + 1〉. With the mutation being a rational transformation on the cluster

variables, these square roots cannot appear after a finite number of mutations as the A-

variable in the cluster algebra itself.

However, there is a notion in which the infinity of the cluster algebra actually does

produce square root variables. In [97] it was demonstrated that there is a sequence of

mutations in a rank-2 cluster algebra of affine type, which is also infinite, such that a

certain ratio of A-variables converges to an algebraic letter of the form

a′1 + a1 +
√

(a′1 − a1)
2 + 4

2a2
, (6.2)

with a′1 = (1 + a22)/a1. This result was obtained by identifying the sequence of A-variables

with a continued fraction. In this way, identities for these infinite continued fractions were

used to obtain an equation for the limit.

Here we will generalise this result to also include frozen variables of certain type,

but before doing so, let us first make some remarks on the classification of rank-2 clus-

ter algebras. Whereas in the usual picture we associate to any cluster a quiver and its

anti-symmetric adjacency matrix B, the most general perspective is to consider instead

skew-symmetrisable adjacency matrices. Except for the notion of the cluster quiver, ev-

erything else in the construction of the cluster algebra — including the mutation rules —

is unchanged.

Cluster algebras are usually classified in terms of the Dynkin classification [17, 18]. In

the case of rank-2 cluster algebras, for any choice of b and c the matrix

B0 =

(
0 b

−c 0

)
(6.3)

is skew-symmetrisable and thus a valid adjacency matrix for the initial seed of a cluster

algebra. The classification via Dynkin diagrams follows from the Cartan matrix associated

to these adjacency matrices, which is given by

A (B0) =

(
2 −b
−c 2

)
. (6.4)

Depending on the determinant of this Cartan matrix, there are three different cate-

gories in the classification. For positive determinant, the Dynkin diagram is of finite type
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a1

y1

a2

y2

a3

y−11

a2

y3

a3

y4

a4

y−13

a5

y−14

a4

y5

· · ·
µ1 µ2 µ1 µ2

Figure 8. Cluster sequence M in the affine rank-2 cluster algebra of A
(1)
1 Dynkin type.

resulting for example in the usual A2 cluster algebra. If the determinant is negative, the

diagram is of hyperbolic type. Finally, there are two diagrams of affine type, given by

b = c = 2 and b = 1, c = 4 and denoted by A
(1)
1 and A

(2)
2 , respectively.

We will make use of the formulation of cluster algebras in terms of variables and coef-

ficients, as reviewed in appendix B. In short this means that we work with the coefficients

yi attached to each A-variable of a cluster, which are very similar to the X -variables.

Whereas the latter are monomials in the frozen and unfrozen variables obtained in terms

of the adjacency matrix, the coefficients correspond to the part only involving the frozen

variables and are related to the X - and A-variables by

xj =

(
d∏
i=1

a
bij
i

)
yj . (6.5)

The coefficients also transform under mutations, and their transformation can be induced

from the corresponding transformation of the A-variables (3.2), as well as their relation to

the X - and y- variables, eqs. (3.3) and (6.5). In the notations of appendix B, it is given

directly in eq. (B.5).

Consider now the affine rank-2 cluster algebra of A
(1)
1 Dynkin type with principal

coefficients. In essence, this means that the initial seed has one frozen node connected to

each of the unfrozen nodes, such that the frozen variables and coefficients are identified.

This initial seed is thus given by ((a1, a2), (y1, y2), B0) with the adjacency matrix given in

the form of eq. (6.3) with b = c = 2. The entire dynamics of the frozen variables is now

encaptured in the coefficients (y1, y2). These are related to the initial X -variables by

x1 = a−22 y1 , x2 = a21y2 . (6.6)

In this cluster algebra we consider the mutation sequence M : µ1µ2µ1µ2 . . . , which

gives rise to a sequence of clusters with their A-variables and coefficients, as depicted in

figure 8. We denote these sequences for m = 1, 2, . . . by am and ym with initial values

a1, a2 and y1, y2, respectively.

We directly observe that the adjacency matrix is periodic in this sequence, whereas we

always mutate on the node from which the two arrows originate. Not considering the first

few elements, mutation takes am−1 to am+1, y
−1
m−1 to ym+1 and ym to y−1m . Specialising the

mutation rules (B.4) and (B.5) to our case, we obtain the following recurrence relation for

the sequences am and ym

ym+1ym−1 (ym ⊕ 1)2 = y2m for m ≥ 4 , (6.7)

am+1am−1 (ym ⊕ 1) = ym + a2m for m ≥ 3 , (6.8)
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with the initial values y4 = y31y
2
2, y3 = y21y2 and a3 =

(
y1 + a22

)
/a1, and whereas the

notation of the term in the parenthesis is also explained in appendix B. From the first few

elements we can conjecture that ym = ym−11 ym−22 for m ≥ 4 solves the recurrence relation

for ym. Indeed, this implies that (ym ⊕ 1) = 1 for all m such that proving this inductively

is a direct computation.

Numerically, one sees that the thus defined a-sequence diverges for m→∞. Therefore,

we will instead consider the ratio

βm =
am
am−1

, (6.9)

which, as it turns out, does indeed converge. We hence rewrite the recurrence relation in

terms of βm. For this, we first make use of the separation principle by noting that for

m ≥ 3 we have xm = a−2m ym, such that the right hand side of the a-recurrence factors to

(1 + xm)a2m. In this way, we obtain the modified recurrence relation

βm+1βm−1 = (1 + xm)βm for m ≥ 3 , (6.10)

xm+1xm−1 =
x2m

(1 + xm)2
for m ≥ 4 . (6.11)

This factored form allows us to directly solve the recurrence relation for βm in terms

of the x-sequence as

βm = Γm (1 + x1)β2, Γm =

m−1∏
j=3

(1 + xj) , (6.12)

such that it remains to obtain the limit of Γm using the recurrence relation for xm. To

do so, we adapt the technique of [97] and translate the relations between the continued

fractions used in there into the notation used here. After some generalisation, this leads

to the relation for Γm in terms of the initial x1 and x2 given by

(1 + x1) Γm +
x1x2

(1 + x1) Γm−1
= 1 + x1 + x1x2 . (6.13)

Assuming that the limit Γ = limm→∞ Γm exists, this relation gives us a quadratic

equation for Γ. This equation has two solutions, one of which numerically matches the

sequence considered here, such that we obtain the limit β for the ratio am/am−1 as

β = a−11 a2 ·
1

2

(
1 + x1 + x1x2 +

√
(1 + x1 + x1x2)

2 − 4x1x2

)
. (6.14)

When taking y1 = y2 = 1 we see that the y-sequence trivialises and the initial seed

and cluster sequence are equal to that of the affine A
(1)
1 algebra without coefficients. In

this case, this limit becomes equal to the previous result given in eq. (6.2).

The advantage of having computed the limit with principal coefficients is that we can

now read off some interesting properties of this limit. Usually, any A-variable of a cluster

algebra with principal coefficients can be written as a monomial in the initial unfrozen

variables times a polynomial in the initial X -variables. From eq. (6.14) we see that a

– 28 –



J
H
E
P
0
8
(
2
0
2
0
)
0
0
5

a1 a2 a3 a4 a6 a8 a9

a5 a7

Figure 9. Principal part of a certain cluster in Gr(4, 8). The affine A
(1)
1 cluster subalgebra is

highlighted by the dashed rectangle.

similar property holds for the limit of the ratio of A-variables, which factors into such a

monomial but now multiplied by an algebraic function.

Remarkably, this algebraic function is structurally very similar to the square-root letter

of eq. (6.1). Indeed, having obtained the limit for the affine rank-2 cluster algebra with

principal coefficients is the first step towards the analysis of general coefficients, as is

required for the application to the cluster algebra of Gr(4, 8).

Furthermore, using such a factored form a vector is associated to every A-variable,

whose components are given by the exponents of the initial unfrozen A-variables. These

vectors are closely related to the rays of the totally positive tropical configuration space

reviewed in section 3.2 and the precise relation is discussed in appendix B.

We observe that in this mutation sequence, the two rays associated to the A-variables

of every cluster both converge to (−1, 1), the vector similarly associated to the limit β.

In this way, considering the limit of mutation sequences in Gr(4, 8) might not only allow

to derive the algebraic letter of eq. (6.1) but also its associated ray, which is required to

obtain a full triangulation of T̃r+(4, 8).

Indeed, the example considered here is closely related to the cluster algebra of Gr(4, 8).

To see this consider the cluster13 depicted for simplicity without the frozen nodes in figure 9.

The rays associated to the A-variables of this cluster are all non-redundant, which is thus

also a part of the truncated cluster algebra. Freezing all variables except those denoted

in the figure as a4 and a5 results in an affine rank-2 cluster subalgebra of A
(1)
1 type with

non-principal coefficients. Remarkably, mutating along a4 results in an A-variable with

associated redundant ray. Therefore, it is plausible to assume that the same mutation

sequence M considered before leads to the square-root letters of the type eq. (6.1) as well

as another non-redundant ray of T̃r+(4, 8).

With respect to the full triangulation of T̃r+(4, 8), it is worth mentioning that a differ-

ent method to compactify the totally positive configuration space G̃r+(k, n) was reported

in [98]. In the case of finite cluster algebras, as for example those of Gr(4, 7) and Gr(3, 8),

this leads to geometries with the same f -vectors as that of the totally positive tropical

configuration spaces computed by their cluster algebra triangulation in sections 4 and 7,

respectively. Moreover, for the infinite cluster algebra of Gr(4, 8), this compactification

similarly leads to a finite subset in this case containing 360 letters.

13The A-variables of the cluster considered in figure 9 are given by a1 = 〈3678〉, a2 = 〈1456〉 〈3678〉 −
〈1678〉 〈3456〉, a3 = 〈1347〉 〈2356〉 〈4678〉 − 〈1237〉 〈3456〉 〈4678〉 − 〈1347〉 〈2346〉 〈5678〉, a4 = 〈1367〉, a5 =

〈1347〉 〈2356〉 − 〈1237〉 〈3456〉, a6 = 〈1267〉 〈1348〉 〈2356〉 − 〈1234〉 〈1678〉 〈2356〉 − 〈1238〉 〈1267〉 〈3456〉, a7 =

〈1357〉, a8 = 〈1267〉 〈1348〉 − 〈1234〉 〈1678〉 and a9 = 〈1267〉.
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Assuming that the announced compactification indeed reproduces the totally positive

tropical configuration space, this suggests that compared to the truncated cluster algebra

of Gr(4, 8), the totally positive configuration space T̃r+(4, 8) contains 4 more rays, pre-

sumably corresponding to algebraic letters that may be obtained via the limits of mutation

sequences. However, with 18 inequivalent algebraic letters being observed in the symbols of

eight-particle NMHV amplitudes [96], this suggests that similar to the seven-particle case

the totally positive tropical configuration space is too small to describe these amplitudes.

Finally note that the results contained in this section, both the ratio of cluster variables

as well as the ray, have also been obtained in [99] using the different perspective of scattering

fans as introduced in [100], see in particular corollary 3.11 and remark 3.14 in the former

reference.14

7 Tr(3, 8) and the generalised biadjoint scalar amplitude

By the construction of a kinematic realisation of the associahedron, the amplitudes of

biadjoint scalar φ3 theory can be related to volumes of geometric objects [77]. These

so called kinematic associahedra are constructed as follows. Given n light-like canonically

ordered momenta p1, . . . , pn we define the planar variables Xi,j in terms of the Mandelstam

variables si,i+1,...,j−1 as

Xi,j = si,i+1,...,j−1 = (pi + pi+1 + · · ·+ pj−1)
2 , (7.1)

which allows us to expand the two-particle Mandelstam invariants si,j , which span the

kinematic space Kn, in terms of these planar variables as

si,j = Xi,j+1 +Xi+1,j −Xi,j −Xi+1,j+1 . (7.2)

The kinematic associahedron is then defined as a region An−3 ⊂ Kn by imposing si,j = −ci,j
for positive constants ci,j as well as

Xi,j ≥ 0 for all 1 ≤ i < j ≤ n . (7.3)

The such defined region An−3 is a polytope — more precisely an associahedron — of

dimension (n − 3). The n-point amplitude of biadjoint scalar theory is then given as the

volume of the dual of this associahedron.

Associahedra are ubiquitous objects appearing in many contexts in mathematics. For

example, the cluster polytopes of the cluster algebras of Gr(2, n) are equivalent to An−3.
Furthermore, the fan of the totally positive tropical configuration space T̃r+(2, n) is equiv-

alent to the dual of An−3 [79]. We can thus compute the volume of the dual of An−3 and

in this way the n-point amplitude of biadjoint scalar theory by triangulating T̃r+(2, n).

The biadjoint scalar amplitudes associated to T̃r(k, n) were generalized in [69, 70] from

k = 2 to general values of k by a generalization of the scattering equations from CP1 to

14To translate the notation used here to that of [99], replace xi by ŷi and ai by xi. In this approach, the

limit β corresponds to the path-ordered product p∞
(
a−1
1 a2

)
within the g-vector fan along the clockwise

path from the limit ray (−1, 1) to the cone spanned by (1, 0) and (0, 1).
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CPk−1, for more recent work in this direction see also [73–76]. We can hence compute these

generalized biadjoint scalar amplitudes by analysing T̃r(k, n) or its totally positive part,

which corresponds to the amplitude with canonical ordering.

As was demonstrated in [78], using the fact that the cluster fan triangulates the fan

of the totally positive tropical configuration space, we can compute its volume and obtain

an expression for the generalised biadjoint scalar amplitude. Given a simplicial fan TriFk,n
triangulating the fan of the totally positive tropical configuration space T̃r+(k, n), the

amplitude is given by

mn
k(1|1) =

∑
max. cones
C∈TriFk,n

∏
rays
g∈C

1

y · TrΦ(g)
, (7.4)

whereas TrΦ denotes the embedding of the totally positive tropical configuration space

into the full tropical configuration space obtained via the web-parameterisation as given

by eq. (2.16) and y is the vector of lexicographically ordered generalized Mandelstam

invariants si1...ik spanning the kinematic space. In the case where TriFk,n coincides with

the cluster fan, as was previously considered, C amounts to a cluster of the cluster algebra,

and g to a ray associated to an A-variable. With the top-dimensional cones being simplicial

they each consist of d rays, the dimension of the fan.

In this section we build on the work of [78] to analyse T̃r+(3, 8) and its properties. Using

cluster algebras, we will compute a triangulation of its fan and obtain its full geometry,

whose combinatorial structure is expressed in terms of its f -vector. Furthermore, we will

show how to obtain a minimal, non-redundant triangulation which allows us to write down

the generalised biadjoint scalar amplitude with the least amount of spurious poles. Finally,

we briefly mention how this can be extended to obtain the amplitude associated to T̃r+(4, 8).

7.1 Mutating and fusing cones

In [101] the question was posed, whether it is feasible to compute the tropical Grassmannian

Tr(3, 8). Using cluster algebra techniques, at least computing the totally positive tropical

configuration space T̃r+(3, 8) becomes not only feasible but also efficient.

Starting from the seed of the cluster algebra of Gr(3, 8), we perform all possible mu-

tations to obtain the full cluster fan. As stated in [78], this contains 128 rays, 8 of which

are redundant. These rays arise from redundant triangulations, as for example from the

triangulation of an already simplicial cone by smaller simplicial cones. However, we also

observe such redundant triangulations in (parts of) non-simplicial cones with up to 13 rays.

Such a scenario is illustrated in figure 10.

Proceeding as for Gr(4, 8), we can also compute the truncated cluster algebra, that is,

we restrict mutation to those clusters, that contain only non-redundant rays. Therefore, we

truncate the cluster algebra whenever we encounter a cluster with at least one redundant

ray. As demonstrated in [78], this results in a truncated cluster fan with 120 rays and

21720 cones. This cluster fan, however, has holes resulting from the truncation. Thus,

while it contains only non-redundant triangulations, it does not triangulate the full totally

positive tropical configuration space T̃r+(3, 8).
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Figure 10. Illustrative example of a non-minimal triangulation of a non-simplicial cone. In this

example, we consider a 3-dimensional fan and draw its intersection with the unit-sphere S2. Note

that the vertices correspond to the rays and lines to dimension-2 surfaces. Simplicial cones have

three rays and thus three vertices. On the left hand, we draw in blue a minimal triangulation. On

the right hand, we draw how a redundant ray, drawn in red, leads to a non-minimal triangulation.

Geometry f -vector

Full cluster 128 2408 17936 67488 140448 163856 100320 25080

Truncated cluster 120 2240 16584 61920 127568 146944 88560 21720

T̃r+(3, 8) 120 2072 14088 48544 93104 100852 57768 13612

Table 7. f -vectors of the full and truncated cluster polytope as well as that of T̃r+(3, 8).

As the cluster algebra is finite in this case, we can start from its full — and finite —

fan and fuse the cones along the redundant faces to obtain F3,8. In this way, we were able

to construct the totally positive tropical configuration space efficiently using the associated

cluster algebra. The f -vector of this and of the cluster fans are stated in table 7.

7.2 Minimal triangulation

In the case of T̃r+(3, 8) the full cluster algebra is finite, resulting in a complete triangulation.

However, the cluster fan has 8 redundant rays resulting in parts of the totally positive

tropical configuration space to be redundantly triangulated.

By comparing the cluster fans of the full and truncated algebra, we identify 8 holes

in the truncated fan that correspond to the areas, where the cluster algebra produces

redundant triangulations and was thus truncated. Fusing the cones of the full cluster

algebra that lie in any of these holes, we can identify those cones of F3,8 that are not yet

minimally triangulated by the cluster algebra.15

Note that in this way we do not always find the complete non-minimally triangulated

cone but only that part of the cone, that is not yet minimally triangulated. This can also be

seen on the right hand side of figure 10, where the right part of the cone is non-redundantly

triangulated by the cluster algebra and hence only the left part, drawn in red, actually lies

inside the hole. In an abuse of language, we will nonetheless refer to this as the full cone.

Given any cone of F3,8 we construct its minimal triangulation by first building all

possible simplicial cones out of the rays of the non-simplicial cones (these are linearly

15Note that in higher dimensions, even when excluding redundant rays, it is possible to obtain triangu-

lations with different numbers of simplices. While all of them are non-redundant, only one of them is truly

minimal.
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Figure 11. Illustrative example of the algorithm to triangulate a non-simplicial cone. Here we

consider a 3-dimensional fan and draw its intersection with the unit-sphere S2. The non-simplicial

cone of the totally positive tropical configuration space is drawn in black. The red, green and blue

cones are part of the set of all cones that may be used for the triangulation. If the algorithm has

already picked the red one for the triangulation, only the blue one can be picked in the next step,

as the green one intersects with the red cone and does not share a codimension-1 boundary with it.

independent combinations of 8 rays, which is equal to the dimension of the fan, as may be

seen by specialising eq. (2.9) to our case). We then iteratively combine these cones to a

triangulation by grouping them such that they share codimension-1 boundaries and do not

intersect. This is illustrated in figure 11. When no such cones are left, we check whether

all codimension-1 boundaries are shared between precisely two cones to verify whether the

triangulation covers the entire cone. Finally, we simply choose the minimal triangulation

out of the thus constructed ones.

Note that this algorithm is only applicable if there are no rays of the totally positive

tropical configuration space inside of the hole of the truncated cluster algebra. For T̃r+(3, 8)

this is indeed the case, as can be checked by comparing with the full cluster algebra, which

is known to provide its complete triangulation. Due to the complexity of the problem, this

algorithm is, however, not efficient for the largest non-simplicial cones encountered in these

holes. In each of the 8 holes we find one non-simplicial cone consisting of 13 non-redundant

rays which is redundantly triangulated by 24 simplicial cones of the cluster algebra. For

this cone the algorithm does not terminate within a reasonable amount of time.

In combination with the triangulation obtained from the truncated cluster algebra,

we thus obtain a triangulation of the fan of T̃r+(3, 8) with 23496 simplicial cones. More

precisely, we find that, not considering the largest non-minimally triangulated cones, there

are 3168 simplicial cones corresponding to a redundant triangulation in the full cluster fan,

396 for each of the 8 holes. These cones redundantly triangulate 99 non-simplicial cones

(or parts of such) in each hole. In the minimal triangulation, these non-simplicial cones

are triangulated by 198 simplicial cones. Compared to the redundant triangulation, the

amount of simplicial cones per non-simplicial cone is reduced by half.

Extrapolating this data to the largest non-minimally triangulated cones, which are

redundantly triangulated by 24 simplicial cones, would suggest that they have a minimal

triangulation with 12 simplicial cones. In this case, the minimal triangulation fan of F3,8

would consist of 23400 simplicial cones.

7.3 Generalised biadjoint scalar amplitude

In [78], the simplicial fan of the full cluster algebra of Gr(3, 8) was used to compute the

respective generalised biadjoint scalar amplitude. However, having obtained the near-

– 33 –



J
H
E
P
0
8
(
2
0
2
0
)
0
0
5

minimal triangulation, which consists of 1584 cones less than the full cluster triangulation,

the amplitude can be written in a more economic way. The full result is contained in the

file Gr38AmpMin.m of the supplementary material.

We demonstrate how the amplitude can be written in a shorter form when passing to

the minimal triangulation by considering the example of a simplicial cone that is redun-

dantly triangulated. The cluster algebra triangulates this cone with two also simplicial

cones containing one of the redundant rays. This redundant triangulation leads to the

contribution

1/
(

(y · b3,12345678) (y · b3,78123456) (y · b4,12345678) (y · b5,34215678) (y · b5,67548123)

× (y · b10,24513678) (y · b8,78564123) (y · be)
)

+ 1/
(

(y · b3,12345678) (y · b3,78123456) (y · b4,12345678) (y · b5,34215678) (y · b5,67548123)

× (y · b10,24513678) (y · b8,12345678) (y · be)
)
, (7.5)

where the RD vectors b correspond to certain rays of F3,8. Their precise form may be found

in [78], however it will not be important for our purposes. The same contribution in our

minimal triangulation reads

1/
(

(y · b3,12345678) (y · b3,78123456) (y · b4,12345678) (y · b5,34215678) (y · b5,67548123)

× (y · b10,24513678) (y · b8,12345678) (y · b8,78564123)
)
, (7.6)

and indeed, (7.5) simplifies to (7.6) upon taking the common denominator, and using the

following identity

be = b8,12345678 + b8,78564123 , (7.7)

that the redundant ray be obeys. In general, the terms coming from the triangulation of

non-simplicial cones are more complex and result, even for the minimal triangulations, in

more than one term. These terms, however, cannot be further simplified while keeping the

same structural form.

The advantage of writing the amplitude in this way is that such a minimal triangulation

introduces the least possible amount of spurious poles into the amplitude. As can be seen

from the simplification of the terms above, when using the minimal triangulation, the

pole associated to (y · be), which in the redundant triangulation cancels between the two

fractions, is not present at all.

In general, we see from eq. (7.4) that every ray introduces an apparent pole to the

amplitude. The rays, which are dimension-1 faces of the triangulation fan, correspond

to codimension-1 faces of the associated polytope in kinematic space. In this sense, if

the cluster algebra introduces a redundant ray to triangulate the totally positive tropical

configuration space, it introduces a codimension-1 boundary in the kinematic space that is

associated to a non-physical pole whose contributions cancel between the terms.
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Figure 12. Illustrative examples of partially triangulated 3-dimensional fans whose intersections

with the unit-sphere S2 are depicted. The hole in the truncated cluster fan is drawn in black. On

the left hand side, the hole contains two non-simplicial cones separated by the grey line, representing

a tropical hypersurface. The algorithm attempts to complete the faces on the boundary of the hole

to simplicial cones. For the red face, two such possible completions are drawn in green and blue.

Out of the two, only the green is valid, as the interior of the blue cone intersects the grey tropical

hypersurface. On the right hand side we have two intersecting tropical hypersurfaces inside the

hole, implying that it contains a valid ray. In this case, the red face cannot be completed to a valid

cone by our algorithm.

7.4 A note on Tr(4, 8)

For T̃r+(3, 8) we obtained a near-minimal triangulation by using the full Gr(3, 8) cluster

algebra, which in this case is finite. However Gr(3, n) and Gr(4, n) cluster algebras are no

longer finite for n ≥ 9 and n ≥ 8, respectively. Therefore we cannot rely on them to obtain

a triangulation of the entire totally positive tropical configuration space.

A potential alternative starting point is the truncated cluster algebra, in the sense

discussed in section 5, where we also obtained the latter for Gr(4, 8). Based on this result,

in this subsection we will apply our general algorithm for eliminating redundant boundaries,

and attempt to triangulate T̃r+(4, 8).

Using the fact that any codimension-1 face is shared between precisely two clusters,

we can first identify the codimension-1 faces on the boundary of each of the holes of the

truncated cluster fan. Using any of the rays surrounding a given hole, we attempt to

complete such a face to a simplicial cone, as is illustrated in figure 12. For this, we first

look at all possible such cones and then eliminate those that intersect any of the other

cones or whose interior intersects a tropical hypersurface.16 Proceeding like this, we may

obtain a valid, non-redundant though not necessarily minimal triangulation of the hole,

which in turn may be used as a starting point to obtain the minimal triangulation.

In contrast to T̃r+(3, 8), for T̃r+(4, 8) we find only one hole in the truncated cluster

fan whose boundary includes all 356 rays. Furthermore, trying to complete the faces on

the boundary of the hole to valid simplicial cones inside the hole only works for some of

the faces causing the algorithm to stop without having triangulated the entire hole. This

shows that the truncated cluster algebra has not produced all rays of F4,8 and that the

16Note that using the tropical hypersurface equations obtained from the tropical parameterisation of the

Plückers, eq. (2.16), we may check whether any tropical hypersurface intersects the interior of a cone even

though solving the equations for the hypersurfaces may not be efficiently possible.
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hole contains further non-redundant, valid rays. Such a scenario is illustrated on the right

hand side of figure 12.

We expect that a similar phenomenon will be present in all infinite cluster algebras,

namely their truncations will not contain all rays of the corresponding tropical Grassman-

nians. Nevertheless, so far in our discussion we have not taken into account the rays that

can obtained from limits of infinite mutation sequences, of the type we explored in sec-

tion 6. While these are not strictly part of the cluster algebra, starting from the latter they

can be arrived at by a well-defined procedure, at least for the infinite mutation sequences

associated with an affine A
(1)
1 subalgebra, as depicted in figure 9 for the case of Gr(4, 8).

It remains to be seen whether (possibly more general) infinite mutation sequences can

generate all T̃r+(k, n) rays from any infinite Gr(k, n) cluster algebra. Within this class,

we certainly anticipate Gr(4, 8) and Gr(3, 9) to be of similar complexity, and below the

rest. This is because they have finite mutation equivalence class [102], namely the number

of their different unlabeled quiver graphs or adjacency matrices is finite, even though an

infinite number of cluster variables may be assigned to them. Whenever all rays of the

tropical Grassmannian are generated by the infinite mutation sequences, then the proposal

of [78] for the computation of (canonically ordered) generalized biadjoint scalar amplitudes

will still apply, and more generally the latter will always be equal to the volume of the

positive tropical Grassmannian.

8 Conclusion & outlook

In this paper, extending the results of [78], we demonstrated how cluster algebras can be

utilized as a very efficient tool to compute and understand the positive tropical configura-

tion space T̃r+(k, n). Making use of the simple algebraic mutation rules to generate cluster

algebras, we obtained triangulation fans for T̃r+(3, 7), T̃r+(3, 8) and (parts of) T̃r+(4, 8)

obtaining their entire geometries in accordance with previous results in the literature. On

the other hand, this close connection between tropical geometry and cluster algebra al-

lowed us to obtain results on the scattering amplitudes that are associated to either of

these two objects.

In the case of T̃r+(4, 7), we used the cluster algebra to obtain a triangulation fan of

the totally positive tropical configuration space as well as the f -vectors of these geometries

in accordance with the results of [79]. Furthermore, we analyzed the cluster adjacency

properties of both MHV and NMHV seven-particle amplitudes of N = 4 SYM. Whereas

for the MHV amplitudes we found that the totally positive tropical configuration space

might explain some of the beyond-cluster adjacency properties, the number of pairs of

consecutive letters in the symbol of the NMHV amplitudes saturates the 399 dictated by

cluster adjacency.

For T̃r+(4, 8), we used the totally positive tropical configuration space to obtain a

finite subset of the infinite cluster algebra of Gr(4, 8) by truncating the algebra at clusters

containing at least one redundant ray corresponding to redundant triangulations. In agree-

ment with [78], this resulted in 356 A-variables arranged in clusters. Using this we made

a proposal for the rational eight-particle alphabet of eight-point N = 4 SYM amplitudes.

– 36 –



J
H
E
P
0
8
(
2
0
2
0
)
0
0
5

Further to the rational letters appearing in the eight-particle symbol alphabet, we also

discussed how the non-rational letters containing square roots found in [95, 96] may be

obtained from limits of mutation sequences within infinite cluster algebras. We generalized

the result of [97], where the limit of certain mutation sequences in the affine rank-2 cluster

algebra was discussed, to the affine rank-2 cluster algebra with principal coefficients.

Finally, we showed how the cluster algebra can be used to obtain a minimal triangula-

tion of T̃r+(3, 8) thus allowing us to write down the associated generalised biadjoint scalar

amplitude with the near-minimal amount of spurious poles. Furthermore, making use of

this triangulation, we computed the geometry of the totally positive tropical configuration

space T̃r+(3, 8), expressed in terms of its f -vector.

This work can be extended in several directions. The rational letters that have been

found previously in [95, 96] are contained in our proposal for the alphabet. In how far

the additional rational letters that we have found, for example even some single Plücker

variables like 〈1357〉 are not contained in their alphabet, play an actual physical role is still

an open question.

Furthermore it has to be seen whether limits of mutation sequences in the cluster

algebra of Gr(4, 8) reproduce the algebraic letters also found in [95, 96]. Further to their

potential applications to the algebraic letters, it would also be very interesting to see

whether and how similar results about mutation sequences can also be obtained in different

or even general cluster algebras. Whereas first numerical tests indicate that these results

can be extended to some affine rank-3 cluster algebras as well as the other affine rank-2

cluster algebra of A
(2)
2 Dynkin type, it seems that the ratio of A-variables in the cluster

algebra of hyperbolic type given by the adjacency matrix of eq. (6.3) with b = c = 3

diverges. Finally, also the exact relation to the formalism put forward in [99, 100], which

leads to the same result, remains to be seen.

With respect to the geometry of T̃r+(4, 8) it would be interesting to obtain its triangu-

lation, also to be able to write down the associated generalised biadjoint scalar amplitude.

For this, however, the rays inside the hole that are not captured by the finite part of the

cluster algebra have to be obtained. One approach could be to make use of the limits of

mutation sequences.

Furthermore, the triangulation of polytopes has received some attention in mathe-

matics starting at the end of the last century, see eg. [103] and references therein. It

would be interesting to see how the technology developed there can be used to obtain the

triangulations computed in this paper in a more efficient way.

Finally, exploring whether T̃r+(4, 9) may also be studied by similar means would be

another exciting research direction for the future. It should be noted, however, that a great

jump in complexity is expected compared to the cluster algebras of Gr(4, n) for n = 8: the

latter is of finite mutation type, which means that the topologies of the quivers that appear

are restricted to a finite set, even if the number of clusters is infinite. This will no longer

be the case for n ≥ 9.
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Figure 13. Two examples for web graphs, Web2,5 on the left and Web3,7 on the right.
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A Web-parameterisation of the totally positive configuration space

Following [79], we construct a parameterisation of the totally positive part of the configu-

ration space G̃r(k, n). For this, we first draw the web graph Webk,n as follows.

Starting with a k by n− k grid, with k ingoing edges from the left and n− k outgoing

edges on the top, we label these external edges from 1 to n clockwise starting on the bottom

left. We furthermore label the d = (k − 1)(n− k − 1) internal chambers starting from the

top left by filling the columns with x1, . . . , xd. The horizontal and vertical internal edges

are all directed, pointing to the right and top, respectively.

Example A.1. In figure 13, the web graphs Web2,5 and Web3,7 used to obtain a parame-

terisation for G̃r(2, 5) and G̃r(3, 7), respectively, are depicted.

With the use of the web graph Webk,n we obtain a parameterisation of pi1...ik in terms

of the web-variables x1, . . . , xd by

pi1...ik (x1, . . . , xd) =
∑

S∈Path(i1,...,ik)

ProdS (x1, . . . , xd) . (A.1)

The parts of this function are defined as follows. Given K = (i1, . . . , ik) we construct all

possible paths along the web graph in the following way. Denoting [m] = (1, . . . ,m), any

such path may start at [k] \ (K ∩ [k]), that is at any of the ingoing edges except those

whose label is contained in K. Furthermore, any path may end at K \ (K ∩ [k]), that is at

any of the outgoing edges whose label is contained in K. The set Path (K) is then given as

all collections of non-intersecting paths such that all ingoing and outgoing labels that are

allowed as start- and endpoints for the paths are covered by a path. Note that for K = [k]

there is no such path. However, in this case we include the empty set as a valid path.

Example A.2. An example for the collections of non-intersecting paths in Path (2, 5) is

depicted in figure 14.
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Figure 14. For Web2,5 there are three complete collections of non-intersecting paths in Path (2, 5),

each consisting of one path.
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Figure 15. Collections of non-intersecting paths in Path (3, 5, 6) of Web3,7.

For any complete collection of non-intersecting paths S ∈ Path (K), we obtain the

monomial ProdS (x) by multiplying for each path in S the x variables of those chambers,

that are located above the path. This also includes those chambers that are not directly

above the path but separated by other internal chambers. If there are no such chambers,

we associate 1 to the path.

Example A.3. We conclude our examples for Web2,5 and Web3,7. Consider the Plücker

variable p25 of Gr(2, 5). The three collections of non-intersecting paths are depicted in

figure 14. The path on the left hand side contributes by x1, whereas the right hand path

contributes by 1. We thus obtain

p25 = 1 + x1 + x1x2 . (A.2)

For the Plücker variable p356 of Gr(3, 7), the collections of non-intersecting paths are de-

picted in figure 15. Summing over these collections, we obtain

p356 = x21x2x3x4 + x1x2x3x4 + x1x2x3 . (A.3)

B Cluster algebras, coefficients and the g-vector fan

The cluster fan as defined in section 3.2 is closely related to the g-vector fan defined for any

cluster algebra in [20, 104]. In fact, as was stated in [78], the mutation rule (3.5) is a small

modification of the mutation rule for the g-vectors. To see the precise relation between

these two fans, it is best to facilitate a different — though equivalent — perspective on

cluster algebras and their mutation patterns.

In this section, we will thus first review the construction of cluster algebras as laid out

in [20] and finally propose a formula relating the two fans. Note that in difference to the

main text of this paper, in this section we denote the rays associated to the A-variables as

g′ and use g as originally introduced in [20].
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B.1 Cluster algebras with coefficients

As for example in the cluster algebras associated to Gr(k, n), we often deal with cluster

algebras that have both, unfrozen and frozen nodes. Whereas the variables attached to

the frozen nodes do not change under mutation, their dynamics is of interest in its own

right and has many applications also in the context of theoretical physics [20, 90, 105].

Furthermore, analysing the dynamics of the frozen and unfrozen variables separately as

well as their interplay allows a better understanding of both of them.

We thus promote the frozen variables to independent objects and introduce the co-

efficients yi. Whereas the X -variable associated to any unfrozen node is a monomial in

both the frozen and unfrozen variables determined by the adjacency matrix, the coefficient

attached to an A-variable is a similar monomial but only in the frozen variables.

We will use the following notation, adapting that of the mathematics literature to the

more usual notation used in scattering amplitudes. The clusters of a cluster algebra of

rank r are labeled by an index t such that a sequence of mutations as for example (µi, µi′)

results in a sequence of clusters denoted as t i t′ i′ t′′. We denote the A-variables of a

cluster by at = (a1;t, . . . , ar;t). The coefficients and X -variables are similarly denoted by

yt and xt, respectively, whereas we will usually drop the label t whenever it is clear from

context to which cluster the objects belong.17

For the rank d = (k − 1)(n− k − 1) cluster algebra of Gr(k, n), which is of geometric

type, we associate the triple (at,yt, Bt), the labeled seed, to each cluster. The coefficients

are defined for 1 ≤ j ≤ d by

yj;t =
d+n∏
i=d+1

a
btij
i;t . (B.1)

in terms of the frozen variables (ad+1;t, . . . , ad+n;t). As usual, Bt is the adjacency matrix

with its components denoted by btij , which can be considered as a (d + n) × d matrix as

there are no connections between frozen nodes. Note that these coefficients are closely

related to the previously introduced X -variables by

xj;t =

(
d∏
i=1

a
btij
i;t

)
yj;t . (B.2)

A special case of importance to the analysis of general cluster algebras is that of

principal coefficients. In essence, this means that for a rank r cluster algebra we have r

frozen nodes, each connected to one of the unfrozen nodes, which can thus be identified

with the coefficients y1, . . . , yr. This implies that the adjacency matrix of the initial seed

is a 2r × r matrix with the lower r × r part given by the identity matrix.

The advantage of associating both the variables and coefficients to each cluster and

thus treating both on the same level is that the separation principle becomes apparent. To

see what this means, we first define the tropical addition18 ⊕ on the frozen variables for

17Note that in the original mathematics literature, the A-variables are usually denoted as xi;t whereas

the X -variables are labeled as ŷi;t.
18Note that while this is closely related to the tropical addition discussed in section 2 it is not quite

the same!
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any real bi and ci by

d+n∏
j=d+1

a
bj
j ⊕

d+n∏
j=d+1

a
cj
j =

d+n∏
j=d+1

a
min(bj ,cj)
j . (B.3)

With this addition, we can define the mutation for two labeled seeds t j t′ by

aj;t′ =
yj;t
∏d
i=1 a

[btij]+
i;t +

∏d
i=1 a

[−btij]+
i;t

(yj;t ⊕ 1) aj;t
, (B.4)

yl;t′ =

y
−1
j;t if l = j

yl;ty
[btjl]+
j;t (yj;t ⊕ 1)−b

t
jl if l 6= j

, (B.5)

whereas the mutation for the adjacency matrix is as before and again [x]+ = max (0, x). In

fact, when using the initial seed associated to the cluster algebra of Gr(k, n) this reproduces

the previous results and is thus a completely equivalent notion of mutation.

Example B.1. We start with the initial seed associated to the quiver of figure 3. That is,

we have a0 = (a1, a2) and the initial coefficients and X -variables are given by

y1 =
a3a6
a7

, x1 =
a3a6
a2a7

=
1

a2
y1 , (B.6)

y2 =
a5
a4a6

, x2 =
a1a5
a4a6

= a1y2 . (B.7)

Performing all possible mutations, we obtain in total five seeds. Evaluating the addition

⊕ we can easily see that these are indeed the same results as by the usual mutation rule.

For example, mutating the initial seed along a1, we obtain a new variable given by

a′1 =
y1 + a2

a1 (y1 ⊕ 1)
. (B.8)

To evaluate y1 ⊕ 1 we specialize the addition of eq. (B.3) to the case of eq. (B.6) to obtain

y1 ⊕ 1 = a−17 and get

a′1 =
a3a6 + a2a7

a1
, (B.9)

which is exactly what one would get by using the original mutation rule (3.2).

While this modified mutation rule is equivalent to the original formulation, it makes

the separation of variables and coefficients directly apparent. To see this, first note that

the monomial factor relating xj;t and yj;t can also be written as

d∏
i=1

a
btij
i;t =

(
d∏
i=1

a
[btij]+
i;t

)(
d∏
i=1

a
[−btij]+
i;t

)−1
. (B.10)

Using this we can replace yj;t in the modified mutation rule (B.4) by xj;t and thus obtain

aj;t′ =
xj;t + 1

(yj;t ⊕ 1)
·
∏d
i=1 a

[−btij]+
i;t

aj;t
. (B.11)
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This property carries on even through multiple mutations such that any A-variable can

be written in such a separated form in terms of the A-variables, coefficients and X -variables

of the initial seed. To be precise, given a cluster A-variable a, there is a polynomial F and

integers g1, . . . , gd, such that we get

a =
F (x1, . . . , xd)

FT (y1, . . . , yd)
ag11 . . . agdd , (B.12)

where FT denotes the same polynomial as F with addition replaced by ⊕ and the variables

and coefficients refer to the initial seed. In fact, the so-called g-vector g = (g1, . . . , gd) is

unique and therefore well-defined.

Example B.2. Turning again to our example of Gr(2, 5), we can replace the coefficients

in a′1 by the X -variables and thus obtain the factored form

a′1 =
x1 + 1

(y1 ⊕ 1)
a−11 a2 . (B.13)

From this, we can immediately read off that F (x1, x2) = 1 + x1 and that the g-vector of

this variable is given by g = (−1, 1).

Using the unique representation of the variables in eq. (B.12) we can define the g-

vector fan of the cluster algebra. To each cluster we associate the g-vectors of its unfrozen

variables and in this way obtain a cone. The g-vector fan is then defined as the fan

consisting of these cones [106]. These fans are always simplicial and it is known that for

infinite cluster algebras, they are not complete, meaning that the union of the cones of the

fan does not cover the entire ambient space Rd.

B.2 Relation of g-vector and cluster fan

The thus defined g-vectors are closely related to but not exactly the same as the rays of

the cluster fan, here denoted by g′. However starting from the unique representation of the

A-variables given in eq. (B.12) we can obtain another unique representation from which

we obtain the rays of the cluster fan. Note that in this section, all A- and X -variables as

well as the coefficients refer to those of the initial seed of the cluster algebra of Gr(k, n).

For this purpose we denote the tropical addition defined in eq. (B.3) by T−a , to exhibit

that it is defined on the frozen variables with a minimum on the right hand side. Next, we

extend it to the coefficients, X -variables and their ratios xi/yi for 1 ≤ i ≤ d by the same

formula except with a maximum instead of a minimum. We hence obtain for example the

tropical addition T+
x/y as

d∏
j=1

(
xj
yj

)bj
⊕

d∏
j=1

(
xj
yj

)cj
=

d∏
j=1

(
xj
yj

)max(bj ,cj)

. (B.14)

To see how these modified additions are related to the original one, we consider an

arbitrary polynomial F , as appearing in the unique representation of the A-variables. We
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define the matrix Fij as the exponents appearing in the polynomial as

F (y1, . . . , yd) =
∑
m

cm

d∏
i=1

yFimi . (B.15)

Using these definitions as well as the definition for the coefficients yj in terms of the frozen

variables, we find that FT+
y

and FT−a are related by

FT+
y

(y1, . . . , yd) =

(
d+n∏
i=d+1

a
∑d
j=1(bij maxm Fjm−minm(bijFjm))

i

)
FT−a (y1, . . . , yd) . (B.16)

This especially implies that the two expressions are related by a monomial in the frozen

variables, which we denote by CF . Furthermore, we can similarly see that the polynomials

FT+
x

and FT+
y

are related by

FT+
x

(x1, . . . , xd) = FT+
x/y

(
x1
y1
, . . . ,

xd
yd

)
· FT+

y
(y1, . . . , yd) . (B.17)

The ratios xi/yi are given by monomials in the initial unfrozen variables, as can be seen

from eq. (B.2). In this way, we can directly evaluate the function FT+
x/y

to be

FT+
x/y

(
x1
y1
, . . . ,

xd
yd

)
=
∑
m

⊕ d∏
j=1

(
xj
yj

)Fjm
=

d∏
j=1

(
xj
yj

)maxm(Fjm)

=

d∏
j=1

(
d∏
i=1

a
btij
i;t

)maxm(Fjm)

=

d∏
i=1

a
∑d
j=1 bij maxm(Fjm)

i;t . (B.18)

Starting from the unique representation of the A-variables given in eq. (B.12) and using

the different tropical additions discussed in eqs. (B.16), (B.17) and (B.18),19 we therefore

obtain the following unique representation

a = C−1F
F (x1, . . . , xd)

FT+
x

(x1, . . . , xd)
a
g′1
1 . . . a

g′d
d , (B.19)

where the integer vector g′ is related to the usual g-vector by

g′i = gi +

d∑
j=1

bij max
m

Fjm . (B.20)

The remarkable property of this result, obtained by somewhat formal computations,

is that, as can be and was checked for the finite and infinite cluster algebras discussed in

this paper, the thus obtained vector g′ associated to each A-variable precisely coincides

with the rays of the cluster fan as defined via the mutation rule (3.5) in section 3.2.

19Note that the actual tropical addition (B.3) is defined on a certain semifield. In our modified definitions,

this is not discussed at all. However, we can simply see these as formal manipulations that considered just

by themselves do hold.
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Example B.3. Let us see how this plays out in our example from before. Due to simplic-

ity, we will not directly use the formulas discussed before but demonstrate their general

derivation on this example by performing the manipulations step by step.

We begin with the separated form of a′1 given in eq. (B.13) and evaluate the

tropical addition (y1 ⊕ 1). Using that y1 = a3a6a
−1
7 we see that this evaluates to

FT−a (y1, y2) = a−17 . In contrast, evaluating this for the modified addition we obtain

FT+
y

(y1, y2) = y1 = a3a6FT−a (y1, y2). Furthermore, we immediately see that FT+
x

(x1, x2) =

x1 = a−12 FT+
y

(y1, y2) which ultimately leads to

a′1 = (a3a6)
−1 F (x1, x2)

FT+
x

(y1, y2)
a−11 . (B.21)

We thus obtain the g′-vector for this variable as g′a′1
= (−1, 0). It can easily be seen

that this is exactly what we obtain by using the mutation rule for the rays given in eq. (3.5).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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