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ABSTRACT: Four-dimensional (4D) flat Minkowski space admits a foliation by hyperbolic
slices. Fuclidean AdSj slices fill the past and future lightcones of the origin, while dSs
slices fill the region outside the lightcone. The resulting link between 4D asymptotically
flat quantum gravity and AdSs/CFTs is explored in this paper. The 4D superrotations in
the extended BMS, group are found to act as the familiar conformal transformations on the
3D hyperbolic slices, mapping each slice to itself. The associated 4D superrotation charge
is constructed in the covariant phase space formalism. The soft part gives the 2D stress
tensor, which acts on the celestial sphere at the boundary of the hyperbolic slices, and is
shown to be an uplift to 4D of the familiar 3D holographic AdSs stress tensor. Finally, we
find that 4D quantum gravity contains an unexpected second, conformally soft, dimension
(2,0) mode that is symplectically paired with the celestial stress tensor.
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1 Introduction
The metric for flat 4D Minkowski space (My) in hyperbolic coordinates is

ds* = —dr? + 72 <dp2 + p2d2d2> (1.1)
2
where 7 is the Lorentz-invariant distance from the origin and labels the three-dimensional
hyperbolic slices in the parenthesis. In order to cover all of My we take 7 positive in the
future lightcone of the origin, negative in the past lightcone and both 7 and p imaginary
outside the origin; see figure 1. Equation (1.1) represents My as a kind of non-compact
compactification to AdSs. Hyperbolic slicings have been studied for example in [1-4].}

In this paper, we take inspiration from the prescient paper of de Boer and Solo-
dukhin [1]. These authors conjectured that the infinite-dimensional 2D conformal sym-
metry of AdSs quantum gravity should uplift to My quantum gravity, with separate sym-
metries for the past and the future. Somewhat later, the existence of such conformal sym-
metries, coined superrotations, was conjectured in [7-10] by relaxing an overly-restrictive

'See e.g. [5, 6] for an alternate approach to My holography as the flat space limit of AdSs quantum
gravity rather than an uplift of AdSs quantum gravity.



Figure 1. Penrose diagram of hyperbolic slicing of Minkowski space. The slices correspond to
surfaces of constant 7. The slices in the past and future lightcones of the origin have the geometry
of Hj, and the slices with spacelike separation from the origin have the geometry of dSs.

assumption about the asymptotic behavior of the gravitational field in the original papers
of BMS [11-13]. More recently [14, 15], using the subleading soft theorem of [16], the
existence of a single conformal symmetry of quantum gravitational scattering in M, was
proved.? The past-future pair of conformal symmetries of [1, 7-10] was reduced to a single
conformal symmetry by a matching condition required for the consistency of the scattering
amplitudes. The reduced symmetry acts in the standard fashion on the celestial sphere
at null infinity. This suggests a holographic relation between quantum gravity on My

” on the celestial sphere at

and an as-yet-to-be-understood “celestial conformal field theory’
the boundary.

Despite the natural role played by the hyperbolic slicing (1.1), much of the work on su-
perrotations has used retarded Bondi coordinates (see [3, 4, 17] for important exceptions).
The main reason for this is simply that research on asymptotic structure near null infinity
over the last half century primarily uses Bondi coordinates and many formulae are read-
ily available; some references are [7-10, 18-20]. However, even the global SL(2, C)rorents
subgroup is obscure in these coordinates which are not well-suited for the study of su-
perrotations. A central purpose of this paper is to recast some of the recent results into
hyperbolic coordinates and elucidate the connection between M, and AdS3 holography.
One hopes that our detailed understanding of AdS holography can be uplifted and applied

to flat space holography.

2We consider only the tree-level subleading soft theorem in this paper.



In section 2 we present formulae and conventions for the hyperbolic foliation of My.
In section 3 we show that superrotations have a simple description in terms of vector
fields that are tangent to the slices. In section 4 we evaluate the boundary and bulk
superrotation charges in the covariant phase space formalism. For the bulk expressions,
both the soft parts (which are linear in the metric field) and the hard parts (which involve
radiation flux) are evaluated as integrals over hyperbolic slices which hug null infinity
where the weak field expansion becomes exact. The soft charges are constructed from
uplifts of the holographic stress tensor of AdS3 quantum gravity [21], providing a precise
relation between My and AdS3 holography. In section 5 we explicitly evaluate the hard
charge for matter sourced by point particles, and find that it reduces to an integral of
the subleading soft factor [16]. Section 6 demonstrates that the total charge conservation,
which involves contributions from two Hj slices and one dSg slice, is equivalent to the
subleading soft theorem. In section 7 we relate the soft covariant charges to the celestial
stress tensor. Section 8 identifies a weight (2,0) mode which is not pure gauge and has
a canonical symplectic pairing with the superrotation Goldstone mode. This new (2,0)
mode is potentially related to new conformally soft theorems and symmetries, but further
investigations are left to future work. The appendix gives details of the linearized Einstein
equation in the hyperbolic slicing.

2 Preliminaries

In hyperbolic coordinates (7, p, z, Z) the Minkowski metric takes the form

dp?
ds? = —dr? + 72 <2 + dezdz> . (2.1)
0
These are related to the usual Cartesian coordinates
ds? = —(dX%)? + (dX1)? 4 (dX?)* + (dX3)? (2.2)
by
T=/(X0)2 - (X1)2 - (X2)% — (X?)?
X ax?
z= X0 L X3
X%+ Xx?
p= , (2.3)
V(X0)2 — (X1)2 — (X2)2 — (X3)2
with inverse
1
X0 = 57,0(1 + 224 p72)
1
Xl = 57',0(2 + Z)
X% = —%Tp(z —Z)
1
X3 = 57'/)(1 — 2z —p ). (2.4)



The hyperbolic coordinates represent Minkowski spacetime as a foliation (labelled by 7) of
3D constant curvature hyperbolic spaces. We label the spacelike slices in the future (past)
lightcone of the origin by 7 > 0 (7 < 0). We are especially interested in the 7 — oo slices
which approach Z*. We denote them by H:f The de Sitter slices at spacelike separations
from the origin are labelled by positive imaginary 7. The asymptotic 7 — ioco slice is
denoted dS§. This is illustrated in figure 1. The p = co boundary of H; (located at u =0
on Z" in Bondi coordinates) will be referred to as the “future celestial sphere” and denoted
CS™. The analogously defined past celestial sphere will be denoted CS™.

The nonzero connection coefficients are

2
T peT 1
Foo =25 =~ Ior =15 T ==3
3
P 1 1 o 1
ng:—gv F;:;’ sz:;7 F%:;v ng:;- (2.5)

3 Superrotation vector fields

3D Euclidean quantum gravity on an asymptotically hyperbolic space H3 has a conformal
symmetry which acts as [21, 22]

&y =Y?0, — %azyzpap — 2;20§Y282, (3.1)
where Y? is a conformal Killing vector. This is the conformal symmetry of the holograph-
ically dual CF T2 which lives on the S? boundary [23, 24]. This 3D vector field lifts to 4D,
where it maps the hyperbolic slices to themselves and generates the superrotations of 4D
quantum gravity in asymptotically flat space [1, 8, 14, 16]. In hyperbolic coordinates only
one component of the 4D metric (2.1) is transformed:

Ly — — Py

This term is independent of p and therefore sub-subleading in the large p expansion of the
metric. In the 3D case, this component of the metric is proportional to the holographic 2D
stress tensor in the Fefferman-Graham construction [21, 25, 26].

A special role will be played in the following by the choice of vector field

(3.3)

We define
1 1 1

Cw = Cy:ﬁ T w—z 2(w — z)2pap P2 (w— 2)382

(3.4)

Any more general superrotation vector field (y can then easily be obtained from (, via

the relation .
v (2) = —— f{ QWY Vo (2). (3.5)
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4 Covariant phase space charge

In this section we compute the covariant phase space charge Q7 ((y) as developed in a
number of references including [27-34]. Under suitable conditions, the charge Q1 ((y)
generates (via Dirac brackets or commutators) the superrotations on spacelike surfaces
ending at the future celestial sphere CS™. The action of the superrotation charge does not
preserve the standard Bondi news falloffs, which means that it does not map the standard
phase space (considered in e.g. [35]) to itself. A complete treatment of superrotations will
eventually involve an enlarged phase space and associated bracket, which is an interesting
and important problem beyond the scope of this paper. Here, we will only use the finite
and conserved superrotation charges of states in the standard phase space. For simplicity,
we will also restrict to situations in which the Bondi news vanishes on CS*.3

4.1 Boundary charge
The boundary charge is given by the formula in e.g. [30, 31]

1 1
ot = — F— lim 2, 3.
167 Jog+ i p1—>1 oo 327 /d “p Ty (41)

where
1
F;w = §vll€uh + vuhuAQ\ + v)xguhu)\ + V}ﬁ,/\Cy + vVhCM o (/“L A V)’ (4'2)

with u,v =0,1,2,3. Here h,, denotes the linearized, on-shell metric perturbations

Guv = Nuv + huy (43)

where 1), is given in (2.1). Before proceeding further, in order to avoid long expressions,
we make the radial gauge choice
hsy =0, (4.4)

which can also be written X#h,, = 0. Inserting the expression (3.1) for the superrotation
vector field and using radial gauge (4.4) we find

PrE,, = (10; — 2) [,ﬁy%,,z . g&szhpg + QaZYZhZE} . (4.5)
Under the integral we may integrate by parts with respect to z, yielding the expression

PrF,, = Y*(rd; - 2) [,o?’hpz - gafhpg - 2azhzg] . (4.6)
As in [3], the boundary conditions are chosen to ensure that the charge is 7-independent
and finite for p — oo, so that it does not depend on a choice of slice. Finiteness of the charge
requires that the leading p behavior is h,, ~ p~3, h.z ~ pY which is compatible with the

3 A time translation can always be used to position the two-sphere CS™T at early times before any news
has emerged on Z'. On the other hand, primaries in a conformal basis [36] typically have divergences in
the radiation flux at CS* [37]. Our analysis would require modifications to handle such cases, including
additions to the charge as discussed in [32].



linearized analysis in the appendix. Moreover we assume that the Bondi news vanishes at
CS™. Otherwise, as mentioned above, there are correction terms to the charge [32]. The
finite and 7-independent final boundary expression for the superrotation charge is

1
+ _ : 2 _vz| 37(0) (0)
Q" (Cy) = T6m ,,hj& - d*zY [p By 28zhzz], (4.7)

where the superscript (0) indicates the 7-independent piece of the given metric component.

4.2 Linearized bulk charge

Having found an expression for the charge Q' as a surface integral over CS*, we now
write a bulk expression for the linearized charge as an integral over H; . This involves
integrating by parts and using the linearized vacuum Einstein equations. We denote the
linearized charge as Q;(C) because, as we shall see, it is the same as the soft part of the
full nonlinear charge. The nonlinearities are incorporated in the next subsection, where we
also discuss the validity of the linearized approximation.

Starting with the boundary definition of the linearized charge Q;(C ), the desired bulk
expression follows from an application of Stokes’s theorem and the linearized constraint
equations. By construction the bulk charge is the symplectic product of the metric variation
L¢ g, produced by ¢ with the linearized metric perturbation h,,,

Q;(C) = (Efg’h)Hg = / dE“P”M"ECg,,,\thW, (4.8)
H3
where ( , ) Ms is the symplectic product on a three-manifold M3, HJ is any hyperbolic slice

of given 7 and the required components of P (given in full in [32]) are given below. Since
the symplectic product is conserved on-shell (assuming appropriate smoothness conditions
at CS™) this expression does not depend on the choice of hyperbolic slice 7. We will take
7 — 00. In the quantum theory, h,, then becomes a free field operator, and commutators
with Qg formally generate linearized superrotations of the metric on H. 3+ .

In the case at hand, the only nonzero component of the metric variation is (3.2)

and we need only the component P?*?* = The linearized charge reduces to the

_ 1
8rript”
simple expression

1 d?zdp 1 d?zd

I _ 1 o___1 P o3v,27 (0)

QS (CY) =87 /H"' 7_2’03 Ly gzzhzz 167 S+ ,03 azY hzz, (49)
3 3

where hf;;) is the T-independent part of hzs.

We note that Ly g.., as given in (3.2), involves only the order p” metric perturbation,
which has been identified [21] as the holographic stress tensor in the context of AdSs
quantum gravity. This gives a precise connection of the superrotation generators for My
quantum gravity as an uplift of the generator of conformal transformations for AdSs. More
specifically, the soft part of the charge which generates 4D superrotations in the causal
domain of ng is the symplectic product on the 3D hyperbolic slice of the linearized 4D

metric perturbation with the Y?*-variation of the 3D holographic stress tensor.

4In section 5, to facilitate the connection to the soft theorem, a physically equivalent vector field ¢/, =
Cw (1 + 0O (p%)) which differs at further subleading orders is introduced.



4.3 Exact bulk charge

In the previous subsection, the surface charge Q7 ((y) on CS™ was reexpressed as a bulk
integral over H. ;‘ in the linearized approximation. For a generic slice in a generic asymptot-
ically flat spacetime ending on CS™, nonlinear corrections are important, and there is no
useful bulk expression for the charge. However, it is natural to take 7 — oo, in which case
(assuming no stable black holes) the slice hugs Z+, the fields become weak, and corrections
to the linearized approximation are easily incorporated.

In order to obtain the bulk expression on ng from the boundary expression on CS™
one integrates by parts and uses the constraint equations G, = 871},. In the linearized
approximation,® the nonlinear terms on the left hand side and the entire right hand side
are set to zero. In the full theory, the constraints reduce (for 7 — o0) to

16Ty = —2Gr, =0hry— V. Vah,* = VOV yhoo + VoV uh 417,V o V ghP =1, Oh,
(4.10)
where the stress tensor is understood to contain both matter contributions and the
quadratic gravity wave stress tensor. Corrections which are cubic or higher in h,, vanish
for 7 — co. The full expression for the charge is then

QT (¢) = Qi () + 25(0), (4.11)

where Q% () is given in (4.8) and the hard charge is

/ dSHCT,
Hy

1
= _/ d*zdp p 7Ty, CH. (4.12)
2 H;’

Q5 (¢)

For {y asin (3.1), (4.12) becomes
Qr(¢v) = 1/ Pzdppr® | T,y — P10y — LTy

1 2 3 p 1 2
=3 /H3+ dzdppt°Y~ [Tm + §<92T7p - 27p262TT2 . (4.13)

Since the matter stress tensor generates diffeomorphisms on the matter fields, this mani-
festly generates the hard action of the superrotations.

5 Massive point particles

In this section we compute the hard charge for a collection of N massive point particles
with inertial trajectories, which are given in Cartesian coordinates by

pﬂ
ah(\) = mf’;wr v, (5.1)

5 . . . . . . . . .
°The linearized vacuum equations in hyperbolic coordinates are given in appendix A.



where £k =1,..., N and pi = —mi. We follow the analogous treatment of massless point
particles presented in [38]. The massive point particle trajectories asymptote at late times
to a fixed point (pk,zk, 2x) on Hi with A\ = 7. In the coordinates (2.3) this point is
determined by

1+ 2% + o) 2

1 " z
lim —zf (1) = L “ * * : (5.2)
T—00 T mg 2 —i(zk — Zk)

1 — 2z — PEQ
The stress tensor of the kth particle is

TH(X) = / d)\lffé(“) (X — 2k (M), (5.3)

Substituting into the first line of (4.12) we find the simple expression
071(C) = — Jim Sk Olapoy (5.4)
k
To easily connect to the soft theorem, we use the vector field [37, 39]
Csw = iﬁi[X”(qyaqu — 4.00q,) log(—q - X)], (5.5)
where ¢ is the null vector that points towards w on CS™,

¢ = (1+ww,w+ o, —i(w—w),1 — ww). (5.6)

¢ = ¢ (1 +0 (;)) (5.7)

near CS* and hence gives the same total charge as (,. Since QF((%) = QF((y), the two
vector fields have the same Ward identity and conservation law.% The vector field ¢/, arises

This vector field satisfies

naturally in the study of conformal primary wavefunctions [36, 37] as well as in the study
of massive matter [3]. The utility of (/, over (, in the present context is its simple relation
to the momentum space version of the subleading soft factor [3, 16]. We further define
polarization tensors

_ 1 _ . _ 1 .

8&1;} = 55115%7 8%’;’) = 5%51/12)7 85,(11}, U)) = E(w7 1’ —1, —’UJ), 5%(1”) w) = E(wv 17 2 _w)
(5.8)

One then finds that (5.4) becomes, after significant algebra,

1 1 pew sz %qa
+ ! — _ d2 83 k- HViZZ k 59
QH(Cw) 2;/ zw_zz|: e q :|7 ( )
where the tensors

I = ahpl — xipl (5.10)

are the boost and angular momentum charges of the kth particle. The quantity in square
brackets in (5.9) is immediately recognizable as the soft factor in the subleading soft gravi-
ton theorem.

STheir soft and hard parts, however, are not separately equal. We find it curious that, even though their
difference is trivial, some computations are easier with ¢/, while others are easier with (.



6 Subleading soft theorem

In this section we argue that the Ward identity of our charge implies the subleading soft
graviton theorem [3, 16]. In [14] the classical conservation law associated to superrotations
is expressed as a sum of integrals over Z in Bondi coordinates,

Qs(Y)+Qu(Y) =0, (6.1)
with
1 2 z,, 93 \TZ 1 2 2, 93 ATZ
Qs(Y)=— d°zduY*ud;N% — — d“zdvY*vO; N%
167 Jz+ 167 J7-
1 1
QuY)= [ d*zdur®y; <Tuz — u@ZTuu> — | dPzdvr?Y; <Tvz — v@sz> . (6.2)
T+ 2 I 2

where we take Y? = 0, V., is the Bondi news, and we raise and lower sphere indices using
the round metric on the unit sphere S?. It was shown in [14] that the quantum version
of this conservation law is equivalent to the subleading soft graviton theorem [16]. This
conservation law can be expressed as the equality of two total charges, one incoming and
one outgoing.

In the present paper, in contrast, we have three hard and three soft charges associated
to the three slices ng , dS9, and Hj , depicted in figure 1. We accordingly decompose

Qs(¢l,) = Q&(¢,) + Q%(¢,) + 25(¢)

6.3
0u(C) = OH(C) + 0% () + O (). (63)

Here we show Qg(¢,) = Qs(-1>) and Qx(¢,) = Qu(-1>), and therefore that the sub-

w—z w—z
leading soft graviton theorem is equivalent to the conservation law on hyperbolic slices

Qs+ Qp = 0. (6.4)

First, we show that

QH(CL,)ZQH< ! > (6.5)

w—z
We can consider the hard charge for massive or massless matter. Massive particles cannot

reach the asymptotic dSJ and therefore contribute only to the Qljfl charges. As computed
in the previous section, the left hand side is

H s
L o e R
2 w—z k Dk q 7 Pj-q

where p;, are outgoing and p; are incoming momenta. One finds that the same expression
holds when we act with the hard charge on massless particles, with the momenta p; taken
to be null. This agrees with Qg in (6.2) (see [14]) and shows that the hard charges are
the same.



Next, we wish to verify agreement between the soft terms evaluated in Bondi and
hyperbolic coordinates, i.e.

Qs = QE(¢) + Q%) + Q5 (¢ (6.7)

In order to do so, we rewrite the first line in the Bondi expression (6.2) as

QS:/I+ *J+/_ o, (6.8)

J =P 7L gV uhaodat. (6.9)

with

Note the use here of V, rather than ?u’ which appears in the gravitational symplectic
pairing (4.8). Since [ duu Nzz is the subleading soft graviton insertion, and the Bondi
news, up to superrotations, falls off faster than % (or %) at the boundaries of Z [14, 40],
we do not expect new soft contributions from “capping” Z* at past and future timelike
infinity 4*. The soft charge (6.8) then becomes

Qs = / %.J. (6.10)
HiudsuHy

Now that we are integrating over a surface without boundary, we are free to switch from
V, to %VM because they differ by an exact form. The resulting integrand is the same one
defining our soft charges, so we have

Qs = Q5(Cly) + Q5(Cl) + Q5 (). (6.11)

Since it has already been shown that the quantum version of (6.1) is the subleading soft
graviton theorem, we have demonstrated the desired equivalence of the quantum matrix
elements of Qg({,) + Qu((],) = 0 to the subleading soft graviton theorem.

7 Celestial stress tensor

So far we have not explicitly shown that the action of the charge Qg((],), as suggested
by the form of (3.2), corresponds to conformal transformations on the celestial sphere.
A fast way to do this is to expand the Bondi news in asymptotic graviton creation and
annihilation operators and then use the results of [15]. One finds

19s(Co) = Toy" %, (7.1)
where T,EMES i the subleading soft graviton mode [15]

TKMRS:LHIH(I—}—QJ@ )/dZZ(a (w )—aT (w )) (7.2)
ww _meﬁo w (w—z)4 - q + q)), .

and a_ and al are asymptotic graviton annihilation and creation operators. As shown
in [15], by reverse-engineering the subleading soft theorem of [16], normal-ordered insertions

~10 -



of TEMES i the 4D S-matrix obey the Ward identities of a 2D stress tensor, and therefore
generate conformal transformations of the celestial sphere. In particular, if we pick a
contour C and integrate

1 dwY TEMES (7.3)
2mi Jo

for an arbitrary Y (w), the corresponding S-matrix insertions generate conformal trans-
formations on the celestial sphere associated to the holomorphic extension of Y% into the
interior of C'. Thus iQg((/,) is the celestial stress tensor.

8 Dual stress tensor

In U(1) gauge theory, large electric gauge transformations d. on the celestial sphere are gen-
erated by a current .J,, with left /right conformal dimensions (1, 0) [37, 41, 42]. This current
can be constructed from the symplectic product of the Goldstone mode wavefunction d. A,
with the linearized gauge field operator at null infinity. The Goldstone wavefunction has a
symplectic partner which is not pure gauge and leads to a second, symplectically conjugate
(1,0) current S,, [42]. S, is related to large magnetic gauge transformations [43].

We note briefly here that a similar structure exists for the stress tensor TKMP2S,
which, like J,,, is constructed from the symplectic product with a (2,0) Goldstone mode
wavefunction 6y g,,. In the normalization conventions of [37], to which we refer the reader

for details, the (2,0) Goldstone mode is”

1

hl?z?;lgitjone 76 [V#CII/;w + VVC;IL;w] . (8.1)

This wavefunction has a (2,0) symplectic partner that is not pure gauge. The symplectic
partner is the A = 2 conformal primary wavefunction [37], where for general A

i (0, = 21C0 X000+ 0 Xl o Gug D) - g

These solutions are labelled by 4+ for ingoing versus outgoing, the complex parameter w
for the point where the radiation flux crosses the celestial sphere, and A for the SL(2,C)

conformal weight. In hyperbolic coordinates (7, p, 2, 2),%
0 O 0 0
o o s o
hA + 24 0 4(;2+Z4) 2(;2;? i(Asz) (8 3)
v = — - D—2)3 —2)4  —(w—32)2 . .
e = Hw =P+ p T F i) | 0 MRt o S
0 —2(w—2) —(w—%2)? 1
pA+3 pA pAJrQ
For A = 2 one finds the simple result [37, 39]
1
hfw;ww = ﬁhﬁ?}gionev (84)

"In [37] this mode is denoted E—A\:/O,w;ww, where the tilde indicates the fact that it is the shadow of a
mode with conformal weight 0 in the basis (8.2).

8We note that these modes generically have radiation flux though CS™ [37] and so do not obey the
boundary conditions for the charge defined on that surface.

- 11 -



which is not a pure diffeomorphism. The symplectic product (4.8) of these two modes on
Hg“ is?
( hGoldstone h2+z€ m

s Py )H; :W5(5)- (8.5)

This resembles an off-diagonal central charge. The symplectic product over a complete
spacelike Cauchy slice X3 is

;9

(hGoldstone’ hg:—w)ZS — _eﬁ(wmi U)45(5)‘ (8.6)
Naively, the right hand side vanishes due to the factor of the imaginary part of the conformal
weight €. However, we leave it in this form as in some contexts there may be compensating
conformally soft poles in €. A second conformal weight (2,0) operator on the celestial sphere
(in addition to T,KM%9) can be constructed explicitly from the mode (8.4). Potential
implications of two weight (2,0) operators for the structure of the soft gravitational S-

matrix are left to future work.
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A Linearized Einstein equations
In radial gauge, h;, = 0, the Einstein equations take the form
2

2 2
Grr="— <78T+p8p+3—p28285> h,,p+p (p0,+2)(0zh,+0.h,z)

2 2 2 2 2492 2
+p47_4 (azhzz_kazhfi)_‘_ﬁ <27'a7-—p 8p—ﬁazag—2 h’zf

P 1 2
Grp = (T@T_Q) |:T3hpp+p27_3(azhpz+8zhpz)+p37_3(l —pﬁp)hzz]

1 2 2 )
Gop == 3hop= 55 (DshystO:hps) =5 (92 s+ 02hz2)
_&ﬂ<7@~@fﬂyw—2@@)mz

GTZ = (7'87-—2) |: p 6 hpp+ (,08 +3)hpz+p2 3(8 hzz azhzi):|
G —ﬁﬁh-+ifﬁyﬂ@——0&lz+ 0%h,,
Pz = 927920 5 3 T TopREE) R

27277
pAT

1
T W(pap_2)(afhzz —azhzg)

9Useful formulae for evaluating these integrals can be found in [39, 44, 45].
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2
1
Gz = =502yt L5 (p0y+1) Do+ 55 (F202 =70, — 002+ O, e

272°% 272
p4 292 2 1 292 292
Gaz = 12 (T 3T+7'07-,03p4+p2(3z(3z> hpp+277_2(*7— 074707 +p"0,—p0y)h.z
p
= 5,2 (POp+1)(Dzhpz+0:hpz). (A1)

Note that the Einstein equations completely decouple under different 7 scalings, so it is
natural to decompose the metric in a 7 expansion as h,, =, T‘"h,(ff,) (p,2,2).
Working in “on-shell gauge” of the free Einstein equations we arrived at an equation

for hgg) by itself. The gauge assumes that

XPhy, =0 (A.2)
VHhy =0 (A.3)
9" by = 0, (A4)

where X* are Cartesian coordinates. Note that in hyperbolic coordinates (A.2) is equivalent

to hry, = 0. The G, equations all follow from these gauge conditions, and G,, and G
are equivalent in this gauge. The G, equation can be used to eliminate thQ in favor of
hS? (up to integration constants). Plugging into G, gives

0= ,04(98/) +4)(p0)p + 2)(p0) — 2)Paph£ + 802(98/) +2)(pdp — 2)8z82h£) + 16(6z52)2h,(zoz :

(A.5)

Given a solution of (A.5), the other metric components in the gauge (A.2) are constrained.
Linearized metric perturbations along a vector field £#0,, are given by

5977’ = gTa’r&'
T
1
8grp = 0p&r + - (10r —2)¢&,
1 27
s =2(0+5) 6~ e
1
597'2 = ; (7—67' - 2) gz + ang

2
59;)2 = (ap - P) fz + aZép
6gzz = 28252
0922 = 0265 + 0:6. + p°Ey — 767 (A.6)

Setting dg,, = 0, we must have 9, = 0. We can satisfy the conditions with £, = 0 and
§p, €2, &5 X 72, but this is not completely general. We can also let &, (p, 2, Z) be a generic
function and choose the O(7) pieces of the other components accordingly. The general
solution, using 7 weight notation 5,2"), is

§T = 57(-0) (/07 2, 5)

Eﬂ = 72€,272) (p7 2, 2) + Tapgﬂ('(])

& =12 (p, 2,2) + 10,6

& =125, 2, 2) + 70:69). (A7)

~13 -



Here we treat the 7 dependence as not included in §,Sn). We see the free data for these

residual diffeomorphisms are four free functions of three variables, and that these free

functions only affect the hg;,l) and h;(;,m pieces of the metric in hyperbolic coordinates.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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