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1 Introduction

The metric for flat 4D Minkowski space (M4) in hyperbolic coordinates is

ds2 = −dτ2 + τ2

(
dρ2

ρ2
+ ρ2dzdz̄

)
(1.1)

where τ is the Lorentz-invariant distance from the origin and labels the three-dimensional

hyperbolic slices in the parenthesis. In order to cover all of M4 we take τ positive in the

future lightcone of the origin, negative in the past lightcone and both τ and ρ imaginary

outside the origin; see figure 1. Equation (1.1) represents M4 as a kind of non-compact

compactification to AdS3. Hyperbolic slicings have been studied for example in [1–4].1

In this paper, we take inspiration from the prescient paper of de Boer and Solo-

dukhin [1]. These authors conjectured that the infinite-dimensional 2D conformal sym-

metry of AdS3 quantum gravity should uplift to M4 quantum gravity, with separate sym-

metries for the past and the future. Somewhat later, the existence of such conformal sym-

metries, coined superrotations, was conjectured in [7–10] by relaxing an overly-restrictive

1See e.g. [5, 6] for an alternate approach to M4 holography as the flat space limit of AdS4 quantum

gravity rather than an uplift of AdS3 quantum gravity.
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Figure 1. Penrose diagram of hyperbolic slicing of Minkowski space. The slices correspond to

surfaces of constant τ . The slices in the past and future lightcones of the origin have the geometry

of H3, and the slices with spacelike separation from the origin have the geometry of dS3.

assumption about the asymptotic behavior of the gravitational field in the original papers

of BMS [11–13]. More recently [14, 15], using the subleading soft theorem of [16], the

existence of a single conformal symmetry of quantum gravitational scattering in M4 was

proved.2 The past-future pair of conformal symmetries of [1, 7–10] was reduced to a single

conformal symmetry by a matching condition required for the consistency of the scattering

amplitudes. The reduced symmetry acts in the standard fashion on the celestial sphere

at null infinity. This suggests a holographic relation between quantum gravity on M4

and an as-yet-to-be-understood “celestial conformal field theory” on the celestial sphere at

the boundary.

Despite the natural role played by the hyperbolic slicing (1.1), much of the work on su-

perrotations has used retarded Bondi coordinates (see [3, 4, 17] for important exceptions).

The main reason for this is simply that research on asymptotic structure near null infinity

over the last half century primarily uses Bondi coordinates and many formulae are read-

ily available; some references are [7–10, 18–20]. However, even the global SL(2,C)Lorentz
subgroup is obscure in these coordinates which are not well-suited for the study of su-

perrotations. A central purpose of this paper is to recast some of the recent results into

hyperbolic coordinates and elucidate the connection between M4 and AdS3 holography.

One hopes that our detailed understanding of AdS holography can be uplifted and applied

to flat space holography.

2We consider only the tree-level subleading soft theorem in this paper.
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In section 2 we present formulae and conventions for the hyperbolic foliation of M4.

In section 3 we show that superrotations have a simple description in terms of vector

fields that are tangent to the slices. In section 4 we evaluate the boundary and bulk

superrotation charges in the covariant phase space formalism. For the bulk expressions,

both the soft parts (which are linear in the metric field) and the hard parts (which involve

radiation flux) are evaluated as integrals over hyperbolic slices which hug null infinity

where the weak field expansion becomes exact. The soft charges are constructed from

uplifts of the holographic stress tensor of AdS3 quantum gravity [21], providing a precise

relation between M4 and AdS3 holography. In section 5 we explicitly evaluate the hard

charge for matter sourced by point particles, and find that it reduces to an integral of

the subleading soft factor [16]. Section 6 demonstrates that the total charge conservation,

which involves contributions from two H3 slices and one dS3 slice, is equivalent to the

subleading soft theorem. In section 7 we relate the soft covariant charges to the celestial

stress tensor. Section 8 identifies a weight (2, 0) mode which is not pure gauge and has

a canonical symplectic pairing with the superrotation Goldstone mode. This new (2, 0)

mode is potentially related to new conformally soft theorems and symmetries, but further

investigations are left to future work. The appendix gives details of the linearized Einstein

equation in the hyperbolic slicing.

2 Preliminaries

In hyperbolic coordinates (τ, ρ, z, z̄) the Minkowski metric takes the form

ds2 = −dτ2 + τ2

(
dρ2

ρ2
+ ρ2dzdz̄

)
. (2.1)

These are related to the usual Cartesian coordinates

ds2 = −(dX0)2 + (dX1)2 + (dX2)2 + (dX3)2 (2.2)

by

τ =
√

(X0)2 − (X1)2 − (X2)2 − (X3)2

z =
X1 + iX2

X0 +X3

ρ =
X0 +X3√

(X0)2 − (X1)2 − (X2)2 − (X3)2
, (2.3)

with inverse

X0 =
1

2
τρ(1 + zz̄ + ρ−2)

X1 =
1

2
τρ(z + z̄)

X2 = − i
2
τρ(z − z̄)

X3 =
1

2
τρ(1− zz̄ − ρ−2). (2.4)

– 3 –
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The hyperbolic coordinates represent Minkowski spacetime as a foliation (labelled by τ) of

3D constant curvature hyperbolic spaces. We label the spacelike slices in the future (past)

lightcone of the origin by τ > 0 (τ < 0). We are especially interested in the ±τ →∞ slices

which approach I±. We denote them by H±3 . The de Sitter slices at spacelike separations

from the origin are labelled by positive imaginary τ . The asymptotic τ → i∞ slice is

denoted dS0
3. This is illustrated in figure 1. The ρ =∞ boundary of H+

3 (located at u = 0

on I+ in Bondi coordinates) will be referred to as the “future celestial sphere” and denoted

CS+. The analogously defined past celestial sphere will be denoted CS−.

The nonzero connection coefficients are

Γτρρ =
τ

ρ2
, Γτzz̄ =

ρ2τ

2
, Γρρτ =

1

τ
, Γρρρ = −1

ρ

Γρzz̄ = −ρ
3

2
, Γzzτ =

1

τ
, Γzzρ =

1

ρ
, Γz̄z̄τ =

1

τ
, Γz̄z̄ρ =

1

ρ
. (2.5)

3 Superrotation vector fields

3D Euclidean quantum gravity on an asymptotically hyperbolic space H3 has a conformal

symmetry which acts as [21, 22]

ζY = Y z∂z −
1

2
∂zY

zρ∂ρ −
1

2ρ2
∂2
zY

z∂z̄, (3.1)

where Y z is a conformal Killing vector. This is the conformal symmetry of the holograph-

ically dual CFT2 which lives on the S2 boundary [23, 24]. This 3D vector field lifts to 4D,

where it maps the hyperbolic slices to themselves and generates the superrotations of 4D

quantum gravity in asymptotically flat space [1, 8, 14, 16]. In hyperbolic coordinates only

one component of the 4D metric (2.1) is transformed:

LY gzz = −τ
2

2
∂3
zY

z. (3.2)

This term is independent of ρ and therefore sub-subleading in the large ρ expansion of the

metric. In the 3D case, this component of the metric is proportional to the holographic 2D

stress tensor in the Fefferman-Graham construction [21, 25, 26].

A special role will be played in the following by the choice of vector field

Y z =
1

w − z
. (3.3)

We define

ζw ≡ ζY= 1
w−z

=
1

w − z
∂z −

1

2(w − z)2
ρ∂ρ −

1

ρ2(w − z)3
∂z̄. (3.4)

Any more general superrotation vector field ζY can then easily be obtained from ζw via

the relation

ζY (z) =
1

2πi

∮
dwY wζw(z). (3.5)

– 4 –
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4 Covariant phase space charge

In this section we compute the covariant phase space charge Q+(ζY ) as developed in a

number of references including [27–34]. Under suitable conditions, the charge Q+(ζY )

generates (via Dirac brackets or commutators) the superrotations on spacelike surfaces

ending at the future celestial sphere CS+. The action of the superrotation charge does not

preserve the standard Bondi news falloffs, which means that it does not map the standard

phase space (considered in e.g. [35]) to itself. A complete treatment of superrotations will

eventually involve an enlarged phase space and associated bracket, which is an interesting

and important problem beyond the scope of this paper. Here, we will only use the finite

and conserved superrotation charges of states in the standard phase space. For simplicity,

we will also restrict to situations in which the Bondi news vanishes on CS+.3

4.1 Boundary charge

The boundary charge is given by the formula in e.g. [30, 31]

Q+ = − 1

16π

∫
CS+

∗F = lim
ρ→∞

1

32π

∫
d2zρ3τFτρ, (4.1)

where

Fµν =
1

2
∇µζνh+∇µhνλζλ +∇λζµhνλ +∇λhµλζν +∇νhζµ − (µ↔ ν), (4.2)

with µ, ν = 0, 1, 2, 3. Here hµν denotes the linearized, on-shell metric perturbations

gµν = ηµν + hµν (4.3)

where ηµν is given in (2.1). Before proceeding further, in order to avoid long expressions,

we make the radial gauge choice

hτµ = 0, (4.4)

which can also be written Xµhµν = 0. Inserting the expression (3.1) for the superrotation

vector field and using radial gauge (4.4) we find

ρ3τFτρ = (τ∂τ − 2)
[
ρ3Y zhρz −

ρ

2
∂2
zY

zhρz̄ + 2∂zY
zhzz̄

]
. (4.5)

Under the integral we may integrate by parts with respect to z, yielding the expression

ρ3τFτρ = Y z(τ∂τ − 2)
[
ρ3hρz −

ρ

2
∂2
zhρz̄ − 2∂zhzz̄

]
. (4.6)

As in [3], the boundary conditions are chosen to ensure that the charge is τ -independent

and finite for ρ→∞, so that it does not depend on a choice of slice. Finiteness of the charge

requires that the leading ρ behavior is hρz ∼ ρ−3, hzz̄ ∼ ρ0, which is compatible with the

3A time translation can always be used to position the two-sphere CS+ at early times before any news

has emerged on I+. On the other hand, primaries in a conformal basis [36] typically have divergences in

the radiation flux at CS+ [37]. Our analysis would require modifications to handle such cases, including

additions to the charge as discussed in [32].

– 5 –
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linearized analysis in the appendix. Moreover we assume that the Bondi news vanishes at

CS+. Otherwise, as mentioned above, there are correction terms to the charge [32]. The

finite and τ -independent final boundary expression for the superrotation charge is

Q+(ζY ) = − 1

16π
lim
ρ→∞

∫
CS+

d2zY z

[
ρ3h(0)

ρz − 2∂zh
(0)
zz̄

]
, (4.7)

where the superscript (0) indicates the τ -independent piece of the given metric component.

4.2 Linearized bulk charge

Having found an expression for the charge Q+ as a surface integral over CS+, we now

write a bulk expression for the linearized charge as an integral over H+
3 . This involves

integrating by parts and using the linearized vacuum Einstein equations. We denote the

linearized charge as Q+
S (ζ) because, as we shall see, it is the same as the soft part of the

full nonlinear charge. The nonlinearities are incorporated in the next subsection, where we

also discuss the validity of the linearized approximation.

Starting with the boundary definition of the linearized charge Q+
S (ζ), the desired bulk

expression follows from an application of Stokes’s theorem and the linearized constraint

equations. By construction the bulk charge is the symplectic product of the metric variation

Lζgµν produced by ζ with the linearized metric perturbation hµν ,

Q+
S (ζ) =

(
Lζg, h

)
Hτ

3
=

∫
Hτ

3

dΣµP νλγσLζgνλ
←→
∇ µhγσ, (4.8)

where
(
,
)
M3

is the symplectic product on a three-manifold M3, Hτ
3 is any hyperbolic slice

of given τ and the required components of P (given in full in [32]) are given below. Since

the symplectic product is conserved on-shell (assuming appropriate smoothness conditions

at CS+) this expression does not depend on the choice of hyperbolic slice τ . We will take

τ →∞. In the quantum theory, hµν then becomes a free field operator, and commutators

with Q+
S formally generate linearized superrotations of the metric on H+

3 .

In the case at hand, the only nonzero component of the metric variation is (3.2)

and we need only the component P zzz̄z̄ = 1
8πτ4ρ4 . The linearized charge reduces to the

simple expression

Q+
S (ζY ) =

1

8π

∫
H+

3

d2zdρ

τ2ρ3
LY gzzh(0)

z̄z̄ = − 1

16π

∫
H+

3

d2zdρ

ρ3
∂3
zY

zh
(0)
z̄z̄ , (4.9)

where h
(0)
z̄z̄ is the τ -independent part of hz̄z̄.

We note that LY gzz, as given in (3.2), involves only the order ρ0 metric perturbation,4

which has been identified [21] as the holographic stress tensor in the context of AdS3

quantum gravity. This gives a precise connection of the superrotation generators for M4

quantum gravity as an uplift of the generator of conformal transformations for AdS3. More

specifically, the soft part of the charge which generates 4D superrotations in the causal

domain of H+
3 is the symplectic product on the 3D hyperbolic slice of the linearized 4D

metric perturbation with the Y z-variation of the 3D holographic stress tensor.

4In section 5, to facilitate the connection to the soft theorem, a physically equivalent vector field ζ′w =

ζw
(

1 +O
(

1
ρ2

))
which differs at further subleading orders is introduced.

– 6 –
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4.3 Exact bulk charge

In the previous subsection, the surface charge Q+(ζY ) on CS+ was reexpressed as a bulk

integral over H+
3 in the linearized approximation. For a generic slice in a generic asymptot-

ically flat spacetime ending on CS+, nonlinear corrections are important, and there is no

useful bulk expression for the charge. However, it is natural to take τ →∞, in which case

(assuming no stable black holes) the slice hugs I+, the fields become weak, and corrections

to the linearized approximation are easily incorporated.

In order to obtain the bulk expression on H+
3 from the boundary expression on CS+

one integrates by parts and uses the constraint equations Gτµ = 8πTτµ. In the linearized

approximation,5 the nonlinear terms on the left hand side and the entire right hand side

are set to zero. In the full theory, the constraints reduce (for τ →∞) to

−16πTτµ =−2Gτµ =�hτµ−∇τ∇αhµα−∇α∇µhτα+∇τ∇µh+ητµ∇α∇βhαβ−ητµ�h,
(4.10)

where the stress tensor is understood to contain both matter contributions and the

quadratic gravity wave stress tensor. Corrections which are cubic or higher in hµν vanish

for τ →∞. The full expression for the charge is then

Q+(ζ) = Q+
S (ζ) +Q+

H(ζ), (4.11)

where Q+
S (ζ) is given in (4.8) and the hard charge is

Q+
H(ζ) =

∫
H+

3

dΣµζνTµν

= −1

2

∫
H+

3

d2z dρ ρ τ3Tτµζ
µ. (4.12)

For ζY as in (3.1), (4.12) becomes

Q+
H(ζY ) = −1

2

∫
H+

3

d2z dρ ρ τ3

[
TτzY

z − ρ

2
Tτρ∂zY

z − 1

2ρ2
Tτ z̄∂

2
zY

z

]
= −1

2

∫
H+

3

d2z dρ ρ τ3Y z

[
Tτz +

ρ

2
∂zTτρ −

1

2ρ2
∂2
zTτ z̄

]
. (4.13)

Since the matter stress tensor generates diffeomorphisms on the matter fields, this mani-

festly generates the hard action of the superrotations.

5 Massive point particles

In this section we compute the hard charge for a collection of N massive point particles

with inertial trajectories, which are given in Cartesian coordinates by

xµk(λ) =
pµk
mk

λ+ bµk , (5.1)

5The linearized vacuum equations in hyperbolic coordinates are given in appendix A.

– 7 –
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where k = 1, . . . , N and p2
k = −m2

k. We follow the analogous treatment of massless point

particles presented in [38]. The massive point particle trajectories asymptote at late times

to a fixed point (ρk, zk, z̄k) on H+
3 with λ = τ . In the coordinates (2.3) this point is

determined by

lim
τ→∞

1

τ
xµk(τ) =

pµk
mk

=
ρk
2


1 + zkz̄k + ρ−2

k

zk + z̄k
−i(zk − z̄k)

1− zkz̄k − ρ−2
k

 . (5.2)

The stress tensor of the kth particle is

Tµνk (X) =

∫
dλ
pµkp

ν
k

mk
δ(4)(X − xk(λ)). (5.3)

Substituting into the first line of (4.12) we find the simple expression

Q+
H(ζ) = − lim

λ→∞

∑
k

(pk · ζ)|xµk (λ). (5.4)

To easily connect to the soft theorem, we use the vector field [37, 39]

ζ ′µ;w =
1

4
∂3
w[Xν(qν∂w̄qµ − qµ∂w̄qν) log(−q ·X)], (5.5)

where q is the null vector that points towards w on CS+,

qµ = (1 + ww̄,w + w̄,−i(w − w̄), 1− ww̄). (5.6)

This vector field satisfies

ζ ′w = ζw

(
1 +O

(
1

ρ2

))
(5.7)

near CS+ and hence gives the same total charge as ζw. Since Q±(ζ ′w) = Q±(ζw), the two

vector fields have the same Ward identity and conservation law.6 The vector field ζ ′w arises

naturally in the study of conformal primary wavefunctions [36, 37] as well as in the study

of massive matter [3]. The utility of ζ ′w over ζw in the present context is its simple relation

to the momentum space version of the subleading soft factor [3, 16]. We further define

polarization tensors

εµνww = εµwε
ν
w, εµνw̄w̄ = εµw̄ε

ν
w̄, εµw(w, w̄) =

1√
2

(w̄, 1,−i,−w̄), εµw̄(w, w̄) =
1√
2

(w, 1, i,−w).

(5.8)

One then finds that (5.4) becomes, after significant algebra,

Q+
H(ζ ′w) =

1

2

∑
k

∫
d2z

1

w − z
∂3
z

[
pµkεµν;z̄z̄J

να
k qα

pk · q

]
, (5.9)

where the tensors

Jµνk = xµkp
ν
k − xνkp

µ
k (5.10)

are the boost and angular momentum charges of the kth particle. The quantity in square

brackets in (5.9) is immediately recognizable as the soft factor in the subleading soft gravi-

ton theorem.
6Their soft and hard parts, however, are not separately equal. We find it curious that, even though their

difference is trivial, some computations are easier with ζ′w while others are easier with ζw.

– 8 –
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6 Subleading soft theorem

In this section we argue that the Ward identity of our charge implies the subleading soft

graviton theorem [3, 16]. In [14] the classical conservation law associated to superrotations

is expressed as a sum of integrals over I± in Bondi coordinates,

QS(Y ) +QH(Y ) = 0, (6.1)

with

QS(Y ) =
1

16π

∫
I+

d2zduY zu∂3
zN

z
z̄ −

1

16π

∫
I−
d2zdvY zv∂3

zN
z
z̄

QH(Y ) =

∫
I+

d2zdu r2Yz̄

(
Tuz −

1

2
u∂zTuu

)
−
∫
I−
d2zdv r2Yz̄

(
Tvz −

1

2
v∂zTvv

)
, (6.2)

where we take Y z̄ = 0, Nzz is the Bondi news, and we raise and lower sphere indices using

the round metric on the unit sphere S2. It was shown in [14] that the quantum version

of this conservation law is equivalent to the subleading soft graviton theorem [16]. This

conservation law can be expressed as the equality of two total charges, one incoming and

one outgoing.

In the present paper, in contrast, we have three hard and three soft charges associated

to the three slices H+
3 , dS0

3, and H−3 , depicted in figure 1. We accordingly decompose

QS(ζ ′w) = Q+
S (ζ ′w) +Q0

S(ζ ′w) +Q−S (ζ ′w)

QH(ζ ′w) = Q+
H(ζ ′w) +Q0

H(ζ ′w) +Q−H(ζ ′w).
(6.3)

Here we show QS(ζ ′w) = QS( 1
w−z ) and QH(ζ ′w) = QH( 1

w−z ), and therefore that the sub-

leading soft graviton theorem is equivalent to the conservation law on hyperbolic slices

QS +QH = 0. (6.4)

First, we show that

QH(ζ ′w) = QH

(
1

w − z

)
. (6.5)

We can consider the hard charge for massive or massless matter. Massive particles cannot

reach the asymptotic dS0
3 and therefore contribute only to the Q±H charges. As computed

in the previous section, the left hand side is

1

2

∫
d2z

1

w − z
∂3
z

∑
k

pµkεµν;z̄z̄J
να
k qα

pk · q
−
∑
j

pµj εµν;z̄z̄J
να
j qα

pj · q

 , (6.6)

where pk are outgoing and pj are incoming momenta. One finds that the same expression

holds when we act with the hard charge on massless particles, with the momenta pk taken

to be null. This agrees with QH in (6.2) (see [14]) and shows that the hard charges are

the same.

– 9 –
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Next, we wish to verify agreement between the soft terms evaluated in Bondi and

hyperbolic coordinates, i.e.

QS = Q+
S (ζ ′w) +Q0

S(ζ ′w) +Q−S (ζ ′w). (6.7)

In order to do so, we rewrite the first line in the Bondi expression (6.2) as

QS =

∫
I+

∗J +

∫
I−
∗J, (6.8)

with

J = P νλγσLζ′wgνλ∇µhγσdx
µ. (6.9)

Note the use here of ∇µ rather than
←→
∇ µ, which appears in the gravitational symplectic

pairing (4.8). Since
∫
duuNz̄z̄ is the subleading soft graviton insertion, and the Bondi

news, up to superrotations, falls off faster than 1
u (or 1

v ) at the boundaries of I [14, 40],

we do not expect new soft contributions from “capping” I± at past and future timelike

infinity i±. The soft charge (6.8) then becomes

QS =

∫
H+

3 ∪dS0
3∪H

−
3

∗J. (6.10)

Now that we are integrating over a surface without boundary, we are free to switch from

∇µ to 1
2

←→
∇ µ because they differ by an exact form. The resulting integrand is the same one

defining our soft charges, so we have

QS = Q+
S (ζ ′w) +Q0

S(ζ ′w) +Q−S (ζ ′w). (6.11)

Since it has already been shown that the quantum version of (6.1) is the subleading soft

graviton theorem, we have demonstrated the desired equivalence of the quantum matrix

elements of QS(ζ ′w) +QH(ζ ′w) = 0 to the subleading soft graviton theorem.

7 Celestial stress tensor

So far we have not explicitly shown that the action of the charge QS(ζ ′w), as suggested

by the form of (3.2), corresponds to conformal transformations on the celestial sphere.

A fast way to do this is to expand the Bondi news in asymptotic graviton creation and

annihilation operators and then use the results of [15]. One finds

iQS(ζ ′w) = T KMRS
ww , (7.1)

where T KMRS
ww is the subleading soft graviton mode [15]

T KMRS
ww ≡ 3

π
√

32πG
lim
ω→0

(1 + ω∂ω)

∫
d2z

(w − z)4

(
a−(ωq)− a†+(ωq)

)
, (7.2)

and a− and a†+ are asymptotic graviton annihilation and creation operators. As shown

in [15], by reverse-engineering the subleading soft theorem of [16], normal-ordered insertions
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of T KMRS
ww in the 4D S-matrix obey the Ward identities of a 2D stress tensor, and therefore

generate conformal transformations of the celestial sphere. In particular, if we pick a

contour C and integrate
1

2πi

∮
C
dwY wT KMRS

ww (7.3)

for an arbitrary Y w(w), the corresponding S-matrix insertions generate conformal trans-

formations on the celestial sphere associated to the holomorphic extension of Y w into the

interior of C. Thus iQS(ζ ′w) is the celestial stress tensor.

8 Dual stress tensor

In U(1) gauge theory, large electric gauge transformations δε on the celestial sphere are gen-

erated by a current Jw with left/right conformal dimensions (1, 0) [37, 41, 42]. This current

can be constructed from the symplectic product of the Goldstone mode wavefunction δεAµ
with the linearized gauge field operator at null infinity. The Goldstone wavefunction has a

symplectic partner which is not pure gauge and leads to a second, symplectically conjugate

(1, 0) current Sw [42]. Sw is related to large magnetic gauge transformations [43].

We note briefly here that a similar structure exists for the stress tensor T KMRS
ww ,

which, like Jw, is constructed from the symplectic product with a (2, 0) Goldstone mode

wavefunction δY gµν . In the normalization conventions of [37], to which we refer the reader

for details, the (2, 0) Goldstone mode is7

hGoldstone
µν;ww = −1

6

[
∇µζ ′ν;w +∇νζ ′µ;w

]
. (8.1)

This wavefunction has a (2, 0) symplectic partner that is not pure gauge. The symplectic

partner is the ∆ = 2 conformal primary wavefunction [37], where for general ∆

h∆,±
µν;ww(Xµ;w, w̄) =

1

2

[(−q ·X)∂wqµ + (∂µq ·X)qµ][(−q ·X)∂wqν + (∂wq ·X)qν ]

(−q ·X ∓ iε)∆+2
. (8.2)

These solutions are labelled by ± for ingoing versus outgoing, the complex parameter w

for the point where the radiation flux crosses the celestial sphere, and ∆ for the SL(2,C)

conformal weight. In hyperbolic coordinates (τ, ρ, z, z̄),8

h∆,±
µν;ww =

τ2−∆

2(|w − z|2 + ρ−2 ∓ iε)∆+2


0 0 0 0

0 4(w̄−z̄)2

ρ∆+4
2(w̄−z̄)3

ρ∆+1
−2(w̄−z̄)
ρ∆+3

0 2(w̄−z̄)3

ρ∆+1
(w̄−z̄)4

ρ∆−2
−(w̄−z̄)2

ρ∆

0 −2(w̄−z̄)
ρ∆+3

−(w̄−z̄)2

ρ∆
1

ρ∆+2

 . (8.3)

For ∆ = 2 one finds the simple result [37, 39]

h2
µν;ww =

1

τ2
hGoldstone
µν;ww , (8.4)

7In [37] this mode is denoted h̃∆=0
µν;ww, where the tilde indicates the fact that it is the shadow of a

mode with conformal weight 0 in the basis (8.2).
8We note that these modes generically have radiation flux though CS+ [37] and so do not obey the

boundary conditions for the charge defined on that surface.
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which is not a pure diffeomorphism. The symplectic product (4.8) of these two modes on

H+
3 is9 (

hGoldstone
ww , h2+iε

vv

)
H+

3
=

π

48(w − v)4
δ(ε). (8.5)

This resembles an off-diagonal central charge. The symplectic product over a complete

spacelike Cauchy slice Σ3 is

(
hGoldstone
ww , h2+iε

vv

)
Σ3

= −ε iπ2

6(w − v)4
δ(ε). (8.6)

Näıvely, the right hand side vanishes due to the factor of the imaginary part of the conformal

weight ε. However, we leave it in this form as in some contexts there may be compensating

conformally soft poles in ε. A second conformal weight (2,0) operator on the celestial sphere

(in addition to T KMRS
ww ) can be constructed explicitly from the mode (8.4). Potential

implications of two weight (2,0) operators for the structure of the soft gravitational S-

matrix are left to future work.
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A Linearized Einstein equations

In radial gauge, hτµ = 0, the Einstein equations take the form

Gττ =
ρ2

τ4

(
τ∂τ+ρ∂ρ+3− 2

ρ2
∂z∂z̄

)
hρρ+

2

ρτ4
(ρ∂ρ+2)(∂z̄hρz+∂zhρz̄)

+
2

ρ4τ4
(∂2
z̄hzz+∂2

zhz̄z̄)+
2

ρ2τ4

(
2τ∂τ−ρ2∂2

ρ−
2

ρ2
∂z∂z̄−2

)
hzz̄

Gτρ = (τ∂τ−2)

[
ρ

τ3
hρρ+

1

ρ2τ3
(∂z̄hρz+∂zhρz̄)+

2

ρ3τ3
(1−ρ∂ρ)hzz̄

]
Gρρ =− 1

τ2
hρρ−

2

ρ3τ2
(∂z̄hρz+∂zhρz̄)−

2

ρ6τ2
(∂2
z̄hzz+∂2

zhz̄z̄)

− 2

ρ4τ2

(
τ2∂2

τ−τ∂τ−ρ∂ρ+2− 2

ρ2
∂z∂z̄

)
hzz̄

Gτz = (τ∂τ−2)

[
− ρ2

2τ3
∂zhρρ+

ρ

2τ3
(ρ∂ρ+3)hρz+

1

ρ2τ3
(∂z̄hzz−∂zhzz̄)

]
Gρz =

ρ

2τ2
∂zhρρ+

1

2τ2

(
τ2∂2

τ−τ∂τ−
2

ρ2
∂z∂z̄

)
hρz+

1

ρ2τ2
∂2
zhρz̄

+
1

ρ3τ2
(ρ∂ρ−2)(∂z̄hzz−∂zhzz̄)

9Useful formulae for evaluating these integrals can be found in [39, 44, 45].
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Gzz =− ρ2

2τ2
∂2
zhρρ+

ρ

τ2
(ρ∂ρ+1)∂zhρz+

1

2τ2
(τ2∂2

τ−τ∂τ−ρ2∂2
ρ+ρ∂ρ)hzz

Gzz̄ =
ρ4

4τ2

(
−τ2∂2

τ +τ∂τ−ρ∂ρ−4+
2

ρ2
∂z∂z̄

)
hρρ+

1

2τ2
(−τ2∂2

τ +τ∂τ+ρ2∂2
ρ−ρ∂ρ)hzz̄

− ρ

2τ2
(ρ∂ρ+1)(∂z̄hρz+∂zhρz̄). (A.1)

Note that the Einstein equations completely decouple under different τ scalings, so it is

natural to decompose the metric in a τ expansion as hµν =
∑

n τ
−nh

(n)
µν (ρ, z, z̄).

Working in “on-shell gauge” of the free Einstein equations we arrived at an equation

for h
(0)
zz by itself. The gauge assumes that

Xµhµν = 0 (A.2)

∇µhµν = 0 (A.3)

gµνhµν = 0, (A.4)

whereXµ are Cartesian coordinates. Note that in hyperbolic coordinates (A.2) is equivalent

to hτµ = 0. The Gτµ equations all follow from these gauge conditions, and Gρρ and Gzz̄

are equivalent in this gauge. The Gzz equation can be used to eliminate h
(0)
ρz in favor of

h
(0)
zz (up to integration constants). Plugging into Gρz gives

0 = ρ4(ρ∂ρ + 4)(ρ∂ρ + 2)(ρ∂ρ − 2)ρ∂ρh
(0)
zz + 8ρ2(ρ∂ρ + 2)(ρ∂ρ − 2)∂z∂z̄h

(0)
zz + 16(∂z∂z̄)

2h(0)
zz .

(A.5)

Given a solution of (A.5), the other metric components in the gauge (A.2) are constrained.

Linearized metric perturbations along a vector field ξµ∂µ are given by

δgττ =
2

τ
τ∂τξτ

δgτρ = ∂ρξτ +
1

τ
(τ∂τ − 2) ξρ

δgρρ = 2

(
∂ρ +

1

ρ

)
ξρ −

2τ

ρ2
ξτ

δgτz =
1

τ
(τ∂τ − 2) ξz + ∂zξτ

δgρz =

(
∂ρ −

2

ρ

)
ξz + ∂zξρ

δgzz = 2∂zξz

δgzz̄ = ∂zξz̄ + ∂z̄ξz + ρ3ξρ − ρ2τξτ . (A.6)

Setting δgτµ = 0, we must have ∂τξτ = 0. We can satisfy the conditions with ξτ = 0 and

ξρ, ξz, ξz̄ ∝ τ2, but this is not completely general. We can also let ξτ (ρ, z, z̄) be a generic

function and choose the O(τ) pieces of the other components accordingly. The general

solution, using τ weight notation ξ
(n)
µ , is

ξτ = ξ(0)
τ (ρ, z, z̄)

ξρ = τ2ξ(−2)
ρ (ρ, z, z̄) + τ∂ρξ

(0)
τ

ξz = τ2ξ(−2)
z (ρ, z, z̄) + τ∂zξ

(0)
τ

ξz̄ = τ2ξ
(−2)
z̄ (ρ, z, z̄) + τ∂z̄ξ

(0)
τ . (A.7)
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Here we treat the τ dependence as not included in ξ
(n)
µ . We see the free data for these

residual diffeomorphisms are four free functions of three variables, and that these free

functions only affect the h
(−1)
µν and h

(−2)
µν pieces of the metric in hyperbolic coordinates.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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