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1 Introduction

Gauge-Yukawa theories constitute the backbone of the standard model of particle interac-

tions and of most of its extensions. It is therefore paramount to elucidate their dynamics

starting from those theories that are fundamental according to Wilson [1, 2]. This means

that they are well-defined at arbitrarily short distances. Asymptotically free [3, 4] and

safe [5] quantum field theories are distinct types of fundamental quantum field theories.

Freedom implies that at extremely short distances all interactions vanish while safety re-

quires a freezing of the interactions. Although asymptotic freedom has a long history,

the discovery of four-dimensional controllable asymptotically safe quantum field theories

is quite recent [5, 6]. Any fundamental field theory is governed at short distances by a

conformal field theory (cft) which is interacting in the safe case. It is therefore timely to

explore safe cft dynamics starting with the first example of such a theory introduced in [5].

Here we shall be concerned with generalizing and applying the large-charge limit of

cfts to four-dimensional controllable nonsupersymmetric asymptotically safe quantum

field theories [5, 6]. This limit has proven useful, in the past, when investigating generic

properties of cfts with global symmetries. Restricting our attention to a subsector of

the theory of large fixed charge leads to important simplifications. Fixing the charge

introduces a scale into the otherwise scale-free problem — the charge density ρ. It plays

the role of a controlling parameter in a perturbative expansion. This expansion works in

the energy range

ΛQlow =
1

r0
� Λ� ΛQhigh = ρ1/d (1.1)
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for a theory in d+ 1 dimensions compactified on a d-dimensional manifold of characteristic

scale r0. In analogy to chiral perturbation theory, the natural expansion parameter is

given by

ΛQlow

ΛQhigh

=
1

Q1/d
. (1.2)

Solving the classical equations of motion (eom) at fixed charge gives rise to a time-

dependent ground state. Studying the fluctuations around this fixed-charge ground state

is formally equivalent to studying fluctuations at fixed chemical potential. Working at

fixed charge “classicalizes” the problem, in the sense that the largest contributions (with

positive scaling in Q) come from the classical solution, while the quantum corrections are

controlled by inverse powers of the large charge.

The breaking of the conformal and global symmetries by the ground state gives rise to

a set of both relativistic and non-relativistic Goldstone fields which encode the low-energy

dynamics. It is in fact possible to write a non-linear sigma model for the Goldstones, in

which the inverse charge controls both the tree-level contributions and the quantum ef-

fects. The leading quantum correction is given by the Casimir-energy of the relativistic

Goldstone bosons alone, as the non-relativistic Goldstone bosons do not have a zero-point

energy. Among the relativistic Goldstones, there is always one special mode (the confor-

mal Goldstone) with a speed of sound equal to 1/
√
d which is a remnant of the broken

conformal invariance.

The large-charge expansion allows us to calculate cft data. Generally speaking, con-

formal dimensions ∆ of operators on Rd+1 are related to the energies ESd of states living on

a d-sphere of radius r0 through the relation ∆ = r0ESd [7, 8]. This relation, known as the

state-operator correspondence, is a consequence of the fact that Rd+1 is conformally equiv-

alent to R× Sd(r0). The state-operator correspondence allows us in particular to directly

calculate the conformal dimension of the lowest-lying operator of charge Q by evaluating

the energy of the ground state on the d-sphere.

So far, the large-charge expansion has been used mostly for three-dimensional cfts at

an infrared (ir) interacting fixed point (see e.g. [9–13]). The large-charge results for the

O(N) vector model have been confirmed to high precision for N = 2 and N = 4 on the

lattice [14, 15]. Here it was discovered that in these models the large-charge prediction for

the conformal dimension holds also for order one charges. In four dimensions the method

has been applied only to either supersymmetric [16–20] theories or non-relativistic [21–23]

examples.

We find it therefore highly interesting to move into the four-dimensional nonsupersym-

metric realm and report our central result for our safe cft:

∆(J) = r0E(S3) =
3

2

N2
F

αh + αv

[
J 4/3 +

1

6
J 2/3 − 1

144
J 0 +O

(
J −2/3

)]
−
((

N2
F

2
− 2

)√
αh

3αh + 2αv
+

1√
3

)
× 0.212 · · ·+O

(
J −2/3

)
, (1.3)

where αh and αv are the opportunely normalized scalar self-couplings at the ultraviolet (uv)

fixed point, Nf is the number of flavors of the theory and J � 1 the opportunely normal-
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ized charge. The last term derives from the vacuum energy of the relativistic Goldstones

which is of order J 0. As expected, the conformal Goldstone contributes a factor 1/
√

3 in

four dimensions.

The paper is organized as follows: in section 2 we introduce the model of [5]. Section 3

deals with introducing the fixed charges, solving the equations of motion, determining the

ground state and elucidating the pattern of symmetry breaking. In section 4 we discuss the

fermion decoupling and the emergence of a decoupled low energy Yang-Mills theory. The

Goldstone spectrum and its properties are derived in section 5. Here we also determine

the critical quantities. Finally, we offer our conclusions in section 6. In appendix A we

consider a general setting for the choice of fixed charges.

2 The model

We start from a cft in four dimensions, containing SU(NC) gauge fields Aaµ, NF flavors of

fermions Qi in the fundamental and an NF ×NF complex matrix scalar field H which is

not charged under SU(NC). In the Veneziano limit of NF → ∞, NC → ∞ with the ratio

NF /NC fixed, this theory is asymptotically safe, as shown in [5]. Its Lagrangian is given by

L = −1

2
Tr(FµνFµν) + Tr

(
Q̄i /DQ

)
+ yTr

(
Q̄LHQR + Q̄RH

†QL

)
+ Tr

(
∂µH

† ∂µH
)
− uTr

(
H†H

)2
− v(TrH†H)2 − R

6
Tr
(
H†H

)
.

(2.1)

The trace runs over both color and flavor indices and QL/R = 1
2(1± γ5)Q. In view of the

state/operator correspondence we have added a conformal coupling term for the bosonic

fields, proportional to the Ricci scalar R. No such term is needed for the fermions or the

gauge fields in four dimensions. From now on, we will consider our theory on R ×M3,

where M3 is a compact manifold (eventually the three-sphere when computing the confor-

mal dimensions).

The rescaled couplings of the model appropriate for the Veneziano limit are

αg =
g2NC

(4π)2
, αy =

y2NC

(4π)2
, αh =

uNF

(4π)2
, αv =

vN2
F

(4π)2
, (2.2)

where αg is the gauge coupling (as opposed to the original gauge coupling g in eq. (2.1)),

αy the Yukawa coupling, αh the quartic scalar coupling and αv the double-trace coupling.

We also introduce the control parameter

ε =
NF

NC
− 11

2
, (2.3)

which in the Veneziano limit is continuous and arbitrarily small. The action in eq. (2.1) has

U(NF )×U(NF ) symmetry, but we will concentrate on the quantum symmetry SU(NF )L×
SU(NF )R ×U(1)B since we know that there is an anomalous axial U(1).

As shown in ref. [5], if 0 ≤ ε � 1, within the perturbative regime there is one fixed

point that is unique in that it has only one relevant direction with the other three being

irrelevant.
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To the maximum currently achievable order in perturbation theory and properly re-

specting the Weyl consistency conditions [24] it is obtained for

α∗g = 0.4561 ε+ 0.7808 ε2 +O
(
ε3
)

α∗y = 0.2105 ε+ 0.5082 ε2 +O
(
ε3
)

α∗h = 0.1998 ε+ 0.5042 ε2 +O
(
ε3
)
,

(2.4)

with the leading coefficients of ε corresponding to α∗g = 26
57ε + . . ., α∗y = 4

19ε + . . . and

α∗h =
√

23−1
19 ε+ . . . respectively. Note that the Yukawa and quartic scalar self-couplings are

essential for this fixed point to exist. The remaining double-trace scalar coupling v has

two possible fixed points, one of which is reliable and adds an irrelevant scaling direction

to the theory, for

α∗v1 =
−6
√

23 + 4ε+ 3
√

4ε+ 6
√

23 + 4ε+ 20

4ε+ 26
α∗g +O

(
α∗g

2
)
. (2.5)

Numerically, α∗v1 = −0.1373 ε up to quadratic corrections in ε.

We now want to apply the large-charge expansion [9] to this theory, which will lead

to an effective perturbative action in the Goldstone degrees of freedom (dof) resulting

from the symmetry breaking induced by the fixed-charge ground state, where higher-order

terms will be suppressed by inverse powers of the fixed charge. We can use this action

to calculate the anomalous dimension of the lowest operator of fixed charge. We will be

working at a scale Λ, where
1

r0
� ΛUV � Λ� ρ1/3, (2.6)

where r0 is the typical scale of our compactification manifold, ρ is the charge density of

the fixed charges as in eq. (1.1), and ΛUV is the scale of the uv fixed point at which the

couplings in eq. (2.4) are evaluated. Fixing the charge effectively introduces a new relevant

direction which drives us away from the uv fixed point to a new ir fixed point.

The hierarchy of scales is chosen so that we are at the uv point where the effective

action is consistent and that the scale corresponding to fixing the charge is the dominat-

ing one.

In the following we will always consider this fixed point.

To make the notation lighter we will use the unstarred couplings but we will intend

them to be evaluated at this fixed point. All the expressions are to be understood up to

order O(ε) corrections.

3 Fixing the charges in the scalar sector

3.1 Equations of motion and ground state

We will first focus on the sector involving just the scalar field H, using the Lagrangian

LH = Tr
(
∂µH

† ∂µH
)
− uTr

(
H†H

)2
− v(TrH†H)2 − R

6
Tr
(
H†H

)
. (3.1)
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In a later step, we will show that indeed, all the fermions Qi will receive large masses

from fixing the charge and, together with the gluons, decouple from the dynamics. We will

follow the procedure outlined in [12] for fixing the charge in matrix models.

When focusing only on the scalar sector, the model naively has a global U(NF )L ×
U(NF )R symmetry at the classical level. We know however that the full model (given in

eq. (2.1)) has an axial anomaly due to the Yukawa term. For this reason, we work directly

in the quantum global symmetry group SU(NF )L × SU(NF )R ×U(1)B which is generated

by the currents

JL = i dHH†, JR = −iH† dH , (3.2)

and we will be looking for solutions of the classical eom at fixed values of the corresponding

conserved charges

QL =

∫
d3xJ0

L, QR =

∫
d3xJ0

R. (3.3)

Note that under the symmetry H 7→ LHR†, QL and QR transform as QL 7→ LQLL†,
QR 7→ RQRR†, so the only invariant quantities are the eigenvalues of the charge matrices.

We will call these eigenvalues Ji:

spec(QL) = {JL1 , JL2 , . . . , JLNF
} (3.4)

spec(QR) = {JR1 , JR2 , . . . , JRNF
}. (3.5)

If for given fixed charges a solution exists which is homogeneous in space, this will be

the solution of minimal energy in this sector. We make the following ansatz for such a

homogeneous solution:

H0(t) = eiMLtBe−iMRt, (3.6)

where ML,R are in the Cartan subalgebra of SU(NF ) are therefore related to the charges

QL,R, and B is a self-adjoint NF ×NF matrix [12, 15].

In a first step, we impose charge conservation:

Q̇L = −iV eiMLt
(
−ML

[
ML, BB

†
]

+
[
ML, BMRB

†
])
e−iMLt = 0, (3.7)

Q̇R = iV eiMRt
(
−MR

[
MR, B

†B
]

+
[
MR, B

†MLB
])
e−iMRt = 0, (3.8)

where V = Vol(M3). From here, we find that MR either commutes or anti-commutes with

B and in either case, we can rewrite the Ansatz (3.6) in the form

H0 = e2iMtB, (3.9)

where B is diagonal without loss of generality, as it can be diagonalized using the right

action alone. We find

QL = −2VMB2, QR = 2V B2M = −QL. (3.10)
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The QL,R matrices are diagonal and have to be equal up to a sign. This shows that not

all possible charge configurations lead to a homogeneous ground state, as already observed

for simpler models [10, 15, 25, 26].

The other eom takes the form

∂

∂t

[
∂

∂Ḣ∗

(
Tr
(
Ḣ†Ḣ

))]
+

∂

∂H∗
V (H,H∗)

= ∂2
0H + 2u(H†H)H + 2vTr

(
H†H

)
H +

R

6
H = 0, (3.11)

and for our Ansatz it reads

2M2 = uB2 + vTr
(
B2
)
− R

12
. (3.12)

If we write the components of M and B as Mii = µi and Bii = bi, the eom take the

equivalent form

2µ2
i = ub2i + v

NF∑
k=1

b2i −
R

12
, i = 1, . . . , NF (3.13)

and the corresponding charges are

Ji = QL
∣∣∣∣
ii

= 2V b2iµi. (3.14)

3.2 The energy of the ground state

In the following, for simplicity and ease of notation, we will choose to fix all the charges

such that they are equal up to a sign, so M2 = µ2
1NF

, B = b1NF
with both µ > 0 and

b > 0. Since M is proportional to the charge matrix that lives in the algebra su(N), it

must be traceless. So it contains NF /2 diagonal elements equal to µ and NF /2 diagonal

elements equal to −µ. The more general case is discussed in appendix A.

If we choose all the charges to satisfy |Ji| = J , the eom take the simple form

2µ2 = (u+ vNF )b2 − R

12
, (3.15)

with the condition

J = 2V b2µ. (3.16)

It is convenient to assume J to be large and expand in series. The natural expansion

parameter is J :

J = J
(u+ vNF )

8π2
= 2J

αh + αv
NF

= 2Jtot
αh + αv
N2
F

, (3.17)

where Jtot = JNF /2 is the total charge. Then, µ takes the form

µ =

(
2π2

V

)1/3

J 1/3 +
R

72

(
V

2π2

)1/3

J −1/3 +O
(
J −5/3

)
. (3.18)
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Note, that the coefficient of the term J −1 happens to be zero on shell. It is also convenient

to define a charge density ρ = 2π2J /V so that

µ = ρ1/3 +
R

72
ρ−1/3 +O

(
ρ−5/3

)
. (3.19)

The expansion requires J � 1 and, observing that at the fixed point both αh and αv
are of order ε, we see that the expansion is consistent in the regime

Jtot �
N2
F

ε
. (3.20)

This is a typical feature of the large-charge expansion, where the total charge has to be the

dominant large parameter in the problem. In the case at hand, also the number of dof

N2
F and the inverse coupling 1/ε are large. In the three-dimensional vector model at the

Wilson-Fisher point on the other hand, the only large parameter is the number of dof N ,

so the condition on the charge is Jtot � N [27]. In the O(2) model, there are no other

large parameters, so J � 1 [9]. On a compact manifold, the fixed charge is associated to

the scale ρ ∝ J /V . Since there are no other dimensionful parameters in our problem, the

energy scale ρ1/3 will control the tree-level and the quantum corrections to the energy of

the ground state.

We can write the energy of the ground state as the Legendre transform of the La-

grangian. We have

E

V
=

NF∑
i=1

µi
δLH
δµi
− LH = 4

NF∑
i=1

b2iµ
2
i + u

NF∑
i=1

b4i + v

(
NF∑
i=1

b2i

)2

+
R

6

NF∑
i=1

b2i . (3.21)

For our choice of charges, we obtain an expansion in J , starting from J 4/3:

E=
3

2

N2
F

αh+αv

(
2π

V

)1/3
[
J 4/3+

R

36

(
V

2π2

)2/3

J 2/3− 1

144

(
R

6

)2( V

2π2

)4/3

J 0+O
(
J −2/3

)]
(3.22)

or, in terms of the charge density ρ,

E =
3V

4π2

N2
F

αh + αv

[
ρ4/3 +

R

36
ρ2/3 − 1

144

(
R

6

)2

ρ0 +O
(
ρ−2/3

)]
. (3.23)

In fact, we could have predicted the power 4/3 of the leading term purely on dimensional

grounds. The energy density E/V has mass dimension [E/V ] = 4, for systems with iso-

lated fixed points, the curvature is not relevant in the renormalization group (rg) sense,

and the only dimensionful parameter of the problem is the charge density which has di-

mensions [ρ] = 3.

Specializing the expressions to the case of a three-sphere of radius r0, in view of the

state-operator correspondence, we have V = 2π2r3
0 and R = 6/r2

0 and the energy is given by

E =
3

2r0

N2
F

αh + αv

[
J 4/3 +

1

6
J 2/3 − 1

144
J 0 +O

(
J −2/3

)]
. (3.24)

– 7 –



J
H
E
P
0
8
(
2
0
1
9
)
1
6
4

3.3 Symmetry-breaking pattern

Working at fixed charge breaks the SU(NF )×SU(NF )×U(1)B symmetry. It is convenient to

distinguish two effects. If we expand a generic field as ground state plus fluctuations, the M

matrix acts like a chemical potential and gives rise to a term which breaks the symmetries

explicitly, while the B matrix is akin to a ground state that breaks the remaining symmetry

spontaneously, as shown explicitly in section 5.

When the ground state H0 is written in the form of eq. (3.9) it is clear that the explicit

breaking only happens for the SU(NF )L symmetry, which is reduced to the commutant of

M , i.e. the subgroup C(M) ⊂ SU(NF ) × U(1)B that commutes with M . Since B is

proportional to the identity, the spontaneous breaking preserves a group C(M) embedded

“diagonally” in C(M)× SU(NF )× U(1), in the sense that B remains invariant under the

adjoint action of C(M). The full symmetry-breaking pattern is thus

SU(NF )× SU(NF )×U(1)
exp.−→ C(M)× SU(NF )

spont.−→ C(M). (3.25)

By Goldstone’s theorem, the low-energy dynamics is described by dim(SU(NF )) = N2
F − 1

dof.

For clarity, we reorder the rows of the charge matrix such that it takes the form

QL = J

(
1 0

0 −1

)
, (3.26)

where 1 is the NF /2×NF /2 identity matrix. Also, M takes the same form with a positive

and a negative block, while B is still proportional to the identity:

M = µ

(
1 0

0 −1

)
, B = b

(
1 0

0 1

)
. (3.27)

It is now easy to see that the commutant of M is C(M) = SU(NF /2)×SU(NF /2)×U(1)2.

By construction, the Goldstone fields will arrange themselves into representations of this

unbroken group. We will discuss the precise form of the spectrum in section 5.

4 Decoupling of the fermions

Now that we have understood the effect of fixing the charge in the bosonic sector, we can

discuss the fermionic and gauge sectors. We expect the fermions to become massive, with

the mass scale given by the charge density, in analogy to the case of the three-dimensional

supersymmetric theory with an isolated vacuum at large R-charge discussed in [9]. We

will see in the following that this is indeed the case: all the fermions become massive, and

this in turn decouples also the gluons. The large-charge, low-energy physics is therefore

described completely by the Goldstone fields that result from the symmetry breaking which

we will analyze in detail in section 5.

We start with the fermionic part of the Lagrangian (2.1),

Lf = Tr
(
Q̄i /DQ

)
+ yTr

(
Q̄LHQR + Q̄RH

†QL

)
. (4.1)

– 8 –
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Expanded around the ground state H = H0(t) given in eq. (3.9), the action takes the form

Lf, GS = Tr
(
Q̄i /DQ

)
+ yTr

(
Q̄Le

2iMtBQR + Q̄RBe
−2iMtQL

)
. (4.2)

It is convenient to redefine the fermionic fields Q to eliminate the time-dependent coupling

and trade it for a mass term. A possible choice is

ψL = e−iMtQL, ψR = eiMtQR, (4.3)

so that the Lagrangian reads

Lf, GS = Tr
(
ψ̄i /Dψ

)
− Tr

(
ψ̄Lγ

0MψL
)

+ Tr
(
ψ̄Rγ

0MψR
)

+ yTr
(
ψ̄Bψ

)
= Tr

(
ψ̄i /Dψ

)
− Tr

(
ψ̄γ0γ5Mψ

)
+ yTr

(
ψ̄Bψ

)
.

(4.4)

The simplest way to see if the fermions actually become massive and decouple is to write

down the inverse propagator. The zero-momentum limit of its determinant gives the prod-

uct of the masses of the fields. To see that, observe that in general the determinant is given

by the product of the dispersion relations,

det
(
D−1(ω, p)

)
=
∏

fields

(ω2 −m2
f − ff (p2)), (4.5)

where ff (p) is a function that vanishes for p = 0. In a relativistic theory we expect

ff (p2) = p2, but fixing the charge breaks Lorentz invariance and, as we will see in section 5,

in our case f(p2) is a more general function that can be expanded in series for small p. By

definition, mf is the mass of the field and

det
(
D−1(ω, p)

)∣∣∣∣
ω=0,p=0

=
∏

fields

m2
f . (4.6)

The inverse propagator corresponding to the action in eq. (4.4) is

D−1(ω, p) = −ωγ0 + piγ
i − γ0γ5M + yB, (4.7)

so we just need to compute

4NF∏
f=1

m2
f = det

(
D−1(0, 0)

)
= det

(
−γ0γ5M + yB

)
. (4.8)

Using Dirac’s representation of the gamma matrices, we have

γ0 =

(
1 0

0 −1

)
⊗ 12 = σ3 ⊗ 12, γ5 =

(
0 1

1 0

)
⊗ 12 = σ1 ⊗ 12, (4.9)

so the determinant reads

det
(
−γ0γ5M + yB

)
= det((−iσ2M + 12 yB)⊗ 12) = det

(
yB −M
M yB

)2

. (4.10)
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Using the fact that

det

(
A B

C D

)
= det

(
A−BD−1C

)
det(D), (4.11)

and since B and M are diagonal matrices, we find

det

(
yB −M
M yB

)2

=

NF /2∏
i=1

det

(
ybi +

µ2i
ybi

0

0 ybi +
µ2i
ybi

)2

det

(
ybi 0

0 ybi

)2

=

NF /2∏
i=1

(
µ2
i + y2b2i

)4
.

(4.12)

We see that both the Yukawa term (via the term y2b2i ) and the kinetic term (via the term

µ2
i ) contribute to the final expression. If all the charges are equal, also all the fermions

have the same mass which is given by

mψ =
(
µ2 + y2b2

)1/2
=

(
2π2

V

)1/3(
1 + 2

NF

Nc

αy
αh + αv

)1/2

J 1/3 +O
(
J −1/3

)
=

(
1 + 2

NF

Nc

αy
αh + αv

)1/2

ρ1/3 +O
(
ρ−1/3

)
.

(4.13)

We see that all the fermion are massive, with a mass fixed by the charge density ρ, and

they decouple from the rest of the theory.

Once all the fermions of the theory have decoupled, at scales below mψ the pure gauge

sector starts running towards lower energies as pure Yang-Mills theory. The resulting

theory gaps with an estimated confining scale ΛYM

ΛYM = mψ exp

[
− 3

22αg(mψ)

]
. (4.14)

Here αg(mψ) is very close to the uv fixed-point value that is of order ε. Below this scale

we have the Goldstone excitations that we will discuss in the following.

5 Goldstone spectrum for equal charges

5.1 Expansion to quadratic order

We have seen in section 3.3 that the low-energy dynamics is described by N2
F − 1 mass-

less dof. To study their spectrum, we need to expand the fields at second order in the

fluctuations Φ around the ground state H0(t):

H(t, x) = exp

[
2iµt

(
1 0

0 −1

)](
b

(
1 0

0 1

)
+ Φ(t, x)

)
. (5.1)
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Since we are only interested in the leading behavior at small momenta, we can neglect the

term proportional to the curvature and write the Lagrangian as:

L = Tr
[
∂µH

† ∂µH
]
− uTr

[
H†HH†H

]
− vTr

[
H†H

]2

= Tr
[
∂µΦ† ∂µΦ

]
− 2iTr

[
µ(Φ† ∂0Φ− ∂0Φ†Φ)

]
+ 4µ2 Tr

[
Φ†Φ

]
− uTr

[
(b+ Φ)(b+ Φ)†(b+ Φ)(b+ Φ)†

]
− vTr

[
(b+ Φ)(b+ Φ)†

]2

+ 4µ2bTr
[
Φ + Φ†

]
− 2ibTr

[
µ(∂0Φ− ∂0Φ†)

]
+ 4µ2b2NF .

(5.2)

The terms in the last line vanish identically in the action, and we are left with an explicit

mass term and the quartic potential.

The fluctuation Φ(t, x) can always be expanded as

Φ(t, x) =

N2
F−1∑
A=0

(hA(t, x) + ipA(t, x))TA, (5.3)

where T 0 = 1/
√

2NF 1 and the T a are the generators in the generalized Gell-Mann basis

of SU(NF ), which satisfy the identity

TaTb =
1

2

(
δab
NF

+ (dabk + ifabk)T
k

)
, (5.4)

where fabc are the structure constants and dabc the totally symmetric tensor of SU(NF ).

The quadratic term is

4µ2 Tr
[
Φ†Φ

]
= 2µ2

∑
A

(h2
A + p2

A) (5.5)

and in the notation of [28] it is written as a negative contribution to the mass:

m2
hAhB

= −4µ2δAB, m2
pApB

= −4µ2δAB, m2
pAhB

= 0. (5.6)

The second-order expansion of the potential in terms of the hA and pA then takes

the form

V (2) =
1

2
M2
hAhB

hAhB +
1

2
M2
pApB

pApB +
1

2
M2
pAhB

pAhB, (5.7)

where the M2 are those in [28] for the case of the background field state being H = b1 =√
2NF bT

0. Starting from (A.8) in [28], we find

M2
h0h0 = m2

h0h0 + 6b2(u+NF v) = −4µ2 + 6b2(u+NF v) = 8µ2, (5.8)

M2
hahb

= m2
hahb

+ 2b2(3u+NF v)δab =
(
−4µ2 + 2b2(3u+NF v)

)
= 8µ2 u

u+NF v
δab = 8µ2 αh

αh + αv
δab, (5.9)

M2
pApB

= m2
pApB

+ 2b2(u+NF v)δAB =
(
−4µ2 + 2b2(u+NF v)

)
δAB = 0, (5.10)

M2
pAhB

= m2
pAhB

= 0. (5.11)
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5.2 Goldstone types and dispersion relations

Let us pause a moment and see what we have found. The effective mass matrix is diagonal.

Imposing the eom, we find that there are N2
F massless and N2

F massive dof. This is not

consistent with the symmetry breaking pattern C(M) × SU(NF ) → C(M) that we have

discussed in section 3.3. The reason for this discrepancy is that we have decided not to

consider the anomalous U(1) axial symmetry that is broken by quantum effects. This

means that one of the massless dof found here is actually spurious, and we are left with

the expected N2
f − 1.

At this point it would be natural to arrange them into the adjoint representation

of SU(N) (plus the spurious singlet) since the fluctuations are literally written as linear

combinations of the generators of the adjoint of SU(N) (plus an extra term proportional to

the diagonal matrix T 0). We need however to take into account that fixing the charge breaks

both the Lorentz and the global SU(N) symmetries. Because of the breaking of Lorentz

invariance, we expect both relativistic (type I) and non-relativistic (type II) Goldstone

bosons to appear [29] and a priori we do not know how our massless modes are organized

into fields. This information is encoded in the term linear in µ with one time derivative

appearing in eq. (5.2). Remember that in our parametrization all the hA are massive, while

all the pA do have a vanishing quadratic term M2
pApB

. A type-II Goldstone can arise only

if the fields pA and pB are related by a linear term proportional to ṗApB − pAṗB. In this

case, the corresponding inverse propagator is

∆−1
pApB

=
1

2

(
ω2 − p2 4iµω

−4iµω ω2 − p2

)
. (5.12)

Imposing det
(
∆−1

)
= 0 and expanding for small momenta p, we see that the pair pA, pB

corresponds to a type-II Goldstone and a massive mode with dispersion relations

ω =
p2

4µ
+ . . . , ω = 4µ+

p2

4µ
+ . . . (5.13)

How many such configurations are possible? Consider the one-derivative term only for the

pA modes:

Tr
[
µ(Φ† ∂0Φ− ∂0Φ†Φ)

]∣∣∣∣
Φ=pATA

=
∑
A,B

Tr
[
µ(pAṗBT

ATB − ṗApBTATB)
]

=
∑
AB

µpAṗB Tr

[(
1 0

0 −1

)[
TA, TB

]]
= iµ

∑
ABC

pAṗB f̂ABC Tr

[(
1 0

0 −1

)
TC

]
. (5.14)

How many such independent terms exist? To answer this question, we need to look at the

matrices that generate the Gell-Mann basis. If TC is off-diagonal, the trace vanishes iden-

tically. As for the diagonal generators (the Cartan generators), the problem is equivalent

to asking in how many ways we can write a traceless matrix with two entries where one

entry is in the first NF /2 rows and one entry is in the last NF /2 rows. There are clearly

(NF /2)2 ways to do that. This is also the number of type-II Goldstone bosons and each of

them encodes two dof.

– 12 –
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The Goldstone spectrum is completed by N2
F − 1− 2×N2

F /4 = N2
F /2− 1 type-I Gold-

stones. To compute their dispersion relations we need again to look at the linear-in-µ term.

A cross term between a ha mode and a pa mode gives a type-I Goldstone and a massive

field. There are two possibilities, since the mode h0 has a different mass from all the ha.

• For h0, the inverse propagator reads

∆−1
h0p

=
1

2

(
ω2 − p2 − 8µ2 4iµω

−4iµω ω2 − p2

)
. (5.15)

Then the massless and the massive mode have dispersion relations

ω =
p√
3

+ . . . ω = 2
√

6µ+
5p2

12
√

6µ
. (5.16)

The presence of a linear mode with velocity 1/
√

3 was expected. This is a universal

sector that appears for fixed charge in any scale-invariant theory. In d+1 dimensions,

the tracelessness of the stress tensor for a free boson requires the low-energy action

to be of the form (∂tφ)2 − 1/d(∇φ)2.

• For ha, the inverse propagator reads

∆−1
hap

=
1

2

(
ω2 − p2 − 8 αh

αh+αv
µ2 4iµω

−4iµω ω2 − p2

)
. (5.17)

Then the massless and the massive mode have dispersion relations

ω =

√
αh

3αh + 2αv
p+ . . . ω =

√
8(3αh + 2αv)

αh + αv
µ+O

(
p2
)
. (5.18)

In this case the velocity is not fixed by scale invariance, but we have a constraint

from causality 0 < αh/(3αh + 2αv) < 1, which implies αh + αv > 0. This constraint

is satisfied at the fixed point since, using eq. (2.5), αh + αv = 0.6991αh > 0.

How are the Goldstone fields organized into representations of the unbroken group

C(M) = SU(N/2) × SU(N/2) × U(1)2? Once more we look at the term linear in µ. The

original SU(N) global symmetry is explicitly broken to SU(N/2) × SU(N/2). The dof

pa in the adjoint of SU(N) decompose as the sum of two adjoints of SU(NF /2), a pair

of bifundamentals (that together form a single bifundamental type-II Goldstone) and a

singlet (the conformal Goldstone), as shown in table 1.

5.3 Vacuum energy of the Goldstone fields

Now that we have the Goldstone spectrum, we can compute the leading quantum correction

to the energy formula, which is given by the zero-point energy of the type-I Goldstone

bosons (since the type II Goldstones have no zero-point energy).

– 13 –
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type I I I II

dof 1 N2
f /4− 1 N2

f /4− 1 2×N2
f /4

velocity 1/
√

3
√

αh
3αh+2αv

√
αh

3αh+2αv
n/a

SU(NF /2)× SU(NF /2)

representation
(1,1) ( ... , 1 ) (1, ... ) ( , )

Table 1. The Goldstone spectrum resulting from fixing the charges in the sector {J, . . . , J ,

−J, . . . ,−J}. The N2
F − 1 DOF stemming from the breaking of the global symmetry are arranged

into a singlet (the conformal Goldstone), two adjoints of SU(NF /2) and a pair of bifundamentals

(that together form a single bifundamental type-II Goldstone). The type-I Goldstones contribute

to the zero-point energy according to their velocities. The type-II Goldstone has a quadratic dis-

persion relation and has zero velocity. Not represented here is the spurious singlet corresponding

to the anomalous axial symmetry.

At low energy, the action for a Goldstone φ with dispersion relation ω = cp + . . . has

the form

SG =

∫
R×M3

dt dr

[
1

2
(∂tφ)2 +

c2

2
(∇φ)2

]
. (5.19)

Its one-loop energy is then

EG =
1

2
Tr
(
log
(
− ∂2

t − c24
))

=
1

4π

∫ ∞
−∞

dω
∑
p

log
(
ω2 + c2E(p)2

)
, (5.20)

where E(p) are the eigenvalues of the Laplacian on M3,

4fp(r) + E(p)2fp(r) = 0. (5.21)

The expression is clearly divergent, but we can use a zeta-function regularization. If we

write log(A) = − dA−s

ds

∣∣∣
s=0

, we can integrate out the effect of the time:

EG = − 1

4π

d

ds

∫ ∞
−∞

dω
∑
p

(
ω2 + c2E(p)2

)−s∣∣∣∣∣
s=0

= −1

2

d

ds

∑
p

(
Γ(s− 1/2)

2
√
πΓ(s)

c1−2sE(p)1−2s

)∣∣∣∣∣
s=0

= c
∑
p

E(p). (5.22)

The sum over the energies can be identified with a special value of the zeta function ζ(s|M3)

for the Laplacian on M3:

EG = c
∑
p

E(p) = c
∑
p

E(p)−2s

∣∣∣∣∣
s=−1/2

= cζ(−1/2|M3). (5.23)

The velocities do not depend on the charges, so the contribution to the energy is necessarily

of order J 0.
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Collecting all the Goldstones, we find that the total contribution to the energy is

given by

E0 =
1

2

(
2×

(
N2
F

4
− 1

)√
αh

3αh + 2αv
+

1√
3

)
ζ(−1/2|M3). (5.24)

Note that the NF -scaling of E0 is the same that we had found for the tree-level term. In

the case of a sphere of radius r0, the zeta function is known and it takes the value [30]

ζ(−1/2|S3) = −0.414 . . .

r0
. (5.25)

We can now write the full expression for the conformal dimension of the lowest state with

charges {J, . . . , J︸ ︷︷ ︸
NF /2

,−J, . . . ,−J︸ ︷︷ ︸
NF /2

}:

∆(J) = r0E(S3) =
3

2

N2
F

αh + αv

[
J 4/3 +

1

6
J 2/3 − 1

144
J 0 +O

(
J −2/3

)]
−
((

N2
F

2
− 2

)√
αh

3αh + 2αv
+

1√
3

)
× 0.212 . . . (5.26)

This result has to be understood as a triple expansion in the three large parameters of the

problem, 1/ε, N2
F and J .

The generic form of this expansion is

∆(J) =
N2
F

ε

[(
c4/3+O

(
N−2
F

))
J 4/3+

(
c2/3+O

(
N−2
F

))
J 2/3+

(
c0+O

(
N−2
F

))
+O

(
J −2/3

)]
−
((

N2
F

2
−2

)
d1+

1√
3

)
×0.212+O

(
J −2/3

)
+O(ε), (5.27)

where for each coefficient we have stressed the order of the expected 1/NF corrections and

everything is understood up to order O(ε) corrections.

Some terms in the above expansion are universal and fixed completely by the symme-

tries of the problem and dimensional analysis:

• the energy density has dimension 4 and the charge density has dimension 3. This

explains the leading J 4/3 term;

• the effect of the curvature, which is not relevant in the rg sense, since the theory has

no moduli space [17], is subleading. The Ricci curvature has dimension 2 and leads

to an expansion in the dimensionless quantity Rρ−2/3;

• the 1/
√

3 comes from the conformal Goldstone and is independent of ε and NF ;

• the coefficient N2
F /2− 2 is due to the symmetry breaking pattern and only depends

on the choice of fixed charges.

Since here we started from a calculable cft, which is described by a trustworthy linear

sigma model, we were able to explicitly compute the coefficients ci at leading order in N2
F
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and 1/ε. This is in contrast to earlier works where cfts which are not perturbatively acces-

sible were studied at large charge and their Wilsonian couplings could not be determined

within the framework of effective field theory. In analogy to these cases, we expect the

generic form of the charge dependence of the result for the conformal dimension (5.26) and

its generic features to be common to a larger class of models with the same matter content

and isolated fixed points, in which the fixed points are not perturbatively accessible.

6 Conclusions and outlook

In this article we have studied an asymptotically safe cft in four dimensions with gauge

group SU(NC), NF fermions and an NF × NF complex matrix scalar field in a sector of

large fixed global SU(NF )×SU(NF ) charge compactified on S3. This is the first time that

the large-charge limit has been considered in a non-supersymmetric relativistic cft in four

dimensions, and also the first time a non-supersymmetric cft containing fermions has been

considered at large charge. At fixed large charge, the fermions receive large masses due to

both the Yukawa term and the kinetic term and decouple from the dynamics. This in turn

decouples the gluons which are described by a confining Yang-Mills theory. Finally we are

left with the scalar sector which at fixed charge is governed by a time-dependent classical

ground state and fluctuations around it. The fluctuations are encoded by both relativistic

and non-relativistic Goldstone bosons. Analyzing the spectrum of these modes we find the

expected conformal Goldstone with velocity 1/
√

3 and via a causality constraint for the

other modes, a consistency condition for the couplings of the model αh + αv > 0.

Our main result is the conformal dimension of the lowest-lying operator at large charge,

which via the state-operator correspondence is given by the energy of the fixed-charge

quantum corrected ground state. This dimension is expressed in terms of an expansion

in the large parameters J , NF and 1/ε, where the leading term in the large charge J
scales as J 4/3, as expected on dimensional grounds, with subleading terms that scale as

J 2/3 and J 0. A universal contribution at order J 0 comes from the Casimir energy of the

relativistic Goldstones and depends only on the symmetry-breaking pattern. Since we are

dealing with a controlled cft, we have complete control over all the coefficients appearing

in our main result.

There are number of further directions that can be explored. On the one hand, one

could push further the calculation of cft data by studying three-point functions which, to-

gether with the conformal dimensions, encode the full theory in this limit. Other operators

in the same sector can also be understood in terms of excited states. On the other hand,

the methods that we have presented can also be applied to more general systems with

fixed points in non-perturbative regimes where ε is of order one. In this case it would be

necessary to introduce a non-linear sigma model description for the Goldstone bosons. The

large-charge approach is moreover useful for any cft of the type discussed here, including

four-dimensional systems with an interacting fixed point in the infrared.
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A Fixing general charges

We can consider a more general charge configuration, where the homogeneous ground state

takes the form

H0 = e2iMtB, (A.1)

with

M =


µ1

−µ1

µ2

−µ2

. . .

 , B =


b1
b1
b2
b2

. . .

 . (A.2)

On this ansatz for the ground state, the eom reduce to the algebraic equations

2µ2
i = ub2i + 2v

n∑
k=1

b2k +
R

12
, i = 1, 2, . . . NF /2 (A.3)

under the charge-fixing constraints

Ji
V

= 2b2iµi i = 1, 2, . . . , NF /2. (A.4)

The energy of the configuration is then given by

E = 4

NF /2∑
k=1

Jkµk +
RV

3

NF /2∑
k=1

b2k + 4V v

NF /2∑
k=1

b2k

2

+ 2V u

NF /2∑
k=1

b4k. (A.5)

We fix all the charges to be of the same order, i.e. Jk = jkJ where jk is order O(1)

and J is “large” and will be used as an expansion parameter. Then we expand µi as

µi = m1/3,iJ
1/3 +m−1/3,iJ

−1/3 + . . . (A.6)

and expand the eom in powers of J :

• at leading order (J2/3) the eom are

2m2
1/3,i −

u

2V m1/3,i
− v

V

∑
k

jk
m1/3,k

= 0 (A.7)
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• at next-to-leading order (J0) we find

4m1/3,im−1/3,i −
R

12
+

u

2V

m−1/3,i

m2
1/3,i

+
v

V

∑
k

jkm−1/3,k

m2
1/3,k

= 0 (A.8)

and so on. The system can be solved order-by-order in J and then the energy can be

consistently expanded. We find

E = c4/3J
4/3 + c2/3J

2/3 +O
(
J0
)
, (A.9)

where

c4/3 =
∑
k

(
4jkm1/3,k +

u

2V

(
jk

m1/3,k

)2
)

+
v

V

(∑
k

jk
m1/3,k

)2

, (A.10)

c3/2 =
∑
k

(
4jkm−1/3,k +

R

6

jk
m1/3,k

− u

V

j2
km−1/3,k

m3
1/3,k

− 2v

V

jk
m1/3,k

∑
i

jim−1/3,i

m2
1/3,i

)
. (A.11)
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