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sources of non-perturbative effects in the low transverse momentum region including novel
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SCET and resum any large logarithm in the measured transverse momentum up to NNLL
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1 Introduction

The understanding of the structure of nucleons is one of the most important and interesting

research subject in modern nuclear physics. The ultimate goal would be to have a complete

description of quarks/gluons position and momenta inside a hadron, which is not easy

because of the entanglement of initial/final states in all hadronic processes. In order to

properly define all hadron constituent contributions, the cross sections should be factorized

in some region of the phase space into properly defined hadronic matrix elements. Here we

will consider the transverse momentum dependent distributions (TMD), which appear in

the factorization of several processes like Drell-Yan, semi-inclusive deep-inelastic-scattering

(SIDIS) and e+e− hadron production [1–5]. Drell-Yan processes directly test the TMD

parton distribution functions (TMDPDF), while in SIDIS cross sections the TMDPDFs

are coupled to a TMD fragmentation function in the final state. Finally in e+e− hadron

production only the TMD fragmentation is present. Because of the factorization theorem,

the TMDs have several universal features like rapidity and renormalization scale evolution,

which should be also tested including their (universal) non-perturbative part. Recently

some of us have considered the possibility to define a jet-TMD, replacing a final state

hadron with a jet [6–8] in SIDIS and e+e− processes. The check of this possibility has

revealed that standard jet definitions are compatible with a factorization theorem only in

the case of small enough radii, which is a not obvious experimental condition in the planned

electron-hadron collider like EIC or LHeC. Instead large jet-radii need a specific definition

of jet, which allows soft radiation to be independent of radius. In [7, 8] this was achieved

using the winner-take-all (WTA) axis [9], and the perturbative calculations were done with

a precision similar to the case of fragmenting hadrons.

In this work we consider the possibility of groomed jets in SIDIS or e+e− → 2 jets.

Developments in jet substructure have shown that applying a grooming algorithm to a jet,

using for example the so called “soft-drop” procedure, robustly removes the contamination

from both underlying event and non-global correlations. Since this process essentially

removes wide angle soft radiation, retaining only a collinear core, it also dramatically

reduces hadronization effects (see figure 1), thus allowing an easier access to the TMD non-

perturbative physics which we want to probe. Groomed jets with an identified light/heavy

hadron in the jet were also proposed as probes of TMD evolution and distribution in [10, 11].

The residual non-perturbative effects contain pieces that depend on the soft-drop grooming

procedure and require careful analysis as was pointed out in [12]. In addition, with the

use of soft-drop we can derive factorization theorems for large jet radius (R ∼ 1), which

we consider to be the relevant case for low energy experiments, such as EIC. In order

to focus on collimated jet configurations, we also impose an upper cutoff in the groomed

jet invariant mass.1 This constraint allows us to derive a factorization theorem involving

the same universal soft function that appears in traditional hadronic TMD, and which is

independent of the jet radius for R ∼ 1. This is a key feature for groomed jets and it is

necessary for the universality of TMDs and for this reason, in this paper, we only consider

1Note that the small transverse momentum constraint does not necessarily ensure collimated configura-

tions since topologies with two or more widely separated sub-jets are also permitted.
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Figure 1. Hadronization effects in a typical e+e− → 2 jets from Pythia 8 [13, 14]. at center of

mass values, Left: Q = 100GeV, Right: Q = 50GeV.

R ∼ 1. The cutoff is imposed using groomed jet-thrust, e ≡ (m/Q)2, where m is the

groomed invariant mass and Q is the center of mass energy. This allows us to introduce a

single cutoff parameter, ecut, independent of the jet energy or transverse momentum.

The paper is organized as follows. In section 2, we give a review of soft-drop and discuss

the factorization of the e+e− → 2 jets, transverse momentum decorrelation within SCET

and give detailed comparisons of our NNLL accurate prediction with simulations for this

observable. In section 3, we consider the factorization for the corresponding observable

in DIS. We carefully enumerate all the non-perturbative corrections and discuss their

universality in section 4. We conclude in section 5. The details of the one loop calculations,

resummation, and evolution are provided in the appendix.

2 Di-jet events in electron-positron colliders

In this section we discuss the measurement of momentum de-correlation in electron-positron

colliders. We identify events with two final state jets and we consider the transverse

momentum of one jet w.r.t. the other. The measurement that we are considering in this

work is a generalization of the di-hadron momentum de-correlation,

qT =
pTh1

z1
+

pTh2

z2
(2.1)

where one or both of the identified hadrons is replaced by a jet, defined through an infrared-

safe jet algorithm. Here pThi
and zi are the transverse momentum and energy fraction of

the hadron i respectively. The factorization theorem is usually written for this normal-

ized vector sum of the transverse momenta rather than just the sum of the transverse

momenta. It can be verified by momentum conservation and simple geometry that the

quantity pTh1
/z1 represents the transverse momentum of the radiation recoiling against

the hadron w.r.t. the axis defined by the hadron itself. This makes it convenient to write

a factorization theorem which matches onto the standard hadron fragmentation function

as explained in [10].

We consider three possible scenarios as illustrated in figure 2 and we refer to them

as di-hadron, hadron-jet, and di-jet momentum de-correlation. To simplify the discussion

we focus on the case of di-jets (figure 2c) and we briefly comment how our results are

generalized for the case of hadron-jet de-correlation. For the case of groomed jets the

– 2 –
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Figure 2. Three possible transverse momentum de-correlation measurements in e+e− annihilation:

(a) Identify two hadrons h1 and h2 with momenta ph1 , ph2 and energy fractions zh1 , zh2 respectively,

(b) Identify a jet and a hadron with momenta pjet, ph with energy fractions zjet, zh, (c) Identify

two jets with momenta pjet1 , pjet2 and energy fractions zjet1 , zjet2 .

observable qT is defined with the groomed quantities, i.e., pµjet is the groomed jet four-

momentum and zjet = 2p0jet/Q. The transverse component pT jet is measured with respect

to an axis close to the full or groomed jet axes. The exact choice of the axis only differs

by power corrections. For concreteness in the results that follow we make the choice of the

axis to lie along one of the groomed jets.

Since we want to probe the non-perturbative physics, we wish to work in the small

transverse momentum regime (qT �
√
s where qT ≡ |qT |). There are various ways one

can define the jet axis and the choice of definition will impact the form of factorization.

It was discussed in ref. [7] that the standard jet axis choice suffers from factorization

breakdown for large jet radius. This breakdown is due to energetic emissions at relatively

wide angles. Such configurations will contribute to the small transverse momentum region

when the energetic subjets are clustered in a single large radius jet. To avoid this problem

in refs. [7, 8] the winner-take-all (WTA) axis was used instead. This way ensures that wide

angle energetic emissions induce large transverse momentum (qT ∼
√
s) pushing the qT

measurement away from the observable region.

In this paper we propose, alternatively, the use of groomed jet-substructure to isolate

the collimated configurations and choose the jet axis to be the groomed jet axis which is

insensitive to jet boundary effects. Particularly we consider the normalized jet mass as the

relevant jet-substructure observable,

e ≡
(
mJ

Q

)2

. (2.2)

We shall see that imposing this constraint still allows us to capture a majority of events

and hence does not significantly impact the cross-section.

– 3 –
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2.1 Soft-drop: a brief review

The grooming procedure that we use is the soft-drop algorithm. We give here a brief review

of the soft-drop groomer and eventually discuss the various hierarchies, the relevant modes

and the factorization of the cross section in the next sections.

Soft-drop grooming [15] removes contaminating soft radiation from the jet by con-

structing an angular ordered tree of the jet, and removing the branches at the widest

angles which fail an energy requirement. The angular ordering of the jet is constructed

through the Cambridge/Aachen (C/A) clustering algorithm [16–20]. As soon as a branch

is found that passes the test, it is declared the groomed jet, and all the constituents of the

branch are the groomed constituents. At the end of the grooming procedure only the nar-

row energetic core remains from the original jet. Since at large angles all collinear energetic

radiation is to be found at the center of the jet, no cone is actually imposed to enclose this

core. One simply finds the branch whose daughters are sufficiently energetic. Formally the

daughters could have any opening angle, though their most likely configuration is collinear.

The strict definition of the algorithm is as follows. Given an ungroomed jet (which

itself is identified first using a suitable algorithm such as the anti-kT , [21]), first we build

the clustering history by starting with a list of particles in the jet. At each stage we merge

the two particles within the list that are closest in angle.2 This gives a pseudo-particle,

and we remove the two daughters from the current list of particles, replacing them with

the merged pseudo-particle. This is repeated until all particles are merged into a single

parent. Then we open the tree back up working backwards so that at each stage of the

declustering, we have two branches available, label them i and j. We require:

min{Ei, Ej}
Ei + Ej

> zcut

(
θij
R

)β
, (2.3)

where zcut is the modified mass drop parameter, β is the parameter which controls the

angularities, θij is the angle between ith and jth particle, R is the jet radius and Ei is the

energy of the branch i. If the two branches fail this requirement, the softer branch is re-

moved from the jet, and we decluster the harder branch, once again testing eq. (2.3) within

the hard branch. The pruning continues until we have a branch that when declustered

passes the condition eq. (2.3). All particles contained within this branch whose daughters

are sufficiently energetic constitute the groomed jet. Intuitively we have identified the first

genuine collinear splitting.

For a hadron-hadron collision, one uses the transverse momentum (pT ) with respect

to the beam for the condition of eq. (2.3),

min{pT i, pTj}
pT i + pTj

> zcut

(
θij
R

)β
. (2.4)

We formally adopt the power counting zcut � 1, though typically one chooses

zcut ∼ 0.1. See [24] for a study on the magnitude of the power corrections with respect

2This merging is usually taken to be summing the momenta of the particles, though one could use

winner-take-all schemes [9, 22, 23].
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to zcut for jet mass distributions. To be specific, in this paper we consider only the case

β = 0. Note that for β = 0 the energy of the groomed jet constituents is a collinear unsafe

observable [15, 25], however, the additional constraint of the measured transverse momen-

tum qT provides a physical collinear cutoff in a similar way a jet shape measurement does.

For detailed discussion on this we refer to appendix D.

2.2 Hierarchies, modes, and factorization

In order to compute the transverse momentum de-correlation qT , defined in eq. (2.1),

for two groomed jets in di-jet events in e+e− annihilation (figure 2 (c)) we are going to

impose a normalized jet mass measurement as defined in eq. (2.2) on both jets. The other

parameters that enter our cross section are the soft-drop parameters zcut ∼ 0.1, β = 0.

Ultimately we are going to integrate over the jet mass measurement up to an appropriate

(but still small) cut-off value ecut.

We have a rich spectrum of possible hierarchies of momenta, which are all consistent

with maintaining qT /Q, ecut, zcut � 1. We have that qT /Q, ecut, zcut are now expansion

parameters in the effective field theory (EFT), and they should be taken into account in

the factorization of the process. We first list and briefly discuss these hierarchies and the

corresponding factorization theorems within an EFT. The general modes that we will

consider will fall into three classes. Modes that explicitly pass soft drop (usually the highly

energetic collinear modes), modes that explicitly fail soft-drop (the global soft function

modes) and finally those which can live on the border and need to be tested, as to whether

they pass or fail. Only the modes that pass soft-drop will contribute to e, while qT receives

contributions from all radiation that fails soft-drop.

The first regime in which we are interested is Q � Qzcut � qT & Q
√
e � Q

√
ezcut.

Here we have low values of qT which are of the order of Q
√
e. We identify the following

modes to be relevant to the cross section:

soft: pµs ∼ qT (1, 1, 1);

collinear: pµc ∼ Q(λ2
c , 1, λc), λc =

√
e, (2.5)

and the factorization of the cross section in this region is schematically

dσ

de1de2dqT
= H ij

2 (Q;µ)× S(qT )⊗ J ⊥i (e1, Q, zcut, qT )⊗ J ⊥j (e2, Q, zcut, qT ). (2.6)

Apart from the hard factor H all the other terms in this equation are affected by rapid-

ity divergences. The global soft function S that appears in the factorization theorem in

eq. (2.6) (and later in the SIDIS case eq. (3.4)) is the universal function that is also present

in the factorization theorem of Drell-Yan, di-hadron production in electron-positron anni-

hilation, and semi-inclusive DIS with TMDs. The operator definition of the soft function

(see refs. [1, 2, 26]) is given by

S(qT ) =
1

NR
tr 〈[S†nSn̄](0)δ(2)(qT −P⊥)[S†n̄Sn](0)〉 , (2.7)

where NR = Nc for Sn/n̄ in the fundamental and N2
c − 1 for the adjoint representation of

SU(Nc). This function has been calculated at NNLO in [27]. This function is responsible

– 5 –
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for the TMD evolution which is actually known up to third order [28, 29]. The power

corrections to the evolution have been studied in [30]. Because of the universality of this

soft function the non-perturbative corrections that it generates in the TMD-evolution factor

are process independent [1, 2, 30].

The soft factor provides finally a rapidity renormalization factor for the jets which

is totally analogous to the TMD case, see ref. [31], so that in this sense we can re-write

eq. (2.6) as

dσ

de1de2dqT
= H ij

2 (Q;µ)× J ⊥i (e1, Q, zcut, qT ;µ, ζA)⊗ J ⊥j (e2, Q, zcut, qT ;µ, ζB) , (2.8)

with ζAζB = Q4z4
cut, which recalls clearly the all-order factorization for the di-hadron frag-

mentation case using TMD. The hadronization corrections to eq. (2.6)–(2.8) are discussed

in more detail in section 4.

The jet-TMD of eq. (2.8) can be re-factorized depending on the relative magnitudes of

the effective scales which define it so that one can identify the more complete set of modes

soft: pµs ∼ qT (1, 1, 1);

collinear: pµc ∼ Q(λ2
c , 1, λc), λc =

√
e;

soft-collinear: pµsc ∼ Qzcut(λ
2
sc, 1, λsc), λsc = qT /(Qzcut);

collinear-soft: pµcs ∼ Qzcut(λ
2
cs, 1, λcs), λcs =

√
e/zcut (2.9)

and we illustrate this in figure 3. We start considering the limit qT & Q
√
e � Q

√
ezcut,

which corresponds to region II in figure 3, when the unintegrated and unsubtracted jet

function, J ⊥i , in eq. (2.6) can be re-factorized into three terms,

J ⊥i (e,Q, zcut, qT ) = S⊥sc,i(Qzcut, qT )×
∫
de′ Scs,i(e− e′, Qzcut)Ji(e

′, Q) (2.10)

where all the rapidity divergent part and transverse momentum dependence is contained

in the calculable S⊥sc,i. The subtracted and unsubtracted jet-TMD are related by

J ⊥i (e,Q, zcut, b, µ, ζ) =
√
S(b)J ⊥i (e,Q, zcut, b) (2.11)

where we have expressed all the subtraction in b-space.3 For smaller values of qT : Q �
Qzcut & Q

√
e � qT ∼ Q

√
ezcut, the collinear-soft and soft-collinear merge into the same

mode which we still refer to as collinear-soft. The soft and collinear modes remain un-

changed in their scaling compared to region II. The form of factorization theorem in

eq. (2.6) does not change but now the corresponding jet TMDs are re-factorized as (see

region III in figure 3),

J ⊥i (e,Q, zcut, qT ) =

∫
de′ S⊥cs,i(e− e′, Qzcut, qT )Ji(e

′, Q). (2.12)

3Throughout the paper we will interchange between qT , b spaces for the transverse spectrum and between

e, s spaces for the jet mass. We use the same symbol for any function in either space. The variable we are

working in should be clear from the argument of the function.

– 6 –
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c
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s

⊗
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(III)

ln
(1
/
z
)

ln(1/θ)

Figure 3. Three possible hierarchies for qT . Shaded region is one that fails Soft-Drop. (I) Largest

qT ∼ Qzcut. The cross section is factorized into 3 function s, cs and c. (II) The soft function s splits

into two s and sc.(III) The sc function merges with the cs function.

Several of the parameters in the differential cross-secion in eq. (2.8) are in practice inte-

grated in experiments, so that it is convenient to explicitly write the cumulant (or partially

integrated) distribution

dσ

dqT
(ecut) =

∫ ecut

0
de1de2

dσ

de1de2dqT
. (2.13)

For this cross section we work with the integrated jet function which depends on ecut rather

than e,

J ⊥
j (ecut, Q, zcut, qT ;µ, ζ) =

∫ ecut

0
de J ⊥

j (e,Q, zcut, qT ;µ, ζ) , (2.14)

and the factorization theorem for electron-positron annihilation is

dσ

dqT
(ecut) = H ij

2 (Q;µ)

∫
db

4π
eib·qTJ ⊥

i (ecut, Q, zcut, b;µ, ζ)J ⊥
j (ecut, Q, zcut, b;µ, ζ) . (2.15)

The resummation of logarithms inside the jet-TMD implied by eq. (2.10)–(2.12) is taken

into account defining the cumulant jet function as

J ⊥
i (ecut, Q, zcut, b;µ, ζ) =

√
S(b)J ⊥

i (ecut, Q, zcut, b) , (2.16)

J ⊥
i (ecut, Q, zcut, b) = S⊥

sc,i(Qzcut, b)Ji(ecut, Q, zcut;µ), (2.17)

Ji(ecut, Q, zcut;µ) =

∫ ecut

0
de

∫
de′ Scs,i(e− e′, Q, zcut;µ)Ji(e

′, Q;µ) (2.18)

and we recall that the rapidity divergences are present only in S and S⊥
sc,i, canceling in

their product in eq. (2.16). With the exception of the soft-collinear function, S⊥
sc, all

other ingredients of the factorization are already known at least up to NLO accuracy. In

appendix B we report the defining matrix elements of each function, we summarize the NLO

results and we perform the NLO calculation of S⊥
sc. We have performed the calculation

using rapidity regulator. The connection between rapidity regulator and ζ-parameter is

outlined in appendix C.2.

– 7 –
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Figure 4. Left: The normalized cross sections for different values of the jet mass cutoff parameter

ecut. We also include the corresponding ratios with respect to the case ecut = 0.01. Right: The

relatively normalized cross section for fixed ecut = 0.01 and for different value of the jet radius R.

The corresponding ratios are with respect to R = 1.

Finally we observe that using monte-carlo simulations (particularly Pythia 8 [13, 14])

most of the events fall in the kinematic regime

Q� Qzcut � qT ∼ Q
√
ecut . (2.19)

An important consequence of the jet function refactorization in eq. (2.10) is that the trans-

verse momentum dependent elements decouple from the jet mass elements. This suggests

that, as long as we remain within the hierarchy of eq. (2.19), then the exact mass cutoff on

the invariant mass will only influence the overall normalization and not the shape of the

TMD distribution. We test this observation against the monte-carlo simulations by com-

paring the normalized TMD distributions for various values of ecut. We show the results in

figure 4 (left). The jet algorithm is implemented through FastJet-3 [32]. In addition we

note that as long as we measure qT � Qzcut and for R ∼ 1 the shape and normalization

of the cross section is independent of the choice of R. We also demonstrate this with the

help of simulations. We simulate events at Q = 50 GeV and we analyze them for different

values of R & 1. We show the resulting distributions in figure 4 (right). Note that for that

plot we preserve the relative normalizations of the curves.

2.3 Renormalization group evolution

The two main quantities involved in the factorization procedure carried out in previous

section are the subtracted jet-TMD for which we have

µ
d

dµ
J ⊥(e,Q, zcut, b, µ, ζ) = γqF (µ, ζ)J ⊥(e,Q, zcut, b, µ, ζ), (2.20)

ζ
d

dζ
J ⊥(e,Q, zcut, b, µ, ζ) = −Dq(µ, b)J ⊥(e,Q, zcut, b, µ, ζ), (2.21)

– 8 –
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where on the r.h.s. we have considered just quark initiated jets and we have Fourier trans-

formed with respect to qT the jet functions appearing in eq. (2.8). Of course this result

recalls literally the standard TMD case.

However, because of the re-factorization of J ⊥ (see eq. (2.10)–(2.12)) this resummation

is not complete and large logarithms can still spoil the convergence of the perturbative

series. Defining s as the variable conjugate to e in Laplace space (see appendix A) and

G ∈
{
Ssubsc (Qzcut, b), Scs(s,Qzcut), J(s,Q)

}
; Ssubsc (Qzcut, b) =

√
S(b)Ssc(Qzcut, b) ,

(2.22)

we have

µ
d

dµ
G = γG(µ, αs)G =

(
ΓG[αS ]lm2

G
+ ∆γG[αS ]

)
G, (2.23)

which are formally similar to the TMD case and the values of mG are reported in the

appendix in table 1. The only function in G which has a rapidity evolution equation is

Ssubsc and it scales like J ⊥ in eq. (2.21). The cusp part of eq. (2.23) is proportional to the

standard cusp anomalous dimension

ΓGµ [αs] =
ΓG0

Γcusp
0

Γcusp =
ΓG0

Γcusp
0

∞∑
n=0

(αs
4π

)1+n
Γcusp
n . (2.24)

For the non-cusp part we have also a perturbative expansion

∆γG[αS ] =

∞∑
n=0

(αs
4π

)1+n
γGn . (2.25)

The anomalous dimensions that enter in the calculations for each case are given in ap-

pendix C. The evolution in rapidity and factorization scales of all quantities can be im-

plemented using the ζ-prescription whose general framework can be found in ref. [33]. We

provide some details for the present case in the appendix.

The resummation of potentially large logarithms inside the jet-TMD is done performing

the evolution in Laplace space and then integrating such that we get the cumulant before

we take the inverse transform. In this way we resum logarithms which are associated to

ecut. All this works as follows. Starting from eq. (2.18), then taking the Laplace and

consecutively the inverse transform with respect to e we find

Ji(ecut, Q, zcut;µ) =
1

2πi

∫ γ+i∞

γ−i∞
ds

exp(secut)− 1

s
Scs,i(s,Q, zcut;µ)Ji(s,Q;µ) . (2.26)

Then solving the RGE equations for the collinear-soft and jet function as described in ap-

pendix C.1, and performing the last remaining integral over the Laplace conjugate variable

s we get

Ji(ecut,Q,zcut;µ) = exp
(
Kcs(µ,µcs)+KJ(µ,µJ)

)
Scs,i(Lcs→ ∂ωcs ;µcs)Ji(LJ→ ∂ωJ ;µJ)

(
µcs

Q
√
zcutecut

)2ωcs(µ,µcs)( µJ
Q
√
ecut

)2ωJ (µ,µJ ) exp(γE(ωcs(µ,µcs)+ωJ(µ,µJ)))

Γ(1−ωcs(µ,µcs)−ωJ(µ,µJ))
. (2.27)
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This is our final result for the resummed cumulant jet function. The order of logarithmic

accuracy is then determined by the order of which the kernels KF , ωF , and the fixed

order collinear-soft and jet functions are evaluated. At this stage of the calculation the

canonical scales, µcs and µJ , are not yet fixed. This allows us to choose the scales such that

potentially large logarithms are minimized in momentum space. From the above is clear

that the canonical choice of scales such as the fixed order logarithms are minimized are,

µcs = Q
√
zcutecut , µJ = Q

√
ecut . (2.28)

In numerical applications one needs to perform variations around these scales in order to

obtain an estimate of the theoretical uncertainty.

2.4 Numerical results for e+e−

In this section, we provide the results of our calculation for e+e− → 2 jets computed up

to NNLL accuracy. The implementation necessarily needs a choice for the rapidity scales

and we have done it using the ζ-prescription as described in ref. [33] and adapting the

code artemide to the present case. This consisted of performing the evolution of the

transverse momentum dependent components within the artemide framework, while for

all other scales not involved in the rapidity evolution, i.e., the hard and jet functions, see

appendix C.1.

There are some important modifications to the ζ-prescription framework for our case

which affect the numerics. One of this is that now ζAζB ∼ Q4z4
cut compared to the di-

hadron decorrelation case where ζAζB ∼ Q4. This means that the effective hard scale to

which the distributions are sensitive is lower. Because the TMD factorization is valid when

qT is much lower than the hard scale of the process, one needs that the product Qzcut be

sufficiently high. In our plots we have considered the case qT . Qzcut. Then the evolution

of the jet-TMD given in eq. (2.23) is also slightly different from the standard hadron TMD,

although the changes are implemented easily in the artemide code. A one-loop check of

all anomalous dimensions is provided in appendix B.

In figure 5 we compare our analytic result for NLL cross section (normalized) against

Pythia simulations for Q = 50 and 100 GeV. For the purposes of comparison we turn

hadronization off in the simulation and we compare against our purely perturbative result.

The perturbative calculation depends on the parameter BNP which in practice implements

a cutoff in the inverse Laplace transform such that the soft scale, that behaves as 1/b, does

not hit the Landau pole. As long as we choose this parameter such that convergence of

the integral is reached before the cutoff, then the perturbative result is not much sensitive

to the value of BNP. Although, as we now discuss, the theoretical uncertainty of the cross

section for these energies at NLL is quite large, we find very good agreement with the

simulations for the canonical choice of scales (i.e., central line in figure 5).

In figure 6 we give the NNLL results including a theoretical uncertainty band. We

compare against the NLL cross section and although the error bands seem to be larger than

what is typically expected we can clearly see that the result convergences and the theory

error decreases by approximately factor of two. To estimate the theoretical uncertainty we

– 10 –



J
H
E
P
0
8
(
2
0
1
9
)
1
6
1

0.00 0.05 0.10 0.15 0.20
0

1

2

3

4

5

6

7

0.00 0.05 0.10 0.15 0.20
0

2

4

6

8

Figure 5. Comparison of the NLL result against the partonic shower of Pythia 8 for R = 1 and

ecut = 0.01 for two different center of mass energies, Left: 50GeV, Right: 100GeV.
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Figure 6. Transverse momentum de-correlation for e+e− → dijets with center of mass energy at

the Z mass.

first vary all the factorization scales of a factor 2 (0.5) around their canonical value, then we

separately take the envelope of the variations involved in rapidity evolution, µ, µsc, and of

the ones involved only in the virtuality evolution of the jet function, µcs, µJ . The final error

bands we show are the quadrature of the two contributions. The reason for this prescription

is that rapidity and virtuality evolutions are in principle uncorrelated. The uncertainty is

somewhat larger than what one might expect for a NNLL calculation, and is practically

dominated by the variations in the jet function. This is attributed to the small values of

the collinear-soft scale, µcs ∼ Q
√
ecutzcut, which approaches the non-perturbative regime

even for values of Q ∼ mZ . One might attempt to reduce the uncertainty by increasing

either ecut or zcut, but caution is needed not to invalidate the corresponding hierarchy. We

will see later that when only the mass of one jet is measured (e.g., in DIS or hadron-jet

decorrelation) then the error band decreases significantly.
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3 Jets in DIS

The advent of new colliders like EIC and LHeC makes the measurement of jets interesting

also in semi-inclusive deep inelastic scattering (SIDIS) experiments. Actually we want to

explore the possibility of using jets to study the TMDPDF.

For the present case we demand that the hard scattering of the lepton on the proton

produces a single jet. In the Breit frame we measure the transverse component, qT , of the

transferred momentum, qµ = k′µ − kµ with respect to the single groomed jet. As before,

we impose a jet mass cut-off ecut and the grooming parameter zcut. In this framework

the initial state proton is moving along the −z direction and the final state jet is moving

in the opposite +z-direction, so that we can assign the directions n and n̄ to the beam

and jet definition. The contribution to this transverse momentum measurement comes

from the initial state radiation which forms part of the TMDPDF and the radiation that

fails soft-drop in the final state jet. We demand that there is a single energetic jet with

EJ ∼ Q/2 =
√
−q2/2 with accompanying soft radiation.

It is instructive to setup some of the notation that we are using for describing the

kinematics in the Breit frame. The virtual photon is assumed to be completely space-like

and it has only the z component of the momentum. Defining our light-cone directions

nµ = (1, 0, 0,+1) and n̄µ = (1, 0, 0,−1), the resulting photon momentum qµ is

qµ =
Q

2
(nµ − n̄µ) , (3.1)

where Q2 = −q2 is a positive quantity. We assume that at the partonic level, a single quark

carrying x fraction of the proton longitudinal momentum undergoes a hard interaction

with the virtual photon. In this frame, the proton is moving along the −z direction and

its momentum can be written as:

Pµ =
Q

2x
n̄µ . (3.2)

At tree level and by momentum conservation the final state parton will carry momentum

xPµ + qµ =
Q

2
(nµ − n̄µ) +

Q

2
n̄µ =

Q

2
nµ , (3.3)

which is exactly opposite in direction to the incoming beam. Of course this will be modified

beyond tree-level when initial and final state radiation is included.

3.1 Schematics for factorization

Since we are working with two back-to-back directions, our usual definition of the soft

function holds: in other words the change from future pointing to past pointing Wilson

lines does not affect its value [1–5].

Since we still impose the same jet mass measurement on the final state jet, we have

all the modes that we had in the e+e− case. The main difference is that now the initial

hadronic state is a TMDPDF. The form of the factorized cross section follows again the

hierarchy Q� Qzcut � qT , R ∼ 1 and

dσ

dxdQ2dqT
= N (x,Q)H2(Q,µ)× S(qT )⊗Bi←h(x,Q, qT )⊗ J ⊥j (ecut, Q, zcut, qT ) , (3.4)
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where x = −q2/(2P · k), k is the momentum of the incoming electron, and N (x,Q) is the

over-all normalization which we give later in this section. The un-subtracted TMDPDF is

Bi←h. In our rapidity regularization scheme the (subtracted) TMDPDF is defined as

Fi←h(x, b;µ, ζ) =
√
S(b)Bi←h(x,Q, b). (3.5)

At perturbative values of qT , the Fi←h can be matched onto the collinear PDF. The

matching coefficients at NNLO are evaluated in [31, 34] and in the appendix we review

some one-loop results. Once the subtracted quantities are included we can write

dσ

dxdQ2dqT
= N (x,Q)H2(Q,µ)

∫
db

4π2
eib·qTFi←h(x,Q, b, µ, ζA)J ⊥j (ecut, Q, zcut, b;µ, ζB) .

(3.6)

The evolution under renormalization group equations for the TMDPDF is widely known

(see e.g. [33, 35–37]) and we recall a few characteristics here. One has

µ
d

dµ
Ff←f ′(x, b, µ, ζ) = γfF (µ, ζ)Ff←f ′(x, b, µ, ζ),

ζ
d

dζ
Ff←f ′(x, b, µ, ζ) = −Df (µ, b)Ff←f ′(x, b, µ, ζ), (3.7)

where Df and γfF are the rapidity and UV anomalous dimensions, respectively. The inte-

grability requirement of this couple of equation results in

µ
d

dµ

(
−Df (µ, b)

)
= ζ

d

dζ
γfF (µ, ζ) = −Γcusp

f (3.8)

where Γcusp
f is the cusp anomalous dimension. The UV anomalous dimension is written in

these terms as

γfF = Γcusp
f lζ − γfV , (3.9)

γfV being the non-cusp part of the anomalous dimension and lζ = ln
(
µ2/ζ

)
. The γV and

D anomalous dimensions are known up to O(a3
s) [28, 29, 38–40]. A numerical calculation

for the four-loop cusp anomalous dimension was recently given in [41]. All the evolution

equations are the same for the case of TMD fragmentation functions, and we do not discuss

them any more here.

3.2 Derivation of the factorized cross section using jets

In this section we provide some details for the factorization of the SIDIS cross section in

eq. (3.4), (3.6). The scattering amplitude for the process ep→ ef where f is the final state

is given by:

iM(ep→ ef) = (−ie2)ū(k′)γµu(k)
1

q2
〈f |Jµ(0)|p(P )〉 , (3.10)
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and thus the corresponding cross section is given by

dσ(ep→ ef) =
e4

4(s−m2)

∫
d3k′

2(2π)3Ek′
tr
[
/kγµ /k

′γν

]

∑
f

∫
dΠf 〈p(P )|J†µ(0)|f〉〈f |Jν(0)|p(P )〉(2π)4δ(4)(q + P − pf ) , (3.11)

where q = k′−k. We can use the standard parametrization of the final electron phase-space

to write: ∫
d3k′

2(2π)3Ek′
= dxdy

ys

(4π)2
, (3.12)

where y = (2P · q)/(2P · k) and s is the hadronic Mandelstam variable. We then get,

dσ

dxdy
(ep→ ef) = Lµν(k, k′)

∑
f

∫
d4reiq·r

∫
dΠf 〈p(P )|J†µ(0)|f〉〈f |Jν(x)|p(P )〉 , (3.13)

where rµ is Fourier conjugate of the momenta qµ and Lµν is the leptonic tensor,

Lµν(k, k′) ≡ α2ys

4(s−m2)
tr
[
/kγµ /k

′γν

]
. (3.14)

The next step is to project the hadronic final state |f〉 onto the one that corresponds to

the measurement that we are proposing, i.e.,

∫
dΠf |f〉〈f | →

∫
dqT zdz

∫
dΠf [g-jet(zqT ,z)]

|f〉〈f | . (3.15)

We can now match the full theory hadronic current Jµ(x) onto the SCET+ [42] current

working in the Breit frame,

Jµ(x) = Cµν(Q)
[
χ̄n,QS

†
nW

†
t UnγνSn̄χn̄,Q

]
+O(λ) , (3.16)

where λ is the power counting parameter of our EFT which will turn out to be q⊥/Q ∼
ecut/Q. Note that in the same step, through BPS field redefinition, we decoupled the

collinear soft modes from the collinear modes and hence the presence of the Un Wilson lines.

In the matching we also have the soft Wilson lines Sn. From the kinematic constraints of

the measurement and since all the modes that are present in the projected final state are

decoupled from each other at the level of the Lagrangian, (we assume that contributions

from Glauber gluon exchanges cancel) it is possible to factorize the final state as follows,

|f〉 → |Xn̄〉|Xn〉|Xs〉|Xsc〉 , (3.17)

where we have included in Xn all possible modes that contribute to the invariant mass

measurement. Refactorization of the n-collinear sector follows from the same steps as

in the case of electron-positron annihilation presented in ref. [43]. We are now ready to

factorize the cross section into individual SCET matrix elements. In the final result one

needs to be careful regarding all the index contractions and the tensor structures. This was
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carefully considered in ref. [44]. In addition we are considering the case where the frame

we are working is rotated such that the transverse momentum of the groomed jet is zero.

After all rearrangements we get,

dσ

dxdydzdqT
(ep→ ef) = σ0(x,Q)×H2(Q)

∫
d4reiq·r

1

Nc

∑
Xs

〈0|SnS†n̄(r⊥)|Xs〉〈Xs|Sn̄S†n(0)|0〉

×
∑
Xn̄

〈p(P )|χ̄n̄(r+, r⊥)
γ+

2
|Xn̄〉〈Xn̄|χn̄(0)|p(P )〉 (3.18)

× 1

Nc

∑
Xsc

〈0|U †nWt(r⊥)|Xsc〉〈Xsc|W †t Un(0)|0〉

× z

2Nc
tr
∑
Xn

〈0|γ
−

2
χn(r−, r⊥)|Xn〉〈Xn|χ̄n(0)|0〉|

pXn⊥ =0
.

The hard matching coefficient in general has two Lorentz structures, given the two types

of currents, vector and axial. For the case of photon with vector current, we simply

have Hµν ∼ gµν⊥ . We have also multipole-expanded the final result. To proceed with the

factorization theorem in momentum space, we remove r⊥ dependence from the various

EFT matrix elements by acting the corresponding fields on the final states. This gives us

dσ

dxdydzdqT
(ep→ ef) = σ0(x,Q)×H2(Q)

∫
d4re

iq·r+i
(
p
XRn̄
⊥ +pS⊥

)
·r⊥

1

Nc

∑
Xs

〈0|SnS†n̄(0)|Xs〉〈Xs|Sn̄S†n(0)|0〉

×
∑
Xn̄

〈p(P )|χ̄n̄(r+, 0⊥)
γ+

2
|Xn̄〉〈Xn̄|χn̄(0)|p(P )〉 (3.19)

× 1

Nc

∑
Xsc

〈0|U †nWt(0)|Xsc〉〈Xsc|W †t Un(0)|0〉

× z

2Nc
tr
∑
Xn

〈0|γ
−

2
χn(r−, 0⊥)|Xn〉〈Xn|χ̄n(0)|0〉|

pXn⊥ =0
,

where

p
XR
n̄
⊥ |pg-jet

⊥ =0
= pXn̄⊥ − P⊥|pg-jet

⊥ =0
= pXn̄⊥ |P⊥=0

(
1 +O(λ)

)
, (3.20)

is the difference in the transverse momentum of the recoiling initial state collinear radiation

and the proton with respect to the hadrons direction, which up to power-corrections of

order O(λ) is simply the transverse momentum of the recoiling radiation with respect to
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the proton. Performing the integral over d4r we get:

dσ

dxdydzdqT
(ep→ ef) = σ0(x,Q)×H2(Q)δ(2)

(
qT + p

XR
n̄
⊥ + pXs⊥ + pXsc⊥

)

1

Nc

∑
Xs

〈0|SnS†n̄(0)|Xs〉〈Xs|Sn̄S†n(0)|0〉

×
∑
Xn̄

〈p(P )|χ̄n̄(0)
γ+

2
δ(q− − p−Xn̄)|Xn̄〉〈Xn̄|χn̄(0)|p(P )〉 (3.21)

× 1

Nc

∑
Xsc

〈0|U †nWt(0)|Xsc〉〈Xsc|W †t Un(0)|0〉

× z

2Nc
tr
∑
Xn

〈0|γ
−

2
χn(0)δ(q+ − p+

Xn
)|Xn〉〈Xn|χ̄n(0)|0〉|

pXn⊥ =0
.

In order to simplify our result further we introduce “measurement” delta functions for

the soft and initial state matrix elements. This will allow us to absorb the pXi⊥ into the

corresponding matrix elements and use

1i =
∑
Xi

|Xi〉〈Xi| , (3.22)

to further simplify the form of EFT matrix elements. We also perform a type-I RPI

transformation in order to rewrite the proton matrix elements as function of fields with

respect to the initial state proton axis. We thus get

dσ

dxdydzdqT
(ep→ ef) =σ0(x,Q)×H2(Q)

∫
dp s⊥dp

sc
⊥ dp

c
⊥ δ

(2)(qT +pc⊥+ps⊥+psc⊥ )

1

Nc
〈0|T

(
SnS

†
n̄(0)

)
δ(2)(ps⊥−P⊥)T̄

(
Sn̄S

†
n(0)

)
|0〉

×〈p(P )|χ̄n̄(0)
γ+

2
δ(q−−P−)δ(2)(pc⊥−P⊥)χn̄(0)|p(P )〉|P⊥=0

× 1

Nc
〈0|T

(
U †nWt(0)

)
MSD
⊥ T̄

(
W †t Un(0)

)
|0〉 (3.23)

× z

2Nc
tr
∑
Xn

〈0|γ
−

2
χn(0)δ(q+−P+)|Xn〉〈Xn|χ̄n(0)|0〉|

pXn⊥ =0
,

whereMSD
⊥ is the measurement function given in eq. (B.26). Since we are considering only

large radius jets with R & 1 we may trivially perform the integration of the energy fraction

z using Q ' pXn+ up to power corrections. Also performing change of integration variables,

dxdy =
dxdQ2

xs
, (3.24)

we get eq. (3.4) with

N (x,Q) =
σ0(x,Q)

xs
, (3.25)

and the matrix elements involved in the functions S, B, and J are given in the appendix.

For the case of groomed jets with invariant mass cutoff it is possible to refactorize the jet
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Figure 7. The NLL and NNLL TMD spectra for groomed jets in DIS for EIC (left:
√
100GeV)

and HERA (right:
√
s = 318GeV) kinematics. The cross section are integrated in y = Q2/(xs)

and Q =
√

−q2 (see details in the main text).

function. This is done in ref. [43] and thus we do not demonstrate it here. Then integrating

over e ∈ (0, ecut) gives the dependence of the jet function in the parameter ecut. This is

identical to the analysis in the previous section on e+e−. This is our final result for the

factorization theorem in DIS.

3.3 Numerical results for DIS

In this section we use the factorization theorem in eq. (3.4) to obtain numerical results for

the TMD spectrum of groomed jets in DIS process. Our analysis is done for two center-of-

mass energies, EIC:
√
s = 100GeV and HERA: 318GeV. For both energies we integrate

over y = Q2/(xs) and Q =
√

−q2 in the regions 0.01 < y < 0.95 and 40 < Q < 50GeV.

For the TMDPDFs we use the fits obtained from Drell-Yan data [45] with the use of ζ-

prescription. In figure 7 we show our results for NLL and NNLL accuracies for the two

center of mass choices, including theoretical uncertainties. We estimate the theoretical scale

variations as described in section 2.4. The groomed jet parameters that we choose are the

same as in the di-lepton case: β = 0, zcut = 0.2, and ecut = 0.01. As before we find good

convergence between the NLL and NNLL result. The absolute value of theoretical scale

variation is improvable with higher logarithmic accuracy (NNLL-prime or perhaps N3LL),

which needs the explicit calculation of several jet hadronic matrix elements at two loops.

We further investigate the size of the uncertainty due to the hadronic initial state and

the non-perturbative effects induced by TMD evolution. We do that by varying the model

parameters as constrained by the phenomenological analysis in ref. [45] for our NNLL result.

The results are shown in figure 8. We consider both variable and fixed BNP = 2.5GeV−1

(for details on the difference of the two schemes see [45]). We find that the effects (for our

kinematics) are particularly small, of the order of ∼ 5%, which is much smaller than the

theoretical uncertainties. This suggests that we need a better control over the theoretical

uncertainties in order to further constrain TMD distributions from groomed jets in DIS.

As mentioned earlier the uncertainty can be mitigated with higher logarithmic accuracy
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Figure 8. The NNLL cross-section including modeling of the initial hadronic state effects fitted

from Derll-Yan processes using two different scenes: fixed and variable BNP.

or by choosing larger values of ecut, still compatible with factorization. This, will require

to treat the region III shown in figure 3. For this reason it is interesting to investigate the

range of values of ecut for which the energetic wide angle radiation is avoided.

4 Hadronization effects

One of the goals of the paper is to study the non-perturbative effects associated with TMD

distributions, in this case the TMDPDF. Usually in any experiment, there are multiple

sources of non-perturbative corrections associated with both the initial and final states.

To have access to a specific source of corrections, its therefore necessary to separate out

the pieces of interest from the uninteresting ones, which in this case constitute the final

state hadronization corrections. To access the TMD then, we must already have a good

extraction of the rest of the non-perturbative effects. This is the reason why we consider

distinct experiments in this paper. The idea, as we shall demonstrate, is that the final state

hadronization corrections are exactly the same in the two experiments. The e+e− → 2 jets

case can be used to extract out all the final state hadronization corrections, which can then

be used for DIS.

For the e+e− observable, the factorization takes the form in eq. (2.8), we can then

study the non-perturbative corrections for each collinear object J ⊥
i , which by symmetry,

are the same for the two objects. If we now look at the factorization for DIS, eq. (3.6),

the key point to note is that J ⊥
j (ecut, Q, zcut, b;µ, ζB) is the same object that appears in

the case of e+e−, while Fi←h is just the TMDPDF. Thus it now becomes possible to

exclusively access the complete TMDPDF. We now wish to systematically list the sources

of the non-perturbative corrections associated with each factorized function that appear in

our cross section.
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In order to use jets it is important to consider all the non-perturbative effects for

the case of our observables and in particular the ones coming from the implementation of

(groomed) jets. In figure 1 we have shown that such corrections are expected to be partic-

ularly small and we provide here a discussion about their origin from a theory perspective.

We have two measurements on the jet: the jet mass, which is ultimately integrated over

some interval and acts as a normalization, and the transverse momentum (p⊥) of the ra-

diation that is groomed away. Since we are interested in the shape of the qT spectrum,

we will only consider the non-perturbative effects in cross sections sensitive to it. As was

explained in section 2, we are working in the region II of EFT and we are going to discuss

how non-perturbative effect arise when we increase the value of qT (that is, we discuss here

the non-perturbative corrections in the small-b limit, where b ≡ |b|). Our factorization

theorem has four functions in the IR, the collinear, the global soft, the collinear-soft, the

soft-collinear functions, see eq. (2.10)–(2.11), and all of them can potentially contribute

to non-perturbative power corrections. Even though the collinear and collinear-soft func-

tions do not contribute to qT perturbatively, they can still give a non-perturbative power

correction to the qT spectrum.4

There are two types of non-perturbative corrections that we will consider here. We call

shift non-perturbative effects the ones which are not altered by the pass and fail procedure

of the grooming conditions. An example is the global soft function that is independent of

the grooming procedure and it is common to other TMD analysis. We refer to this kind

of correction as shift non-perturbative effects since, as we will see later, in the simplest

case it generates a shift in the TMD spectrum. The second correction instead is related to

the grooming procedure with cs and sc soft functions and the jet shape function. In this

case non-perturbative effects are driven by the so called “non-perturbative particles” and

it is obviously only possible when perturbative modes are on the boundary of passing and

failing soft-drop. We refer to these contributions as boundary non-perturbative effects.

4.1 Shift non-perturbative correction

For the case of shift correction, we assume that the soft-drop condition remains unaltered

by any non-perturbative emissions. Now consider the contribution to the shift correction

by each function in turn.

The non-perturbative part of the global soft function defined in eq. (2.7) has been

studied in the literature in several frameworks [30, 46–50]. Up to O(b4) terms it can be

written as

〈0|T [SnS
†
n̄(b)]T̄ [Sn̄S

†
n(0)]|0〉 = S̃(b) + b2 C̄

(s)
i (b)〈0|Oi|0〉 , (4.1)

where Oi is the complete set of local operators that have the same quantum numbers as

the soft function. Summation over i is implied. Here S̃ is the perturbative calculable part

of the soft function and it contains rapidity and UV divergences as well as the rest of other

4There are also power corrections of similar magnitude in this region due to the factorization of the sc

function from the cs, but they are perturbative in nature and can be handled by making a smooth transition

to region III.
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terms in the equation. We can pull this out as a common factor to write

〈0|T [SnS
†
n̄(b)]T̄ [Sn̄S

†
n(0)]|0〉 = S̃(b)

(
1 + b2 C

(s)
i (b)〈0|Oi|0〉

)
. (4.2)

To maintain the UV scale invariance of the cross section, we need that the second term in

the brackets be independent of UV divergences. However additional rapidity divergences

may be present in the non-perturbative matrix element on the r.h.s. that cancel with the

corresponding rapidity divergence arising in the non-perturbative power corrections to the

collinear or soft-collinear functions. This is related to the origin of the non-perturbative cor-

rection to the rapidity anomalous dimension and it is usually included also in TMD analysis.

We can perform a similar analysis for the soft-collinear (sc) function. When an sc

(perturbative) mode passes soft-drop, then it does not contribute to qT since it becomes

part of the groomed jet. But since it has a large + component, it drives the groomed jet

mass outside the region of measurement and hence such events are dropped. Therefore,

we only need to consider the case when the sc mode fails soft drop. In this case the non-

perturbative emission contributes to the qT measurement if it lies outside the groomed jet.

Given the angular scaling of this mode, which is much larger than the collinear-soft (cs) and

collinear modes that form the groomed jet, the phase space region available is effectively

unconstrained (this is also the reason why we ignore any phase space constraints on the

soft non-perturbative emissions). Hence the correction in this case will also be a simple

shift type and is implemented in the same manner as in the case of the global soft function.

As before, we can pull out a common perturbative factor (that includes the perturbative

soft drop condition), and write

S̃⊥sc(b, zcut)|hadr. = S̃⊥sc(b,Qzcut)
(

1 + b2C
(sc)
i (b, zcut) 〈0|Oi|0〉

)
. (4.3)

Notice that now all the zcut dependence of the power correction is included in the perturba-

tive calculable coefficient C(sc)(b, zcut), which multiplies the same non-perturbative power

correction present also in the global soft function case. The calculation of C(s), C(sc) is

doable perturbatively, although this consideration goes beyond the present work.

We can then combine all shift corrections that have an unconstrained phase space for

non-perturbative emissions together so that in b space we have a multiplicative correction

to the perturbative cross section of the form

SS⊥sc|hadr. = (1 + b2(Ωs + Ωsc))SS
⊥
sc|pert. , (4.4)

where Ωs is the same as the TMD case and Ωs is a single parameter to be fitted from e+e−

experiments. It is clear that, in the event of non-trivial C{(s), (sc)}, Ωs, sc can have a mild

(logarithmic) dependence on qT so that this model will work well over a limited range of

qT which may be sufficient for most cases.

We now consider the shift corrections coming from the collinear-soft and the collinear

functions. Since these modes determine the region of the groomed jet, we can consider two

possible scenarios which give a non-trivial power correction.

1. Collinear-soft (cs) particles pass soft-drop:

If the cs particles pass the soft-drop (for phase space see figure 9(a)) then any non-

perturbative emission scaling as the cs mode can contribute to qT when it lies outside

– 20 –



J
H
E
P
0
8
(
2
0
1
9
)
1
6
1

Phasespace for 
cs-NP emissions

(a) (b) Phasespace for 
collinear-NP emissions
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Figure 9. (a) When the collinear-soft (cs) function passes soft drop, the non-perturbative (NP)

emissions, with the angular scaling of the cs mode, with a virtuality ΛQCD must fall in the phase

space shown by the blue shaded area in order to contribute to qT . (b) When the cs function fails

soft drop, the NP emission with the angular scaling of the collinear modes must not be clustered

with the collinear sub-jet in order to contribute to qT .

the groomed jet. In this case, we need to calculate the catchment area of the groomed

jet that is determined by the angular distance of the cs subject that passed soft-

drop. As was pointed out in [12], it is possible at NLL, using a coherent branching

formalism, to factorize a purely non-perturbative function from all the calculable

perturbative effects (including grooming). A detailed analysis of these corrections

will be presented in a future work.

2. Collinear-soft particles fail soft-drop:

In this case collinear modes are the only ones that pass soft-drop (for phase space see

figure 9(b)), so that any non-perturbative mode scaling as cs has an unconstrained

phase space, by the same logic as for the soft and the sc functions, so that we get a

simple shift correction of the same form as the soft, sc and TMD collinear functions.5

There is another possible interesting correction that will come from the collinear

NP emission that lies outside the catchment region that is now determined by the

collinear modes alone.

In this case there are two ways of approaching the problem. In one, we consider

separating out the non-perturbative corrections before factorizing the cs and collinear

modes. The other way is to realize that in the case where cs fails soft-drop, the

entire groomed jet mass measurement comes from the jet function alone and using

this condition we can define a catchment area for the collinear non-perturbative

emissions without explicitly accessing any information from the cs function, so that

5Technically in this case the perturbative value of p⊥cs would give a larger correction. However, this

correction can eventually be handled by transitioning to a new EFT in which the sc and cs functions merge

together. For now we will ignore them and only keep track of the other non-perturbative corrections.
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the factorization between the collinear and cs modes is maintained. In this case, we

can do a diagrammatic analysis, similar to [12], for the collinear function, to check

if it is possible to factorize the non-perturbative effects from the perturbative. We

leave this work for the future.

4.2 Boundary corrections

We now consider boundary corrections that leave the qT measurement function unchanged

but only require an expansion of the soft-drop condition in q−/Q. The functions that do

not explicitly have a soft-drop condition can then be ignored, which leaves us with only

the sc and cs functions. We can follow the same line of reasoning as in [12].

1. sc emissions

In this case we demand that either an addition or removal of the non-perturbative

emission cause the soft-collinear function to fail soft-drop. Otherwise it will drive up

the jet mass outside the measured range. If we consider a non-perturbative emission

qµ along with a perturbative momentum pµ, then we can expand out the soft-drop

condition in the non-perturbative momentum. We can write the complete measure-

ment function as

Θp±q = Θ

(
p+ q

EJ
− zcut

)
δ2(p⊥sc − p⊥ ∓ qT ) , (4.5)

where p is the momentum of the perturbative sc sub-jet while qµ is the momentum

of the non-perturbative emission. The ± signs indicate whether the perturbative cs

subject gains or loses a non-perturbative momentum after hadronization. In the case

where the sc sub-jet gains a non-perturbative emission, the measurement expanded

to leading order looks like

Θp+q ≈ Θp
sdδ

2(p⊥sc − p⊥) +
q−

EJ
Θb.c.(θq, θp,∆φ)δpsd

[
δ2(p⊥sc − p⊥)

]
, (4.6)

with

Θp
sd ≡ Θ

(
p

EJ
− zcut

)
, δpsd ≡ δ

(
p

EJ
− zcut

)
. (4.7)

In this case, the non-perturbative emission qµ gets clustered with the sc subject. Note

that we have expanded qi from the p⊥ measurement since we are working at leading

order. The phase-space constraint, Θb.c. (see figure 10(a)), gives the condition that

ensures qµ gets clustered with the sc part.

The second case is when qµ is emitted off pµ but it is not clustered with the sc jet.

The short distance condition now acts on p − q, which can then be expanded out

to give

Θp−q ≈ Θp
sdδ

2(p⊥sc − p⊥)− q−

EJ
Θ̄b.c.(θq, θp,∆φ)δpsd

[
δ2(p⊥sc − p⊥)

]
, (4.8)
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(a) Phasespace for loss 
of sc-NP emissions
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collinear+cs

Figure 10. (a) The case where the sc subjet loses an NP emission (b) The case when the sc subjet

gains an NP emission.

Θ̄b.c. (see figure 10(b)) is the phase space region for qµ so that it falls outside the

sc subjet. We can see that the leading power correction scales as q−/EJ , which,

given the angular scaling of the sc mode, scales as qT zcut/Q. Given a typical value of

zcut ∼ 0.1, this factor is then comparable to the q2
T /Q

2 correction that we get from

the shift terms.

2. Soft -Collinear function

We expect that since perturbatively this function does not contribute to qT , the

boundary correction should have no effect on the qT measurement.

We now have listed out all the possible NP corrections to the transverse momentum

measurement.

5 Conclusions

In this paper, we have presented the computation of the transverse momentum

de-correlation observable for fat jets groomed using the Soft-Drop algorithm. We consider

two scattering experiments: e+e− → di-jets and semi-inclusive DIS. In the former, we

measure the transverse momentum imbalance between the two groomed jets. We impose a

jet mass constraint on our jets in order to ensure collimated jet configurations. Simulation

using PYTHIA show that grooming greatly reduces the impact of underlying events as well

as final state hadronization. We show that the factorization theorem for this observable in-

volves the universal soft function which also appears in the traditional definition of TMDs.

We propose that this observable can be used as a probe of the non-perturbative rapidity

anomalous dimension, which is a universal parameter for TMD distributions. We prove

within our EFT that the cumulant jet mass constraint only adds to the overall normaliza-

tion of the perturbative cross section and hence does not impact the shape of the transverse
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momentum distribution although it does contribute to the uncertainty. We gather or com-

pute all the ingredients necessary to evaluate the cross section to NNLL accuracy and a

numerical study for the cases of interest. In the implementation we have used the artemide

code [45, 51–53] which contains the most recent extraction TMDPDF at higher perturba-

tive orders. As part of the numerical analysis we have used the ζ-prescription [33] which

allows a complete disentanglement of non-perturbative effects of rapidity evolution from

the rest. An uncertainty analysis gives us an error band of approximately ± 10 %. The

main ingredient of this error is the perturbative uncertainty which can be systematically

improved. As shown in figure 1 the hadronization corrections at low qT are significantly

smaller than the case of a standard jet axis and it is therefore one of the major advantage

of using grooming. These effects are expected to be the same in e+e− and SIDIS because

of the factorization of the cross section. In the case of e+e− these corrections constitute

all of non-perturbative effects and they are associated with the final state shower. In order

to do a meaningful extraction of non-perturbative parameters in this case, it is therefore

necessary to improve the uncertainty from perturbative physics to be better than 5%. This

can be achieved by moving to a higher order in resummation accuracy (N3LL). This is

something we leave as a follow up to this paper.

In the SIDIS case we measure the transverse momentum imbalance between the

groomed jet and the recoiling lepton. Once again we demand a jet mass measurement

in order to ensure sensitivity to collinear physics only. A large part of the contribution to

this comes from the soft and collinear radiation that lies outside the jet and, for low trans-

verse momentum, probes the complete TMDPDF. The cross section is again presented to

NNLL accuracy and involve much of the same ingredients as in the case of e+e− → dijets.

A higher order perturbative calculation is expected to reduce significatevely errors also in

this case.

Concerning the hadronization effects we observe that grooming the jet allows us to

have a wide angle jet, which is preferred in low energy experiments, while still being free

from non-global logarithms, which are non-factorizable and they are usually present in un-

groomed jets. Nevertheless it is possible to measure directly the hadronization effects due

to grooming. The idea is to parametrize and extract all of the non-perturbative effects from

e+e− → dijets and use them in SIDIS since they contain all the same matrix elements (in

addition to the TMDPDF) as explained in section 4. This gives us a robust way to access the

TMDPDF while maintaining control over all other uninteresting non-perturbative effects.
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A Laplace and Fourier transformations

We define the Fourier transform, FT [f ](b) = f(b) of a function, f(qT ) = FT −1[f ](qT )

as follows,

f(b) =

∫ +∞

−∞
dqT f(qT ) exp(−ib · qT ) , (A.1)

and the inverse transform

f(qT ) =

∫ +∞

−∞

db

(2π)2
f(b) exp(ib · qT ) . (A.2)

In order to get the Fourier transforms of the plus distributions that appear in the factor-

ization theorem we use,

1

(2π)µ2

(
µ2

q2
T

)1+α

= − 1

2α
δ(2)(qT ) + L0(q2

T , µ
2)− αL1(q2

T , µ
2) +O(α2) . (A.3)

Taking the Fourier transform of the left-hand-side (l.h.s.) we get (see eq. (E.2) of ref. [26])

∫ +∞

−∞

dqT
(2π)

1

µ2

(
µ2

q2
T

)1+α

exp(−ib·qT ) =−e
−2αγE

2α

Γ(1−α)

Γ(1+α)

(
µ

µE

)2α

=− 1

2α
+ln

(
µ

µE

)
+α ln2

(
µ

µE

)
+O(α2) , (A.4)

where µE = 2 exp(−γE)/b and b ≡ |b| and in the second line we expanded in α. Comparing

this result with the r.h.s. of eq. (A.3) we get,

FT
[
δ(2)(qT )

]
(b) = 1 ,

FT
[
L0(q2

T , µ
2)
]
(b) = ln

(
µE
µ

)
,

FT
[
L1(q2

T , µ
2)
]
(b) = ln2

(
µE
µ

)
. (A.5)

We define the convolution f ⊗ g with

[
f ⊗ g

]
(qT ) =

∫
d`⊥ f(qT − `⊥)g(`⊥) , (A.6)

such that

F
[
f ⊗ g

]
(b) = f(b)× g(b) . (A.7)
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Similarly for the distribution in the jet-thrust we often work in Laplace space where the

corresponding convolutions translate to products. For these reason we define the Laplace

transformation LT [f ](s) = f(s) of jet-trust distribution f(e) = LT −1[f ](e) as follows:

f(s) =

∫ ∞
−∞

de exp(−se)f(e) , (A.8)

and the corresponding inverse transform

f(e) =
1

2πi

∫ γ+i∞

γ−i∞
ds exp(se)f(s) . (A.9)

Similarly with the case of Fourier transform we use the following expansion to identify the

Laplace transform of plus distributions that are present in the fixed order expansion of the

jet and collinear-soft functions,

1

ξ

(
ξ

e

)1+α

|e>0 = − 1

α
δ(e) + L0(e, ξ)− αL1(e, ξ) +O(α2) , (A.10)

taking the Laplace transform of the l.h.s. we get

∫ ∞
0

de

ξ

(
ξ

e

)1+α

exp(−se) = sαΓ(−α) = − 1

α
− ln(ξs̃)− α

(
1

2
ln2(ξs̃) +

π2

12

)
+O(α2) ,

(A.11)

where s̃ ≡ s exp(γE) and thus from comparing eq. (A.10) and (A.11) we have

LT
[
δ(e)

]
(s) = 1 ,

LT
[
L0(e, ξ)

]
(s) = − ln(ξs̃) ,

LT
[
L1(e, ξ)

]
(s) =

1

2
ln2(ξs̃) +

π2

12
. (A.12)

B Operator definitions and one loop results

In this appendix we give the operator definitions of the factorization elements and their

NLO expansions. From those we determine the renormalization functions, group equations,

and corresponding anomalous dimensions. Many of the results presented here are already

known and found in literature.

B.1 Jet functions

The quark and gluon jet function definitions, one loop calculation, and the corresponding

Laplace transforms can be found in ref. [43]. Here we summarize their results. The quark

jet function is given by,

Jq(e,Q) =
(2π)3

Nc
tr 〈

/̄n

2
χn(0)δ(Q− P−)δ(2)(P⊥)δ(e− E)χ̄n〉 , (B.1)

and the gluon

Jq(e,Q) =
(2π)3

Nc
tr 〈

/̄n

2
Bµn⊥(0)δ(Q− P−)δ(2)(P⊥)δ(e− E)Bn⊥µ〉 , (B.2)
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where Nc is the number of colors and Bµn⊥ is the gauge invariant gluon building block of

the effective field theory,

Bµn⊥ =
1

g
[W †n(Pµ⊥ + gAµn,⊥)Wn] . (B.3)

As demonstrated earlier when working with the cumulant distribution (i.e., when inte-

grating out to ecut) it is useful to work in Laplace space. The renormalized groomed jet

function up to NLO contributions in Laplace space is given by

Ji(s,Q;µ) = 1 +
αsCi
2π

{
L2
J + γ̄iLJ −

π2

3
+ ci

}
+O(α2

s) , (B.4)

where for quark initiated jets we have

Cq = CF =
N2
c − 1

2Nc
, γ̄q =

3

2
, cq =

7

2
, (B.5)

and for gluon initiated jets we have

Cg = CA = Nc , γ̄g =
β0

2CA
, cg =

67

18
− 10

9

nfTR
CA

. (B.6)

The logarithms, LJ that appear in eq. (B.4) and the corresponding one loop anomalous

dimensions are

LJ = ln

(
µ2s̃

Q2

)
, γJ =

αsCi
π

(
2LJ + γ̄i

)
+O(α2

s) . (B.7)

The anomalous dimension is defined through the RG equation satisfied by renormalized jet

functions. In Laplace space this is

d

d lnµ
Ji(s,Q;µ) = γJ(s,Q;µ)Ji(s,Q;µ) . (B.8)

In momentum space the above equation is written as convolution (in the invariant mass

variable e), of the anomalous dimension and the renormalized jet function.

B.2 Collinear-soft function

The operator definition of the invariant mass measurement collinear soft function is given by

Scs(e,Qzcut) =
1

NR
tr〈T

(
U †nWt

)
MSD

e T̄
(
W †t Un

)
〉 , (B.9)

where MSD
e is the invariant measurement function,

MSD
e = δ (e− (1−ΘSD) E) . (B.10)

Here we dropped the jet flavor (quark/anti-quark or gluon) for simplicity of notation and

the normalization constant NR is simply the size of the representation for SU(Nc) of the Wt

and Un Wilson lines. For quark jets (fundamental representation) we have NR = Nc and
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for gluon jets (adjoint representation) we have NR = N2
c − 1. At NLO the bare collinear

soft function is given by

Scs,bare (e,Qzcut) = δ (e) +
αsCi
π

{
− 1

ε2
δ (e) +

1

ε
L0 (e, ξ)− L1 (e, ξ) +

π2

12
δ(e)

}
+O(α2

s) ,

(B.11)

where

ξ ≡ µ2

Q2zcut
. (B.12)

Therefore we have for the renormalized function

Scs (e,Qzcut) = δ (e) +
αsCi
π

{
−L1 (e, ξ) +

π2

12
δ (e)

}
+O(α2

s) , (B.13)

where

Scs,bare(e,Qzcut) = Zcs ⊗ Scs(e,Qzcut) , (B.14)

with

Zcs(e) = δ(e) +
αsCi
π

{
− 1

ε2
δ(e) +

1

ε
L0(e, ξ)

}
+O(α2

s) . (B.15)

In Laplace space for the renormalized collinear-soft function we get,

Scs(s,Qzcut;µ) = 1− αsCi
2π

L2
cs +O(α2

s) , (B.16)

which satisfies the following RGE

d

d lnµ
Scs(s,Qzcut;µ) = γcs(s, µ)Scs(s,Qzcut;µ) . (B.17)

The logarithm Lcs and the corresponding anomalous dimension are

Lcs = ln(ξs̃) , γcs(s, µ) = −2
αsCi
π

Lcs +O(α2
s) . (B.18)

B.3 Soft function

The soft function that appears in the factorization theorems in eq. (2.15) and (3.4) is

defined in eq. (2.7) and it has been calculated in several schemes at higher orders in QCD,

as reported in section 2.2. Here we report a one loop expression using the analytic regulator

in momentum space,

Sbare = δ(2) (qT ) +
αs (µ)Ci

π

{
4

η

[
L0

(
q2
T , µ

2
)
− 1

2ε
δ(2) (qT )

]
+

1

ε

[
1

ε
− 2 ln

(
ν

µ

)]
δ(2) (qT )

+ 4L0

(
q2
T , µ

2
)

ln

(
ν

µ

)
− 2L1

(
q2
T , µ

2
)
− π2

12
δ(2) (qT )

}
+O(α2

s). (B.19)

The renormalized soft function, S, is defined through

Sbare = Z⊥s (µ, ν)⊗ S(µ, ν), (B.20)
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(a) virtual gluon (b) real gluon

Figure 11. The order O(αs) diagrams that contribute to the soft-collinear function.

and satisfies the following renormalization group equations

d

d lnµ
S(µ, ν) = γs(µ, ν)S(µ, ν) ,

d

d ln ν
S(µ, ν) = γsν(µ, ν)⊗ S(µ, ν) . (B.21)

Therefore we find for the one-loop corresponding impact parameter space quantities

S (µ, ν) = 1 +
αs (µ)Ci

π

{
4 ln

(
µE

µ

)
ln

(
ν

µ

)
− 2 ln2

(
µE

µ

)
− π2

12

}
+O

(
α2
s

)
, (B.22)

Z⊥
s (µ, ν) = 1 +

αs (µ)Ci

π

{
4

η

[
ln

(
µE

µ

)
− 1

2ε

]
+

1

ε

[
1

ε
− 2 ln

(
ν

µ

)]}
+O(α2

s) , (B.23)

with

γs (µ, ν) = −4
αs (µ)Ci

π
ln

(
ν

µ

)
+O

(
α2
s

)
, γsν (µ, ν) = 4

αs (µ)Ci

π
ln

(
µE

µ

)
+O(α2

s) .

(B.24)

The rapidity and renormalization scales used to produce our result are fixed using the

ζ-prescription [33] adapted for this case. Later in the appendix we give a description of

how one can use the rapidity regulated objects that have ν dependence to construct the

subtracted rapidity divergences free objects but yet keep trace of the rapidity logs using

the ζ parameter.

B.4 Soft-collinear function

The soft-collinear function is defined by the matrix element

S⊥
sc(Qzcut) =

1

NR
tr〈T

(
U †
nWt

)
MSD

⊥ T̄
(
W †

t Un

)
〉 , (B.25)

and the groomed jet measurement function, MSD
⊥ is given in terms of the label momentum

operator, P,

MSD
⊥ = ΘSD × δ2 (qT −ΘSDP⊥) , (B.26)

where ΘSD denotes the soft drop groomer. The collinear-soft modes only contribute to the

invariant mass measurement if they pass soft-drop, which is implemented by the ΘSD term.

The NLO calculation involves one real and one virtual diagram shown in figure 11. While
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the virtual diagram is scaleless. The diagram with a real gluon needs to be integrated over

the phase-space of soft gluon. This then yields non-vanishing contribution from when the

soft gluon fails the grooming,

S⊥sc,NLO(Qzcut) = 4g2Ciµ̃
2ε νη

∫
ddk

(2π)d−1

δ(k2) δ(2)(qT − k⊥)

k+ (k−)1+η
θ(Qzcut − k−) . (B.27)

Performing the integrals we find for the bare quantity

S⊥sc,bare(Qzcut) = δ(2)(qT ) +
αsCi
π

{
−2

η

[
L0(q2

T , µ
2)− 1

2ε
δ(2)(qT )

]
+

1

ε
ln
( ν

Qzcut

)
δ(2)(qT )

−2 ln
( ν

Qzcut

)
L0(q2

T , µ
2)

}
+O(α2

s) , (B.28)

and for the renormalized quantity, S⊥sc,(Qzcut;µ, ν) we have

S⊥sc,bare(Qzcut) = Z⊥sc(µ, ν)⊗ S⊥sc(Qzcut;µ, ν) , (B.29)

and satisfies the following renormalization group equations

d

d ln ν
S⊥sc(µ, ν) = γscν (µ, ν)⊗ S⊥sc(µ, ν) ,

d

d lnµ
S⊥sc(µ, ν) = γsc(µ, ν)S⊥sc(µ, ν) , (B.30)

where the Qzcut dependence is suppressed to improve readability. In MS scheme the cor-

responding Fourier transform can be obtained using eq. (A.5):

S̃⊥sc (Qzcut;µ, ν) = 1 +
αsCi
π

{
−2 ln

(
ν

Qzcut

)
ln

(
µE
µ

)}
+O

(
α2
s

)
, (B.31)

Z̃⊥sc (µ, ν) = 1 +
αsCi
π

{
−2

η

[
ln

(
µE
µ

)
− 1

2ε

]
+

1

ε
ln

(
ν

Qzcut

)}
+O

(
α2
s

)
, (B.32)

and thus for the one-one-loop anomalous dimensions we get

γscν (µ, ν) = −2
αs (µ)Ci

π
ln

(
µE
µ

)
+O

(
α2
s

)

γsc (µ, ν) = 2
αs (µ)CF

π
ln

(
ν

Qzcut

)
+O(α2

s).

(B.33)

C Solution of renormalization group evolution equations

In this appendix we discuss the solutions of both virtuality and rapidity renormalization

group equations written in eq. (2.23). All factorization elements (hard, soft, soft-collinear,

collinear-soft, and jet) satisfy renormalization group equations, but only transverse mo-

mentum dependent quantities have rapidity RGE.
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Function ΓG0 γG0 mG

Hij −4(Ci + Cj̄) −4γ̄i(Ci + Cj) Q

Scs −8Ci 0 Q
√
zcut/s̃

Ji 8Ci 4γ̄iCi Q/
√
s̃

Bi/h 0 4γ̄iCi + γ0
sc 0

S 4(Ci + Cj) 0 νs

S⊥sc 0 γsc0 n.a

Table 1. Anomalous dimensions coefficients for up to NLL accuracy: γ̄q = 3/2, γ̄g = β0/(2CA),

and γsc0 = 2αs(µ)CF /π ln(ν/Qzcut).

C.1 Renormalization group evolution

The solution to the RGE in eq. (2.23) is

G(µ) = UG(µ, µ0)G(µ0) , UG(µ, µ0) = exp (KG(µ, µ0))

(
µ0

mG

)2 ωG(µ,µ0)

, (C.1)

with

KG(µ, µ0) = 2

∫ α(µ)

α(µ0)

dα

β[α]
ΓG[α]

∫ α

α(µ0)

dα′

β[α′]
+

∫ α(µ)

α(µ0)

dα

β[α]
∆γG[α], (C.2)

ωG(µ, µ0) =

∫ α(µ)

α(µ0)

dα

β[α]
ΓG[α]. (C.3)

Since in this work we are interested only in the NLL and NLL’ result we may keep only the

first two terms in the perturbative expansion of the cusp part (i.e., ΓG0 , Γcusp
0 , and Γcusp

1 )

and only the first term form the non-cusp part (γG0 ). Performing this expansion we get,

KG(µ,µ0) =− γ
G
0

2β0
lnr− 2πΓG0

(β0)2

[
r−1−r lnr

αs(µ)
+

(
Γcusp

1

Γcusp
0

−β1

β0

)
1−r+lnr

4π
+

β1

8πβ0
ln2 r

]
,

(C.4)

ωG(µ,µ0) =− ΓG0
2β0

[
lnr+

(
Γ1

cusp

Γ0
cusp

−β1

β0

)
αs(µ0)

4π
(r−1)

]
, (C.5)

where r = α(µ)/α(µ0) and βn are the coefficients of the QCD β-function,

β[αs] = µ
dαs
dµ

= −2αs

∞∑
n=0

(αs
4π

)1+n
βn . (C.6)

The expressions for all ingredients necessary to perform the evolution of any function that

appears in the factorization theorems we considered in this paper are given in table 1. The
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coefficients for the expansion of the cusp anomalous dimension are

Γcusp
0 = 4CF ,

Γcusp
1 = 4CF

[(
67

9
− π2

3

)
CA −

20

9
nfTR

]
,

Γcusp
2 = 4CF

[(
245

6
− 134

27
π2 +

11

45
π4 +

22

3
ζ3

)
C2
A +

(
−209

108
+

5

27
π2 − 7

3
ζ3

)
8CAnfTR

+

(
16ζ3 −

15

3
CFnfTR −

64

27
T 2
Rn

2
f

)]
. (C.7)

The two loop non-cusp anomalous dimensions we need to NNLL RGEs are given by ref. [43]

1

2
γs1 +γsc1 =

Ci
2

[
34.01CF +

(
1616

27
−56ζ3−9.31

)
CA−

(
448

27
+14.04

)
nfTR−

2

3
π2β0

]
,

γcs1 =Ci

[
−17.00CF +

(
−55.20+

22

9
π2+56ζ3

)
CA+

(
23.61− 8

9
π2

)
nfTR

]

γq1 =CF

[(
3−4π2+48ζ3

)
CF +

(
1769

27
+

22

9
π2−80ζ3

)
CA

+

(
−484

27
− 8

9
π2

)
nfTR

]
,

γs1 +γsc1 +γB1 =Ci

[(
20−4π2+48ζ3

)
CF +

(
60.87+

22

9
π2−80ζ3

)
CA

+

(
−24.94− 8

9
π2

)
nfTR

]
. (C.8)

C.2 The connection between ζ-parameter and rapidity regulator

In the standard EFT approach one used the rapidity renormalization group (RRG) equa-

tions in order to resum large logarithms at the level of individual rapidity regulated

terms [26, 37]. A more recent approach for performing the resummation of large loga-

rithms in the TMD evolution it was introduced in ref. [33]. The approach is referred to

as the ζ-prescription. Here we rewrite the fixed order results using the rapidity regulator

in the past sections in the form appropriate for implementing the ζ-prescription. In the

framework of ref. [33] one works with the rapidity divergent free quantity,

Ssubsc (b;µ, ζ) ≡
√
S⊥2 (b;µ, νs) S

⊥
sc(b, Qzcut;µ, νsc) , (C.9)

where we have explicitly show the dependence on the rapidity regulator parameters νs and

νsc. In the RRG approach this combination does not acquire rapidity evolution thus here

in order to establish the rapidity evolution we fix the rapidity scales at two different values.

Particularly we evaluate the soft-collinear rapidity scale at its canonical value, νsc = Qzcut,

and we allow for the corresponding soft scale to float through a parameter ζ: νs =
√
ζ.6

With this choice of scales we have,

Ssubsc (b;µ, ζ) = 1 +
αs (µ)Ci

2π

{
2 ln

(
µE
µ

)
ln

(
ζ

µ2

)
− 2 ln2

(
µE
µ

)
− π2

12

}
+O(α2

s) . (C.10)

6Note that this is not a unique choice of scales since any choice for which νs/νsc =
√
ζ/(Qzcut) will give

the same result.
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And according to the notation of eq. (2.20) and (2.21) satisfies the following equations

µ2 d

dµ2
Ssubsc (b;µ, ζ) =

1

2
γsc/sub (µ, ζ)Ssubsc (b;µ, ζ) ,

ζ
d

dζ
Ssubsc (b;µ, ζ) = −D (µ)Ssubsc (b;µ, ζ) .

(C.11)

Its easy to show that the anomalous dimensions γsc/sub and D are related to the RG and

RRG anomalous dimensions of the global soft and soft-collinear function as follows,

γsc/sub (µ, ζ) =
1

2
γs + γsc = Γcusp [αs] ln

(
µ2

ζ

)
+

1

2
∆γs [αs] + ∆γsc[αs] , (C.12)

and

D(µ) = Γcusp[αs] ln
( µ

µE

)
− 1

4
∆γsν [αs] , (C.13)

where

∆γsν = −
(
αs (µ)

4π

)2

Ci

[(
128

9
− 56ζ3

)
CA +

112

9
β0

]
+O(α3

s). (C.14)

It is easy to confirm by looking the above equations that the anomalous dimensions γsc/sub

and D satisfy the following differential equations,

d

d ln ζ
γsc/sub(µ, ζ) = −Γcusp ,

d

d lnµ
D(µ) = +Γcusp . (C.15)

Also comparing against the notation of eq. (2.23) we see that the non-cusp part, ∆γsc/sub,

of the anomalous dimension γsc/sub is a linear combination of the corresponding non-cusp

pieces of the global soft and soft-collinear functions. Particularly:

∆γsc/sub (µ) =

(
1

2
∆γs [αs (µ)] + ∆γsc [αs(µ)]

)
, (C.16)

and this statement is true to all orders in perturbative expansion.

C.3 ζ-prescription

The implementation of the ζ-prescription leads to the definition of optimal TMDs. We

sketch here the procedure to obtain optimal TMDs referring to the original work [33] for

further details. The anomalous dimensions γF (µ, ζ) and D(µ, b) governing the evolution can

be thought as two components of a vector field in the plane (ln µ2, ln ζ). The integrability

condition, e.g. eq. (C.15), states that such field is irrotational, i.e. locally conservative. This

allows to define a scalar potential and guarantees that the evolution between two points

in the (lnµ2, ln ζ) space is independent of the path; in particular, no evolution occurs

along equipotential lines. However, the perturbative expansion breaks the validity of such

statement and in fact it was shown that numerical predictions largely depend on the choice

of path. This limit is overcome by the improved γ solution, that reinstates path-invariance
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µ =
2e−γE

b

⇣ = e
− γV

Γcusp µ2

Figure 12. Sketch of the geometry of the (ζ, µ) plane where the double scale evolution takes

place. The anomalous dimensions determine a conservative field (grey arrows) and the evolution is

null among equipotential lines (shades of red). The intersection of two special equipotential lines

(bright red) determines a saddle point; the zeta-prescription corresponds to running the evolution

from this point, after reinstating path invariance. The equations for the special equipotential lines

in the figure correspond to the one-loop result.

by supplementing γF with formally higher-order terms. If we let F be a generic TMD,

then the evolution kernel R, implicitly defined as

F (x, b, µf , ζf ) = R(b;µf , ζf ;µi, ζi)F (x, b, µi, ζi) , (C.17)

within the improved γ solution yields

R(b;µf , ζf ;µi, ζi)= exp

{
D (µf ,b) ln

(
µ2
f

ζf

)
−D (µi,b) ln

(
µ2
i

ζi

)
−
∫ µf

µi

dµ

µ
[2D (µ,b)+γV (µ)]

}
,

(C.18)

where γV is the noncusp anomalous dimension.

Path independence allows one to apply the ζ-prescription, the key point of the method.

The idea is setting the initial rapidity scale ζi = ζµi as a function of µi such that the scale-

dependence of the initial TMDs vanishes independent of µi. At one loop, this simply reads

ζµ = e
− γV

Γcusp µ2 , (C.19)

and the corrections to higher loops are evaluated in [33].

The relation between ζ and µ draws a line in the (ln ζ, lnµ2) plane (figure 12). Since

by requirement the TMDs are constant along it, this must be an equipotential line, which

is well defined only if path-independence is restored. The remarkable fact with the ζ

prescription is that, contrarily from standard evolution, the cancellation of large rapidity

logarithms affecting the un-evolved TMDs is an internal mechanism. The rapidity evolution
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is still responsible for cancelling the large logarithms in the hard function, but the scale

uncertainty of the evolution is now entirely decoupled from the definition of the TMDs

(and in particular, from the non-perturbative model that enters their definition).

The definition of optimal TMDs requires one more specification, which concerns the

choice of initial scale µi (and consequently ζµi), and follows from TMD factorization. Con-

sidering TMD PDFs for definiteness, we have up to nonperturbative corrections

Fa←h(x, b, µ, ζµ) =
∑
b

∫ 1

x

dy

y
Ca←b(xy , b, µ, ζµ, µOPE)fb←h(y, µOPE)

[
1 +O

(
b2Λ2

QCD

)]
,

(C.20)

where fb←h are the collinear PDFs, Ca←b are transverse momentum matching coefficients

known at two loop from ref. [31]. The matching is performed at the scale µOPE. The choice

of µOPE is in general constrained by µi, as they need to lie on the same half-plane with

respect to the saddle point. This undesired feature is eliminated by choosing µi = µsaddle.

C.4 Modeling of TMDPDF

At small transverse momenta non-perturbative effects inside a TMD become dominant. A

non-perturbative model valid for optimal TMDs was recently extracted in ref. [45] by fitting

combined data from Drell-Yan and Z-boson production. Since our groomed jet functions

have the same rapidity evolution as the standard TMDs we will use the same model. First,

for large values of b the initial scale, µsaddle enters the non-perturbative region. We correct

for this by adopting the definition

µi =
2e−γE

b
+ 2 GeV , (C.21)

which effectively imposes a higher cutoff on b. Second, the rapidity anomalous dimension

is modified as follows,

D(µ, b) = Dres(µ, b
∗) + c0b b

∗ , (C.22)

where c0 is a constant, the resummed anomalous dimension can be found at three loop in

refs. [33, 36], and the b-star prescription is

b∗ = b

(
1 +

b2

B2
NP

)− 1
2

. (C.23)

The constants c0 and BNP specify the nonpertubative model in the case of e+e− →
2 jets. For SIDIS, additional input is required when building the TMD PDFs. Non-

perturbative corrections to the factorization formula are modeled with a multiplicative,

flavor-independent function fNP,

Fa←h(x, b, µ, ζµ) = fNP(b, x)
∑
b

∫ 1

x

dy

y
Ca←b(xy , b, µ, ζµ, µOPE)fb←h(y, µOPE) , (C.24)
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Figure 13. IR divergent configurations for soft-drop groomed jets at O(αs).

whose explicit expression reads

fNP(b, x) = exp

{
−λ1(1− x) + λ2x+ λ3x(1− x)√

1 + λ4xλ5b2
b2

}
, (C.25)

generalizing the common choices of gaussian or exponential functions. The five parameters

λi, together with c0 and BNP, are listed in table 4 of ref. [45] and were fitted within two

different schemes: the first one treats them all as free parameters, while in the second one

BNP is fixed to 2.5 GeV−1. The set of PDF used is NNPDF3.1 [54].

D IRC safety of the observable

It is known that the energy difference between groomed and ungroomed jet is an IRC

unsafe quantity [15, 25]. For the lepton-antilepton annihilation process it is trivial to

show even at the leading non vanishing order, O(αs). In the standard jet cross section

the collinear and soft divergence from the additional real gluon cancel against the IR

divergences form virtual contribution. This is possible because in both the collinear and

soft limits (p0
gluon → 0 and pµgluon ‖ p

µ
q/q̄) the energy of the (ungroomed) jet, Ejet, equals

half of the center of mass energy, Q, i.e. zjet ≡ 2Ejet/Q = 1. In the case of groomed

jets the phase space condition pµgluon ‖ p
µ
q/q̄ does not guarantee zg-jet = 1 where zg-jet

is the energy fraction fo the groomed jet, zg-jet ≡ 2Eg-jet/Q. This is demonstrated in

figure 13 where configuration (a) corresponds to collinear gluon emission that passes soft-

drop (pµgluon ‖ p
µ
q/q̄ and p0

gluon > zcutQ), (b) soft gluon emission (p0
gluon → 0), (c) collinear

gluon emission that fails soft-drop (pµgluon ‖ p
µ
q/q̄ and p0

gluon < zcutQ). While divergences

from the phase space configurations (a) and (b) can cancel against the virtual divergences,

the ones in configuration (c) cannot.

This problem is usually solved when a jet substructure measurement (e.g. jet thrust e)

is included. In this case the configuration (c) will only contribute to the e = 0 bin and thus
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does not constitute a problem of IRC safety, if we constrain the result for finite values of the

jet thrust. In the observable we propose, the jet thrust measurement does not help since

we require integrating over the range e ∈ (0, ecut), see for example eq. (2.13). However,

the transverse momentum qT does since configuration (c) yields only qT = 0 and we are

interested only in finite values of the transverse momentum. Therefore in our proposed

observable the qT measurement regulates the IRC divergences in a similar manner to the

(differential) jet-shape measurements.

Furthermore is important to notice that the quantity pT g-jet/zg-jet does not directly

relate to groomed jet energy, but rather to the groomed jet direction, which is collinear

safe to all orders in αs,
pT g-jet

zg-jet
= Q sin(θg-jet)nT g-jet (D.1)

where θg-jet is the angle between the groomed jet axis and the reference axis nT g-jet is the

direction of the groomed jet with respect to the reference axis. Since the direction of the

groomed jet is IR safe then the observable qT is as well.

Open Access. This article is distributed under the terms of the Creative Commons
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