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1 Introduction

Over the past decade, the study of non-planar (1/N) and quantum (1/
√
λ) corrections in

AdS/CFT has become feasable thanks to the advent of localization techniques [1]. These

have provided a large number of exact results in gauge theories that lend themselves to

asymptotic expansions, opening up the possibility of exploring the gravitational side of the

correspondence beyond the leading order in which the classical action dominates.

In this context, the 1
2 -BPS circular Wilson loops in N = 4 SYM, in various represen-

tations of the U(N) or SU(N) gauge group, have played a central role [2–12]. While the

solution for the fundamental representation [5] naturally furnishes an expansion in 1/N ,

which is exact in λ, going beyond the leading order for arbitrary representations has proved

to be more difficult, even though an exact formal solution is also known [13]. A systematic

1/N expansion for the k-antisymmetric representation Ak was obtained independently by

Gordon [14] and Okuyama [15] using the method of resolvents [16] in the Gaussian matrix

model. The case of the k-symmetric representation Sk was addressed in [17]. The first

1/N correction for Ak was extracted in [18] from the exact solution [13], but it is unclear

whether a similar calculation is possible for higher orders in 1/N . Efforts to compute

1/
√
λ corrections as well as 1-loop effective actions on the gravitational side of the duality

include [19–30].

After so much work dedicated to the circular Wilson loops, it is surprising that some

general results can still be found. Recently, Okuyama [15] observed that the 1/N expan-

sions of the generating functions of Wilson loops in the k-symmetric and k-antisymmetric

representations of U(N) are related by1

JS

(
z, λ,

1

N

)
= −JA

(
−z, λ,− 1

N

)
, (1.1)

1The definitions for the generating functions will be given in section 2.
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at least for the first few orders in the small-λ series. He conjectured that this relation is

exact in λ. In [31], it was shown that this is actually an example of a general relation

between Wilson loops in representations corresponding to transpose Young diagrams, in

this case,

Ak = ...

k ≤ N and Sk = · · ·︸ ︷︷ ︸
k

.

Two different proofs were offered in [31]. The first one is based on an expansion in terms

of color invariants and is formally perturbative in powers of g2YM , or, equivalently, λ. The

second proof employs the Frobenius theorem, whereby the Wilson loop in an irreducible

representation of SU(N) is expressed in terms of (unconnected) correlators of mutiply-

wound Wilson loops and the characters of the representation. An identity relating the

characters of two representations with transpose Young diagrams and a property of the

(unconnected) correlators then imply (1.1). Both proofs hint at a deeper, group-theoretical

origin of the identity.

Our work in this note, which was initiated before [31] appeared, is motivated by re-

lation (1.1). We would like to use the representation theory of the symmetric group Sn

in order to express the generating functions JS and JA in terms of the connected corre-

lators of multiply-wound Wilson loops in the fundamental representation of U(N), which

were (re)introduced by Okuyama in [15]. His observation (1.1) then follows quite easily.

Our argument is similar to the second proof in [31] mentioned above. However, we use

the connected correlators of multiply-wound Wilson loops, while [31] used the unconnected

version. Moreover, we provide some novel explicit relations between the correlators and the

results of the matrix model calculation of [15]. It is interesting to note that the connected

correlators are the natural objects to consider in the resolvent method, where they are ob-

tained as a genus expansion [16]. The use of (unconnected) correlators of multiply-wound

Wilson loops has been advocated in work on 2-dimensional QCD [32] and SU(N) Wilson

loops [33]. From them, arbitrary representations can be obtained by linear relations. The

exact matrix model solution for arbitrary representations [13], however, does not make

direct use of these correlators, but employs the linear relation between the Schur basis of

symmetric polynomials for arbitrary representations and the monomial basis, for which the

matrix model solution is fairly easy to compute.

The present paper is organized as follows. We begin in section 2 with a brief summary

of the generating functions and connected correlators of circular Wilson loops. Section 3

is then devoted to the expansions of the generating functions for Wilson loops in the

totally symmetric and antisymmetric representations of U(N) in terms of the connected

correlators. We conclude with a discussion of our results and possible future work. For

completeness, we have collected in appendix A a few basic notions of combinatorial analysis,

namely, permutations and partitions, which are necessary in the bulk of the paper. Also,

we include in appendix B a short derivation of the connected two-point correlator based

on the techniques developed in an earlier paper [18].
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2 Wilson loop correlators and generating functions

As shown in [1, 4, 5], the 1
2 -BPS circular Wilson loop in N = 4 SYM theory with gauge

group U(N) can be computed exactly as the expectation value in a Gaussian matrix model,

〈trR U〉 =

〈
trR e

√
λ
2N

M
〉

mm

. (2.1)

On the left hand side, U denotes the Maldacena-Wilson loop operator

U = P exp

∮
C

ds (Aµẋ
µ + iΦ|ẋ|) , (2.2)

where Φ is one of the six scalars of N = 4 SYM, C is a circular contour in space, R denotes

a representation of U(N), and λ is the ’t Hooft coupling. On the right hand side of (2.1),

the matrix model expectation value is defined as

〈O〉mm =

∫
dM e− trM2 O∫
dM e− trM2 , (2.3)

with the integration taken over all hermitian matrices M .2

Instead of dealing directly with the individual Wilson loops, it is useful to consider

generating functions from which these objects can be derived. For the case of the totally

symmetric and antisymmetric representations of U(N), the respective generating functions

are defined as [7]

JS

(
z, λ,

1

N

)
≡ 1

N
log

∞∑
k=0

zk 〈trSk U〉 =
1

N
log

〈
det

( ∞∑
k=0

zk e
k
√

λ
2N

M

)〉
mm

, (2.4)

JA

(
z, λ,

1

N

)
≡ 1

N
log

∞∑
k=0

zk 〈trAk U〉 =
1

N
log

〈
det

(
1 + z e

√
λ
2N

M
)〉

mm

. (2.5)

Using the techniques of [13], the matrix model integrals can be computed exactly, yielding

JS =
1

N
tr log

∞∑
k=0

zkA(k) , JA =
1

N
tr log [1 + zA(1)] . (2.6)

Here, A(k) is the N ×N symmetric matrix3

A(k)m,n = A(k)n,m =

√
n!

m!
e
k2λ
8N

(
k2λ

4N

)m−n
2

L(m−n)
n

(
−k

2λ

4N

)
, (2.7)

where L
(m−n)
n (z) denotes the associated Lagurerre polynomial, and m,n = 0, . . . , N − 1.

In what follows, we adopt the simplified notation

Ak = A(k) . (2.8)

2In the case of SU(N) the matrices must also be traceless.

3A(k) is related to the matrix I(x, y) defined in [18] by A(k) = e
k2g2

2 I(kg, kg), where g2 = λ
4N

is the

matrix model coupling constant.
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Besides the Wilson loop itself, another interesting object one seeks to compute is the

correlator of h multiply-wound Wilson loops in the fundamental representation of U(N)

(with identical circle contours C),〈
h∏
i=1

trUki

〉
=

〈
h∏
i=1

tr e
ki

√
λ
2N

M

〉
mm

. (2.9)

In [15], Okuyama introduced the corresponding generating function4

G~k =

〈
h∏
i=1

det

(
1 + yi e

ki

√
λ
2N

M
)〉

mm

, (2.10)

such that 〈
h∏
i=1

trUki

〉
=

∮ h∏
i=1

dyi
2πiy2i

G~k . (2.11)

Again, an exact expression for the generating function is available, namely,

G~k = det

[
h∑

m=0

∑
i1<···<im

yi1 · · · yimA(ki1 + · · ·+ kim)

]
. (2.12)

Finally, and more importantly for our purposes, Okuyama [15] also introduced the

connected h-point correlator of multiply-wound Wilson loops, defined directly in the matrix

model as

W~k
=

〈
h∏
i=1

trUki

〉
conn

=

∮ h∏
i=1

dyi
2πiy2i

logG~k . (2.13)

Using the exact form of the generating function (2.12) one can compute (2.13) in terms of

traces of products of the matrix Ak. The first few examples are [15]

W(k1) = tr [Ak] , (2.14)

W(k1,k2) = tr [Ak1+k2 ]− tr [Ak1Ak2 ] , (2.15)

W(k1,k2,k3) = tr [Ak1+k2+k3 ]− tr [Ak1+k2Ak3 ]− tr [Ak3+k1Ak2 ]− tr [Ak2+k3Ak1 ] (2.16)

+ tr [Ak1Ak2Ak3 ] + tr [Ak3Ak2Ak1 ] .

A key observation is that these connected correlators have a systematic expansion in 1/N2

of the form [15, 16]

W~k
= N2−h

∞∑
g=0

N−2gCg,h(~k) , (2.17)

where Cg,h is the genus-g contribution.

4Deviating from Okuyama’s notation, we have added the h-dimensional vector ~k = (k1, k2, . . . , kh), which

encodes the winding numbers of the loops, as a subscript to G. By definition, the Wilson loop correlators

and the corresponding generating function are even under any permutation of the k’s.

– 4 –
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3 Generating functions in terms of connected correlators

Equations (2.14)–(2.16), and their generalizations for h > 3, express the connected Wilson

loop correlators in terms of the traces of symmetrized products of the matrices Ak. Notice

that each of these traces is of leading order N , whereas, according to (2.17), the h-point

correlator is of order N2−h. This means that as h grows an increasing number of cancel-

lations between the leading terms must occur. Therefore, it is more useful to consider the

connected correlators as a basis and calculate the traces of symmetrized products of Ak’s

in terms of them. The result of this exercise, up to n = 4, is

tr[Ak] = W̃(k) , (3.1)

tr[A(k1Ak2)] = W̃(k1+k2) − W̃(k1,k2) , (3.2)

tr[A(k1Ak2Ak3)] =
1

2

[
2W̃(k1+k2+k3) − 3W̃(k1+k2,k3) + W̃(k1,k2,k3)

]
, (3.3)

tr[A(k1Ak2Ak3Ak4)] =
1

6

[
6W̃(k1+k2+k3+k4) − 8W̃(k1+k2+k3,k4) − 3W̃(k1+k2,k3+k4) (3.4)

+6W̃(k1+k2,k3,k4) − W̃(k1,k2,k3,k4)

]
.

On the left hand side, the parentheses represent symmetrization over the k’s. By the same

token, W̃ stands for the symmetrized version of the connected correlators W. In either

case, symmetrization is achieved using permutations σ ∈ Sn acting on the index i of ki.

For example, the simplest non-trivial case is

W̃(k1+k2,k3) =
1

6

(
W(k1+k2,k3) +W(k2+k3,k1) +W(k3+k1,k2) (3.5)

+W(k1+k3,k2) +W(k2+k1,k3) +W(k3+k2,k1)

)
.

We now need to generalize formulas (3.1)–(3.4) to arbitrary n. To this purpuse, it

is useful to introduce an additional piece of notation. Given an n-dimensional vector
~k = (k1, k2, . . . , kn) and a partition ν = (ν1, ν2, . . . , νc) of n into c parts, denoted by ν ` n|c
(see appendix A for definitions and notation), we define the c-dimensional vector ~kν by

~kν =

(
ν1∑
i=1

ki,

ν1+ν2∑
i=ν1+1

ki, . . . ,
n∑

i=ν1+ν2+···+νc−1+1

ki

)
. (3.6)

For example, for ~k = (k1, k2, k3) we have

~k(3) = (k1 + k2 + k3) , ~k(2,1) = (k1 + k2, k3) , ~k(1,1,1) = (k1, k2, k3) , (3.7)

corresponding to the three possible partitions of n = 3. Notice the following special cases

~k(1,1,...,1) = ~k , (1, 1, . . . , 1)ν = ν . (3.8)

With this notation at hand, equation (3.3) becomes

tr[A(k1Ak2Ak3)] =
1

2

[
2W̃~k(3)

− 3W̃~k(2,1)
+ W̃~k(1,1,1)

]
, (3.9)

– 5 –
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and similarly for the other relations in (3.1)–(3.4). In fact, we recognize the following pat-

tern. With each term in the expansion of tr[A(k1Ak2 · · ·Akn)] one can associate a unique

partition ν of n. If ν has cycle number c, then the corresponding term involves the con-

nected c-point correlator, which depends on the c-dimensional vector ~kν defined in (3.6).

The coefficient in front of this term is given by (−1)c−1|Cν |/(n − 1)!, where |Cν | is the

number of permutations of cycle type ν.5 Therefore, we find that equations (3.1)–(3.4) are

generalized to

tr[A(k1Ak2 · · ·Akn)] =

n∑
c=1

(−1)c−1

(n− 1)!

∑
ν`n|c

|Cν |W̃~kν
. (3.10)

This is our first result. In what follows, we will use it to express the generating func-

tions JS and JA in terms of the connected Wilson loop correlators and prove Okuyama’s

observation (1.1).

Consider first JA. We start from the exact expression (2.6) and expand the logarithm.

This yields

NJA

(
z, λ,

1

N

)
= −

∞∑
n=1

(−z)n

n
tr(An1 ) . (3.11)

Using (3.10) with ~k = (1, 1, . . . , 1), taking account of (3.8) and reordering the summations

over n and c, (3.11) becomes

NJA

(
z, λ,

1

N

)
=
∞∑
c=1

(−1)c
∞∑
n=c

(−z)n

n!

∑
ν`n|c

|Cν |Wν . (3.12)

This is our second result. Notice that the tilde for symmetrization has been dropped,

because the symmetrization would have acted on the components of ν, but the connected

correlators are by definition symmetric in their arguments.

Next, consider JS . Starting once more from (2.6) and expanding the logarithm gives

NJS

(
z, λ,

1

N

)
= −

∞∑
n=1

(−1)n

n

∞∑
k1,k2,...,kn=1

zk1+k2+···+kn tr
[
A(k1Ak2 · · ·Akn)

]
. (3.13)

Substituting (3.10) and reordering the sums one obtains

NJS

(
z, λ,

1

N

)
=

∞∑
c=1

∞∑
n=c

(−1)n+c

n!

∑
ν`n|c

|Cν |
∞∑

k1,k2,...,kn=1

zk1+k2+···+knW~kν
. (3.14)

Notice again that the tilde in the connected correlators can be omitted, this time, because

the symmetrization is achieved implicitly by the summation over the k’s.

The resulting sums can be simplified with the aid of the general identity

∞∑
k1,k2,...,ks=1

f

(
s∑
i=1

ki

)
=
∞∑
k=1

(
k − 1

s− 1

)
f(k) , (3.15)

5Notice that the sum over all the coefficients for given n vanishes.

– 6 –
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which needs to be applied c times, once for each component of ~kν . Thus,

∞∑
k1,k2,...,kn=1

zk1+k2+···+knW~kν
=

∞∑
k1,k2,...,kc=1

[
c∏
j=1

(
kj − 1

νj − 1

)]
zk1+k2+···+kcW~k

, (3.16)

where on the right hand side ~k = (k1, k2, . . . , kc) is c-dimensional. We can now apply

to (3.16) the master formula (A.11), rendering

∞∑
k1,k2,...,kn=1

zk1+k2+···+knW~kν
=
∞∑
m=c

zm

m!

∑
µ`m|c

|Cµ|Wµ

∑
σ∈Sc

c∏
j=1

[(
µσ(j)
νj

)
νj

]
. (3.17)

The summation over the permutations σ ∈ Sn explicits the necessary symmetrization. Let

us remark that this expression is a function of the partition ν.

For the final steps of the calculation, we substitute (3.17) back into (3.14) and exchange

the summations over m and n. This can be safely done because the binomials are non-zero

only for µσ(i) ≥ νi, for all i = 1, 2, . . . , c. Summing this over i shows that only the terms

with m ≥ n contribute to the sum. Hence,

NJS

(
z, λ,

1

N

)
=
∞∑
c=1

∞∑
m=c

zm

m!

∑
µ`m|c

|Cµ|Wµ

∞∑
n=c

∑
ν`n|c

(−1)n+c

n!
|Cν |

∑
σ∈Sc

c∏
j=1

[(
µσ(j)
νj

)
νj

]
.

(3.18)

Here, starting from the sum over n, we recognize the right hand side of (A.11) for the func-

tion6

f~k = (−1)k1+k2+···+kc+c
c∏
j=1

(
µj
kj

)
. (3.19)

Therefore, we have

∞∑
n=c

∑
ν`n|c

(−1)n+c

n!
|Cν |

∑
σ∈Sc

c∏
j=1

[(
µσ(j)
νj

)
νj

]
= (−1)c

∞∑
k1,k2,...,kc=1

(−1)k1+k2+···+kc
c∏
j=1

(
µj
kj

)

=
c∏
j=1

[
−
∞∑
kj=1

(−1)kj
(
µj
kj

)]

=

c∏
j=1

[1− (1− 1)µj ] = 1 . (3.20)

Equation (3.18) then reduces to

NJS

(
z, λ,

1

N

)
=
∞∑
c=1

∞∑
m=c

zm

m!

∑
µ`m|c

|Cµ|Wµ , (3.21)

which is our final result for JS . Comparing (3.21) with (3.12) and taking into account (2.17),

the relation (1.1) between the generating functions follows immediately.

6In (A.11), the symmetrization in f̃ is carried out over the k’s. In (3.18), because of the product over j,

this is equivalent to symmetrizing the µ’s.

– 7 –
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4 Conclusions

In this paper, we revisited the generating functions of circular Wilson loops in N = 4 SYM

in the totally symmetric and antisymmetric representations of the U(N) gauge group, tak-

ing advantage of some previously known results derived from the Gaussian matrix model.

The novelty of our work consists in using the connected correlators of multiply-wound

Wilson loops in the fundamental representation, which were (re)introduced by Okuyama

in [15], as a basis. For the sake of concreteness, we report here the results for the generat-

ing functions,

JS

(
z, λ,

1

N

)
=

1

N

∞∑
c=1

∞∑
n=c

zn

n!

∑
ν`n|c

|Cν |Wν , (4.1)

JA

(
z, λ,

1

N

)
=

1

N

∞∑
c=1

(−1)c
∞∑
n=c

(−z)n

n!

∑
ν`n|c

|Cν |Wν . (4.2)

In these equations, Wν denotes the connected correlators of multiply-wound Wilson loops,

which are labelled by partitions ν (of n into c parts), and |Cν | is the number of permutations

of the same cycle type as indicated by the partition ν. When written in this fashion, the

conjecture (1.1) by Okuyama relating the two generating functions follows directly from

the genus expansion (2.17) for the connected correlators. We mention that our proof of

the conjecture is exact in the ’t Hooft coupling λ. As a by-product, we have computed

the two-point connected correlator W(k1,k2) to leading order in 1/N using the techniques

introduced in [18], see appendix B.

It is evident that the structure of the generating functions is governed by the represen-

tation theory of the symmetric group.7 In hindsight, this should not come as a surprise.

The representation theory of the symmetric group is widely used in the analysis of matrix

models. To be more precise, the symmetric polynomials appear as functions of egxi , where

xi are the eigenvalues that one integrates over. Thus, the (unconnected) correlators of

multiply-wound Wilson loops translate to the power-sum symmetric polynomials, whereas

a single Wilson loop in some representation R translates to the Schur polynomial corre-

ponding to that representation. Other bases of the symmetric functions could be equally

used, because they are related by linear relations. For example, Fiol and Torrents [13] used

the monomial basis, from which the Schur basis is obtained by the Frobenius formula.

Our results suggest a number of further questions. We believe that (3.10) has a group

theoretical origin, as it somewhat resembles a relation between the elementary and power-

sum symmetric polynomials. It should also be possible to generalize our results to arbitrary

representations. A clear advantage of using the connected correlators as a basis, at least in

the context of large N , is their genus expansion, which we indicated in (2.17). The n-point

connected correlator has a leading term of order N2−n, whereas all the traces of products

of Ak grow like N . Our calculation in appendix B illustrates this point. If one starts

from the exact solution for the matrix Ak, the first subleading term in its 1
N -expansion

is merely sufficient to calculate the leading term of the 2-point connected correlator, but

7Recall that partitions label the conjugacy classes of the symmetric group.

– 8 –



J
H
E
P
0
8
(
2
0
1
9
)
1
4
9

nothing can be said for the 3- and higher-point connected correlators. Therefore, it would

be very interesting to find an exact solution of the matrix model that yields the connected

correlators directly. By exact solution we mean for finite N . This does not include the

resolvent method, which crucially relies on a continuum eigenvalue density in the large-N

limit. Another interesting question is the relation between the connected correlators and

the U(N) color invariants introduced in [31]. We leave these interesting lines of research

for future work.

A Combinatorial basics

In this appendix, we review the minimal amount of concepts from combinatorial analysis

that are necessary for our purposes. We also derive a “master formula” that converts sums

over integers into sums over partitions. For a short overview, reference [34] should suffice.

A more detailed account can be found in [35].

The symmetric group Sn consists of all bijections from the set {1, 2, . . . , n} to itself

using composition as group multiplication. The elements σ ∈ Sn are called permutations.

The rank of Sn is n!.

Any permutation can be decomposed into a product of cycles, which are nothing but

cyclic permutations of disjoint subsets of {1, 2, . . . , n}. For example, in cycle notation,

the permutation {1, 2, 3, 4, 5, 6, 7} → {2, 5, 7, 4, 1, 6, 3} would be written as (251)(73)(4)(6).

Depending on the permutation, the number of cycles can range from 1 to n. If σ contains

a1 fixed points (cycles of length one), a2 cycles of length two, . . . , and an cycles of length

n, then it is said to have cycle type8

t =

n∏
i=1

(ai>0)

(i)ai . (A.1)

The example above has t = (3)1(2)1(1)2. Clearly,

n =

n∑
i=1

iai , (A.2)

and the number of cycles is given by

c =

n∑
i=1

ai . (A.3)

The cycle type characterizes a conjugacy class of Sn.

A different way to indicate the cycle type, which turns out to be more useful for our

purposes, is as a list ν = (ν1, ν2, . . . νc), with νi ∈ {1, 2, . . . n}, of non-increasing integers,

in which each integer νi is repeated aνi times. In the example considered above, the

permutation (251)(73)(4)(6) is of cycle type ν = (3, 2, 1, 1) ∼ (3)1(2)1(1)2 = t. It is evident

8In [34], the notation (a1, a2, . . . , an) is used to specify the cycle type, but this would be in conflict with

the notation we introduce in the main body.
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that the list ν thus defined represents a partition of n into c parts. We shall denote

it by ν ` n|c. Hence, there is a one-to-one correspondence between the cycle types of

permutations σ ∈ Sn and partitions of n. The number of permutations of cycle type ν ∼ t
(or the number of elements in the conjugacy class labelled by ν) is given by

|Cν | =
n!∏

i
iaiai!

. (A.4)

Now, in this paper we encounter sums of the form

∞∑
k1,k2,...,kc=1

f~k , (A.5)

where ~k = (k1, k2, . . . , kc) is a c-dimensional vector of integers and f~k a function of ~k.

Defining the symmetrized function

f̃~k =
1

c!

∑
σ∈Sc

f
σ(~k)

, (A.6)

with σ(~k)i = kσ(i), and assuming that the summations can be carried out in any order, the

above sum is clearly equal to

∞∑
k1,k2,...,kc=1

f~k =

∞∑
k1,k2,...,kc=1

f̃~k . (A.7)

Because f̃ is explicitly symmetric in its arguments, we can order them by size in a non-

increasing manner. This way, ~k = (k1, k2, . . . , kc) becomes a partition of n = k1+k2+· · ·+kc
into c parts, ν ` n|c. Collecting identical terms in the sum and noting that their multiplicity

is given by the multinomial coefficient(
c

a1, a2, . . . , ac

)
=

c!

a1!a2! · · · ac!
, (A.8)

where the integers ai are determined by the cycle type corresponding to ν, yields

∞∑
k1,k2,...,kc=1

f~k =
∞∑
n=c

∑
ν`n|c

c!∏
i
ai!
f̃ν . (A.9)

Furthermore, we can express the multinomial coefficients (A.8) in terms of (A.4) and

rewrite the result using the identity

n∏
i=1

iai =
c∏
i=1

νi for ν ` n|c . (A.10)

Thus, we obtain the master formula

∞∑
k1,k2,...,kc=1

f~k =

∞∑
n=c

c!

n!

∑
ν`n|c

|Cν |

(
c∏
i=1

νi

)
f̃ν . (A.11)
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B Connected 2-point correlator

As a by-product of our investigation, we have calculated the connected 2-point correlator

W(k1,k2) using the techniques and results of [18]. Because the calculation is quite short, we

would like to present it here.

The starting point is the matrix A(k) defined in (2.7). In the nomenclature of [18],

this corresponds to the matrix elements in the number basis. It is convenient to change to

the position basis [18], in which the leading term in 1/N is diagonal,

A(k)ij = e
k
√
λ
√

1+ 1
2N

cos θi δij +
1

N

∞∑
r,s=1

sin(rθi)

sin θi

sin(sθj)

sin θj
Ir+s(k

√
λ) +O

(
N−2

)
. (B.1)

Here, θi are given implicitly by the equation(
N +

1

2

)
(θi − sin θi cos θi) =

(
i− 1

4

)
π, i = 1, 2, . . . , N , (B.2)

and In(z) denotes the modified Bessel functions of the first kind. In the large-N limit,

sums over i can be converted into integrals via

1

N

N∑
i=1

f(θi) =
2

π

(
1 +

1

2N

)∫ π

0
dθ sin2 θf(θ)− 1

4N
[f(0) + f(π)] +O

(
N−2

)
. (B.3)

This conversion is necessary to compute products of matrices as well as traces.

As a first check, by a calculation similar to (C.6) in [18], we obtain the 1-point function

W(k) = trA(k) =
2N

k
√
λ

I1(k
√
λ) +O

(
N−1

)
. (B.4)

Notice that there is no term of order N0, in agreement with (2.17). For the connected

2-point correlator we introduce the matrix

W (k1, k2) = A(k1 + k2)−A(k1)A(k2) . (B.5)

In order to calculate its matrix elements in the position basis, some properties of the

modified Bessel functions are needed, in particular, the generating function and summa-

tion theorem

ex cos θ =
∞∑

k=−∞
Ik(x) cos(kθ) , In(x+ y) =

∞∑
k=−∞

In−k(x) Ik(y) . (B.6)

One obtains

W (k1, k2)ij =
1

N

∞∑
r,s=1

sin(rθi)

sin θi

sin(sθj)

sin θj

∞∑
t=0

Ir+t(k1
√
λ) Is+t(k2

√
λ) +O

(
N−2

)
. (B.7)
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Taking the trace gives the connected 2-point correlator

W(k1,k2) =
∞∑
r=1

∞∑
t=0

Ir+t(k1
√
λ) Ir+t(k2

√
λ)

=

∞∑
v=1

v Iv(k1
√
λ) Iv(k2

√
λ)

=
k1k2
k1 + k2

(
1

k1
+

1

k2

) ∞∑
v=1

v Iv(k1
√
λ) Iv(k2

√
λ)

=
1

2

√
λ

k1k2
k1 + k2

∞∑
v=1

{[
Iv−1(k1

√
λ)− Iv+1(k1

√
λ)
]

Iv(k2
√
λ)

+ Iv(k1
√
λ)
[
Iv−1(k2

√
λ)− Iv+1(k2

√
λ)
]}

=
1

2

√
λ

k1k2
k1 + k2

[
I0(k1

√
λ) I1(k2

√
λ) + I1(k1

√
λ) I0(k2

√
λ)
]
. (B.8)

This reproduces equation (3.10) of [15]. The same result was also derived in [6] using the

inverse Laplace transform of the 2-point resolvent in random matrix theory.

We remark that it is not possible to calculate any higher-point correlators using this

approach; one would not only need the 1/N2 terms in (B.1), but also carefully take into

account further 1/N corrections that stem from matrix multiplications, as explained in [18].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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