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Abstract: We propose a new version of the scalar Weak Gravity Conjecture (WGC)

which would apply to any scalar field coupled to quantum gravity. For a single scalar it

is given by the differential constraint (V ′′)2 ≤ (2V ′′′2 − V ′′V ′′′′)M2
p , where V is the scalar

potential. It corresponds to the statement that self-interactions of a scalar must be stronger

than gravity for any value of the scalar field. We find that the solutions which saturate the

bound correspond to towers of extremal states with mass m2(φ) = m2
0/((R/m)2+1/(nR)2),

with R2 = eφ, consistent with the emergence of an extra dimension at large or small R

and the existence of extended objects (strings). These states act as WGC states for the

scalar φ. It is also consistent with the distance swampland conjecture with a built-in duality

symmetry. All of this is remarkable since neither extra dimensions nor string theory are

put in the theory from the beginning, but they emerge. This is quite analogous to how the

11-th dimension appears in M-theory from towers of Type IIA solitonic D0-branes. From

this constraint one can derive several swampland conjectures from a single principle. In

particular one finds that an axion potential is only consistent if f ≤Mp, recovering a result

already conjectured from other arguments. The conjecture has far reaching consequences

and applies to several interesting physical systems: i) Among chaotic inflation potentials

only those asymptotically linear may survive. ii) If applied to the radion of the circle

compactification of the Standard Model to 3D with Dirac neutrinos, the constraint implies

that the 4D cosmological constant scale must be larger than the mass of the lightest

neutrino, which must be in normal hierarchy. It also puts a constraint on the EW scale,

potentially explaining the hierarchy problem. This recovers and improves results already

obtained by applying the AdS swampland conjecture, but in a way which is independent

from UV physics. iii) It also constraints simplest moduli fixing string models. The simplest

KKLT model is compatible with the constraints but the latter may be relevant for some

choices of parameters.
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1 A Scalar Weak Gravity Conjecture

The Weak Gravity Conjecture (WGC) was first formulated in [1–3], see [4] for a recent

review and more references. The most widely studied WGC example is the case of a U(1)

gauge boson coupled to gravity. It states that there must always exist a charged particle

with mass m and charge q such that m ≤ gqMp in the theory. Arguments based on ex-

tremal charged back-holes and string theory examples give solid support to this conjecture,

which has been generalized to multiple U(1)’s as well as antisymmetric tensor couplings in

supergravity and string theory, see refs. [5–36] for some recent reverences and [4, 37] for

an introduction.

There are however two options concerning what is the most important physical princi-

ple underlying the WGC, either 1) It is something primarily related to black-holes and their

stability or rather 2) It is the general principle of gravity being the weakest force which is

the crucial point. If the second is true, the consequences would be paramount, since there

are many physical instances in which interactions may potentially be weaker than gravity

without black-holes playing (at least apparently) any role. In the present paper we want

to argue that insisting in gravity being always and in any circumstance the weakest force,

may have very important implications if applied to scalar particles.

In this paper we put forward the proposal of a Strong Scalar WGC which is defined

by eq. (1.5), corresponding to the statement that the self-interactions of a scalar must be

stronger than the gravitational force for all values of the scalar field. This must be true for

any scalar in the theory, and not only for a particular set of WGC states. The extremal
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version of the equation yields a surprise: the solutions are compatible with towers of

momenta and winding of an emerging dimension. Those towers become massless for |φ| →
∞, in agreement, with expectations from the swampland distance conjecture [3, 4, 37].

We interpret these towers as massive solitonic states which appear playing the role of

WGC states. This structure is analogous to the behaviour in string theory in which towers

of solitonic states (D-branes) become massless or tensionless for large fields. Thus the

simplest theory you can think of, a scalar coupled to quantum gravity, secretly contains

several features of string theory: emerging extra dimensions, winding strings and duality.

1.1 The scalar weak gravity conjecture

The WGC case for purely scalar interactions is not obvious, since clear arguments based on

blackhole physics are lacking. Still it has been argued that a variant of the WGC applies

to axions with masses replaced by instanton actions and gauge couplings replaced by 1/f ,

with f the axion decay constant. For axions the corresponding bound is [1, 2, 4–18]

Sinst ≤
1

f
Mp , (1.1)

where Sinst is the instanton action. For the theory to be within control one asks for Sinst ≥ 1,

leading to the constraint f ≤Mp. This is relevant for models of natural inflation in which

values for f larger than Mp are in general required in order to get appropriate inflation.

Palti formulated a first version of a Scalar Weak Gravity Conjecture (SWGC) in the

following terms [38] (see also [39] and [4, 40]). We consider a particle H with mass m which

is coupled to a light scalar φ with a trilinear coupling proportional to µ = ∂φm. Then the

conjecture is that, as mφ → 0,

(∂φm)2 ≥ m2

M2
p

. (1.2)

The statement is that the force mediated by φ must be stronger than the gravitational

force and m2(φ) is considered as a function of φ so that m2 = V ′′. So the above expression

may be written as

(V ′′′)2 ≥ (V ′′)2

M2
p

. (1.3)

Here the particle H acts as a WGC particle in the sense that it is there to guarantee that

there is at least one particle with interactions stronger than gravity. The philosophy sounds

similar to the WGC for gauge U(1) interactions. However, both situations are apparently

very different. In particular the scalar has no charge which could create a blackhole stability

problem as with charged fields under a U(1), and the generalization is not obvious.

1.2 A Strong scalar WGC

As formulated by Palti, the above bound does not apply to any scalar, but only to WGC

scalars which interact with a scalar φ and whose mass is a function of φ. That is for

example the case of some string particle (like a lightest KK mode) which depends on the

moduli of a compactification. The conjecture does not apply as it stands to the fields φ
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Figure 1. Pictorial representation of the Strong Scalar Weak Gravity Conjecture.

themselves. With the above expression one finds that the marginal situation for the mass

of the WGC scalar H occurs for

m2 = m2
0e

±φ/Mp . (1.4)

This gives the expected behaviour which appears in the distance conjecture at large φ [3]

(see also [22]). So this scalar H could be like the first member of a tower. However this

exponential behaviour is at odds with the properties of axions, whose potential is periodic

and hence inconsistent with eq. (1.3). Also, the exponential must be e−φ/Mp for large φ

but one must change to eφ/Mp for φ → −∞, and there is no single function which includes

both behaviours simultaneously. We propose that the above formulated SWGC needs to

be modified in such a way that both issues may be circumvented. Furthermore we will

insist that our new SWGC applies to any scalar in the theory. The latter possibility was

termed Super SWGC in [38].

We propose the formulation of a Strong version of a Scalar Weak Gravity Conjecture

(SSWGC) for the case of a single scalar as follows:

i) The potential of any canonically normalized real scalar V (φ) in the theory

must verify for any value of the field the constraint:

2(V ′′′)2 − V ′′V ′′′′ ≥ (V ′′)2

M2
p

, (1.5)

with primes denoting derivation with respect to φ. Compared to eq. (1.3) here there is a

new term V ′′′′ associated to the quartic interaction of the scalars. Such a term was not

present in the SWGC bound in the previous paragraph because such an interaction among

the H fields is not mediated by φ and hence it should not be included. In our case it

is different because our condition applies to any scalar, including massive mediators. In

our conjecture there are no additional WGC H scalars present in the spectrum to verify

a WGC. Rather the states playing that role will be towers of extremal collective objects,

as described in section 1.4. At present the best justification we can provide for the factor

of 2 is that without it some of the nice implications that follow from the conjecture, like

eq. (1.12), would be lost. It is therefore for the moment an a posterior justification. it
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would be important to search for a more intuitive physical way to rewrite the equation,

where its physical origin is clearer and better motivated.

Eq. (1.5) looks like a condition which imposes that the strength of a scalar interaction

must always be stronger than gravity. The presence of the quartic term is crucial to obtain

the required consistency for the axion potential and is also justified a posteriori by the

results in section 1.4. In fact the factors and signs of the terms in the left are crucial in

order to obtain the nice results in that section. We come short of having a Feynman graph

explanation for the above differential constraint. One can motivate this expression by

considering the short distance behaviour of the potential between two scalars, see figure 1.

At short distances the first term comes from the exchange of the scalar φ, which has

the same attractive behaviour than the Newtonian term, V ' −1/r. The second term

includes a direct quartic piece, which is repulsive and proportional to a Dirac delta, hence

an UV contribution. On the other hand, in the IR regime, due to the trilinear coupling

being super-renormalizable, the first term gives rise to an effective contact term which is

attractive. Thus one cannot factor out a universal distance dependence. In fact eq. (1.5)

seems to encapsulate mixed UV and IR effects. This is perhaps not surprising considering

the results in section 1.4. The presence of the quartic terms is crucial for the presence of

winding states and duality in the emergent dimension.

Before proceeding, some comments about simple potentials are in order:

• A linear potential V = aφ+ c always verify our SSWGC. This means that the value

of |φ| is unconstrained and may be trans-Planckian with no inconsistency.

• A pure quadratic potential V = m2φ2 is special. In this case the condition is violated

for any value of φ with m2 > 0. This may be interpreted as a condition that forbids

the existence of massive scalars with no interaction other than gravity. It reminds

the U(1) WGC which also states that gauge bosons must have at least one charged

particle to interact with.

• For a purely cubic(quartic) potential V = µφ3(V = λφ4) the conditions are fulfilled

only if |φ| ≤
√

2Mp(|φ| ≤
√

6Mp).

An exponential potential of the simple runaway form V = exp(±αφ) passes the test

as long as |α| ≥ 1/Mp. Note also that the constraint is insensitive to V ′ and V themselves

so insensitive to whether the theory is in dS or AdS and the conditions for minima. So the

constraints here discussed seem unrelated to the dS conditions of refs. [41–55]. In particular

our condition is compatible but independent from the dS conjecture.

The above constraint may be easily generalized to the case of several scalars fields.

1.3 A first test: the axion potential

If the SSWGC applies to any scalars, it should apply also to axions and their periodic

potentials which we know appear in string theory whenever an axion-like scalar couples

to a non-Abelian gauge group. So one may consider the axion example as a test for the

conjecture. The leading instanton contribution to the axion potential has the form

V = − cos(φ/f)) . (1.6)
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In this case the SSWGC gives

1

f6
(
2 sin2(φ/Mp) + cos2(φ/Mp)

)
≥ cos2(φ/Mp)

f4M2
p

. (1.7)

Here we have constrained ourselves to the region in which V ′′ ≥ 0 in which the leading

cosine instanton term is expected to dominate. The above expression yields

f2 ≤M2
p(1 + 2 tan2(φ/Mp)) (1.8)

and, since the bound must be true for all φ, one obtains f ≤ Mp. So we see we can

derive from the SSWGC the condition that the decay constant f of an axion cannot ex-

ceed Mp [1, 2, 5–18]. In the present case this comes about because otherwise the scalar

interactions would be weaker than gravitation.

1.4 The extremal equation: towers of states and an emerging dimension

We can consider the extremal case for a single scalar in which the scalar interactions equal

the gravitational one. Then the constraint may be written as a differential equation on the

field dependent mass m2(φ):

2((m2)′)2 −m2((m2)′′)− m4

M2
p

= 0 . (1.9)

One obtains the extremal solutions for m2 (with φ in Mp units):

m2(φ) =
Aeφ

Be2φ + 1
. (1.10)

For this to be a solution one must have B ≥ 0. Concerning A, we chose it positive

(otherwise m2 would always be negative for all φ). Defining a field R = eφ/2, with kinetic

metric 2(dR/R)2 one can rewrite the above expression in the more suggestive way

m2 =
m2

0

1/(NR)2 + (R/M)2
. (1.11)

For N,M 6= 0 one can also write

m2 = m2
0

(NM)2

M2
N,M

, M2
N,M = N2R2 +

M2

R2
. (1.12)

Here MN,M looks like the spectrum of a string compactification in a circle, with the

duality invariance

R ←→ 1/R ; M ←→ N . (1.13)

Note also that for large(small) R one gets the limits:

m2
φ→∞ −→ m2

0 M
2e−φ ; m2

φ→−∞ −→ m2
0 N

2eφ (1.14)

For integer N,M this has the structure of towers of winding and momenta becoming light

as the scalar φ goes to infinity. Our interpretation is that these towers are the WGC scalars
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which are required so that gravity keeps on being the weakest force when |φ| goes to infinity.

If φ is identified with a modulus, this is precisely the statement in the swampland distance

conjecture [3, 22, 29, 56]. Notice also that the extremal solutions know about winding and

hence about string theory. This is in agreement with the argument in [37] that the distance

conjecture requires the existence of extended objects. Thus towers of quantized momenta

and winding from a 5D string compactified on a circle saturate the 4D Strong scalar WGC.

This is remarkable, since there is no explicit circle compactification nor winding strings

in the original differential equation. A dimension of radius R emerges from the condition

of the Strong SWGC conjecture. If this is the case, there should also be an emerging

graviphoton under which the momenta are charged, justifying a posteriori choosing N,M

integers. Note finally that obviously one could rather identify eφ with a gauge coupling

g of the complete theory, in which case as g2 → 0 a tower of states become massless to

preclude the presence of global symmetries in the effective theory.

The argument goes also in the opposite direction. Consider a 4D theory obtained upon

compactification of a 5D string theory on a circle. Then the masses of the particles in the

KK and winding towers depend on the radion in such a way that their potential verifies the

differential equation (1.9). This gives support to the proposed conjecture and the equation.

Given the above discussion, we propose a second conjecture:

ii) In the system of a single canonically normalized scalar field φ coupled to

quantum gravity, there are extremal massive states which have a structure cor-

responding to momenta and winding states of a string compactified in a circle

of radius R2 = eφ, corresponding to an emergent dimension. Those states come

in WGC towers which become massless as |φ| → ∞.

Note that the structure is analogous to how the 11-th dimension appears from Type

IIA string theory at strong coupling. The analogue of the above extremal states are the

towers of D0-branes of string theory building up the KK modes of the 11-th dimension.

Thus the simplest system one can think of with a single scalar coupled to quantum gravity

secretly has several features characteristic of string theory.

1.5 Extremal potentials

Independently of the existence of these towers of states, it is interesting the question of

whether one can write down potentials saturating the bound. By integrating V ′′ one can

obtain general forms of potentials verifying the extremal case in which the inequality is

saturated. One finds solutions of the general form

V ′ =
A√
B

tan−1(
√
Beφ) + C . (1.15)

Further integration yields for the extremal potential

V (φ)extr =
iA

2
√
B

(
Li2(−i

√
Beφ)− Li2(i

√
Beφ)

)
+ Cφ+D , (1.16)

where Li2 is the dilogarithm function and i =
√
−1. In spite of its complex appearance

the potential is real (for real constants). One can see that the first term grows linear
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with φ as φ → +∞ and is damped exponentially as φ → −∞. This asymptotic linear

behavior is in agreement with our comment above that linear potentials always satisfy the

differential constraint.

This class of potentials depend on 4 real constants A,B,C,D. For A = 0 one just gets

straight lines. For other choices one may get also runaway potentials as well as minima

which may be dS, AdS or Minkowski depending on the choice for D. Some simple interesting

cases are as follows:

• i) A = B = 1;C = D = 0, figure 2 in blue. The potential is linear at large φ

and exponentially decreasing for large negative φ. So this is an example of a run-

away potential.

• ii) A = B = 1;C = −1,D = 0, figure 2 in red. The potential shows a minimum and

behaves linearly for |φ| > Mp. This minimum may be in dS or AdS depending on

the choice for D.

• iii) Those two cases saturate the bound but are not duality invariant. If however one

insists in a duality invariance φ↔ −φ one has

V (φ)extr =
iA

2
√
B

(
Li2(−i

√
Beφ)− Li2(i

√
Beφ)

)
+ (φ↔ −φ) (1.17)

The potential is then symmetric with a minimum at φ = 0. For A = 2, B = 1,

C = D = 0 this is depicted in figure 2 in black. This class of potentials is interesting

in its own right and may have interesting physical applications e.g. in inflation. In

particular, given its asymptotic linear behaviour, it should give rise to a variation of

linear inflation.

1.6 Constraints on some simple potentials

It is interesting to see what are the constraints for a scalar potential of the form

V (φ) =
1

2
m2φ2 +

1

4
λφ4 . (1.18)

It is easy to see one finds the constraint

λ

(
3λ

2
φ2 −m2

)
≥ 1

M2
p

(
m2 +

λ

2
φ2
)2

. (1.19)

Note that the term in the right is strongly suppressed by the M−2p factor, so that in

practice (for φ2 � M2
p ) the constraint amounts to the left hand side being positive. This

is automatic for m2 < 0 and λ positive. This is similar to the situation in the SM. On the

other hand for m2 > 0 the constraint is only obeyed for φ2 > (2/3)m2.

A simple class of SUSY superpotentials is the exponential one, W = e−αM , with M a

canonically normalized complex scalar. The condition may be written as

2(VMM∗M∗)(VM∗MM )− (VMM∗)(VMMM∗M∗) ≥
(VMM∗)

2

M2
p

. (1.20)
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Figure 2. Examples of extremal potentials.

It is easy to check that this exponential superpotential leads to a potential passing the

SSWGC constraint as long as |α| ≥ 1/Mp, for any value of M . One can also test a cubic

superpotential which may appear in e.g. in string flux compactifications, i.e.

W (T ) =
m

2
T 2 +

λ

6
T 3 . (1.21)

The differential inequation yields

λ2 ≥ |m+ λT |2

M2
p

. (1.22)

One sees that trans-Planckian trips of T would in this case violate the bound. And also

the scalar interaction coupling is bounded below by λ2 ≥ m2

M2
p

. This is consistent with the

idea that gravity must be the weakest force. Let us comment that in fact instead of the

global SUSY potential one should have used the N = 1 supergravity potential. However

this does not modify the result because the additional terms in the potential have an extra

Planck mass supression.

2 Applications

The above introduced Strong SWGC may have an important impact whenever there is some

Planck suppressed scalar interaction with the risk of becoming weaker than gravity. Here

we list four important applications leaving a more detailed account for a future publication.

2.1 Inflation

We already mentioned that among polynomial potentials, the linear case is the only one

that allows for trans-Planckian excursions. So among chaotic inflation models [57] the
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linear one is singled out as the unique class which can lead to sufficient inflation. As is

well known, linear potentials may yield 50–60 e-folds of inflation with tensor perturbations

with r ' 0.07. This relatively large value will soon be experimentally tested. Note that

instead of a purely linear potential one may consider e.g. the potential in examples ii) or iii)

above which behave linearly for |φ| > Mp. It is interesting to note that linear potentials

do appear in string theory realizations of monodromy inflation, see [58–62]. There the

stability of the potentials against corrections is guaranteed due to shift symmetries. One

type of potentials in this class has the form [59]

V (b) = A(1 +B b2)1/2 (2.1)

where b is a Type IIB (monodromic) axionic field and we set Mp = 1. A simple way to

check the validity of the Strong SWGC, eq. (1.5) is by plotting

χ ≡ 2
(
V ′′′
)2 − V ′′′′V ′′ − ( V ′′

Mp

)2

(2.2)

Then eq. (1.5) means χ ≥ 0. We plot in figure 3-a that quantity for the above potential

with A = 1 and several values of B. We see that the bound seems to be obeyed. In fact one

can check that above b ' 2 the bound is slightly violated at the per-mil label, something

not visible in the figure. However we do not have control of the theory to that level and

one may say that this model passes the test. There are several other schemes leading to

linear potentials which we will not discuss here, see e.g. [59, 64, 65].

More generally one may consider monomial potentials of the form V = φa, a ≥ 0. For

them the condition χ ≥ 0 gives (a− 1)(a− 2)M2
p −φ2 ≥ 0. For 0 ≤ a < 1 the potential has

only tiny violations of the bound at small φ, in the region φ <
√

(a− 1)(a− 2)Mp. The

same formula applies for a > 2, here the violations are large but are trans-Planckian for

a > 2.7. However, for 1 < a ≤ 2 the bound is irremediably violated at all points of field

space. Finally, a = 0 and a = 1 are the only pure monomials which satisfy the bound at

all points of field space.

Another popular inflaton potential is the Starobinsky model [66, 67], which has the

general form

V =
(

1− e−
√

2/3φ/Mp

)2
. (2.3)

The same structure appears also in Higgs inflation [68]. In figure 3-b we plot χ as a function

of the canonical field in units of Planck mass. Essentially the same thing happens for the

Starobinsky model. the simplest version of it would be inconsistent with the Strong SWGC,

since at some points in field space the condition is violated. It needs to be modified at

large trans-Planckian distances. Adding a perturbation may possibly make it consistent.

These are just a couple of examples, just to show that the constraint is potentially

very strong. It would be interesting to study these and other examples in more detail.

2.2 Constraints on the SM from its 3D compactification

Consider the SM compactified in a circle of radius R down to 3D. This radius is a modulus

and has associated a quantum fluctuation field φ with canonical kinetic term given by

– 9 –
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Figure 3. a) The value of χ for A = 1 and B = 0.2, 0.5, 1.0. The SSWGC implies χ ≥ 0. b) The

value of χ for the Starobinsky potential.

R = re
φ

M3d
p
√
2 . Here r is any given reference scale to measure R which we set equal to

1 GeV and M3d
p is the 3D Planck mass. Let us concentrate on the deep infrared region,

well below the electron threshold, with R � 1/me. As explained in [69] the 3D one-loop

effective potential for R is given by the expression

V (R) =
2πr3Λ4

R2
− 4

(
r3

720πR6

)
+

∑
νe,νµ,ντ

r3VC [R,mνi ] . (2.4)

The first term comes from the 4D cosmological term Λ4 after dimensional reduction (and

going to the 3D Einstein frame). The second comes from the one-loop Casimir energy

associated to the only two massless particles, the photon and the graviton. The factor

4 gives the number of helicity degrees of freedom of those fields. The remaining term is

the contribution to the Casimir energy of the three neutrinos compactified with periodic

boundary conditions, and is given by

VC [R,mνi ] =
nνi m

2
νi

8π4R4

∞∑
n=1

K2(2πmνinR)

n2
. (2.5)

Here nνi is the number of helicities for each neutrino (2 for Majorana and 4 for Dirac)

and Kn are modified Bessel functions of the second kind. This potential is reliable since

the contributions from higher thresholds are exponentially suppressed compared to the

neutrino contributions by factors of order e−m/mν . It has local minima in AdS if neutrinos

are Majorana [69]. This is due to the fact that the lightest neutrino contributes positively

to the potential with 2 degrees of freedom, which is not enough to compensate for the 4

bosonic degrees of freedom contributing negatively from photon and graviton. However,

if the lightest neutrino is Dirac (and it is lighter than the c.c. scale Λ
1/4
4 ) it contributes

positively with 4 (instead of 2) degrees of freedom, which is enough to compensate for

– 10 –
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the 4 massless degrees of freedom of the photon and the graviton. The potential is then

monotonously decreasing for large R and no AdS minima develops. This fact has been used

to obtain bounds on the lightest neutrino mass and the 4D cosmological constant [71] by

imposing the condition suggested in [70] that AdS non-SUSY vacua are in the swampland

(see also [72–74]). One obtains four very relevant implications for the SM [71]:

• The lightest neutrino is Dirac.

• The lightest neutrino has a mass mν1 ≤ 7.7 × 10−3 eV for normal hierarchy and

mν3 ≤ 2.5× 10−3 eV for inverted hierarchy.

• The 4D c.c. is bounded below by Λ4 ≥ a(mν1)4, with a ' 1. This is in agreement with

the fact that the c.c. scale Λ
1/4
4 ' 10−3 eV is of order of the scale of neutrino masses.

• Since Dirac neutrino masses are proportional to the Higgs vev (i.e. mν1 = hν1 <

H >), an upper bound on the lightest neutrino mass implies un upper bound on the

Higgs vev (at fixed Yukawa). This may give an understanding of the stability of the

EW scale.

Here we will show that similar (but not identical) interesting constraints on the SM may

be obtained from the Strong SWGC here discussed if extended to 3D. This is very attractive

since, for the AdS swampland condition to apply, the AdS minima obtained must be

absolutely stable, and this is always difficult to prove (one cannot rule out some instability

in the UV). It is important to remark that they are totally independent conjectures.

In fact, the AdS criteria forbids Majorana masses while the Strong SWGC allows them.

Interestingly, both set very similar bounds for the lightest Dirac neutrino mass. We will

show is that unless the lightest Dirac neutrino is sufficiently light, the form of the scalar

potential for σ is not consistent with the 3D version of equation (1.5), for some value of R

the scalar interaction becomes weaker than gravitation.

We want to check if the effective potential of the SM compactified on a circle verifies

eq. (1.5). For practical reasons it is useful to define:

χ̃

M2
p

≡ 2

(
V ′′′

V ′′

)2

− V ′′′′

V ′′
, (2.6)

since the plots become easier to read. On the other hand, the intuition on what could

change if a perturbation to the potential is included is lost, since we are taking ratios. In

terms of this new variable eq. (1.5) is χ̃ ≥ 1. In computing χ̃ all derivatives are taken

with respect to the canonical field φ. However, in figure 4 we plot it with respect to R, for

simplicity. The derivatives can be computed analytically using standard formulas involving

the Kn functions. We find that for normal neutrino hierarchy the Strong SWGC is violated

unless the lightest neutrino is lighter than 1.5× 10−3 eV, see figure 4. Interestingly, in the

case of inverted hierarchy we obtain a lower and not an upper bound on the lightest neutrino

mass. In particular we find that the lightest neutrino must have mν ≥ 1.6 meV. We can

combine this bound with the results in [71, 72] to conclude that, if both conjectures are

true, the SM with inverse hierarchy would be in the Swampland. Normal hierarchy is

– 11 –
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Figure 4. Bound on neutrino mass for normal hierarchy.

therefore another non-trivial prediction that arises from the conjecture. It is interesting

that present data already show a slight preference for the normal hierarchy.

2.3 Constraints on the SM Higgs mass

Independently of the above 3D constraints on the SM, one can consider possible SSWGC

constraints directly in 4D. Here the natural candidate to give rise to interactions weaker

than gravity at some scale is the Higgs field. The bound in eq. (1.5) is a bound on the

mass of a scalar (for all φ). Since the mass is suppressed by a 1/Mp factor one may expect

that it will trivially be obeyed by any particle physics model. In fact this is not necessarily

the case. It may happen that for some particular value of φ the term in the left hand side

cancels exactly. In other words, defining

δ(φ) = 2(V ′′′)2 − V ′′V ′′′′ , (2.7)

one can obtain a bound

m4(φ) ≤ δ(φ)M2
p . (2.8)

This means that if, at some finite value of φ, δ(φ) vanishes or is very small, then the bound

could be violated, indicating that our model is wrong or incomplete.

In the case of the physical Higgs field H of the SM the above differential equations

would have an additional positive term (g21 + g22) contributing to δ(H) from the exchange

of electroweak gauge bosons. It is known that above the EW region, the potential for the

Higgs reaches a maximum at Qmax and eventually decreases and becomes negative in a

region around Qins ' 1011 − 1013 GeV, see e.g. [76] and references therein. The maximum

turns out to be close to the instability scale Qins and δ(H) may vanish close to that

– 12 –
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scale [75]. This would be the signal that either some new physics appear at that point

or else one has to modify the SM below Qmax so that this zero of the Higgs interaction

never appears. In particular, a SUSY version of the SM like e.g. the MSSM may avoid this

potential problem. The Higgs potential in the SUSY case is monotonous, with no maxima

at any intermediate region developing. Thus SUSY would be here present not to solve the

hierarchy problem in the traditional sense (absence of quadratic divergences) but rather to

avoid that at any point the Higgs interaction becomes weaker than gravity.

In this connection note that in eq. (2.8) the left hand side is quadratically divergent

whereas the right hand side involves only logarithmically divergent quantities. This would

be indicating that the usual arguments about to the instability of scalar masses against

quantum corrections are at odds with constraints coming from WGC arguments. An

analogous observation but in a different context was already made in [77]. We leave a

detail study of the numerical effect of our bound on the SM for future work [75].

2.4 Moduli fixing in flux string vacua

The scalar potential of string compactification moduli is another instance in which in-

teractions weaker than gravity could appear, since moduli fields have Planck suppressed

interactions. Let us consider here as the simplest example the KKLT [78]. In this model

one assumes that the complex structure moduli are fixed due to fluxes at a higher scale.

One also assumes there is a single Kahler modulus T which also governs the strength of a

gaugino condensation superpotential

W = W0 + ce2πaT . (2.9)

Here W0 is a constant term induced by the fluxes and the gauge group resides on a set

of D7-branes. This yields a minimum in AdS. In order to up-lift the vacuum to dS one

assumes there are e.g. a set of anti-D3 branes on top of a throat at some point in the

compact CY. This yields an additional term δV = D/(T + T ∗)3, where D is proportional

to the number of branes and may contain model dependent suppression factors. Setting

the axion in ImT to zero and letting Re T = σ, the potential has the form

VKKLT (σ) =
πace−2πaσ

σ2

(
2πacσe−2πaσ

3
+W0 + ce−2πaσ

)
+

D

8σ3
. (2.10)

The kinetic term is

Kij∂µT
i∂µT

j
=

3

4T 2
R

((∂µTR) (∂µTR) + (∂µTI) (∂µTI)) ,

so the field is related to the canonically normalized field φ by σ = TR = e

√
2
3
φ
. The

condition χ̃ ≥ 1 is given by a very complicated expression which is a ratio of exponentials

and polynomia in TR = σ. We find that, as long as W0 is large enough to generate a

minimun, the potential verifies the SSWGC at all values of σ. The form of the potential

for the parameters given in [78] is shown with a black line in figure 5. The figure in the

right shows the ratio χ̃ = δ(σ)/V ′′2 which should be everywhere bigger than one for the
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Figure 5. KKLT potential for the parameters in the original ref. [78] in black. In red and blue

we show alternative choices for W0. For the choice in blue the bound is violated, but the potential

does not have a minimum.

bound from eq. (1.5) to be verified. One sees that the bound is respected for the original

parameters in [78]. However for smaller |W0| (in blue in the figure) the bound may be

violated, although in the cases we have analyzed the potential has no minima. At large σ

the largest exponential dominates and χ̃ = 6 so the SSWGC is always verified. It would

be interesting to study the constraints in other moduli fixing string models.

3 Discussion

In this paper we have put forward a scalar version of the WGC. We call it Strong SWGC

because we conjecture that it applies to any scalar, and not only to those which may be

playing a role as “WGC scalars”. The conjectured is summarized by eq. (1.5) which should

apply for all values of the field. The constraint may be interpreted as the condition that

the strength of the interactions of any two scalars must be bigger than its gravitational

interaction. This leads to a number of conclusions which unify and encompass some known

swampland conjectures. The axion decay constants are constrained by f ≤ Mp. There

are extremal solutions leading to an emergent dimension with radius R and masses with

a structure m2 =
m2

0
1/(NR)2+(R/M)2

, with a duality symmetry built in. The swampland

distance conjecture arises at small and large R and requires the existence of extended

objects (strings). There are two extra interesting results: i) There cannot be massive scalars

without any interaction other than gravity and ii) Among polynomial potentials only the

linear one is consistent with the conditions and hence allow for trans-Planckian trips.

The implications of this SSWGC are remarkable for both cosmology and particle

physics: 1) In single field chaotic inflation the linear potential is uniquely selected as the

only class of potentials in which trans-Planckian trips may take place. This leads to a solid

prediction: if large single field inflation is operative, the tensor-to-scalar ratio should be

around r = 0.07. Starobinsky or some linear monodromy inflation models need to be cor-
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rected to be viable 2) If applied to the 3D radion of the circle compactification of the SM,

the SSWGC implies that the lightest Dirac neutrino has a mass bounded above by the c.c.

scale, mν1 . Λ
1/4
4 . Combining the results of [71, 72] with the results of this work we find

that the lightest neutrino must be Dirac and the hierarchy must be normal (not inverted).

Furthermore, the bound on the neutrino mass implies a constraint on the Higgs vev (for

fixed Yukawa). This would give an understanding of the Higgs stability against quantum

corrections in the SM. Somewhat similar SM predictions were in fact already derived in

terms of the AdS swampland conjecture of [70] in ref. [71]. However those predictions

relied on the stability of the induced AdS 3D potential, which is difficult to establish in

the absence of UV information. In the derivation from the SSWGC here considered the

information required is purely local and independent from any UV information. 3) The

SSWGC may be applied to the Higgs field in the SM, suggesting that new physics should

appear at an intermediate scale or below. This would be independent of the traditional

argument based on the absence of quadratic divergences, and 4) The SSWGC can be ap-

plied to moduli fixing models of string compactification. The simplest KKLT scenario is

consistent with the constraints, although the parameters of moduli fixing potentials would

be constrained.

Although the conjecture looks very attractive and predictive and it is able to encompass

several of the proposed swampland conjectures, further effort should be made to understand

its physical origin as coming from a “gravity as the weakest force” condition. In addition,

the role of the extremal solutions as towers of solitonic states needs to be understood. The

generalization to more complex situations with many scalars is also important. Finally,

it would be interesting to find out what is it precisely that goes wrong when the scalar

interaction is weaker than gravity. While the WGC for charged particles and gauge bosons

is relatively well understood in terms of extremal charged black-holes, its generalization

to scalar fields and interactions remains challenging. We hope the present paper may be

useful to shed some new light into this question.
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[71] L.E. Ibáñez, V. Martin-Lozano and I. Valenzuela, Constraining Neutrino Masses, the

Cosmological Constant and BSM Physics from the Weak Gravity Conjecture, JHEP 11

(2017) 066 [arXiv:1706.05392] [INSPIRE].
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