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1 Introduction

Higher derivative gravity theories play an important role in black hole physics, cosmology,

holography, supergravity and string theory. Efforts to construct a UV complete theory of

quantum gravity generically lead to theories that contain a series of terms in the action

that are higher-order in curvature in addition to usual Einstein-Hilbert term. For example,

this is the case in string theory where an infinite series of terms can be present [1]. Higher

derivative theories provide a framework for testing which features of gravitational theory

are special, and therefore their studies provide a better understanding of Einstein gravity

and what type of modifications one can expect due to quantum corrections.

Work in this direction has a long history, dating back to early days of general relativity.

Originally, Weyl and Eddington proposed such theories for geometric unification of gravity

and electromagnetism [2, 3]. Somewhat later the search for higher curvature theories cor-

recting the Einstein-Hilbert action became motivated by attempts to construct a quantized

theory of gravity. For example, the addition of higher derivative terms to Einstein-Hilbert

action can yield a power-counting renormalizable theory [4]. Further work indicated that

in the low energy effective action of string theory a Gauss-Bonnet term appears [5]. Higher

curvature gravities have been particularly useful in the context of the AdS/CFT corre-

spondence [6], where these terms generically arise when studying the dual theory beyond

large N , but also have been successfully employed as holographic toy models. The pres-

ence of additional couplings in the action allow one to make contact with a larger class

of CFTs than those defined by Einstein gravity [7–17], which has been used with success

to identify universal properties of CFTs, e.g. [18–23]. In the context of cosmology, higher

curvature gravities have been extensively considered to explain the late-time expansion of

the universe, dark matter and inflation [24, 25].

The most general higher-curvature theory yielding second order equations of motion

in arbitrary dimensions is known as Lovelock gravity. It is perhaps the most natural

generalization of Einstein gravity in higher dimensions [26]. Indeed, Einstein gravity can

be understood as a special case of Lovelock gravity in dimensions greater than four, with

the Einstein-Hilbert term being one of several terms that constitute Lovelock theory in a

given dimension. These theories are ghost-free [5] and so are candidates for generalizations

of Einstein gravity in higher dimensions. However, Lovelock gravity that is kth order in

curvature is only non-trivial for spacetime dimensions d > 2k + 1. Thus, one must go

beyond Lovelock gravity to obtain theories that have interesting implications for lower

dimensional physics.

Under certain symmetry restrictions, many of the nice properties of Lovelock gravity

can be extended to obtain a broader class of quasi-topological gravity theories [27, 28].

Quasi-topological theories possess a number of interesting properties. First, in the context

of spherically symmetric metrics, their field equations are second-order (though they would

be fourth-order on a generic background). Second, in contrast to Lovelock theory, quasi-

topological theories of cubic or higher-order in curvature appear to exist and are non-trivial

for any dimension d ≥ 5.1 Third, the linearized equations of motion of quasi-topological

1Though we note that, at present, explicit examples of five-dimensional quasi-topological theories are

known only up to quintic order in curvature [29, 30].
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gravity coincide (up to an overall prefactor) with those of Einstein gravity on maximally

symmetric spacetime backgrounds [18]. This property ensures that the theory does not

propagate negative energy to asymptotic regions of constant curvature.

These applications have motivated more recent efforts to construct new theories of

higher-curvature gravity that are both free of ghosts and interesting both holographically

and phenomenologically. A success in this direction was the construction of Einsteinian

Cubic Gravity (ECG) [31, 32]. ECG was constructed as the unique cubic theory of gravity

whose Lagrangian is of the same form in all dimensions and propagates only the usual

massless and transverse graviton on maximally symmetric backgrounds. Unlike Lovelock

and quasi-topological gravities, ECG is neither trivial nor topological in four dimensions,

and admits four-dimensional black hole solutions that possess a number of remarkable

properties [33, 34]: (i) there is a single independent field equation (in the most general

case there would be two) that admits an integrating factor, reducing it to a second-order

differential equation determining the metric function f(r). (ii) The black hole solutions

are “non-hairy” in the sense that they are characterized by mass alone. (iii) Despite the

lack of an analytic solution to the equations of motion, the thermodynamic properties of

black holes can be studied exactly. When evaluated at the horizon, the field equations

reduce to two polynomial equations that determine the temperature and mass in terms of

the horizon radius.

It has been realized that it is possible to construct more general theories of gravity in

four and higher dimensions that incorporate many of the interesting properties observed for

ECG [35–37]. These theories, named generalized quasi-topological gravities, propagate only

the usual massless tranverse graviton in vacuum, admit non-hairy black hole solutions char-

acterized by a single metric function, and allow for non-perturbative studies of black hole

thermodynamics.2 The relative simplicity of this class of theories make them ideal for phe-

nomenological purposes (in four dimensions) and as toy models (in all dimensions). It was

shown that black branes in these theories possess a rich phase structure, contrary to what

happens in Lovelock and quasi-topological theories [38]. An initial study of holographic

aspects of ECG was carried out in [17], determining a number of entries in the holographic

dictionary for the theory and revealing, for example, that the Kovtun-Son-Starinets bound

on the ratio of entropy density to shear viscosity always holds [17].3 In [39] it was shown

that the properties of black hole solutions in these theories extend also to Taub-NUT/Bolt

solutions, providing the first examples of explicit solutions of this kind beyond Lovelock

theory. Based on that work, a number of universal results were obtained for the free energy

of odd-dimensional CFTs on squashed spheres [40]. See, for example, [41–46] for a number

of other recent developments and applications of these — and closely related — theories.

As we mentioned, there are also reasons for considering these theories in the con-

text of phenomenology. Concerning four-dimensional physics, small asymptotically flat

2It appears that all of these features follow from the requirement that black holes are characterized by

single independent field equation, as argued in [35, 36].
3We note that it has been recently shown in [46] that, for generic four- and five-dimensional massless

cubic gravities the KSS bound holds, provided that one sets a = c and t4 = 0, ensuring no possible violation

of the causality conditions. What is interesting is that in the ECG case, the bound holds in all cases with

the only assumption being the existence of positive mass black hole solutions.
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black hole solutions become stable, a result with possible implications for dark matter and

the information loss problem [47]. Recent work has revealed potentially interesting phe-

nomenological signatures of black holes [48, 49]. Furthermore, it has been realized that the

equations of motion of a subclass of the generalized quasi-topological theories are second-

order for FLRW cosmologies (indicating a well-posed initial value problem), with late-time

dynamics indistinguishable from ΛCDM while giving rise to an inflationary epoch [50]. It

was subsequently realized that this is a generic property of the four-dimensional class of

theories [51, 52].

In this paper we carry out an extensive study of the thermodynamic properties of

charged black holes in cubic generalized quasi-topological gravity. Much of our work is

framed in the language of black hole chemistry, in which the cosmological constant is

promoted to a thermodynamic variable [53, 54] interpreted as pressure in the first law of

black hole mechanics [55, 112]. This more general perspective revealed a deep analogy

between charged anti-de Sitter black holes and van der Waals fluids [56]. A remarkably

rich thermodynamic phase behaviour for black holes has since been discovered, including

the examples of triple points [57], re-entrant phase transitions [58] (analogous to those in

fluid mixtures [59], first seen in nicotine/water [60]), polymer-like behaviour [61] (similar

to that of certain glasses [62]) and even superfluid-like phase transitions [63–65] (analogous

to those in liquid helium [66]). This framework has shown to be particularly fruitful in

understanding black holes in higher curvature gravity [33, 61, 63, 64, 67–95]; we refer the

reader to [96] for a detailed survey of this subject. A study of the thermodynamic behaviour

of black holes in the quartic theory [37] is forthcoming [97].

Our paper is organized as follows. In section 2 we present charged static, spherically

symmetric AdS black holes in cubic generalized quasi-topological gravity. In section 3 we

collect the thermodynamic properties of the charged black holes. In section 4 we study the

uncharged solutions, discussing their thermodynamics and the Hawking-Page transition

in four and five dimensions. In section 5 we extend our considerations to include charge,

working in the grand canonical (fixed potential) ensemble. In section 6 we discuss the

phase structure of the charged black holes in the canonical (fixed charge) ensemble. In sec-

tion 7 we begin a holographic study of the theory, focusing on holographic hydrodynamics.

We conclude the paper with a general discussion, and collect some useful results in the

appendices.

2 Charged black hole solutions

To set up for the thermodynamic analysis in section 3, in this section we shall study charged

static, spherically symmetric AdS black holes in generalized quasi-topological gravity. This

includes a more thorough study of the results presented for asymptotically flat solutions

and AdS black branes in recent work [35–38, 47], but also includes a study of spherical and

hyperbolic black holes for the first time in this context.

2.1 Full theory and equations of motion

The most general cubic theory satisfying the condition gttgrr = −1 ensuring dependence on

a single metric function includes the cubic Lovelock and quasi-topological terms, in addition

– 4 –
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to the generalized quasi-topological term. Since both Lovelock and quasi-topological terms

have been previously studied (see, e.g. [76, 80]) here we take Einstein gravity accompanied

only by the cubic generalized quasi-topological term and a Maxwell field. In d spacetime

dimensions, the action4 is given by [35]

I =
1

16πG

∫
ddx
√
−g
[

(d− 1)(d− 2)

L2
+R− 1

4
FabF

ab

+
12(2d− 1)(d− 2)µS3,d

(d− 3)(4d4 − 49d3 + 291d2 − 514d+ 184)

]
(2.1)

where the cosmological constant is parameterized in the standard way

Λ = −(d− 1)(d− 2)

2L2
(2.2)

and where

S3,d = 14Ra
e
c
fRabcdRbedf + 2RabRa

cdeRbcde −
4(66− 35d+ 2d2)

3(d− 2)(2d− 1)
Ra

cRabRbc

−2(−30 + 9d+ 4d2)

(d− 2)(2d− 1)
RabRcdRacbd −

(38− 29d+ 4d2)

4(d− 2)(2d− 1)
RRabcdR

abcd

+
(34− 21d+ 4d2)

(d− 2)(2d− 1)
RabR

abR− (30− 13d+ 4d2)

12(d− 2)(2d− 1)
R3 . (2.3)

The ansatz for the metric is in the following form

ds2 = −N(r)2f(r)dt2 +
dr2

f(r)
+ r2dΣ2

(d−2),k (2.4)

and the field equations permit N(r) = constant [35]; we set N(r) = 1 for simplicity.5 In

the above, dΣ2
(d−2),k denotes the line element of the (d − 2)-dimensional transverse space,

which we take to be a surface of constant scalar curvature k = +1, 0,−1, associated with

spherical, flat, and hyperbolic topologies, respectively.6

A particular case of the metric (2.4) is a maximally symmetric space, for which the

metric function takes the form,

fAdS(r) = k + f∞
r2

L2
. (2.5)

Here, L is the length scale associated with the cosmological constant, while f∞ is a constant

that solves the following polynomial equation:

h(f∞) := 1− f∞ + (d− 6)
µf3
∞

L4
= 0 , (2.6)

4Our choice of the coupling here is opposite to that of [35], i.e. we choose a positive sign convention for

the cubic coupling.
5In general, one can choose N = 1/

√
f∞, to normalize the speed of light on the boundary or in the dual

CFT to be c = 1 [28]. However we set N = 1 by time reparametrization of the metric.
6The case k = 0 has been previously investigated [38] and so we only concentrate on non-planar

black holes.
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which is insensitive to the value of k. With µ 6= 0, f∞ will differ from unity, indicating that

the higher curvature terms contribute to the radius of curvature of the space. In general,

the real solutions to this polynomial may be positive or negative — we discard any negative

solutions for f∞, since these would correspond to dS vacua. Restricting to only f∞ > 0,

the effective radius of the AdS space is then given by Leff = L/
√
f∞.

The negative of the derivative of eq. (2.6) with respect to f∞ coincides with the pref-

actor appearing in the linearized equations of motion [35], and therefore must be positive

−h′(f∞) = 1− 3(d− 6)
µ

L4
f2
∞ > 0 (2.7)

to ensure that the graviton is not a ghost in these backgrounds.

As our aim is to study charged black holes, we introduce a Maxwell field Fab = ∂aAb−
∂bAa, with electromagnetic one form defined as

A = qE(r)dt (2.8)

By substitution of above expression in the Maxwell equation, the unknown function is

determined

E(r) =

√
2(d− 2)

(d− 3)

1

rd−3
(2.9)

where the specific choice of the prefactor was chosen to simplify the thermodynamic ex-

pressions and we have set to zero a constant term in the potential.

The only independent field equation from (2.1) becomes

d

dr
F [f, f ′, f ′′] = 0 (2.10)

with

F = rd−3

(
k − f(r) +

r2

L2

)
+ µFS3,d + r3−dq2 . (2.11)

The term FS3,d is the contribution from the cubic generalized quasi-topological term to the

field equation and is given by

FS3,d =
12

(4d4 − 49d3 + 291d2 − 514d+ 184)

×
[
(d2 + 5d− 15)

(
4

3
rd−4f ′3 − 8rd−5ff ′′

(
rf ′

2
+ k − f

)
−2rd−5((d−4)f−2k)f ′2 + 8(d−5)rd−6ff ′(f−k)

)
− 1

3
(d−4)rd−7(k − f)2

×
((
−d4 +

57

4
d3 − 261

4
d2 + 312d− 489

)
f

+k

(
129− 192d+

357

4
d2 − 57

4
d3 + d4

))]
. (2.12)
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Since the left-hand side of eq. (2.10) is a total derivative, direct integration yields

F = m (2.13)

where m is an integration constant with dimensions of [length]d−3 and we shall see shortly

that it is related to the mass of black hole. Although exact solutions to these field equa-

tions are not possible (except in special cases [98]), it is possible to study the asymptotic

behaviour and near horizon behaviour of the metric perturbatively. From the near hori-

zon expansion it will be possible to completely characterize the thermodynamics of the

black holes.

2.2 Asymptotic solution

To begin our solution of the equations of motion, we first focus on the case of large-r. In

this limit, the solution will consist of a homogeneous and particular part. For the particular

solution, we take the following series ansatz:

f1/r(r) = f∞
r2

L2
+

∞∑
n=−1

bn
rn
, (2.14)

where we have included a possible linear dependence b−1r. Plugging this expansion into

eq. (2.12) and solving order-by-order yields the following result:

f1/r(r) = f∞
r2

L2
+ k +

m

h′(f∞)rd−3
− q2

h′(f∞)r2d−6
+

µ

4d4 − 49d3 + 291d2 − 514d+ 184

×
[
− f∞m

2

L2h′(f∞)3r2d−4

(
36d5 − 147d4 + 1179d3 − 5940d2 + 9444d− 3312

)
− 24km2

h′(f∞)3r2d−2
(d− 2)(d− 1)2

(
d2 + 5d− 15

)
− f∞mq

2

L2h′(f∞)3r3d−7

(
− 216d5 + 342d4 + 2442d3 − 5064d2 + 1992d− 2016

)
+

96kmq2

h′(f∞)3r3d−5
(d− 2)(d− 1)(2d− 5)

(
d2 + 5d− 15

) ]
+O

(
g1(µ, d)m3

P (f∞)4r3d−5
,
g2(µ, d)f∞q

4

L2P (f∞)3r3d−5

)
, (2.15)

where h′(f∞) is defined in (2.7). We have written the first five leading terms and have

indicated the falloff behaviour of the next corrections to f1/r(r). It is easy to see that as

µ→ 0 f1/r(r) approaches the full solution in Einstein gravity,

fEin(r) = k +
r2

L2
− m

rd−3
+

q2

r2d−6
. (2.16)

This is so because, in this limit, f∞ → 1 and h′(f∞)→ −1 putting the first four terms into

the expected form, while µ→ 0 removes the remaining terms.
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To obtain the homogeneous solution, we substitute f(r) = f1/r(r) + εfh(r) into

eq. (2.12). Here we will work to linear order in fh(r) (which is accomplished by work-

ing to linear order in ε, then setting ε = 1), and to leading order in the large-r limit. In

this case, the equation determining the homogeneous solution reads

f ′′h −
4

r
f ′h − γ2rd−3fh = 0 , (2.17)

where

γ2 = −3(4d4 − 49d3 + 291d2 − 514d+ 184)L2 [h′(f∞)]2

144(d− 1) (d2 + 5d− 15) f∞µ m
, (2.18)

and we emphasize that this form of the homogeneous equation is true only at leading

order in 1/r. Note that, at this order, the homogeneous equation does not depend on the

value of k.

Let us now understand the solutions to the homogeneous equation in the relevant cases.

First, consider the case of γ2 > 0. In this case the solution to (2.17) takes the form,7

f
(+)
h = Ar5/2I 5

d−1

(
2γr

d−1
2

d− 1

)
+Br5/2K 5

d−1

(
2γr

d−1
2

d− 1

)
(2.19)

where I and K denote the modified Bessel functions of the first and second kinds, respec-

tively and A and B are constants. Schematically, in the limit of large r, the behaviour is

f
(+)
h ∼ Ar5/2 exp

(
2γr

d−1
2

d− 1

)
+Br5/2 exp

(
−2γr

d−1
2

d− 1

)
(2.20)

which shows that by imposing A = 0, the homogenous solution falls off super-exponentially

in the asymptotic region — this can be viewed as a consequence of the fact that the theory

does not propagate ghosts on AdS. The super-exponential falloff of the second term also

justifies our dropping of the homogenous solution below.

Consider next γ2 < 0; the homogenous solution at large r becomes

f
(−)
h = C1r

5/2J 5
d−1

(
2|γ|r

d
2
− 1

2

d− 1

)
+ C2r

5/2Y 5
d−1

(
2|γ|r

d
2
− 1

2

d− 1

)
, (2.21)

where J and Y are the Bessel functions of the first and second kinds, respectively. Note

that the radial dependence is such that, in any dimension, we get solutions that oscillate

rapidly and grow faster than r2/L2, and thus do not approach AdS at infinity. The only

consistent possibility would be to impose C1 = C2 = 0, eliminating the homogenous part

of the solution and fixing all of the integration constants characterizing the solution. This

appears to be too restrictive, as it seems to be impossible to construct solutions with γ2 < 0

numerically while demanding a sensible black hole solution in the bulk. This, combined

7Note that the term involving f ′h is subleading compared to the other terms in the equation. This

justifies neglecting that term in the large-r limit. Doing so leads to identical conclusions concerning the

sign of γ2 as we obtain here.
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with the fact that for all other choices of the constants C1 and C2 the solution is not

asymptotically AdS, leads us to disregard solutions with γ2 < 0 in the remainder of the

paper — they do not seem to exist. We henceforth will restrict ourselves to those solutions

that have γ2 > 0.

Let us note that in all cases of interest here (i.e. d ≥ 4), the dimension-dependent pre-

factors in (2.18) are always positive. Further, the requirement of having asymptotically

AdS solutions constrains f∞ > 0. Thus, ensuring the full positivity of γ2 reduces to the

inequality mµ < 0. As we will see below, the parameter m is related to the mass of

the solution. In this work we will restrict ourselves to positive mass solutions, and hence

demand that µ < 0.8

2.3 Near horizon solution

Next, we look at the solution near the horizon, which is achieved by performing the following

expansion for the metric function:

f(r) = 4πT (r − r+) +
∑
i=2

an(r − r+)n (2.22)

where T is the Hawking temperature of the black hole:

T =
f ′(r+)

4π
, (2.23)

which follows from the regularity of the Euclideanized solution. Inserting the near horizon

expansion of the metric function into the field equation and demanding it satisfy the field

equations at each order of (r−r+) leads to conditions on the series coefficients. Remarkably,

the first two equations involve only the mass parameter and the temperature — the higher-

order an parameters that could be expected to appear here are absent:

m =
µrd−7

+

(4d4 − 49d3 + 291d2 − 514d+ 184)

[
256π2(d2 + 5d− 15)(3k + 4πr+T )r2

+T
2

− (d− 4)(4d4 − 57d3 + 357d2 − 768d+ 516)k3
]

+ rd−3
+

(
k +

r2
+

L2

)
+

q2

rd−3
+

, (2.24)

0 = (d− 3)krd−4
+ + (d− 1)

rd−2
+

L2
− 4πrd−3

+ T − (d− 3)r2−d
+ q2

+
µrd−8

+

(4d4 − 49d3 + 291d2 − 514d+ 184)

×
[
12π(d− 4)(d− 6)(4d3 − 33d2 + 127d− 166)k2r+T

− 512π3(d− 4)(d2 + 5d− 15)r3
+T

3 − 768π2(d− 5)(d2 + 5d− 15)kr2
+T

2

− (d− 4)(d− 7)(516− 768d+ 357d2 − 57d3 + 4d4)k3
]
. (2.25)

8Note that negative mass solutions are not necessarily pathological in asymptotically AdS spaces —

see [99] for more details. In this case however, it is not simply the fact that the mass is negative that leads

to the exclusion of the solutions, it is the absence of well-behaved asymptotics.
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These two equations allow us access to the thermodynamic properties of the black holes in

a fully non-perturbative fashion — the temperature and horizon radius can be obtained in

terms of other natural parameters, such as the mass, coupling, and the charge. At higher

orders in (r − r+), the equations are more complicated. However, the general pattern is

simple: the next condition fixes a3 in terms of a2. Each successive order then fixes an in

terms of the previous coefficients. The only free parameter in the series is a2 and, as we

will see, the value of a2 ends up being fixed by requiring the solution to be well-behaved

asymptotically.

With near horizon and asymptotic solutions in hand, we use numerical methods to

verify that these solutions are indeed joined in the intermediate region. In order to

do this we first rescale the metric function by a factor of L2/r2 so that when r → ∞,

(L2/r2)f(r)→ f∞. Recall that permissible solutions for f∞ will be real, positive numbers

that solve eq. (2.6). We then choose specific values for the coupling, electric charge and

mass parameter, finding the corresponding values of r+ and T using (2.25). To solve the

second order differential equation we need to have initial values for the field and its first

derivative. We use the near horizon expansion, evaluated at r = r+(1 + ε), to obtain:

f (r+(1 + ε)) = 4πTr+ε+ a2r
2
+ε

2 ,

f ′ (r+(1 + ε)) = 4πT + 2a2r+ε (2.26)

where ε is some small parameter. Since a2 is not fixed by the field equations, its value

must be determined via the shooting method: for given values of the charge, coupling,

horizon radius, and ε, a value of a2 is selected and then the field equations are integrated

using (2.26) as initial data. The result is then compared to the asymptotic solution at

some large value of r. This process is repeated until satisfactory agreement is obtained,

which determines the value of a2. Remarkably, we find a unique value of a2 through this

process. Also, owing to the fact that the differential equation is stiff, we are only able to

obtain a solution to a certain precision. With our choice of a2 the asymptotic solution up

to O(r−12) is precise to one part in 1,000 or better.

We show in figure 1 some sample numerical solutions in four (top row) and five dimen-

sions (bottom row) for spherical and hyperbolic black holes with various values of electric

charge. At fixed coupling, we observe that increasing the electric charge has the effect

of decreasing the horizon radius. As in the uncharged case [35], the effect of holding the

charge fixed and increasing the coupling is to increase the horizon radius. We have also

produced numerical profiles for the metric function f(r) in higher dimensions, but there

are no qualitative differences compared to the results displayed in figure 1.

Another interesting property of the solutions is their behaviour near the origin r = 0,

which is sensitive to the spacetime dimension. We consider an expansion near the origin

of the form

f(r) = rs
(
b0 + b1r + b2r

2 + · · ·
)
. (2.27)

The most interesting feature is the leading order behaviour, which is governed by rs. To

determine the value of s we substitute the above expansion into the field equations and

– 10 –



J
H
E
P
0
8
(
2
0
1
9
)
0
6
8

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

Figure 1. Numerical solutions. Here we show numerical solutions for the metric function f(r)

outside the black hole horizon for the cases: d = 4 with k = 1 (top left), d = 4 with k = −1

(top right), d = 5 with k = 1 (bottom left), and d = 5 with k = −1 (bottom right). In the case

of four dimensions, we have chosen µ/L4 = −1/50 and m/L = 1, while in five dimensions we set

µ/L4 = −1/100 and m/L2 = 1. In all cases, the value of the electric charge is indicated on the plot.

extract the lowest-order in r term in the limit r → 0. In the uncharged case9 with k = 1,

we find that the vanishing of this term requires that s solve the following cubic equation:

4s3 +3(d− 10)s2 − 12(d− 6)s− (d− 4)(4d4 − 57d3 + 261d2 − 1248d+ 1956)

8(d2 + 5d− 15)
= 0 . (2.28)

To be physically admissible, the solution for s must be real. Calculating the discriminant

of the cubic reveals that it takes the form ∆ = (d− 6)× (positive), and so in four and five

dimensions there is a single real solution, while in d ≥ 6 there are three real solutions.

To determine which value of s controls the behaviour of the metric function near

the origin we must again resort to numerics. The generalization to construct the interior

solution is straightforward. We first construct the exterior solution in manner described

above, which allows us to determine the value of a2. With the appropriate value of a2
selected, we then run the numerical scheme once again, this time setting ε to be a small,

negative number. The numerical scheme encounters no difficulties inside the horizon. The

value of s can then be extracted by plotting rf ′(r)/f(r) in the limit r → 0. In all cases

that we have explored, we find that it is the smallest (real) root of the cubic (2.28) that

governs the behaviour of the metric function near the origin; the value of s is shown in

9A numerical analysis of the interior solutions with q �= 0 is considerably more involved due to the

presence of an inner horizon at which the numerical scheme breaks down.
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Dimension s

d = 4 0

d = 5 −0.43962

d = 6 −1

d = 7 −1.62444

d = 8 −2.26912

Table 1. Behaviour of metric function near origin. Here we display several values of s where

f(r) ∼ b0rs as r → 0 and f(r) represents a black hole solution. In the cases of five, seven, and eight

dimensions we have displayed the result to 5 decimal places. In all cases, we have set q = 0.

table 1 for cases that we have verified numerically. It is interesting that, in six and higher

dimensions, there appears to be three admissible solutions based on the small r analysis but

the black hole solution (which appears to be unique) selects only one of these possibilities.

It would be interesting address what (if any) solutions the additional families of small r

solutions represent.

3 Thermodynamic considerations

In this section we investigate the thermodynamic properties of charged black holes in cubic

generalized quasi-topological gravity. Applying the black hole chemistry formalism [96],

we start by investigating the first law and Smarr relation, taking both Λ and µ to be

thermodynamic variables. We then look at the physical constraints between the cubic

coupling and the charge and present the domain for parameters to get physical critical

points. We also illustrate the critical behaviour for the black holes here.

3.1 First law and Smarr relation

The near horizon expansion of the metric function discussed in section 2.3 above allows

for the mass and temperature of the black holes to be determined algebraically by (2.25),

despite the lack of an exact solution. However except for d = 4 an explicit solution for the

temperature is complicated, so we shall use the second equation implicitly instead to show

that the first law is satisfied.

To calculate the entropy, we use the Iyer-Wald formalism [100, 101],

S = −2π

∮
dd−2x

√
γP abcdε̂abε̂cd (3.1)

where

P abcd =
∂L

∂Rabcd
(3.2)

and ε̂ab is the binormal to the horizon, which is normalized as ε̂abε̂
ab = −2. The integration

is performed on the horizon with induced metric γab and γ = detγab. Direct calculation
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yields the form of the entropy for the action (2.1),

S =
Σ(d−2),k

4
rd−2

+

[
1 +

48(d− 2)µ

(4d4 − 49d3 + 291d2 − 514d+ 184)r4
+

(
8π
(
d2 + 5d− 15

)
kr+T

+8π2
(
d2 + 5d− 15

)
r2

+T
2 − 1

16
(d− 4)

(
4d3 − 33d2 + 127d− 166

)
k2
)]

, (3.3)

where Σ(d−2),k is the volume of the submanifold with line element dΣ(k)d−2. When k = 1,

this is just the volume of the (d − 2)-dimensional sphere, while for k = 0 and k = −1 the

numeric answer depends on what type of identifications are performed. The pressure is

defined in the standard way,

P = − Λ

8π
=

(d− 1)(d− 2)

16πL2
(3.4)

with other thermodynamic quantities given by

V =
Σ(d−2),kr

d−1
+

(d− 1)
, Q = Σ(d−2),k

√
2(d− 2)(d− 3)

16π
q , Φ =

√
2(d− 2)

d− 3

q

rd−3
+

,

Ψµ =−
32(d− 2)(d2 + 5d− 15)Σ(d−2),k

(4d4 − 49d3 + 291d2 − 514d+ 184)

(
π2rd−4

+ T 3 +
3

2
πkT 2rd−5

+

)
+

(d− 2)(d− 4)Σ(d−2),k

4(4d4 − 49d3 + 291d2 − 514d+ 184)

[
3
(
4d3 − 33d2 + 127d− 166

)
k2Trd−6

+

−
(

129− 192d+
357

4
d2 − 57

4
d3 + d4

)
k3rd−7

+

π

]
(3.5)

and the mass is [102]

M =
(d− 2)Σ(d−2),km

16π
. (3.6)

These quantities satisfy the (extended) first law of black hole thermodynamics

dM = TdS + V dP + ΦdQ+ Ψµdµ (3.7)

with V the thermodynamic volume conjugate to the pressure and Ψµ the potential conju-

gate to the coupling µ. The quantities also satisfy the Smarr formula

(d− 3)M = (d− 2)TS − 2PV + (d− 3)ΦQ+ 4µΨµ (3.8)

that follows by a scaling argument and the first law. In appendix B, we show that the

same thermodynamic potentials follow from the Euclidean action.

Our aim is to study the critical behaviour of these black holes, and so we must obtain

the equation of state. This is constructed by replacing L2 in eq. (2.25) in terms of pressure,
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yielding

P =
T

v
− (d− 3)

π(d− 2)

k

v2
+

e2

v2d−4
+

28(d− 7)(d− 4)(4d4 − 57d3 + 357d2 − 768d+ 516)µk

π(d− 2)5(4d4 − 49d3 + 291d2 − 514d+ 184)v6

−
3× 28(d− 4)(d− 6)

(
4d3 − 33d2 + 127d− 166

)
k2µT

(d− 2)4(4d4 − 49d3 + 291d2 − 514d+ 184)v5

+
3× 212π(d− 5)

(
d2 + 5d− 15

)
kµT 2

(d− 2)3(4d4 − 49d3 + 291d2 − 514d+ 184)v4

+
211π2(d− 4)

(
d2 + 5d− 15

)
µT 3

(d− 2)2(4d4 − 49d3 + 291d2 − 514d+ 184)v3
(3.9)

where, to simplify the resulting expressions we have introduced

v =
4r+

(d− 2)
, e2 =

16d−3

π
(d− 3)(d− 2)5−2dq2 (3.10)

where we refer to v as the specific volume and e is a rescaled electric charge. The non-

linear dependence of the equation of state on the temperature in (3.9) has been observed

in previous studies of the generalized quasi-topological theories [33, 38].

In the bulk of the paper we will study how including cubic generalized quasi-topological

terms modify the results for Einstein gravity in various dimensions. To facilitate the study

of the thermodynamics, we present the explicit form of the Gibbs free energy valid for

arbitrary d. In the canonical — fixed charge — ensemble the Gibbs free energy is given by

G = M − TS and reads

G =

[
4

d− 2

]d−1 G

Σ(d−2),k

=
vd−1P

d− 1
+

vd−3k

π(d− 2)
+

e2

(d− 3)vd−3

−
28(d− 4)

(
4d4 − 57d3 + 357d2 − 768d+ 516

)
µkvd−7

π(d− 2)5(4d4 − 49d3 + 291d2 − 514d+ 184)

−

(
vd−2

d− 2
−

3× 28(d− 4)
(
4d3 − 33d2 + 127d− 166

)
k2µvd−6

(d− 2)4(4d4 − 49d3 + 291d2 − 514d+ 184)

)
T

−
3× 212π

(
d2 + 5d− 15

)
vd−5µkT 2

(d− 2)3(4d4 − 49d3 + 291d2 − 514d+ 184)

−
211π2

(
d2 + 5d− 15

)
µvd−4T 3

(d− 2)2(4d4 − 49d3 + 291d2 − 514d+ 184)
(3.11)

where the overall positive factor is suppressed in the new definition to simplify the expres-

sion and other parameters are defined in eq. (3.10). In the grand canonical ensemble this

expression is supplemented by an additional ΦQ term, i.e. G = M − TS − ΦQ. In stable

equilibrium, the preferred state of the system is that which minimizes the Gibbs free en-

ergy at constant temperature and pressure. In subsequent sections we will denote the free

energy as F when considering the cosmological constant as a fixed parameter and G when

working explicitly in the black hole chemistry framework. The expressions are identical in

either case, only the interpretation differs.
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3.2 Physical constraints

Here we discuss the constraints on the cubic coupling that we impose to ensure the theory is

physically reasonable. Recall first that, as discussed in section 2, the asymptotic structure

of the solutions is problematic when the parameter γ2 — defined in eq. (2.18) — is negative.

Ensuring that γ2 > 0, requires that mµ < 0. If we wish to study positive mass solutions,

this then means that we must have µ < 0. We leave consideration of the negative mass

solutions for future work, and consider only positive mass solutions with µ < 0 here.

There are constraints on the coupling/pressure that arise due to the existence of stable

AdS vacuum solutions to the theory. As described earlier, the AdS vacua of the theory are

determined by the roots of the embedding equation h(f∞) = 0. Naturally, we require that

the solutions have f∞ > 0 — so that they are AdS — and h′(f∞) < 0 — so that they are

stable, with positive effective Newton constant [103]. Combining these requirements yields

a bound on the coupling/pressure |µ| ≤ |µc| where

µc =
4L4

27(d− 6)
. (3.12)

This actually corresponds to the critical limit of the theory, where both h(f∞) and h′(f∞)

are identically zero. This is a special point in the parameter space of the theory since the

linearized equations of motion are identically satisfied. In fact, in the four dimensional

version of the theory, it is possible to solve the full equations of motion exactly in this

limit — see [98]. We see that the coupling at the critical limit is negative in four and five

dimensions, there is no critical limit in six dimensions, and the coupling is positive at the

critical limit in d ≥ 7. When the coupling exceeds (in magnitude) the critical coupling, the

theory does not admit AdS vacua. This means that the coupling/pressure is constrained

only in four and five dimensions where the constraint reads µ > µc. The coupling is not

constrained by this requirement in higher dimensions, since there µc > 0 and the coupling

must satisfy the stricter requirement of being negative. If we write the constraint in terms

of the pressure, it reads:

P ≤ Pmax :=

√
3

72π

(d− 1)(d− 2)√
(d− 6)µ

, (3.13)

where, of course, Pmax exists only in four and five dimensions.

It turns out that in higher curvature theories, the Wald entropy can be negative for

some regions of parameter space. In the context of Gauss-Bonnet gravity, it has been

argued that some of these negative entropy black holes could be unstable [104, 105]. While

it is common to simply discard negative entropy solutions as unphysical, in general the

situation requires more careful thought. As we will see in the following sections, there

can arise order-of-limits issues with the Wald entropy for these black holes. Namely, we

obtain in some cases that SWald < 0 in the limit of the vacuum of the theory. In these

cases, it seems that it is more natural to work with a ‘corrected entropy’ that ensures

that the entropy limits to zero for the vacuum, rather than simply discard the solutions.

Such a correction can be implemented in a variety of ways due to ambiguities in the
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definition of the black hole entropy — adding to the Lagrangian a total derivative or a

term proportional to the induced metric on the black hole horizon will shift the entropy

by an arbitrary constant without having an effect on the other properties of the solution.

For example, in even dimensional spacetimes one can add the Euler densities to the action

to accomplish such a shift — we review this in appendix A for the case of Gauss-Bonnet

gravity in four dimensions.

One should not interpret these ambiguities to mean that the entropy is itself totally

ambiguous. Rather it seems to us that the physically most well-motivated set-up would

be to fix these ambiguities so that the entropy of the solution becomes the entropy of the

vacuum in the appropriate limit. This will be our approach throughout the manuscript,

and we will be careful to indicate in all plots exactly where the Wald entropy itself appears

to be problematic. In the discussion we reflect on some possible issues that could arise

under more generic situations.

4 Hawking-Page transitions

Let us begin a more thorough study of the thermodynamics of these black holes by revisiting

the Hawking-Page transition. That is, we will consider the case of uncharged black holes

with spherical horizon topology. This is not only interesting in its own right, but will allow

for some subtleties in the thermodynamic analysis to be discussed in a less complicated

setting. We perform this analysis in four and five dimensions. In this section we regard the

cosmological constant as fixed, and hence refer to the free energy (which is then interpreted

as the Helmholtz free energy) as F . Additionally, we measure the cubic coupling relative

to its value in the critical limit, which is µc/L
4 = −2/27 in d = 4 and µc/L

4 = −4/27

in d = 5.

4.1 Four dimensions

In four dimensions, our considerations become equivalent to those for Einsteinian Cubic

Gravity, which were first carried out in [17]. Here, for the sake of completeness, we review

some of these considerations with additional commentary. In this simplest case, the near-

horizon equations of motion reduce to

8πM = r+

(
1 +

r2
+

L2

)
+

8π2T 2µ

r+
(3 + 4πTr+) ,

0 = 1 + 3
r2

+

L2
− 4πTr+ +

24π2T 2µ

r2
+

, (4.1)

which can be solved exactly.

It is useful to understand the differences and similarities between these solutions and

the usual Schwarzschild-AdS solution. To facilitate this comparison, we show in figure 2

a number of plots. The top left plot shows the temperature against horizon radius for

various values of the coupling. For large black holes, the behaviour is very similar to the

Schwarzschild AdS solution (which is shown in red), but the behaviour of small black holes is
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Figure 2. Properties of four-dimensional uncharged black holes. Top Left : a plot of temperature

vs. horizon radius for the four-dimensional spherical black holes. The red curve represents the

Einstein gravity case, while the blue curves correspond to different values of the coupling µ/µc =

1/1000, 1/100, 1/10, with curves of lower opacity corresponding to larger values of µ. The dashed

portions of the curves indicate that the Wald entropy of the black holes is negative. Top Right :

a similar plot, this time showing the temperature against the mass. Bottom Center : here we

plot the Wald entropy against the black hole mass. The red curve corresponds to the Einstein

gravity case, while the blue curves correspond to different, non-zero values of the coupling µ/µc =

1/100, 1/10, 1/2, with curves of lower opacity corresponding to larger values of µ. We see that for

any non-zero µ, the Wald entropy is negative as M → 0.

markedly different.10 For a given, fixed temperature there can be up to three distinct black

hole solutions in the cubic theory, while there are at most two in the Einstein theory. The

top right plot, which shows the temperature plotted against the mass, shows very similar

behaviour. This plot is particularly useful since we can extract from it the thermal stability

of the black holes. Since C = ∂M/∂T , the slope of this plot represents the reciprocal of

the heat capacity. We conclude that in the higher-curvature theory the large black holes

(M/L � 0.3) are thermally stable (as they are in Einstein gravity) and the small black

holes (M/L � 0.03) are as well (whereas they are not in Einstein gravity). In the cubic

theory, it is only the intermediate sized black holes that are thermodynamically unstable.

The plots also reveal initially puzzling behaviour: the Wald entropy computed for the

black holes can become negative, as indicated by the dashed portions of the blue curves,

10Through out this section we will refer to large and small black holes. While our use of this terminology

should be clear from the plots displayed, roughly speaking by ‘small’ we mean r+/L < 1 and by large

r+/L > 1.
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and shown explicitly for a few examples in the bottom center plot of figure 2. In this

simple setting we can compute the Wald entropy of the small black holes perturbatively in

r+ finding:

S = −2π
√
−6µ+O(r2

+) . (4.2)

All of the small black holes, therefore, possess negative entropy. While negative entropy

certainly makes no sense from a statistical mechanics perspectice, there do not appear

to be any other pathologies associated with these classical solutions, and so there is no

obvious reason to outright reject these negative entropy solutions.11 Further, let us recall

that ambiguities in the definitions of entropy can allow for the shift of the entropy by an

arbitrary constant. Such a shift could be accomplished via a number of ways, e.g. by adding

an explicit Gauss-Bonnet contribution to the action, as in [34, 109], or by adding to the

Lagrangian a term proportional to the volume form of the induced metric on the horizon,

as in [110]. Note that these methods only shift the entropy when a horizon is present,

leaving the entropy of the vacuum unchanged. Further, these techniques only change the

entropy — the solutions themselves are left unaffected. The most natural way to adjust

the entropy would be to ensure that S → 0 as M → 0, thereby avoiding any order of limits

issues. In the present case this would amount to adding 2π
√
−6µ to the Wald entropy,

using either of the methods described above.

The numerical value of the entropy will not have any implications when we consider

thermodynamics in the fixed charge ensemble, since there we will be comparing the free

energy of different branches of the black hole solutions which would all be shifted by the

same amount. However, whether or not one chooses to shift the entropy can have significant

implications when comparing the free energy to the vacuum. This is the case both for the

Hawking-Page transition, which we consider here, and the thermodynamics in the fixed

potential ensemble, which we will consider below. To illustrate these differences, we plot

the results one would obtain by taking the Wald entropy to be the “correct” thermodynamic

entropy versus those obtained using the shifted entropy satisfying S → 0 as M → 0.

We show in figure 3 plots of the free energy in the two scenarios. On the left, the

plots are constructed using the Wald entropy, while on the right the plots are constructed

using the shifted Wald entropy. Note in both cases the existence of a third branch of

solutions that exist for any non-vanishing cubic coupling. These appear in the figure as

near horizontal lines that extend all the way to T = 0. These correspond to the small,

thermally stable black holes described above. The situation portrayed in the left plot is very

similar to the Einstein gravity situation: at low temperatures, the dominant contribution

to the partition function arises from thermal radiation, and at higher temperatures the

dominant contribution is a large AdS black hole. Although it is hard to see in the diagram,

the temperature at which the transition takes place THP is larger in the cubic theory.

Performing a series expansion for small µ near the zero of the free energy makes this

11Let us note that the issue of negative gravitational entropy is not only a problem for higher-curvature

theories of gravity. For example, AdS Taub-NUT and Taub-Bolt solutions in Einstein gravity can possess

negative entropy for certain parameter values [106–108].
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Figure 3. Hawking-Page transitions in four dimensions. Left : a plot of the free energy using the

Wald entropy. Here we indicate negative entropy regions with a dashed curve. Right : a plot of the

free energy using the shifted Wald entropy satisfying S → 0 as M → 0. In both cases, the red curve

corresponds corresponds to the Einstein gravity case with µ = 0, the light-blue curve corresponds

to µ = −10−4|µc|, and the dark-blue curve corresponds to µ = −10−5|µc|. Note that in these plots

we have plotted F/T , since the free energy itself has a steep slope that makes it difficult to showcase

the results.

more apparent:

THP =

√
8P

3π

[
1− 1280

9
π2P 2µ+O(µ2)

]
. (4.3)

The right plot tells a very different story. In this case, at low temperatures, the dom-

inant contribution is a small, thermally stable black hole. As the temperature increases,

there is a point at which a first order small/large black hole phase transition occurs. For

small values of the coupling, the temperature at which this transition occurs is very close to

the usual Hawking-Page temperature. As the magnitude of the coupling is increased, the

swallow-tail structure shrinks — see figure 4 — eventually disappearing at µ = −L4/576.

This corresponds to a critical point, i.e. a second order small/large black hole phase transi-

tion. The critical exponents that characterize this point are given by the usual mean field

theory values — see, for example, [56].

4.2 Five dimensions

With the four-dimensional case illustrating some of the interesting — and puzzling —

behaviour of these solutions, let us now move on to consider the five-dimensional case.

This case is already quite a lot more complicated, with the near horizon equations being

cubic polynomials in the temperature:

M =
8r2+
3π

(
k +

r2+
L2

)
+

µ

474πr2+

[
−976k3 + 8960π2r2+T

2 (3k + 4πr+T )
]
,

0 =2r+

(
k +

r2+
L2

)
+ r2+

(
2r+
L2

− 4πT

)
− µ

1264r3+

[
−1952k3 + 1728k2πr+T + 17920π3r3+T

3
]
. (4.4)

Since the equation determining the temperature as a function of r+ is cubic it can be

solved exactly. Although the resulting expressions are too messy to be illuminating, we
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Figure 4. Free energy in four-dimensions. Here we use an additional plot of the free energy

for larger values of the coupling, using the shifted entropy. The various curves correspond to

increasing magnitudes of the coupling from top to bottom. The swallowtail present on the curves

shrinks, eventually terminating at a cusp for µ = −L4/576, which corresponds to a second-order

phase transition. For smaller larger magnitudes of the coupling, the curve is smooth with only a

single branch.

can gain some important information by considering the discriminant of this equation, ∆.

Again the full expression is not particularly illuminating, but in the limit of large r+ it

takes the following form:

∆ = −(79L4 + 1890µ)
286720π6r6+µ

6241L4
+O(r4+) . (4.5)

This means that this discriminant changes sign from positive to negative when µ =

−79L4/1890. Consequently for µ ∈ (−79L4/1890, 0) the temperature as a function of

r+ has three real solutions at large r+, while for µ ∈ (µc,−79L4/1890) there is only a sin-

gle solution. Looking directly at the explicit solutions to the cubic equation (and discarding

those for which T < 0), we find that for µ ∈ (−79L4/1890, 0), T (r+) is double-valued at

large r+, while for µ ∈ (µc,−79L4/1890), large black holes with positive temperature do

not exist. A similar analysis as that just described applied to small black holes reveals that

the discriminant behaves like

∆ = −6452490240π6µ4

493039r6+
+O

(
r−2
+

)
. (4.6)

This means that, regardless of the value of µ, T (r+) will always be single-valued at small

r+. By explicitly examining the solution, we find that T (r+) is positive for small r+: small

black holes exist over the full range µ ∈ (0, µc).

Let us now consider the temperature vs. horizon radius profiles directly, taking into

account various complications like the positivity of mass and entropy. We divide our study
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Figure 5. Properties of five-dimensional uncharged black holes I. Left : a plot of the temperature

vs. horizon radius for the five-dimensional black holes. The red curve represents the Einstein

gravity result, while the blue curves correspond to µ/µc = 10−3, 10−2, 10−1/2 in order of decreasing

opacity (or left to right above and below the red curve). In each case, the dashed portion of the

curve indicates negative Wald entropy, while the gray dot-dashed portions indicate that the mass is

negative, and hence the solutions do not exist. Right : a plot of the temperature vs. the mass; the

curves are the same as in the left plot. For large values of the mass (or, equivalently, large values of

the horizon radius) the solutions with the cubic correction hug closely the Einstein gravity curve,

while significant differences begin to appear for small values of the mass/horizon radius. Though

it is a bit hard to see in the figures, note that the curves that touch T = 0 (those on the bottom

left of each figure) always have positive entropy.
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Figure 6. Properties of five-dimensional uncharged black holes II. Here we show plots of the

temperature vs. horizon radius and temperature vs. mass for µ = 0 (red) and µ/µc = 0.29, 0.6, 0.99

(blue/gray curves; left to right). Each non-zero value of µ here is larger in magnitude than the

special value of µ = −79L4/1890 which marks the point at which the large black holes no longer

exist. The dashed blue curves indicate negative Wald entropy, while the dot-dashed grey curves

indicate that the mass is negative — these solutions do not exist. Note that for small temperatures

the entropy is positive.
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Figure 7. Hawking-Page transition in five dimensions. Left : here we show a plot of the free energy

vs. temperature for the five dimensional uncharged black holes. The red curve corresponds to the

Einstein gravity case, the dark blue curve corresponds to µ = −10−3|µc|, and the light blue curve

corresponds to µ = −10−2|µc|. In each case, solid curves indicate that both the mass and entropy

are positive, while a dashed curve indicates that the Wald-Entropy is negative. The blue curves

terminate when the mass becomes negative. Right : the same plot as on the left, but now using the

shifted entropy as described in the text.

into two cases corresponding to µ > −79L4/1890 and µ < −79L4/1890, with the first

case shown in figure 5. Here we see that two branches of black holes emerge, which “hug”

the Einstein gravity temperature vs. horizon radius curve on opposite sides. In the limit

µ → 0, it is the upper curve that converges to the Einstein gravity result, while the lower

curve disappears. At any given value of the temperature, there can be up to three black

hole solutions (opposed to the two present in the Einstein case), though for most values of

the coupling at least one of these possible solutions will have negative mass (and hence the

solutions does not exist) or negative entropy (and hence the solution needs more careful

attention). Contrary to the four-dimensional case, the small black holes are not thermally

stable, as can be deduced from the negative slope in the temperature vs. mass plot. Similar

to the Einstein case, the large black holes are thermally stable. Now, let us move on to

consider what happens when we push µ beyond −79L4/1890. Plots for this situation are

shown in figure 6. Despite the absence of the large black holes, the profiles for the small

black holes remain largely the same.

Both plots in figure 5 indicate regions of negative Wald entropy. At first glance, the

situation here is actually more complicated than in four dimensions, since instead of one

there are now two branches of black hole solutions. This means that we cannot simply

add a universal constant to the entropy to ensure that S → 0 as M → 0. However, it

turns out that in this case the effects are not relevant for the Hawking-Page transition. As

shown in figure 7, which is a plot of the free energy vs. temperature in the five dimensional

case, the free energy and mass are positive at T → 0, indicating that it is thermal AdS

that dominates the partition function at small temperatures. The regions with negative

entropy and negative mass (the latter corresponding to solutions that do not exist) are

actually excluded by the Hawking-Page transition, since they have positive free energy.
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This persists even when a constant is added to the entropy12 to ensure that S > 0 for all

M ≥ 0. The precise temperature at which the Hawking-Page transition occurs is larger

than in the equivalent set up for Einstein gravity, similar to the four-dimensional case. Let

us close by noting that when µ < −79L4/1890 (and so large black holes no longer exist),

then a Hawking-Page transition does not occur, and thermal AdS is thermodynamically

preferred for all temperatures.

4.3 Remarks on higher dimensions

Before moving on to consider the charged solutions, let us pause here to present a few

comments on the higher dimensional solutions. In many aspects, the higher dimensional

solutions are similar to the five dimensional solutions. One feature that continues into

higher dimensions is a limit on the coupling for the existence of large black holes. We

saw above that in five dimensions there is a special coupling µ∗ = −79L4/1890 such that

for µ < µ∗ there are no large black holes. In higher dimensions the value of µ∗ can be

determined in the same way by examining the large r+ behaviour of the discriminant of

equation (2.25). The result reads

µ∗ = −(4d4 − 49d3 + 291d2 − 514d+ 184)L4

54(d− 4)(d− 1)2(d2 + 5d− 15)
, (4.7)

and we emphasize that no such bound exists in four dimensions. Noting this, the structure

of the temperature vs. horizon radius profiles are qualitatively similar to the discussion

presented above for five dimensions.

5 Charged black holes: grand canonical ensemble

Next we consider the thermodynamics of the cubic corrected black holes in the fixed po-

tential — or grand canonical — ensemble. This means we consider the difference of electric

potential between the horizon and infinity to be a fixed quantity. From the perspective of

holography this setup amounts to a fixed chemical potential in the field theory. Similar to

the uncharged case, qualitative differences occur only in moving from four to five dimen-

sions, with the behaviour in higher dimensions being similar to the five dimensional case.

Therefore, once again, we restrict ourselves to the spherical black holes and present the

analysis only in four and five dimensions. Further, we emphasize that the four-dimensional

results would coincide with those for Einsteinian Cubic Gravity, though in this case there

is no precedent for this study and the results here are novel. Recall that in the grand

canonical ensemble the free energy is given by F = M − TS − ΦQ.

5.1 Four dimensions

In four dimensions, a number of expressions are quadratic (rather than cubic) in the tem-

perature, allowing for analytic results to be presented. Working in the fixed potential

12Here we have shifted the entropy S → SWald − Smin with Smin = min
{
S1
M→0, S

2
M→0

}
, where the

superscripts denote the two branches of black holes.
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ensemble, we have the following expressions that determine the mass and temperature in

terms of the coupling and r+:

2M = kr+ +
r+Φ2

4
+
r3

+

L2
+

8µπ2T 2 (4πr+T + 3k)

r+
,

0 = k +
3r2

+

L2
− 4πr+T −

Φ2

4
+

24µkπ2T 2

r2
+

. (5.1)

From the above, we can obtain the equation of state by solving the second expression for

the pressure:

P =
T

v
− k

2πv2
+

Φ2

8πv2
− 48µ

kπT 2

v4
, (5.2)

where we have identified P = 3/(8πL2) and v = 2r+ is the specific volume. In the following

we will remark on the cases where both P is constant and considered a thermodynamic

variable. From now on we take k = +1 to focus on the spherical black holes.

Let us begin by discussing some of the properties of the black holes when the potential

is fixed at the boundary. In this four dimensional case, we note that the terms that arise

due to the higher-order curvature terms are all proportional to at least one power of the

temperature. This means that the properties of the extremal black holes are in fact the

same as in Einstein gravity. The black holes will be extremal when the following constraint

is satisfied: (
Lrext

+

)2
=

Φ2 − 4

32π
. (5.3)

In the case of spherical black holes, this means that extremal black holes will exist in

the fixed potential ensemble only if the potential satisfies Φ2 > 4, just as in the Einstein

gravity case [111]. As we will see, it turns out that this value of the electric potential

also controls other aspects of the behaviour of the black holes and leads to a variety of

interesting structures.

To gain a better understanding of the black hole solutions under consideration, it is

again helpful to consider plots of the temperature against the horizon radius (and mass),

as shown in figure 8. First, note that when the electric potential obeys Φ2 < 4, extremal

black holes cannot exist and for both theories the behaviour is qualitatively similar to the

uncharged solutions. This means that, for the cubic theory, so long as the potential satisfies

this bound the small black holes are thermally stable, as opposed to thermally unstable as

is the case in Einstein gravity. Let us examine the behaviour of the small black holes in

more quantitative detail for the cubic theory.

The temperature of small black holes is proportional to the horizon radius, rather than

inversely proportional:

T =

√
4− Φ2

−96π2µ
r+ +O(r3

+) . (5.4)

This feature leads to the thermal stability of small black holes with the specific heat taking
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Figure 8. Four-dimensional black holes in the fixed potential ensemble. Top row : here we display

plots of the black hole temperature vs. horizon radius in Einstein gravity (left) and four dimensional

generalized quasi-topological gravity (right). The various curves correspond to different values of the

potential: Φ = 0, 1.2, 1.8, 2, 2.1, 2.5 from top to bottom (greatest to least opacity). In the right plot,

the dashed portion of the curve indicate negative Wald entropy, and the higher-curvature coupling

has been set to µ/µc = 10−3. Bottom row : here, for exactly the same parameters, we display the

temperature plotted against the mass in Einstein gravity (left) and the cubic theory (right).

the following form:

CP =
πΦ2√

−96µ (4− Φ2)
+

πr2+
L2(4− Φ2)2

[
L2(Φ6 − 12Φ4 + 128)

−2
√

−96µ(4− Φ2)(Φ2 + 8)
]
+O(r3+) . (5.5)

The expression for the specific heat makes manifest the fact that small black holes will

always have a positive heat capacity. Expanding the expression for the mass in the limit

of small black holes we see that

M =
Φ2r+
2

+O(r3+) , (5.6)

indicating that the mass is positive for small black holes and vanishes in the limit that

the spacetime does not contain a horizon. However, performing a similar analysis for the

entropy we see that

S = −π
√

−6µ(4− Φ2) +O(r2+) . (5.7)

Once again we can add a constant to the entropy to ensure that it is positive as M → 0,

but the situation is a bit trickier than in the uncharged case. Here, the limiting value of
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the entropy cares not only about the coupling µ, but also the value of the electric potential

Φ. This is troubling because the methods we introduced in the previous section for shifting

the entropy essentially amount to adding a non-dynamical term to the Lagrangian. In this

case, if we add precisely the contribution to ensure S → 0 as M → 0, this would require

modifying the action in a way that depends on the particular solution. A compromise of

sorts can be reached by adding the same constant as in the uncharged case. This would

ensure that the entropy is always positive, but would mean that only when Φ = 0 would

S → 0 as M → 0, otherwise S would limit to a (positive) constant. Here we will be

somewhat agnostic, presenting the results obtained when using the Wald entropy directly,

and those obtained when shifting the entropy as just described.

Next let us consider the behaviour of the black holes when Φ2 > 4, which marks the

transition between the two types of behaviour evident in figure 8. Recall that, because all

instances of µ in eqs. (5.1) multiply the temperature, the properties of extremal black holes

are identical to those in Einstein gravity. In particular, this implies that when Φ2 > 4, the

extremal (and near extremal) black holes will possess positive entropy. In this case, to see

this explicitly, it is helpful to expand the quantities in a small temperature series. We find

that the horizon radius goes like

r+ =
1

4

√
Φ2 − 4

2πP
+

T

4P
+

√
π

2

(
−4− 1536P 2π2µ+ Φ2

4P 3/2(Φ2 − 4)3/2

)
T 2 +O(T 3) , (5.8)

which in turn implies the entropy behaves in the following way:

S =
Φ2 − 4

32P
+

√
πP

2(Φ2 − 4)

(
−4 + 1536P 2π2µ+ Φ2

8P 2

)
T +O(T 2) . (5.9)

Thus we see that the Wald entropy for the near extremal solutions will be positive. We

also know that the solutions have positive entropy in the high temperature limit since, in

that case, the solutions also reduce to the Einstein gravity results. Thus, provided Φ2 > 4,

only solutions at intermediate temperatures can possess negative entropy, if any do at all.

To understand better the phase structure of the solutions, we display a few relevant

free energy curves in figure 9 taking the entropy to be the Wald entropy. The top row

shows a few relevant examples when the potential satisfies Φ2 < 4. In this case, the free

energy is qualitatively similar to the uncharged results for both Einstein gravity and the

cubic theory. In both cases, increasing the electric potential has the effect of decreasing

the temperature at which the free energy crosses zero, i.e. the temperature at which the

Hawking-Page transition occurs is reduced. In the case of the cubic theory, increasing the

potential has the additional effect of shrinking the swallowtail, and so can push the system

toward a critical point. The middle and bottom row show examples of what occurs when

Φ2 > 4. In this circumstance, there is only a single branch of solutions in both the Einstein

gravity case and the cubic case. In the Einstein gravity case, the free energy of the charged

solutions is now always less than zero. This means that the charged black hole always

makes the dominant contribution to the partition function provided Φ2 > 4.

However, in the cubic case the situation is more subtle. Using the Wald entropy, as

in figure 9, the interpretation would be the following: for Φ2 < 4, the situation would
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Figure 9. Free energy vs. temperature for grand canonical ensemble in four dimensions. Top row :

here we plot examples of the free energy for Φ = 0, 1.5, 1.9 (more to less opacity) for Einstein

gravity (left) and the cubic theory with µ/µc = 10−5. Middle row : here we plot the free energy for

Φ = 2.01, 2.02, 2.04, 2.06 (more to less opacity) for Einstein gravity (left) and the cubic theory with

µ/µc = 100489/32157432. Bottom row : here we plot the free energy for Φ = 2.05, 2.2, 2.26, 2.35, 2.45

(more to less opacity) for Einstein gravity (left) and the cubic theory with µ/µc = 1/2489/32157432.

In all cases, the dashed portions of the curves indicate negative Wald entropy.

be qualitatively similar to that of Einstein gravity, with thermal AdS at fixed potential

dominating the partition function at low temperatures, and a large AdS black hole at

higher temperatures. The situation is also similar to Einstein gravity provided Φ2 is much

larger than 4: then there is a single branch of black holes, always with positive entropy,

and with free energy always less than zero — the dominant contribution to the partition

function is a black hole for all values of temperature. The real differences emerge for

Φ2 > 4, but close to 4. Here, at low temperatures, the thermodynamically preferred phase
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Figure 10. Free energy vs. temperature in four dimensions using shifted entropy. Here we plot the

free energy vs. temperature for Φ = 0, 1.6, 1.957, 2.2, 3 (more to less opacity) for Einstein gravity

(left) and the cubic theory with µ/µc = 10−4 (right). In this plot, the entropy has been shifted by

the constant S = SWald + 2π
√
−6µ which ensures that the entropy is always positive. The orange

curve on the right corresponds to Φ = 1.957, which results in a critical point.

is a black hole. As the temperature is increased a region of parameter space is entered

where the entropy is negative; if these black holes are considered unphysical, at this point

there would be a zeroth-order phase transition to thermal AdS space. As the temperature

is further increased, there comes a point where the entropy is positive and the free energy

dips below zero again — at this point there will be a Hawking-Page transition between

thermal AdS and the black hole. However, in this case, the Hawking-Page transition need

not be first order, but can in fact be a second order transition, akin to those that occur at

a critical point. The reason this can happen here is because of the fact that the free energy

is “peaked” — if the peak of the free energy occurs exactly when F = 0, then both F and

its first derivative vanish at that point and hence the transition will be of second order.

To summarize, from this perspective, the interpretation of the thermodynamics would

be the following: there is a zeroth-order black hole/thermal AdS transition, followed up

a first- or second-order thermal AdS/black hole phase transition as the temperature is

monotonically increased. In other words, there is an intermediate regime of Φ for which

we have a re-entrant Hawking-Page transition for the fixed potential ensemble.

For completeness, let us also discuss the interpretation of the thermodynamics using

the shifted Wald entropy that is always positive. For this case, representative free energy

diagrams are shown in figure 10. Here the interpretation is a bit different. In this case,

regardless of the value of Φ the free energy of the black holes in the cubic theory is always

negative and thermal AdS is never the thermodynamically favoured solution. For Φ2 < 4,

the free energy possesses three branches, and there is a first-order small/large black hole

phase transition. As the value of Φ is increased (or, equivalently, as the pressure is increased

at constant Φ), the swallowtail shrinks, eventually terminating at a critical point. In other

words, the free energy displays standard van der Waals behaviour. When Φ2 is larger than

the critical value (to be discussed explicitly below), there is only a single branch of black

holes, and these are thermodynamically favoured at all temperatures.
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Let us discuss the critical point in more detail. It is easy to check that (5.2) admits a

critical point with the values

Tc =

√
2

12π

(
3(4− Φ2)3

−48µ

)1/4

, vc =

√
2

3

(
33(−48)µ(4− Φ2)

)1/4
,

Pc =
1

32π

√
3(4− Φ2)

−48µ
. (5.10)

Note that these expressions for the critical values are valid in the case where P is constant

as well as when P is a thermodynamic variable. In the former case, the expression for the

critical pressure can be solved to obtain the value of Φ that yields a critical point for a given

fixed pressure. In the latter case, specifying a value of Φ then gives a critical pressure, as

is the standard in black hole chemistry. The critical values satisfy the following universal

relationship,
Pcvc
Tc

=
3

8
, (5.11)

which is identical to the van der Waals ratio [56], and is the same in both the canonical and

grand canonical ensembles (see below). It is worth noting that critical points only exist for

a range of potentials: if Φ2 > 4, then there is no critical point.

To determine the critical exponents, we expand the equation of state near the critical

point in terms of the dimensionless variables ρ, τ and φ defined by

P = Pc(ρ+ 1) , T = Tc(τ + 1) , v = vc (φ+ 1) . (5.12)

This yields

ρ =
10

3
τ − 16

3
φτ +

1

3
τ2 − 4

3
φ3 − 4

3
τ2φ+

28

3
φ2τ + · · · . (5.13)

Using well-established techniques [112] the critical exponents can be read off from this

expansions and are given by the mean field theory values:

α = 0 , β =
1

2
, γ = 1 , δ = 3 . (5.14)

5.2 Five dimensions

Let us now consider the differences that arise when considering the grand canonical en-

semble in five dimensions. In five dimensions, the near-horizon equations take the follow-

ing form:

M =
8r2

+

3π

(
k +

r2
+

L2

)
+

8r2
+Φ2

9π
+

µ

474πr2
+

[
−976k3 + 8960π2r2

+T
2 (3k + 4πr+T )

]
,

0 = 2r+

(
k +

r2
+

L2

)
+ r2

+

(
2r+

L2
− 4πT

)
− 2r+Φ2

3

− µ

1264r3
+

[
−1952k3 + 1728k2πr+T + 17920π3r3

+T
3
]

(5.15)
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In this case we would identify the pressure as P = 3/(4πL2) and the specific volume as

v = 4r+/3, leading to the equation of state

P =
T

v
− 2k

3πv2
+

2Φ2

9πv2
− 31232k3µ

19197πv6
+

256k2Tµ

237v5
+

4480π2T 3µ

711v3
. (5.16)

Once again, from this point we will set k = 1 to focus on the spherical black holes.

In the four-dimensional case, we saw that all instances of the cubic coupling multiply

powers of the temperature in the near horizon equation. This led to the interesting result

that the extremal black holes in the cubic theory are the same as in Einstein gravity. This

property is no longer true in five dimensions. It is easy to see that even in the uncharged case

extremal solutions can exist — see, for example, those branches of solutions that intersect

T = 0 at finite r+ in figure 5. The condition for the existence of extremal solutions is a

solution of the following equation:

0 = 2r+

(
1− Φ2

3

)
+

4r3
+

L2
+

981µ

632r3
+

. (5.17)

It is obvious that this has solutions for Φ = 0 as well as for non-zero Φ (recall that µ < 0

for the existence of positive mass solutions). In this four-dimensional case, the distinct

types of thermodynamic behaviour corresponded to whether or not extremal black holes

existed. While that is still true here for the Einstein case, it is no longer the case for the

cubic theory where things now become more interesting.

To gain a better understanding of the situation, we once again consider plots of the

temperature against the horizon radius for fixed values of the potential and the AdS radius.

As in the uncharged case, we divide our study into two parts: first for µ ∈ (0,−79L4/1890)

and then for µ ∈ (−79L4/1890, µc). For the five dimensional case, the first plots are

shown in figure 11. The behaviour in the Einstein gravity case (shown on the left) is

qualitatively similar to the four-dimensional analysis: for Φ2 < 3 the structure of the

curves is qualitatively identical to the uncharged solutions with up to two black holes at a

given temperature, while for Φ2 > 3 there is only ever a single black hole. In the cubic case

(shown on the right) the situation is quite different. For small values of Φ, the structure

of the curves is again qualitatively similar to the uncharged case — namely, there are two

disconnected branches of the temperature. However, as the value of Φ is increased there

is a point where there is a significant change in the structure of the curves. There are still

two disconnected branches of the temperature, but one now consists of purely negative

mass black holes (see the curves in the upper left of the plot), while the other somewhat

resembles the profiles shown in figure 3 — for a given temperature there can be up to three

black holes. As the value of Φ is further increased, the hump on this curve flattens out, and

the profile resembles that of Einstein gravity for Φ2 > 3. For large enough Φ, the entropy

and mass will be positive along the entire curve.

The value of Φ for which the dramatic change just described occurs depends on the

value of cubic coupling. Its precise value can be determined in the following way. Note

that when Φ is less than this value, the temperature vs. horizon radius profiles have only

a single extremum. However, just above this value, the profiles have three extrema (one
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Figure 11. Five-dimensional black hole properties in grand canonical ensemble I. Top Left : a plot

of the temperature vs. horizon radius in Einstein gravity for Φ = 0, 0.6, 0.82, 1.2, 2.0 in order of

decreasing opacity (or top to bottom through a vertical slice of the plot). Top Right : temperature

vs. horizon radius in the cubic theory with µ/µc = 10−3 for the same values of the potential. In this

case, the dashed blue lines indicate negative Wald entropy, while the dot-dashed grey lines indicate

negative mass (and hence the full solution does not exist). Bottom Left : the same situation as

the top left plot, but now we replace the horizon radius with the mass. Bottom Right : the same

situation as the top right plot, but now we replace the horizon radius with the mass.

corresponding to the negative mass branch, and two corresponding to the other branch).

Determining when the number of extrema jumps provides a way to determine this value

of Φ. In practice, this means solving a complicated polynomial equation, and so here

we simply provide a plot of the result in figure 12. Note that the coupling only runs to

µ = −79L4/1890 = 79/280µc, since beyond this point the branch of large black holes

ceases to exist.

The value µ = −79L4/1890 continues to mark a transition between the exis-

tence/nonexistence of large black holes. However, in the fixed potential ensemble, the

structure is slightly different. We show some representative curves in figure 13. For small

values of Φ, the behaviour is similar to that displayed in figure 6. For larger values of Φ,

one can see the a protrusion begins to take shape in the profiles, pushing toward larger

values of horizon radius. We can see that for much of the profiles the mass is negative,

indicating that those parameters do not correspond to solutions with sensible asymptotics.

Finally, let us consider the free energy — for the situation where µ < −79L4/1890 we

show representative plots in figure 14. In the top row we show the results for small values
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Figure 12. Special values of potential in five dimensions. Here we show a plot of the value of

potential at which the structure of the T − r+ profiles change from resembling the uncharged case

to exhibiting a closed curve. The black curve represents the value at which this occurs in Einstein

gravity Φ =
√
3. Note that the limit between the two cases is discontinuous. The blue curve

terminates at µ = 79µc/280 = −79L4/1890, since after this point the theory does not admit large

black hole solutions.
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Figure 13. Five-dimensional black hole properties in the grand canonical ensemble II. Here we

show plots of temperature vs. horizon radius (left) and temperature vs. mass (right) for µ/µc = 0.3,

corresponding to µ < −79L4/1890, providing an example of the behaviour when large black holes

do not exist. The curves correspond to Φ = 0, 1.5, 1.7, 2 in order of decreasing opacity (or left to

right through a horizontal slice). The dashed blue curves indicate that the Wald entropy is negative,

while the dot-dashed grey curves in the left plot indicate negative mass.
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Figure 14. Free energy: grand canonical ensemble in five dimensions. Top row : here we show plots

of the free energy for Φ = 0, 0.7 (more to less opacity) for Einstein gravity (left) and the cubic theory

with µ/µc = 10−3 (right). Middle row : here we show plots of the free energy for Φ = 0.81, 1.2, 1.6

(more to less opacity) for Einstein gravity (left) and the cubic theory with µ/µc = 10−3 (right).

Bottom row : here we show plots of the free energy for Φ = 1.75, 1.9, 2.0 (more to less opacity)

for Einstein gravity (left) and the cubic theory with µ/µc = 10−3 (right). In all cases the dashed

portions of the blue curves indicate negative Wald entropy, and points where the blue curves simply

terminate indicate that the mass has become negative.

of the potential. In both cases, when the potential is small the free energy has the same

structure as in the uncharged case. For Einstein gravity this means that the free energy

presents a cusp-like structure, with a Hawking-Page-like transition between thermal AdS

and a large AdS black hole occurring at the point where the free energy vanishes. For

the cubic theory (shown on the right), the situation is much the same, exhibiting a phase

transition between thermal AdS and a large black hole. Different parts of the free energy
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curve can have either negative entropy or mass. However, as in the uncharged case, this

does not seem to pose a problem in the five dimensional case, as these cases are excluded

due to the fact that they are not thermodynamically favoured. Note that the blue curve

terminates at the point where M = 0, since the cases with M < 0 do not exist as full

solutions of the equations of motion.

As the potential is further increased, we enter into the regime where three branches

of solutions emerge for the cubic theory. The value of Φ where this occurs is plotted in

figure 12, and representative free energy curves are shown in the middle row of figure 14. In

the Einstein case nothing of note changes. For the cubic case, we see a swallowtail emerge

when Φ2 equals the value given in figure 12. As Φ2 is further increased, the swallowtail

shrinks, eventually terminating at what would be a critical point if it minimized the free

energy.13 Of course, since the swallowtail occurs for positive values of the free energy, the

usual first order phase transition it represents does not occur. Instead, what we observe

is once again a Hawking-Page transition between thermal AdS and a large black hole at

fixed potential.

As the value of Φ2 is further increased, we eventually reach a value for which there is

only a single branch of solutions, which occurs for

Φ2 > 3 +
9

2

(
−122µ

79L4

)1/3

. (5.18)

Plots of free energy for Φ2 larger than 3 are shown in the bottom row of figure 14. The

upper-most curve in this these plots corresponds to Φ = 1.75, for which we see that in

Einstein gravity the black hole is thermodynamically preferred at all temperatures, while

in the cubic theory a Hawking-Page transition continues to occur. The remaining curves

correspond to values of Φ that satisfy the inequality given in eq. (5.18) — the black hole is

always thermodynamically preferred. Due to the appearance of µ in eq. (5.18), Hawking-

Page transitions persist to larger values of Φ in the cubic theory than in Einstein gravity.

Lastly, let us note that in similar fashion to the uncharged case, if we adjust the

entropy of the solutions so that they are always positive, this does nothing to change

the interpretation of the phase structure described here, though it does push around the

temperatures at which the phase transitions occur.

To close this section, let us make a few comments about what our results reveal about

the black hole chemistry of these solutions. In both the uncharged and fixed potential

cases, nothing qualitatively different is observed if one chooses to vary the cosmological

constant. This can be seen, for example, just by considering the expressions for the critical

point given in eq. (5.10). Notice that the critical pressure could be completely removed

from the equation by redefining µ = xµc. Then the pressure simply serves as a relative

scaling between the critical temperature and critical volume. Since the electric potential is

dimensionless, in the uncharged and fixed potential ensembles, changing the pressure can

only scale the results. In other words, by varying the pressure we can scale the points at

which phase transitions and critical points occur, but we will not uncover any additional

physics. The situation is a bit different in the canonical ensemble, since there the electric

13The critical exponents of this would-be critical point turn out to be the usual mean field theory values

— see eq. (5.14).
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charge (which is dimensionful) appears directly, and there is no natural analog of µc (i.e. a

special value of the charge that relates it to the cosmological length scale) that occurs for

the charge.

6 Charged black holes: canonical ensemble

We now move on to consider thermodynamics in the canonical (fixed charge) ensemble. In

this case, our aim will be to explore the critical points and phase behaviour working in

the black hole chemistry framework. A key difference between the thermodynamics in the

canonical ensemble compared to the previous two sections is that here, due to conservation

of charge, transitions to the vacuum are not possible. This means that, at fixed charge,

we compare the free energy of all the black hole solutions, and that with the lowest free

energy is the preferred phase.

Recall that the equation of state in general dimensions reads

P =
T

v
− (d− 3)

π(d− 2)

k

v2
+

e2

v2d−4
+

28(d− 7)(d− 4)(4d4 − 57d3 + 357d2 − 768d+ 516)µk

π(d− 2)5(4d4 − 49d3 + 291d2 − 514d+ 184)v6

−
3× 28(d− 4)(d− 6)

(
4d3 − 33d2 + 127d− 166

)
k2µT

(d− 2)4(4d4 − 49d3 + 291d2 − 514d+ 184)v5

+
3× 212π(d− 5)

(
d2 + 5d− 15

)
kµT 2

(d− 2)3(4d4 − 49d3 + 291d2 − 514d+ 184)v4

+
211π2(d− 4)

(
d2 + 5d− 15

)
µT 3

(d− 2)2(4d4 − 49d3 + 291d2 − 514d+ 184)v3
(6.1)

where we note that the charge appears as e2, and so the same results hold for both positive

and negative charge. The general idea for observing phase transitions is to see whether

the coefficients of different powers of v in the equation of state have signs that allow for

various maxima and minima of P . The appearance/disappearance of distinct phases will

generically be associated with critical points. A necessary condition for a critical point to

occur is that

∂P

∂v
=
∂2P

∂v2
= 0 . (6.2)

which will generally have non-degenerate solutions. A free energy analysis is required to

determine whether the critical point is physically realized in the system i.e., whether or

not the critical point belongs to a minimizing branch of the free energy. Unfortunately

it is difficult to make any very general statements about how many critical points occur

and what their associated phase behaviour is. For this reason, we resort to a case-by-case

analysis in four, five and six dimensions, presenting an essentially exhaustive analysis of

the parameter space. We close the section with a few brief remarks on the situation in

general dimensions.

In what follows, we concentrate on several specific dimensions and investigate the

thermodynamic behaviour in some detail.

6.1 Critical behaviour in four dimensions

The existence of critical points for four dimensional charged black holes has been previously

pointed out in Einstein gravity (µ = 0) [56]. In four dimensions, the field equation for
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cubic generalized quasi-topological gravity reduces to that of Einsteinian cubic gravity;14

the critical behaviour of black holes in Einsteinian cubic gravity have been previously

studied [33] for the case of uncharged black holes (see also section 4 above). Here we

include an analysis of the charged case.

The equation of state (3.9) takes the following relatively simple form:

P =
T

v
− k

2πv2
+
e2

v4
− 48πµkT 2

v4
(6.3)

Note that, at fixed temperature, the term arising from the electric charge and the term

arising from the cubic correction both go like v−4. These terms dominate for small black

holes and, due to them having the same fall-off behaviour, suggests there will be similarities

between the cubic black holes and ordinary charged black holes in Einstein gravity.

Solving equation (6.2) we find for general values of µ and e2 that the critical temper-

ature, volume and pressure are

T 2
c± =

3πe2 ±
√

9π2e4 − 64k4µ

288π2kµ
, Pc± =

9πT 2
c±

16
, vc± =

2k

3πTc±
(6.4)

where the two choices result because the equation of state is quadratic in T . Under the

restriction of negative coupling (which is required for the existence of sensible positive mass

solutions), we can see that the term under the square root in the above expressions is always

positive. However, by the same token we see that for k = +1 only Tc−, Pc− and vc− are

physically sensible, i.e. have all three critical values positive, while for k = −1 there is no

physical solution. The end result then is that there are no “new” critical points introduced

by the cubic theory in four dimensions. Effectively, the cubic correction shifts the critical

quantities away from their Einstein gravity values, reducing the critical temperature and

pressure, while increasing the critical volume.

It is straightforward to see from (6.4) that the ratio of critical quantities

Pcvc
Tc

=
3

8
(6.5)

is independent of the black hole parameters and in this sense is universal. Note that this

ratio is independent of choice of spherical or hyperbolic geometry, though in the latter case

we do not have critical points since pc− and vc− are negative. In [38] it was found that the

van der Waals ratio differs from this value of 3/8 for black branes, and so the ratio can

be sensitive to the horizon topology. Remarkably, the ratio (6.5) is precisely the same as

that first observed for charged black holes in four dimensional Einstein gravity [56]; higher

curvature corrections have not affected this universal value for spherical black holes.

It can be straight-forwardly confirmed that the various physical constraints are satisfied

by the black holes at the critical point. That is, these black holes possess positive mass

and the critical pressure is always less than the maximum pressure Pmax in (3.13). We can

14In four-dimensions, the theory itself reduces to Einsteinian cubic gravity plus an additional term that

does not contribute to the field equations of spherically symmetric black hole spacetimes [35].
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also confirm that the entropy — regardless of wheter it has been shifted or not — is always

positive at the critical point. For the entropy from eq. (3.3) at critical point we obtain

sc± ∝
16π2k4µ+ 9π4e4 ± 3π3e2

√
9π2e4 − 64k4µ

48π2k4µ
. (6.6)

Noting that only the minus branch with k = +1 corresponds to a sensible critical point,

some simple manipulations reveal that the Wald entropy is positive at the critical point.

The critical points are characterized by mean field theory critical exponents which, for

generic values of parameters and k = 1 in the physical domain, are the same as in (5.14)

α = 0, β =
1

2
, γ = 1, δ = 3 (6.7)

and are obtained by expanding the equation of state near the critical point [55]

P

Pc±
= 1− 1

48π2k4µ

(
−160π2k4µ+ Y

)
τ +

4

48π2k4µ

(
−64π2k4µ+ Y

)
φτ − 4

3
φ3

+O(τφ2, φ4) (6.8)

with

Y = 9π4e4 ± 3π2e2
√

9π4e4 − 64π2k4µ (6.9)

and where we replaced the following terms for volume and temperature

v = vc(φ+ 1) , T = Tc(τ + 1) . (6.10)

Since the prefactors multiplying the φτ and φ3 terms are non-vanishing the physical portion

of parameter space, the critical points given in (6.7) follow from this expansion.

Considering the P−v graph in figure 15, we observe two distinguishable (stable) phases

for T < Tc. These merge at T = Tc and then for T > Tc they become indistinguishable,

the hallmark of a standard Van-der-Waals (VdW) phase transition. Note that for certain

low temperature isotherms, portions of the P − v curve can dip into negative pressure.

A similar situation occurs already in Einstein gravity and, of course, negative pressure in

this setup is unphysical. The solution to the problem is either that the negative pressure

portion of the curve is excised via a Maxwell equal area prescription or, in some cases, it

is just the case that these solutions are unphysical.

The critical points correspond to the end point of a line of first order phase transitions,

as shown in figure 15. This line of coexistence demarcates phases of large and small black

holes. Furthermore, an analysis of the Gibbs free energy reveals typical van der Waals

behaviour, shown in figure 16.

For pressures a bit less than the critical pressure, the Gibbs free energy demonstrates

swallowtail behavior as expected from a van der Waals system. For P = Pc, the free energy

has a kink shape, characteristic of the diverging specific heat at the critical point and it is

always stable (Cp > 0). For pressures a bit less than the critical pressure, the Gibbs free

energy demonstrates the swallowtail behaviour as expected from van der Waals manner.

– 37 –



J
H
E
P
0
8
(
2
0
1
9
)
0
6
8

Figure 15. Critical behaviour in four dimensions. Left : the case for fixed charge, we show a P − v
graph that illustrates a first order phase transition with VdW behaviour in d = 4 and with k = 1.

The various curves correspond to different isotherms: at the critical point T = Tc (dashed blue

line), T = 0.9Tc, 0.71Tc, 0.67Tc (solid black lines), and T = 1.3Tc, 1.8Tc (solid blue lines). Here we

choose µ/e4 ≈ −0.00152 with Tce ≈ 0.03455. Right : phase diagram in P − T plane. The phase

diagram for four dimensional charged black holes with k = 1 is constructed with µ/e4 ≈ −0.00152,

however the similar behaviour occurs for any other values. Note that here we are working in units

of the electric charge.

Figure 16. Free energy in four dimensions. Left : plot of Gibbs free energy versus temperature for

d = 4 and k = 1, for P = 1.2Pc (dotted, blue curve), for P = Pc (dotted, black curve), for P = 0.6Pc

and P = 0.2Pc (solid black and red lines). Right : plot for P = 0.01Pc. In each plot, the red lines

represent parts of the curves that the specific heat is negative. In all plots, µ/e4 ≈ −0.00152 where

physical conditions are satisfied with Pce
2 ≈ 0.00211.
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There are up to two branches of black holes that have positive specific heat (though only

one ever minimizes the free energy), while the concave patch of the Gibbs free energy

indicates negative specific heat,

Cp = −T ∂
2G

∂T 2
. (6.11)

We specify the negative specific heat in figure 16 by red lines. Note that all curves ap-

proximately converge to the same small domain as T → 0 for different choices of pressure.

Further decreasing the pressure, we observe a swallowtail. For very small values of pressure

the swallowtail ‘grows’.

6.2 Critical behaviour in five dimensions

In five dimensions we obtain

P =
T

v
− 2k

3πv2
+

4480π2µT 3

711v3
+

256µk2T

237v5
− 31232µk

19197πv6
+
e2

v6
(6.12)

for the equation of state. Using (6.2) and setting the first and second derivatives of P with

respect to v to 0, the general form of the critical temperature for given k in terms of critical

volume and other parameters reads

Tc =
19197πe2 − 31232kµ+ 1422kv4

c

2133πv5
c − 11520πk2µvc

(6.13)

where vc satisfies

0 = 3v3
c

(
79vc

(
4266kv4

c − 95985πe2 + 87040kµ
)

+ 40320π3µT 3
c

(
1280k2µ− 237v4

c

))
+ 1280kµ

(
31232µ− 19197πe2k

)
(6.14)

Although the equations (6.2) are non-linear in both T and v, it is still possible to obtain the

above explicit expression for Tc in terms of vc and the other parameters by manipulating

equations (6.2) to remove non-linear dependence on the temperature. Note that these

manipulations are possible only in four, five and six dimensions, since it is only in these

cases that a single non-linear power of temperature appears in the equation of state.

Although it appears possible for the expression of the critical temperature to have

a singularity for a particular combination of the specific volume and the coupling, this

does not become manifest as it would require positive coupling — this is forbidden by the

requirement of having sensible positive mass solutions.

We now turn to an examination of the coupling/charge parameter space, with the

relevant plot shown in figure 17. We first focus on black holes with spherical horizons. In

this case, we first note that when µ = 0 there is a single physical critical point provided

that the electric charge is non-zero. We find that when the cubic coupling is negative,

and provided it satisfies the bound µ / −0.446179e2, then there are no possible critical

points. When −0.446179e2 / µ < 0 the equations (6.2) admit two possible solutions for

critical points. To determine if the black holes corresponding to these possible solutions

are physical, we have to ensure that the various physical constraints are satisfied — these
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Figure 17. Phase space of constraints for d = 5. The plot shows the different possibilities for

critical behaviour in (µ, e) parameter space for k = 1 (left) and k = −1 (right). Green regions

denote single physical critical points with all physical constraints fulfilled. In grey regions there are

no possible critical points. The thin red line denotes two potential critical points. In the left plot,

the critical points that lie below the dashed black curve possess negative Wald entropy. In the right

plot, the black region indicates that the critical pressure exceeds the maximum pressure, while the

orange region indicates that the potential critical point corresponds to a negative mass black hole.

have been incorporated into figure 17 directly. We find that one of the two possible critical

points always possesses negative Wald entropy, while the second has negative Wald entropy

only when µ / −0.358799e2, and otherwise has positive entropy. However, as mentioned

in the previous sections, due to ambiguities in the definition of the entropy, it is unclear

whether this alone means that the black holes are unphysical. More important is that the

mass is positive, since it seems that the negative mass solutions do not exist. We find that

for coupling in the range −0.445201e2 / µ < 0 there is a single critical point with positive

mass, while in the interval −0.446179e2 / µ / −0.445201e2 both of the critical points

correspond to black holes with positive mass.

Let us now describe the phase behaviour in the various regions of parameter space. In

the regime where there is a single physical critical point we find (unsurprisingly) van der

Waals type behaviour with the critical exponents coinciding with the mean field theory

values. The plots that arise in this case are qualitatively similar to the four dimensional

case, and so we do not present them here. This single physical critical point limits to the

one in Einstein gravity as µ→ 0; the effect of the higher curvature correction is to increase

both the critical pressure and temperature, while decreasing the critical volume. We can

examine the ratio of critical values numerically based on the data from figure 17, and we

find that it exhibits weak dependence on the cubic coupling constant. This dependence

can be confirmed by solving eqs. (6.2) perturbatively in the coupling constant, giving the

following for the leading order correction:

Pcvc
Tc

=
5

12

[
1− 527872

2399625

( µ
e2

)
+O

(
µ2

e4

)]
. (6.15)

The first term in the expansion is, of course, the result for five-dimensional charged black

holes in Einstein gravity [55]. Recalling that µ < 0, we see that the cubic correction

increases the value of the ratio.
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Figure 18. Pressure vs. volume plot depicting two critical points in d = 5 for k = +1.

This plot displays the situation for µ = −0.446e2. There are two critical points with criti-

cal temperatures Tc1 ≈ 0.160234/e and Tc2 ≈ 0.163327/e. The isotherms shown correspond to

T ≈ 0.75Tc1 , Tc1 , 1.22Tc2 , from bottom to top (more to less opacity). Solid blue lines indicate

positive Wald entropy and mass, dashed blue lines indicate positive mass but negative Wald en-

tropy, dot-dashed gray lines indicate negative mass and hence that the corresponding black holes

do not exist.

As mentioned just above, when −0.446179e2 � µ � −0.445201e2 there is an additional

critical point that occurs for positive mass black holes (though they have negative Wald

entropy). To illustrate the physics in this case, we refer to figure 18, where the behaviour

in the pressure volume plane is displayed for three different temperatures. The plot depicts

three isotherms, corresponding to T ≈ 0.75Tc1 , Tc1 , 1.22Tc2 . The behaviour can be under-

stood as follows. For T < Tc1 , the system exhibits usual van der Waals type behaviour

that terminates at the critical point Tc1 . For temperatures between Tc1 and Tc2 , there is

no interesting phase behaviour. (Curves with Tc1 < T < Tc2 are not shown in figure 18

since they are too close together to distinguish.) When T > Tc2 , the system again exhibits

van der Waals type oscillations, but with the caveat that these oscillations begin at the

critical point and then exist for arbitrarily large temperatures. However, it turns out that

for much of the parameter space one of the possible phases possesses negative mass, and

so there is no first order phase transition present.

Finally, let us make a few comments about the hyperbolic k = −1 case. In this case we

observe that the equations (6.2) admit a single solution provided that −1.93101e2 � µ < 0.

However, a further analysis reveals that the black holes corresponding to these critical

points are unphysical. For the coupling in the range −0.946037e2 � µ < 0, the black hole

mass is negative at the critical point, while for −1.93101e2 � µ � −0.946037e2 the mass is

positive but the value of the critical pressure exceeds the maximum allowable pressure Pmax.

6.3 Critical behaviour in six dimensions

For six dimensional Einstein metrics, the contributions of any cubic term to the linearized

field equations vanishes [31]. This results in some simplification in this case, and we have

f∞ = 1 by definition. From (2.18), we obtain γ2 = − 2
9πµPf∞m , which is positive provided
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µ < 0 (see figure 19); for µ > 0 we obtain γ2 < 0. Therefore, in six dimensions, the pressure

can be arbitrarily large.

In six dimensions, the equation of state becomes

P =
T

v
− 3k

4πv2
+

6π2µT 3

v3
+

9πµkT 2

2v4
− 3µk

8πv6
+
e2

v8
. (6.16)

According to the analysis at the beginning of this section, there can be up to two critical

points for the six dimensional spherical (k = +1) black holes and three critical points for

the hyperbolic (k = −1) ones. Applying eq. (6.2) the critical temperature is related to the

critical volume as

Tc = −160πe2v4
c − 162kµ2v2

c + 81kµv6
c + 6kv10

c + 1152πe2µ

1440π2e2kµvc − 243πµ2v3
c − 54πµv7

c − 8πv11
c

(6.17)

and vc satisfies the following relation

π2v2
c

(
72π2kµT 2

c v
2
c + 6kv4

c − 8πTcv
5
c − 27kµ

)
+ 160π3e2 = 0 . (6.18)

Once again, any apparent singularities of the above expression for the critical temperature

actually do not occur within the physical parameter space.

A parameter space plot is shown in figure 19 for the case of k = +1. In this case

we find that there are two solutions to eqs. (6.2) provided −0.068658e4/3 / µ < 0, while

there are no solutions for potential critical points when µ / −0.068658e4/3. To determine

which (if any) of these potential critical points are physical, we must check the various

physicality conditions. We find that when the coupling is in the range −0.049633e4/3 /
µ < 0 one of the potential critical points corresponds to a negative mass solution, while

for −0.068658e4/3µ / −0.049633e4/3 both potential critical points have positive mass. We

also find that in the interval −0.064541e4/3 / µ / −0.049633e4/3 one of the two critical

points possesses negative Wald entropy.

Let us discuss at greater length the situation in which there are two physical critical

points since, as we will see, this leads to some interesting phase behaviour. The existence

of these two solutions is dependent on the value of the electric charge and the coupling,

as shown in figure 20. This plot shows the critical volume and pressure as a function of

electric charge for particular choices of the coupling. In figure 21 we depict two separate

first order transitions for two different critical points. The figure exhibits ‘double VdW’

behaviour, in which a standard VdW transition takes place for cold temperatures T < Tc,

disappearing at a critical temperature Tc, and then reappearing once T becomes greater

than an even larger critical temperature Tc. The intermediate region Tc < T < Tc is where

both phases are indistinguishable, and the associated isotherms are one-to-one functions

P (v). Note that, in figure 21, some of the isotherms dip below P < 0. Those portions of

the curve are, of course, unphysical but are also naturally excluded via Maxwell’s equal

area law since the pressure at which the phase transition occurs is positive.

For generic values of the coupling, each of the two critical points are described by mean

field theory critical exponents. One marks the end point of a first order coexistence line,

while the other marks the beginning of a first order coexistence line, shown in figure 22.

– 42 –



J
H
E
P
0
8
(
2
0
1
9
)
0
6
8

0.0 0.1 0.2 0.3 0.4 0.5
-0.05

-0.04

-0.03

-0.02

-0.01

0.00

Figure 19. Phase space of constraints in six dimensions. Here we show the situation for spherical

black holes in six dimensions. Green shaded areas represent a single physical critical point. Light

green areas represent two physical critical points. In the gray regions, there are no solutions to the

critical point equations (6.2). In the region between the dashed black lines, the Wald entropy is

negative for one of the two critical points.

Figure 20. Counting the number of critical points in six dimensions. In six dimensions, The

behaviour of critical volume (left) and critical pressure (right) versus electric charge. We set µ =

−0.0675 and k = 1. The red curve shows in which region of electric charge two critical points exist.

The fact that the critical exponents are the mean field theory values can be deduced by

examining the equation of state expanded near the critical point. Schematically, we obtain

an expansion of the form

P

Pc±
= 1 +Aτ −Bτω − Cω3 +O(τω2, ω4) (6.19)

where the coefficients (A,B,C) are numerically determined from choices of the parameters.

For finely tuned values of the coupling, these two critical points merge into a single

object known as an isolated critical point. Isolated critical points have been of interest since,
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Figure 21. p − v graph illustrating two first order phase transitions. The behaviour of pressure

versus volume for temperatures less than first critical point T = Tc presented with dashed red

line, i.e., T = 0.45Tc, .48859Tc, 0.8Tc (red lines) and temperatures larger than second critical

point T = Tc presented with dashed black line, i.e., T = 1.5Tc, 1.9Tc (black lines). Here, we set

µ/e4/3 = −0.0655 giving Tce
1/3 = 0.24730 and Tce

1/3 ≈ 0.31746.

in all known cases, they provide examples of critical exponents that deviate from the mean

field theory values. The first examples using Lovelock and quasi-topological gravity were

discussed in [61, 76, 80] where the isolated critical points happen for hyperbolic horizons

and massless black holes, and coincided with a thermodynamic singularity. For Lovelock

and quasi-topological black holes with conformal scalar hair [64, 65] isolated critical points

were discussed in five and higher dimensions, providing first examples of isolated critical

points for black holes of any mass and away from the thermodynamic singularity. Here we

observe these points for the first time in six dimensions, and also for spherical horizons in

pure gravity. Note also that these examples of isolated critical points do not correspond to

any thermodynamic singularity, as the slope of the P − T coexistence curve is non-zero.

We have confirmed that this isolated critical point associated with the parameters

given in figure 22 has positive mass, and therefore the associated black holes have sensible

asymptotic structure. Since the equation for finding the critical values of T and v (6.2)

is seventh order in v and third order in T , it is only feasible to solve these equations

numerically. From the numerics we can extract the form of the equation of state expanded

near the critical point. We find that the coefficient B in (6.19) goes to zero as parameters

approach those yielding an isolated critical point. The critical exponents corresponding to

the isolated critical point are given according following prescription.

To get the critical exponents, we follow the prescription outlined in [55]. For the

specific heat at constant volume

Cv = T
∂s

∂T

∣∣∣
v

= 0 . (6.20)

we find that the critical exponent α̃ = 0, despite the fact that the entropy (naively)
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choosing µ/e4/3 ≈ −0.065487 the critical quantities are Tce
1/3 ≈ 0.24730 and Pce

2/3 ≈ 0.05712,

Tce
1/3 ≈ 0.31746 and Pce

2/3 ≈ 0.08175. Green points denote critical points and black lines indicate

a first-order phase transition. We see that there is such a transition for T < Tc and another for

T > Tc. Blue lines indicate negative entropy; green dotted lines indicate negative mass. Top

right : a magnification of the region near the upper right critical point in the figure to the left,

illustrating the existence of a small region with positive entropy (solid black line). Bottom left : for

µ/e4/3 ≈ −0.068658 we obtain an isolated critical point (red point); the approximate values at the

conjoined critical temperature and volume are Tce
1/3 ≈ 0.2766075924 and Pce

2/3 ≈ 0.06725819565.

Bottom right : a magnification of the bottom left plot close to the isolated critical point.

depends on temperature. Using (6.19), the fact that during the phase transition (between

large/small black holes) the pressure remains constant, and Maxwell’s area law written in

differential form as

dP = −Pc(2Dτω + 3Cω2)dω (6.21)

we find ωl,s ∝ τ . Hence β̃ = 1. To evaluate the exponent γ̃ we compute the behaviour of

the isothermal compressibility near criticality, finding

κT = −1

v

∂v

∂P

∣∣∣
T

= − 1

(1 + ω)Pc (−2Dωτ − 3Cω2)
∝ 1

τ2
(6.22)
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where we used the relation ω ∝ τ as mentioned above. We thus obtain γ̃ = 2. These values

for the exponents (β, γ) are different from the standard exponents in (6.7) but match the

non-standard critical exponents found in [61] for seven-dimensional Lovelock gravity. From

the behaviour of |P − Pc| ∝ |v − vc|δ along any critical isotherm, we also find that δ = 3

(given by the power of leading term in the ω expansion from (6.19) ).

Let us close this section by mentioning that there are no physical critical points in the

hyperbolic case. We find that for any negative coupling the equations (6.2) admit possible

solutions, however these always correspond to negative mass black holes.

6.4 Remarks on higher dimensions

To close our considerations of the canonical ensemble, we present a few remarks on the

situation in general dimensions. Rather than perform an exhaustive analysis — which

would require a case-by-case study — here we limit the discussion to small values of the

coupling and black holes with spherical horizons. This will allow us to understand how the

cubic theory affects the critical behaviour already present in Einstein gravity.

Let us begin by recalling that in Einstein gravity charged black holes with spherical

horizons present a single critical point in all dimensions with the critical values being given

by [55]

P (0)
c =

(d− 3)2

(d− 2)2πv2
c

, T (0)
c =

4(d− 3)2

(d− 2)(2d− 5)πvc
, v(0)

c =

[
(d− 2)2(2d− 5)πe2

d− 3

] 1
2(d−3)

.

(6.23)

When the cubic coupling is turned on and is perturbatively small, the critical values given

above become modified. The first order corrections are given by

P (µ)
c =P (0)

c − 256(d− 2)−(5d−9)/(d−3)π−d/(d−3)

(2d− 5)3 (4d4 − 49d3 + 291d2 − 514d+ 184)

(
d− 3

2d− 5

) 3
d−3

×
(

416d9 + 4424d8 − 200812d7 + 2129198d6 − 11437255d5 + 35957054d4

− 68280093d3 + 75654408d2 − 43205940d+ 8802960
)( µ

|e|6/(d−3)

)
+O

(
µ2
)
,

(6.24)

T (µ)
c =T (0)

c − 1536(2d− 5)−3π(1−2d)/(2d−6)

(d− 2)5 (4d4 − 49d3 + 291d2 − 514d+ 184)

(
(d− 2)2(2d− 5)

d− 3

) 5
2(3−d)

×
(

128d9 + 304d8 − 39908d7 + 464048d6 − 2604697d5 + 8471996d4

− 16664635d3 + 19319904d2 − 11851020d+ 2803440
)( µ

|e|5/(d−3)

)
+O

(
µ2
)
,

(6.25)

v(µ)
c = v(0)

c +
384(d− 2)−4(2d− 5)−3π−3/(2d−6)

(d− 3)2 (4d4 − 49d3 + 291d2 − 514d+ 184)

(
(d− 2)2(2d− 5)

d− 3

)3/(6−2d)

×
(

32d9 + 7848d8 − 171340d7 + 1533478d6 − 7507951d5 + 21947526d4

− 38744053d3 + 39179688d2 − 19237140d+ 2564880
)( µ

|e|3/(d−3)

)
+O

(
µ2
)
.

(6.26)
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Although it is not immediately obvious from these expressions, the effect of the higher-order

coupling is different depending only on whether the spacetime dimension is four or higher.

In four dimensions, the cubic coupling leads to an increase in the critical volume, while

decreasing both the critical temperature and the critical pressure. In all higher dimensions,

the effect is reversed: the critical volume is decreased, while the critical temperature and

pressure are increased. One can readily check that for small values of the coupling, the

critical points meet all physicality conditions. We can also compute the effect on the van

der Waals ratio:

Pcvc
Tc

=
2d− 5

4d− 8

[
1− 256(d− 4)(2d− 5)−3π−2/(d−3)

(d− 3)2(d− 2)4 (4d4 − 49d3 + 291d2 − 514d+ 184)

×
(

d− 3

(d− 2)2(2d− 5)

) 2
d−3 (

32d9 + 3720d8 − 84548d7 + 758186d6 − 3668673d5

+ 10467583d4 − 17711283d3 + 16541067d2 − 6667680d+ 106860
)( µ

|e|4/(d−3)

)
+O

(
µ2
) ]

. (6.27)

In four dimensions the ratio is unaltered (as discussed above), while in all higher dimensions

there is a correction dependent on the coupling and charge that serves to increase the ratio

compared to its value in Einstein gravity. The conclusion, then, is that while the van der

Waals ratio is a “universal” quantity in Einstein gravity, it is sensitive to the particular

details of the solution in more general theories of gravity.

7 Holographic hydrodynamics

7.1 Review of black branes

The thermodynamic properties of black branes in the cubic theory were studied in [38].

Here we will review some of the properties of uncharged black branes in the cubic theory

that will be useful in the following subsection.

When k = 0, the near horizon equations of motion simplify dramatically:

m = rd−4
+

[
r3

+

L2
+

1024µπ3(d2 + 5d− 15)T 3

(4d4 − 49d3 + 291d2 − 514d+ 184)

]
0 = (d− 1)

r2
+

L2
− 4πr+T −

512(d− 4)(d2 + 5d− 15)µπ3T 3

(4d4 − 49d3 + 291d2 − 514d+ 184)r+
. (7.1)

In four dimensions, these equations imply that the temperature as a function of horizon

radius is exactly the same in the cubic theory as it is in Einstein gravity. In higher

dimensions there are corrections to this profile, and in both four and higher dimensions the

mass receives corrections. Taking the discriminant of the second equation above we find

that it changes from positive to negative when the coupling takes the value

µ∗ = −(4d4 − 49d3 + 291d2 − 514d+ 184)L4

54(d− 4)(d− 1)2(d2 + 5d− 15)
. (7.2)
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When taking d = 5, this reduces to µ∗ = −79L4/1890 which we encountered earlier in

sections 4 and 5. In those cases we were interested in black holes with spherical horizon

topology and the bound implied that large black holes simply do not exist when the coupling

is smaller than this value. In the present case, the bound applies for all values of the horizon

radius and we find that when the coupling exceeds this value there is no sensible solution

for T as a function of r+.

The next important point we will note is that both of the near horizon equations are

satisfied (with vanishing mass) for all values of the horizon radius when the temperature

and coupling are given by

Tp =
3(d− 2)r+

8πL2
, µp = −L

4(4d4 − 49d3 + 291d2 − 514d+ 184)

54(d− 2)3(d2 + 5d− 15)
. (7.3)

Interestingly these conditions also imply that the entropy of the black brane vanishes. This

is the reason for the labels “p” since as we will see, in this limit the ratio of shear viscosity to

entropy density has a pole. Comparing the above results, we notice that µp < µ∗ indicating

that we reach the point where M = 0 and S = 0 before the point where solutions fail to

exist. Further exploration reveals that for all |µ| > |µp| the mass of the black holes is

negative, indicating that the full solutions do not exist. This means that the point µ = µp
actually serves as the limit of sensible coupling for black branes in the cubic theory and we

must constrain µ ∈ [µp, 0]. In this interval, we find that the mass and entropy of the black

branes is always positive. An interesting point is that in four-dimensions µp coincides with

µc corresponding to the critical limit of the theory; however, in higher dimensions µp is

always distinct from µc.

While the equation determining the temperature as a function of horizon radius is a

cubic, only a single branch of the solution is physical — one gives negative temperature,

while the other gives negative mass. In terms of µp, the physical solution can be expressed

quite simply as

T =
3r+

4πL2

√
(d− 2)3µp
(d− 4)µ

cos

(
θ + π

3

)
(7.4)

where

cos θ =
(d− 1)

√
(d− 4)µ/µp

(d− 2)3/2
. (7.5)

The temperature therefore exhibits a linear dependence on the horizon radius, with the

slope of the line depending on the spacetime dimension and the value of the coupling. In

the limit µ → 0, the expression limits to T = (d − 1)r+/(4πL
2), while when µ → µp it

limits to T = 3(d− 2)r+/(8πL
2). These two lines bound all other curves.

We can also write an explicit expression for the entropy for the physical branch of

black branes. This reads

s :=
S

Ld−2Vol (Rd−2)

=
rd−2

+

4Ld−2

[
1− 4(d− 2)

d− 4
sin

(
1

3
arcsin

(
(d− 1)

√
(d− 4)µ/µp

(d− 2)3/2

))]
. (7.6)
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This entropy is vanishes only when r+ → 0 or when µ → µp. This behaviour is precisely

in line with what we would expect for the entropy, and so there is no need to be concerned

with shifting it for the black branes. Indeed, any shift in the entropy would result in a

non-zero entropy assigned to the spacetime when it does not contain a horizon. Let us now

study the ratio of shear viscosity to entropy density.

7.2 Computation of η/s

As a step toward a full understanding of the generalized quasi-topological class of theories

in the context of the AdS/CFT correspondence, we compute here the ratio η/s of shear

viscosity to entropy density.

For field theories possessing Einstein gravity duals, the shear viscosity to entropy

density ratio has a universal form η/s = 1/(4π). It was conjectured by Kovtun, Son,

and Starinets that this represents a universal lower bound for all substances [113], i.e.

η/s ≥ 1/(4π) (the KSS bound). However, it was later discovered that the inclusion of

higher derivative corrections can actually lead to violations of this bound [114]. Here we

will compute η/s for field theories dual to the cubic generalized quasi-topological theory

in all dimensions and show that the KSS bound always holds. In fact, we show that the

ratio η/s takes on all real values η/s ∈ [(4π)−1,∞) as a function of the coupling µ.

For this computation, we are interested in the planar class of metrics,

ds2 =
r2

L2

(
− g(r)dt2 +

∑
i

dx2
i

)
+
L2dr2

r2g(r)
. (7.7)

We transform the metric by introducing z = 1−r2
+/r

2, which compactifies the space outside

the horizon. The transformed metric reads,

ds2 =
r2

+

L2(1− z)

(
− g(z)dt2 +

∑
i

dx2
i

)
+

L2

4g(z)

dz2

(1− z)2
(7.8)

and g(z) has a simple zero at z = 0, and g(1) = f∞. Near the horizon, we can expand

g(z) as,

g(z) = g
(1)
0 z + g

(2)
0 z2 + g

(3)
0 z3 + · · · . (7.9)

The field equations fix g
(i)
0 for i 6= 2. As mentioned earlier, the second derivative of the

metric function near the horizon is undetermined, but is fixed by demanding that the nu-

merical solution converges to the asymptotic solution without growing mode. It is in this

same way that g
(2)
0 must be determined. Of course, the parameters g

(i)
0 are straightfor-

wardly related to the parameters ai used in the near horizon expansion in eq. (2.22). The

relevant ones for our purposes below are,

g
(1)
0 =

2πTL2

r+
, g

(2)
0 = − L2

4r+
(2πT − r+a2)

g
(3)
0 = − L2

8r+

(
2πT − r+a2 − r2

+a3

)
. (7.10)

– 49 –



J
H
E
P
0
8
(
2
0
1
9
)
0
6
8

We will need the expression for a3 as a function of a2. This can be obtained from the fol-

lowing equation, which is the O
(
(r − r+)3

)
component of the near horizon field equations:

0 =
16µ

3µp

(4πT )2L6

(d− 2)3
a3 +

32µ

9µp

4πTL6

(d− 2)3
a2

2 +

(
8µ

9µp

(5d− 28)(4πT )2L6

(d− 2)3r+
− 2r+L

2

)
a2

+
16µ

27µp

(d− 5)(d− 10)(4πT )3L6

(d− 2)3r2
+

+ (d− 1)(d− 2)r+ − 2(d− 3)(4πT )L2 (7.11)

Next, following [115] we perturb the metric (7.8) by the shift

dxi → dxi + εe−iωtdxj . (7.12)

The perturbed metric is substituted into the Lagrangian and a small ε expansion is per-

formed. The result gives,

√
−gL =

1

16π

[
· · · −

ω2ε2rd−3
+

Ld−4g
(1)
0 z

{
1 +

µ

L4

48

d− 3

(
(17d3 − 209d2 + 632d− 566)

(4d4−49d3+291d2−514d+184)
(g

(1)
0 )2

− 4(21d3 − 289d2 + 740d− 478)

(4d4 − 49d3 + 291d2 − 514d+ 184)
g

(1)
0 g

(2)
0

− 24(21d2 − 62d+ 38)

(4d4 − 49d3 + 291d2 − 514d+ 184)
g

(1)
0 g

(3)
0

− 16(21d2 − 62d+ 38)

(4d4 − 49d3 + 291d2 − 514d+ 184)
(g

(2)
0 )2

)}
+ Regular

]
(7.13)

Now, using the ‘time’ formula, the shear viscosity is given by

η = −8πT lim
ω,ε→0

Resz=0
√
−gL

ω2ε2
(7.14)

which we can read off to be

η =
Trd−3

+

8Ld−4g
(1)
0

{
1 +

48µ

L4(d− 3)(4d4 − 49d3 + 291d2 − 514d+ 184)

×
(

(17d3 − 209d2 + 632d− 566)(g
(1)
0 )2

− 4(21d3 − 289d2 + 740d− 478)g
(1)
0 g

(2)
0 − 24(21d2 − 62d+ 38)g

(1)
0 g

(3)
0

− 16(21d2 − 62d+ 38)(g
(2)
0 )2

)}
. (7.15)

Recalling that the entropy density (for planar black holes) takes the form,

s =
S

Ld−2Vol (Rd−2)
=

rd−2
+

4Ld−2

[
1 +

384π2(d− 2)(d2 + 5d− 15)

4d4 − 49d3 + 291d2 − 514d+ 184

µT 2

r2
+

]
(7.16)

it is straightforward (if messy) to write down the ratio η/s. Computing this ratio for

arbitrary values of µ requires implementing a numerical scheme to determine the value of
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a2 for a given black hole. However, insight can be easily gained by considering a small µ

expansion of η/s. This can be performed analytically, and the result is

η

s
=

1

4π

[
1− 12µ

L4

(d− 1)2(23d4 − 83d3 − 18d2 + 256d− 136)

(d− 3)(4d4 − 49d3 + 291d2 − 514d+ 184)
+O(µ2)

]
. (7.17)

The dimension dependent factor in the above is always positive (at least for d ≥ 4), and

since µ must be negative for sensible AdS asymptotics, this means that the KSS bound

η/s ≥ 1/(4π) holds in all dimensions in the cubic generalized quasi-topological theories, at

least when the coupling is small.

An interesting property of the generalized quasi-topological theories is that the entropy

density of black branes is non-trivial [38]. It turns out that this actually leads to a pole in

the ratio η/s in all dimensions. Recall from above that for the special values

Tp =
3(d− 2)r+

8πL2
, µp = −L

4(4d4 − 49d3 + 291d2 − 514d+ 184)

54(d− 2)3(d2 + 5d− 15)
, (7.18)

the near horizon equations are satisfied identically and the entropy vanishes linearly as

µ → µp. Meanwhile, our numerical investigations (see below) indicate that the shear

viscosity is always strictly positive on the interval for µ ∈ (µp, 0). Thus, in all dimensions

there is a pole in the ratio of shear viscosity to entropy density. This is quite an interesting

result — since the ratio smoothly connects between η/s = 1/(4π) (for µ = 0) and η/s =∞
(for µ = µp), a particular coupling can always be chosen to match η/s for any fluid in nature.

The pole in η/s is also universal in the following sense. If we were to include cubic

quasi-topological or Lovelock terms into the action, these terms would not disturb our

result. This is because quasi-topological and Lovelock terms do not modify the black hole

entropy from its Einstein gravity value [38], and it is the vanishing of s that gives rise to

the pole. It would be interesting to see if this behaviour persists at higher order in the

curvature in four and higher dimensions.

To see the explicit µ dependence of η/s, we must resort to numerical techniques to

determine the parameter a2, or the Padé approximant method outlined in the appendix.

Either is computationally costly, and therefore we present only a few example dimensions in

figure 23. In these plots, we see the same characteristic structure: for µ = 0, η/s begins at

1/(4π) and then monotonically increases as µ→ µp. Increasing the spacetime dimensions,

shifts the curves down slightly, but the overall structure is the same in all dimensions.

Of course, there is no good reason to believe that sensible CFT duals will exist over

the whole range µ ∈ (µp, 0). Indeed, it was found in [39] that the putative CFT dual of the

four-dimensional theory is consistent only for µ > −100489L4/64314864, which is a tighter

constraint than that imposed by µ > µp. Determining the equivalent constraints for the

higher-dimensional versions of the theory is an interesting — and important — task that

would require a careful analysis of causality constraints and positivity of energy flux in

the dual CFT (see, for example, [10, 15, 116]). We hope to come back to these issues in

subsequent work.
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Figure 23. Ratio of shear viscosity to entropy density : plots of the ratio η/s in four (blue, solid),

five (red, dashed) and six (black, dot-dashed) dimensions. In all cases, the thin grey line represents

the universal Einstein gravity value of η/s = 1/(4π). In all cases, a [7|7] order Padé approximant

was used for a2 (see appendix C).

8 Discussion

We have studied electrically charged static AdS black holes in cubic generalized quasi-

topological gravity. These black holes are characterized by a single metric function, and our

study considered spherical, planar, and hyperbolic base manifolds. The full field equations

do not admit analytical solutions. We have constructed a number of numeric solutions to

the full field equations, finding that the black holes are non-hairy generalizations of the

usual Schwarzschild solutions, characterized by their mass and charge alone. We have found

that increasing the electric charge has the effect of increasing the horizon radius. We have

found that imposing that the theory admits solutions with sensible asymptotics requires

that µM < 0, i.e. that the cubic coupling constant is negative for positive mass solutions.

While the field equations cannot be solved exactly, evaluating them near the horizon

of a black hole simplifies them dramatically. In solving the equations order-by-order near

the horizon, we find that the two lowest order equations involve powers of the tempera-

ture and horizon radius (along with the coupling constant and electric charge). Thus, the

thermodynamic properties of the solutions can be studied exactly by solving these polyno-

mial equations. We verified the extended first law and Smarr relation for these solutions,

working in the framework of black hole chemistry, treating the cosmological constant as a

thermodynamic pressure.

In both the charged and uncharged cases, the most dramatic differences between the

cubic theory and Einstein gravity arise for small black holes. For example, in the four-

dimensional case, small uncharged black holes are thermodynamically stable in the cubic

theory, while unstable in Einstein gravity. In the five-dimensional case at fixed charge
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and coupling, the cubic theory does not admit arbitrarily small black hole solutions as

eventually the mass becomes negative. Further, if the magnitude of the cubic coupling is

made too large in five dimensions, the theory no longer admits large black hole solutions.

We have studied the phase structure of these black holes in the uncharged case. The

four-dimensional case is dramatically different: ensuring that the black holes possess pos-

itive entropy, the usual Hawking-Page transition is replaced by a first order small/large

black hole transition that terminates at a critical point, exhibiting van der Waals type

behaviour that is typically seen only for charged solutions. In the five dimensional case, we

see the usual Hawking-Page transition with only slight modifications, e.g. the transition

temperature is larger for the cubic theory than in Einstein gravity.

Qualitatively, a similar behaviour is observed in the grand canonical (fixed potential)

ensemble. In four dimensions for the cubic theory, black holes are thermodynamically

preferred for all values of the electric potential and we observe a small/large black hole

phase transition provided that Φ2 < 4. In four-dimensional Einstein gravity, we see a

Hawking-Page type transition provided that Φ2 < 4 while black holes are thermally pre-

ferred for large values of the potential, but exhibit no further phase structure. In the five

dimensional version of the cubic theory, the phase structure is qualitatively the same as in

five-dimensional Einstein gravity: at small values of the potential there is a Hawking-Page

type transition, while at larger values of the potential black holes are always preferred.

The difference is that, in five dimensions Hawking-Page transitions persist to larger values

of Φ in the cubic theory than in Einstein gravity.

Most of our study of the thermodynamics has focused on the canonical (fixed charge)

ensemble. Here we find that in four and five dimensions, physical critical points exist only

for the five-dimensional solutions. In these cases, we find a variety of interesting phase

structure, including van der Waals type behaviour. Six dimensions is somewhat special

in this ensemble, as there is the possibility for two physical critical points. By tuning the

charge and coupling it is possible to merge these generically distinct critical points. At the

point where they merge, we find that the critical exponents change resulting in what is

known as an isolated critical point.

We have taken a first step toward holographic studies of these theories by studying the

ratio of shear viscosity to entropy density η/s in all dimensions. Interestingly, we find that

in all dimensions the KSS bound is upheld in these theories, subject only to the constraint

that the solutions possess well-behaved asymptotics. This extends the observation made

in [17] to all dimensions.

Finally, we close with a brief discussion of questions and issues raised by our study.

Negative entropy. From the perspective of statistical mechanics, negative entropy

would seem to make little sense. However, it has long been known that the Wald entropy

of black holes in higher curvature theories can — and often is — negative. Ambiguities

in the definition of the Wald entropy permit one to shift it by an arbitrary constant by,

for example, adding a total derivative to the action. These ambiguities are present even

in the context of four-dimensional Einstein gravity, since there one could add a Gauss-

Bonnet contribution to the action, which would shift the black hole entropy by a constant
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proportional to the coupling while having no effect on the solutions themselves. While

this ambiguity has no serious implications in the context of the canonical ensemble (since

there one compares different branches of black hole solutions amongst themselves), it can

have serious implications for thermodynamics of uncharged black holes and thermodynam-

ics in the fixed potential ensemble (since there one compares the free energy of the black

holes to the free energy of the vacuum). Since the entropy of the vacuum is unaffected by

adding such a total derivative term, it is possible to, for example, completely eliminate the

Hawking-Page transition or drastically alter the temperature at which it occurs through

the addition of such a constant to the black hole entropy. It would seem that the most

natural way to deal with this issue is by choosing the constant in the entropy so that S → 0

when the spacetime does not contain a horizon. This would avoid any subtleties to do with

the order of limits that would arise for arbitrary shifts in the entropy. However, this choice

may not always be possible (for example, if multiple branches of black holes exist) and is

certainly not the only option. Quite frequently the negative entropy solutions are thrown

out as unphysical, and in the context of Gauss-Bonnet gravity it has been argued that some

of these may be unstable [104]. While beyond the scope of this work, it seems clear that

the role of negative entropy and its connection with any instabilities/pathologies requires

further investigation.

Holography. In this work, we have limited our holographic analysis to the study of

holographic hydrodynamics. This already shows that some of the interesting behaviour

observed in four-dimensions extends to all dimensions. As this class of theories provides

sensible holographic toy models in all dimensions four and larger, it would be beneficial

to further extend the holographic dictionary for them. For example, computing the pa-

rameters characterizing the stress tensor three-point function would allow one to constrain

the range of couplings for which the theory could describe sensible CFT duals, and would

help establish further evidence for the conjectured relationship between derivatives of the

embedding function h(f∞) and the stress tensor correlators made in [40]. It would also

be interesting to extend holographic considerations to higher dimensions and higher-orders

in curvature. Since the generalized quasi-topological theories are non-trivial in dimensions

where both Lovelock and quasi-topological gravities are trivial, these models can help fill

the gaps, providing toy models allowing for calculations non-perturbative in the higher-

order couplings in all dimensions.

Generalized quasi-topological theories. Our work also suggests a number of future

directions concerning the generalized quasi-topological theories themselves. One avenue

would involve considering how the properties of black hole solutions in higher-dimensions

are affected by additional curvature terms. In four dimensions, it has been observed in the

asymptotically flat case that properties of black holes in the cubic theory persist for an

infinite family of essentially unique theories [47, 52]. It is natural to wonder if this holds

also in higher dimensions. For example, one may wonder if the non-hairy properties of the

black holes persist in higher dimensions if multiple generalized quasi-topological terms —

like those constructed in [37] — are included in the action. One noteworthy observation

is that in six and higher dimensions, there appear to be three families of solutions based
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on an analysis of the metric near r = 0, while it seems that only one of these represents

a black hole with regular horizon. It would be interesting to see what the full geometry

of the remaining solutions represents. Additionally, in this work we have observed that

there are qualitative differences between the behaviour of the black hole solutions in four

dimensions and in all higher dimensions. It would be interesting to investigate if this is a

feature of all such theories in higher dimensions, or if it is a peculiar property of the cubic

representative we have focused on in this work.

On the front of thermodynamics, it is clear that black holes in cubic GQG have a richer

thermodynamic structure than do their counterparts in Einstein gravity. Explorations

beyond this — into higher curvature GQG theories, or black holes with more features

(rotation, non-linear electromagnetic couplings, etc.) remain to be undertaken.

Acknowledgments

We thank Pablo Cano and Hugo Marrochio for helpful discussions. M. M. appreciates

the hospitality of the University of Waterloo where this work was completed. The work of

R. A. H. is supported by the Natural Sciences and Engineering Research Council of Canada

through the Banting Postdoctoral Fellowship programme. The work of R. B. M. was

supported in part by the Natural Sciences and Engineering Research Council of Canada.

The work of Jamil Ahmed is supported by the Higher Education Commission of Pakistan

under its Project No. 20-2087 which is gratefully acknowledged.

A The Gauss-Bonnet term and black hole entropy

Here, in an aim for completeness, we discuss the effect of the Gauss-Bonnet term on the

entropy of four-dimensional black holes. Similar conclusions would follow for the higher-

order Euler densities in higher even dimensions. We consider a metric of the form

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

2 . (A.1)

For the sake of example, we will take the gravitational action to be the Einstein-Hilbert

term along with the Gauss-Bonnet density:

I =
1

16πG

∫
d4x
√
−g
[
−2Λ +R+ α

(
RabcdR

abcd − 4RabR
ab +R2

)]
. (A.2)

Of course, in four-dimensions the Gauss-Bonnet term is a total divergence and so makes no

contribution to the field equations. However, we will see that the term does indeed make

a contribution to the entropy of black holes.

The derivative of the Lagrangian density with respect to the Riemann tensor gives

P abcd :=
∂L
∂Rcdab

=
1

16πG

[
1

2

(
δac δ

b
d − δadδbc

)
+ 2α

(
Rabcd +Gbcδ

a
d −Gacδbd +Radδ

b
c −Rbdδac

)]
.

(A.3)

The Wald entropy is given by

SWald = −2π

∫
d2x
√
γP cdab ε̂cdε̂

ab , (A.4)
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where the integration is carried out over a (t, r) constant hypersurface. Strictly speaking,

this should be taken at the horizon r = r+, but for the moment let us just perform the

computation without that assumption. The result of the computation is

SWald =
πr2

G
− 4πα (f(r)− 1)

G
. (A.5)

Clearly, when we take r = r+ where f(r+) = 0, we obtain the usual Bekenstein-Hawking

entropy plus the contribution 4πα/G. The Gauss-Bonnet contribution in the action shifts

the entropy by a constant. However, if we consider the metric (A.1) to describe a maximally

symmetric vacuum then it is clear that both the usual Bekenstein-Hawking part of the

entropy and the Gauss-Bonnet contribution vanish as we push the r = constant surface

toward r = 0. In other words, adding an explicit Gauss-Bonnet contribution to the action

shifts the entropy of a black hole, but leaves the entropy of the vacuum unaffected.

So does this mean that the black hole entropy is completely ambiguous? The fact that

methods to shift the entropy do not affect the entropy of the vacuum provides a natural

way to select the “correct” correction. Namely, it seems natural to (when possible) choose

the correction α so that S → 0 as r+ → 0, ensuring that there is no ambiguous limit

when r+ → 0.

B Thermodynamics from the Euclidean action

In this appendix, we compute the thermodynamic quantities for the black hole solutions

to the cubic theory using the Euclidean action approach. We use the method described

in [17], which is much simpler than the usual approach, provided that the solutions are

asymptotically maximally symmetric. According to this, the usual Gibbons-Hawking-York

boundary term of Einstein gravity [117, 118], along with the counterterms that ensure

a finite on-shell action for Einstein gravity, appear modified through an overall factor

proportional to a∗.

IE = −
∫
M
ddx
√
gL(gef , Rabcd)−

2a∗

Ω(d−2)L̃d−2

∫
∂M

dd−1x
√
h
[
K + counterterms

]
, (B.1)

where Ωd−2 ≡ 2π(d−1)/2/Γ((d−1)/2) is the area of the unit sphere Sd−2, L̃ is the AdS radius,

and a∗ is the charge appearing in the universal contribution to the entanglement entropy

across a spherical entangling surface Sd−3 in the dual CFT. This quantity is related, for

any higher-curvature theory of gravity, to the on-shell Lagrangian of the theory on pure

AdS through [17–19, 119, 120]

a∗ = − Ωd−2L̃
d

2(d− 1)
L|AdS . (B.2)

The explicit counterterms that ensure finite on-shell action in Einstein gravity depend on

the spacetime dimension. The first few read

counterterms = − (d− 2)

L̃
− L̃

2(d− 3)
R

− L̃3θ(d− 6)

2(d− 3)2(d− 5)

(
RabRab −

d− 1

4(d− 2)
R2

)
+ . . . , (B.3)
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where θ(x) is the Heaviside step function, and the dots indicate additional counterterms

that would be required when d > 7. In these expressions, Rabcd and its contractions denote

the intrinsic curvature of the boundary. In the present case, we will also need to add a

boundary term for the Maxwell part of the action when working in the canonical ensemble.

This boundary term reads

IEM
∂M = − 1

16πG

∫
dd−1x

√
hFµνnµAν , (B.4)

and ensures that the electric charge is fixed on the boundary. Let us now discuss the

computation in more detail.

The gravitational part of the Lagrangian is given by

L =
1

16πG

[
(d− 1)(d− 2)

L2
+R+

12(2d− 1)(d− 2)µS3,d

(d− 3)(4d4 − 49d3 + 291d2 − 514d+ 184)

]
. (B.5)

Evaluating this on an AdS space with curvature scale L̃ = L/
√
f∞ we find the following

result for a∗:

a∗ =
Ωd−2L

d−2

32πGf
d/2
∞

[
2− d(1− f∞)− d(d− 2)f3

∞
µ

L4

]
. (B.6)

To evaluate the Lagrangian for the static and spherically symmetric ansatz of interest,

it is helpful to note that the Riemann tensor can be written in the following form:

Rcdab = 2

[
2f ′′τ

[c
[aρ

d]
b] +

2f ′

r

(
τ

[c
[aσ

d]
b] + ρ

[c
[aσ

d]
b]

)
+

(k − f)

r2
σ

[c
[aσ

d]
b]

]
, (B.7)

where τ , ρ and σ are projection tensors satisfying the following relations [121]:

τ baτ
c
b = τ ca , ρbaρ

c
b = ρca , σbaσ

c
b = σca , τ baρ

c
b = τ caσ

c
b = ρcaσ

c
b = 0 , (B.8)

with traces tr τ = 1, tr ρ = 1 and trσ = d− 2.

Evaluating the bulk part of the gravitational action, we find that on-shell it is a total

derivative. This allows us to express it in the following (relatively) simple way:

Igrav
M = −

Σd−2,kβ

16πG
H(r)

∣∣∣∣R0

r+

(B.9)

where R0 is a large-r cutoff and

H(r) = (d− 2)

(
(k − f) +

r2

L2

)
rd−3 − f ′rd−2 − 4(d− 2)µrd−7

4d4 − 49d3 + 291d2 − 514d+ 184

×
[
(d− 4)

(
d4 − 57

4
d3 +

357

4
d2 − 192d+ 129

)
(k − f)3

+ 2r3(d2 + 5d− 15)f ′3 + 12r2(d2 + 5d− 15)(k − f)f ′2

− 3r(d− 4)

(
d3 − 33

4
d2 +

127

4
d− 83

2

)
(k − f)2f ′

]
. (B.10)
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To evaluate the generalized boundary and counterterms, we note that the trace of the

extrinsic curvature reads

K = (d− 2)

√
f

r
+

f ′

2
√
f
, (B.11)

while the intrinsic Riemann tensor of the boundary reads

Rabcd =
2k

r2
σ

[c
[aσ

d]
b] . (B.12)

Using these results, the boundary and counterterms valid up to d = 7 take the following

explicit form:∫
∂M

dd−1x
√
h
[
K + counterterms

]
= Σd−2,kβr

d−2

[
(d− 2)f

r
+
f ′

2
(B.13)

+ (d− 2)
√
f

(
−
√
f∞
L
− kL

2
√
f∞r2

+
L3k2θ(d− 6)

8f
3/2
∞ r4

)
+ · · ·

]
where the expression is to be evaluated at r = R0 and the dots indicate additional terms

that would be present beyond d = 7.

To evaluate both the bulk and boundary/counterterms at R0, we make use of the

asymptotic expansion of the metric function, which reads:

f = k +
f∞r

2

L2
+

m

h′(f∞)rd−3
− q2

h′(f∞)r2d−6
+ · · · . (B.14)

Plugging this into the expression for H(r), we obtain the following contribution:

H(R0) =− Rd−1
0

L2

(
2− d(1− f∞)− d(d− 2)f3

∞
µ

L4

)
− m

h′(f∞)

(
1− 3(d− 2)µf2

∞
L4

)
+O(R1−d

0 ) (B.15)

By plugging the same asymptotic expansion into the boundary/counterterm part of the

action for the cases d = 4, 5, 6, 7 it is possible to extract the general pattern:∫
∂M

dd−1x
√
h
[
K + counterterms

]
= βΣd−2,k

[
f∞R

d−1
0

L2
+

m

2h′(f∞)
− (d− 2)!!2

(d− 1)!

(−k)(d−1)/2Ld−3

f
(d−3)/2
∞

+ · · ·
]

(B.16)

where the dots represent terms that vanish in the limit R0 → ∞. The last term above is

present only when d is odd, and is related to the Casimir energy.

Adding together the bulk and boundary/counterterm contributions at R0 we can im-

mediately see that the leading divergence cancels. The constant term is slightly more

subtle, but combining terms leads to the nice form:

Igrav,R0

E =
βΣd−2,k

16πG

[
(d− 2)m

f∞h′(f∞)

(
1− f∞ +

(d− 6)µf3
∞

L4

)
+

32πG(d− 2)!!2a∗

Ωd−2(d− 1)!

(−k)(d−1)/2
√
f∞

L

]
. (B.17)
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We can now recognize that the term multiplying the mass parameter is nothing other than

the embedding function h(f∞), which must vanish. Thus, we have the following final result

in the limit R0 →∞:

Igrav,R0

E = −
2(d− 2)!!2βΣd−2,ka

∗

Ωd−2(d− 1)!

(−k)(d−1)/2
√
f∞

L
, (B.18)

and we once again emphasis that this term is present only for odd d.

The bulk action at the horizon can be evaluated by expanding f(r) as a near horizon

power series. The result for H(r+) is

H(r+) = (d− 2)

(
k +

r2
+

L2

)
rd−3

+ − 4πTrd−2
+ −

(d− 2)µrd−7
+

4d4 − 49d3 + 291d2 − 514d+ 184

×
[
512(d2 + 5d− 15)π3T 3r3

+ + 768(d2 + 5d− 15)kπ2T 2r2
+

− 12(d− 4)(4d3 − 33d2 + 127d− 166)k2πTr+

+ (d− 4)(4d4 − 57d3 + 357d2 − 768d+ 516)k3
]
. (B.19)

We can then write the full Euclidean gravitational action for these solutions as,

Igrav
E =

Σd−2,kβ

16πG

{
(d− 2)

(
k +

r2
+

L2

)
rd−3

+ − 4πTrd−2
+ −

(d− 2)µrd−7
+

4d4 − 49d3 + 291d2 − 514d+ 184

×
[
512(d2 + 5d− 15)π3T 3r3

+ + 768(d2 + 5d− 15)kπ2T 2r2
+

− 12(d− 4)(4d3 − 33d2 + 127d− 166)k2πTr+

+ (d− 4)(4d4 − 57d3 + 357d2 − 768d+ 516)k3
]

+
32πG(d− 2)!!2a∗

Ωd−2(d− 1)!

(−k)(d−1)/2
√
f∞

L

}
. (B.20)

All that remains now is to take the Maxwell field into account. The bulk part of the

Maxwell action is easily evaluated and gives the following result:

IEM
M = − 1

16πG

∫
M
ddx
√
−gFµνF

µν

4
= −

(d− 2)βΣd−2,kq
2

16πGrd−3
+

. (B.21)

When working in the fixed charge ensemble, we must also add to the action the boundary

term given in eq. (B.4). This leads to the following contribution:

IEM
∂M = − 1

16πG

∫
dd−1x

√
hFµνnµAν =

(d− 2)βΣd−2,kq
2

8πGrd−3
+

. (B.22)

This result can be obtained in the following way. The form of the vector potential quoted

in eq. (2.8) is singular on the horizon when written in an orthonormal frame, but can be

brought into a non-singular form via a gauge transformation Aµ → Aµ−Aµ
∣∣
r+

. Using this

regular potential, the boundary term evaluated at the surface R0, followed by taking the

limit R0 →∞ gives the result quoted above.
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Having all of the ingredients at hand, we can express the full Euclidean action as

IE =
Σd−2,kβ

16πG

{
(d− 2)

(
k +

r2
+

L2

)
rd−3

+ − 4πTrd−2
+ −

(d− 2)µrd−7
+

4d4 − 49d3 + 291d2 − 514d+ 184

×
[
512(d2 + 5d− 15)π3T 3r3

+ + 768(d2 + 5d− 15)kπ2T 2r2
+

− 12(d− 4)(4d3 − 33d2 + 127d− 166)k2πTr+

+ (d− 4)(4d4 − 57d3 + 357d2 − 768d+ 516)k3
]

+
32πG(d− 2)!!2a∗

Ωd−2(d− 1)!

(−k)(d−1)/2
√
f∞

L
− (1 + 2α)

(d− 2)q2

rd−3
+

}
, (B.23)

where α = 0 for the fixed potential ensemble and α = 1 for the fixed charge ensemble.

The standard statistical mechanical argument relates the free energy to the Eu-

clidean action

F = −T logZ = TIE. (B.24)

When working in the fixed potential ensemble the free energy would be identified as F =

M ′ − TS′ − ΦQ′, while in the fixed charge ensemble it is just F = M ′ − TS′. Here we

use primes to allow for the possibility that the mass, entropy and charge defined via the

Euclidean action could differ from those calculated in section 3. These identifications allow

one to compute the energy, entropy and charge from the Euclidean action. For example,

in the fixed potential ensemble the identities would read

M ′ = (∂βIE)Φ −
Φ

β
(∂ΦIE)β , S′ = β (∂βIE)Φ − IE , Q′ = − 1

β
(∂ΦIE)β . (B.25)

A somewhat tedious but straight-forward computation making use of the near horizon

equations of motion (2.3) reveals that the thermodynamic parameters defined by the Eu-

clidean action match those defined in section 3. The only subtlety arises for the mass,

which reads

M ′ = M +
2Σd−2,k(d− 2)!!2(−k)(d−1)/2

Ωd−2(d− 1)!

a∗

L̃
(B.26)

where the second contribution is present only in odd d. This is, of course, just the Casimir

energy associated with AdS, and if we take AdS to be the zero of action and energy (as

done in the bulk of this paper), this contribution is just subtracted.15 The agreement

between the results in section 3 and those presented here provides a non-trivial check of

the thermodynamic quantities presented here, and illustrates the utility of the method for

evaluating the Euclidean action presented in [17].

15It is a bit intriguing that a∗ appears in the Casimir energy in the cubic theory (recall a∗ is the charge

appearing in the universal contribution to the entanglement entropy across a spherical entangling surface

Sd−3 in the dual CFT.) Since this expression does not make explicit reference to the gravitational theory

under consideration, one may expect that it holds in general for Einstein-like higher-order gravities.
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C Using Padé approximants to determine the shooting parameter

It was discussed in the appendix of [48] that it is possible to derive a useful analytic

approximation for the shooting parameter a2 that appears in the near horizon expansion.

In that work, the focus was asymptotically flat black holes, but the technique works as well

for the AdS case. Here we will discuss the method in the context of black branes, which

provides useful insight into the results of section 7. We write λ = −µ just for convenience.

Near the horizon we have,

f(r) = 4πT (r − r+) + a2(r − r+)2 +
∞∑
i=3

ai(r − r+)3 (C.1)

Recall that the field equations fix ai for i ≥ 3 in terms of a2 and the other parameters of the

black hole, but a2 = f ′(r+)/2 is left undetermined by the field equations. The parameter

can be determined numerically by demanding that the numerical solution joins smoothly

onto the asymptotic solution at large r. An alternate method was outlined in [48]. The

idea is to write,

a2 = g(λ) (C.2)

and then demand that ai for i ≥ 2 joins smoothly onto the Einstein solution as λ → 0.

This fixes the derivatives of g(λ) by demanding that no terms like λ−n appear in these

expansions. As an example, the four dimensional case, we have the first few terms,

a3 =
C1L

4g(0)

λr+
+
L6g′(0)− 6048L4g(0)2 + 36288L2g(0)− 54432

27216r+L2
+ · · · ,

a4 =
C1L

8g(0)

r2
+λ

2
+
C2L

2
(
L6g′(0)− 48384L4g(0)2 + 172368L2g(0)− 81648

)
r2

+λ
+ finite ,

(C.3)

where Ci are large constants that are irrelevant for the present discussion. Clearly, de-

manding a finite limit for a3 fixes g(0) = 0. This then cures the 1/λ2 divergence in a4 and

we must select g′(0) = 81648/L6 to cure the 1/λ divergence in a4. Note also that removing

the 1/λ pole in a4 then ensures that the finite part of a3 matches the Einstein value of

a3 = 1/(r+L
2) = f (3)(r+)/6. This pattern continues to arbitrary high order: g(n)(0) is

determined by ensuring that an+3 has a smooth λ→ 0 limit, and this choice of g(n)(0) also

ensures that an+2 limits to the value from Einstein gravity as λ→ 0.

Carrying out this procedure, in general it is found that that coefficients of the deriva-

tives grow without bound. Thus, an ordinary Taylor series is not a good approximation

since it has a vanishing radius of convergence. That is, a2 is not a real analytic function

of the coupling. However, a very good result can be obtained by matching the g(n)(0)

terms to a Padé approximant. The reason for the diverging coefficients of the Taylor series

is the existence of a pole at negative λ (positive µ). This is a consequence of the fact

that the derivatives g(n)(0) implicitly contain derivatives of the temperature (treated as

a function of the coupling), and while the temperature has a closed form, it is not a real

analytic function.
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Figure 24. Shooting parameter vs. coupling : a2 for black branes in four (left) and five (right)

dimensions. In all cases, the curves illustrate [3/3] to [7/7] order Padé approximants (more to less

opacity, respectively).

The expressions for the Padé approximants are quite complicated at high order. How-

ever, as can be seen in figure 24, for small coupling even a low order Padé approximant

gives consistent results. Here we list [2|2] Padé approximants in a few sample dimensions.

In each case, x = µ/µp,

ad=4
2 L2 =

3x(167636x+ 2463)

(687616x2 + 70383x+ 821)
,

ad=5
2 L2 = −2

(
349748159973199286272x2 + 72904557105141027840x+ 1236978094606448985

)
105 (5731035367572926464x2 + 742938823413991872x+ 11780743758156657)

,

ad=6
2 L2 = −10

(
15347758658125x2 + 2397935458800x+ 44287344864

)
3 (12293400435625x2 + 1646464906800x+ 29524896576)

. (C.4)
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