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Abstract: Top-squarks (stops) play a crucial role for the naturalness of supersymmetry

(SUSY). However, searching for the stops is a tough task at the LHC. To dig the stops

out of the huge LHC data, various expert-constructed kinematic variables or cutting-edge

analysis techniques have been invented. In this paper, we propose to represent collision

events as event graphs and use the message passing neutral network (MPNN) to analyze the

events. As a proof-of-concept, we use our method in the search of the stop pair production

at the LHC, and find that our MPNN can efficiently discriminate the signal and back-

ground events. In comparison with other machine learning methods (e.g. DNN), MPNN

can enhance the mass reach of stop mass by several tens of GeV to over a hundred GeV.
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1 Introduction

After the discovery of the Higgs boson, the pursuit of new physics beyond the Standard

Model (SM) is a primary goal of the LHC experiment. A major guideline in this endeavor

is the naturalness principle which implies that the new physics for stabilizing the Higgs

mass should appear at TeV scale. Among all the proposed scenarios, the weak scale

SUSY remains as one of the most popular models, in which the quadratically divergent

contribution to the Higgs mass from the top quark is canceled by the top-squarks (stops).

Thus, the search for the stops is crucial for testing the naturalness of SUSY.

However, searching for the stops at the LHC is a challenging task due to the compli-

cated nature of super-particles (sparticles). For examples, (i) when mt̃1
� mt + mχ̃0

1
, the

stop can decay to tχ̃0
1 and produce an energetic top quark. Using endpoint observables, like

MT or MT2 , the tt̄ background can be efficiently reduced [1–5]. (ii) In the compressed re-

gion mt̃1
−mχ̃0

1
≈ mt, the kinematics of stop pair events closely resemble the tt̄ background

events, rendering the searches rather difficult. Thanks to the ISR jet, the stop events in

such a compressed region will have a peak-like feature around the ratio of missing trans-

verse momentum vector to the transverse momentum vector of tt̄ system [6–8], while the tt̄

background does not show such a peak. If the LSP in the above compressed region becomes

almost massless, the precision measurements of tt̄ cross section [9] or spin-correlation [10]

can also be used to probe the light stop. (iii) When the two body decays t̃1 → tχ̃0
1 and

t̃1 → bχ̃+
1 are kinematically forbidden, the three-body decay t̃1 → W+bχ̃0

1 [11], the two-

body flavor-changing decay t̃1 → cχ̃0
1 [12–14] or even the four-body decay t̃1 → bf ′f̄ χ̃0

1 [15]

would happen. But due to the small mass splitting, the decay products of the stop are

usually too soft to be observed. Thus the ISR/FSR jet (plus the heavy quark tagging)

is needed to trigger these stop events [16–18]. In addition, other miscellaneous cut-flow

based studies of stop searches in different parameter space have been performed at the

LHC [19–37]. A vast number of experimental searches for stop pair productions have been

also devoted at the LHC in the past few years [38–43]. Besides the traditional cut-flow

based analysis technique, the machine learning (ML) method provides an alternative way

for signal/background discrimination and new particle searches, which have been used for
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nearly three decades [44]. A great successful example in this direction is the use of Boosted

Decision Trees [45] in the LHC experiment that led to the Higgs discovery. Recently,

the ML techniques have been developed and applied for the studies of BSM phenomenol-

ogy [46–52] increasingly.

When using ML to deal with collision events, one has to first construct a representation

of event and then choose a ML model to analyze that representation. An event is usually

described by a set of particles with certain kinematic features. The geometrical relation-

ship between these particles in the event is a sensitive probe to distinguish the signal and

background events. In mathematics, such a geometrical pattern of a number of entities can

be represented by a graph, which can be numerically analyzed by ML algorithms. Among

them, the Message Passing Neural Networks (MPNNs) [53] provide a general framework

for supervised learning on graphs and are particularly suited for the problems where ge-

ometrical representation of patterns is to be learned. The MPNNs inherit the generality

and powerfulness of the original Graph Neural Network (GNN) [54, 55] and improve the

training efficiency. They are non-linear models with a bunch of parameters that relates

the output to the input graphs, where the supervised learning finds optimized parameters.

The MPNNs have been applied to jet physics [53] and other fields [56].

In this work, we first apply MPNN for the classification of signal and background

events. Each HEP event is represented as an event graph, in which the nodes describe the

final state particles and the edges reflect the geometric relations between each two nodes.

In contrast with Deep Neural Network (DNN), MPNN is a dynamic neural network and

intrinsically does not depend on the number and ordering of final state particles. Therefore,

the MPNN is especially fit for processing the graph representation of collision event. As a

proof-of-concept, we implement our method in the search of the stops through the process

pp→ t̃1t̃
∗
1 → tt̄χ̃0

1χ̃
0
1 at the LHC.

2 Methodology

A collision event usually produces a number of final state objects which are reconstructed

as photons, leptons and jets with four-momentum information. To construct an event

graph, we represent each final state object as a node and connect each pair of nodes by

an edge, which constitutes an undirected weighted complete graph. Each node i has its

feature vector xi and each edge between node i and j has its weight matrix dij . As an

illustration, we show an event graph of a Monte Carlo simulated event of the process

pp → t̃1t̃
∗
1 → tt̄χ̃0

1χ̃
0
1 → ` + 2b + 2j + /ET in figure 1, where the detailed node feature

vector x and edge weights matrix d are also given. To be specific, the properties of the

i-th final state are partly encoded into the 7-dimensional node feature vector xi. The first

feature indicates that the final state is a photon (1) or not (0). If the final state is a lepton,

its charge acts as the second feature; otherwise 0. The third feature indicates that the

final state is a b-jet (1), light jet (-1) or not a jet (0). The fourth feature is used as an

indicator of missing energy (MET) (1) or not (0). The rest three features are transverse

momentum (pT ), energy (E) and mass (m) of the object. By construction, such a feature

vector is compact. The edges are weighted by pair-distances dij =
√

∆y2ij + ∆φ2ij between
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6 : E

3: j

4 : b

2 : j

5 : b

1 : 

/

Photon

lepton 

charge

b-jet or 

light jet MET (TeV) (TeV) (TeV)

1 = ( 0 -1 0 0 0.0229 0.0289 0.0000 )

2 = ( 0 0 -1 0 0.2637 0.3304 0.0373 )

3 = ( 0 0 -1 0 0.1003 0.1888 0.0091 )

4 = ( 0 0 1 0 0.0980 0.1146 0.0133 )

5 = ( 0 0 1 0 0.0689 0.0773 0.0062 )

6 = ( 0 0 0 1 0.2107 0.2107 0.0000 )

1 2 3 4 5 6

1 0 1.3971 2.5649 1.2801 3.2752 3.0312

2 1.3971 0 1.9019 1.6688 3.0871 3.1717

3 2.5649 1.9019 0 3.4440 1.5805 1.7831

4 1.2801 1.6688 3.4440 0 2.2175 2.1387

5 3.2752 3.0871 1.5805 2.2175 0 0.4912

6 3.0312 3.1717 1.7831 2.1387 0.4912 0

Figure 1. An event graph with detailed node features and distance matrix, built from a Monte

Carlo simulated event of the process pp→ t̃1t̃
∗
1 → tt̄χ̃0

1χ̃
0
1 → `+ 2b+ 2j + /ET .

i-th and j-th node in the graph, where ∆y and ∆φ are the rapidity difference and azimuthal

angle difference, respectively. It should be mentioned that the azimuthal angle φ is not

encoded in the node features so that our graph representation is invariant under rotation

in φ, which is helpful for the stability of event classification.

In this paper, we design a variant of MPNN to carry out the graph classification, whose

architecture is presented in figure 2. Firstly, we embed each node features xi into a higher

dimensional state vector s
(0)
i :

s
(0)
i = fe(xi), (2.1)

where fe is called the node embedding function. The state vector s
(0)
i only encodes the

i-th node features xi without any information about the geometrical pattern of the graph.

Then, the message passing techniques are utilized to perform event graph embedding, which

will encode the whole event graph into each node state vector. At iteration t, each node i

collects the messages sent from other nodes j:

m
(t)
i =

∑
j 6=i

m
(t)
i←j =

∑
j 6=i

f (t)m

(
s
(t−1)
j , dij

)
, (2.2)

and update its state vector

s
(t)
i = f (t)u

(
s
(t−1)
i ,m

(t)
i

)
, (2.3)

where f
(t)
m are the message functions and f

(t)
u are the update functions. By repeating this

procedure, the information in node states and the distances between nodes are disseminated

with the sent messages, and each node updates its knowledge of other nodes and the

relationships between all nodes. Therefore, after T iterations, each resulting node state is an

encoding of the whole graph, which is a compact representation of the information of both

the kinematic features of all final states and the geometrical relationship between them.
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Figure 2. The architecture of our message passing neural network (MPNN) designed for event

graph classification. The network is a stack of functional layers shown as shadowed blocks, which

has T pair of message passing and state update layers for automatic event feature extraction. State

vectors s, message vectors m, votes yi and discrimination score y are shown as black boxes. Colored

arrows denote applying node embedding function fe, message passing function fm, state update

function fu and vote function fv, respectively. The operators are given in gray circles, where ⊕
performs vector concatenation, Σ and Σ/N are sum and average, respectively.

They are the event features that are automatically extracted from the input event graph.

Next, each node votes a number as the likeness of the event to be signal-like, based on its

own state vector,

yi = fv

(
s
(T )
i

)
, (2.4)

where fv is the vote function. Finally, to make the prediction stable, we average the votes

from each node

y =
1

|V|
∑
i

yi (2.5)

as the final discrimination score of the event, where |V| is the number of nodes. The

above operations form an end-to-end ML model, which maps event graphs directly to

discrimination scores. The event selection can then be carried out by applying a specific

cut θy on the score y; only events with y > θy will be selected out.

In our following calculations, we use 30-dimensional state and message vectors, and

choose single layer perceptrons as the node embedding, message passing, update and

vote functions,

fe(x) = relu (Wex + be) , (2.6)

f (t)m (s, d) = relu
(
W (t)
m (s⊕ [d]) + b(t)m

)
, (2.7)

f (t)u (s,m) = relu
(
W (t)
u (s⊕m) + b(t)u

)
, (2.8)

fv(s) = σ (Wvs + bv) , (2.9)
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where ⊕ denotes vector concatenation, relu is the rectified linear unit, σ is the sigmoid

function, W s and bs are learnable parameters. Independent message and update functions

are used for each iteration t up to T = 2. Note that the pair distance dij is only a real

number. To ease the learning of the message functions, we represent the distance dij in

high dimensional vector space. Inspired from that radio basis function (RBF) networks

can solve non-linear problems by mapping input into high dimensions using RBFs, we

therefore choose the unnormalized Gaussian basis exp{(d− µi)2/2δ2} as the RBFs to map

the number dij into a vector [d]. By design, the mean values µi of the RBFs are linearly

distributed in the range of [0, 5] as µ1 = 0, µ2 = 0.25, µ3 = 0.5, · · · , µ20 = 4.75, µ21 = 5,

and RBFs have the same width of δ = 0.25. With such a method, we find that our result

will become better, for example, the significance of benchmark point B can increase from

4.5 to 5.4 when dij is expanded from 0 to 21. Based on our practice, above choices are

a good trade-off between model complexity and prediction accuracy. Our MPNN model

totally have 7051 learnable parameters.

The MPNN can be efficiently trained using supervised learning techniques. We adopt

binary-cross-entropy as the loss function. The Adam [57] optimizer with a learning rate

of 0.001 is used to optimize the model parameters based on the gradients calculated on

mini-batch of 500 training examples. A separate set of validation examples is used to

measure the generalization performance while training to prevent over-fitting using the

early-stopping technique. All these are implemented with the open-source deep learning

framework PyTorch [58] with strong GPU acceleration.

Next, we compare the performance of MPNN with DNN in stop search at the LHC.

Since the input size of DNN is fixed, we sort the nodes in each event graph by their identities

and pT and then arrange the node features and edge weights into a fixed-size feature vector

of the form [
xT/ET

,xT` ,x
T
b1 ,x

T
b2 ,x

T
j1 , · · · ,x

T
jN

; d/ET /ET
, d/ET `

, · · · , djN jN
]
, (2.10)

where N = 17 is the maximum number of light jets in our event graphs. Zero-padding is

adopted to fill the missing values in the feature vector, namely for an event graph with n

light jets, xjk = 0 (k > n) and djkjl = 0 (k or l > n).

3 Numerical results and discussions

As a proof-of-concept, we apply MPNN to investigate the observability of the stop through

the process pp → t̃1t̃
∗
1 → tt̄χ̃0

1χ̃
0
1 → ` + 2b + 2j + /ET at 13 TeV LHC with the luminosity

L = 36.1 fb−1. We assume the LSP χ̃0
1 is pure bino and focus on the kinematic region of

mt̃1
≥ mt +mχ̃0

1
. The dominant background events in this analysis arise from tt̄, W + jets

and tW . The tt̄Z(→ νν̄) background is non-negligible for a heavy stop and is included

in our calculations as well. The multi-jet background can be estimated from data using a

fake-factor method, which is found to be negligible in all regions [59].

We use the event generator MadGraph5 aMC@NLO [60] to simulate the signal and back-

ground events at the parton-level. Then we carry out the parton shower and hadroniza-

tion with the Pythia8.2 [61]. Delphes-3.4.1 [62] is used for fast detector simulation. The

anti-kt algorithm [63] with the distance parameter R = 0.4 is chosen to cluster jets, and

– 5 –
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Benchmark A B

mt̃1
(GeV) 525 900

mχ̃0
1

(GeV) 352 330

Z(MPNN) 4.6σ 5.4σ

Z(DNN) 3.0σ 4.4σ

Z(MPNN6) 3.5σ 4.3σ

Z(DNN6) 3.2σ 4.3σ

Table 1. The comparison of MPNN with DNN for significance (Z) of two benchmark points at

13 TeV LHC with the luminosity of L = 36.1 fb−1. MPNN6 and DNN6 denote the results that use

six objects (one lepton, two b-jets, two leading light-jets and MET) as inputs, respectively.

the b-tagging efficiency is assumed as 80%. In the end, the event preselections are performed

by CheckMATE-2.0.14 [64] using the following pre-selection cuts.

• We require exactly one lepton with pT (`) > 10 GeV and |η(`)| < 2.5, and at least

four jets with pT (j) > 25 GeV and |η| < 2.5.

• We also require exactly two b-jets in the events.

• The transverse missing energy should satisfy /ET > 150 GeV.

The NLO QCD corrected cross section of stop pair production is calculated with the

Prospino [65]. The tt̄ and W+jets events are further normalized with their NNLO cross-

sections, respectively [66, 67]. We evaluate the statistical significance with the formula,

Z = S/
√
B. (3.1)

To guarantee the statistics, we require at least 10 events after imposing cuts.

In table 1, we choose two Benchmark Points(BPs) with distinctive kinematic features

to compare the performance of MPNN and DNN. The BP-A lies in the compressed region

with mt̃1
≈ mt+mχ̃0

1
, while the BP-B lies in the uncompressed region with mt̃1

� mt+mχ̃0
1
.

For BP-A/B, we generated 14/4 million signal events and 100 million background events.

After the pre-selection, 300,000 signal events and 300,000 background events are collected

as training examples. We also collect a separate set of 100,000 signal events and 100,000

background events as validation examples. In addition, we also show the results of MPNN6

and DNN6, which use six objects (one lepton, two b-jets, two leading light-jets and MET)

used as inputs, respectively. The reduced event graphs for MPNN6 have 6 nodes and 36

edges. The input feature vectors for DNN6 are of the form of eq. (2.10) with N = 2 so

that it has 78 input features.

In order to optimize the DNN results, we perform a grid scan of hyperparameters for

BP-A and B. In our scan, we find that the significance generally increases with more hidden

layers and neurons per hidden layer. But the increasing complexity of the DNN model

limits the improvement. The best DNN model for BP-A/B has 7/4 hidden layers, 700/300
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neurons per hidden layer and a dropout ratio of 0.5/0.4, which owns 3357201/447901

learning parameters and gives the best significance of 3.0/4.4σ. The same optimization

procedure is adopted for DNN6 model in table 1 and also for each sample in figure 4.

From table 1, we can see that the MPNN method have better significance than DNN

for both BPs, in particular for the BP-A with mt̃1
≈ mχ̃0

1
+mt. The significance of BP-A

increases from 3.2σ (DNN6) to 3.5σ (MPNN6), and 3.0σ (DNN) to 4.6σ (MPNN). With

more input features, MPNN outperforms over MPNN6, while DNN has no such a feature,

since more learnable parameters usually leads to more serious over-fitting for DNN.

In figure 3, we further present the discriminating power of MPNNs and DNNs on signal

and background events for benchmark points A and B. Since the over-fitting is very small,

we only show the results on validation set. From the top panel, we can see that the signal

and background events are well separated in the distributions of the discrimination score

for both of MPNNs and DNNs. But for MPNNs, the score of signals are inclined to have

larger value than DNNs, while the score of backgrounds have smaller values than DNNs.

From the middle panel, we can find that MPNNs has higher signal selection efficiency εS
and lower background selection efficiency εB than DNNs. This leads to MPNNs having

sharper receiver operating characteristic (ROC) curves than DNNs, as shown in the bottom

panel of figure 3.

In figure 4, we perform a grid scan on the plane of mt̃1
versus mχ̃0

1
by using MPNN(6)

and DNN(6) at 13 TeV LHC with the luminosity L = 36.1 fb−1. We take the right-handed

t̃1 as the example and simulate 40 parameter points in our grid scan. The pre-selections for

signal and background events are the same as those for the benchmark points in table 1.

We optimize the DNN(6) and MPNN(6) models for each parameter point as the approaches

used for benchmarks points. As a theoretical work, we define the exclusion limit when the

significance Z = 2σ. Then, the exclusion line is drawn by using bilinear interpolation.

We can see that the MPNN method can produce a stronger exclusion limit than the DNN

method. For examples, in the compressed region with mt̃1
≈ mχ̃0

1
+mt, the stop mass reach

from MPNN can be 670 GeV, which is about 90 GeV larger than that from the DNN. In

other regions with mt̃1
> mχ̃0

1
+ mt, the exclusion limit on stop mass for given neutralino

mass from the MPNN can be greater than DNN by about several tens of GeV to more than

one hundred GeV. Unlike the MPNN, the results of the MPNN6 are not much better than

that of the DNN6. This is because that the man-made truncation on the number of final

states in the MPNN6 will badly worsen its performance. In the MPNN6, the kinematical

information coded in the event graphs for some parameter points having large multiplicity

are incomplete. Thus the full correlations among final states, which is the most important

factor for discriminating signal and backgrounds in the MPNN method, are broken. On

the other hand, the performance of DNN seems worse than that of DNN6 in most of region

in figure 4. This is because the DNN involves much more training parameters so that

it has poorer generalization capability. Therefore, we expect that the MPNN approach

will have better performance than the DNN approach when the physical processes have

high-multiplicity final states at the LHC.
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Figure 3. The discriminating power of MPNN(6) and DNN(6) on signal and background for

benchmark points A (left panel) and B (right panel) in table 1. The top panel is the distributions

of discrimination score y for signal and background events. The middle panel is the selection

efficiency ε versus the cut threshold θy. The bottom panel shows ROC curves of the MPNN(6)

and DNN(6).

4 Conclusions

In this paper, we proposed to represent a collision event in high energy physics as an event

graph with a set of nodes and edges, and use the Message Passing Neural Networks to deal

with the problems of discrimination of signal and background events at colliders. As a proof

of concept, we applied our approach to the search for the stop pair production at the LHC.

We found that the geometrical pattern of the event that depends on correlations among

final states can be a sensitive feature in the MPNN to discriminate signal and background

events. Furthermore, we compared the performance of our MPNN with the DNN, and

found that our MPNN can enhance the mass reach of stop mass by several tens of GeV to

over a hundred GeV.
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Figure 4. Exclusion limits on the plane of mt̃1
versus mχ̃0

1
by using MPNN(6) and DNN(6) at

13 TeV LHC with the luminosity of L = 36.1 fb−1.
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