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1 Introduction

The AdS/CFT correspondence for large-c conformal blocks in CFT2 was originally studied

in the framework of the heavy-light approximation when two of primary operators produce

the conical singularity/BTZ metric in the bulk [1, 2]. The other operators are considered

as perturbations and can be realized as massive particles propagating on the background

space [3–12], or, more geometrically, as the weighted Steiner trees in hyperbolic geome-

try [13].

In this paper, the case of more than two background operators is considered. We take

the s-channel conformal block of the 4-point correlation function with three background

operators and one perturbative operator,

〈OL(z, z̄)OH(0)OH(1)OH(∞)〉 , (1.1)

where (z, z̄) ∈ C, and the conformal dimensions are such that

∆L,H

c
= fixed at c→∞ and

∆L

∆H
� 1 . (1.2)

Formulating the heavy-light approximation with three background operators and using the

monodromy method we explicitly calculate the large-c 4-point conformal block in the first

order in the lightness parameter ∆L/∆H . The zeroth order is given by the 3-point function

– 1 –



J
H
E
P
0
8
(
2
0
1
9
)
0
3
8

0,�H

z,�L 1,�H

1,�H

⌧ = +1

⌧ = �1

✓

1,�H

z,�L

1,�H

1

0,�H

z,�L 1,�H

1,�H

⌧ = +1

⌧ = �1

✓

1,�H

z,�L

1,�H

1

Figure 1. The 4-point HHHL block and its holographically dual realization in the three dimensional

bulk (a rigid cylinder). The red lines inside the cylinder visualize the 3-point function 〈OHOHOH〉
of heavy operators that created this conical defect geometry. The wavy blue line denotes the

perturbative operator OL propagating in the background.

of the background operators OH that create the bulk geometry identified with AdS3 space

with three conical defects.

The operator OL(z, z̄) is represented as the geodesic line stretched from the conformal

boundary to a distinguished point in the bulk, see figure 1. Then, the geodesic length

calculates the large-c conformal block of the HHHL correlation function (1.1) in the first

order of the perturbative expansion (1.2).

The paper is organized as follows. In section 2 we calculate the large-c 4-point block

within the heavy-light perturbation theory using the monodromy method. In section 3.1,

based on the Bañados metric of locally AdS3 spaces, we discuss different coordinate systems

in the bulk induced by the boundary conformal (Schwarz) maps. Section 3.2 explicitly re-

considers the known case of the 3-point function with two heavy insertions and shows that

the block is calculated by the geodesic length of the boundary-to-bulk line. Section 3.3

follows the same patter and shows that the geodesic segment in the geometry created by

three heavy insertions calculates the 4-point perturbative block found in section 2.4. In

the concluding section 4 we propose how to generalize the obtained results to higher-point

conformal blocks with more than three background operators.

2 Perturbative large-c conformal blocks

Let us consider primary operators Oi in the plane CFT2 with conformal dimensions

(∆i, ∆̄i), i = 1, . . . , 4. The 4-point correlation function in the s-channel can be expanded

into conformal blocks [14]

〈O1(0)O2(z, z̄)O3(1)O4(∞)〉 =
∑
p

C12pC34pFp(z)F̄p(z̄) , (2.1)

where Cijp are structure constants, the (holomorphic) conformal blocks Fp(z) = F(z|∆i,

∆p, c) in a given channel p depend on external ∆i, i = 1, . . . , 4 and intermediate ∆p

conformal dimensions, and on the central charge c, see appendix A.
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We consider the large central charge c → ∞. Suppose that all the primary operators

are heavy, i.e. their conformal dimensions grow linearly with the charge, ∆i/c are fixed.

Then, the 4-point block is exponentiated as

F(z|∆i,∆p, c) ≈ exp
c

6
f(z|εi, εp) at c→∞ , (2.2)

where f(z|εi, εp) is the classical conformal block depending on external and intermediate

classical dimensions εi = 6∆i/c and εp = 6∆p/c [15].

The large-c conformal blocks (2.2) can be calculated using the monodromy method.1

To this end, one considers the BPZ equation for the 5-point correlation function

〈O1(0, 0)O2(z, z̄)Ψ(y, ȳ)O3(1, 1)O4(∞,∞)〉 , (2.3)

obtained from the original function (2.1) by inserting the degenerate operator Ψ(y, ȳ) of

conformal dimension ∆(1,2) = −1
2 − 9

2c in some point (y, ȳ) ∈ C [14]. Contrary to the

original heavy operators this new operator is light because ∆(1,2) = O(c0) at c→∞. Now,

the 5-point correlation function (2.3) can be expanded into conformal blocks in the OPE

channel when the degenerate operator is inserted between two intermediate channels. The

resulting 5-point conformal block is V(y, z|∆i,∆(1,2),∆p,∆k, c), where the intermediate

dimensions are related by the fusion relation ∆p −∆k = − 9
2c ± 1

2

√
1− 24∆p

c .

In the large-c limit, the fusion rules claim that the 5-point block factorizes into the

original 4-point block F(z|∆i,∆p, c) and a bi-local prefactor ψ(z, y) as

V(y, z|∆i,∆(1,2),∆p, c) ≈ ψ(y, z) exp
[ c

6
f(z|εi, εp)

]
at c→∞ , (2.4)

where we have taken into account that the 4-point block can be exponentiated (2.2).

From the BPZ equation for the original 5-point conformal block (2.4) one finds that

the prefactor ψ(y, z) satisfies the Fuchsian equation[
d2

dy2
+ T (y, z)

]
ψ(y, z) = 0 , (2.5)

with the energy-momentum tensor of the form

T (y, z) =
ε1
y2

+
ε2

(y − z)2
+

ε3
(1− y)2

+
ε4 − ε3 − ε1 − ε2

(y − 1)y
+ c2

(1− z)z

y(1− y)(y − z)
, (2.6)

where the accessory parameter is expressed by

c2 =
d

dz
f(z|εi, εp) . (2.7)

Note that there are three more accessory parameters associated to the point 0, 1,∞ along

with the energy-momentum tensor explicitly depending on them. However, recalling that

T ∼ z−4 at infinity we can isolate the only independent accessory parameter c2 so that the

resulting T is given by (2.6).

1For review and recent studies of the monodromy method see e.g. [2, 9, 16–19].
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The monodromy method considers the Fuchsian equation (2.5) with a priori inde-

pendent accessory parameter having no link to the 4-point conformal block. Comparing

monodromy matrices of the original 5-point block and solutions to the Fuchsian equation

yields the algebraic equation on the accessory parameter that expresses c2 as a function of

coordinates and conformal dimensions. Then, recalling the relation (2.7) we can explicitly

integrate to obtain the 4-point large-c conformal block.

2.1 Perturbative expansion

Suppose that the conformal dimensions are organized as follows

∆2/∆1,3,4 � 1 and ∆1 ∼ ∆3 ∼ ∆4 , (2.8)

i.e. there are three background operators with dimensions of the same order and one per-

turbative operator. In this way we obtain the correlation function of the type (1.1)–(1.2).

Assuming (2.8) the Fuchsian equation (2.5)–(2.7) can be explicitly solved by expanding

all functions up to the first order in ∆2 as

ψ(y, z) = ψ(0)(y, z) + ψ(1)(y, z) + . . . , T (y, z) = T (0)(y, z) + T (1)(y, z) + . . . ,

f(z|ε, εp) = f (0)(z|ε, εp) + f (1)(z|ε, εp) + . . . , c2(z|ε, εp) = c
(0)
2 (z|ε, εp) + c

(1)
2 (z|ε, εp) + . . . .

(2.9)

A few comments are in order. The term f (0) = 0 because the conformal block for

the 3-point function 〈OH(0)OH(1)OH(∞)〉 is equal to 1 that directly follows from (A.5).

The zeroth order accessory parameter is also zero, c
(0)
2 (z|ε, εp) = 0. Since we will consider

only first-order corrections then the notations can be simplified by denoting c
(1)
2 (z|ε, εp) ≡

c2(z|ε, εp).
The Fuchsian equation in the lowest orders takes the form2[

d2

dy2
+ T (0)(y)

]
ψ(0)(y, z) = 0 , (2.10)[

d2

dy2
+ T (0)(y)

]
ψ(1)(y, z) = −T (1)(y, z)ψ(0)(y, z) , (2.11)

where the zeroth-order energy-momentum tensor T (0)(y) and the first-order correction

T (1)(y) are given by

T (0)(y) =
ε1
y2

+
ε3

(1− y)2
+
ε1 + ε3 − ε4
y(1− y)

, (2.12)

T (1)(y, z) = c2
(1− z)z

y(1− y)(y − z)
+

ε2
(y − z)2

+
ε2

y(1− y)
. (2.13)

Note that T (1)(y, z) is indeed the first order correction because c2 = O(ε2).

2Note that the heavy-light perturbation expansion used to solve the Fuchsian equation is quite natural

but not the only possible perturbation approach. The other perturbation expansion scheme can be found

in [20]. See also the study of different limits of 4-point heavy-light conformal blocks [21].
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2.2 First-order solution

The zeroth-order Fuchsian equation (2.10) can be reduced to the hypergeometric equation

in the so-called Q-form [22]. The parameters of the resulting hypergeometric function are

expressed in terms of the conformal dimensions εi and εp. To simplify the further analysis

we assume that

∆3 = ∆4 . (2.14)

Moreover, this condition is required when considering going from three to two background

operators. There are two branches of the zeroth-order solution,

ψ
(0)
± (y) = (1− y)

1+α
2 y

1±β
2 F±(α, β|y) , (2.15)

where the hypergeometric functions are given by

F±(α, β|y) = 2F1

(
1± β

2
,

1± β
2

+ α, 1± β, y
)
, (2.16)

and

α =

√
1− 24∆4

c
, β =

√
1− 24∆1

c
, 0 < α, β < 1 . (2.17)

Consider then the Fuchsian equation in the first order (2.11). Using the method of

variation of parameters we find the first order correction,

ψ
(1)
± (y, z) = ψ

(0)
+ (y)

∫
dy
ψ

(0)
− T (1)(y, z)ψ

(0)
±

W
− ψ(0)

− (y)

∫
dy
ψ

(0)
+ T (1)(y, z)ψ

(0)
±

W
, (2.18)

where the Wronskian is given by

W ≡ −ψ(0)
+ (y)

dψ
(0)
−
dy

+ ψ
(0)
− (y)

dψ
(0)
+

dy
=

sinπβ

π
. (2.19)

Thus, the first-order solution reads as ψ±(y, z) = ψ
(0)
± (y, z) + ψ

(1)
± (y, z), where ψ0

±
and ψ1

± are given by (2.15) and (2.18). It is parameterized by the background dimensions

(through α, β) and depends on the indeterminate accessory parameter c2.

2.3 More on the zeroth-order solution

When solving the second-order Fuchsian equation we can equally choose a linear combina-

tion of the solutions ψ±. In particular, in the zeroth order,

ψ
(0)
i (y)→ ψ̂

(0)
i (y) = Aijψ

(0)
j (y) , (2.20)

where i, j = +,− and Aij is a non-degenerate [2× 2] matrix. Let Aij = ( α 1
0 1 ). Expanding

the resulting solution in powers of ε1 we find that

ψ̂
(0)
± (y) = (1− y)

1±α
2 +O(ε1) . (2.21)

In this way, we reproduce the case of two background operators [2] obtained here by

sending ε1 → 0. Indeed, operators O1,2 in the 4-point correlation function (2.1) are now

– 5 –
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perturbatively light compared to O3,4 and the heavy-light perturbative expansion assumes

that in the zeroth order ε1 = ε2 = 0. Then, having started with the original 5-point

correlation function (2.3) now we are left with the 3-point function of the form

〈Ψ(1,2)(y, ȳ)OH(1)OH(∞)〉 . (2.22)

The BPZ equation for (2.22) in the large-c limit is just the Fuchsian equation (2.10), (2.12)

taken at ε3 = ε4 and ε1 = 0. On the other hand, the BPZ equation is solved by functions

(1 − y)
1±α

2 (see e.g. [23]). Thus, the functions ψ(0) are identified with 3-point degenerate

conformal block.

Let us now consider the present case of three background operators. In the zeroth

order, when ∆2 = 0, we obtain from (2.3) the 4-point function

〈Ψ(1,2)(y, ȳ)OH(0)OH(1)OH(∞)〉 . (2.23)

Since the operator Ψ(1,2) is degenerate (on the second level) then the associated BPZ

equation for the degenerate 4-point conformal block in the s-channel reads [14][
3

4∆(1,2)+2

d2

dy2
+

2−4y

y(1−y)

d

dy
+

∆1+∆3−∆4+∆(1,2)

y(y−1)
−∆1

y2
− ∆3

(1−y)2

]
F(y|∆1,3,4,∆p, c) = 0 .

(2.24)

It is well known that the solution is given by the hypergeometric functions. In the large-c

regime we rescale the dimensions and notice then that the second term in (2.24) is small

compared to the others. The resulting equation takes the form[
d2

dy2
+
ε1
y2

+
ε3

(1− y)2
+
ε3 + ε1 − ε4
y(1− y)

]
F(y|ε1,3,4, εp) = 0 . (2.25)

This equation coincides with the zeroth-order Fuchsian equation (2.10), (2.12). Thus, the

zeroth-order solution ψ(0) is the 4-point degenerate conformal block.

2.4 Accessory parameters and the conformal block

Let us consider a contour Γ enclosing points 0 and z, and calculate the corresponding

monodromy of the first order solution ψ±(y, z) = ψ
(0)
± (y, z) + ψ

(1)
± (y, z). The monodromy

matrix M = ||Mij || is [2× 2] matrix, i = (+,−), that can be decomposed as

Mij = M
(0)
ij +M

(1)
ij + . . . , (2.26)

where the zeroth and the first order terms are given by

M (0) = −
(
eiπβ 0

0 e−iπβ

)
, M (1) = −

(
eiπβI++ e−iπβI+−
eiπβI−+ e−iπβI−−

)
, (2.27)

where

I+± =
π

sin(πβ)

∫
Γ
dy ψ

(0)
− T (1)(y, z)ψ

(0)
± , I−± = − π

sin(πβ)

∫
Γ
dy ψ

(0)
± T (1)(y, z)ψ

(0)
− .

(2.28)

– 6 –
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Denoting X = z(c2(1−z)−2ε2)+ ε2(1−αz) and Y = X− ε2β(1−z), the contour integrals

can be represented in the form

I++ =
2iπ2(1− z)αF+F−

sinπβ

(
X + ε2z(1− z)

d log(F+F−)

dz

)
,

I+− = −2iπ2(1− z)αz−βF−F−
sinπβ

(
Y + ε2z(1− z)

d log(F−F−)

dz

)
,

(2.29)

and

I−− = −I++ , I−+ = I+−
∣∣
β→−β , (2.30)

where F± are given in (2.16).

On the other hand, traversing the degenerate operator Ψ(1,2)(y, ȳ) along the contour Γ,

i.e. around the primary operators O(0) and O(z, z̄) we find that the respective monodromy

is diagonal. Since the 5-point block (2.4) has two independent components, the monodromy

matrix M̃ = ||M̃ij || is also [2× 2], i = (+,−). Taking the large-c limit and calculating the

matrix along the contour Γ we find an exact expression

M̃ = −
(
eiπγ 0

0 e−iπγ

)
, γ =

√
1− 24∆p

c
, 0 < γ < 1 , (2.31)

which is valid in any order of our perturbation theory.

The two monodromy matrices M (2.26) and M̃ (2.31) describe the same monodromy

and, therefore, have equal eigenvalues. The matrix M̃ is already diagonal. To diagonalize

M we consider the corresponding characteristic equation

(exp[iπβ](1 + I++)− λ)(exp[−iπβ](1− I++)− λ)− I+−I−+ = 0 , (2.32)

which has two complex conjugated roots

λ± = −exp[iπβ](1 + I++) + exp[−iπβ](1− I++)± i
√
−D

2
, (2.33)

with discriminant

D = (exp[iπβ](1 + I++) + exp[−iπβ](1− I++))2 − 4 + 4(I2
++ + I+−I−+) . (2.34)

In order to compare the eigenvalues λ± with those of (2.31) one expands in powers of

ε2. Since the monodromy integrals are linear in ε2 (recall that c2 in I++ is the first order

correction, see our comment below (2.9)) we get in the first order,

λ+ = −eiπβ (1 + I++) +O(ε22) ,

λ− = −e−iπβ (1− I++) +O(ε22) ,
(2.35)

that must be equal to −e±iπγ . Equating order by order we obtain the following constraints

γ = β , I++ = 0 , (2.36)

– 7 –
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where I++ is given in (2.29). From the first relation in (2.36) we find out that the first and

the intermediate conformal dimensions must be equal,

∆p = ∆1 . (2.37)

Such a condition is to be expected within the heavy-light perturbative expansion. By the

fusion rules, when ∆2 = 0, the intermediate channel should be equated to the first primary

insertion, thereby losing its own character just because the resulting 3-point function has

no exchange channels.

Now, solving the second relation in (2.36) we obtain

c2 = ε2

[
1 + α

1− z −
1

z
− d log(F+F−)

dz

]
. (2.38)

Integrating the defining relation (2.7) we find the 4-point perturbative classical conformal

block with three background insertions

f(z|α, β, ε2) = −ε2
(

log(1− z)1+α + log z + logF+(α, β|z) + logF−(α, β|z)
)
, (2.39)

where functions F± are given by (2.16).

A few comments are in order. First, in the limit β → 1 corresponding to ∆1 → 0 we

reproduce the 4-point perturbative block with two background operators at ε1 = εp [3].

To this end, we decompose the function (2.39), where β = β(ε1) is given by (2.17), in

powers of ε1 and keep the linear terms (see also appendix A). Secondly, we note that when

calculating the monodromy matrix M we could equally use solutions (2.20). In this case,

the resulting monodromy matrix is related to (2.26) by M̂ = AMA−1 and, therefore, the

eigenvalue problem remains the same giving rise to the same accessory parameter and

conformal block.

3 Holographically dual description

In this section we develop the holographic interpretation of the large-c perturbative con-

formal blocks with three background operators. For two background operators the respec-

tive blocks were realized as geodesic trees in the conical defect space parameterized by

α = α(∆H) (2.17).

3.1 Conformal maps and the bulk metrics

In the AdS3/CFT2 correspondence, the locally AdS3 geometry created by heavy insertions

of the boundary CFT can be described in the Bañados form [24]

ds2 = R2

(
−Hdz2 − H̄dz̄2 +

u2

4
HH̄ dzdz̄ +

du2 + dzdz̄

u2

)
, (3.1)

with u ∈ [0,∞) and z, z̄ ∈ C being local coordinates, the radius is R. Arbitrary (anti)ho-

lomorphic functions H = H(z) and H̄ = H̄(z̄) can be interpreted as components of the

holographic CFT2 energy-momentum tensor

T (z) =
c

6
H(z) , (3.2)

– 8 –
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where the central charge is c = 3R/2GN [25, 26]. Under z → w(z) it transforms in the

standard fashion as

T (z) =
(
w′
)2
T (w) +

c

12
{w, z} , where {w, z} =

w′′′

w′
− 3

2

(
w′′

w′

)2

, (3.3)

where the prime denotes differentiation with respect to z. The anti-holomorphic component

transforms analogously.

Let us find a map z → w(z) such that H(w(z)) = 0. Away from singularities it would

correspond to pure AdS3 in the Poincare coordinates, cf. (3.1). This can be achieved

provided that

H(z) =
1

2
{w, z} . (3.4)

The solution to the above equation can be represented as the ratio of two independent

solutions to the auxiliary Fuchsian equation ψ
′′

+ Hψ = 0 (see e.g. [22]). This is the

so-called Schwarz map

w(z) =
Aψ1(z) +B ψ2(z)

C ψ1(z) +Dψ2(z)
≡
A ψ1(z)

ψ2(z) +B

C ψ1(z)
ψ2(z) +D

, AD −BC 6= 0 , (3.5)

where ψ1,2 are two independent Fuchsian solutions, and A,B,C,D ∈ C parameterize the

Möbius transformation of ψ1(z)/ψ2(z).

The relation (3.2) and the Fuchsian interpretation of solutions to the equation (3.4)

suggest that in the large-c regime the function H can be identified with the classical energy-

momentum tensor arising in the Fuchsian equation (2.10) of the monodromy method, i.e.,

H(z|z) ≡ T (0)(z|z) , (3.6)

where we introduced the set of singular points z identified with locations of the background

operators.

Since any solution to the Einstein equations with the (negative) cosmological constant

is locally AdS3 space then the boundary map (3.5) can be extended to the whole three-

dimensional space, w = w(z, z̄, u), w̄ = w̄(z, z̄, u), and v = v(z, z̄, u), such that the resulting

metric describes the Poincare patch

ds̃2 =
dv2 + dwdw̄

v2
. (3.7)

The explicit coordinate transformation reads [27]

w(z, z̄, u) = w(z)− 2u2w′(z)2w̄′′(z̄)

4w′(z)w̄′(z̄) + u2w′′(z)w̄′′(z̄)
,

w̄(z, z̄, u) = w̄(z̄)− 2u2w̄′(z̄)2w′′(z)

4w′(z)w̄′(z̄) + u2w′′(z)w̄′′(z̄)
,

v(z, z̄, u) = u
4 (w′(z)w̄′(z̄))3/2

4w′(z)w̄′(z̄) + u2w′′(z)w̄′′(z̄)
.

(3.8)
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The length of a geodesic line stretched between two points (w1, w̄1, v1) and (w2, w̄2, v2)

evaluated in the Poincare coordinates (3.7) is particularly simple

L
AdS

= R log
(w1 − w2)(w̄1 − w̄2)

v1v2
. (3.9)

Finally, we note that in the Euclidean case the Poincare patch covers the whole global

AdS3 space

dŝ2 =
dτ2 + dρ2 + sin2 ρdφ2

cos2 ρ
. (3.10)

through the coordinate change w = eθ sin ρ, w̄ = eθ̄ sin ρ, v = e
θ+θ̄

2 cos ρ, where θ = τ + iφ

and ρ are coordinates of the global AdS3 (rigid cylinder). The conformal boundary is at

ρ = π/2. There is a conformal map θ = logw from the boundary (w, w̄)-plane to the

boundary (θ, θ̄)-cylinder.

3.2 3-point HHL block as geodesic length

Let us first consider the simplest case of 3-point function with two background insertions

in 1 and ∞, see (A.3). The classical energy-momentum tensor (3.6) is given by

T (0)(z) =
ε3

(1− z)2
, (3.11)

where ε2 = ε3 are classical dimensions of the background operators. It follows that there

are two lines of coordinate singularities in the Bañados metric (3.1): (z, z̄, u) = (1, 1, u)

and (z, z̄, u) = (∞,∞, u) at ∀u ∈ R+. The resulting space will be denoted as AdS3[2].

Modulo Möbius transformations, the conformal mapping (3.5) is given by

w(z) = (1− z)α , (3.12)

where we used the Fuchsian solution (2.21) and α is given by (2.17). The function w(z) has

two singular points 1 and ∞, corresponding to locations of the background operators. It

maps the (z, z̄)-plane onto the (w, w̄)-plane with an angle deficit proportional to α ∈ (0, 1),

cf. (2.17). Near z =∞ we can change z → 1/z so that w(z) ≈ z−α. Thus, at infinity, there

is an angle excess parameterized by −α.

The Poincare coordinates in AdS3[2] can be explicitly read off from (3.8) (see also [28])

w(z, u) = (1− z)α
(1− α2)u2 + 4(1− z)(1− z̄)

(1− α)2u2 + 4(1− z)(1− z̄)
, (3.13)

w̄(z̄, u) = (1− z̄)α
(1− α2)u2 + 4(1− z)(1− z̄)

(1− α)2u2 + 4(1− z)(1− z̄)
, (3.14)

v(z, z̄, u) = 4α
u(1− z)

1+α
2 (1− z̄)

1+α
2

(1− α)2u2 + 4(1− z)(1− z̄)
. (3.15)

Near the singular points the map is approximated by w = (1−z)α(1+O(1−z)) along with

z → 1 : v(z, z̄, u) =
4αu−1

(1− α)2
[(1− z)(1− z̄)]

α+1
2 (1 +O(1− z)(1− z̄)) , (3.16)

z →∞ : v(z, z̄, u) = αu (zz̄)
α−1

2 (1 +O(1/(zz̄))) . (3.17)
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Figure 2. The 3-point HHL block and its holographically dual realization in the three dimensional

bulk (a rigid cylinder). The red line along the cylinder axis visualizes the 2-point function 〈OHOH〉
of heavy operators inserted at infinities that produced the conical defect. The wavy blue line denotes

the perturbative operator OL propagating in the background.

Since α ∈ (0, 1) the leading exponent in the first relation above is positive, while in the

second relation it is negative. Thus, the lines of coordinate singularities of the Bañados

metric are mapped to two boundary points (w, w̄, v) = (0, 0, 0) and (w, w̄, v) = (∞,∞, 0).

Further, when going to the global AdS3 space (3.10) both singularities are mapped to

the boundary points τ = ±∞. The coordinate φ is rescaled by α so that we have a wedge-

shaped sector cut from the cylinder and the remaining domain is φ ∈ [0, 2πα), τ ∈ R,

ρ ∈ R+. This is the standard conical defect in the AdS3 space.

Now we consider the 3-point conformal block, which in the original coordinates is

given by

f(z|ε1) = −ε1 log(1− z) , (3.18)

see eq. (A.5). The perturbative operator of classical dimension ε1 is inserted in (z, z̄).

To find the block function in different coordinate systems we recall the relation (A.2).

In our case, the transformation from some x-coordinates to y-coordinates takes the form

f(x) = f(y(x)) + ε1 log y′(x) , (3.19)

where the prime denotes differentiation with respect to x. Keeping only coordinate-

dependent terms (this is ∼ below) we find that the block function in three coordinate

systems on the boundary (original (z, z̄), then conformally mapped (w, w̄), and global

(θ, θ̄)) is given by

f(z|ε1) ∼ −ε1 log
w(z)

w′(z)
, f(w|ε1) ∼ −ε1 logw , f(θ|ε1) ∼ 0 . (3.20)

Let us consider the AdS3[2] space in the Poincare coordinates and fix two points: the

boundary insertion of the perturbative operator (w, w̄, ε) and a distinguished point inside

the bulk (0, 0, 1), where ε → 0 is the boundary cut-off. The point belongs to the line

connecting two background insertions at infinities, see figure 2. Then, the geodesic length

– 11 –
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between these two points given by (3.9) takes the form

L
AdS3 [2]

(w, w̄) = R (logw + log w̄)−R log ε . (3.21)

Comparing with (3.20) we find that in the Poincare coordinates, modulo ε-dependent terms

and constants, the block function and the geodesic length are identified,

f(w|ε1) ∼ − ε1
R
L
AdS3 [2]

(w) , (3.22)

where we omitted the anti-holomorphic part corresponding to the anti-holomorphic confor-

mal block. In the large-c regime, the standard formula relating masses and heavy conformal

dimensions takes the form mR ∼ ∆ so that the ratio ε1/R measures the mass of a point par-

ticle propagating in AdS3[2]. This is the block/length identification in the case of 3-point

block with two background operators [13].

In the global coordinates, the distinguished point turns to the axis ρ = 0 of the rigid

cylinder so that the geodesic line is stretched from the boundary point to the center, see

figure 2. Its regulated length turns out to be zero, L
AdS3 [2]

(θ, θ̄) ∼ 0, that agrees with

f(θ) = 0 in (3.20).

Note that there is another possible geodesic line in the bulk with boundary endpoints

corresponding to the CFT operators. It connects two boundary points and the geodesic

length calculates the 4-point identity HHLL conformal block [1, 29, 30]. For conformal

blocks with more perturbative insertions the dual geodesic network has several bound-

ary attachments and one endpoint in the center of the cylinder. In that case both the

total length and the perturbative blocks are non-vanishing satisfying the relation of the

type (3.22) [3, 6, 7, 9, 13].

3.3 4-point HHHL block as geodesic length

Let us turn to the case of the background geometry created by three heavy insertions.

Here, the classical energy-momentum tensor (3.6) is given by

T (0)(z) =
ε1
z2

+
ε3

(z − 1)2
+

ε1
z(1− z)

, (3.23)

where ε1 and ε3 = ε4 are classical dimensions of the heavy background insertions in 0, 1,∞.

The resulting space defined by the Bañados metric (3.1) will be denoted as AdS3[3]. There

are three lines of coordinate singularities: (z, z̄, u) = (0, 0, u), (z, z̄, u) = (1, 1, u), and

(z, z̄, u) = (∞,∞, u) for any u ∈ R+.

Choosing in (3.5) the Fuchsian solutions as ψ1,2(z) = ψ
(0)
± (z) (2.15) we find that up to

the Möbius transformations the conformal mapping is given by

w(z) = zβ
2F1

(
1+β

2 , 1+β
2 + α, 1 + β, z

)
2F1

(
1−β

2 , 1−β
2 + α, 1− β, z

) . (3.24)

This is the Schwarz triangle function that maps the (z, z̄)-plane onto some curvilinear tri-

angle on the (w, w̄)-plane (see e.g. [31]). Since the Möbius group acts triply transitively

– 12 –
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and conformally, then the vertices can be placed in any positions, while the angles re-

main intact. By construction, the Schwarz function has three singular points z = 0, 1,∞
identified with background operator locations. The angles and verities of the triangle are

expressed in terms of parameters α, β of the function (3.24). We find that the angle in the

point w(0) is equal to πβ, the second angle in w(1) is equal to −πα, and the third angle

in w(∞) is equal to πα.3 Recalling the definition (2.17) we obtain that the sum of angles

in the triangle is πβ < π.

The Schwarz triangle function near the singular points can be approximated by4

z → 0 : w(z) ∼ zβ(1 +O(z)) ,

z → 1 : w(z) ∼ (1− z)−α(1 +O(1− z)) ,

z →∞ : w(z) ∼ z−α(1 +O(1/z)) ,

(3.25)

where ∼ indicates that these expansions are valid modulo Möbius transformations. The

leading exponents in (3.25) define the angle deficit/excess. The Schwarz triangle func-

tion (3.24) in the singular points is given by

w(0) = 0 , w(1) =∞ , w(∞) = eiπβ
Γ(1 + β) Γ

(
1−β

2 + α
)

Γ
(

1−β
2

)
Γ(1− β) Γ

(
1+β

2 + α
)

Γ
(

1+β
2

) . (3.26)

From the asymptotics (3.25) we can find how v-coordinate behaves near the singular

points. Applying the general relations (3.8) we obtain

z → 0 : v(z, z̄, u) =
4β u−1

(1− β)2
(zz̄)

1+β
2 (1 +O(zz̄)) , (3.27)

z → 1 : v(z, z̄, u) =
4αu−1

(1 + α)2
[(1− z)(1− z̄)]

1−α
2 (1 +O(1− z)(1− z̄)) , (3.28)

z →∞ : v(z, z̄, u) = αu (zz̄)−
1+α

2 (1 +O(1/(zz̄))) . (3.29)

Since α, β ∈ (0, 1), then the leading exponents in the first two relations are positive, while

in the third one it is negative. It follows that the three lines of coordinate singularities

in the Bañados metric (3.1) are mapped to three boundary points in the Poincare metric

which are vertices of the curvilinear triangle. In the global coordinates,5 they lie on the

boundary cylinder ρ = π/2 at θ0,1 = ±∞ and θ∞ = logw∞, where w∞ is given in (3.26),

see figure 1.

3This domain generalizes that one in the case of two singular points, where we had two vertices with

angles ±α, see section 3.2.
4The most straightforward way to derive these expansions is to solve the defining equation (3.4) using

the Frobenius method in the leading orders. Otherwise, one can find asymptotics of the Schwarz triangle

function (3.24) by expanding the hypergeometric functions near the singular points.
5It would be important to find an explicit characterization of the AdS3[3] in the global coordinates θ, θ̄, ρ

by analogy with the conical defect geometry AdS3[2]. On the other hand, to study 3d spaces with conical

singularities one recalls that the 3d gravity action can be rewritten as the Liouville field theory on the

conformal boundary [32, 33]. In particular, a solution with three conical defects was considered in [34].
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Let us consider now the conformal block (2.39) in three boundary coordinate systems:

(z, z̄)-plane, (w, w̄)-domain, (θ, θ̄)-cylinder discussed in section 3.1. Assuming that we do

some coordinate change x→ x(y) the transformation formula (A.2) takes the form

f(x|α, β, ε2) = f(y(x)|α, β, ε2) + ε2 log y′(x) . (3.30)

Differentiating the Schwarz triangle function (3.24) and using the Wronskian (2.19) one

finds that

w′(z) =
sinπβ

π

(1− z)−1−αz−1+β

F 2
−(α, β|z)

, (3.31)

where F− is given by (2.16). The block function (2.39) in three coordinate systems is

given by

f(z|α, β, ε2) ∼ −ε2 log
w(z)

w′(z)
, f(w|α, β, ε2) ∼ −ε2 logw , f(θ|α, β, ε2) ∼ 0 , (3.32)

where ∼ stands for constants terms, cf. (3.20).

The above relations suggest that the bulk interpretation of the 4-point block with three

background operators is quite similar to that of 3-point block with two background oper-

ators. Indeed, according to our prescription we fix two points in AdS3[3] in the Poincare

coordinates: the boundary insertion of the perturbative operator (w, w̄, ε) and the dis-

tinguished point in the bulk (0, 0, 1), where the cut-off ε → 0. The distinguished point

belongs to the vertex joining the background heavy insertions: two at infinities, one in a

finite region of the conformal boundary, see figure 1. Then, the geodesic length (3.9) is

given by

L
AdS3 [3]

(w, w̄) = R (logw + log w̄)−R log ε , (3.33)

and comparing with (3.32) we find that in this case the holomorphic block/length relation is

f(w|α, β, ε2) ∼ − ε2
R
L
AdS3 [3]

(w) , (3.34)

where ∼ means up to constant and divergent contributions. The same relation holds in

the global coordinates, where the both sides are vanishing, see the last relation in (3.32).

4 Concluding remarks: more than three background operators

By way of conclusion, let us briefly outline a possible generalization of the previous results.

The 3-point and 4-point functions with respectively two and three background insertions

belong to the general family of n-point large-c functions with n− k background operators.

Let us denote them as Hn−kLk type functions, where a true parameter is the number

of perturbative operators k measuring a deviation form the classical n-point block. The

previously considered cases are, therefore, type H2L and H3L functions.

Let AdS3[n− k] be a three-dimensional space with the Bañados metric defined by the

classical energy-momentum tensor T (z|z) with n−k singular points. The boundary Schwarz

– 14 –



J
H
E
P
0
8
(
2
0
1
9
)
0
3
8

mappings and the Poincare coordinates are build using the solutions of the associated

Fuchsian equation,[
d2

dz2
+ T (z|z)

]
ψ(z) = 0 , where T (z|z) =

n∑
i=k+1

εi
(z − zi)2

+
ci

z − zi
, (4.1)

where z = (zk+1, . . . , zn) are locations of the background operators with classical dimen-

sions εi, the ci are respective accessory parameters. The resulting space AdS3[n − k] will

have n − k conical defects parameterized by background conformal dimensions as can be

directly seen from the Schwarz map of the (z, z̄)-plane to some curvilinear polygon with

n− k vertices on the (w, w̄)-plane.

Assuming that εj/εi � 1 for j = 1, . . . , k and i = k+1, . . . , n we can use the heavy-light

approximation and introduce type Hn−kLk perturbative conformal blocks f(k,n−k)(w). The

point is that when we calculate such perturbative blocks using the monodromy method,

the energy-momentum tensor arising in the zeroth order is exactly (4.1).

On the other hand, within the monodromy method the zeroth-order Fuchsian solu-

tions are the degenerate (n − k + 1)-point conformal blocks of the background operators

taken in the large-c limit, where the additional operator is the degenerate light Ψ(1,2), see

section 2.3. Thus, the auxiliary equation (4.1) responsible for the Schwarz mappings is the

BPZ equation describing the degenerate background blocks ψ(z).

It is tempting to conjecture that type Hn−kLk conformal blocks are equal to the length

of dual Steiner trees in AdS3[n− k],

f(k,n−k)(w|ε) ∼ −
1

R
L
AdS3 [n−k]

(w|ε) , (4.2)

where the right-hand side is the weighted length of the dual tree, and w are locations of

perturbative operators in the Poincare coordinates which can be found from the general

formula (3.8).

Acknowledgments

We are grateful to V. Belavin for useful exchanges. The work was supported by the Russian

Science Foundation grant 18-72-10123.

A The lower-point conformal blocks: various details

Here, we discuss 3-point and 4-point conformal blocks in the context of the heavy-light

expansion. All block functions are normalized as F ∼ zγ at z → 0, where γ is the linear

combination of conformal dimensions. The other normalization F ∼ 1 is also possible, in

which case, e.g. the decomposition (2.1) would explicitly contain zγ factors.

Conformal maps. Under the map z → w(z) the n-point correlation functions of primary

operators transform as (see e.g. [23])

〈O1(w1) · · · On(wn)〉 =

n∏
i=1

(
dw

dz

)−∆i

w=wi

(
dw̄

dz̄

)−∆̄i

w̄=w̄i

〈O1(z1) · · · On(zn)〉 . (A.1)
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It follows that large-c perturbative conformal block with k perturbative and n − k back-

ground operators transforms as

f(w1(z), . . . , wk(z)|ε, ε̃) = f(z1, . . . , zk|ε, ε̃)−
k∑
i=1

εi log
dwi(z)

dzi
, (A.2)

where ε, ε̃ are classical external and intermediate dimensions of the perturbative operators.

3-point conformal block. In this case we have

〈O2(z, z̄)O2(1)O3(∞)〉 = (∞)2∆3C123F(z)F̄(z̄) , (A.3)

where the (holomorphic) block can be defined as

F(z) = (1− z)−(∆1+∆2−∆3) . (A.4)

The block function at arbitrary z2 and z3 can be similarly defined. Modulo infinite pref-

actors the correlation function (A.3) can be exponentiated to yield the 3-point classical

conformal block

f(z|ε) = −(ε1 + ε2 − ε3) log(1− z) , (A.5)

where the classical dimensions are εi = 6∆i/c. The 3-point function is exact within the

heavy-light expansion.

4-point conformal block. Here we reproduce the perturbative block (2.39) directly

from the original Virasoro block in the large-c and the heavy-light approximations. The

s-channel block function can be expanded near z = 0 as [14]

F(z|∆i,∆p, c) = z∆p−∆1−∆2

∞∑
N=0

FNz
N , (A.6)

where the expansion coefficients FN = FN (∆i,∆p, c) in the lowest orders are given by

F0 = 1 , F1 =
(∆p −∆1 + ∆2)(∆p −∆4 + ∆3)

2∆p
, (A.7)

F2 =
(∆p + ∆2 −∆1)(∆p + ∆2 −∆1 + 1)(∆p + ∆3 −∆4)(∆p + ∆3 −∆4 + 1)

4∆p(2∆p + 1)
+

+ 2

(
∆1 + ∆2

2
+

3(∆1 −∆2)2

2(1 + 2∆p)
+

(∆p − 1)∆p

2(1 + 2∆p)

)(
c+

2∆p(8∆p − 5)

(1 + 2∆p)

)−1

×

×
(

∆3 + ∆4

2
+

3(∆4 −∆3)2

2(1 + 2∆p)
+

(∆p − 1)∆p

2(1 + 2∆p)

)
.

(A.8)

To calculate perturbative classical blocks, we do the following steps.6

6Perturbative conformal block in the plane CFT were considered in [3, 6, 18, 35, 36]. The same logic

also applies to (super)torus blocks with a heavy channel along the non-contractible cycle [37–40].

– 16 –



J
H
E
P
0
8
(
2
0
1
9
)
0
3
8

• The large-c regime, the classical dimensions:

εi,p = 6∆i,p/c , i = 1, 2, 3, 4 . (A.9)

• The classical block (see (2.2)):

f(z|εi, εp) ≈
6

c
logF(z|∆i,∆p, c) +O(1/c) . (A.10)

• The lightness parameter δ � 1: rescale a part of conformal dimensions as εi,p → δεi,p
and expand f = f(z|εi, εp) in powers of δ,

f =
1

δs
f−s +

1

δs−1
f−s+1 + . . .+ δ0f0 + δf1 +O(δ2) , (A.11)

for some s ∈ N. Since for general dimensions we have the Laurent series, we require

that all singular terms f−n must be vanishing that imposes constraints on conformal

dimensions. (For n-point blocks with two background operators this is ε3 = ε4, for

the 4-point block with three background operators this is ε1 = εp). The term f0 is

the leading (background) classical block. The perturbative block is defined to be the

first correction f1.

Having three heavy background operators we rescale ε2 → δε2 and find the perturbative

block

f1 = −ε2 log z + ε2

∞∑
N=1

fNz
N , (A.12)

where

f1 =
1

2
, f2 =

3 + 8ε1 + 16ε4
8(3 + 4ε1)

. (A.13)

Note that rescaling further ε1 → δε1, εp → δεp and decomposing again in powers of δ, we

get the coefficients of the perturbative HHHL block with ε1 = εp [3].

On the other hand, the small-z expansion (modulo logarithms) of the perturbative

block (2.39) is given by the same (A.12), where the first coefficients are given by

f1 =
1

2
, f2 =

2β2 + 4α2 − 9

8(β2 − 4)
. (A.14)

Using the change (2.17) we can see that these coefficients coincide with (A.13).
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