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1 Introduction

Remarkable progress has recently been achieved in understanding the properties of scat-

tering amplitudes in four-dimensional gauge theories and, most notably, in maximally

supersymmetric Yang-Mills theory (N = 4 SYM) (see ref. [1] for recent progress). The

latter theory is believed to be integrable in the planar limit [2] and scattering amplitudes

can be used as a powerful tool for uncovering its hidden symmetries.

Exploiting the symmetries of scattering amplitudes we encounter a few obstacles. First

of all, scattering amplitudes suffer from infrared divergences and require introducing a regu-

lator (e.g. dimensional regularization). This breaks some of the symmetries, like conformal

symmetry and its supersymmetric extension. Finding the corresponding anomalies proves

to be a nontrivial task [3–6]. Secondly, with the exception of four and five particles, generic
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scattering amplitudes in planar N = 4 SYM do not admit a closed analytical representa-

tion for an arbitrary ’t Hooft coupling. The former amplitudes are fixed unambiguously

by anomalous Ward identities corresponding to the dual conformal symmetry [3]. Their

finite part depends on the coupling constant through the cusp anomalous dimension and

is given by the BDS ansatz [7].

Beyond the planar limit, the scattering amplitudes in N = 4 SYM can be expanded

over an appropriately chosen basis of multi-trace color tensors built from generators of the

SU(N) gauge group in the fundamental representation. In the simplest case of four-particle

amplitude we have

A = (2π)4δ(4)
(∑

i

pi

)[
N tr(T a1T a2T a3T a4)A(s) + tr(T a1T a2) tr(T a3T a4)A(d)

]
+ perm ,

(1.1)

where the scattered particles carry on-shell momenta pi (taken to be incoming) and the

color charge T ai (normalized as tr(T aT b) = δab). In the case of identical particles, by

virtue of Bose symmetry the expression on the right-hand side of (1.1) contains additional

terms denoted by ‘perm’ with momenta and color indices exchanged. The color-ordered

partial amplitudes A(s)(pi) and A(d)(pi) describe single- and double-trace contributions,

respectively. In the planar limit, the leading contribution comes from A(s)(pi) and it

exhibits remarkable properties [8]. It remains unclear whether some of these properties

survive beyond the planar limit, see refs. [9–12] for a recent development.

In this paper, we study scattering amplitudes in a nontrivial four-dimensional confor-

mal theory, the so called fishnet theory. This theory is closely related to N = 4 SYM

and, most importantly, it allows us to avoid some of the difficulties mentioned above. It is

described by the Lagrangian proposed in ref. [13],

Lcl = N tr
[
∂µX̄∂µX + ∂µZ̄∂µZ + (4πξ)2X̄Z̄XZ

]
, (1.2)

where X, Z are complex N ×N traceless matrix scalar fields and X̄, Z̄ denote the conju-

gated fields. In the planar limit, N → ∞ with ξ2 fixed, correlation functions and scattering

amplitudes receive contributions only from the special class of fishnet Feynman graphs [14]

(hence the name of the theory). Due to the particular CPT noninvariant form of the quar-

tic interaction term in (1.2), the theory is nonunitary. As we show below, this leads to a

number of unusual properties of the scattering amplitudes.

The fishnet theory (1.2) naturally appears in the study of the integrable deformations

of maximally supersymmetric Yang-Mills theory. The general γ-deformed N = 4 SYM

theory depends on three deformation parameters [15–17]. The Lagrangian (1.2) arises

in the double scaling limit in which the Yang-Mills coupling vanishes, g2YM → 0, and

one of the deformation parameters goes to infinity, γ3 → i∞, in such a way that the

product ξ2 = g2YMN e−iγ3 remains finite [13]. Then, all the fields of N = 4 SYM except

the two scalars X and Z decouple leading to (1.2). Although most of the symmetries

(supersymmetry, gauge symmetry) are broken in this limit,1 the scattering amplitudes in

1The Lagrangian (1.2) is invariant under global SU(N) and U(1) × U(1) transformations of the scalar

fields, which are remnants of the gauge symmetry and R−symmetry of N = 4 SYM, respectively.
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the fishnet theory are believed to inherit the integrability of N = 4 SYM, at least in the

planar limit [18, 19].

The Lagrangian (1.2) is not complete at the quantum level and it should be supple-

mented by a complete set of counter-terms [20–22]. In the planar limit, for N → ∞ and

ξ2 = fixed, they take the form of double-trace dimension-four operators2

L = Lcl + (4π)2α2
1

[
tr(X2) tr(X̄2) + tr(Z2) tr(Z̄2)

]

− (4π)2α2
2

[
tr(XZ) tr(X̄Z̄) + tr(XZ̄) tr(X̄Z)

]
, (1.3)

where α2
1 and α2

2 are new, induced, coupling constants and the factor of (4π)2 is introduced

for convenience.

The double-trace coupling constants develop nontrivial beta functions and, therefore,

the conformal symmetry of the fishnet theory (1.3) is broken [23–25]. Examining the zeros

of the beta-functions we find that, in the planar limit, for arbitrary single-trace coupling

ξ2, the theory has two fixed points

(α2
1 = α2

+ , α2
2 = ξ2) and (α2

1 = α2
− , α2

2 = ξ2) , (1.4)

where α2
± is given at weak coupling by [25]

α2
± = ± iξ2

2
− ξ4

2
∓ 3iξ6

4
+ ξ8 ± 65iξ10

48
− 19ξ12

10
+O(ξ14) . (1.5)

For coupling constants satisfying (1.4), the fishnet theory possesses a conformal symmetry

in the planar limit. Notice that the double-trace couplings α2
+ and α2

− take complex values

for real ξ2 and are related to each other through ξ2 → −ξ2. This allows us to restrict the

following consideration to one of the fixed points.

The fishnet theory is believed to be integrable at the fixed points [13, 25–27]. In par-

ticular, the various four-point correlation functions of the shortest scalar operators can be

computed exactly. In this paper, we extend the analysis of ref. [28] and derive exact ex-

pressions for the simplest four-particle scattering amplitudes (1.1) in the conformal fishnet

theory (1.3). We show that the leading large-N contribution to the single- and double-

trace partial amplitudes in (1.1) are free from infrared and ultraviolet divergences. As

a result, A(s) and A(d) are well-defined in four dimensions and respect the exact confor-

mal symmetry. We demonstrate that the single-trace contribution A(s) is protected from

quantum corrections at large N . For the double-trace contribution, we apply the Lehmann-

Symanzik-Zimmerman (LSZ) reduction formula to the four-point correlation function of

scalar operators found in refs. [25, 28] and derive a closed-form expression for A(d) that is

valid for any coupling ξ2. We verify that at weak coupling it agrees with the result of an

explicit five-loop calculation. We study the properties of the double-trace amplitude A(d)

in the high-energy limit and derive the exact expression for the leading Regge trajectory.

The paper is organized as follows. In the next section, we define single- and double-

trace contribution to the four-particle scattering amplitude (1.1) in the conformal fishnet

2The contribution of the remaining double-trace counter-terms, like tr(XX̄) tr(XX̄), is suppressed by a

factor of 1/N2.
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theory (1.3). In section 3, we present a five-loop calculation of the double-trace amplitude

A(d) in the large-N limit. In section 4, we apply the LSZ reduction procedure to the

four-point correlation function of scalar operators and obtain an all-loop representation

for A(d). In section 5, we use this representation to examine the properties of A(d) in the

high-energy limit. Section 6 contains concluding remarks. Some details of the calculation

are summarized in three appendices.

2 Four-particle amplitudes in fishnet theory

The four-particle amplitudes (1.1) can be classified according to the type (X, X̄, Z, Z̄)

of scattered scalar particles. For the amplitude A to be nonzero, the total U(1) × U(1)

charge should vanish. This leaves us with three nontrivial amplitudes: AXZX̄Z̄ , AXXX̄X̄

and AZZZ̄Z̄ . In addition, the invariance of (1.3) under X → Zt and Z → Xt (with

the conjugated fields transforming accordingly) implies that the amplitudes AXXX̄X̄ and

AZZZ̄Z̄ coincide up to an exchange of particles.

In general, scattering amplitudes in massless theories suffer from infrared (IR) diver-

gences and require introducing a regulator, e.g. dimensional regularization with D = 4−2ǫ.

We show below that the partial amplitudes A(s) and A(d) are IR-finite in the large-N limit,

and therefore they can be defined in D = 4 dimensions.3 As they are dimensionless func-

tions of the Mandelstam invariants sij = (pi + pj)
2 and the coupling constant ξ2 (we recall

that the double-trace couplings are given by (1.4) at the fixed point), the partial amplitudes

A(s) and A(d) have the following general form at large N4

A(s,d) = A(s,d)(z, ξ2) , z = 1 +
2s13
s12

. (2.1)

The possible values of z depend on the choice of scattering channel. In particular, for the

process 1 + 2 → 3 + 4 we have z = cos θ, where 0 ≤ θ ≤ π is the scattering angle in the

center-of-mass frame.

As was mentioned above, there are only two nontrivial four-particle amplitudes,

AXZX̄Z̄ and AXXX̄X̄ . Let us first examine the former amplitude. In the Born approxi-

mation, AXZX̄Z̄ receives contributions from the single-trace interaction term in (1.2) and

from the double-trace interaction terms in (1.3) proportional to α2
2. Replacing α2

2 by its

value (1.4), we find the corresponding single- and double-trace partial amplitudes

A
(s)

XZX̄Z̄
= (4πξ)2 , A

(d)

XZX̄Z̄
= A

(d)

XZ̄X̄Z
= −(4πξ)2 . (2.2)

All remaining partial amplitudes vanish.

Beyond the Born approximation, the leading-color contribution to AXZX̄Z̄ comes from

the diagrams shown in figure 1. Each quartic vertex in these diagrams represents the sum

of the single-trace ξ2−interaction term and the double-trace α2
2−interaction terms defined

in (1.2) and (1.3), respectively. The contribution of the double-trace interaction terms

proportional to α2
1 is suppressed by powers of 1/N . Going through the color algebra, we

3Infrared divergences do appear in A(s) and A(d) but at the level of the color suppressed corrections.
4As was shown in ref. [6], the amplitudes (2.1) automatically satisfy the conformal Ward identities.
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Figure 1. Feynman diagrams contributing to the scattering amplitude AXZX̄Z̄ in the large-N

limit. Incoming and outgoing black lines denote scalar particles X and X̄, respectively. In a similar

fashion, red lines denote scalars Z and Z̄. Grey blob represents the sum of single- and double-trace

vertices.

1

2

3

4

Figure 2. Feynman diagrams contributing to the scattering amplitude AXXX̄X̄ . Black and white

blobs represent the single- and double-trace vertices, respectively.

find that, independently of the (single- or double-trace) type of vertices, the diagrams

shown in figure 1 produce a double-trace contribution.5 Due to the additional minus sign

in front of α2
2 in (1.3), it is accompanied by powers of (ξ2 −α2

2). Since α2
2 = ξ2 at the fixed

point (1.4), the diagrams shown in figure 1 vanish to all loops. Thus, AXZX̄Z̄ is protected

from loop corrections in the large-N limit and the nonzero partial amplitudes are given by

the Born level expressions (2.2).

Let us now examine the amplitude AXXX̄X̄ . The leading-color contribution to AXXX̄X̄

comes from the diagrams shown in figure 2. They contain an arbitrary number of single-

trace ξ2−vertices and double-trace α2
1−vertices, as the contribution of α2

2−vertices is sup-

pressed at large N . Each individual diagram in figure 2 is IR finite but it contains UV

divergent scalar loops. The UV divergences cancel however in the sum of all diagrams at

the fixed point (1.4).

In distinction to AXZX̄Z̄ , the amplitude AXXX̄X̄ is not protected from quantum cor-

rection. The diagrams shown in figure 2 produce a double-trace contribution to AXXX̄X̄

of the form

AXXX̄X̄ = (2π)4δ(4)
(∑

i

pi

)
tr(T a1T a2) tr(T a3T a4)A(z, ξ2) , (2.3)

where the particle with index i carries the on-shell momentum pi and the color charge T ai .

The double-trace partial amplitude A(z, ξ2) is a nontrivial UV- and IR-finite function of

5Naively one might expect that diagrams built from single-trace vertices could produce a single-trace

contribution. This does not happen due to the particular, chiral, form of the interaction term in (1.2).
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the coupling ξ2 and the kinematical variable z defined in (2.1). The symmetry of AXXX̄X̄

under the exchange of particles 1 and 2 leads to an invariance of A(z, ξ2) under z → −z.

Our goal in the rest of the paper is to find an expression for A(z, ξ2) at any coupling ξ2.

The vanishing of the quantum corrections to the single-trace ccmponent of AXZX̄Z̄

and AXXX̄X̄ is in agreement with the properties of the four-particle amplitudes in planar

N = 4 SYM. We recall that the latter amplitudes are given by the BDS ansatz and their

dependence on the coupling is described by the cusp anomalous dimension. The fishnet

theory arises from N = 4 SYM in the double scaling limit described in the Introduction.

The cusp anomalous dimension vanishes in this limit and, as a consequence, the planar

four-particle amplitudes cease depending on the coupling constant.

3 Double-trace amplitude

In this section, we compute the double-trace amplitude A(z, ξ2) at weak coupling. In the

large-N limit, A(z, ξ2) is given by the sum of Feynman diagrams shown in figure 2. As

was mentioned in the previous section, each of these diagrams is UV divergent but the

divergences cancel in their sum at the fixed point (1.4). In what follows we employ a

dimensional regularization with D = 4− 2ǫ.

3.1 Scattering amplitude at weak coupling

At tree level, the scattering amplitude (2.3) is generated by the double-trace tr(X2) tr(X̄2)

interaction term in (1.3)

A(0) = 4(4πα1)
2 , (3.1)

where the coupling α2
1 is given by (1.4).

At one loop, the amplitude is given by the sum of two diagrams containing single- and

double-trace vertices (shown by white and black blobs, respectively)

A(1) =

1

2

3

4

+ = 4(4πα1)
4π(s12) + (4πξ)4π(s13) + (p1 ↔ p2) . (3.2)

Here π(s) denotes the one-loop scalar integral

π(s) =

∫
d4−2ǫℓ

i (2π)4−2ǫ

1

ℓ2(K − ℓ)2
=

(−s/µ2)−ǫ

(4π)2−ǫ

Γ(ǫ)Γ2(1− ǫ)

Γ(2− 2ǫ)
, (3.3)

where s = K2 and µ2 is a UV cut-off. Both diagrams in (3.2) develop a 1/ǫ UV pole. We

verify that at the fixed point (1.4), for α2
1 = α2

+, the poles cancel in their sum leading to

A(1) = −(4π)2ξ4 ln
z − 1

2
+ (z → −z) , (3.4)

where z is defined in (2.1).

At two loops, we have

A(2) = + = 8(4πα1)
6 [π(s12)]

2 + 4(4π)6α2
1 ξ

4V (s12) + (p1 ↔ p2) .

(3.5)

– 6 –
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Here the first diagram factorizes into the product of one-loop scalar integrals (3.3), the

second one involves the vertex integral V (s12)

V (s12) =

∫
d4−2ǫℓ

i(2π)4−2ǫ

π(ℓ2)

(ℓ+ p1)2(ℓ− p2)2

=
(−s12/µ

2)−2ǫ

(4π)4−2ǫ

Γ(ǫ)Γ(2ǫ)Γ2(1− ǫ)Γ2(1− 2ǫ)

Γ(2− 2ǫ)Γ(2− 3ǫ)
. (3.6)

For arbitrary α2
1 the expression on the right-hand side of (3.5) develops a double UV pole

1/ǫ2. Combining together (3.1), (3.2) and (3.5) and replacing the double-trace coupling by

its value at the fixed point,6 α2
1 = α2

+, we find that all the UV poles cancel leading to the

following expression for the two-loop amplitude

A = i(4πξ)2
[
1 + iξ2

(
ln

z − 1

2
+ 1

)
+ ξ4

(
3

2
+

π2

3

)
+O

(
ξ6
)]

+ (z → −z) . (3.7)

In agreement with our expectations, it is free from any divergences.

We notice that the two-loop correction to the amplitude (3.7) does not depend on z.

As we show in a moment, the same pattern persists at every even loop order, so that the

nontrivial dependence of the amplitude on the kinematical invariants only comes from odd

loops. To make this property explicit, it is convenient to separate A(z, ξ2) into the sum of

even and odd functions of ξ2

A(z, ξ2) = A+(z, ξ
2) +A−(ξ

2) , (3.8)

where A+(z,−ξ2) = A+(z, ξ
2) and A−(−ξ2) = −A−(ξ

2). At weak coupling A−(ξ
2) receives

contributions from even loops, and is expected to be z−independent.

To show this, we examine the Feynman diagrams contributing to A at three and four

loops:

A(3) = +++ (3.9)

A(4) = + +++

(3.10)

It is easy to see that, similar to (3.5), all diagrams on the right-hand side of (3.9) and (3.10),

except the right-most diagram in A(3), factor out into the product of two- and three-

point functions. They develop UV divergences and depend on s12/µ
2 (but not on s13/µ

2).

The right-most diagram in (3.9) also produces a UV divergence, but it depends on two

dimensionless ratios, s12/µ
2 and s13/s12.

Because the amplitude is UV finite, the dependence on µ2 should disappear in the

sum of all diagrams. At four loops, the contributing diagrams only depend on s12/µ
2.

Being µ2−independent, their sum ought to be a constant. At three loops, the additional

6To get an analogous expression at the second fixed point α2
1 = α2

− it suffices to replace ξ2 → −ξ2.
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z−dependence arises from the right-most ladder-like diagram in (3.9). Going to higher

loops, we find that the z−dependent contribution can only come from analogous ladder-

like diagrams. Such diagrams are built from even numbers of single-trace vertices and,

therefore, can only appear at odd loops. This explains why the z−dependent contribution

to the scattering amplitude (3.8) is accompanied by even powers of ξ2.

As follows from the above analysis, the ξ2−odd part of the amplitude, A−(ξ
2), does

not depend on the kinematical invariants and is given by a sum of factorizable diagrams.

At the same time, the ξ2−even part of the amplitude takes the following general form

A+(z, ξ
2) =




1

2

3

4

+++ . . .


− [UV div], (3.11)

where the dots denote higher-order ladder diagrams as well as diagrams with the legs 3 and

4 exchanged. The last term on the right-hand side denotes the contribution of factorizable

diagrams containing double-trace vertices. It is needed to restore the UV finiteness of

A+(z, ξ
2).

The evaluation of most of the Feynman diagrams in (3.9) and (3.10) is straightforward.

The ladder diagram can be computed using the Mellin-Barnes representation (see e.g.

ref. [29]). Going through the calculation, we find,7

A− = 32iπ2

[
ξ2 + ξ6

(
3

2
+

π2

3

)
+ ξ10

(
−49

8
+

π2

6
+

2π4

45

)
+O

(
ξ14

)]
,

A+ = 16π2
[
ξ4f1(z) + ξ8f3(z) + ξ12f5(z) +O

(
ξ16

)]
+ (z → −z) , (3.12)

where fℓ(z) are nontrivial functions of the ratio of kinematical invariants (2.1) at ℓ loops.

They admit a compact representation

f1 = −H0 − 1 ,

f3 = −H−1,0,0 −
π2

2
H−1 − 4ζ3 + 3 ,

f5 = −2ζ3H0,−1 + 2ζ3H−1 − π2H0,−1,−1 + π2H−1,−1 +
π2

3
H0,−1,0 −

π2

3
H−1,0

− 2H0,−1,−1,0,0 + 2H−1,−1,0,0 + 14ζ5 −
2π2ζ3
3

+
2π2

3
− 12 , (3.13)

where ζn are Riemann zeta values andHa1,a2,... ≡ Ha1,a2,...((z−1)/2) are harmonic polyloga-

rithms [30, 31]. In general, fℓ(z) is given by a linear combination of functionsHa1,...,aw which

carry indices ai ∈ {0,−1} whose total number w, or equivalently the weight, satisfies w ≤ ℓ.

In the next section, we derive the exact expressions for A± that are valid for any coupling.

We would like to emphasize that the relations (3.12) hold at the fixed point α2
1 = α2

+.

At the second fixed point, for α2
1 = α2

−, the scattering amplitude is given by A(z,−ξ2) =

A+(z, ξ
2)−A−(ξ

2).

7Here we also included the five-loop contribution to A+.
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3.2 High-energy limit at weak coupling

The explicit expressions for the functions (3.13) become rather lengthy at high loops. It is

instructive to examine (3.13) in two limiting cases: z = 1 and z → ∞. According to (2.1),

they correspond to two different high-energy limits,

s12 ≫ s13 , s13 ≫ s12 , (3.14)

respectively. Applying the Regge theory [32], we expect that in both cases the asymptotic

behaviour of the scattering amplitude is governed by Regge trajectories exchanged in the

t−channel of the corresponding processes 1 + 2 → 3 + 4 and 1 + 3 → 2 + 4.

For s12 ≫ s13, or equivalently z → 1, we find from (3.8) and (3.12) that the amplitude

has the following asymptotic behaviour

A(z, ξ2)
z→1
= 16π2

[
ξ4 ln y + c(ξ2) +O(y)

]
, (3.15)

where y = (z − 1)/2 = s13/s12 and c(ξ2) is a series in ξ2 with constant coefficients whose

explicit form is not important for us. Notice that the asymptotic behavior A ∼ ln y is

one-loop exact, while high-order corrections only contribute to the constant part.

For s13 ≫ s12, or equivalently z → ∞, we find from (3.13) that, in distinction to the

previous case, the higher order corrections to the amplitude are enhanced by powers of

ln(z/2) ∼ ln(s13/s12),

f1 = − ln(z/2)− 1 + . . . ,

f3 = −1

6
ln3(z/2)− π2

2
ln(z/2) + . . . ,

f5 = − 1

60
ln5(z/2) +

1

12
ln4(z/2)− 1

9
π2 ln3(z/2) + . . . , (3.16)

where the dots denote subleading terms.

The relations (3.15) and (3.16) are in agreement with the Regge theory expecta-

tions [32]. In the high-energy limit, the leading contribution to the amplitude (3.11) comes

from diagrams with the minimal number of scalars exchanged. For the process 1+2 → 3+4,

we find from (3.11) that the number of particles exchanged in the s13−channel increases

with the loop order and, therefore, the dominant contribution only comes from the one-loop

diagram leading to (3.15).

For the process 1 + 3 → 2 + 4, the ladder diagrams in (3.11) describe the propagation

of two scalars in the s12−channel, interacting through the exchange of a pair of scalars

(see (C.3) below). In the leading logarithmic approximation (LLA), L = ξ2 ln(z/2) = fixed

for z → ∞, the dominant contribution to the amplitude comes from the integration over

the loop momenta in the multi-Regge kinematics (corresponding to the strong ordering of

rapidity of the exchanged scalars, see (C.6) and (C.8)). Going through the calculation we

get (see appendix C for details)

f2n+1 = − ln2n+1(z/2)

(2n+ 1)n!(n+ 1)!
+ . . . . (3.17)
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We verify that this relation correctly reproduces the first term on the right-hand side

of (3.16).

Substitution of (3.17) into (3.12) yields the following result for the amplitude

ALLA = −(4πξ)2
∑

n≥1

L2n+1

(2n+ 1)n!(n+ 1)!
+ (z → −z)

= −(4πξ)2−
∫ 1

−1

dx

πx

√
1− x2 e2Lx+(z → −z) , (3.18)

where L = ξ2 ln(z/2) and the integral is defined using the principal value prescription.8

For L ≫ 1, the dominant contribution comes from integration in the vicinity of x = 1

ALLA = −(4πξ)2
e2L

4
√
π
L−3/2

[
1 +

9

16
L−1 +

345

512
L−2 + . . .

]
+ (z → −z) . (3.19)

We deduce from this relation that, in the leading logarithmic approximation, the amplitude

has the typical Regge behavior,

ALLA ∼ L−3/2 e2L ∼ z2ξ
2

(ln z)3/2
, (3.20)

with L = ξ2 ln(z/2) and z ∼ 2s13/s12. The presence of the factor L−3/2 on the right-hand

side implies that the corresponding Regge singularity is a cut rather than a pole.

We recall that, in the expression for the scattering amplitude (2.3), ALLA(z, ξ
2) is ac-

companied by the double-trace color tensor tr(T a1T a2) tr(T a3T a4) which projects the two

pairs of particles onto a color-singlet state. As a consequence, the Regge singularity ex-

changed in the s12−channel carries zero color charge. The exponent of z in (3.20) defines the

position of this singularity in the leading logarithmic approximation JR = 2ξ2+ . . . , where

the dots denote subleading corrections. We derive the exact expression for JR in section 5.1.

4 Amplitude from correlation function

The Feynman diagrams shown in figure 2 have a nice iterative structure suggesting that

they can be evaluated using the Bethe-Salpeter approach. This turns out to be a nontrivial

task because the external and internal lines in these diagrams are on-shell and off-shell,

respectively, and, therefore, cannot be treated on an equal footing.

In this section, we present another approach to computing the scattering ampli-

tude (2.3). It relies on applying the Lehmann-Symanzik-Zimmerman (LSZ) reduction

formula to the four-point correlation function

G(x1, x2|x3, x4) =
1

N2
〈tr(X(x1)X(x2)) tr(X̄(x3)X̄(x4))〉 , (4.1)

which has been computed in refs. [25, 28]. Here the color indices of the scalar fields are

contracted in such a way as to project the two pairs of scalars onto a color-singlet state

8The sum in the first relation of (3.18) can be expressed in terms of Bessel and modified Struve functions.
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and, thus, match the properties of the scattering amplitude (2.3). In the planar limit, the

correlation function (4.1) is given by the sum of diagrams shown in figure 2 (defined in

configuration space and the end-points i having the coordinates xi). The main advantage

of the correlation function is that all lines are off-shell and, therefore, can be treated in the

same manner.

Following the LSZ procedure, we have to Fourier transform G(x1, x2|x3, x4) and iden-

tify the residue at the four simultaneous massless poles p2i = 0

∫ ∏

i

d4xi e
ipixi G(x1, x2|x3, x4) =

1

p21p
2
2p

2
3p

2
4

× (2π)4δ(4)
(∑

i

pi

)
A(z, ξ2) + . . . , (4.2)

where the dots denote terms subleading for p2i → 0.

4.1 Exact correlation function

Applying the Bethe-Salpeter approach and using the conformal symmetry, we can obtain

the following representation for the correlation function (4.1) (see refs. [25, 28]),

G(x1, x2|x3, x4) =
∑

J≥0

∫ ∞

−∞

dν
µ(ν, J)

h(ν, J)− ξ4
Πν,J(x1, x2|x3, x4) + (x1 ↔ x2) , (4.3)

where the sum runs over all states propagating in the OPE channel x212 ≡ (x1 − x2)
2 → 0.

These states carry Lorentz spin J and scaling dimension ∆ = 2 + 2iν. Their contribution

to (4.3) is described by the function,

Πν,J =

∫
d4x0Φ

µ1...µJ

ν (x10, x20)Φ
µ1...µJ

−ν (x30, x40) , (4.4)

which is built out of the completely symmetric traceless tensors Φµ1...µJ

ν . They take the

form of three-point spinning correlation functions, e.g.

Φν,J(x10, x20) = nµ1 . . . nµJ
Φµ1...µJ

ν (x10, x20)

=
1

x212

(
x212

x210x
2
20

)(∆−J)/2(
2(nx10)

x210
− 2(nx20)

x220

)J

, (4.5)

with xij ≡ xi − xj and nµ an auxiliary light-like vector (n2 = 0).

The functions (4.5) belong to the principal series of the conformal group. They form a

complete orthogonal set of states, and the kinematical factor µ(ν, J) defines their norm [33]

µ(ν, J) =
ν2(4ν2 + (J + 1)2)(J + 1)

2J+4π7
. (4.6)

The dependence of the correlation function (4.3) on the coupling constant arises through

the factor 1/(h(ν, J) − ξ4). Due to the iterative structure of the Feynman diagrams in

figure 2, it has the form of a geometric series in ξ4/h(ν, J) with the function h(ν, J) being

the eigenvalue of the ‘graph generating kernel’ entering the Bethe-Salpeter equation (see

refs. [25, 28])

h(ν, J) = (ν2 + J2/4)(ν2 + (J + 2)2/4) . (4.7)
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The relation (4.3) can be used to decompose the correlation function over the conformal

partial waves in the OPE channel x212 → 0. Closing the integration contour over ν in (4.3)

into the lower half-plane and picking up the residues at the poles located at h(ν, J) = ξ4

we find

G(x1, x2|x3, x4) =
1

(x212x
2
34)

2

∑

J≥0

∑

∆=∆2,∆4

C∆,J g∆,J(u, v) . (4.8)

Here C∆,J are the OPE coefficients squared and g∆,J(u, v) are the well-known four-

dimensional conformal blocks depending on two cross-ratios, u = x212x
2
34/(x

2
13x

2
24) and

v = x223x
2
14/(x

2
13x

2
24).

For each Lorentz spin J , the sum in (4.8) contains the contribution of two primary

operators. Their scaling dimensions ∆2(J) and ∆4(J) satisfy the relation

∆ = 2 + 2iν
∣∣∣
h(ν,J)=ξ4

, (4.9)

subject to the additional condition Re∆ > 2. At weak coupling, there are two solutions,

∆2 = 2 + J + O(ξ2) and ∆4 = 4 + J + O(ξ4), describing the operators with twist 2

and 4, respectively. The explicit expression for the scaling dimensions ∆2,4 and the OPE

coefficients C∆,J can be found in ref. [28].

4.2 LSZ reduction

To obtain the scattering amplitude, we have to substitute (4.3) into (4.2), perform a Fourier

transform with respect to the external points and identify the residue at the four massless

poles. Due to the factorized form of (4.4), this amounts to finding the residue of the

functions (4.5) on the two-particle pole

lim
p2
i
→0

p21 p
2
2

∫
d4x1d

4x2 e
ip1x1+ip2x2 Φµ1...µJ

ν (x10, x20) = (2π)4eix0(p1+p2) Φ̃µ1...µJ

ν (p1, p2) ,

(4.10)

where Φ̃µ1...µJ

ν (p1, p2) is a completely symmetric traceless tensor depending on the light-like

vectors p1 and p2. The function Φ̃µ1...µJ

−ν (p3, p4) is defined in a similar manner.

Then, we apply (4.10) to obtain from (4.2) and (4.3) the following representation for

the scattering amplitude

A(z, ξ2) = (2π)8
∑

J≥0

∫ ∞

−∞

dν
µ(ν, J)

h(ν, J)− ξ4
Ων,J(z) + (z → −z) . (4.11)

Here Ων,J(z) is given by the product of two tensors (4.10) with all Lorentz indices contracted

Ων,J(z) = Φ̃µ1...µJ

ν (p1, p2) Φ̃
µ1...µJ

−ν (p3, p4) . (4.12)

It depends on the ratio of kinematical invariants (2.1) as well as on the quantum numbers

of the exchanged states.

As before, it is convenient to project the Lorentz indices on both sides of (4.10) onto an

auxiliary light-like vector and define Φ̃ν,J ≡ nµ1 . . . nµJ
Φ̃µ1...µJ

ν (p1, p2). Substituting (4.5)

into (4.10) and going through the calculation we find (see appendix A),

Φ̃ν,J(p1, p2) = iJ
(−s12/4)

t/2−1Γ(t− 1)Γ(J + 1)

Γ(t/2)Γ(J + t/2)Γ(J + t− 1)
(ξ1 + ξ2)

JC
(t−1)/2
J

(
ξ1 − ξ2
ξ1 + ξ2

)
, (4.13)
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where t = ∆ − J = 2 + 2iν − J and s12 = (p1 + p2)
2. Here ξi = (pin), and C

(t−1)/2
J is a

Gegenbauer polynomial.

We can recover Φ̃µ1...µJ

ν (p1, p2) by acting on (4.13) with the differential operators [34],

Φ̃µ1...µJ

ν (p1, p2) =
1

(J !)2
Dµ1 . . .DµJ Φ̃ν,J(p1, p2) , (4.14)

where Dµ = (1 + (n∂n))∂
µ
n − nµ∂2

n/2 and ∂µ
n = ∂/∂nµ. Substituting (4.14) into (4.12)

we find that Ων,J is a dimensionless scalar function of the ratio of Mandelstam invariants

s13/s12.

According to (4.12), the dependence of Ων,J on s13 can only arise from the contraction

of Lorentz indices in the product of the two tensors. Since the number of indices matches

the Lorentz spin, Ων,J ought to be a polynomial of degree J in s13 or equivalently in z. In

addition, it has the parity properties

Ων,J(z) = (−1)JΩν,J(−z) , Ω−ν,J(z) = Ων,J(z) . (4.15)

Indeed, it follows from (4.5) and (4.10) that Φ̃µ1...µJ

ν (p1, p2) acquires the sign factor (−1)J

under the exchange of the momenta p1 and p2. The same transformation acts as z → −z

leading to the first relation in (4.15). The second relation in (4.15) follows from the invari-

ance of both sides of (4.12) under the exchange of momenta, p1 ↔ p3 and p2 ↔ p4. Com-

bining these properties together, we conclude that Ων,J(z) has the following general form,

Ων,J(z) = Qν,Jz
J +O(zJ−2) , (4.16)

where Qν,J and all the subleading expansion coefficients are even functions of ν.

The explicit expression for the polynomial (4.16) can be found from (4.12) and (4.13)

(details of the calculation are given in appendix B)

Ων,J(z) =
2J

π2
sinh2 (πν + iπJ/2)

J∑

k=0

Pk(z)PJ−k(z)

(J/2− k)2 + ν2
, (4.17)

where PJ(z) is a Legendre polynomial. It also admits a representation as a linear combi-

nation of Legendre polynomials,

Ων,J(z) = (−2)J
sinh(2πν)

4π2ν

[J/2]∑

k=0

(2J − 4k + 1)Γ
(
k + 1

2

)
Γ(J − k + 1)

Γ(k + 1)Γ
(
J − k + 3

2

)

× Γ
(
J
2 − k − iν + 1

2

)
Γ
(
J
2 − k + iν + 1

2

)

Γ
(
J
2 − k − iν + 1

)
Γ
(
J
2 − k + iν + 1

) PJ−2k(z) , (4.18)

where [J/2] stands for the entire part.

For even/odd spin J the sum in (4.18) contains Legendre polynomials with even/odd

indices. It is easy to verify that the relations (4.17) and (4.18) satisfy (4.15). At large z

we match (4.18) into (4.16) to find

Qν,J = (−1)J
sinh(2πν)

2πν

Γ(J − 2iν + 1)Γ(J + 2iν + 1)
[
Γ
(
J
2 − iν + 1

)
Γ
(
J
2 + iν + 1

)]2 . (4.19)
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Finally, we substitute (4.6) and (4.7) into (4.11) and obtain the following representation

for the scattering amplitude

A(z, ξ2) = 8π

∫ ∞

−∞

dν
∑

J≥0

21−J(J + 1)
(
(J + 1)2 + 4ν2

)
ν2

(ν2 + J2/4) (ν2 + (J + 2)2/4)− ξ4
Ων,J(z) + (z → −z) , (4.20)

which is valid for arbitrary coupling ξ2. Here the last term on the right-hand side is needed

to restore the crossing symmetry of the amplitude. By virtue of (4.15), this amounts to

retaining the contribution of even spins J only. In the next section, we apply (4.20) to

compute the amplitude in the high-energy limit.

The following comments are in order.

It is not obvious a priori that the ν−integral in (4.20) is convergent. For real ξ2, the

integrand in (4.20) contains poles on the real ν−axis. For the ν−integral to be well-defined,

the coupling constant should have a nonzero imaginary part. The same property has been

previously observed in ref. [28] for the correlation function (4.3). It reflects the fact that,

as functions of the coupling constant, the various quantities in the conformal fishnet theory

(correlation functions, scattering amplitudes) have a branch cut for positive ξ4.

In addition, it follows from (4.17) that Ων,J(z) ∼ sinh2(πν)/ν2 at large ν and, therefore,

the ν−integral in (4.20) diverges at infinity for any given J . A close examination shows

however that the divergences cancel in the sum over all spins. This property can be made

manifest by applying the Watson-Sommerfeld transformation to (4.20),

A(z, ξ2) =

∫

C

dJ

2πi

8π2

sin(πJ)

∫ ∞

−∞

dν
21−J(J + 1)

(
(J + 1)2 + 4ν2

)
ν2

(ν2 + J2/4) (ν2 + (J + 2)2/4)− ξ4
Ων,J(z) + (z → −z) ,

(4.21)

where the integration contour C encircles the nonnegative integer J in an anti-clockwise

direction. Exchanging the order of integrations in (4.21) we verify using (B.10) that

the divergences at large ν are accompanied by the vanishing integrals of the form∫
C(dJ/ sin(πJ))(J + 1)1+2kUJ(z) = 0 (with k nonnegative integer).

The relation (4.21) is the main result of this paper. The representation (4.21) has a

striking similarity with the analogous expression for the high-energy asymptotics of the

off-shell amplitudes in the conformal Regge theory [35]. In distinction to the latter, the

relation (4.21) holds for on-shell amplitudes and in arbitrary kinematics. As we show in

the next section, in the high-energy limit, for z → ∞, the asymptotic behavior of the

amplitude (4.21) is governed by the Regge singularities of the integrand of (4.21) in the

complex J−plane. In this limit, the relation (4.21) agrees with the results of ref. [35].

4.3 Integral over ν

The integrand in (4.20) has poles in the ν−plane located at

h(ν, J) =

(
ν2 +

J2

4

)(
ν2 +

(J + 2)2

4

)
= ξ4 . (4.22)

This suggests to deform the integration contour in (4.20) and evaluate the ν−integral by

residues. Among the four solutions to (4.22), two are located in the lower half-plane. At
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weak coupling they are given by

ν2(J) = − iJ

2
+

iξ4

J(J + 1)
+O

(
ξ8
)
,

ν4(J) = − i

2
(J + 2)− iξ4

(J + 1)(J + 2)
+O

(
ξ8
)
, (4.23)

where the expansion runs in powers of ξ4. We recall that the solutions to (4.22) also define

the scaling dimensions (4.9) of the operators that contribute to the four-point correlation

function (4.8). The subscript in ν2(J) and ν4(J) refers to the twist of the exchanged

operators. Notice that the first relation in (4.23) is not well-defined for J = 0, The reason

for this is that ν ∼
√
ξ4 − J2/4 at small J so that (4.23) holds only for J ≫ ξ2. For J = 0

the first relation in (4.23) reads

ν2(0) = −ξ2 +
ξ6

2
+O

(
ξ10

)
. (4.24)

In distinction to (4.23), the weak-coupling expansion of ν2(0) involves only odd powers of

ξ2. In the next subsection, we exploit this property to determine the ξ2−odd part of the

amplitude (3.8). As was already mentioned, for the integral in (4.20) to be well-defined,

ξ2 should have a nonzero imaginary part. For Im ξ2 > 0 the pole (4.24) is located in the

lower half-plane.

Deforming the integration contour in (4.20) to the lower half-plane, we pick up the

residue at the poles ν2(J) and ν4(J) to obtain

A(z, ξ2) = −16iπ2
∑

J≥0

∑

ν=ν2(J),ν4(J)

21−J(J + 1)
(
(J + 1)2 + 4ν2

)
ν

(J + 1)2 + 4ν2 + 1
Ων,J(z)[1 + (−1)J ] .

(4.25)

Here, in a close analogy to (4.8), the sum runs over the states with an arbitrary (even)

Lorentz spin J and the scaling dimension ∆2 = 2 + 2iν2 and ∆4 = 2 + 2iν4.

There is however an important difference between (4.25) and (4.8). Arriving at (4.25)

we have interchanged the sum over spins with the integration over ν and, then, neglected the

contribution from large ν. In the case of the correlation function (4.8), this is justified by the

fact that the conformal block g∆,J(u, v) suppresses the contribution from large ∆ = 2+2iν.

For the scattering amplitude (4.25), the situation is different. The function Ων,J(z), being

an analog of the conformal block for the scattering amplitude, grows exponentially fast at

large ν for any given spin J . As a consequence, the sum over spins on the right-hand side

of (4.25) is not expected to be convergent for general z. The problem can be avoided by

using the Watson-Sommerfeld representation (4.21) instead.

4.4 Constant part of the amplitude

The relation (4.25) can be used to determine the constant, ξ2−odd part of the ampli-

tude (3.8)

A−(ξ
2) =

1

2

[
A(z, ξ2)−A(z,−ξ2)

]
. (4.26)
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As was shown in section 3.1, A−(ξ
2) only receives contributions from factorizable diagrams.

The same diagrams (but in off-shell kinematics) also contribute to the four-point correlation

function (4.8). They consist of a few irreducible subgraphs connected together through the

double-trace vertices (see e.g. (3.10)). These vertices are generated by the double-trace

interaction term tr(X2) tr(X̄2) which is given by the product of two conformal operators,

tr(X2) and tr(X̄2). As a consequence, the contribution of such diagrams to the correlation

function factorized in the planar limit into the product of three-point correlation functions

〈. . . tr(X2)〉〈tr(X̄2) . . .〉. In the OPE expansion (4.8), it contributes to the partial wave

with J = 0. Going through the LSZ procedure, we expect that the constant part A−(ξ
2)

should only arise from the J = 0 term in (4.25).

The contribution of the states with J = 0 to the scattering amplitude (4.25) is

A(z, ξ2)
∣∣∣
J=0

= −32i
∑

ν=ν2(0), ν4(0)

(
4ν2 + 1

)
sinh2(πν)

ν (2ν2 + 1)
, (4.27)

where we replaced Ων,0(z) by (B.1). Here ν2(0) and ν4(0) are solutions to (4.22) for J = 0

satisfying Im ν < 0,

ν2(0) = −

√√
4ξ4 + 1− 1
√
2

= −ξ2 +
ξ6

2
− 7ξ10

8
+O

(
ξ14

)
,

ν4(0) = −i

√√
4ξ4 + 1 + 1
√
2

= −i− iξ4

2
+

5iξ8

8
+O

(
ξ12

)
, (4.28)

where Im ξ2 > 0. Comparing the two expressions we observe that ν2 and ν4 are, respec-

tively, odd and even functions of ξ2 at weak coupling. As a result, between the two terms

in (4.27) only the one with ν = ν2(0) contributes to (4.26)

A−(ξ
2) = i

32
√
2
(
1− 2

√
4ξ4 + 1

)

√
4ξ4 + 1

√√
4ξ4 + 1− 1

sinh2


π

√√
4ξ4 + 1− 1
√
2


 . (4.29)

The second term in (4.27) with ν = ν4(0) contributes to the ξ2−even part of the ampli-

tude (3.8). In a similar manner, we can verify using (4.17) that the terms on the right-hand

side of (4.25) with J > 0 only contribute to A+(z, ξ
2).

The relation (4.29) gives the exact expression for the ξ2−odd part of the amplitude.

At weak coupling, it looks as

A− = 32iπ2

[
ξ2 +

(
3

2
+

π2

3

)
ξ6 +

(
−49

8
+

π2

6
+

2π4

45

)
ξ10

+

(
363

16
− 15π2

8
− π4

45
+

π6

315

)
ξ14 +O(ξ18)

]
. (4.30)

We verify that the first three terms inside the brackets are in perfect agreement with the

result of the explicit five-loop calculation (3.12). At strong coupling, for ξ ≫ 1, we find

from (4.29) that the amplitude grows exponentially A− ∼ −64 i eπξ /ξ.
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5 High-energy limit at arbitrary coupling

In this section, we extend the analysis of section 3.2 and determine the asymptotic be-

haviour of the scattering amplitude (4.21) in the high-energy limit s13 ≫ s12, or equiva-

lently z → ∞, for arbitrary coupling ξ2. In this limit, we can replace Ων,J(z) in (4.21) with

its leading asymptotic behaviour (4.16)

A = 8π

∫

C

dJ

2πi

π zJ

sin(πJ)

∫ ∞

−∞

dν
21−J(J + 1)

(
(J + 1)2 + 4ν2

)
ν2Qν,J

(ν2 + J2/4) (ν2 + (J + 2)2/4)− ξ4
+ (z → −z) , (5.1)

where Qν,J is given by (4.19) and the integration contour C encircles the nonnegative

integer J in anti-clockwise direction. Opening up the integration contour C and deforming

it to the left-half plane, we find that the singularity of the integrand at J = J0 produces

a contribution of the form A ∼ zJ0 . The leading large−z asymptotics of (5.1) comes from

the right-most singularity with the maximal Re J0.

5.1 Exact Regge trajectories

The integrand in (5.1) has two sets of Regge poles in the complex J−plane. The four poles

come from the denominator in (5.1). They satisfy (4.22) and are located at

J±
2 = −1 +

√
1− 4ν2 ± 4

√
ξ4 − ν2 ,

J±
4 = −1−

√
1− 4ν2 ± 4

√
ξ4 − ν2 , (5.2)

so that J±
2 +J±

4 = −2. In addition, there are poles at J = −2−n±2iν (with n = 0, 1, . . . )

coming from the function Qν,J defined in (4.19). They are located to the left of the

poles (5.2) and produce a subleading contribution to the amplitude.

Viewed as functions of the scaling dimension ∆ = 2 + 2iν of the exchanged states,

J±
2 and J±

4 define four Regge trajectories in the complex (∆, J)−plane. They can be

interpreted as different branches of the complex curve (4.22). An unusual property of the

functions (5.2), reflecting the lack of unitarity in the fishnet theory, is that the Regge

trajectories (5.2) collide in a pair-wise manner at ν2 = ξ4 and ν2 = −1/4± ξ2. As we show

below, the Regge trajectories (5.2) describe both the high-energy asymptotic behaviour of

the scattering amplitudes and the scaling dimensions of the ‘physical’ operators that enter

the OPE expansion of the correlation functions (4.8).

As was already mentioned, the dominant contribution to (5.1) in the high-energy limit

comes from the right-most Regge singularity. It is easy to see from (4.22) that the maximal

Re(J) is achieved at ν = 0, or equivalently ∆ = 2,

JR =
√
1 + 4ξ2 − 1 . (5.3)

It belongs to the trajectory J(ν) ≡ J+
2 (ν)

J(ν) = −1 +

√
1− 4ν2 + 4

√
ξ4 − ν2 , (5.4)
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which is, therefore, the leading Regge trajectory. The first subleading trajectory J−
2 (ν) has

the intercept J−
2 (0) =

√
1− 4ξ2−1, it takes negative values for ξ2 > 0 and satisfies J−

2 (0) <

JR. Evaluating the residue of (5.1) at J = J(ν) and replacing Qν,J with (4.19) we find

A(z,ξ2)=−32π

∫ ∞

−∞

dν ν sinh(2πν)Γ(J−2iν+2)Γ(J+2iν+2)(z/2)J(ν)

sin(πJ)(J(J+2)+4ν2) [Γ
(
J
2 − iν+1

)
Γ
(
J
2 + iν+1

)
]2
+(z→−z) ,

(5.5)

where J = J(ν) is given by (5.4). This relation describes the high-energy asymptotics of

the amplitude for arbitrary coupling. We show in section 5.3 that, at weak coupling, the

relation (5.5) is in agreement with the five-loop calculation presented in section 3.2.

The dependence on ξ2 enters into (5.5) through the Regge trajectory (5.4). At small

ν, it scales as

J(ν) = JR − ν2
(
2ξ2 + 1

)

ξ2
√
4ξ2 + 1

+O
(
ν4
)
. (5.6)

As a consequence, the leading contribution to (5.5) comes from the integration in the

vicinity of ν = 0

A(z, ξ2) ∼
∫

dν ν2zJ(ν) ∼ zJR

(ln z)3/2
, (5.7)

where JR is given by (5.3). Since JR > 0 for ξ2 > 0, the amplitude (5.7) grows as z → ∞.

The relation (5.7) holds in the high-energy limit z → ∞ for arbitrary coupling ξ2. At

weak coupling, JR =
√
1 + 4ξ2 − 1 = 2ξ2 + O(ξ4) and the relation (5.7) agrees with the

high-energy limit of the amplitude in the leading-logarithmic approximation (3.20). At

strong coupling, we find from (5.3) that JR = 2ξ−1+O(1/ξ), leading to A ∼ z2ξ/(ln z)3/2.

5.2 Scaling dimensions

The same equation h(ν, J) = ξ4 defines the scaling dimensions of the local operators (4.9)

and the position of the Regge poles (5.2). An important difference, however, is that the

Lorentz spin J is integer and ν is complex for the former, whereas J is complex and ν is

real for the latter. This suggests that the scaling dimensions can be found by analytically

continuing the Regge trajectories (5.2) in the complex ν−plane.

At weak coupling we get from (5.2)

J+
2 = ∆− 2 +

2ξ4

(∆− 1)(∆− 2)
+O(ξ8) ,

J−
4 = ∆− 4− 2ξ4

(∆− 2)(∆− 3)
+O(ξ8) , (5.8)

where ∆ = 2 + 2iν. Inverting these relations we find the corresponding scaling dimen-

sions [28]

∆2 = 2 + J − 2ξ4

J(J + 1)
+O(ξ8) ,

∆4 = 4 + J +
2ξ4

(J + 2)(J + 3)
+O(ξ8) . (5.9)

– 18 –



J
H
E
P
0
8
(
2
0
1
9
)
0
2
8

-6 -4 -2 2 4 6
Re( ) - 2

1

2

3

4

5

J

Figure 3. The Regge trajectories for different values of the coupling: ξ2 = 0 (dashed lines),

ξ2 = 0.75 (black lines) and ξ2 = 4 (red lines). The scaling dimensions of local operators correspond

to nonnegative even J and satisfy Re∆ ≥ 2.

They describe the operators of twist two and four, respectively. The remaining two trajec-

tories, J+
4 and J−

2 , can be obtained from (5.8) by replacing ∆ → 2−∆, as they correspond

to shadow operators.

The Regge trajectories (5.2) are shown in figure 3. The local conformal operators carry

nonnegative even spin J and their scaling dimensions satisfy the condition Re∆ ≥ 2.9 For

given coupling ξ2, the upper and lower trajectories of the same color in figure 3 describe

operators with twist two and twist four, respectively. The former trajectory crosses the line

∆ = 2 at J = JR with JR being the leading Regge singularity (5.3). For J < JR the scaling

dimension of twist-two operators develops a square-root branch cut ∆2 − 2 ∼ √
J − JR.

5.3 Leading logarithmic approximation and beyond

We have shown in section 3.2 that the perturbative corrections to the scattering amplitude

at weak coupling are enhanced by powers of ln z. Such corrections can be organized by

considering the limit L = ξ2 ln(z/2) = fixed as ξ2 → 0. In this limit, the amplitude is

given by a series in ξ2 with the coefficients depending on L. The first term of the expan-

sion corresponds to the leading logarithmic approximation (3.18). In this subsection, we

apply (5.1) to reproduce (3.18) and to systematically derive the subleading logarithmically

enhanced terms.

In the high-energy limit z → ∞, we shift the integration contour over J in (5.1)

to the left and pick up the residues at the Regge poles (5.2). Then, the logarithmically

enhanced terms arise from the expansion of zJ
±

t (with t = 2, 4) at weak coupling. We

verify that for ν = O(ξ2), the Regge trajectories (5.2) scale as J±
2 = O(ξ2) and J±

4 =

9Because the theory is non unitary, scaling dimensions can take complex values [36].
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−2 + O(ξ2). Therefore, the leading contribution to the amplitude comes only from the

twist-two trajectories J±
2 . Notice that the functions J+

2 and J−
2 coincide at ν2 = ξ4 and

develop a square-root branch cut for ν2 > ξ4. The cut disappears in the sum of the

contributions of the two trajectories, so that the amplitude is analytic in ν. Deforming the

integration contour over ν in (5.1), we can obtain after some algebra

A(z, ξ2) =

∫ ξ2

−ξ2
dν

[
F (ν, J+)(z/2)

J+ − F (ν, J−)(z/2)
J−

]
+ (z → −z) , (5.10)

where J± ≡ J±
2 (ν) is the Regge trajectory (5.2) and we introduced

F (ν, J) = − 32πν sinh(2πν)Γ(J − 2iν + 2)Γ(J + 2iν + 2)

sin(πJ) (J(J + 2) + 4ν2) [Γ (J/2− iν + 1)Γ (J/2 + iν + 1)]2
. (5.11)

We would like to emphasize that the relation (5.10) describes all the logarithmically en-

hanced contributions to the amplitude of the form (ξ2)k+1(ln z)n (with n ≤ k) and it

holds up to corrections suppressed by powers of 1/z. In comparison with (5.5), the inte-

gration in (5.10) goes over a finite interval ν2 < ξ4. Notice that, in distinction to (5.7),

the relation (5.10) receives contributions from both twist-two trajectories. Indeed, for

L = ξ2 ln(z/2) = fixed and ξ2 → 0 both terms zj+ and zj− generate powers of L, whereas

in the Regge limit, for z → ∞ and ξ2 = fixed, the latter is suppressed.

It is convenient to change the integration variable in (5.10) to ν = ξ2
√
1− x2. Then,

introducing the notation for

j(x) =
(√

1 + 4ξ2x+ 4ξ4 (x2 − 1)− 1
)
/ξ2 ,

f(x) = F (ξ2
√

1− x2, ξ2j(x)) , (5.12)

we find from (5.10)

A(z, ξ2) = 2ξ2
∫ 1

0

dxx√
1− x2

[f(x) eLj(x)−f(−x) eLj(−x)] + (z → −z)

= 2ξ2
∫ 1

−1

dxx√
1− x2

f(x) eLj(x)+(z → −z)

= iξ2
∮

[−1,1]

dxx√
x2 − 1

f(x) eLj(x)+(z → −z) , (5.13)

where L = ξ2 ln(z/2) and the integration contour in the last relation encircles the interval

[−1, 1] in an anticlockwise direction.

We can apply (5.13) to determine the logarithmically enhanced corrections to the

scattering amplitude at weak coupling to any order in ξ2. The integral in (5.13) can be

easily evaluated by residues. A close examination shows that at small ξ2 the integrand

in (5.13) has poles at x = 0 and x → ∞. The former pole arises due to xf(x) ∼ 1/(x+ ξ2)

as ξ2 → 0. Because ξ2 has a nonzero imaginary part, it is located outside the integration

contour. Blowing up the integration contour in (5.13), we find

A(z, ξ2) = A+ +A− + (z → −z) , (5.14)
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where A+ and A− are given by the residues at x = 0 and x → ∞, respectively,

A+=16iπ2

[
ξ2+ξ6

(
3

2
+
π2

3

)
+ξ10

(
−49

8
+
π2

6
+
2π4

45

)
+O

(
ξ14

)]
,

A−=16π2

[
−(ℓ+1)ξ4−

(
ℓ3

6
+
π2

2
ℓ+4ζ3−3

)
ξ8−

(
ℓ5

60
− ℓ4

12
+
π2

9
ℓ3 (5.15)

+

(
ζ3−

π2

3

)
ℓ2+

(
17π4

180
−2ζ3

)
ℓ−12ζ5+

5π2ζ3
3

− 17π4

180
− 2π2

3
+12

)
ξ12+O

(
ξ16

)]
,

with ℓ = ln(z/2). We verify that these relations are in perfect agreement with the result

of the five-loop calculation (3.12) and (3.16).

As the next step, we expand the integrand of (5.13) in powers of ξ2 with L =

ξ2 ln(z/2) = fixed to obtain

A−(z, ξ
2) = −16π2

[
ξ2ALLA(L) + ξ4ANLA(L) + ξ6AN2LA(L) +O(ξ8)

]
, (5.16)

where the first term on the right-hand side describes the leading logarithmic approximation,

the second one is the next-to-leading approximation etc. The functions ANkLA(L) take the

following form

ANkLA =
1

π
−
∫ 1

−1

dx

xk+1

√
1− x2 e2Lx a2k(x, L) + (z → −z) , (5.17)

where the integral is defined using the principal value prescription and a2k(x, L) are poly-

nomials in x of degree 2k with coefficients depending on L

a0 = 1 ,

a2 = 4x2 − 2Lx+ 1 ,

a4 = 2L2x2 − 2L
(
2x3 + x

)
+

1

3

(
2x2 + 1

) (
π2x2 + 3

)
, . . . (5.18)

Substituting the first relation into (5.17) we arrive at (3.18). As before, the integral in (5.17)

can be evaluated by converting it into a contour integral encircling the interval [−1, 1] and

taking the residue at infinity. In this way, we apply (5.17) and (5.18) to derive higher order

corrections to the scattering amplitude, e.g. (see footnote 8)

ANLA =
∑

n≥0

L2n (n− 1)

n!(n+ 1)!
,

AN2LA = −
∑

n≥0

L2n+1

(
2n(n− 1)(n+ 2) + π2(n+ 1)

)

(2n+ 1)n!(n+ 2)!
, . . . (5.19)

It would be challenging to reproduce these relations by a direct calculation of the Feynman

diagrams shown in figure 2.
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6 Conclusions

In this paper, we have computed four-particle scattering amplitudes in the conformal fish-

net theory. This theory arises as a special limit of the γ−deformed N = 4 SYM and

it inherits the remarkable integrability properties of the latter theory. In distinction to

N = 4 SYM, the four-particle amplitudes in the fishnet theory are free from infrared di-

vergences in the leading large-N limit and enjoy (unbroken) conformal symmetry. The

single-trace amplitude is protected from quantum corrections in the planar limit whereas

the double-trace amplitude is a nontrivial function of a single variable given by the ratio

of the independent Mandelstam invariants. At weak coupling, we computed this function

at five loops by applying the conventional Feynman diagram technique. We demonstrated

that, in the high-energy limit, the double-trace amplitude has a Regge like asymptotic

bevaviour and computed the corresponding leading Regge trajectory.

The main advantage of the fishnet theory as compared with N = 4 SYM is that, due

to the particular (chiral) form of the quartic scalar interaction, it allows for finding the

exact expression for the four-point correlation function of the scalar fields in the leading

large-N limit. Applying the LSZ reduction formula to this correlation function, we derived

a new representation for the double-trace amplitude (4.11) as a sum over conformal partial

waves. It follows from the analogous expansion of the correlation function over the confor-

mal blocks and involves a new ingredient — the conformal polynomial (4.17). We applied

this representation to find the exact expression for the ξ2−odd part of the double-trace

amplitude (4.29). For the ξ2−even part of the amplitude, we examined its asymptotic

behavior in the high-energy limit and found the exact expressions for the corresponding

Regge trajectories. At weak coupling, the expressions obtained are in perfect agreement

with the result of the five-loop calculation. At strong coupling, the leading Regge singular-

ity scales as O(
√
ξ2). It would be interesting to reproduce the same behaviour using the

dual description of the conformal fishnet theory [37].

The representation (4.11) relies on conformal symmetry, and should be applicable to

the four-particle amplitudes in N = 4 SYM beyond the planar limit. More precisely,

the latter amplitudes suffer from IR divergences and satisfy anomalous conformal Ward

identities. The homogenous solution to these identities should admit the representation

similar to (4.11). It may also shed light on the properties of nonplanar amplitudes in N = 4

SYM. It would be interesting to apply (4.11) to the three-loop result for the four-gluon

scattering amplitude in N = 4 SYM derived in ref. [38].

It would also be interesting to extend the above consideration to higher-point ampli-

tudes in the fishnet theory. Due to the nonzero total U(1) × U(1) charge, the amplitudes

with an odd number of scalars vanish. The simplest six-point amplitude is of special inter-

est — the analogous amplitude in planar N = 4 SYM is dual to a hexagon light-like (super)

Wilson loop and has a number of remarkable properties. In the fishnet theory, the planar

six-particle amplitude is given by a single tree-level diagram [18, 19]. As a consequence,

similar to the four-particle case, the single-trace contribution to the six-particle amplitude

is protected from quantum corrections in the planar limit. The leading-color contribution

to the double- and triple-trace partial amplitudes can be obtained by applying the LSZ

– 22 –



J
H
E
P
0
8
(
2
0
1
9
)
0
2
8

reduction procedure to a six-point correlation function of scalar fields. In the fishnet the-

ory, this correlation function can be expanded over the conformal partial waves in different

OPE channels.
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A Conformal basis in momentum space

In this appendix we apply the LSZ reduction formula (4.10) and derive (4.13). The rela-

tion (4.10) involves the function Φν,J(x10, x20) introduced in (4.5). It can be identified as

the three-point correlation function

Φν,J(x10, x20) = 〈X(x1)X(x2)O∆,J(x0)〉 , (A.1)

where O∆,J(0) is the primary operator with the scaling dimension ∆ = 2+2iν and Lorentz

spin J . Its Fourier transform defines the off-shell form factor

Fν,J(p1, p2) =

∫
d4x1d

4x2 e
ip1x1+ip2x2 Φν,J(x1, x2) =

J∑

k=0

(−1)J−k

(
J

k

)
Ik,J−k , (A.2)

where p2i 6= 0 and the notation was introduced for

Ik1,k2 =

∫
d4x1d

4x2 e
ip1x1+ip2x2

(x212)
1−t/2(x21x

2
2)

t/2

[
2(nx1)

x21

]k1 [2(nx2)
x22

]k2
, (A.3)

with t = ∆− J and J = k1 + k2.

We expect that for p21, p
2
2 → 0 the integral develops a double pole Ik1,k2 ∼ 1/(p21p

2
2).

Indeed, Ik1,k2 admits the Mellin-Barnes representation

Ik1,k2 = (inp1)
k1(inp2)

k2ck1k2

∫
dj1dj2
(2πi)2

(
p21
4

)j1(p22
4

)j2 (−s12/4)
−j1−j2+t/2−3

Γ (J + t/2− 1)
Γ(−j1)Γ(−j2)

× Γ (−j1 − 1) Γ (−j2 − 1) Γ (−t/2 + j1 + j2 + 3)Γ (J + t/2 + j1 + j2 + 1), (A.4)

where ck1k2 = π4/(Γ(1− t/2)Γ(t/2 + k1)Γ(t/2 + k2)) and s12 = (p1 + p2)
2. The double

pole 1/(p21p
2
2) arises as the contribution of the poles at j1 = j2 = −1

Ik1,k2 =
(2π)4

p21p
2
2

(−s12/4)
t

2
−1 (inp1)

k1(inp2)
k2

Γ(t/2 + k1)Γ(t/2 + k2)
+ . . . (A.5)
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where the dots denote subleading terms. Together with (A.2) this leads to

Fν,J(p1, p2) =
(2π)4

p21p
2
2

Φ̃ν,J(p1, p2) + . . . (A.6)

where Φ̃ν,J(p1, p2) is given by

Φ̃ν,J(p1, p2) = (−s12/4)
t

2
−1

J∑

k=0

(−1)J−k

(
J

k

)
(inp1)

k(inp2)
J−k

Γ(t/2 + k)Γ(t/2 + J − k)
, (A.7)

with t = ∆−J = 2+2iν−J . The sum on the right-hand side of (A.7) can be expressed in

terms of Gegenbauer polynomials leading to (4.13). The function (A.7) has the meaning

of an on-shell form factor, Φ̃ν,J(p1, p2) = 〈p1, p2|O∆,J(0)|0〉.
As a check, we examine (A.7) for ν = −iJ/2, or equivalently for ∆ = 2 + J

Φ̃ν=−iJ/2,J(p1, p2) =
iJ

J !
(ξ1 + ξ2)

JPJ

(
ξ1 − ξ2
ξ1 + ξ2

)
. (A.8)

The corresponding conformal operator O∆,J with scaling dimension ∆ = 2 + J can be

constructed in the free theory from two scalar fields and J light-cone derivatives. It takes

the well-known form (see e.g. ref. [39])

O∆=J+2,J(0) =
1

J !
(∂1 + ∂2)

JPJ

(
∂2 − ∂1
∂2 + ∂1

)
X̄(x1)X̄(x2)

∣∣∣
x1=x2=0

, (A.9)

where ∂i = (n∂xi
). It is easy to see that its on-shell matrix element is given by (A.8).

B Conformal polynomial

To compute the function Ων,J(z) defined in (4.12), we apply (4.14) and (A.7) to construct

two completely symmetric traceless tensors, Φ̃µ1...µJ

ν (p1, p2) and Φ̃µ1...µJ

−ν (p3, p4), and, then,

substitute them into (4.12). For J = 0 we have

Ων,0(z) = Φ̃ν,0(p1, p2)Φ̃−ν,0(p3, p4) =
sinh2(πν)

(πν)2
. (B.1)

For J ≥ 1, the function Ων,J(z) has the general form (4.16).

We can find the leading term in (4.16) by considering (4.12) in the limit p1 → −p2
and p3 → −p4, or equivalently s12 → 0 and s13 = fixed. In this limit z → ∞ and

Ων,J(z) ∼ Qν,Jz
J . For p2 → −p1 we can safely replace (np2) → −(np1) in (A.7) to get

Φ̃µ1...µJ

ν (p1, p2) = iJ(−s12/4)
iν−J/2 2J+2iνΓ

(
1
2(J + 2iν + 1)

)
√
πΓ(2iν + 1)Γ

(
J
2 + iν + 1

)pµ1
1 . . . pµJ

1 + . . . (B.2)

and similar for Φ̃µ1...µJ

−ν (p3, p4). Then, we use this relation to find from (4.12)

Ων,J(z) = zJ
sinh(2πν)Γ(J − 2iν + 1)Γ(J + 2iν + 1)

2πν[Γ
(
J
2 − iν + 1

)
Γ
(
J
2 + iν + 1

)
]2

+ . . . , (B.3)

where z ∼ 2s13/s12. The coefficient in front of zJ can be identified as Qν,J , see eq. (4.19).
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To find Ων,J(z) for arbitrary z, we introduce the completely symmetric traceless tensor

Tµ1...µJ

k (p1, p2) satisfying the defining relation

Tµ1...µJ

k (p1, p2)nµ1 . . . nµJ
= (−1)J−k(np1)

k(np2)
J−k

(
J

k

)
, (B.4)

where p2i = 0 and nµ is an auxiliary light-like vector. Then, we obtain from (A.7) and (4.14)

Φ̃µ1...µJ

ν (p1, p2) = iJ(−s12/4)
t

2
−1

J∑

k=0

Tµ1...µJ

k (p1, p2)

Γ(t/2 + k)Γ(t/2 + J − k)
. (B.5)

Substituting this relation into (4.12) we get

Ων,J(z) = (s12/4)
−J

J∑

k,m=0

Tµ1...µJ

k (p1, p2)T
µ1...µJ

m (p3, p4)

Γ(t/2 + k)Γ(t/2 + J − k)Γ(t̄/2 +m)Γ(t̄/2 + J −m)
, (B.6)

where t = ∆− J = 2− J + 2iν and t̄ = 2− J − 2iν.

To evaluate the product of two tensors in the numerator of (B.6) we apply the identity

fJ(k1, k2) = (kµ1
1 . . . kµJ

1 − traces)(kµ1
2 . . . kµJ

2 − traces) =

(
k21k

2
2

4

)J/2

C1
J (cosh θ) , (B.7)

where C1
J is the Gegenbauer polynomial and cosh θ = (k1k2)/(k

2
1k

2
2)

1/2. Replacing

k1 = z1p1 − p2 and k2 = z3p3 − p4 we can expand fJ(k1, k2) in powers of zi. As fol-

lows from (B.4), the corresponding expansion coefficients are given by the product of two

tensors that appears in (B.6)

fJ(z1p1 − p2, z3p3 − p4) =
J∑

k,m=0

zk1z
m
3 Tµ1...µJ

k (p1, p2)T
µ1...µJ

m (p3, p4) . (B.8)

Matching the expressions on the right-hand side of the last two relations, we can find

Tµ1...µJ

k (p1, p2)T
µ1...µJ

m (p3, p4) and, then, evaluate (B.6) for any given J . In this way we

obtain

Ων,1 = − 4z cosh2(πν)

π2 (ν2 + 1/4)
,

Ων,2 =
4 sinh2(πν)

(
4ν2z2 + z2 − ν2

)

π2ν2 (ν2 + 1)
. (B.9)

For J > 2 we found with some guesswork that the resulting expression for Ων,J(z) is given

by (4.17).

Let us examine the properties of Ων,J(z) in the complex ν−plane. Each term in the

sum (4.17) has a pole at ν = ±i(J/2−k). It is compensated however by sinh2(πν+ iπJ/2)

so that Ων,J(z) is an analytical function of ν. At large ν, we find from (4.17) that Ων,J(z)

grows exponentially fast

Ων,J(z)/2
J ∼ sinh2(πν)

(πν)2

J∑

k=0

Pk(z)PJ−k(z) =
sinh2(πν)

(πν)2
UJ(z) , (B.10)

where UJ(z) is Chebyshev polynomial of the second kind.
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C Leading logarithmic approximation

In the high-energy limit z = 1 + 2s13/s12 ≫ 1, the scattering amplitude is enhanced by

powers of logarithms (see eqs. (3.12) and (3.16))

A = 16π2
∞∑

n=0

ξ4n+4
[
an ln

2n+1(z/2) + bn ln
2n(z/2) + . . .

]
. (C.1)

In the leading logarithmic approximation, for z → ∞ and L = ξ2 ln(z/2) fixed, we can

retain terms proportional to an.

To find the leading coefficients an, we examine the discontinuity of the amplitude with

respect to s13

discs13A = 16π2
∞∑

n=0

ξ4n+4
[
(2n+ 1)an ln

2n(z/2) + . . .
]
. (C.2)

It is easy to see from (3.11) that the discontinuity receives a contribution from ladder

diagrams. The remaining factorizable diagrams involving double-trace vertices do not

depend on s13 and do not contribute to (C.2). In this way, we obtain

discs13 A =
∑

n ...
...

1 2

3 4

ℓ1

ℓ2

ℓn

q + ℓ1

q + ℓ2

q + ℓn

(C.3)

where the dashed line denotes the unitary cut and q = p1+p2 is the momentum transferred

in the t−channel.

Computing the discontinuity we assume that s13 > 0 and s12 = q2 < 0 (we recall that

all the external on-shell momenta are incoming). The contribution of the diagram in (C.3)

involves the Feynman integral

∫ n∏

k=1

d4ℓk
(2π)4

1

ℓ2k(q + ℓk)2
ρ(ℓ1 + p1)ρ(ℓ2 − ℓ1) . . . ρ(ℓn − ℓn−1)ρ(p3 − ℓn) , (C.4)

which is finite inD = 4 dimensions and does not require regularization. Here ρ(K) describes

the cut scalar loop and K is the total incoming momentum. It is given by the discontinuity

of the function π(s = K2) defined in (C.5)

ρ(K) = discK2

∫
d4−2ǫℓ

i (2π)4−2ǫ

1

ℓ2(K − ℓ)2
=

1

16π
θ(K2)θ(K0) . (C.5)

The conditions K2 > 0 and K0 > 0 impose restrictions on the loop momenta in (C.4).
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To define the integration region in (C.4) it is convenient to introduce a Sudakov pa-

rameterization of the loop momenta

ℓi = −αip1 + βip3 + ℓi,⊥ ,

∫
d4ℓi = s13

∫
dα dβ d2ℓi,⊥ , (C.6)

where ℓi,⊥ is a two-dimensional Euclidean vector orthogonal to p1 and p3. The following

relations hold

ℓ2i = −s13αiβi − ~ℓ2i,⊥ , (ℓi − ℓj)
2 = −s13(αi − αj)(βj − βi)− ~ℓ2ij,⊥ ,

(p1 + ℓ1)
2 = s13(1− α1)β1 − ~ℓ21,⊥ , (p3 − ℓn)

2 = s13αn(1− βn)− ~ℓ2n,⊥ , (C.7)

where ~ℓ2ij,⊥ = (~ℓi,⊥−~ℓj,⊥)
2. The integration over the Sudakov variables in (C.6) is restricted

to the region 1 > α1 > · · · > αn > 0 and 1 > βn > · · · > β1 > 0 subject to the conditions

(ℓi − ℓj)
2 > 0, (p1 + ℓ1)

2 > 0 and (p3 − ℓn)
2 > 0.

An additional simplification arises in the high-energy limit s13 ≫ s12. In this limit,

in the leading logarithmic approximation, the dominant contribution to (C.4) comes from

the integration over the strongly ordered Sudakov variables [32]

s12/s13 ≪ αn ≪ · · · ≪ α1 ≪ 1 , s12/s13 ≪ β1 ≪ · · · ≪ βn ≪ 1 , (C.8)

and ~l2i,⊥ = O(s12). Since q2 = s12 ≪ s13 in the high-energy limit, we can safely replace

the scalar propagators (q+ ℓk)
2 in (C.4) with ℓ2k. Then, the integration over the transverse

momenta ℓi,⊥ in (C.4) yields
∫

dα1dβ1
α1β1 +m2/s13

· · ·
∫

dαndβn
αnβn +m2/s13

, (C.9)

where αi and βi satisfy (C.8) and m2 = O(s12) plays the role of an IR cut-off. The integral

can be evaluated using the Mellin-Barnes representation

∫ −δ+i∞

−δ−i∞

dj1
2πi

π

sin(πj1)
. . .

djN
2πi

π

sin(πjn)
(m2/s13)

j1+···+jn

×
∫ 1

0
dα1α

−1−j1
1 · · ·

∫ αn−1

0
dαnα

−1−jn
n

∫ 1

0
dβnβ

−1−jn
n · · ·

∫ β2

0
dβ1β

−1−j1
1 (C.10)

Closing the integration contour to the right-half plane and evaluating the residue at ji =

0 we find the leading asymtotic behavior for m2/s13 → 0 as ln2n(s13/m
2)/(n!(n + 1)!).

Comparing with the expression inside the brackets in (C.2) we deduce that

an =
1

(2n+ 1)n!(n+ 1)!
. (C.11)

To find the subleading coefficients in (C.1), one has to relax the condition of strong or-

dering of the Sudakov variables (C.8). The expressions for these coefficients can be read

from (5.19).
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