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1 Introduction

Conformal Field Theories (CFTs) have brought about great breakthroughs for theoretical

physics. In particular, if one focuses on two-dimensional CFTs, one realizes that CFTs are

highly constrained by the Virasoro symmetry and, therefore, in two-dimensions, CFTs are

specified by only a central charge, a spectrum of primary states, and their OPE coefficients.

Once these data are known, one can evaluate correlators on any Riemann surface without

boundaries. Moreover, such CFT data are constrained by the crossing symmetry, which

leads to the conformal bootstrap equation [3–6]. Recently, CFTs have been attracting

much attention in the scientific community as tools to probe AdS gravities in the context

of the AdS/CFT duality.

For both the conformal bootstrap and the AdS/CFT duality, conformal blocks provide

important contributions [7–12]. In particular, in AdS3/CFT2, the semiclassical Virasoro

blocks have been used to probe information loss, which appears in CFT2 as forbidden

singularities and exponential decay at late times [13–16]. Furthermore, those semi-classical

blocks can be computed in the dual AdS3 gravity [17–20], which means that the conformal

blocks themselves have some gravity interpretation. Some other progress attributed to

conformal blocks include the study of the dynamics of the Renyi entropy [1, 21, 22] and

out-of-time-ordered correlators (OTOCs) [23]. (See also [24–32] for further developments

in this direction.)

Although there have been a lot of studies about conformal blocks, we have not reached

a perfect understanding of them. Even if we restrict ourselves to large c CFTs, there

is no closed expression for the conformal blocks, except for the case of special limits.

Nevertheless, in our recent works [1, 2], we numerically find simple expressions for large c

conformal blocks by using the Zamolodchikov recursion relation [33, 34]. We particularly
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study the Virasoro block for the correlator 〈OB(∞)OB(1)OA(x)OA(0)〉 in the OA(x)OA(0)

OPE channel, in which

FAABB(hp|x) ≡ ,

which we call AABB blocks, and work out the asymptotic behavior of the large c blocks,

1. light-light region: hA, hB < c
32

logFAABB(hp|x) (1.1)

−−−→
x→1

−c−1

12

(
1−
√

1− 24

c−1
hA

)(
1−
√

1− 24

c−1
hB

)
log (1−x)+O(log log(1−x))

2. heavy-heavy region: hA, hB > c
32

logFAABB(hp|x) −−−→
x→1

(
c− 1

24
− hA − hB

)
log (1− x) +O(log log(1− x)). (1.2)

Note that in the heavy-light region (hA > c
32 , hB < c

32 or hA < c
32 , hB > c

32), we cannot

obtain the asymptotics of the conformal blocks from our recent results [1, 2] due to technical

difficulties.

However, for ABBA blocks defined below, there is no difficulty in the evaluation of

asymptotics, and we can obtain them for the conformal blocks in the whole region,

FBABA (hp|x) ≡ ,

and as a result, we find

1. heavy-light region: hA < hB and hA <
c

32

logFBABA (hp|x)−−−→
x→1

(
4hA−2hB−

c−1

6

(
1−
√

1− 24

c−1
hA

))
log(1−x)+O(log log(1−x)).

(1.3)

2. heavy-light region: hB < hA and hB < c
32

logFBABA (hp|x)−−−→
x→1

(
2hB−

c−1

6

(
1−
√

1− 24

c−1
hB

))
log(1−x)+O(log log(1−x)).

(1.4)
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3. heavy-heavy region: hA, hB > c
32

logFBABA (hp|x) −−−→
x→1

(
c− 1

24
− 2hB

)
log (1− x) +O(log log(1− x)). (1.5)

The key point here is that a transition of the blocks along the lines hA, hB = c
32 was

unknown before our recent studies [1, 2]. However, these studies rely only on numerical

calculations, therefore, there is no framework for further understanding of how this tran-

sition occurs. The aim of this paper is to analytically derive (1.3) ∼ (1.5) (and also (1.1)

and (1.2)). In particular, our objective is to analytically understand the mechanism of

the transition at c
32 . The key to achieving this is to use the Zamolodchikov monodromy

method [33, 35], which is one of methods used to derive the large c conformal blocks with

heavy intermediate states. The original one gives only the blocks with very heavy inter-

mediate states (hp � c), but many improvements that are currently derived from it are

introduced and can be used to estimate the blocks within various limits. In this paper, we

study this monodromy method in the limit x → 1, which is similar to the method used

in [16].1 As a result, we perfectly reproduce our previous numerical results (1.3) ∼ (1.5)

(and also (1.1) and (1.2)) in the large c limit. Particularly, we analytically confirm the

existence of the transition at c
32 . Our numerical works [1, 2] and this analytic work ro-

bustly suggest that the large c conformal blocks undergo a transition. In the bulk, we can

interpret it as a remarkable transition of the collision behavior between two particles.

In [1, 2], we conjecture that the asymptotic solutions to the Zamolodchikov recursion

relation can be given by a simple expression in the form of a Cardy-like formula. This work

can be thought of as one of analytic proof of this conjecture.

The outline of this paper is as follows. In section 2, we begin with the monodromy

method introduced by Zamolodchikov and derive the monodromy equation, the solutions

of which give the conformal blocks. In section 3, we solve the monodromy equation in

the vicinity of the singular point x = 1 and, thereby, we analytically give the asymptotic

expression of the conformal blocks conjectured in our recent work and also reveal the

mechanism of the transition at hA,B = c
32 for ABBA blocks in section 4. In section 5, we

explain how our results lead to the solutions to the Zamolodchikov recursion relation. In

section 6, we study the conformal blocks with heavy intermediate states by using the same

method and obtain the universal formula for the heavy-light-light OPE coefficients in large

c CFTs. We conclude with a discussion of our results in section 7.

2 Standard monodromy method

In this section, we will explain the original monodromy method introduced by Zamolod-

chikov [33]. More details about this method can be found in the review [35, 36].

1We have to mention that they derive the equation (3.13) for the special blocks, HHLL blocks, but in

this paper, we give the equation for the most general blocks. Below (3.13), they consider the late Lorentzian

time limit, which is given by encircling the singular point infinite times. This limit is different from the

limit z → 1 without picking up a monodromy, which we are considering in this paper. As a result, we find

the transition that we want.
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In this section, we will use the notation,

F jikl(hp|x) ≡ ,

and we define c = 1 + 6
(
b+ 1

b

)2
, where the large c limit corresponds to b→ 0.

1. Null ordinary differential equation (ODE).

The degenerate primary operator Ψ with the dimension −1
2 −

3
4b

2 leads to the ODE,[
1

b2
∂2
z+

4∑
i=1

(
hi

(z−zi)2
+

1

z−zi
∂i

)]
〈O4(z4, z̄4)O3(z3, z̄3)Ψ(z, z̄)O2(z2, z̄2)O1(z1, z̄1)〉= 0,

(2.1)

where we set (z1, z2, z3, z4)→ (0, x, 1,∞).

2. ODE for each intermediate state.

Under some appropriate assumptions, which are reasonable in large c CFTs, the

ODE (2.1) leads to one ODE for each intermediate state Op in the OPE O1O2 as[
∂2
z +

4∑
i=1

(
δi

(z − zi)2
− Ci
z − zi

)]
Ψp = 0, (2.2)

where δi = b2hi and

〈O4O3ΨOp〉 ≡ Ψp(z, z̄; zi, z̄i)〈O4O3Op〉. (2.3)

At this stage, we cannot determine Ci, which is called accessory parameter. This

parameter is related to the conformal block as

C2 = ∂xfcl, (2.4)

where we assume that the large c conformal blocks have the following form:

F21
34 (hp|x) ∼ e−

c
6
fcl , (2.5)

which is supported by the Liouville CFT [13].

3. Ward-Takahashi identity.

The second term of (2.2) can be understood as b2 multiplied by the semiclassical

expectation value of the stress tensor from the Ward-Takahashi identity. This leads

to the following ODE:[
∂2
z +

δ1

z2
+

δ2

(z − x)2
+

δ3

(1− z)2
+
δ1 + δ2 + δ3 − δ4

z(1− z)
− C2x(1− x)

z(z − x)(1− z)

]
Ψp = 0.

(2.6)
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4. WKB approximation.

By using the WKB approximation in the limit δp →∞, we can solve the ODE (2.6),

Ψp ∼ exp

[
±
√
x(1− x)C2

∫ z

z0

dz′√
z′(1− z′)(z′ − x)

]
. (2.7)

5. Monodromy equation.

From the usual CFT discussion for degenerate operators, we obtain the OPE between

Op and Ψ as

(z − z1)
1
2

(
1±
√

1−4b2hp
)
, (2.8)

therefore, the monodromy matrix of Ψp as z circles both x and z1 (see figure 1) in

this basis is straightforwardly given by

M =

 e
iπ
(

1+
√

1−4b2hp
)

0

0 e
iπ
(

1−
√

1−4b2hp
)
 . (2.9)

The solution (2.7) needs to have the above monodromy, which leads to the following

monodromy equation:

C2 ' −
π2b2hp

x(1− x)K(x)2
. (2.10)

6. Semiclassical conformal block.

Using the relation

C2 = ∂xfcl, (2.11)

we can obtain the conformal blocks as

F21
34 (hp|x) = (16q)hp , q(x) = e

−πK(1−x)
K(x) . (2.12)

Including the higher order leads to the well-known semi-classical block,

F21
34 (hp|x) = (16q)hp−

c−1
24 x

c−1
24
−h1−h2(1− x)

c−1
24
−h2−h3(θ3(q))

c−1
2
−4(h1+h2+h3+h4).

(2.13)

The technical detail of this derivation is shown in appendix A of [36]. This method

is called the monodromy method.

Note that this method relies on the WKB method and, therefore, the range in which

this method is valid is limited to

hp |log q|2 � c, (2.14)

which is explained in more details in [1].
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Figure 1. Since the operator Op arises from the OPE between O1 and O2, the monodromy of Ψp

around Op is given by encircling both points z = {0, x} along a blue contour.

3 Monodromy method at x = 1

In section 2, we used the solution approximated by the WKB method to obtain the mon-

odromy equation. In this section, instead of using the WKB method, we take the limit of

x in (2.6) to reduce it to the solvable ODE. This is a reasonable approach because what we

want to do is to understand the asymptotic behavior of the blocks in the vicinity of x = 1

as in (1.3) ∼ (1.5).

We will start with the ODE (2.6),[
∂2
z +

δ1

z2
+

δ2

(z − x)2
+

δ3

(1− z)2
+
δ1 + δ2 + δ3 − δ4

z(1− z)
− κ

z(z − x)(1− z)

]
Ψp = 0, (3.1)

where we define κ as κ = C2x(1 − x). Now that we want to estimate the asymptotics of

the block at x = 1, we take the limit x→ 1 in the ODE,[
z(1− z)∂2

z +
δ1

z
+
δ2 + δ3 + κ

1− z
− δ4

]
Ψp = 0. (3.2)

We define the parameters ηi as
δ1 = η1(1− η1),

δ4 = η4(1− η4),

δ2 + δ3 + κ = η2+3+κ(1− η2+3+κ),

(3.3)

which we call effective Liouville momenta because they are normalized Liouville momenta

η = bα with h = α(Q− α) in the large c limit. Using this notation, we obtain the twisted

hypergeometric equation[
z(1− z)∂2

z +
η1(1− η1)

z
+
η2+3+κ(1− η2+3+κ)

1− z
− η4(1− η4)

]
Ψp = 0. (3.4)

– 6 –
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The solutions to this equation are obtained by using the hypergeometric functions as

Ψ(11)
p (z) = z

C
2 (1− z)

A+B−C+1
2 2F1(A,B,C; z),

Ψ(21)
p (z) = z1−C

2 (1− z)
A+B−C+1

2 2F1(A− C + 1, B − C + 1, 2− C; z),
(3.5)

where A,B and C are related to the effective Liouville momenta as follows:
A = −1 + η1 + η4 + η2+3+κ,

B = η1 − η4 + η2+3+κ,

C = 2η1.

(3.6)

To obtain the monodromy matrix, we have to know the solutions to the OPE in another

limit 1−x� 1 with z−x
1−x fixed (see figure 2). In this region, it is useful to change variables

in the ODE (3.1) to w = z−x
1−x . In the limit x→ 1, the ODE reduces to[

w(1− w)∂2
w +

δ2

w
+

δ3

1− w
− (κ+ δ2 + δ3)

]
Ψp = 0. (3.7)

Using the notation,
δ2 = η2(1− η2),

δ3 = η3(1− η3),

δ2 + δ3 + κ = η2+3+κ(1− η2+3+κ),


A′ = −1 + η2 + η3 + η2+3+κ,

B′ = η2 + η3 − η2+3+κ,

C ′ = 2η2,

(3.8)

The solutions to the ODE (3.7) are also given by the hypergeometric functions as:

Ψ(12)
p (w) = w

C′
2 (1− w)

A′+B′−C′+1
2 2F1(A′, B′, C ′;w),

Ψ(22)
p (w) = w1−C

′
2 (1− w)

A′+B′−C′+1
2 2F1(A′ − C ′ + 1, B′ − C ′ + 1, 2− C ′;w).

(3.9)

Both of the solutions
(

Ψ
(11)
p (z),Ψ

(21)
p (z)

)
and

(
Ψ

(12)
p (w),Ψ

(22)
p (w)

)
are valid in the

special region 1 − z � 1 with z−x
1−x � 1. Therefore, we can find a way to change the basis

from
(

Ψ
(12)
p (w),Ψ

(22)
p (w)

)
to
(

Ψ
(11)
p (z),Ψ

(21)
p (z)

)
by matching the two bases in this region.

Thus, we can find the basis change matrix explicitly and express it as(
Ψ

(11)
p (z)

Ψ
(21)
p (z)

)
= M (12)

(
Ψ

(12)
p (w)

Ψ
(22)
p (w)

)
. (3.10)

From the expressions (3.5) and (3.9), the monodromy matrices around z = 0 and w = 0

are simply given by

M (11) =

(
eπiC 0

0 e−πiC

)
, M (22) =

(
eπiC

′
0

0 e−πiC
′

)
. (3.11)

At this stage, the monodromy matrix encircling both z = {0, x} is given by

M = M (11)M (12)M (22)M (21), (3.12)

– 7 –
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Figure 2. To obtain the monodromy matrix, we have to evaluate the monodromy around z = x,

while excluding z = 1. However, as long as we are restricted to the solution of the ODE (3.2), we

cannot distinguish the points z = {x, 1}. Therefore, we have to see the solution to the ODE in

another limit 1 − x � 1 with z−x
1−x � 1, which is shown in (3.7). The matrices displayed in this

figure correspond to the matrices (3.10), (3.11), and the whole circle corresponds to (3.12).

where M (21) is the inverse matrix of M (12). The circle corresponding to each matrix is

sketched in figure 2. The matrix M is very complicated but all we need to know is only

its trace because the determinant of M is trivially detM = 1. The trace of M can be

expressed as

trM = −M(A,B,C)M(A′, C ′ −B′, C ′)ε2η2+3+κ−1

−M(C −A,C −B,C)M(C ′ −A′, B′, C ′)ε−(2η2+3+κ−1) +Mconst,
(3.13)

where M and Mconst are constants in ε and defined as follows:

M(A,B,C) = 2π
Γ(C −A−B)Γ(C −A−B + 1)

Γ(1−A)Γ(1−B)Γ(C −A)Γ(C −B)
,

Mconst = 2 + 4

(
sin (π(C −A)) sin(π(C −B)) sin(πA′) sin(π(C ′ −B′))

sin(π(A+B − C)) sin(π(A′ −B′))

+
sin (πA) sin(πB) sin(π(C ′ −A′) sin(πB′)

sin(π(A+B − C)) sin(π(A′ −B′))

)
.

(3.14)

Note that this function M has the following properties:

M(A,B,C) =M(B,A,C),

M(C −A,C −B,C) =M(1−A, 1−B, 2− C),
(3.15)

The monodromy equation (corresponding to 5 in section 2) is

trM = −2 cos(παp), (3.16)

– 8 –
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where αp =
√

1− 24
c hp. It can be observed that, in the limit ε → 0, either ε2η2+3+κ−1 or

ε−(2η2+3+κ−1) diverges in the left hand side of (3.13), while the right hand side is finite.

This implies that the parameters {A,B,C} (in other words, the accessory parameter κ)

are constrained by one of the following three ways:

(i) M(A,B,C)M(A′, C ′ −B′, C ′) = 0 and
∣∣ε−(2η2+3+κ−1)

∣∣ −−→
ε→0

0.

(i’) M(C −A,C −B,C)M(C ′ −A′, B′, C ′) = 0 and
∣∣ε2η2+3+κ−1

∣∣ −−→
ε→0

0.

(ii) <(2η2+3+κ − 1) = 0.

We will start with the case (i). The condition
∣∣ε−(2η2+3+κ−1)

∣∣ −−→
ε→0

0 means that

<η2+3+κ <
1

2
. (3.17)

In addition, the equationM(A,B,C)M(A′, C ′−B′, C ′) = 0 is realized by the singularities

of the Gamma functions in the denominator of M (by the property 1/Γ(−n) = 0 for

n ∈ Z≥0). As a result, the condition (i) leads to

η2+3+κ =



−(η1 + η4) + 2 + Z≥0,

±(η1 − η4) + 1 + Z≥0,

η1 + η4 + Z≥0,

−(η2 + η3) + 2 + Z≥0,

±(η2 − η3) + 1 + Z≥0,

η2 + η3 + Z≥0,

(3.18)

where Z≥0 indicates the positive integer set {0, 1, 2, . . .}. Since the Liouville momenta

η1, η2, η3, η4 satisfy the inequality 0 ≤ <ηi ≤ 1
2 in unitary CFTs with (3.17) known, one

can deduce that only the two solutions in (3.18) are allowed. The two solutions are

η2+3+κ =

{
η1 + η4,

η2 + η3,
(3.19)

which means that the accessory parameter κ is given by

κ =

{
−δ2 − δ3 + δ1 + δ4 − 2η1η4,

−2η2η3.
(3.20)

Note that these solutions exist only if the inequality (3.17) is satisfied. Combining this

inequality with (3.19) leads to

κ =

{
−δ2 − δ3 + δ1 + δ4 − 2η1η4, if η1 + η4 <

1
2 ,

−2η2η3, if η2 + η3 <
1
2 .

(3.21)

This is one of the important results presented in this paper.
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The case (i’) is almost equivalent to the case (i). The conditions
∣∣ε2η2+3+κ−1

∣∣ −−→
ε→0

0

and M(C −A,C −B,C)M(C ′ −A′, B′, C ′) = 0 lead to

<η2+3+κ >
1

2
, (3.22)

and

η2+3+κ =



−(η1 + η4) + 1− Z≥0,

±(η1 − η4)− Z≥0,

η1 + η4 − 1− Z≥0,

−(η2 + η3) + 1− Z≥0,

±(η2 − η3)− Z≥0,

η2 + η3 − 1− Z≥0.

(3.23)

The inequalities for η2+3+κ and η1,2,3,4 restrict the solutions to

η2+3+κ =

{
−(η1 + η4) + 1,

−(η2 + η3) + 1,
(3.24)

and, consequently, we obtain the accessory parameter as

κ =

{
−δ2 − δ3 + δ1 + δ4 − 2η1η4, if η1 + η4 <

1
2 ,

−2η2η3, if η2 + η3 <
1
2 ,

(3.25)

which is exactly the same as (3.21).

In the case (ii), one finds that M and Mconst diverge and, therefore, putting the

condition (ii) into (3.13) seems to be ill-defined. However, one can show that

trM −−−−−−−−−−−→
2η2+3+κ−1=ω→0

O(ω0), (3.26)

which is well-defined. Although we can explicitly show the constant part of the limit of

the trace, we do not present it here as it is beyond the scope of this paper.

Since the trace of the monodromy matrix should be a real constant, if we express the

condition (ii) as

η2+3+κ =
1

2
+ iP, (3.27)

then P can take only the values

P =
πm

2 log ε
−−→
ε→0

0, m ∈ Z. (3.28)

As a result, we obtain the accessory parameter as

κ = −δ2 − δ3 +
1

4
. (3.29)

– 10 –
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4 Conformal blocks at x = 1

In section 3, we obtain the accessory parameter for large c conformal blocks at x = 1.

Before moving on to the next step, we summarize the results as follows:

κ =


−δ2 − δ3 + δ1 + δ4 − 2η1η4, if η1 + η4 <

1
2 ,

−2η2η3, if η2 + η3 <
1
2 ,

−δ2 − δ3 + 1
4 .

(4.1)

From this accessory parameter, we can reconstruct the conformal blocks by

F21
34 (hp|x = 1− ε) −−→

ε→0
ε
c
6
κ. (4.2)

However, which of the expressions in (4.1) should we use to obtain the conformal blocks?

All of them are solutions of the monodromy equation. Therefore, we expect that the

conformal blocks are given by the summation of these accessory parameters. Nevertheless,

in the limit c log 1
ε � 1 (large c limit or x → 1 limit), the leading conformal blocks are

given by the minimum of (4.1). For convenience, we label each accessory parameter as

κ1 = −δ2 − δ3 + δ1 + δ4 − 2η1η4, κ2 = −2η2η3, κ3 = −δ2 − δ3 +
1

4
. (4.3)

We can show the following relations for these parameters:

κ3−κ1 =

(
η1+η4−

1

2

)2

> 0, if η1+η4<
1

2
,

κ3−κ2 =

(
η2+η3−

1

2

)2

> 0, if η2+η3<
1

2
,

κ1−κ2 = (η1+η4−η2−η3)(1−η1−η2−η3−η4), if η1+η4<
1

2
, η2+η3<

1

2
.

(4.4)

This means that if the inequality η1 + η4 <
1
2 (or η2 + η3 <

1
2) is satisfied, then the leading

conformal blocks are provided by κ1 (or κ2) and, otherwise, they are given by κ3.

We will set η1 = η4 = ηA and η2 = η3 = ηB, which correspond to the ABBA blocks.

In this case, we can obtain the leading conformal blocks as:

logFBABA (hp|x = 1− ε) −−→
ε→0


(
4hA − 2hB − c

3ηA
)

log ε, if ηA <
1
4 and ηA < ηB,(

2hB − c
3ηB

)
log ε, if ηB < 1

4 and ηA > ηB,(
c

24 − 2hB
)

log ε, otherwise,

(4.5)

where ηi =
1−
√

1− 24
c
hi

2 . The inequality ηi <
1
4 can be written in terms of the conformal

dimensions as

hi <
c

32
, (4.6)

which is exactly the value we seek. Moreover, the results (4.5) perfectly reproduce our

recent results (1.3)∼ (1.5) in the large c limit. Thus, we can analytically show the transition

of ABBA blocks at hA,B = c
32 .
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In the case where η1 = η4 = ηA and η2 = η3 = ηB, the large c conformal blocks can be

expressed by

logFAABB(hp|x = 1− ε) −−→
ε→0

{(
− c

3ηAηB
)

log ε, if ηA + ηB < 1
2 ,(

c
24 − hA − hB

)
log ε, otherwise,

(4.7)

which is also consistent with our numerical results (1.1) ∼ (1.2).

5 General solutions to the recursion relation

We can argue that the result in section 4 is the analytic proof of our conjecture for the

solution to the Zamolodchikov recursion relation [1, 2]. The Zamolodchikov recursion

relation is one of the tools used to calculate the conformal blocks numerically and has been

recently receiving much attention [37, 38] because it effectively encompasses the conformal

blocks beyond the known regimes or limits.2 Next, we will very briefly explain the recursion

relation and our recent conjecture in [1, 2]. We will also relate this conjecture to the large

c conformal blocks derived in this paper.

By decomposing the conformal blocks into two parts, we obtain:

F21
34 (hp|x) = Λ21

34(hp|q)H21
34 (hp|q), q(x) = e

−πK(1−x)
K(x) , (5.1)

where the function Λ21
34(hp|q) is a universal prefactor given by

Λ21
34(hp|q) = (16q)hp−

c−1
24 x

c−1
24
−h1−h2(1− x)

c−1
24
−h2−h3(θ3(q))

c−1
2
−4(h1+h2+h3+h4). (5.2)

The function H21
34 (hp|q) can be calculated recursively by using the following relation:

H21
34 (hp|q) = 1 +

∞∑
m=1,n=1

qmnRm,n
hp − hm,n

H21
34 (hm,n +mn|q), (5.3)

where Rm,n is a constant in q, which is defined by

Rm,n = 2

m−1∏
p=−m+1

p+m=1(mod 2)

n−1∏
q=−n+1

q+n=1(mod 2)

(λ2+λ1−λp,q)(λ2−λ1−λp,q)(λ3+λ4−λp,q)(λ3−λ4−λp,q)

m∏
k=−m+1

n∏
l=−n+1

(k,l) 6=(0,0),(m,n)

λk,l

. (5.4)

In the above expressions, we used the notation

c = 1 + 6

(
b+

1

b

)2

, hi =
c− 1

24
− λ2

i ,

hm,n =
1

4

(
b+

1

b

)2

− λ2
m,n, λm,n =

1

2

(m
b

+ nb
)
.

(5.5)

2The Zamolodchikov recursion relation is also used in the conformal bootstrap [39–42]. The reference [43]

presents a good review of this matter, and discusses the connections between various recursion relations. A

generalization of the recursion relation to more general Riemann surfaces is given in [44].
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In our recently published work [1, 2], we provided general solutions to this recursion

relation by numerical computations. If we re-express the function H21
34 (hp|q) as

H21
34 (hp|q) = 1 +

∞∑
k=1

ck(hp)q
k, (5.6)

and the corresponding recursion relation as

ck(hp) =

k∑
i=1

∑
m=1,n=1
mn=i

Rm,n
hp − hm,n

ck−i(hm,n +mn), (5.7)

then the solution cn for large n takes the simple Cardy-like form of

cn ∼ nαeA
√
n. (5.8)

We obtain A and α for the ABBA blocks as follows:

1. heavy-heavy region: hA, hB > c
32

A = 0,

α = 4(hA + hB)− c+ 9

4
.

(5.9)

2. heavy-light region: hA > hB and hB < c
32

A = 2π

√√√√c− 1

24
− 4hB +

c− 1

6

(
1−

√
1− 24

c− 1
hB

)
,

α = 2(hA + hB)− c+ 5

8
.

(5.10)

Note that, by the recursion relation, the coefficients cn for the ABBA blocks are symmetric

when exchanging hA ↔ hB.

Essentially, these solutions lead perfectly to the ABBA blocks (4.5) in the large c limit.

However, in [1, 2] the expressions for ABBA blocks and their transition at hA,B = c
32 came

only from numerical observations. Therefore, their mechanism was not clear. In this paper,

we are able to analytically determine A and α in terms of the coefficients of the form (5.8)

and understand the mechanism of the transition by using the monodromy method. In fact,

these asymptotic properties of the solutions to the recursion relation are highly nontrivial

from the recursion relation itself. This is attributed to the fact that these asymptotic forms

may come from numerous cancellations between many terms in the sum (5.7). It is also

important to understand these properties from the recursion relation itself. However, we

leave that to future work.
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6 Conformal blocks with heavy intermediate states

When considering applications for conformal bootstrap, the region in which the above

monodromy method can be applied must be taken into account. This issue will be discussed

in this section, but relevant discussion can be found in [45].

First, we have to precisely determine the regime of validity of the monodromy method

discussed in section 3. The discussion below (3.16) is valid only if the right hand side

in (3.16) effectively vanishes, compared to the left hand side. More precisely, it is valid

only if
hp

(log ε)2
� 1. (6.1)

What would happen if we go outside this region? If the intermediate state is very

heavy hp � c, then the monodromy equation (3.16) reduces to

ε|2η2+3+κ−1| ∼ e−πiαp , (6.2)

where the symbol “∼” means an approximation up to a constant factor. This equation

leads to the accessory parameter

κ =
1

4
− δ2 − δ3 −

π2

4(log ε)2

(
24

c
hp − 1

)
, (6.3)

when we restrict the analysis to the regime
hp

(log ε)2 3 1, where the term of order O
(

1
(log ε)2

)
remains even in the limit ε→ 0, unlike the method in section 3. As a result, we obtain the

conformal blocks with very heavy intermediate states as

logF21
34 (hp|x = 1− ε) =

( c
24
− h2 − h3

)
log ε+ π2

(
hp −

c

24

) 1

log ε
(6.4)

where we use
∫

dε
ε(log ε)2 = − 1

log ε . This asymptotic expression of the conformal blocks exactly

matches the semiclassical conformal blocks (2.13) in the limit x→ 1 since the elliptic nome

has the following asymptotics,

q(x) = e
−πK(1−x)

K(x) −−−−−−→
1−x=ε→0

e
π2 1

log ε , (6.5)

where we use K(x) −−−→
x→0

π
2 and K(x) −−−→

x→1
− log(1−x)

2 . This result implies that we can

go beyond the initial regime (2.14). It means that, in the limit ε → 1 and hp → ∞ with

hp/(log ε)2 3 1, we have

H21
34 (hp|q) −−−−→

hp→∞
1. (6.6)

In [1] (and [46] in a special case), the conformal bootstrap equation for a four-point cor-

relator in a sphere is discussed in the high low temperature limit, which is named as such

due to the fact that if we re-express the elliptic nome q(x) as q = e−β as usual, then the

limit x→ 0 vs. x→ 1 for the conformal boostrap equation can be regarded as the modular
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bootstrap equation in the high low temperature limit. The bootstrap equation re-expressed

by the temperature is derived in [1] as∑
p

CAApCBBp

(
(16)hp e−

β
2 (hp− c−1

24 )HAA
BB(hp|q)

)(
(16)h̄p e−

β̄
2 (h̄p− c−1

24 )HAA
BB(h̄p|q̄)

)

=
∑
p

C2
ABp

((
β

2π

) c−1
4
−4(hA+hB)

(16)hp e
− 2π2

β (hp− c−1
24 )HAB

AB (hp|q̃)

)

×

((
β̄

2π

) c−1
4
−4(h̄A+h̄B)

(16)h̄p e
− 2π2

β̄ (h̄p− c−1
24 )HAB

AB (h̄p| ˜̄q)

)
,

(6.7)

where q̃(x) = q(1 − x). Here, we set q = e−
β
2 and q̄ = e−

β̄
2 , and we end up with

H21
34 (hp|q) −−−→

q→0
1 and (6.6). Hence, in the high low temperature limit, we expect that

the bootstrap equation reduces to

e
β
2
c−1
24 e

β̄
2
c−1
24 =

∑
p

C2
ABp

((
β

2π

) c−1
4
−4(hA+hB)

(16)hp e
− 2π2

β (hp− c−1
24 )

)

×

((
β̄

2π

) c−1
4
−4(h̄A+h̄B)

(16)h̄p e
− 2π2

β̄ (h̄p− c−1
24 )
)
.

(6.8)

Moreover, if we assume c > 1, then we can approximate the sum by an integral. At this

stage, we can evaluate the average of the light-light-heavy OPE coefficients by using the

inverse Laplace transformation

C2
ABp −−−−−−→

hp,h̄p→∞
16−(hp+h̄p)e

−π
√
c−1

6 (hp− c−1
24 )−π

√
c−1

6 (h̄p− c−1
24 ), (6.9)

where the average is over all primary operators of fixed dimensions hp, h̄p. The saddle point

of the inverse Laplace transformation is

hp

(log ε)2 '
c− 1

24
, (6.10)

which is in the regime
hp

(log ε)2 3 1 and, consequently, this analysis is self-consistent.

Note that the high-low temperature limit bootstrap equation in other setups reveals

the universal formulae of heavy-heavy-light [47–50] and heavy-heavy-heavy [45] OPE co-

efficients. It can be argued that all such formulae, including the above heavy-light-light

OPE coefficients, are analogs of the Cardy formula [51].

7 Discussion

In this paper, we give one analytic proof of our previous conjecture [1, 2] for large c confor-

mal blocks by using the monodromy method. In particular, we show that the asymptotic

behavior of the large c ABBA blocks drastically changes at hA,B = c
32 . Alternatively, we
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can also say that our analytic derivation of the asymptotic properties is well verified by

numerical computations.

Our results suggest that, in the bulk, the behavior of a collision between two heavy

particles can have an interesting transition associated with their masses. Unfortunately,

we do not have the tools with which we can handle such geometry. Nevertheless, the sim-

plification of the calculation of the conformal blocks suggests that the limit corresponding

to x → 1 allows us to investigate the bulk case. This limit corresponds to a late time

limit [13, 19] both in the Euclidean and Lorentzian space. It means that a geometry with

two heavy particles (or black holes) could be different based on whether their masses are

larger or smaller than c
32 . We believe that the equivalence between solving the monodromy

method in the boundary side and solving the Einstein equation in the bulk side [19, 20]

could be a key to understanding the bulk interpretation of this transition.

In [52], one can see the transition at hA,B = c
32 in the fusion transformation, which

relates s-channel and t-channel of conformal blocks [53–55] (also see [56]),

F21
34 (hαs |x) =

∫
S

dαtFαs,αt

[
α2 α1

α3 α4

]
F41

32 (hαt |1− x), (7.1)

where the contour S runs from Q
2 to Q

2 + i∞. When α1 + α4 <
1
2 or α2 + α3 <

1
2 , the

poles of the fusion kernel Fαs,αt cross the contour S and, thereby, the contour S has to be

deformed. In [52], only the special case where all external states have the same dimension

is considered but we can straightforwardly generalize the discussion to the above statement

using the work of [53]. We expect that this might lead to the transition of the conformal

blocks as we showed in this paper.

In fact, it might be possible to show our results from this fusion transformation because

when we take the limit 1−x = ε→ 0 in the left hand side, then the contributions from the

conformal blocks in the right hand side can be approximated as εhαt−h2−h3 . In the case

where α1 + α4 <
1
2 or α2 + α3 <

1
2 , the dominant contribution comes from the pole of the

fusion kernel and, consequently, the dominant contribution can be expressed by our results

presented in section 4. Otherwise, we obtain ε
c
24
−h2−h3 by integration along the contour S.

However, it is possible that we cannot estimate the regime of validity of this approximation

straightforwardly from this perspective, since the fusion kernel is too complicated. This

approach is interesting because the fusion kernel has the bulk interpretation as suggested

in [52] and, therefore, it could shed light on the interpretation of the transition occurring

in the bulk side.

This work can be thought of as an analytic proof of the statement that the general

solution to the Zamolodchikov recursion relation has an asymptotic property like the Cardy

formula. However, there is currently no proof of that statement directly from the Zamolod-

chikov recursion relation. Therefore, one interesting topic for future work is understanding

the mechanism resulting in such asymptotic behavior, by examining the recursion rela-

tion itself. This challenge is important because the monodromy method cannot probe the

non-perturbative contributions, which appear in the forms derived by the Zamolodchikov

recursion relation. In all cases, it is also important that future work reveals the higher
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order, and non-perturbative corrections to the large c conformal blocks. Moreover, there

is another reason why the challenge is important. In [1], we found that another transition

along lines hA, hB = c
32 for AABB blocks (NOT ABBA blocks). However, we cannot find

this transition by using the monodromy method used in this paper. We expect that there

is another mechanism causing this transition and it can be clarified in the analytic study

of the recursion relation.
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